WO2022015141A1 - Pharmaceutical use of pirfenidone for reducing cardiac fibrosis in patients with cardiomyopathy and/or cardiac steatosis and/or covid-19 - Google Patents

Pharmaceutical use of pirfenidone for reducing cardiac fibrosis in patients with cardiomyopathy and/or cardiac steatosis and/or covid-19 Download PDF

Info

Publication number
WO2022015141A1
WO2022015141A1 PCT/MX2021/000019 MX2021000019W WO2022015141A1 WO 2022015141 A1 WO2022015141 A1 WO 2022015141A1 MX 2021000019 W MX2021000019 W MX 2021000019W WO 2022015141 A1 WO2022015141 A1 WO 2022015141A1
Authority
WO
WIPO (PCT)
Prior art keywords
pirfenidone
cardiac
patients
covid
cardiomyopathy
Prior art date
Application number
PCT/MX2021/000019
Other languages
Spanish (es)
French (fr)
Inventor
Juan Socorro BORUNDA ARMENDÁRIZ
Ana Soledad SANDOVAL RODRÍGUEZ
Jorge GUTIÉRREZ CUEVAS
Arturo SANTOS GARCÍA
Original Assignee
Centro De Retina Médica Y Quirúrgica, S.C.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Retina Médica Y Quirúrgica, S.C. filed Critical Centro De Retina Médica Y Quirúrgica, S.C.
Publication of WO2022015141A1 publication Critical patent/WO2022015141A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4412Non condensed pyridines; Hydrogenated derivatives thereof having oxo groups directly attached to the heterocyclic ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Definitions

  • the present invention is related to the field of medicine, specifically to drugs that reduce cardiac fibrosis and also the expression of troponin I, specifically to the pharmaceutical use that contains 5-methyl-1-phenyl-2-(1H)-pyridone (Pirfenidone) as an active ingredient alone or in combination with any other bioactive molecule, specifically for the management of patients with cardiomyopathy and/or cardiac steatosis and/or COVID-19.
  • drugs that reduce cardiac fibrosis and also the expression of troponin I specifically to the pharmaceutical use that contains 5-methyl-1-phenyl-2-(1H)-pyridone (Pirfenidone) as an active ingredient alone or in combination with any other bioactive molecule, specifically for the management of patients with cardiomyopathy and/or cardiac steatosis and/or COVID-19.
  • Cardiomyopathy cardiac steatosis and/or cardiac fibrosis.
  • Chronic inflammation is a common molecular basis for several chronic diseases, such as atherosclerosis, autoimmune diseases, neurodegenerative diseases, cancer, among others. Accumulating evidence suggests that chronic inflammation also plays a crucial role in cardiac fibrosis, cardiac steatosis, and/or cardiomyopathy.
  • Obesity is a chronic, multifactorial and largely preventable disease that affects all types of socioeconomic groups, and is caused by an imbalance between dietary energy intake in relation to energy expenditure.
  • Fatty acids are the main energy lipids used metabolically by cardiac tissue, accounting for approximately 70% of the heart's energy requirements under normal conditions.
  • cardiac energy metabolism shifts from fatty acids to glucose for ATP (adenosine triphosphate) production.
  • ATP adenosine triphosphate
  • the high-fat/high-cholesterol (HFHC) diet commonly known as the Western diet, induces obesity, which is associated with the metabolic syndrome, type 2 diabetes (DM2: diabetes mellitus 2).
  • non-alcoholic steatohepatitis NASH: Non-Alcoholic SteatoHepatitis
  • cardiovascular diseases Lipid accumulation in cardiac tissue leads to alterations in cardiac morphology and function due to glucose intolerance, low-grade inflammation, and impaired insulin sensitivity.
  • the diet rich in fats HFD: High Fat Diet
  • Western Western
  • fats and carbohydrates in high quantities induces myocardial oxidative stress, defective intracellular signaling, hypertrophy of cardiomyocytes, interstitial fibrosis and dysregulation of genes such as peroxisome proliferator-activated receptors (PPARs), including Pparo and Ppary. Therefore, these pathological changes, mainly interstitial fibrosis, can cause myocardial stiffness.
  • PPARs peroxisome proliferator-activated receptors
  • Non-alcoholic fatty liver disease is currently the most common chronic liver disease. Most patients with non-alcoholic steatohepatitis (NASH) show insulin resistance, independent of body weight. Insulin resistance is considered a better predictor of liver damage in patients with the non-alcoholic fatty liver disease (NAFLD), more than the visceral adiposity or fibrosls scoring system. commonly used. Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic component of the metabolic syndrome and its characteristics are similar to obesity, inflammation, insulin resistance and type 2 diabetes. Therefore, it is important to treat patients with the disease. non-alcoholic fatty liver disease (NAFLD) as well as its associated diseases.
  • NASH non-alcoholic fatty liver disease
  • NAFLD non-alcoholic fatty liver disease
  • NASH non-alcoholic steatohepatitis
  • Immune cells, macrophages/Kupffer cells, natural killer cells, and T cells contribute to the progression of nonalcoholic steatohepatitis (NASH); in particular the resident and recruited hepatic macrophages derived from bone marrow, which are the most abundant cells and largely responsible for the secretion of inflammatory mediators such as TNFalpha and IL-1beta, leading to systemic insulin resistance and steatohepatitis non-alcoholic (NASH) (Kltade H, et al. Nonalcoholic fatty liver dlsease and Insult resistance: new insights and potential new treatments. Nutriente. 2017; 9, 387).
  • NASH nonalcoholic steatohepatitis
  • NAFLD non-alcoholic fatty liver disease
  • hyperinsulinemia and dyslipidemia are more severe than in patients without non-alcoholic fatty liver disease (NAFLD).
  • Adiponectin secreted by fatty tissue regulates fatty acid oxidation and inhibits lipid accumulation in both adipose tissue and liver.
  • NAFLD non-alcoholic fatty liver disease
  • a decrease in adiponectin in the development of nonalcoholic fatty liver disease (NAFLD) or type 2 diabetes affects fatty acid metabolism and promotes a state of chronic inflammation in the liver (Kitade H, et al. Nonalcohol ⁇ c fatty liver disease and insulin resistance: new insights and potential new treatments. Nutrients. 2017; 9, 387.
  • Cardiac fibrosis is a common pathophysiology of most myocardial diseases, and is associated with systolic and diastolic dysfunction, arrhythmogenesis, and adverse outcomes. Cardiac fibrosis is characterized by excessive accumulation of extracellular matrix in the myocardium. Because the adult mammalian myocardium has negligible regenerative capacity, the most intense fibrotic remodeling of the ventricle is found in diseases associated with acute myocardial death.
  • Hypertrophic cardiomyopathy and postviral dilated cardiomyopathy are also often associated with the development of significant cardiac fibrosis.
  • a variety of toxic injuries such as alcohol consumption or anthracycline use
  • metabolic disorders such as diabetes and obesity
  • fibrotic changes in the myocardium in both patients.
  • humans and in experimental models The pathophysiological mechanisms that lead to fibrotic remodeling of the ventricle are different in patients with various heart diseases; but the cellular effectors of fibrotic remodeling are common and the signaling pathways involved are similar.
  • cardiomyocyte death is usually the initial event responsible for the activation of fibrogenic signals in the myocardium.
  • noxious stimuli such as pressure overload or myocardial inflammation
  • Various cell types are involved in fibrotic remodeling of the heart, either by directly producing matrix proteins (fibroblasts) or indirectly by secreting fibrogenic mediators (macrophages, mast cells, lymphocytes, cardiomyocytes, and vascular cells).
  • myofibroblasts The relative contribution of the various cell types often depends on the underlying cause of the fibrosis; however, in all conditions associated with cardiac fibrosis, the transdifferentiation of fibroblasts into secretory and contractile cells, termed myofibroblasts, is the key cellular event driving the fibrotic response.
  • Myofibroblasts are phenotypically modulated fibroblasts that accumulate at sites of injury and combine ultrastructural and phenotypic characteristics of smooth muscle cells. They have an extensive endoplasmic reticulum, a characteristic of synthetically active fibroblasts.
  • Alpha-smooth muscle actin ( ⁇ -SMA) expression identifies differentiated myofibroblasts in injured tissues, but is not a requirement for the myofibroblastic phenotype since, in early stages, from reparative or fibrotic responses, myofibroblasts may lack expression of ⁇ -SMA; but they exhibit stress fibers composed of cytoplasmic actins, these cells are called proto-myofibroblasts.
  • fibroblasts in normal myocardium and the marked induction of mediators that promote myofibroblast transdifferentiation after cardiac injury (such as fibronectin, TGF- ⁇ 1 (Transforming growth factor beta-1), and ED-A (chlorpheniramine/phenylephrine) ) suggest that the activation of resident cardiac fibroblasts may represent the most important source of myofibroblasts in the fibrotic heart.
  • mediators that promote myofibroblast transdifferentiation after cardiac injury such as fibronectin, TGF- ⁇ 1 (Transforming growth factor beta-1), and ED-A (chlorpheniramine/phenylephrine)
  • TGF- ⁇ 1 Transforming growth factor beta-1
  • ED-A chlorpheniramine/phenylephrine
  • Fibrillar collagen accumulation in the cardiac interstitium is the hallmark of cardiac fibrosis.
  • Type I and type III collagen synthesis is markedly increased in the fibrotic heart regardless of the etiology of the fibrosis.
  • the deposition of nonfibrillar collagens may play an important role in the activation of fibroblasts.
  • fibrotic process may contribute to the fibrotic process by producing proteases that are involved in matrix metabolism, secreting fibrogenic mediators, and proteins. matricellular cells, or by exerting contact-dependent actions on fibroblasts.
  • proteases that are involved in matrix metabolism, secreting fibrogenic mediators, and proteins. matricellular cells, or by exerting contact-dependent actions on fibroblasts.
  • the mechanisms of fibrogenic signal induction depend on the type of primary myocardial injury. Activation of neurohumoral pathways stimulates fibroblasts both directly and through effects on immune cell populations.
  • Cytokines and growth factors such as tumor necrosis factor- ⁇ , interieukin IL-1, IL-10, chemokines, members of the transforming growth factor- ⁇ family, IL-11, and platelet-derived growth factors they are secreted into the cardiac interstitium and play distinct roles in activating specific aspects of the fibrotic response.
  • Secreted fibrogenic mediators and matricellular proteins bind to cell surface receptors on fibroblasts, such as receptors for cytokines, integrins.
  • syndecans and CD44 CD44 antigen is a cell surface glycoprotein involved in cell-cell interactions, cell adhesion, and migration), and transduce intracellular signaling cascades that regulate genes involved in the synthesis, processing, and metabolism of the extracellular matrix.
  • Endogenous pathways involved in the downregulation of fibrosis are critical for cardiac repair and may protect the myocardium from excessive fibrogenic responses. Due to the reparative nature of many forms of cardiac fibrosis, targeting fibrotic remodeling after myocardial injury poses great challenges. Although regression of fibrosis has been documented in several heart conditions, the mechanisms responsible for the reversal of fibrotic disease remain unknown. Removal of collagen and other matrix proteins from the fibrotic heart probably requires the activation of proteases. It is unknown whether specific subpopulations of antifibrotic macrophages and lymphocytes are involved in the resolution of fibrotic lesions. Furthermore, the functional characteristics and molecular profile associated with a cardiac fibroblast regression phenotype have not been investigated.
  • Diabetes-associated interstitial fibrosis is associated with the accumulation of type I and III collagen, involves both the left and right ventricles, and has been described in type 1 and type 2 diabetes.
  • Manifestations of cardiomyopathy range from microscopic alterations in cardiac myocytes to fulminant heart failure with inadequate tissue perfusion, fluid accumulation, and cardiac rhythm dysfunction. Cardiomyopathy can be classified into primary (genetic, mixed, or acquired) and secondary, resulting in varied phenotypes including hypertrophic, dilated, and restrictive categories.
  • Hypertrophic cardiomyopathy is the most common primary cardiomyopathy and can cause exertional dyspnea, presyncope, atypical chest pain, heart failure, and death.
  • sudden cardiac Dilated cardiomyopathy can be genetic or acquired and usually presents with classic symptoms of heart failure with reduced ejection fraction.
  • Restrictive cardiomyopathy is much less common and is often associated with systemic diseases such as Type 2 Diabetes Mellitus.
  • Acquired variants of cardiomyopathy include peripartum and stress-induced cardiomyopathy, as well as rare variants such as arrhythmogenic right ventricular dysplasia and left ventricular non-compaction.
  • Diagnosis of cardiomyopathy includes electrocardiography and echocardiography tests, in addition to medical history and physical examination. Treatment of symptomatic heart failure should follow current American College of Cardiology/American Heart Association guidelines, which include drug therapy with beta-blockers, an angiotensin-converting enzyme (ACE) inhibitor. angiotensin converting enzyme).
  • ACE angiotensin-converting enzyme
  • an angiotensin receptor blocker (ARB: Angiotensin Receptor Blocker), diuretics, or an angiotensin-neprilysin receptor inhibitor.
  • ARB Angiotensin Receptor Blocker
  • diuretics or an angiotensin-neprilysin receptor inhibitor.
  • Hyperglycemia increases enzymatic O-Glucosin acetylation of cardiomyocyte proteins and is deleterious. Increased formation of Advanced Nonenzymatic Glycation Endproducts (AGEs) also has deleterious effects.
  • AGEs Advanced Nonenzymatic Glycation Endproducts
  • a diabetic autonomic neuropathy is present and linked to hyperglycemia. Exposure to increased levels of lipids, including fatty acids and triglycerides, increases the accumulation of fat vacuoles in cardiomyocytes that mediate cardiac lipotoxicity.
  • DM1 and DM2 diabetes mellitus type 1 and 2 producing alterations in other signaling cascades, including decreased AMPK (Adenine Monophosphate Activated Protein Kinase) signaling: protein kinase activated by adenine monophosphate, an enzyme composed of three subunits, one subunit-a-catalytic and two non-catalytic subunits, ⁇ and Y) and increased signaling of protein kinase C (PKC: Protein Kinase C: Protein kinase C) and proteins mitogen-activated kinases (MAPKs: Mitogen-Activated Protein Kinases: Mitogen-activated protein kinases).
  • PKC Protein Kinase C
  • MAPKs Mitogen-Activated Protein Kinases
  • Coronaviruses belong to the Coronaviridae family of the Nidovirales order.
  • the name of Corona is given by the shape of "crown" that is generated on the external surface of the virus in the form of points.
  • Coronaviruses have a diameter between 65 and 125 nm and contain a single chain of RNA (RiboNucleic Acid: ribonucleic acid ) as nucleic material, with a length of 26 to 32 kb.
  • the new coronavirus was named SARS-CoV-2 and the disease COVID-19.
  • -CoV-2 belongs to the ⁇ group of coronaviruses (Shereen 2020, et al. COVID-19 infection: Origin transmission, and characteristics of human coronaviruses. J Adv Res.
  • coronaviruses contain specific genes downstream of open reading frame 1 (orfl) that encode viral replication, nucleocapsid, and protein S formation proteins.
  • the receptor-binding domain (RBD: Receptor-Binding Domain: domain receptor binding) of the S protein binds freely between viruses, therefore, the virus can infect multiple hosts.
  • SARS-CoV-2 in addition to protein S, expresses other polyproteins, nucleoproteins, and membrane proteins, as well as RNA polymerase, protease 3 Upo chymotrypsin, papin-type protease, helicase, glycoprotein, and accessory proteins.
  • SARS-CoV-2 The structural proteins of SARS-CoV-2 are encoded by 4 structural genes, including spike (S), envelope (e), membrane (m), and nucleocapsid (n) (Shereen 2020, et al. COVID -19 Infection: Origin transmission, and characterist ⁇ cs of human coronaviruses (Infection by COVID-19: transmission of origin and characteristics of human coronaviruses. J Adv Res. 2020; 24:91-98),
  • the alteration of certain clinical values may indicate disease progression and prognosis: lymphopenia, leukocytosis, elevated alanine aminotransferase (ALT) and lactate dehydrogenase (LDH), high sensitivity of cardiac troponin I, creatine kinase, D-dimer, ferritin elevated serum levels, IL-6, prothrombin time, creatinine, and procalcitonin (Zhou F et al. Ciinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study) mortality of adult hospitalized patients with COViD-19 in Wuhan, China: a retrospective cohort study). Lancet.
  • the main typical pulmonary manifestations shown in computed tomography of patients with COVID-19 are ground-glass opacities (GGO: Ground-Glass Opacification), consolidation, reticular pattern and disordered cobblestone pattern.
  • GGO Ground-Glass Opacification
  • Atypical manifestations of computed tomography include airway changes, pleural changes, fibrosis, nodules, etc. All of the above could be associated with the progression and prognosis of COVID-19 (Ye Z et al. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review (manifestations of the new coronavirus disease 2019 (COVID- 19): a pictorial review.
  • Troponin I Troponin I
  • TnT troponin T
  • TnC troponin C
  • Tnl is the inhibitory subunit; it blocks actin-myosin interactions and thus mediates striated muscle relaxation.
  • the Tnl subfamily contains three genes: Tnl-skeletal-fast-twitch, Tnl-skeletai-slow-twitch, and Tnl-heartiac. This gene encodes the Tn i -cardiac protein and is expressed exclusively in cardiac muscle tissues. Mutations in this gene cause Familial Hypertrophic Cardiomyopathy 7 (HCM7: Familial Hypertrophic Cardiomyopathy 7) and Familial Restrictive Cardiomyopathy (RCM). : Restrictive Cardiomyopathy).
  • HCM7 Familial Hypertrophic Cardiomyopathy 7
  • RCM Familial Restrictive Cardiomyopathy
  • TnT intravenous glucocorticoids
  • mechanical ventilation was prescribed more frequently in patients with elevated levels of TnT compared to TnT in the normal range.
  • patients with elevated TnT presented more frequently malignant arrhythmias (including ventricular tachycardia and ventricular fibrillation), renal failure, and acute respiratory distress syndrome.
  • Rirfenidone (PFD), 5-methyl-1-phenyr-2-(1H)-pindone, was initially developed as an anthelmintic and antipyretic agent.
  • PFD is a small molecule with a molecular weight of 185.23 Da, its chemical formula is C12H11NO with high solubility in alcohol and chloroform, the molecule is capable of diffusing between cell membranes without the need for a receptor (Macias- Barragan J et al. The multifaceted role of pirfenidone and its novel targets. new goals. Fibrogenesis Tissue Repair) 2010; 3:16).
  • PFD has been tested in various cellular and animal models of inflammation and fibrosis, where it has been shown to have anti-inflammatory effects, anti-oxidative stress and anti-proliferative properties.
  • PFD is known to regulate key cytokines and growth factors in the fibrotic process. It inhibits various inflammatory mediators, has an antioxidant effect, and restores the immune response.
  • the compound per se is a known compound, as well as its pharmacological effects described, for example, in Japanese KOKAI Application Nos. 87677/1974 and 1284338/1976, as an anti-inflammatory agent including its analgesic and antipyretic effects.
  • Kom ⁇ ya et al. evaluated the therapeutic effect of PFD in a murine model of NASH (Non-Aicoholic SteatoHepatitis: steatohepatitis no alcohol) associated with obesity, insulin resistance and dyslipidemia. They showed that PFD markedly attenuates hepatic fibrosis in the experimental model, with a parallel reduction in hepatocyte apoptosis. They observed that PFD inhibits TN Faifa-generated tissue damage and the fibrogenic response.
  • NASH Non-Aicoholic SteatoHepatitis: steatohepatitis no alcohol
  • pirfenidone in a model of non-alcoholic steatohepatitis decreases the weight of the animal, cholesterol, lipoproteins and very low density triglycerides, and at the liver level it decreases hepatic macrosteatosis, inflammation, ballooning of hepatocytes, fibrosis, epididymal fat and adiposity.
  • PFD restored insulin, glucagon, adiponectin, and resistin levels along with improved insulin resistance.
  • the invention US20080025986A1 of January 31, 2008 describes as an invention, methods of treating disorders mediated by TNFalpha, the methods are based on the administration of pirfenidone or analogs and a secondary therapeutic agent for the reduction of the synthesis of TNFalpha or the reduction of the binding of TNFalpha to its receptor.
  • the invention provides methods for the treatment of NASH where the general method requires the administration of an individual amount of pirfenidone. It also provides the treatment method for type 2 diabetes with the combination of pirfenidone and insulin.
  • the invention WO2018088886A1 of May 17, 2018 claims the use of a pharmaceutical composition in the form of extended release tablets containing pirfenidone for the treatment of NAFLO/NASH and advanced liver fibrosis, reducing serum cholesterol and triglyceride levels, as well as the content of accumulated fat in liver tissue, in the form of macrosteatosis and microsteatosis.
  • the object of the invention is to make available the pharmaceutical use of 5-methyl-1-phenyl-2-(1H)-pyridone (Pirfenidone) as an active ingredient alone or in combination with any anti-angiogenic compound, nutraceuticals or any bioactive molecule. that modify the expression of Troponin I, specifically for the management of patients with cardiomyopathy and/or cardiac steatosis and/or cardiac fibrosis and/or COVID-19,
  • Figure 2 shows the average daily caloric intake in groups of mice before and during PFD treatment.
  • a) caloric intake measured prior to PFD treatment b) caloric intake measured during PFD treatment, Data are expressed as means ⁇ SEM (Standard error of the mean); n - 5 / group.
  • Welch's t-test was applied; in panel b), Kruskal-Wallis test followed by Mann-Whitney U post-hoc test. *** P ⁇ 0.001 vs. ND.
  • FIG. 3 shows how PFD prevents HFHC diet-induced accumulation of cardiac lipids.
  • Lipid (ad) accumulation in frozen heart sections was stained with oily red (ORO).
  • Scale bar 100 pm, 20X magnification (a); 200 pm, increase 12X (b, 12 weeks) and 150 pm, 40x magnification (b, 16 weeks), d, e Histograms skilled llpidos content from 4 to 16 weeks to week and 16th, respectively.
  • Data are expressed as means ⁇ SEM.
  • one-way ANOVA Analysis of Variance
  • FIG. 4 shows representative H&E stained cardiac histology features of HFHC diet fed mice.
  • b) Histogram showing the cross sectional area of cardiomyocytes at 16 weeks (n 5 / group), c), d) cardiac tissue reveals small inflammatory foci neutrofllicos (black arrows) from 4 ⁇ week to 16 and 16 a week, respectively; scale bar: 150 pm 40X magnification.
  • Each point and error bar indicate the mean ⁇ SEM.
  • FIG. 5 shows the histological analysis of the effects of PFD on HFHC-induced cardiac fibrosis.
  • a), c), e) Representative photomicrographs of transverse sections of cardiac tissue showing the deposition of the endomysial and perimysial collagen network, stained by Masson's trichrome and picrosirium. Interstitial fibrosis and perivascular fibrosis are indicated by arrows (a, c, e); collagen fibers appeared at 8 weeks a.
  • Figure 6 shows the effects of HFHC and PFD diet on the levels of mRNA gene expression in cardiac tissue.
  • RT-qPCR for hypertrophy and fibrosis genes such as Desmtn, Tflfpl, Timpl, Col I, Col III (a); and for TNF-o, Nrf2, Sod1, Acox1, Srebp1 and Pgc1a (b) using ventricutar tissue.
  • Figure 7 shows the evaluation of inflammation, oxidative stress, myocardial damage and genes related to lipid metabolism.
  • Western blotting image and quantification of NF-kB, Nrf2, troponin-l (a, b); and Pparo, Ppary, Acox1, Cpt1A, Lxra, and Srebp1 (c, d) using cardiac protein extracts from ventricular tissue. Band intensities were measured and are shown in histograms. Data are expressed as means ⁇ SEM. For group comparisons (n 5/group), one-way ANOVA followed by Tukey's post hoc analysis. M P ⁇ 0.01 and *** P ⁇ 0.001 vs. NA; #P ⁇ 0.05, ## P ⁇ 0.01 and ### P ⁇ 0.001 vs. HFHC.
  • ND normal diet
  • the results show that the animals fed the diet high in fat increased their serum glucose levels compared to ND control animals.
  • the HF group treated with PFD showed an increase in insulin sensitivity as measured by the Insulin Tolerance Test (ITT) which is shown by the decrease in the value of the area under the curve.
  • ITT Insulin Tolerance Test
  • the frozen ventricular tissue was homogenized in RIPA buffer (RIPA: Radio immuno Precipitation Assay); 40 pg of total cardiac protein per lane was resolved on a 12% SDS-PAGE gel and transferred to PVDF (PVDF: Polyvinyldifluoride) membrane (Bio-Rad Laboratories). Membranes were incubated with 3% nonfat dry milk in Tris-buffered saline containing 0.1% Tween 20 at room temperature for 1 hour. Membranes were immunoblotted with primary antibodies specific for NFkB, Nrf2, Troponin I, beta-actin, PPAR-alpha, PPAR-gamma, Acox1, Cpt1A, LXR-alpha, and SREBP1.
  • mice were anesthetized with tiletamine/zolazepam (15 mg/kg/pe, Zoletil® 50, Virbac), hearts and livers rapidly isolated.
  • the heart of the mice was perfused through the left ventricle using a syringe with 5 ml of cold PBS (PBS: Phosphate Buffered Saline or Phosphate Buffered Saline).
  • PBS Phosphate Buffered Saline or Phosphate Buffered Saline
  • the atria were removed and the ventricles were cut into four sections; one was fixed in 4% paraformaldehyde (0.1 M PBS, pH 7.4) and embedded in paraffin; another was immersed in Tissue-Tek® OCT (OCT; Optical Coherence Tomography).
  • OCT Optical Coherence Tomography
  • Tris-EDTA buffer Tris-EDTA is responsible for protecting nucleic acids by inactivating DNAses or RNases
  • pH 9.0 Tris-EDTA buffer
  • 10 random fields of ventricular areas were evaluated.
  • ⁇ -SMA staining intensity was determined using ImageJ (ImageJ is a public domain digital image processing program programmed in Java developed at the National Institutes of Health: National Institutes of Health).
  • RNA isolation and RT-qPCR Total RNA from ventricular tissue was isolated with Trizol reagent (Invitrogen) according to the manufacturer's instructions, and quantified using a NanoDrop spectrophotometer (Thermo Fisher Scientific). 2 pg of total RNA was reverse transcribed using 690 ng random primers, 0.72 mM deoxynucleotide triphosphate (dNTP) mix, 1x first-strand buffer, 3.6 mM dithiothreitol (DTT), 5 U RNase inhibitor, and 260 U of Moloney murine leukemia virus (M-MLV) reverse transcriptase (Invitrogen) in a reaction volume of 50 pL, following the manufacturer's instructions.
  • Trizol reagent Invitrogen
  • qPCR quantitative Polymerase Chain Reaction or quantitative polymerase chain reaction
  • the qPCR reactions were performed on the LightCycler 96 instrument (Roche Molecular Systems). All data were run in triplicate, normalized according to Gapdh (Gapdh: glyceraldehyde-3-phosphate dehydrogenase) and 18S levels (18S ribosomal RNA (abbreviated 18S rRNA) is a part of ribosomal RNA, the S in 18S represents Svedberg units), and were analyzed using the 2- ⁇ Ct method. The results can be seen in figures 6 and 7. Resulting pharmaceutical use.
  • Troponin I overexpression is associated with cardiomyopathy and/or cardiac steatosis and/or cardiac fibrosis and/or COVID-19.
  • Pirfenidone can be used for the reduction and/or modulation of cardiac fibrosis and the expression of cardiac troponin 1 in any pharmaceutical formulation that includes but is not restricted to Pirfenidone rapid release or standard pirfenidone, prolonged or extended release pirfenidone, slow-release pirfenidone, pirfenidone in liposomes of any lipid composition, aerosol pirfenidone, microemulsion pirfenidone, among others; pirfenidone alone or administered with an anti-angiogenic compound or other active ingredients or pirfenidone administered or formulated with other bioactive molecules or active ingredients.
  • the pharmaceutical use whose active ingredient is Pirfenidone may contain other active ingredients, nutraceuticals or any bioactive molecule that modifies the expression of Troponin 1.
  • the other inhibitors of gene expression of Troponin I can be inhibitors llb/llla (inhibitors of glycoprotein llb/llla: abciximab, eptifibatide and tirofiban) and bioactive molecules encoded by PRKCD genes (Protein Kinase C Delta: Protein kinase C Delta, the protein encoded by this gene is a member of the family of protein kinases C, which are specific serine and threonine protein kinases), PRKCA, PRKCB and PRKCG (Protein Kinase C Alpha, Beta and Gamma: Protein kinase C Alpha , Beta, Gamma, protein kinase C, is a family of specific protein kinases (alpha, beta and gamma) of serine and threonine that can be activated by calcium and the second messenger, diaciglyceroi), PPP2CA (This gene encodes the phosphatase 2A catalytic subunit.
  • Protein phosphatase 2A is one of the four main Ser/Thr phosphatases, and is involved in the negative control of cell growth and division) and PAK3 (P21 (RAC1) Activated Kinase 3,
  • the protein encoded by this gene is a serine-threonine kinase and forms an activated complex with GAS bound to RAS (P21), CDC2 and RAC1) or any other molecule that inhibits or modifies the expression of Troponin I.
  • Pirfenidone and/or any other active ingredient and/or any other molecule that modulates the expression of troponin I acts in cardiomyopathy and/or cardiac sciatosis and/or cardiac fibrosis and/or COVID-19, as an adjuvant.
  • the total daily dose of pirfenidone can be 800 mg, 1200 mg or 2400 mg.
  • the formulation can be part of the treatment of patients with cardiomyopathy and/or cardiac steatosis and/or cardiac fibrosis and/or COVID-19, as an adjuvant.
  • Troponin I overexpression can be of any other aetiology, including type II diabetes, non-alcoholic steatohepatitis, alcoholic steatohepatitis, metabolic syndrome, etc.
  • the pharmaceutical composition can be presented in various pharmaceutical forms such as granules, tablets, capsules, drops, tablets, emulsion, microemulsion, suspension, syrup, bulk powder mixture or others.
  • Pirfenidone that can be used for the reduction and/or modulation of cardiac fibrosis and the expression of cardiac troponin I in any pharmaceutical formulation that includes but is not restricted to rapid release plrfenidone or standard pirfenidone, prolonged or extended release pirfenidone , slow-release pirfenidone, pirfenidone in liposomes of any lipid composition, pirfenidone in aerosol, pirfenidone in microemulsion, among others; Pirfenidone alone or administered with an anti-angiogenic compound or other active ingredients or Pirfenidone administered or formulated with other bioactive molecules or active ingredients, a.
  • the pharmaceutical use whose active ingredient is Pirfenidone may contain other active ingredients, nutraceuticals or any bioactive molecule that modifies the expression of Troponin I, where overexpression of Troponin I may be of any other etiology, including type II diabetes, non-alcoholic steatohepatitis, alcoholic steatohepatitis , metabolic syndrome, etc., b.
  • the other inhibitors of Troponin I gene expression can be the llb/llla inhibitors (inhibitors of the glycoprotein llb/llla; abciximab, eptifibatide and tirofiban) and the bioactive molecules encoded by the PRKCD genes (the protein encoded by this gene is a member of the protein kinase C family, which are specific serine and threonine protein kinases), PRKCA, PRKCB and PRKCG (protein kinase C, is a family of specific protein kinases (alpha, beta and gamma) of serine and threonine that can be activated by calcium and the second messenger, diacylglycerol), PPP2CA (this gene encodes the phosphatase 2A catalytic subunit, protein phosphatase 2A is one of the four main Ser/Thr phosphatases, and is involved in negative control of cell growth and division) and PAK3 (P21 (RAC1) Activated Kinase
  • the pharmaceutical formulation can be presented as follows;
  • the pharmaceutical composition can be presented in various pharmaceutical forms such as granules, tablets, capsules, dragees, tablets, emulsion, microemulsion, suspension, syrup, bulk powder mixture or others.
  • the pharmaceutical composition can be part of the treatment of patients with cardiomyopathy and/or cardiac steatosis and/or cardiac fibrosis and/or COVID-19, as an adjuvant.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)

Abstract

The present invention relates to the field of medicaments that reduce cardiac fibrosis and also the expression of troponin I, specifically to the pharmaceutical use containing 5-methyl-1-phenyl-2-(1H)-pyridone (Pirfenidone) as an active ingredient, alone or in combination with any other bioactive molecule, specifically for the management of patients with cardiomyopathy and/or cardiac steatosis and/or COVID-19.

Description

USO FARMACÉUTICO DE PIRFENIDONA PARA LA REDUCCIÓN DE FIBROSIS CARDIACA EN PACIENTES CON CARDIOMIOPATÍA Y/O ESTEATOSIS CARDIACA Y/O PHARMACEUTICAL USE OF PIRFENIDONE FOR THE REDUCTION OF CARDIAC FIBROSIS IN PATIENTS WITH CARDIOMYOPATHY AND/OR CARDIAC STEATOSIS AND/OR
COVID-19 CAMPO DE LA INVENCIÓN COVID-19 FIELD OF INVENTION
La presente invención está relacionada al campo de la medicina, específicamente a los medicamentos que reducen la fibrosis cardíaca y también la expresión de la troponina I, concretamente al uso farmacéutico que contiene 5-metil-1-fenil-2-(1H)-piridona (Pirfenidona) como principio activo solo o en combinación con cualquier otra molécula bioactiva, concretamente para el manejo de pacientes con cardiomiopatia y/o esteatosis cardiaca y/o COVID-19. The present invention is related to the field of medicine, specifically to drugs that reduce cardiac fibrosis and also the expression of troponin I, specifically to the pharmaceutical use that contains 5-methyl-1-phenyl-2-(1H)-pyridone (Pirfenidone) as an active ingredient alone or in combination with any other bioactive molecule, specifically for the management of patients with cardiomyopathy and/or cardiac steatosis and/or COVID-19.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Cardiomiopatia, esteatosis cardiaca y/o fibrosis cardiaca. Cardiomyopathy, cardiac steatosis and/or cardiac fibrosis.
La inflamación crónica es una base molecular común a varias enfermedades crónicas, como la arterosclerosis, enfermedades autoinmunes, enfermedades neurodegenerativas, cáncer entre otras. Evidencia acumulada sugiere que la inflamación crónica también juega un papel crucial en la fibrosis cardiaca, esteatosis cardiaca y/o cardiomiopatia. Chronic inflammation is a common molecular basis for several chronic diseases, such as atherosclerosis, autoimmune diseases, neurodegenerative diseases, cancer, among others. Accumulating evidence suggests that chronic inflammation also plays a crucial role in cardiac fibrosis, cardiac steatosis, and/or cardiomyopathy.
La obesidad es una enfermedad crónica, multifactorial y en gran medida prevenible que afecta a todo tipo de grupos socioeconómicos, y es causada por un desequilibrio entre ei consumo de energía en la dieta en relación con el gasto energético. Los ácidos grasos son los principales lípidos energéticos utilizados metabólicamente por el tejido cardiaco, que representan aproximadamente el 70% de los requerimientos de energía del corazón en condiciones normales. Sin embargo, en situaciones patológicas como la hipertrofia avanzada y otras cardiomiopatías, el metabolismo de la energía cardiaca cambia de ácidos grasos a glucosa para la producción de ATP (trifosfato de adenosina). La dieta alta en grasas/carbohidratos (HFHC: High Fat High Cholesterol: alto en grasa, alto en colesterol), comúnmente conocida como dieta occidental, induce obesidad, que está asociada con el síndrome metabólico, diabetes tipo 2 (DM2: diabetes mellítus 2), esteatohepatitis no alcohólica (NASH: Non-Alcoholic SteatoHepatitis) y enfermedades cardiovasculares. La acumulación de lipidos en el tejido cardiaco conduce a alteraciones en la morfología y función cardiacas debido a intolerancia a la glucosa, inflamación de bajo grado y sensibilidad a la insulina alterada. La dieta rica en grasas (HFD: High Fat Diet) y en general la dieta conocida como occidental ("Western Diet") compuesta por grasas y carbohidratos en altas cantidades induce estrés oxidativo miocárdico, señalización intracelular defectuosa, hipertrofia de cardiomiocitos, fibrosis intersticial y desregulación de genes como los receptores activados por proliferador de peroxisomas (PPAR: peroxisome proliferator-activated receptors), incluidos Pparo y Ppary. Por lo tanto, estas alteraciones patológicas, principalmente fibrosis intersticial, pueden causar rigidez miocárdica. Obesity is a chronic, multifactorial and largely preventable disease that affects all types of socioeconomic groups, and is caused by an imbalance between dietary energy intake in relation to energy expenditure. Fatty acids are the main energy lipids used metabolically by cardiac tissue, accounting for approximately 70% of the heart's energy requirements under normal conditions. However, in pathological situations such as advanced hypertrophy and other cardiomyopathies, cardiac energy metabolism shifts from fatty acids to glucose for ATP (adenosine triphosphate) production. The high-fat/high-cholesterol (HFHC) diet, commonly known as the Western diet, induces obesity, which is associated with the metabolic syndrome, type 2 diabetes (DM2: diabetes mellitus 2). ), non-alcoholic steatohepatitis (NASH: Non-Alcoholic SteatoHepatitis) and cardiovascular diseases. Lipid accumulation in cardiac tissue leads to alterations in cardiac morphology and function due to glucose intolerance, low-grade inflammation, and impaired insulin sensitivity. The diet rich in fats (HFD: High Fat Diet) and in general the diet known as Western ("Western Diet") composed of fats and carbohydrates in high quantities induces myocardial oxidative stress, defective intracellular signaling, hypertrophy of cardiomyocytes, interstitial fibrosis and dysregulation of genes such as peroxisome proliferator-activated receptors (PPARs), including Pparo and Ppary. Therefore, these pathological changes, mainly interstitial fibrosis, can cause myocardial stiffness.
Actualmente la enfermedad del hígado graso no alcohólica (NAFLD: Non· alcoholic fatty liver disease) es la enfermedad hepática crónica más común. La mayoría de los pacientes con esteatohepatitis no alcohólica (NASH) muestran resistencia a la insulina, independíente del peso corporal. La resistencia a la insulina se considera un mejor predictor de daño hepático en pacientes con la enfermedad del hígado graso no alcohólica (NAFLD), mte que la adiposidad visceral o el sistema de puntaje de fibrosls. comúnmente utilizado. La enfermedad del hígado grato no alcohólica (NAFLD) es considerado el componente hepático del síndrome metabóilco y sus características son similares a la obesidad, inflamación, resistencia a la insulina y diabetes tipo 2. Por lo que es importante tratar a los pacientes con la enfermedad del hígado graso no alcohólica (NAFLD) asi como sus enfermedades asociadas. Aun no se conoce el mecanismo exacto de la patogénesis y progresión de la enfermedad del hígado graso no alcohólica (NAFLD) y la esteatohepatitis no alcohólica (NASH). Una de las teorías sugiere que la resistencia a la insulina y el exceso de ácidos grasos en la circulación llevan a una esteatosis hepática simple, donde la resistencia a la insulina promueve la progresión a la esteatohepatitis no alcohólica (NASH). La resistencia a la insulina es entonces punta de lanza en la progresión de la enfermedad del hígado graso no alcohólica (NAFLD), existe una fuerte asociación entre la enfermedad del hígado graso no alcohólica (NAFLD) y la resistencia a la insulina, donde el 70-80% de los pacientes obesos y diabéticos tienen la enfermedad del hígado graso no alcohólica (NAFLD). Las células inmunes, macrófagos/células de Kupffer, asesinas naturales, y células T contribuyen en la progresión a la esteatohepatitis no alcohólica (NASH); en particular los macrófagos hepáticos residentes y tos reclutados derivados de la médula ósea, que son las células más abundantes y responsables en gran parte de la secreción de mediadores inflamatorios como TNFalfa e IL-1beta, llevando a la resistencia a la insulina sistémica y la esteatohepatitis no alcohólica (NASH) (Kltade H, et al. Nonalcoholic fatty liver dlsease and Insulto resístanos: new insights and potential new treatments. Nutriente. 2017; 9, 387). La obesidad lleva al desarrollo de la enfermedad del hígado graso no alcohólica (NAFLD) a través de la disfuncíón hepática causada por la esteatosis hepática. En pacientes obesos con diabetes tipo 2 concomitante y la enfermedad del hígado graso no alcohólica (NAFLD), la hiperinsulinemia y dislipidemia son más severas que en los pacientes sin la enfermedad del hígado graso no alcohólica (NAFLD). El exceso de ácidos grasos, cuya producción es inducida por lipogénesis y la síntesis de ácidos grasos, asi como la oxidación de ácidos grasos, circulantes en tejidos periféricos, incluyendo al hígado y el tejido graso, donde se acumulan, dan resultado a la resistencia a la insulina. La adiponectina secretada por el tejido graso regula la oxidación de ácidos grasos e inhibe la acumulación de lipidos tanto en el tejido adiposo como en el hígado. También mantiene la homeostasis de la glucosa en todo el cuerpo, incluyendo la sensibilidad a la insulina hepática. Estudios han mostrado que los niveles de adiponectina sérica son menores en pacientes con la enfermedad del hígado graso no alcohólica (NAFLD) de los que no la tienen. Una disminución en la adiponectina en el desarrollo de la enfermedad del hígado graso no alcohólica (NAFLD) o diabetes tipo 2 afecta el metabolismo de ácidos grasos y promueve un estado de inflamación crónica en el hígado (Kitade H, et al. Nonalcoholíc fatty liver disease and insulin resistance: new insights and potential new treatments (Enfermedad del hígado graso no alcohólico y resistencia a la insulina: nuevos conocimientos y posibles nuevos tratamientos). Nutrients. 2017; 9, 387). Non-alcoholic fatty liver disease (NAFLD) is currently the most common chronic liver disease. Most patients with non-alcoholic steatohepatitis (NASH) show insulin resistance, independent of body weight. Insulin resistance is considered a better predictor of liver damage in patients with the non-alcoholic fatty liver disease (NAFLD), more than the visceral adiposity or fibrosls scoring system. commonly used. Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic component of the metabolic syndrome and its characteristics are similar to obesity, inflammation, insulin resistance and type 2 diabetes. Therefore, it is important to treat patients with the disease. non-alcoholic fatty liver disease (NAFLD) as well as its associated diseases. The exact mechanism of the pathogenesis and progression of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) is still unknown. One theory suggests that insulin resistance and excess fatty acids in the circulation lead to simple hepatic steatosis, where insulin resistance promotes progression to non-alcoholic steatohepatitis (NASH). Insulin resistance is thus the spearhead in the progression of non-alcoholic fatty liver disease (NAFLD), there is a strong association between non-alcoholic fatty liver disease (NAFLD) and insulin resistance, where 70 -80% of obese and diabetic patients have non-alcoholic fatty liver disease (NAFLD). Immune cells, macrophages/Kupffer cells, natural killer cells, and T cells contribute to the progression of nonalcoholic steatohepatitis (NASH); in particular the resident and recruited hepatic macrophages derived from bone marrow, which are the most abundant cells and largely responsible for the secretion of inflammatory mediators such as TNFalpha and IL-1beta, leading to systemic insulin resistance and steatohepatitis non-alcoholic (NASH) (Kltade H, et al. Nonalcoholic fatty liver dlsease and Insult resistance: new insights and potential new treatments. Nutriente. 2017; 9, 387). Obesity leads to the development of non-alcoholic fatty liver disease (NAFLD) through liver dysfunction caused by hepatic steatosis. In obese patients with concomitant type 2 diabetes and non-alcoholic fatty liver disease (NAFLD), hyperinsulinemia and dyslipidemia are more severe than in patients without non-alcoholic fatty liver disease (NAFLD). Excess fatty acids, whose production is induced by lipogenesis and fatty acid synthesis, as well as fatty acid oxidation, circulating in peripheral tissues, including the liver and fat tissue, where they accumulate, result in resistance to insulin. Adiponectin secreted by fatty tissue regulates fatty acid oxidation and inhibits lipid accumulation in both adipose tissue and liver. It also maintains glucose homeostasis throughout the body, including hepatic insulin sensitivity. Studies have shown that serum adiponectin levels are lower in patients with non-alcoholic fatty liver disease (NAFLD) than those without. A decrease in adiponectin in the development of nonalcoholic fatty liver disease (NAFLD) or type 2 diabetes affects fatty acid metabolism and promotes a state of chronic inflammation in the liver (Kitade H, et al. Nonalcoholíc fatty liver disease and insulin resistance: new insights and potential new treatments. Nutrients. 2017; 9, 387.
Fibrosis cardiaca . La fibrosis cardíaca es una fisíopatología común de la mayoría de las enfermedades miocárdicas, y se asocia con disfunción sistólica y díastólíca, arritmogénesis y resultados adversos. La fibrosis cardíaca se caracteriza por la acumulación excesiva de matriz extracelular en el miocardio. Debido a que el miocardio de mamíferos adultos tiene una capacidad regenerativa insignificante, la remodelación fibrótica más intensa del ventrículo se encuentra en enfermedades asociadas con muerte aguda del miocardio. Cardiac fibrosis. Cardiac fibrosis is a common pathophysiology of most myocardial diseases, and is associated with systolic and diastolic dysfunction, arrhythmogenesis, and adverse outcomes. Cardiac fibrosis is characterized by excessive accumulation of extracellular matrix in the myocardium. Because the adult mammalian myocardium has negligible regenerative capacity, the most intense fibrotic remodeling of the ventricle is found in diseases associated with acute myocardial death.
Por ejemplo, después del infarto agudo de miocardio, la pérdida repentina de una gran cantidad de cardiomiocitos desencadena una reacción inflamatoria, que finalmente conduce al reemplazo del miocardio muerto con una cicatriz a base de colágena. Varias otras condiciones físiopatológicas inducen un depósito de colágena intersticial y perivascuiar más insidioso, en ausencia de infarto completo. El envejecimiento, se asocia con fibrosis progresiva que puede contribuir al desarrollo de insuficiencia cardiaca diastólica en pacientes de edad avanzada. El exceso de presión, Inducida por hipertensión o estenosis aórtica, da como resultado una fibrosis cardíaca extensa que se asocia inicialmente con un aumento de la rigidez y la disfunción diastólica; la persistencia del aumento de presión puede eventualmente conducir a dilatación ventricular y insuficiencia cardiaca diastólica y sistólica combinada. La sobrecarga de volumen debido a lesiones regurgitantes valvulares también puede dar lugar a fibrosis cardíaca, caracterizada por cantidades desproporcionadamente grandes de matriz no colagénica. For example, after acute myocardial infarction, the sudden loss of a large number of cardiomyocytes triggers an inflammatory reaction, ultimately leading to the replacement of the dead myocardium with a collagen-based scar. Several other pathophysiologic conditions induce more insidious interstitial and perivascular collagen deposition in the absence of complete infarction. Aging is associated with progressive fibrosis that may contribute to the development of diastolic heart failure in elderly patients. Excess pressure, induced by hypertension or aortic stenosis, results in extensive cardiac fibrosis that is initially associated with increased stiffness and diastolic dysfunction; the persistence of the pressure increase can eventually lead to ventricular dilatation and combined diastolic and systolic heart failure. Volume overload due to valvular regurgitant lesions can also lead to cardiac fibrosis, characterized by disproportionately large amounts of noncollagenous matrix.
La cardiomiopatia hipertrófica y la miocardiopatia dilatada posi-viral también a menudo se asocian con el desarrollo de fibrosis cardíaca significativa. Además, una variedad de lesiones tóxicas (como el consumo de alcohol o el uso de antraciclinas) y los trastornos metabólicos (como la diabetes y la obesidad) inducen cambios flbrótícos progresivos en el miocardio tanto en pacientes humanos como en modelos experimentales. Los mecanismos físíopatológicos que conducen a la remodelación fibrótica del ventrículo son diferentes en pacientes con diversas enfermedades cardiacas; pero los efectores celulares de la remodelación fibrótica son comunes y las vías de señalización involucradas son similares. Hypertrophic cardiomyopathy and postviral dilated cardiomyopathy are also often associated with the development of significant cardiac fibrosis. In addition, a variety of toxic injuries (such as alcohol consumption or anthracycline use) and metabolic disorders (such as diabetes and obesity) induce progressive fibrotic changes in the myocardium in both patients. humans and in experimental models. The pathophysiological mechanisms that lead to fibrotic remodeling of the ventricle are different in patients with various heart diseases; but the cellular effectors of fibrotic remodeling are common and the signaling pathways involved are similar.
Independientemente de los mecanismos físíopatológicos responsables del desarrollo de la respuesta fibrótica, la muerte de cardiomiocitos suele ser el evento inicial responsable de la activación de las señales fibrogénicas en el miocardio. En otros casos, los estímulos nocivos (como la sobrecarga de presión o la inflamación del miocardio) pueden activar las vías profibróticas en ausencia de muerte celular. Varios tipos de células están implicados en la remodelación fibrótica del corazón, ya sea produciendo directamente proteínas de matrix (fibroblastos) o indirectamente secretando mediadores fibrogénicos (macrófagos, mastocítos, linfocitos, cardiomiocitos y células vasculares). La contribución relativa de los diversos tipos de células á menudo depende de la causa subyacente de la fibrosis; sin embargo, en todas las afecciones asociadas con la fibrosis cardiaca, la transdiferenciacióo de fibroblastos en células secretoras y contráctiles, denominada miofibroblastos, es el evento celular clave que impulsa la respuesta fibrótica. Regardless of the pathophysiological mechanisms responsible for the development of the fibrotic response, cardiomyocyte death is usually the initial event responsible for the activation of fibrogenic signals in the myocardium. In other cases, noxious stimuli (such as pressure overload or myocardial inflammation) can activate profibrotic pathways in the absence of cell death. Various cell types are involved in fibrotic remodeling of the heart, either by directly producing matrix proteins (fibroblasts) or indirectly by secreting fibrogenic mediators (macrophages, mast cells, lymphocytes, cardiomyocytes, and vascular cells). The relative contribution of the various cell types often depends on the underlying cause of the fibrosis; however, in all conditions associated with cardiac fibrosis, the transdifferentiation of fibroblasts into secretory and contractile cells, termed myofibroblasts, is the key cellular event driving the fibrotic response.
Los miofibroblastos son fibroblastos modulados fenotlpicamente que se acumulan en sitios de lesión y combinan características ultraestructurales y fenotípicas de células de músculo liso. Tienen un retículo endopíásmicc extenso, una característica de los fibroblastos sintéticamente activos. La expresión de actina dei músculo liso α (α-SMA: Alpha-smooth muscle actin) identifica a los miofibroblastos diferenciados en los tejidos lesionados, pero no es un requisito para el fenotipo miofibrobiástico ya que, en etapas tempranas de las respuestas reparativas o fibróticas, los miofibroblastos pueden carecer de expresión de α-SMA; pero exhiben fibras de estrés compuestas de actinas citoplasmáticas, estas células son llamadas proto-miofibroblastos. Myofibroblasts are phenotypically modulated fibroblasts that accumulate at sites of injury and combine ultrastructural and phenotypic characteristics of smooth muscle cells. They have an extensive endoplasmic reticulum, a characteristic of synthetically active fibroblasts. Alpha-smooth muscle actin (α-SMA) expression identifies differentiated myofibroblasts in injured tissues, but is not a requirement for the myofibroblastic phenotype since, in early stages, from reparative or fibrotic responses, myofibroblasts may lack expression of α-SMA; but they exhibit stress fibers composed of cytoplasmic actins, these cells are called proto-myofibroblasts.
La abundancia de fibroblastos en el miocardio normal y la inducción marcada de mediadores que promueven la transdiferenciación de miofibroblastos después de una lesión cardiaca (como la fibronectina, TGF-β1 (Transforming growth factor beta-1) y ED-A (chlorpheniramine/phenylephrine)) sugieren que la activación de fibroblastos cardiacos residentes puede representar la fuente más importante de miofibroblastos en el corazón fibrótico. Un creciente grupo de evidencia sugiere que los fibrocitos circulantes derivados de la médula ósea pueden representar una fuente adicional de miofibroblastos en la lesión cardiaca. The abundance of fibroblasts in normal myocardium and the marked induction of mediators that promote myofibroblast transdifferentiation after cardiac injury (such as fibronectin, TGF-β1 (Transforming growth factor beta-1), and ED-A (chlorpheniramine/phenylephrine) ) suggest that the activation of resident cardiac fibroblasts may represent the most important source of myofibroblasts in the fibrotic heart. A growing body of evidence suggests that circulating bone marrow-derived fibrocytes may represent an additional source of myofibroblasts in cardiac injury.
La acumulación de colágena fibrilar en el intersticio cardíaco es el sello distintivo de la fibrosis cardiaca. La síntesis de colágena tipo I y tipo III aumenta notablemente en el corazón fibrótico independientemente de la etiología de la fibrosis. También, la deposición de colágenas no fibrilares (Como la colágena VI) puede desempeñar un papel importante en la activación de los fibroblastos. Fibrillar collagen accumulation in the cardiac interstitium is the hallmark of cardiac fibrosis. Type I and type III collagen synthesis is markedly increased in the fibrotic heart regardless of the etiology of the fibrosis. Also, the deposition of nonfibrillar collagens (such as collagen VI) may play an important role in the activation of fibroblasts.
Varios otros tipos de células, incluidos los cardiomiocitos, las células endoteliales, los pericitos, los macrófagos, los linfocitos y los mastocitos pueden contribuir al proceso fibrótico, al producir proteasas que participan en el metabolismo de la matriz, al secretar mediadores fibrogénicos y proteínas matricelulares, o al ejercer acciones dependientes del contacto en fibroblastos. Los mecanismos de inducción de señales fibrogénicas dependen del tipo de lesión primaría del miocardio. La activación de las vías neurohumorales estimula los fibroblastos tanto directamente como a través de los efectos sobre las poblaciones de células inmunes. Las citocinas y los factores de crecimiento, como el factor de necrosis tumoral-α, interieucina IL-1, IL-10, químiocinas, miembros de la familia del factor de crecimiento transformante-β, IL-11 y factores de crecimiento derivados de plaquetas se secretan en el intersticio cardiaco y desempeñan papeles distintos en la activación de aspectos específicos de la respuesta fibrótica. Los mediadores fibrogénicos secretados y las proteínas matricelulares se unen a los receptores de la superficie celular en los fibroblastos, como los receptores de citocinas, integrinas. sindecanos y CD44 (antigeno CD44 es una glicoproteína de la superficie celular involucrada en las interacciones célula-célula, la adhesión celular y la migración), y transducen cascadas de señalización infracelular que regulan los genes involucrados en la síntesis, el procesamiento y el metabolismo de la matriz extracelular. Las vías endógenas involucradas en la regulación negativa de la fibrosis son criticas para la reparación cardiaca y pueden proteger el miocardio de respuestas fibrogénicas excesivas. Debido a la naturaleza reparadora de muchas formas de fibrosis cardiaca, atacar la remodelación fibrótica después de una lesión miocárdica plantea grandes desafíos. Aunque la regresión de la fibrosis se ha documentado en varias afecciones cardíacas, los mecanismos responsables de la reversión de la enfermedad fibrótica siguen siendo desconocidos. La eliminación del colágeno y otras proteínas de matriz del corazón fibrótica probablemente requiera la activación de proteasas. Se desconoce si las subpoblaciones especificas de macrófagos y linfocitos antifibróticos están involucradas en la resolución de las lesiones fibróticas. Además, no se han investigado las características funcionales y el perfil molecular asociado con un fenotipo de regresión de fibroblastos cardiacos. Several other cell types, including cardiomyocytes, endothelial cells, pericytes, macrophages, lymphocytes, and mast cells, may contribute to the fibrotic process by producing proteases that are involved in matrix metabolism, secreting fibrogenic mediators, and proteins. matricellular cells, or by exerting contact-dependent actions on fibroblasts. The mechanisms of fibrogenic signal induction depend on the type of primary myocardial injury. Activation of neurohumoral pathways stimulates fibroblasts both directly and through effects on immune cell populations. Cytokines and growth factors, such as tumor necrosis factor-α, interieukin IL-1, IL-10, chemokines, members of the transforming growth factor-β family, IL-11, and platelet-derived growth factors they are secreted into the cardiac interstitium and play distinct roles in activating specific aspects of the fibrotic response. Secreted fibrogenic mediators and matricellular proteins bind to cell surface receptors on fibroblasts, such as receptors for cytokines, integrins. syndecans and CD44 (CD44 antigen is a cell surface glycoprotein involved in cell-cell interactions, cell adhesion, and migration), and transduce intracellular signaling cascades that regulate genes involved in the synthesis, processing, and metabolism of the extracellular matrix. Endogenous pathways involved in the downregulation of fibrosis are critical for cardiac repair and may protect the myocardium from excessive fibrogenic responses. Due to the reparative nature of many forms of cardiac fibrosis, targeting fibrotic remodeling after myocardial injury poses great challenges. Although regression of fibrosis has been documented in several heart conditions, the mechanisms responsible for the reversal of fibrotic disease remain unknown. Removal of collagen and other matrix proteins from the fibrotic heart probably requires the activation of proteases. It is unknown whether specific subpopulations of antifibrotic macrophages and lymphocytes are involved in the resolution of fibrotic lesions. Furthermore, the functional characteristics and molecular profile associated with a cardiac fibroblast regression phenotype have not been investigated.
Fibrosis y cardiomiopatía. Fibrosis and cardiomyopathy.
La evidencia extensa ha documentado la presencia de fibrosis miocárdica en pacientes con diabetes. La resonancia magnética cardíaca a menudo identifica cicatrices de miocardio (fibrosis de reemplazo) en diabéticos sin antecedentes de infarto de miocardio. Estos hallazgos probablemente reflejan eventos coronarios silenciosos. Numerosos estudios histopatológicos han demostrado que la fibrosis cardiaca en pacientes diabéticos ocurre independientemente de la aterosclerosis coronaria o la hipertensión. La fibrosis miocárdica en los diabéticos a menudo se acompaña de hipertrofia de cardiomiocitos y de evidencia de anomalías microvasculares, como el engrosamiento de la membrana basal capilar. La fibrosis intersticial asociada a la diabetes está asociada con la acumulación de colágena tipo I y III, involucra tanto el ventrículo izquierdo como el ventrículo derecho, y se ha descrito en diabetes tipo 1 y tipo 2. Las manifestaciones de cardiomiopatía varían desde alteraciones microscópicas en miocitos cardíacos hasta insuficiencia cardíaca fulminante con perfusión tisular inadecuada, acumulación de líquido y disfunción del ritmo cardíaco. La míocardiopatía se puede clasificar en primarias (genéticas, mixtas o adquiridas) y secundarias, lo que da como resultado fenotipos variados que incluyen categorías hipertróficas, dilatadas y restrictivas. La míocardiopatía hipertrófica es la míocardiopatía primaria más común y puede causar disnea de esfuerzo, presíncope, dolor torácico atípico, insuficiencia cardiaca y muerte súbita cardíaca. La miocardiopatía dilatada puede ser genética o adquirida y generalmente presenta síntomas clásicos de insuficiencia cardíaca con fracción de eyección reducida. La miocardiopatía restrictiva es mucho menos común y a menudo se asocia con enfermedades sistémicas como la Diabetes Mellitus Tipo 2. Las variantes adquiridas de miocardiopatía incluyen la miocardiopatía periparto e inducida por el estrés, asi como las variantes raras, como la displasia arritmogénica del ventrículo derecho y la no-compactación ventricular izquierda. El diagnóstico de cardiomiopatia incluye pruebas de electrocardiografía y ecocardíografía, además de la historia clínica y el examen físico. El tratamiento de la insuficiencia cardíaca sintomática debe seguir las pautas actuales del American College of Cardioiogy/American Heart Association (Colegio Americano de Cardiología / Asociación Americana del Corazón) que incluye terapia farmacológica con betabloqueantes, un inhibidor de la enzima convertidora de angiotensina (ECA: Enzima Convertidora de Angiotensina). un bioqueador del receptor de angiotensina (BRA: Biequeador del Receptor de Angiotensina), diuréticos o un inhibidor de la angiotensina-receptor de neprilísina. Los pacientes con sintomas más severos pueden ser evaiuados para la colocación de un desfibriiador cardioversor implantadle y trasplante de corazón en casos refractarios. Extensive evidence has documented the presence of myocardial fibrosis in patients with diabetes. Cardiac MRI often identifies myocardial scarring (replacement fibrosis) in diabetics without a history of myocardial infarction. These findings probably reflect silent coronary events. Numerous histopathological studies have shown that cardiac fibrosis in diabetic patients occurs independently of coronary atherosclerosis or hypertension. Myocardial fibrosis in diabetics is often accompanied by cardiomyocyte hypertrophy and evidence of microvascular abnormalities, such as thickening of the capillary basement membrane. Diabetes-associated interstitial fibrosis is associated with the accumulation of type I and III collagen, involves both the left and right ventricles, and has been described in type 1 and type 2 diabetes. Manifestations of cardiomyopathy range from microscopic alterations in cardiac myocytes to fulminant heart failure with inadequate tissue perfusion, fluid accumulation, and cardiac rhythm dysfunction. Cardiomyopathy can be classified into primary (genetic, mixed, or acquired) and secondary, resulting in varied phenotypes including hypertrophic, dilated, and restrictive categories. Hypertrophic cardiomyopathy is the most common primary cardiomyopathy and can cause exertional dyspnea, presyncope, atypical chest pain, heart failure, and death. sudden cardiac Dilated cardiomyopathy can be genetic or acquired and usually presents with classic symptoms of heart failure with reduced ejection fraction. Restrictive cardiomyopathy is much less common and is often associated with systemic diseases such as Type 2 Diabetes Mellitus. Acquired variants of cardiomyopathy include peripartum and stress-induced cardiomyopathy, as well as rare variants such as arrhythmogenic right ventricular dysplasia and left ventricular non-compaction. Diagnosis of cardiomyopathy includes electrocardiography and echocardiography tests, in addition to medical history and physical examination. Treatment of symptomatic heart failure should follow current American College of Cardiology/American Heart Association guidelines, which include drug therapy with beta-blockers, an angiotensin-converting enzyme (ACE) inhibitor. angiotensin converting enzyme). an angiotensin receptor blocker (ARB: Angiotensin Receptor Blocker), diuretics, or an angiotensin-neprilysin receptor inhibitor. Patients with more severe symptoms may be evaluated for placement of an implantable cardioverter defibrillator and heart transplantation in refractory cases.
Mecanismos que contribuyan ai desarrollo de la miocardiopatía diabética . Mechanisms contributing to the development of diabetic cardiomyopathy.
La exposición del corazón a la hiperglucemia del medio diabético, junto con un aumento de los ácidos grasos y las cítocínas; son los mecanismos estudiados para el desarrollo de miocardiopatia asociada a DM2. La hiperglucemia aumenta la O-GlucosiINAcetilación enzimática de las proteínas de los cardiomiocitos y es nociva. El aumento de la formación de productos finales de glicación avanzada no enzimática (AGE: Advanced nonenzymatic Glycation Endproducts) también produce efectos perjudiciales. Una neuropatía autonómica diabética está presente y vinculada a la hiperglucemia. La exposición al aumento de los niveles de lípidos, incluidos ácidos grasos y triglicéridos aumenta la acumulación de vacuolas de grasa en los cardiomiocitos que median la lipotoxícidad cardíaca. La disminución de la señalización de insulina es un sello distintivo de DM1 y DM2 (diabetes mellitus tipo 1 y 2) produciendo alteraciones en otras cascadas de señalización, incluida la disminución de la señalización de AMPK (Adenin Monophosphate Activated Protein Kinase: Proteína quinasa activada por monofosfato de adenina, enzima compuesta por tres subünidades, una subunidad-a-catalitica y dos subunidades no catalíticas, β y Y)y el aumento de la señalización de la proteina quinasa C (PKC: Protein Kinase C: Proteina quinasa C) y proteínas quínasas activadas por mitógenos (MAPK: Mitogen-Activated Protein Kinases: Proteina quinases activadas por mitógeno). The exposure of the heart to the hyperglycemia of the diabetic environment, together with an increase in fatty acids and cytokines; are the mechanisms studied for the development of cardiomyopathy associated with DM2. Hyperglycemia increases enzymatic O-Glucosin acetylation of cardiomyocyte proteins and is deleterious. Increased formation of Advanced Nonenzymatic Glycation Endproducts (AGEs) also has deleterious effects. A diabetic autonomic neuropathy is present and linked to hyperglycemia. Exposure to increased levels of lipids, including fatty acids and triglycerides, increases the accumulation of fat vacuoles in cardiomyocytes that mediate cardiac lipotoxicity. Decreased insulin signaling is a hallmark of DM1 and DM2 (diabetes mellitus type 1 and 2) producing alterations in other signaling cascades, including decreased AMPK (Adenine Monophosphate Activated Protein Kinase) signaling: protein kinase activated by adenine monophosphate, an enzyme composed of three subunits, one subunit-a-catalytic and two non-catalytic subunits, β and Y) and increased signaling of protein kinase C (PKC: Protein Kinase C: Protein kinase C) and proteins mitogen-activated kinases (MAPKs: Mitogen-Activated Protein Kinases: Mitogen-activated protein kinases).
CQVID-19. CQVID-19.
Los Coronavírus pertenecen a la familia Coronaviridae del orden Nidovirales. El nombre de Corona es dado por la forma de “corona" que se genera en la superficie externa del virus con forma de puntas. Los coronavirus tienen un diámetro entre 65 y 125 nm y contienen una cadena simple de RNA (RiboNucleic Acid: ácido ribonucleico) como material nucleico, con una longitud de 26 a 32 kb. El nuevo coronavirus fue nombrado como SARS-CoV-2 y a la enfermedad COVID-19. los -CoV-2 pertenece al grupo β de los coronavirus (Shereen 2020, et al. COVID-19 ínfection: Origin transmission, and characteristics of human coronaviruses (Transmisión de origen y características de los coronavirus humanos). J Adv Res. 2020; 24:91-98). Todos los coronavirus contienen genes específicos corriente abajo del marco de lectura abierta 1 (orfl) que codifican proteínas de reptícación viral, de la nucleocápside y la formación de la proteína S. El dominio de unión al receptor (RBD: Receptor-Binding Domaín: dominio de unión al receptor) de la proteica S se une libremente entre virus, por lo tanto, el virus puede infectar múltiples huéspedes. SARS-CoV-2 además de la proteica S expresa otras poliproteínas, nucleoporteínas, y proteínas de membrana, asi como la RNA polimerasa, la proteasa 3 Upo quimotripsina, proteasa tipo papina, helicasa, glicoproteina y proteínas accesorias. Las proteínas estructurales de SARS-CoV-2 están codificadas por 4 genes estructurales, incluyendo spike (S), la de envoltura (e), de membrana (m) y el de la nucleocápside (n) (Shereen 2020, et al. COVID-19 Infection: Origin transmission, and characteristícs of human coronaviruses (Infección por COVID-19: transmisión de origen y características de los coronavirus humanos). J Adv Res. 2020; 24:91-98), Coronaviruses belong to the Coronaviridae family of the Nidovirales order. The name of Corona is given by the shape of "crown" that is generated on the external surface of the virus in the form of points. Coronaviruses have a diameter between 65 and 125 nm and contain a single chain of RNA (RiboNucleic Acid: ribonucleic acid ) as nucleic material, with a length of 26 to 32 kb. The new coronavirus was named SARS-CoV-2 and the disease COVID-19. -CoV-2 belongs to the β group of coronaviruses (Shereen 2020, et al. COVID-19 infection: Origin transmission, and characteristics of human coronaviruses. J Adv Res. 2020; 24:91-98). All coronaviruses contain specific genes downstream of open reading frame 1 (orfl) that encode viral replication, nucleocapsid, and protein S formation proteins. The receptor-binding domain (RBD: Receptor-Binding Domain: domain receptor binding) of the S protein binds freely between viruses, therefore, the virus can infect multiple hosts. SARS-CoV-2, in addition to protein S, expresses other polyproteins, nucleoproteins, and membrane proteins, as well as RNA polymerase, protease 3 Upo chymotrypsin, papin-type protease, helicase, glycoprotein, and accessory proteins. The structural proteins of SARS-CoV-2 are encoded by 4 structural genes, including spike (S), envelope (e), membrane (m), and nucleocapsid (n) (Shereen 2020, et al. COVID -19 Infection: Origin transmission, and characteristícs of human coronaviruses (Infection by COVID-19: transmission of origin and characteristics of human coronaviruses. J Adv Res. 2020; 24:91-98),
Los síntomas comunes de COVID-19 con otras enfermedades son fiebre, fatiga, tos seca, mialgias, y disnea. Adicionalmente algunos pacientes presentan cefalea, mareos, dolor abdominal, diarrea, náuseas y vómito. La enfermedad puede llevar a fallo respiratorio progresivo por el daño alveolar y desencadenar la muerte (Xu H et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa (Alta expresión del receptor ACE2 de 2019-nCoV en las células epiteliales de la mucosa oral). Int J Oral Sci 2020, Feb 24; 12(1 ):8). Reportes han sugerido que los pacientes que presenten COVID-19 severo cursan con historias de hipertensión, enfermedad crónica del riñón, enfermedad cardiovascular o diabetes mellítus, que aquellos con la enfermedad leve (South AM et al. Controversies of renin-angiotensín system inhibition during the COVID-19 pandemic (Controversias de la inhibición del sistema renina-angiotensina durante la pandemia de COVID-19). Nat Rev Nephrol. 2020. doi: 10.1038/s41581-020-0279-4). Common symptoms of COVID-19 with other illnesses are fever, fatigue, dry cough, myalgias, and dyspnea. Additionally, some patients have headache, dizziness, abdominal pain, diarrhea, nausea and vomiting. The disease can lead to progressive respiratory failure due to alveolar damage and trigger death (Xu H et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa). oral mucosal epithelial cells.) Int J Oral Sci 2020, Feb 24;12(1):8). Reports have suggested that patients with severe COVID-19 have histories of hypertension, chronic kidney disease, cardiovascular disease or diabetes mellitus than those with mild disease (South AM et al. Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic). Nat Rev Nephrol. 2020. doi: 10.1038/s41581-020-0279-4).
Estudios previos con SARS-CoV han mostrado un aumento en la expresión de genes asociados con la inflamación y una reducción del interferón 1β (Smits S. L. et al. Exacerbated innate host response to SARS-CoV ín aged non-human primates (Respuesta innata exacerbada del huésped al SARS-CoV en primates no humanos de edad avanzada). PLoS pathogens, 2010 Feb 5;6(2); e 1000756), asi como una excesiva producción de citocinas tipo 2 que conlleva en una deficiencia en el control de la replicación viral y una respuesta proinflamatoria más prolongada. Está respuesta exacerbada del sistema inmune origina dafio irreversible en el tejido pulmonar con secuelas posteriores a la recuperación. Asi mismo, la alteración de ciertos valores clínicos puede indicar avance y pronóstico de la enfermedad: línfopenia, leucocitosis, alanina aminotransferasa (ALT) y lactato deshidrogenase (LDH) elevadas, alta sensibilidad de la troponina I cardiaca, creatina cinasa, dímero D, ferritina sérica, IL-6, tiempo de protrombina, creatinina y procalcitonina elevadas (Zhou F et al. Ciinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort sludy (Curso clínico y factores de riesgo de mortalidad de pacientes hospitalizados adultos con COViD-19 en Wuhan, China; un estudio de cohorte retrospectivo). Lancet. 2020 Mar 28; 395(10229): 1054- 1062) . Las principales manifestaciones típicas pulmonares mostradas en tomografias computadas de pacientes con COVID-19 son opacidades en vidrio esmerilado (GGO: Ground-Glass Opacificatíon), consolidación, patrón reticular y patrón en adoquín desordenado. Las manifestaciones atípicas de las tomografias computadas incluyen cambios en la vía área, cambios pleurales, fibrosis, nódulos, etc. Todas las anteriores podrían asociarse con la progresión y la prognosis de COVID-19 (Ye Z et al. Chest CT manifestations of new coronavírus disease 2019 (COVID-19): a pictorial review (manifestaciones de la nueva enfermedad por coronavirus 2019 (COVID-19): una revisión pictórica). Eur Radiol 2020, Mar 19, dói: 10.1007/s00330-020-06801-0). Se ha observado la presencia de fibrosis intersticial en biopsias de cadáveres de pacientes infectados con SAR$«CoV-2 (Luo, W et al. Clinical pathology of crítical patient with novel coronavirus pneumonia (COVID-19) (Patología clínica def paciente critico con neumonía por el nuevo coronavirus (COVID-19)). Preprints.org. Pathology &Previous studies with SARS-CoV have shown an increase in the expression of genes associated with inflammation and a reduction in interferon 1β (Smits SL et al. Exacerbated innate host response to SARS-CoV ín aged non-human primates). host to SARS-CoV in elderly non-human primates) PLoS pathogens, 2010 Feb 5;6(2);e 1000756), as well as an excessive production of type 2 cytokines that leads to a deficiency in the control of replication viral infection and a more prolonged proinflammatory response. This exacerbated response of the immune system causes irreversible damage to the lung tissue with sequelae after recovery. Likewise, the alteration of certain clinical values may indicate disease progression and prognosis: lymphopenia, leukocytosis, elevated alanine aminotransferase (ALT) and lactate dehydrogenase (LDH), high sensitivity of cardiac troponin I, creatine kinase, D-dimer, ferritin elevated serum levels, IL-6, prothrombin time, creatinine, and procalcitonin (Zhou F et al. Ciinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study) mortality of adult hospitalized patients with COViD-19 in Wuhan, China: a retrospective cohort study). Lancet. 2020 Mar 28;395(10229):1054-1062). The main typical pulmonary manifestations shown in computed tomography of patients with COVID-19 are ground-glass opacities (GGO: Ground-Glass Opacification), consolidation, reticular pattern and disordered cobblestone pattern. Atypical manifestations of computed tomography include airway changes, pleural changes, fibrosis, nodules, etc. All of the above could be associated with the progression and prognosis of COVID-19 (Ye Z et al. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review (manifestations of the new coronavirus disease 2019 (COVID- 19): a pictorial review. Eur Radiol 2020, Mar 19, doi: 10.1007/s00330-020-06801-0). The presence of interstitial fibrosis has been observed in cadaveric biopsies of patients infected with SAR$«CoV-2 (Luo, W et al. Clinical pathology of critical patient with novel coronavirus pneumonia (COVID-19) novel coronavirus pneumonia (COVID-19). Preprints.org. Pathology &
Pathobioiogy/Patología y Patobioiogia, 202002.0407), asi mismo algunos pacientes han presentado deformación de bronquios debido a daños fibróticos, sugiriendo la formación de lesiones antes de la presentación de los síntomas (Li Y et al. Coronavirus Disease 2019 (COVID-19): Role of chest CT in diagnosis and management (Enfermedad por coronavirus 2019 (COVID-19): papel de la TC de tórax en el diagnóstico y el tratamiento). American Journal of Roentgenology/Revista Americana de Roentgenología 2020 Mar 4:1-7; Li Y et al. Coronavirus Disease 2019 (COVID-19): Role of chest CT in diagnosis and management (Enfermedad por coronavirus 2019 (COVID-19): papel de la TC de tórax en el diagnóstico y el tratamiento). American Journal of Roentgenology/ Revísta Americana de Roentgenología 2020 Mar 4:1-7). Las infecciones virales incrementan el riesgo de padecer fibrosis pulmonar (Shertg G et al. Viral Infection Increases the Risk of Idiopathic Pulmonary Fibrosis: A Meta-Analysis (La infección viral aumenta el riesgo de fibrosis pulmonar idiopática: un metanálísis). Chest. 2019 Nov. 12. pii: 50012-3692(19)34200-X), por lo que esta afección puede ser una complicación severa después de la recuperación de los pacientes con COVID-19. Pathobioiogy/Patología y Patobioiogia, 202002.0407), likewise, some patients have presented bronchial deformation due to fibrotic damage, suggesting the formation of lesions before the onset of symptoms (Li Y et al. Coronavirus Disease 2019 (COVID-19): Role of chest CT in diagnosis and management.American Journal of Roentgenology 2020 Mar 4:1-7; Li Y et al.Coronavirus Disease 2019 (COVID-19): Role of chest CT in diagnosis and management.American Journal of Roentgenology/ American Journal of Roentgenology 2020 Mar 4:1-7). Viral infections increase the risk of pulmonary fibrosis (Shertg G et al. Viral Infection Increases the Risk of Idiopathic Pulmonary Fibrosis: A Meta-Analysis). Chest. 2019 Nov 12. pii: 50012-3692(19)34200-X), so this condition can be a severe complication after recovery for COVID-19 patients.
Troponina. Troponin.
La troponina I (Tnl), junto con la troponina T (TnT) y la troponina C (TnC), es una de las 3 subunidades que forman el complejo de troponina de los filamentos delgados del músculo estriado. Tnl es la subunidad inhibitoria; bloquea las interacciones actina-miosina y, por lo tanto, media la relajación muscular estriada. La subfamilia Tnl contiene tres genes: Tnl-skeletal-fast-twitch, Tnl- skeletai-slow-twitch y Tnl-heartiac. Este gen codifica la proteina Tn i -cardíaca y se expresa exclusivamente en los tejidos musculares cardiacos, Las mutaciones en este gen causan miocardiopatia hipertrófica familiar tipo 7 (CMH7: Familial hypertrophic cardiomyopathy 7: miocardiopatia hipertrófica familiar tipo 7) y miocardiopatia restrictiva familiar (MCR: Miocardiopatia Restrictiva). Troponin I (Tnl), together with troponin T (TnT) and troponin C (TnC), is one of the 3 subunits that form the troponin complex of the thin filaments of skeletal muscle. Tnl is the inhibitory subunit; it blocks actin-myosin interactions and thus mediates striated muscle relaxation. The Tnl subfamily contains three genes: Tnl-skeletal-fast-twitch, Tnl-skeletai-slow-twitch, and Tnl-heartiac. This gene encodes the Tn i -cardiac protein and is expressed exclusively in cardiac muscle tissues. Mutations in this gene cause Familial Hypertrophic Cardiomyopathy 7 (HCM7: Familial Hypertrophic Cardiomyopathy 7) and Familial Restrictive Cardiomyopathy (RCM). : Restrictive Cardiomyopathy).
Las posibles consecuencias y manifestaciones cardiovasculares no están adecuadamente establecidas en la enfermedad COVID-19, Es por ello por lo que Tag Guo et al., realizaron un estudio retrospectivo que incluyó a 187 pacientes con diagnóstico confirmado de COVID-19, de los cuales 144 (77%) fueron dados de alta y 43 (23%) murieron. La edad media fue 58,50 años; 66 (35,3%) tenían antecedentes de enfermedad cardiovascular (ECV: Enfermedades Cardiovasculares) y 52 (27,8%) presentaron durante el ingreso daño mioeárdico agudo objetivado mediante niveles plasmáticos elevados de troponina (TnT). De forma global, la mortalidad fue mayor en pacientes con niveles elevados de TnT frente a aquellos con niveles normales TnT (Troponína T) (31 (59,6%) frente a 12 (8,9% p < 0,001 j). La mortalidad hospitalaria fue del 7,62% en los pacientes sin ECV (Enfermedades Cardio Vasculares) y niveles normales de TnT; 13,33% en el subgrupo con ECV y niveles normales de TnT; 37,50% en los pacientes sin ECV y niveles elevados de TnT y 69,44% en aquellos con ECV y niveles elevados de TnT. Los pacientes con ECV presentaron con más frecuencia TnT elevada comparados con aquellos sin ECV (36 [54,5%]) frente a 16 (13,2%)). Se mostró una correlación lineal entre niveles de TnT y proteina C reactiva (β = 0,530; p < ,001) y NT-proBNP (β = 0,613; p < ,001). El uso de glucocorticoides intravenosos y ventilación mecánica se pautó con más frecuencia en pacientes con niveles elevados de TnT frente a TnT en rango normal. Durante el ingreso hospitalario los pacientes con TnT elevada presentaron con mayor frecuencia arritmias malignas (incluyendo taquicardia ventricular y fibrilación ventricular), failo renal y síndrome de distrés respiratorio agudo. The possible cardiovascular consequences and manifestations are not adequately established in COVID-19 disease, which is why Tag Guo et al. carried out a retrospective study that included 187 patients with a confirmed diagnosis of COVID-19, of which 144 (77%) were discharged home and 43 (23%) died. The mean age was 58.50 years; 66 (35.3%) had a history of cardiovascular disease (CVD: Cardiovascular Diseases) and 52 (27.8%) presented acute myocardial damage during admission, observed by elevated plasma levels of troponin (TnT). Overall, mortality was higher in patients with elevated TnT levels compared to those with normal TnT (Troponin T) levels (31 (59.6%) vs. 12 (8.9% p < 0.001 j). Mortality was 7.62% in patients without CVD (Cardio Vascular Diseases) and normal levels of TnT; 13.33% in the subgroup with CVD and normal levels of TnT; 37.50% in patients without CVD and elevated levels of TnT and 69.44% in those with CVD and elevated levels of TnT Patients with CVD more frequently presented elevated TnT compared with those without CVD (36 [54.5%]) vs. 16 (13.2%) ). A linear correlation was shown between levels of TnT and C-reactive protein (β = 0.530; p < .001) and NT-proBNP (β = 0.613; p < .001). The use of intravenous glucocorticoids and mechanical ventilation was prescribed more frequently in patients with elevated levels of TnT compared to TnT in the normal range. During hospital admission, patients with elevated TnT presented more frequently malignant arrhythmias (including ventricular tachycardia and ventricular fibrillation), renal failure, and acute respiratory distress syndrome.
Pirfenidona. Pirfenidone.
Rirfenidona (PFD), 5-metil-1-fenir-2-(1H)-pindona, inicialmente fue desarrollado como agente antihelmíntico y antipirético. PFD es una molécula de tamaño pequeño con peso molecular de 185.23 Da, su fórmula quimica es C12H11NO de alta solubilidad en alcohol y cloroformo, la molécula es capaz de difundir entre membranas celulares sin la necesidad de un receptor (Macias- Barragan J et al. The multifaceted role of pirfenidone and its novel targets. Fibrogenesis Tissue Repair (El papel multifacético de la pirfenidona y sus nuevos objetivos. Reparación de tejidos de fibrogénesis) 2010; 3:16). PFD se ha probado en varios modelos celulares y animales de inflamación y fibrosis, donde ha mostrado tener efecto antiinffamatorio, antíestrés oxidativo y propiedades anti proliferativas. PFD es conocida por regular citocínas y factores de crecimiento claves en el proceso fibrótico. Inhibe varios mediadores inflamatorios, tiene efecto antioxidante, y restaura la respuesta inmune. El compuesto per se, es un compuesto conocido, asi como sus efectos farmacológicos descritos, por ejemplo, en las aplicaciones japonesas KOKAI número 87677/1974 y 1284338/1976, como agente antiinflamatorio incluyendo sus efectos analgésicos y antipirético. Patentes de los Estados Unidos número U 53,839,346 otorgada en octubre 1, 1974; US3,974,281, otorgada en agosto 10, 1976; y US4, 052,509, otorgada en octubre 4, 1977, donde describen el método de obtención de la molécula, asi como su uso como agente antiínflamatorio. Efectos benéficos se han observado en el tratamiento con PFD de enfermedades fibróticas, incluyendo fibrosis renal, hepática y pulmonar, y esclerosis múltiple, condiciones que comparten una deposición anormal de colágena. La actividad antí-fibrótica de PFD se describe en la patente mexicana 11X182,266 otorgada el 29 de julio de 1996. En la fibrosis, el balance positivo para la síntesis de colágena está influenciado por la producción de TGF-β y otros factores de crecimiento, los cuales pueden ser subregulados por PFD (Macias-Barragan J et al. The multifaceted role of pirfenídone and its novel targets (El papel multifacético de la pirfenídona y sus nuevos objetivos). Fíbrogenesis Tissue Repair 2010; 3: 16). Rirfenidone (PFD), 5-methyl-1-phenyr-2-(1H)-pindone, was initially developed as an anthelmintic and antipyretic agent. PFD is a small molecule with a molecular weight of 185.23 Da, its chemical formula is C12H11NO with high solubility in alcohol and chloroform, the molecule is capable of diffusing between cell membranes without the need for a receptor (Macias- Barragan J et al. The multifaceted role of pirfenidone and its novel targets. new goals. Fibrogenesis Tissue Repair) 2010; 3:16). PFD has been tested in various cellular and animal models of inflammation and fibrosis, where it has been shown to have anti-inflammatory effects, anti-oxidative stress and anti-proliferative properties. PFD is known to regulate key cytokines and growth factors in the fibrotic process. It inhibits various inflammatory mediators, has an antioxidant effect, and restores the immune response. The compound per se is a known compound, as well as its pharmacological effects described, for example, in Japanese KOKAI Application Nos. 87677/1974 and 1284338/1976, as an anti-inflammatory agent including its analgesic and antipyretic effects. US Patent Numbers U 53,839,346 issued Oct. 1, 1974; US3,974,281, issued Aug. 10, 1976; and US4,052,509, granted on October 4, 1977, where they describe the method of obtaining the molecule, as well as its use as an anti-inflammatory agent. Beneficial effects have been observed in PFD treatment of fibrotic diseases, including renal, hepatic, and pulmonary fibrosis, and multiple sclerosis, conditions that share abnormal collagen deposition. The anti-fibrotic activity of PFD is described in the Mexican patent 11X182,266 granted on July 29, 1996. In fibrosis, the positive balance for collagen synthesis is influenced by the production of TGF-β and other growth factors , which may be downregulated by PFD (Macias-Barragan J et al. The multifaceted role of pirfenidone and its novel targets. Fíbrogenesis Tissue Repair 2010; 3: 16).
Por otro lado, Komíya et al. evaluaron el efecto terapéutico de PFD en un modelo muríno de NASH (Non-Aicoholic SteatoHepatitis: esteatohepatitis no alcohólica) asociado a la obesidad, resistencia a la insulina y a la dislipidemia. Mostraron que PFD atenúa de forma marcada la flbrosís hepática en el modelo experimental, con una reducción paralela en la apoptosis de hepatocitos. Observaron que PFD inhibe el daño tisular generado por TN Faifa y la respuesta fibrogénica. Sandoval et al. encontraron que la administración de pirfenidona en un modelo de esteatohepatitis no alcohólica disminuye el peso del animal, colesterol, lipoproteinas y tríglicérídos de muy baja densidad, y a nivel hepático disminuye la macrosteatosis hepática, inflamación, balonamiento de hepatocitos, fibrosis, grasa epididimal y adiposidad. PFD restableció los niveles de insulina, glucagón, adiponectina y resistina junto con una mejor resistencia a la insulina. On the other hand, Komíya et al. evaluated the therapeutic effect of PFD in a murine model of NASH (Non-Aicoholic SteatoHepatitis: steatohepatitis no alcohol) associated with obesity, insulin resistance and dyslipidemia. They showed that PFD markedly attenuates hepatic fibrosis in the experimental model, with a parallel reduction in hepatocyte apoptosis. They observed that PFD inhibits TN Faifa-generated tissue damage and the fibrogenic response. Sandoval et al. found that the administration of pirfenidone in a model of non-alcoholic steatohepatitis decreases the weight of the animal, cholesterol, lipoproteins and very low density triglycerides, and at the liver level it decreases hepatic macrosteatosis, inflammation, ballooning of hepatocytes, fibrosis, epididymal fat and adiposity. PFD restored insulin, glucagon, adiponectin, and resistin levels along with improved insulin resistance.
La invención US20080025986A1 del 31 de enero de 2008 describe como invención, métodos de tratamiento de desórdenes mediados por TNFalfa, los métodos se basan en la administración de pirfenidona o análogos y un agente terapéutico secundario para la reducción de la síntesis de TNFalfa o la reducción de la unión de TNFalfa a su receptor. La invención provee métodos para el tratamiento de NASH donde el método general requiere de la administración de una cantidad individual de pirfenidona. También provee el método de tratamiento para diabetes tipo 2 con la combinación de pirfenidona e insulina. The invention US20080025986A1 of January 31, 2008 describes as an invention, methods of treating disorders mediated by TNFalpha, the methods are based on the administration of pirfenidone or analogs and a secondary therapeutic agent for the reduction of the synthesis of TNFalpha or the reduction of the binding of TNFalpha to its receptor. The invention provides methods for the treatment of NASH where the general method requires the administration of an individual amount of pirfenidone. It also provides the treatment method for type 2 diabetes with the combination of pirfenidone and insulin.
Antecedente a la invención objeto de este documento, en la invención WO2018088886A1 del 17 de mayo de 2018 se reclama el uso de una composición farmacéutica en la forma de tabletas de liberación extendida que contiene pirfenidona para el tratamiento de NAFLO/NASH y fibrosis hepática avanzada, reduciendo los niveles de colesterol y tríglicérídos séricos, asi como el contenido de la grasa acumulada en el tejido hepático, en la forma de macroesteatosis y microesteatosis. Background to the invention object of this document, the invention WO2018088886A1 of May 17, 2018 claims the use of a pharmaceutical composition in the form of extended release tablets containing pirfenidone for the treatment of NAFLO/NASH and advanced liver fibrosis, reducing serum cholesterol and triglyceride levels, as well as the content of accumulated fat in liver tissue, in the form of macrosteatosis and microsteatosis.
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
El objeto de la invención es el hacer disponible el uso farmacéutico de 5-metil- 1-fenil-2-(1H)-piridona (Pirfenidona) como principio activo sola o en combinación con cualquier compuesto anti-angiogénico, nutracéuticos o cualquier molécula bioactiva que modifiquen la expresión de Troponina I, concretamente para el manejo de pacientes con cardiomiopatia y/o esteatosis cardiaca y/o fibrosis cardiaca y/o COVID-19 , The object of the invention is to make available the pharmaceutical use of 5-methyl-1-phenyl-2-(1H)-pyridone (Pirfenidone) as an active ingredient alone or in combination with any anti-angiogenic compound, nutraceuticals or any bioactive molecule. that modify the expression of Troponin I, specifically for the management of patients with cardiomyopathy and/or cardiac steatosis and/or cardiac fibrosis and/or COVID-19,
A continuación, se describen los detalles técnicos de la invención desarrollada. BREVE DESCRIPCIÓN DE LAS FIGURAS The technical details of the developed invention are described below. BRIEF DESCRIPTION OF THE FIGURES
La figura 1 muestra la dieta HFHC la dual conduce a la obesidad, la acumulación de grasa y NASH, a) Diseño experimental que muestra las semanas de dieta y tratamiento con Pirfenidona, b) Comparación macroscópica del peso corporal, disección terminal de la cavidad abdominal del tejido adiposo visceral que muestra el hígado y el tamaño del corazón (barra de escala: 5 mm), c) Hígado de dieta HFHC que muestra esteatosis mícrovesicular y macrovesícular, barra de escala: 150 pm (aumento 40X); algunos focos inflamatorios neutrófilos están indicados en flechas negras, barra de escala: 100 pm (aumento 20X); la fibrosis perivenular y los hepatocítos en globo se indican con flechas; barra de escala: 100 pm (aumento 20X). Fibrosis pericelular con barra de escala: 150 pm (aumento 40X). Las imágenes ilustran ratones representativos por grupo (n = 5). PV: vena porta; 60: conducto biliar; HA: artería hepática; NO: dieta normal. Figure 1 shows the dual HFHC diet leading to obesity, fat accumulation and NASH, a) Experimental design showing weeks of diet and Pirfenidone treatment, b) Macroscopic comparison of body weight, terminal dissection of the abdominal cavity of visceral adipose tissue showing liver and heart size (scale bar: 5 mm), c) HFHC diet liver showing microvesicular and macrovesicular steatosis, scale bar: 150 pm (40X magnification); some neutrophilic inflammatory foci are indicated by black arrows, scale bar: 100 pm (20X magnification); perivenular fibrosis and ballooning hepatocytes are indicated by arrows; scale bar: 100 pm (20X magnification). Pericellular fibrosis with scale bar: 150 pm (40X magnification). Images illustrate representative mice per group (n = 5). PV: portal vein; 60: bile duct; HA: hepatic artery; NOT: normal diet.
La figura 2 muestra la ingesta calórica diaria promedio en grupos de ratones antes y durante el tratamiento con PFD. a) ingesta calórica medida previo al tratamiento con PFD, b) Ingesta calórica medida durante el tratamiento con PFD, Los datos se expresan como medias ± SEM (Error estándar de la media); n - 5 / grupo. Para las comparaciones grupales en a), se aplicó la prueba t de Welch; en el panel b), prueba de Kruskal-Wallis seguida de prueba post-hoc de Mann-Whitney U. *** P <0,001 frente a ND. Figure 2 shows the average daily caloric intake in groups of mice before and during PFD treatment. a) caloric intake measured prior to PFD treatment, b) caloric intake measured during PFD treatment, Data are expressed as means ± SEM (Standard error of the mean); n - 5 / group. For group comparisons in a), Welch's t-test was applied; in panel b), Kruskal-Wallis test followed by Mann-Whitney U post-hoc test. *** P < 0.001 vs. ND.
La figura 3 muestra como el PFD previene la acumulación de llpidos cardiacos inducida por la dieta HFHC. La acumulación de iípídos (a-d) en secciones de corazón congelado se tiñó con rojo oleoso (ORO). Barra de escala: 100 pm, aumento 20X (a); 200 pm, aumento 12X (b, 12 semanas) y 150 pm, aumento 40X (b, 16 semanas), d, e Histogramas de contenido de llpidos cualificados desde la 4a semana hasta la 16a y 16a semana, respectivamente. Los datos se expresan como medias ± SEM. Para las comparaciones grupales (n = 3 / grupo en d yn = 5 / grupo en e), ANOVA ( Análisis de Varianza) unidireccional seguido del análisis post hoc de Tukey. * P <0.05, ** P <0.01 y *** P <0.001 vs. 4 semanas o ND; ## P <0.01 vs, 8 semanas; #P <0.05 vs. HFHC y ttP <0.01 vs. 12 semanas. Figure 3 shows how PFD prevents HFHC diet-induced accumulation of cardiac lipids. Lipid (ad) accumulation in frozen heart sections was stained with oily red (ORO). Scale bar: 100 pm, 20X magnification (a); 200 pm, increase 12X (b, 12 weeks) and 150 pm, 40x magnification (b, 16 weeks), d, e Histograms skilled llpidos content from 4 to 16 weeks to week and 16th, respectively. Data are expressed as means ± SEM. For group comparisons (n = 3/group in d and n = 5/group in e), one-way ANOVA (Analysis of Variance) followed by Tukey's post hoc analysis. *P<0.05, **P<0.01 and ***P<0.001 vs. 4 weeks or ND; ## P < 0.01 vs, 8 weeks; #P < 0.05 vs. HFHC and ttP <0.01 vs. 12 weeks.
La figura 4 muestra las características de histología cardiaca representativas teñidas con H&E de ratones alimentados con dieta HFHC. a) Micrografías del área dé la sección transversal de cardiomiocitos, que representan el tamaño de cardiomiocitos de los grupos de ratones a las 16 semanas (tres membranas celulares por fotomicrografía están limitadas en negro), barra de escala: 100 pm, aumento 100X. b) Histograma que muestra el área transversal de cardíomiocitos a las 16 semanas (n = 5 / grupo), c), d) Tejido cardiaco que revela pequeños focos inflamatorios neutrofllicos (flechas negras) desde la 4· semana hasta la 16a y 16a semana, respectivamente; barra de escala: aumento de 150 pm 40X. Cada punto y barra de error indican la medía ± SEM. La prueba estadística se realizó mediante la prueba de Kruskal-Wallis seguida de una prueba U de Mann-Whitney para la comparación individual de medias. *** P <0,001 frente a ND; #P <0.05 vs. HFHC. La figura 5 muestra el análisis histológico de los efectos de PFD sobre la fibrosis cardiaca inducida por HFHC. a), c), e) Microfotograflas representativas de secciones transversales de tejido cardiaco que muestran la deposición de la red de colágeno endomisial y perimísial, teñidas por el tricromo y el picrosirio de Masson. La fibrosis intersticial y la fibrosis perivascular se indican con flechas (a, c, e); las fibras de colágeno aparecieron a las 8 semanas a. b), d) Representación de histogramas de deposición de colágeno de la tinción tricrómica de Masson (n = 3 / grupo en byn = 5 / grupo en d). f, g Las secciones ventriculares de los ratones se inmunotíntaron con α-SMA, señal principalmente alrededor de los vasos: flechas (n = 5 / grupo). Barra de escala: 150 pm, aumento 40X. Los datos se expresan como medias ± SEM. Para las comparaciones grupales (n = 5 / grupo), ANOVA unidireccional seguido del análisis post hoc de Tukey. ** P <0.01 y *** P <0.001 vs. octava semana o ND; ### P <0.001 vs. 12a semana o HFHC. La figura 6 muestra los efectos de la dieta HFHC y PFD en los niveles de RNAm expresión de genes en tejido cardiaco. RT-qPCR para genes de hipertrofia y fibrosis tales como Desmtn, Tflfpl, Timpl, Col I, Col III (a); y para TNF-o, Nrf2, Sod1, Acox1, Srebp1 y Pgc1a (b) utilizando tejido ventricutar. Los datos se expresan en diagramas de barras como medias ± SEM, Rara las comparaciones grupales (n = 5 / grupo), ANOVA unidireccional seguido del análisis post hoc de Tukey. * P <0.05, ° P <0.01 y *** P <0.001 vs. ND; #P <0.05 y ### P <0.001 vs. HFHC. Figure 4 shows representative H&E stained cardiac histology features of HFHC diet fed mice. a) Micrographs of cardiomyocyte cross-sectional area, depicting cardiomyocyte size of groups of mice at 16 weeks (three cell membranes per photomicrograph are outlined in black), scale bar: 100 pm, 100X magnification. b) Histogram showing the cross sectional area of cardiomyocytes at 16 weeks (n = 5 / group), c), d) cardiac tissue reveals small inflammatory foci neutrofllicos (black arrows) from 4 · week to 16 and 16 a week, respectively; scale bar: 150 pm 40X magnification. Each point and error bar indicate the mean ± SEM. Statistical testing was performed using the Kruskal-Wallis test followed by a Mann-Whitney U test for individual comparison of means. *** P < 0.001 vs. ND; #P < 0.05 vs. HFHC. Figure 5 shows the histological analysis of the effects of PFD on HFHC-induced cardiac fibrosis. a), c), e) Representative photomicrographs of transverse sections of cardiac tissue showing the deposition of the endomysial and perimysial collagen network, stained by Masson's trichrome and picrosirium. Interstitial fibrosis and perivascular fibrosis are indicated by arrows (a, c, e); collagen fibers appeared at 8 weeks a. b), d) Representation of histograms of collagen deposition of Masson's trichrome staining (n = 3 / group in b and n = 5 / group in d). f, g Ventricular sections of mice were immunostained with α-SMA, signal mainly around vessels: arrows (n = 5/group). Scale bar: 150 pm, 40X magnification. Data are expressed as means ± SEM. For group comparisons (n = 5/group), one-way ANOVA followed by Tukey's post hoc analysis. **P<0.01 and ***P<0.001 vs. eighth week or ND; ### P < 0.001 vs. 12th week or HFHC. Figure 6 shows the effects of HFHC and PFD diet on the levels of mRNA gene expression in cardiac tissue. RT-qPCR for hypertrophy and fibrosis genes such as Desmtn, Tflfpl, Timpl, Col I, Col III (a); and for TNF-o, Nrf2, Sod1, Acox1, Srebp1 and Pgc1a (b) using ventricutar tissue. Data are expressed in bar plots as means ± SEM, Rare group comparisons (n = 5/group), one-way ANOVA followed by Tukey's post hoc analysis. *P<0.05, °P<0.01 and ***P<0.001 vs. NA; #P<0.05 and ###P<0.001 vs. HFHC.
La figura 7 muestra la evaluación de la inflamación, el estrés oxidativo, el daño al miocardio y los genes relacionados con el metabolismo de los lípidos. Imagen Western blotting y cuantificación de NF-kB, Nrf2, troponina-l (a, b); y Pparo, Ppary, Acox1, Cpt1A, Lxra y Srebp1 (c, d) usando extractos de proteínas cardiacas de tejido ventricular. Se midieron las intensidades de banda y se muestran en los histogramas. Los datos se expresan como medias ± SEM. Para las comparaciones grupales (n = 5 / grupo), ANOVA unidireccional seguido det análisis post hoc de Tukey. M P <0.01 y *** P <0.001 vs. ND; #P <0.05, ## P <0.01 y ### P <0.001 vs. HFHC. Figure 7 shows the evaluation of inflammation, oxidative stress, myocardial damage and genes related to lipid metabolism. Western blotting image and quantification of NF-kB, Nrf2, troponin-l (a, b); and Pparo, Ppary, Acox1, Cpt1A, Lxra, and Srebp1 (c, d) using cardiac protein extracts from ventricular tissue. Band intensities were measured and are shown in histograms. Data are expressed as means ± SEM. For group comparisons (n = 5/group), one-way ANOVA followed by Tukey's post hoc analysis. M P < 0.01 and *** P < 0.001 vs. NA; #P < 0.05, ## P < 0.01 and ### P < 0.001 vs. HFHC.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Los detalles característicos del uso farmacéutico de prifenidona para la reducción de fibrosis cardiaca en pacientes con cardiomiopatla y/o esteatosis cardiaca y/o COVID-19 se muestran claramente en la siguiente descripción y en los dibujos ilustrativos que se anexan. The characteristic details of the pharmaceutical use of prifenidone for the reduction of cardiac fibrosis in patients with cardiomyopathy and/or cardiac steatosis and/or COVID-19 are clearly shown in the following description and in the accompanying illustrative drawings.
EXPERIMENTO . EXPERIMENT.
Modelo Animal. Animal model.
Ratones machos de la cepa C57BL/6J de 4 semanas de edad con un peso de 20-25 g antes del experimento fueron alimentados con dieta estándar y agua purificada ad libitum, Después de una semana de aclimatación los animales fueron asignados aleatoriamente en dos grupos; dieta normal (ND, n = 5) y dieta alta en grasas / carbohidratos (HFHC, n = 10). ND estaba compuesto de 18% de kcal de alimentos grasos. La dieta HFHC consistía en 60% de kcal de alimentos grasos y agua potable con 42 g / L de carbohidratos (55% de fructosa y 45% de sacarosa). Al final de la octava semana, cinco ratones HFHC fueron tratados con aproximadamente 350 mg / kg / día de PFD mezclado con alimentos (HFHC + PFD, n - 5), se eligió la dosis según lo informado en un modelo de ratón de NASH, Otro grupo de animales fue sometido a una dieta HFHC (n = 12) y sacrificado por grupos (n = 3) a las 4, 8, 12 y 16 semanas para controlar el desarrollo de esteatosis cardiaca y fibrosis. Los resultados se pueden apreciar en las figuras 1 y 2. Male mice of the C57BL/6J strain of 4 weeks of age weighing 20-25 g before the experiment were fed with standard diet and water. purified ad libitum. After one week of acclimatization, the animals were randomly assigned into two groups; normal diet (ND, n = 5) and high fat/carbohydrate diet (HFHC, n = 10). ND was composed of 18% kcal from fatty foods. The HFHC diet consisted of 60% kcal from fatty foods and drinking water with 42 g/L carbohydrates (55% fructose and 45% sucrose). At the end of the eighth week, five HFHC mice were treated with approximately 350 mg/kg/day of PFD mixed with food (HFHC + PFD, n − 5), the dose chosen as reported in a mouse model of NASH, Another group of animals was put on an HFHC diet (n = 12) and sacrificed in groups (n = 3) at 4, 8, 12 and 16 weeks to control the development of cardiac steatosis and fibrosis. The results can be seen in figures 1 and 2.
Peso, glucosa en ayuno y sensibilidad a la Insulina. La Ingesta de alimento se midió sistemáticamente tres veces por semana entre 9 y 10 am, se calculó la energía ingerida del alimento y bebida. Se obtuvo el peso corporal y la glucosa de 4 horas de ayuno cada semana durante el estudio, Los niveles dé glucosa se midieron con un glucómetro en sangre de la vena de la cola. Al final del tratamiento, 48 h antes del sacrificio, los ratones se pusieron en ayuno corto de 4 h para realizar la prueba de la tolerancia a la insulina después de una inyección intraperitoneal de insulina recombinante humana de acción corta a una dosis estandarizada de 0.025 U/ratón. Los niveles de glucosa se midieron al minuto 0, 30, 60, y 90 después de la administración de la insulina. Finalmente se calculó el área bajo la curva (AUC: Area Under Curve). Weight, fasting glucose and insulin sensitivity. Food intake was systematically measured three times a week between 9 and 10 am, energy intake from food and drink was calculated. Body weight and 4-hour fasting glucose were obtained each week during the study. Glucose levels were measured with a tail vein blood glucose meter. At the end of treatment, 48 h before sacrifice, mice were fasted for 4 h for insulin tolerance testing after intraperitoneal injection of short-acting recombinant human insulin at a standardized dose of 0.025 U. /mouse. Glucose levels were measured at 0, 30, 60, and 90 minutes after insulin administration. Finally, the area under the curve (AUC: Area Under Curve) was calculated.
Los resultados muestran que los animales alimentados con la dieta alta en grasa aumentaron sus niveles séricos de glucosa comparados con los animales control ND. El grupo HF tratado con PFD mostraron un aumento en la sensibilidad a la insulina medida en el ensayo de la tolerancia a la insulina (ITT: Insulin Tolerance Test) la cual se muestra en la disminucíén del valor del área bajo la curva. Los resultados se muestran en la figura 3. The results show that the animals fed the diet high in fat increased their serum glucose levels compared to ND control animals. The HF group treated with PFD showed an increase in insulin sensitivity as measured by the Insulin Tolerance Test (ITT) which is shown by the decrease in the value of the area under the curve. The results are shown in figure 3.
Referente al peso, los animales tratados con PFD disminuyeron de manera significativa su peso corporal, asi como la grasa del epididimo, demostrando tener un efecto lipolítico. inmunotransferenela. Regarding weight, the animals treated with PFD significantly decreased their body weight, as well as the fat of the epididymis, demonstrating a lipolytic effect. immunoblot.
El tejido ventricular congelado se homogeneizó en tampón RIPA (RIPA: Radio inmuno Precipitation Assay); se resolvieron 40 pg de protéína cardiaca total por linea en gel SDS-PAGE al 12% y se transfirieron a la membrana PVDF (PVDF: Polivinildifluoruro) (Bio-Rad Laboratories). Las membranas se incubaron con leche en polvo desnatada al 3% en solución salina tamponada con Tris que contenía Tween 20 al 0,1% a temperatura ambiente durante 1 hora. Las membranas fueron inmunotransferidas con anticuerpos primarios específicos NFkB, Nrf2, Troponin I, beta-actina, PPAR-alpha, PPAR-gamma, Acox1, Cpt1A, LXR-alpha y SREBP1. Los anticuerpos primarios se usaron a dilución 1: 1000 y se incubaron durante la noche a 4 °C. Posteriormente, se usó el anticuerpo secundario conjugado con peroxidasa (Roche) a una dilución 1: 12000 durante 1 hora a temperatura ambiente. Las bandas de proteínas se detectaron utilizando el kit de transferencia Western de quimíoluminiscónciá BM (8M: Bromuro de Metilo) (Roche Applied Science), y se analizó la densidad a través de ChemiDoc XRS + con el software Image Lab (Bio-Rad Laboratories). Todas las transferencias western se realizaron en muestras por triplicado. La β-actina se utilizó como proteina constitutiva. Los resultados pueden apreciarse en la figura 4. The frozen ventricular tissue was homogenized in RIPA buffer (RIPA: Radio immuno Precipitation Assay); 40 pg of total cardiac protein per lane was resolved on a 12% SDS-PAGE gel and transferred to PVDF (PVDF: Polyvinyldifluoride) membrane (Bio-Rad Laboratories). Membranes were incubated with 3% nonfat dry milk in Tris-buffered saline containing 0.1% Tween 20 at room temperature for 1 hour. Membranes were immunoblotted with primary antibodies specific for NFkB, Nrf2, Troponin I, beta-actin, PPAR-alpha, PPAR-gamma, Acox1, Cpt1A, LXR-alpha, and SREBP1. Primary antibodies were used at 1:1000 dilution and incubated overnight at 4°C. Subsequently, peroxidase-conjugated secondary antibody (Roche) was used at a 1:12000 dilution for 1 hour at room temperature. Protein bands were detected using the BM Chemiluminescence Western Blot Kit (8M: Methyl Bromide) (Roche Applied Science), and density analyzed via ChemiDoc XRS+ with Image Lab software (Bio-Rad Laboratories). . All western blots were performed on triplicate samples. The β-actin was used as a constitutive protein. The results can be seen in figure 4.
Disección del corazón y el hígado. Dissection of the heart and liver.
Los ratones se anestesiaron con tiletamina / zolazepam (15 mg / kg / pe, Zoletil® 50, Virbac), los corazones y los hígados se aislaron rápidamente. Anteriormente, el corazón de los ratones se perfundió a través del ventrículo izquierdo usando una jeringa con 5 mi de PBS frío (PBS: Phosphate Buffered Saline o Solución Salina Amortiguada por Fosfatos), Se extrajeron las aurículas y se cortaron los ventrículos en cuatro secciones; uno se fijó en paraformaldehído al 4% (PBS 0,1 M, pH 7,4) y se embebió en parafina; otro se sumergió en Tissue-Tek® OCT (OCT; Tomografla de Coherencia Óptica). Las otras dos porciones de ventrículos se usaron para extraer proteínas y ARN (ácido ribonuclieco) total, respectivamente. Los resultados pueden apreciarse en la figura 5. Mice were anesthetized with tiletamine/zolazepam (15 mg/kg/pe, Zoletil® 50, Virbac), hearts and livers rapidly isolated. Previously, the heart of the mice was perfused through the left ventricle using a syringe with 5 ml of cold PBS (PBS: Phosphate Buffered Saline or Phosphate Buffered Saline). The atria were removed and the ventricles were cut into four sections; one was fixed in 4% paraformaldehyde (0.1 M PBS, pH 7.4) and embedded in paraffin; another was immersed in Tissue-Tek® OCT (OCT; Optical Coherence Tomography). The other two portions of the ventricles were used to extract protein and total RNA (ribonucleic acid), respectively. The results can be seen in Figure 5.
Inmunohistoquímíca. Después de la desparáfinación y la rehidratación, los tejidos ventrículares se trataron con H2O2 al 3% en metano! absoluto durante 20 minutos. Las secciones se incubaron durante la noche a 4 ºC con anticuerpo monoclonal de conejo anti- a-SMA. Luego se detecta con anticuerpos secundarios conjugados con avidina y se visualiza con un kit Vectastain, PK-8800 (Vector Laboratories) y diaminobencidina (Sigma-Aldrich). Las secciones se contratifteron ligeramente con hematoxilina, antes de deshidratarse y montarse. La recuperaban del antlgeno se realizó en un baño de agua ajustado a 99 ºC durante 25 minutos en tampón Tris-EDTA (Tris-EDTA es el responsable de proteger a los ácidos nucleicos inactivando a las DNAsas o RNAsas), pH 9.0. Para la cuantificación, se evaluaron 10 campos aleatorios de áreas ventriculares. La intensidad de tinción de α-SMA se determinó usando ImageJ (ImageJ es un programa de procesamiento de imagen digital de dominio público programado en Java desarrollado en el National Institutes of Health: Institutos Nacionales de Salud). Immunohistochemistry. After deparaffinization and rehydration, the ventricular tissues were treated with 3% H 2 O 2 in methane! absolute for 20 minutes. Sections were incubated overnight at 4°C with rabbit anti-α-SMA monoclonal antibody. It is then detected with avidin-conjugated secondary antibodies and visualized with a Vectastain kit, PK-8800 (Vector Laboratories) and diaminobenzidine (Sigma-Aldrich). Sections were lightly counterstained with hematoxylin, before dehydration and mounting. The recovery of the antigen was carried out in a water bath set at 99 ºC for 25 minutes. in Tris-EDTA buffer (Tris-EDTA is responsible for protecting nucleic acids by inactivating DNAses or RNases), pH 9.0. For quantification, 10 random fields of ventricular areas were evaluated. α-SMA staining intensity was determined using ImageJ (ImageJ is a public domain digital image processing program programmed in Java developed at the National Institutes of Health: National Institutes of Health).
Aislamiento de ARN y RT-qPCR. El ARN total del tejido ventricular se aisló con reactivo Trízol (Invitrogen) de acuerdo con las instrucciones del fabricante, y se cuantifico utilizando un espectrofotómetro NanoDrop (Thermo Fisher Scientific). Se transcribieron inversamente 2 pg de ARN total usando cebadores aleatorios de 690 ng, mezcla de désoxlhucleótido trifosfato (dNTP) 0,72 mM, 1x tampón de primera cadena, ditiotreitol (DTT) 3,6 mM, 5 U de inhibidor de ARNasa y 260 U del virus de la leucemia murina Moloney (M-MLV) transcriptasa inversa (Invitrogen) en un volumen de reacción de 50 pL, siguiendo las instrucciones del fabricante. Cada qPCR se llevó a cabo utilizando 1 μL de ADNc, 1x Universal PCR Master Mix y 1x cebador / sonda Taqman específicos. Las reacciones qPCR (qPCR: quantitative Polymerase Chain Reaction o reacción en cadena de la polimerasa cuantitativa) se realizaron en el instrumento LightCycler 96 (Roche Molecular Systems). Todos los datos se corrieron por triplicado, se normalizaron de acuerdo con los niveles de Gapdh (Gapdh: glyceraldehyde-3-phosphate dehydrogenase) y 18S (el ARN ribosómico 18S (ARNr 18S abreviado) es una parte del ARN ribosómico, la S en 18S representa las unidades de Svedberg), y se analizaron utilizando el método 2-ΔΔCt. Los resultados se observan en las figuras 6 y 7. Uso farmacéutico resultante. RNA isolation and RT-qPCR. Total RNA from ventricular tissue was isolated with Trizol reagent (Invitrogen) according to the manufacturer's instructions, and quantified using a NanoDrop spectrophotometer (Thermo Fisher Scientific). 2 pg of total RNA was reverse transcribed using 690 ng random primers, 0.72 mM deoxynucleotide triphosphate (dNTP) mix, 1x first-strand buffer, 3.6 mM dithiothreitol (DTT), 5 U RNase inhibitor, and 260 U of Moloney murine leukemia virus (M-MLV) reverse transcriptase (Invitrogen) in a reaction volume of 50 pL, following the manufacturer's instructions. Each qPCR was carried out using 1 μL of cDNA, 1x Universal PCR Master Mix, and 1x specific Taqman primer/probe. The qPCR reactions (qPCR: quantitative Polymerase Chain Reaction or quantitative polymerase chain reaction) were performed on the LightCycler 96 instrument (Roche Molecular Systems). All data were run in triplicate, normalized according to Gapdh (Gapdh: glyceraldehyde-3-phosphate dehydrogenase) and 18S levels (18S ribosomal RNA (abbreviated 18S rRNA) is a part of ribosomal RNA, the S in 18S represents Svedberg units), and were analyzed using the 2-ΔΔCt method. The results can be seen in figures 6 and 7. Resulting pharmaceutical use.
De los anallisis realizados se desprende que: From the analyzes carried out, it appears that:
• La sobreexpresión de troponina I se asocia a cardiomíopatía y/o esteatosis cardiaca y/o fíbrosis cardiaca y/o COVID-19. • Troponin I overexpression is associated with cardiomyopathy and/or cardiac steatosis and/or cardiac fibrosis and/or COVID-19.
• La pirfenidona puede ser utilizada para la reducción y/o modulación de la fíbrosis cardiaca y la expresión de troponina 1 cardiaca en cualquier formulación farmacéutica que incluyen pero no están restringidas a Pirfenidona de liberación rápida o pirfenidona estándar, pirfenidona de liberación prolongada o extendida, pirfenidona de liberación lenta, pirfenidona en liposomas de cualquier composición lipidica, pirfenidona en aerosol, pirfenidona en microemulsión, entre otras; pirfenidona sola o administrada con un compuesto anti-angiogénico u otros ingredientes activos o pirfenidona administrada o formuiada con otras moléculas bioactivas o ingredientes activos. • Pirfenidone can be used for the reduction and/or modulation of cardiac fibrosis and the expression of cardiac troponin 1 in any pharmaceutical formulation that includes but is not restricted to Pirfenidone rapid release or standard pirfenidone, prolonged or extended release pirfenidone, slow-release pirfenidone, pirfenidone in liposomes of any lipid composition, aerosol pirfenidone, microemulsion pirfenidone, among others; pirfenidone alone or administered with an anti-angiogenic compound or other active ingredients or pirfenidone administered or formulated with other bioactive molecules or active ingredients.
• El uso farmacéutico cuyo principio activo es Pirfenidona puede contener otros principios activos, nutracéuticos o cualquier molécula bioactiva que modifiquen la expresión de Troponina 1. • The pharmaceutical use whose active ingredient is Pirfenidone may contain other active ingredients, nutraceuticals or any bioactive molecule that modifies the expression of Troponin 1.
• Los otros inhibidores de la expresión géníca de Troponina I pueden ser los inhibidores llb/llla (inhibidores de ia glucoproteína llb/llla: abciximab, eptifibatida y tirofibán) y las moléculas bioactivas codificadas por los genes PRKCD (Protein Kinase C Delta: Proteina quinase C Delta, la proteina codificada por este gen es un miembro de la familia de proteínas quinases C, que son proteínas quinases específicas de serina y treonina), PRKCA, PRKCB y PRKCG (Protein Kinase C Alfa, Beta y Gamma: Proteina quinasa C Alfa, Beta, Gamma, la proteina quinasa C, es una familia de proteínas quinases específicas (alfa, beta y gama) de serina y treonina que pueden ser activadas por el calcio y el segundo mensajero, el diaciigliceroi), PPP2CA (Este gen codifica la subunídad catalítica fosfatasa 2A. La proteína fosfatasa 2A es una de las cuatro fosfatases Ser/Thr principales, y está implicada en el control negativo del crecimiento y la división celular) y PAK3 (P21 (RAC1) Activated Kinase 3, La proteina codificada por este gen es una serina-treonina quínase y forma un complejo activado con GAS unido a RAS (P21), CDC2 y RAC1) o cualquier otra molécula que inhiba o modifique la expresión de Troponina I. • The other inhibitors of gene expression of Troponin I can be inhibitors llb/llla (inhibitors of glycoprotein llb/llla: abciximab, eptifibatide and tirofiban) and bioactive molecules encoded by PRKCD genes (Protein Kinase C Delta: Protein kinase C Delta, the protein encoded by this gene is a member of the family of protein kinases C, which are specific serine and threonine protein kinases), PRKCA, PRKCB and PRKCG (Protein Kinase C Alpha, Beta and Gamma: Protein kinase C Alpha , Beta, Gamma, protein kinase C, is a family of specific protein kinases (alpha, beta and gamma) of serine and threonine that can be activated by calcium and the second messenger, diaciglyceroi), PPP2CA (This gene encodes the phosphatase 2A catalytic subunit. Protein phosphatase 2A is one of the four main Ser/Thr phosphatases, and is involved in the negative control of cell growth and division) and PAK3 (P21 (RAC1) Activated Kinase 3, The protein encoded by this gene is a serine-threonine kinase and forms an activated complex with GAS bound to RAS (P21), CDC2 and RAC1) or any other molecule that inhibits or modifies the expression of Troponin I.
• El uso farmacéutico de Pirfenidona y/o cualquier otro principio activo y/o cualquier otra molécula que module la expresión de troponina I actúa en cardiomiopatia y/o esíeatosis cardiaca y/o fibrosís cardiaca y/o COVID- 19, como coadyuvante. • The pharmaceutical use of Pirfenidone and/or any other active ingredient and/or any other molecule that modulates the expression of troponin I acts in cardiomyopathy and/or cardiac sciatosis and/or cardiac fibrosis and/or COVID-19, as an adjuvant.
• La dosis diaria total de pirfenidona puede ser de 800 mg, 1200 mg o 2400 mg. • The total daily dose of pirfenidone can be 800 mg, 1200 mg or 2400 mg.
• La formulación puede formar parte del tratamiento de pacientes con cardiomiopatia y/o esteatosis cardiaca y/o fibrosís cardiaca y/o COVID- 19, como coadyuvante. • The formulation can be part of the treatment of patients with cardiomyopathy and/or cardiac steatosis and/or cardiac fibrosis and/or COVID-19, as an adjuvant.
• La sóbreexpresión de Troponina I puede ser de cualquier otra etiología, incluyendo diabetes tipo II, esteatohepatitis no alcohólica, esteatohepatitis alcohólica, síndrome metabólico, etc. • Troponin I overexpression can be of any other aetiology, including type II diabetes, non-alcoholic steatohepatitis, alcoholic steatohepatitis, metabolic syndrome, etc.
• La composición farmacéutica puede presentarse en las diversas formas farmacéuticas tales como gránulos, tabletas, cápsulas, grajeas, comprimidos, emulsión, micro emulsión, suspensión, jarabe, mezcla en polvo a granel u otros. • The pharmaceutical composition can be presented in various pharmaceutical forms such as granules, tablets, capsules, drops, tablets, emulsion, microemulsion, suspension, syrup, bulk powder mixture or others.
Debido a lo anterior el uso farmacéutico a base de pirfenidona para la reducción de fibrosis cardiaca en pacientes con cardíomíopatia y/o esteatosis cardiaca y/o COVID-19 es ia siguiente: Due to the above, the pharmaceutical use based on pirfenidone for the reduction of cardiac fibrosis in patients with cardiomyopathy and/or cardiac steatosis and/or COVID-19 is as follows:
1. Pirfenidona que puede ser utilizada para la reducción y/o modulación de la fíbrosis cardiaca y la expresión de troponina I cardiaca en cualquier formulación farmacéutica que incluyen pero no están restringidas a plrfenidona de liberación rápida o pirfenidona estándar, pirfenidona de liberación prolongada o extendida, pirfenidona de liberación lenta, pirfenidona en iiposomas de cualquier composición lipidica, pirfenidona en aerosol, pirfenidona en microemuisión, entre otras; pirfenidona sola o administrada con un compuesto antí-angiogénico u otros ingredientes activos o pirfenidona administrada o formulada con otras moléculas bioactivas o ingredientes activos, a. El uso farmacéutico cuyo principio activo es Pirfenidona puede contener otros principios activos, nutracéuticos o cualquier molécula bioactiva que modifiquen la expresión de Troponina I, donde sobreexpresión de Troponina I puede ser de cualquier otra etiología, incluyendo diabetes tipo II, esteatohepatítis no alcohólica, esteatohepatítis alcohólica, síndrome metabólico, etc., b. Los otros inhibidores de la expresión génica de Troponina I pueden ser los inhibidores llb/llla (inhibidores de la glucoproteína llb/llla; abcixímab, eptifibatida y tirofibán) y las moléculas bioactivas codificadas por los genes PRKCD (la proteína codificada por este gen es un miembro de la familia de proteínas quinases C, que son proteínas quinasas específicas de serina y treonina), PRKCA, PRKCB y PRKCG (la proteína quínase C, es una familia de proteínas quinasas específicas (alfa, beta y gama) de serina y treonina que pueden ser activadas por el calcio y el segundo mensajero, el diacilgiicerol), PPP2CA (este gen codifica la subunidad catalítica fosfatase 2A, la proteina fosfatase 2A es una de las cuatro fosfatases Ser/Thr principales, y está implicada en el control negativo del crecimiento y la división celular) y PAK3 (P21 (RAC1) Activated Kinase 3, la proteina codificada por este gen es una sérina-treonina quinase y forma un complejo activado con GAS unido a RAS (P21), CDC2 y RAC1) o cualquier otra molécula que inhiba o modifique la expresión de Troponina I, c. La dosis diaria total de pirfenidona puede ser de 800 mg, 1200 mg o 2400 mg. 1. Pirfenidone that can be used for the reduction and/or modulation of cardiac fibrosis and the expression of cardiac troponin I in any pharmaceutical formulation that includes but is not restricted to rapid release plrfenidone or standard pirfenidone, prolonged or extended release pirfenidone , slow-release pirfenidone, pirfenidone in liposomes of any lipid composition, pirfenidone in aerosol, pirfenidone in microemulsion, among others; Pirfenidone alone or administered with an anti-angiogenic compound or other active ingredients or Pirfenidone administered or formulated with other bioactive molecules or active ingredients, a. The pharmaceutical use whose active ingredient is Pirfenidone may contain other active ingredients, nutraceuticals or any bioactive molecule that modifies the expression of Troponin I, where overexpression of Troponin I may be of any other etiology, including type II diabetes, non-alcoholic steatohepatitis, alcoholic steatohepatitis , metabolic syndrome, etc., b. The other inhibitors of Troponin I gene expression can be the llb/llla inhibitors (inhibitors of the glycoprotein llb/llla; abciximab, eptifibatide and tirofiban) and the bioactive molecules encoded by the PRKCD genes (the protein encoded by this gene is a member of the protein kinase C family, which are specific serine and threonine protein kinases), PRKCA, PRKCB and PRKCG (protein kinase C, is a family of specific protein kinases (alpha, beta and gamma) of serine and threonine that can be activated by calcium and the second messenger, diacylglycerol), PPP2CA (this gene encodes the phosphatase 2A catalytic subunit, protein phosphatase 2A is one of the four main Ser/Thr phosphatases, and is involved in negative control of cell growth and division) and PAK3 (P21 (RAC1) Activated Kinase 3, the protein encoded by this gene is a serine-threonine kinase and forms an activated complex with GAS bound to RAS (P21), CDC2 and RAC1 ) or any other molecule that inhibits or modifies the expression of Troponin I, c. The total daily dose of pirfenidone can be 800 mg, 1200 mg or 2400 mg.
A su vez la formulación farmacéutica puede presentarse de la siguiente manera; In turn, the pharmaceutical formulation can be presented as follows;
1. La composición farmacéutica puede presentarse en las diversas formas farmacéuticas tales como gránulos, tabletas, cápsulas, grajeas, comprimidos, emulsión, micro emulsión, suspensión, jarabe, mezcla en polvo a granel u otros. 1. The pharmaceutical composition can be presented in various pharmaceutical forms such as granules, tablets, capsules, dragees, tablets, emulsion, microemulsion, suspension, syrup, bulk powder mixture or others.
En cuanto al tratamiento de la formulación farmacéutica: Regarding the treatment of the pharmaceutical formulation:
1. La composición farmacéutica puede formar parte del tratamiento de pacientes con cardiomiopatía y/o esteatosis cardiaca y/o fibrosis cardiaca y/o COVID-19, como coadyuvante. 1. The pharmaceutical composition can be part of the treatment of patients with cardiomyopathy and/or cardiac steatosis and/or cardiac fibrosis and/or COVID-19, as an adjuvant.
La descripción anterior de las definiciones dadas a conocer se proporciona para permitir que cualquier persona experta en la técnica hacer o utilizar la presente invención. Diversas modificaciones a estas definiciones y/o implementaciones serán fácilmente evidentes para los expertos en la técnica, y los principios genéricos aquí definidos pueden aplicarse a otras realizaciones sin apartarse del espíritu o alcance de la invención. Así, la presente invención no está destinada a limitarse a las realizaciones mostradas en este documento, sino que debe concedérsele el alcance más amplio consistente con las siguientes reivindicaciones y los principios y características novedosas descritas en este documento. The above description of the disclosed definitions is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these definitions and/or implementations will be readily apparent to those skilled in the art, and the principles generic terms defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein, but is to be given the widest scope consistent with the following claims and the principles and novel features described herein.

Claims

REIVINDICACIONES Habiendo descrito suficientemente mi invención, considero como una novedad y por lo tanto reclamo como de mi exclusiva propiedad, lo contenido en las siguientes cláusulas: CLAIMS Having sufficiently described my invention, I consider as a novelty and therefore I claim as my exclusive property, what is contained in the following clauses:
1. Una composición de uso farmacéutico para la reducción de fibrosis cardíaca en pacientes con cardíomiopatía y/o esteatosis cardiaca y/o COVID-19 caracterizada por comprenden a. Pirfenidona que puede ser utilizada para la reducción y/o modulación de la fibrosis cardiaca y la expresión de troponina I cardiaca en cualquier formulación farmacéutica que incluyen pero no están restringidas a pirfenidona de liberación rápida o pirfenidona estándar, pirfenidona de liberación prolongada o extendida, pirfenidona de liberación lenta, pirfenidona en liposomas de cualquier composición lipidica, pirfenidona en aerosol, pirfenidona en microemulsión, entre otras; pirfenidona sola o administrada con un compuesto anti- angiogénico u otros ingredientes activos o pirfenidona administrada o formulada con otras moléculas bioactivas o ingredientes activos, b. Esta composición de uso farmacéutico cuyo principio activo es la Pirfenidona puede contener otros principios activos, nutracéuticos ó cualquier molécula bioactiva que modifiquen la expresión de Troponina I, donde sobreexpresión de Troponina I puede ser de cualquier otra etiología, incluyendo diabetes tipo II, esteatohepatitis no alcohólica, esteatohepatitis alcohólica, síndrome metabólico, etc., c. Los otros inhibidores de la expresión génica de Troponina l pueden ser los inhibidores Ilb/IIIa (inhibidores de la glucoprotelna Hb/llla: abciximab, eptifibatida y tirofibán) y las moléculas bioactivas codificadas por los genes PRKCD (la proteína codificada por este gen es un miembro de la familia de proteínas quinases C, que son proteínas quinasas específicas de serina y treonína), PRKCA, PRKCB y PRKCG (la proteína quinasa C, es una familia de proteínas quinasas específicas (alfa, beta y gama) de serina y treonina que pueden ser activadas por el calcio y el segundo mensajero, el diacilglicerol), PPP2CA (este gen codifica la subunidad catalítica fosfatas» 2A, la proteina fosfatase 2A es una de las cuatro fosfatases Ser/Thr principales, y está implicada en el control negativo del crecimiento y la división celular) y PAK3 (P21 (RAC1) Activated Kinase 3, la proteina codificada por este gen es una serina-treonina quinasa y forma un complejo activado coh GAS unido a RAS (P21), CDC2 y RACt) o cualquier otra molécula que inhiba o modifique la expresión de Troponina I, d. La dosis diaria total de pirfenídona puede ser de 800 mg, 1200 mg o 2400 mg, 1. A composition for pharmaceutical use for the reduction of cardiac fibrosis in patients with cardiomyopathy and/or cardiac steatosis and/or COVID-19 characterized by comprising a. Pirfenidone which can be used for the reduction and/or modulation of cardiac fibrosis and the expression of cardiac troponin I in any pharmaceutical formulation including but not restricted to rapid release pirfenidone or standard pirfenidone, prolonged or extended release pirfenidone, pirfenidone slow release, pirfenidone in liposomes of any lipid composition, pirfenidone in aerosol, pirfenidone in microemulsion, among others; pirfenidone alone or administered with an anti-angiogenic compound or other active ingredients or pirfenidone administered or formulated with other bioactive molecules or active ingredients, b. This composition for pharmaceutical use whose active ingredient is Pirfenidone may contain other active ingredients, nutraceuticals or any bioactive molecule that modifies the expression of Troponin I, where overexpression of Troponin I may be of any other etiology, including type II diabetes, non-alcoholic steatohepatitis , alcoholic steatohepatitis, metabolic syndrome, etc., c. The other inhibitors of Troponin I gene expression can be the Ilb/IIIa inhibitors (Hb/llla glycoprotein inhibitors: abciximab, eptifibatide and tirofiban) and the bioactive molecules encoded by the PRKCD genes (the protein encoded by this gene is a member of the protein kinase C family, which are serine and threonine-specific protein kinases), PRKCA, PRKCB, and PRKCG (protein kinase C, is a family of serine and threonine-specific (alpha, beta, and gamma) protein kinases that can be activated by calcium and the second messenger, diacylglycerol), PPP2CA (this gene encodes the catalytic subunit phosphates» 2A, protein phosphatase 2A is one of the four main Ser/Thr phosphatases, and is involved in the negative control of the growth and cell division) and PAK3 (P21 (RAC1) Activated Kinase 3, the protein encoded by this gene is a serine-threonine kinase and forms an activated complex with GAS bound to RAS (P21), CDC2 and RACt) or any other molecule that inhibits or modifies the expression of Troponin I, d. The total daily dose of pirfenidone can be 800 mg, 1200 mg or 2400 mg,
2. La composición de uso farmacéutico para la reducción de fibrosís cardiaca en pacientes con cardiomiopatia y/o esteatosis cardiaca y/o COVID-19 de acuerdo con la reivindicación 1, donde dicha composición de uso farmacéutico puede presentarse en formas farmacéuticas como: a. Gránulos, tabletas, cápsulas, grajeas, comprimidos, emulsión, micro emulsión, suspensión, jarabe, mezcla en polvo a granel u otros. 2. The composition for pharmaceutical use to reduce cardiac fibrosis in patients with cardiomyopathy and/or cardiac steatosis and/or COVID-19 according to claim 1, where said composition for pharmaceutical use can be presented in pharmaceutical forms such as: to. Granules, tablets, capsules, dragees, tablets, emulsion, micro emulsion, suspension, syrup, bulk powder mixture or others.
3. La composición de uso farmacéutico para la reducción de fibrosis cardiaca en pacientes con cardiomiopatía y/o esteatosis cardiaca y/o COVID-19 de acuerdo con la reivindicación 1, puede formar parte de pacientes con: a. Cardiomiopatía y/o esteatosis cardíaca y/o fibrosis cardíaca y/o COVID-19, como coadyuvante en el tratamiento. 3. The composition for pharmaceutical use to reduce cardiac fibrosis in patients with cardiomyopathy and/or cardiac steatosis and/or COVID-19 according to claim 1, can be part of patients with: a. Cardiomyopathy and/or cardiac steatosis and/or cardiac fibrosis and/or COVID-19, as an adjuvant in treatment.
PCT/MX2021/000019 2020-07-13 2021-06-03 Pharmaceutical use of pirfenidone for reducing cardiac fibrosis in patients with cardiomyopathy and/or cardiac steatosis and/or covid-19 WO2022015141A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2020/005775 2020-07-13
MX2020005775A MX2020005775A (en) 2020-07-13 2020-07-13 Pharmaceutical use of pirfenidone for reducing cardiac fibrosis in patients with cardiomyopathy, cardiac steatosis, and covid-19.

Publications (1)

Publication Number Publication Date
WO2022015141A1 true WO2022015141A1 (en) 2022-01-20

Family

ID=79554854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2021/000019 WO2022015141A1 (en) 2020-07-13 2021-06-03 Pharmaceutical use of pirfenidone for reducing cardiac fibrosis in patients with cardiomyopathy and/or cardiac steatosis and/or covid-19

Country Status (2)

Country Link
MX (1) MX2020005775A (en)
WO (1) WO2022015141A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0458861B1 (en) * 1989-02-15 1996-04-03 MARGOLIN, Solomon B. Composition for reparation and prevention of fibrotic lesions
WO2018013788A1 (en) * 2016-07-14 2018-01-18 Children's Hospital Medical Center Methods for treating fibrosis
WO2018164098A1 (en) * 2017-03-06 2018-09-13 国立大学法人大阪大学 Cell population to be used as heart fiberization model, method for producing same, screening method using same, method for evaluating heart fiberization model using same, and system for evaluating heart fiberization model
CN111481547A (en) * 2020-04-16 2020-08-04 青岛海洋生物医药研究院股份有限公司 Application of pirfenidone or pharmaceutically acceptable salt thereof in preparation of medicine for preventing and/or treating novel coronavirus inflammation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0458861B1 (en) * 1989-02-15 1996-04-03 MARGOLIN, Solomon B. Composition for reparation and prevention of fibrotic lesions
WO2018013788A1 (en) * 2016-07-14 2018-01-18 Children's Hospital Medical Center Methods for treating fibrosis
WO2018164098A1 (en) * 2017-03-06 2018-09-13 国立大学法人大阪大学 Cell population to be used as heart fiberization model, method for producing same, screening method using same, method for evaluating heart fiberization model using same, and system for evaluating heart fiberization model
CN111481547A (en) * 2020-04-16 2020-08-04 青岛海洋生物医药研究院股份有限公司 Application of pirfenidone or pharmaceutically acceptable salt thereof in preparation of medicine for preventing and/or treating novel coronavirus inflammation

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
GORAN MIRIC,CATHERINE DALLEMAGNE,ZOLTAN ENDRE,SOLOMON MARGOLIN,STEPHEN M TAYLOR,LINDSAY BROWN: "REVERSAL OF CARDIAC AND RENAL FIBROSIS BY PIRFENIDONE AND SPIRONOLACTONE IN STREPTOZOTOCIN-DIABETIC RATS", BRITISH JOURNAL OF PHARMACOLOGY, vol. 133, no. 5, 1 July 2001 (2001-07-01), UK , pages 687 - 694, XP001118770, ISSN: 0007-1188, DOI: 10.1038/sj.bjp.0704131 *
GUTIÉRREZ-CUEVAS JORGE; SANDOVAL-RODRÍGUEZ ANA; MONROY-RAMÍREZ HUGO CHRISTIAN; VAZQUEZ-DEL MERCADO MONICA; SANTOS-GARCÍA ARTURO; A: "Prolonged-release pirfenidone prevents obesity-induced cardiac steatosis and fibrosis in a mouse NASH model", CARDIOVASCULAR DRUGS AND THERAPY, vol. 35, no. 5, 3 July 2020 (2020-07-03), US , pages 927 - 938, XP037567153, ISSN: 0920-3206, DOI: 10.1007/s10557-020-07014-9 *
LI CHUNMEI, HAN RUI, KANG LE, WANG JIANPING, GAO YONGLIN, LI YANSHEN, HE JIE, TIAN JINGWEI: "Pirfenidone controls the feedback loop of the AT1R/p38 MAPK/renin-angiotensin system axis by regulating liver X receptor-α in myocardial infarction-induced cardiac fibrosis", SCIENTIFIC REPORTS, vol. 7, no. 1, 1 February 2017 (2017-02-01), pages 1 - 11, XP055898787, DOI: 10.1038/srep40523 *
MIN ZONG , HUA ZHAO , QIANG LI , YANBING LI , JIANJUN ZHANG: "Irbesartan ameliorates myocardial fibrosis in diabetic cardiomyopathy rats by inhibiting the TGFbeta1/Smad2/3 pathway", EXPERIMENTAL AND THERAPEUTIC MEDICINE GREECE, vol. 20, no. 5, 1 November 2020 (2020-11-01), pages 1 - 9, XP055898807, ISSN: 1792-0981, DOI: 10.3892/etm.2020.9245 *
STEVO MIRKOVIC,ANNE-MARIE L SEYMOUR,ANDREW FENNING,ANNA STRACHAN,SOLOMON B MARGOLIN,STEPHEN M TAYLOR,LINDSAY BROWN: "Attenuation of cardiac fibrosis by pirfenidone and amiloride in DOCA-salt hypertensive rats", BRITISH JOURNAL OF PHARMACOLOGY, vol. 135, no. 4, 1 January 2002 (2002-01-01), UK , pages 961 - 968, XP003014699, ISSN: 0007-1188, DOI: 10.1038/sj.bjp.0704539 *
WANG Y. · WU Y. · CHEN J. · ZHAO S. · LI H.: "Pirfenidone attenuates cardiac fibrosis in a mouse model of TAC-induced left ventricular remodeling by suppressing NLRP3 inflammasome formation", CARDIOLOGY SWITZERLAND, vol. 126, no. 1, 30 November 2012 (2012-11-30), pages 1 - 11, XP009534090, ISSN: 1421-9751, DOI: 10.1159/000351179 *
YAMAGAMI KIYOSHI, OKA TORU, WANG QI, ISHIZU TAKAMARU, LEE JONG-KOOK, MIWA KEIKO, AKAZAWA HIROSHI, NAITO ATSUHIKO T., SAKATA YASUSH: "Pirfenidone exhibits cardioprotective effects by regulating myocardial fibrosis and vascular permeability in pressure-overloaded hearts", AMERICAN JOURNAL OF PHYSIOLOGY HEART AND CIRCULATORY PHYSIOLOGY, vol. 309, no. 3, 1 August 2015 (2015-08-01), US , pages H512 - H522, XP055898781, ISSN: 0363-6135, DOI: 10.1152/ajpheart.00137.2015 *

Also Published As

Publication number Publication date
MX2020005775A (en) 2022-01-14

Similar Documents

Publication Publication Date Title
Nighot et al. Lipopolysaccharide-induced increase in intestinal epithelial tight permeability is mediated by toll-like receptor 4/myeloid differentiation primary response 88 (MyD88) activation of myosin light chain kinase expression
Chang et al. Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5′-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells
ES2935185T3 (en) Methods for the treatment of fibrotic diseases
Biemmi et al. Inflammatory extracellular vesicles prompt heart dysfunction via TRL4-dependent NF-κB activation
Ji et al. Lithium alleviates blood-brain barrier breakdown after cerebral ischemia and reperfusion by upregulating endothelial Wnt/β-catenin signaling in mice
JP5580052B2 (en) Alkaline phosphatase drug for the treatment of renal impairment
Hwang et al. LECT2 induces atherosclerotic inflammatory reaction via CD209 receptor-mediated JNK phosphorylation in human endothelial cells
Lin et al. CB1 cannabinoid receptor antagonist attenuates left ventricular hypertrophy and Akt-mediated cardiac fibrosis in experimental uremia
Tan et al. Mitochondrial injury and targeted intervention in septic cardiomyopathy
Vaez et al. AMPK activation by metformin inhibits local innate immune responses in the isolated rat heart by suppression of TLR 4-related pathway
Chen et al. Interleukin-6 deficiency facilitates myocardial dysfunction during high fat diet-induced obesity by promoting lipotoxicity and inflammation
Ammar et al. Metformin impairs homing ability and efficacy of mesenchymal stem cells for cardiac repair in streptozotocin-induced diabetic cardiomyopathy in rats
Hu et al. Interleukin-35 pretreatment attenuates lipopolysaccharide-induced heart injury by inhibition of inflammation, apoptosis and fibrotic reactions
Zhang et al. Novel PGC‐1α/ATF5 Axis Partly Activates UPRmt and Mediates Cardioprotective Role of Tetrahydrocurcumin in Pathological Cardiac Hypertrophy
Plataki et al. Poloxamer 188 facilitates the repair of alveolus resident cells in ventilator-injured lungs
De Luca et al. Pharmacological therapies for pediatric and neonatal ALI/ARDS: an evidence-based review
Kato et al. Pioglitazone attenuates cardiac hypertrophy in rats with salt-sensitive hypertension: role of activation of AMP-activated protein kinase and inhibition of Akt
Li et al. Direct cardiac actions of sodium-glucose cotransporter 2 inhibition improve mitochondrial function and attenuate oxidative stress in pressure overload-induced heart failure
Biswas et al. Insulin resistance due to lipid-induced signaling defects could be prevented by mahanine
Mao et al. Exploration of multiple signaling pathways through which sodium tanshinone IIA sulfonate attenuates pathologic remodeling experimental infarction
Yuan et al. Artesunate protects pancreatic β-cells from streptozotocin-induced diabetes via inhibition of the NLRP3/caspase-1/GSDMD pathway
Liu et al. Shen-Fu Decoction could ameliorate intestinal permeability by regulating the intestinal expression of tight junction proteins and p-VASP in septic rats
Pei et al. CoQ10 improves myocardial damage in doxorubicin-induced heart failure in C57BL/6 mice
Beetler et al. Reconstituted extracellular vesicles from human platelets decrease viral myocarditis in mice
WO2022015141A1 (en) Pharmaceutical use of pirfenidone for reducing cardiac fibrosis in patients with cardiomyopathy and/or cardiac steatosis and/or covid-19

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842231

Country of ref document: EP

Kind code of ref document: A1