WO2022015074A1 - Organic light-emitting device including nano-island structures for obtaining color stability and method for manufacturing same - Google Patents

Organic light-emitting device including nano-island structures for obtaining color stability and method for manufacturing same Download PDF

Info

Publication number
WO2022015074A1
WO2022015074A1 PCT/KR2021/009101 KR2021009101W WO2022015074A1 WO 2022015074 A1 WO2022015074 A1 WO 2022015074A1 KR 2021009101 W KR2021009101 W KR 2021009101W WO 2022015074 A1 WO2022015074 A1 WO 2022015074A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic light
light emitting
nano
emitting device
layer
Prior art date
Application number
PCT/KR2021/009101
Other languages
French (fr)
Korean (ko)
Inventor
서민철
Original Assignee
경희대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교산학협력단 filed Critical 경희대학교산학협력단
Priority claimed from KR1020210092588A external-priority patent/KR102623188B1/en
Publication of WO2022015074A1 publication Critical patent/WO2022015074A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]

Definitions

  • the present invention relates to an organic light emitting device and a method for manufacturing the same, and more particularly, to a technical idea of forming a nano-island structure on one side of a substrate provided in an organic light emitting device.
  • OLED organic light emitting diode
  • Equation 1 in order to increase the external quantum efficiency coming out, the internal quantum efficiency must be high. In order to increase the internal quantum efficiency, the amount of exciton generation must be large, and for this purpose, an ideal charge balance must be obtained. In addition, if the charge balance is ideally matched, deterioration at the interface can be suppressed, which helps to improve the lifespan. For this reason, it is very important to balance the charge of the organic light emitting device and optimize the device.
  • a recombination zone in which carriers injected from the electrode form excitons and recombine should be formed in the central portion of the emission layer (EML).
  • EML emission layer
  • the recombination zone is affected by electron and hole injection characteristics.
  • An object of the present invention is to provide an organic light-emitting device capable of improving viewing angle characteristics by using a nano-island structure formed using an inorganic material as an omnidirectional scatterer of the organic light-emitting device, and a method for manufacturing the same.
  • Another object of the present invention is to provide an organic light emitting device capable of improving color shift and light distribution characteristics by reflecting light in all directions within the organic light emitting device due to the nano-island structure, and a method for manufacturing the same.
  • An organic light emitting device includes a substrate on which at least one nano-island structure is formed and an organic light emitting structure formed on the substrate, wherein the substrate includes an inorganic material layer and the formed inorganic material The layer may be exposed to an environment of predetermined temperature and humidity conditions to form a nano-island structure.
  • the inorganic layer is at least one of cesium chloride (CsCl), cesium fluoride (CsF), cesium iodide (CsI), cesium bromide (CsBr), calcium chloride (CaCl 2 ) and lanthanum chloride (LaCl 3 ) may include
  • the pitch and depth of the nano-island structure may be adjusted according to the thickness of the formed inorganic material layer.
  • the inorganic material layer may be formed on the substrate to a thickness of 25 nm to 200 nm.
  • the formed inorganic layer is exposed to an environment of a temperature of 5° C. to 40° C. and a humidity of 30% to 100% to form a nano-island structure.
  • the organic light emitting structure may be formed by stacking a first electrode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, a second electrode, and a capping layer.
  • a method of manufacturing an organic light emitting device comprises the steps of forming at least one nano-island structure on a substrate and forming the organic light emitting structure on the substrate on which the nano-island structure is formed. and forming the nano-island structure by exposing the inorganic material layer formed on the substrate to an environment of preset temperature and humidity conditions to form the nano-island structure.
  • the inorganic layer is at least one of cesium chloride (CsCl), cesium fluoride (CsF), cesium iodide (CsI), cesium bromide (CsBr), calcium chloride (CaCl 2 ) and lanthanum chloride (LaCl 3 ) may include
  • forming the nano-island structure may form an inorganic material layer on the substrate to a thickness of 25 nm to 200 nm.
  • the formed inorganic material layer is exposed to an environment of a temperature of 5° C. to 40° C. and a humidity of 30% to 100% to form a nano-island structure.
  • the viewing angle characteristic can be improved by using the nano-island structure as an omnidirectional scatterer of the organic light emitting device.
  • light is reflected in all directions in the organic light emitting device due to the nano-island structure, thereby improving color shift and light distribution characteristics.
  • FIG. 1 is a view for explaining an organic light emitting device according to an embodiment.
  • FIG. 2 is a view for explaining an embodiment of an organic light emitting device according to an embodiment.
  • 3A to 3C are diagrams for explaining device characteristics of an organic light emitting device according to an exemplary embodiment.
  • 4A to 4G are diagrams for explaining optical characteristics of an organic light emitting diode according to an exemplary embodiment.
  • 5A to 5D are diagrams for explaining characteristics according to a change in the thickness of an inorganic material layer of an organic light emitting diode according to an exemplary embodiment.
  • FIG. 6 is a view for explaining a method of manufacturing an organic light emitting device according to an exemplary embodiment.
  • FIGS. 7A to 7B are diagrams for explaining a method of manufacturing a nano-island structure according to an embodiment.
  • first or second may be used to describe various elements, but the elements should not be limited by the terms. The terms are used only for the purpose of distinguishing one element from another, for example, without departing from the scope of the present invention, a first element may be named a second element, and similar The second component may also be referred to as the first component.
  • FIG. 1 is a view for explaining an organic light emitting device according to an embodiment.
  • the organic light emitting device 100 may improve viewing angle characteristics by using the nano-island structure as an omnidirectional scatterer of the organic light emitting device.
  • the organic light emitting device 100 may improve color shift and light distribution characteristics by reflecting light in all directions within the organic light emitting device due to the nano-island structure.
  • the organic light emitting device 100 may include a substrate 110 on which at least one or more nano-island structures (NI) are formed, and an organic light emitting structure 120 formed on the substrate 110 . have.
  • NI nano-island structures
  • an inorganic material layer 111 is formed, and the formed inorganic material layer 111 is exposed to an environment of preset temperature and humidity conditions to form a nano-island structure NI.
  • the substrate 110 may be a glass substrate
  • the inorganic layer 111 may be cesium chloride (CsCl), cesium fluoride (CsF), cesium iodide (CsI), or cesium bromide (CsBr). ), calcium chloride (CaCl 2 ), and lanthanum chloride (LaCl 3 ) It may include at least one.
  • the inorganic material layer 111 may be a cesium chloride layer.
  • a pitch and a depth may be adjusted according to the thickness of the formed inorganic material layer 111 , and preferably, the inorganic material layer 111 has a thickness of 25 nm to 200 nm. The thickness may be formed on the substrate 110 .
  • the formed inorganic material layer 111 is exposed to an environment of a temperature of 5° C. to 40° C. and a humidity of 30% to 100% to form a nano-island structure (NI).
  • the nano-island structure (NI) may be formed under a temperature condition of 27° C. and a humidity condition of 50%.
  • the nano-island structure (NI) has a cesium chloride layer thermally deposited on one side of the substrate 110, that is, the inorganic material layer 111 in a temperature range of 5° C. or more to 40° C. or less, and 30% or more to 100 It may be formed through dewetting of the inorganic material layer 111 generated by exposure to an environment within a humidity range of less than %, wherein the nano-island structure (NI) has at least one shape of a hemispherical shape, an oval shape, and an irregular shape. can be formed with
  • the organic light emitting structure 120 may be formed by stacking a first electrode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, a second electrode, and a capping layer.
  • the organic light emitting structure 120 may be a top light emitting device (eg, a front resonance device) or a bottom light emitting device (eg, a rear resonance device).
  • a top light emitting device eg, a front resonance device
  • a bottom light emitting device eg, a rear resonance device
  • the nano-island structure NI may be formed on the upper portion of the substrate 110 when the organic light emitting structure 120 is a top light emitting device, that is, between the substrate 110 and the organic light emitting structure 120 . . Also, when the organic light emitting structure 120 is a bottom light emitting device, the nano-island structure NI may be formed under the substrate 110 .
  • the organic light emitting structure 120 according to an embodiment will be described in more detail later with reference to FIG. 2 .
  • FIG. 2 is a view for explaining an embodiment of an organic light emitting device according to an embodiment.
  • FIG. 2 is a diagram for explaining an example of implementation of the organic light emitting diode according to the embodiment described with reference to FIG. 1 , and the description overlaps with the content described with reference to FIG. 1 among the contents described with reference to FIG. 2 below. to be omitted.
  • the organic light emitting device 200 includes a substrate 210 on which at least one nano-island structure (NI) is formed, and an organic light emitting structure 220 formed on the substrate 210 .
  • NI nano-island structure
  • the substrate 210 may have an inorganic material layer 211 formed thereon, and the formed inorganic material layer 211 may be exposed to an environment of preset temperature and humidity conditions to form a nano-island structure NI.
  • the organic light emitting structure 220 includes a first electrode 221 , a hole injection layer 222 , a hole transport layer 223 , a light emitting layer 224 , an electron transport layer 225 , an electron injection layer 226 , and a second electrode. 227 and the capping layer 228 may be stacked.
  • the first electrode 221 may be an anode electrode
  • the second electrode 227 may be a cathode electrode
  • the first electrode 221 is an electrode that provides holes to the emission layer 224 , and may be formed of a transmissive electrode, a reflective electrode, or a stacked structure thereof.
  • Transmissive electrode materials include indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO 2 ), zinc oxide (ZnO), metal oxide/metal/metal oxide multilayer, graphene ( graphene), carbon nanotubes, and polyethylenedioxythiophene:polystyrenesulfonate (PEDOT:PSS).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • SnO 2 tin oxide
  • ZnO zinc oxide
  • metal oxide/metal/metal oxide multilayer graphene ( graphene), carbon nanotubes
  • PEDOT:PSS polyethylenedioxythiophene:polystyrenesulfonate
  • Examples of reflective electrode materials include Ag/ITO, Ag/IZO, aluminum-lithium (Al-Li), magnesium-indium (Mg-In), magnesium-silver (Mg-Ag), aluminum/silver (Al/Ag), Lithium Fluoride/Aluminum (LiF/Al), Lithium (Li), Magnesium (Mg), Aluminum (Al), Aluminum-Lithium (Al-Li), Calcium (Ca), Magnesium-Indium (Mg-In), Magnesium -Silver (Mg-Ag), ytterbium (Yb), platinum (Pt), gold (Au), nickel (Ni), copper (Cu), barium (Ba), silver (Ag), silver nanowire (AgNWs), It may include at least one of indium (In), ruthenium (Ru), lead (Pd), rhodium (Rh), iridium (Ir), osmium (Os), calcium (Ca), and ces
  • the first electrode 221 is a highly reflective electrode, and may be formed of a multilayer structure of aluminum/silver (Al/Ag).
  • the hole injection layer 222 formed on the first electrode 221 may serve to inject holes injected from the first electrode 221 into the emission layer 224 .
  • the hole injection layer 222 a known material for the hole injection layer may be used.
  • the hole injection layer 222 may be PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate), NPB (N, N-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'diamine), TPD(N,N'-bis(3-methlyphenyl)-N,N'- diphenyl-[1,1'-biphenyl]-4,4'-diamine), TAPC(1,1-Bis[4-[N,N'-di(p-tolyl)amino]phenyl]cyclohexane), HMTPD ( (3-tolyl)amino]3,3'-dimethylbiphenyl), TCTA(Tris(4-carbazoyl-9-ylphenyl)
  • the hole injection layer 222 may be formed using a spin coating method, and the coating conditions are a compound used as a material of the hole injection layer 222, a desired structure of the hole injection layer 120, and Although different depending on the thermal properties, the coating speed of about 2,000 rpm to 5,000 rpm, and the heat treatment temperature for removing the solvent after coating may be appropriately selected in a temperature range of about 80° C. to 200° C.
  • the hole injection layer 222 is formed by a solution process, a large-area process is possible, the process time can be shortened, and restrictions on the semiconductor properties of the first electrode 221 and the second electrode 227 are reduced. can be reduced
  • the hole transport layer 223 serves to move the holes injected from the first electrode to the light emitting layer 224, and VB-FNPD(9,9-Bis[4-[(4-ethenylphenyl)methoxy]phenyl]-N2, N7-di-1-naphthalenyl-N2,N7-diphenyl-9H-Fluorene-2,7-diamine), VNPB(N4,N4'-Di(naphthalen-1-yl)-N4,N4'-bis(4- vinylphenyl)biphenyl-4,4'-diamine), TFB(Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl) diphenylamine) ]), PTAA(Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]), Poly-TP
  • the hole transport layer 223 may include N0-bis(naphthalen-1-yl)-N or N0-bis(phenyl)benzidine (NPB).
  • NBP N0-bis(phenyl)benzidine
  • a layer that emits light while the generated excitons change from an excited state to a ground state and may be composed of a single layer or a multilayer.
  • the light emitting layer 224 may be manufactured by further adding a light emitting dopant to a host, and as a material of the fluorescent host, tris (8-hydroxy-quinolinato) aluminum (Alq3) ), 9,10-di (naphthi-2-yl) anthracene (AND), 3-Tert-butyl-9,10-di (naphthi-2-yl) anthracene (TBADN), 4,4'-bis (2 ,2-Diphenyl-ethen-1-yl)-4,4'-dimethylphenyl (DPVBi), 4,4'-bisBis(2,2-diphenyl-ethen-1-yl)-4,4' -Dimethylphenyl (p-DMDPVBi), Tert(9,9-diarylfluorene)s (TDAF), 2-(9,9'-spirobifluoren-2-yl)-9,9'-spirobi Fluorene (BSDF), 2,7
  • the light emitting layer 224 includes beryllium bisbenzo[h]quinolin-10-olate (Bebq2) as a host material and bis[2,4-dimethyl-6-(4-methyl-2-quinolinyl- ⁇ N) as a dopant material.
  • Bebq2 beryllium bisbenzo[h]quinolin-10-olate
  • phenyl- ⁇ C] (2,2,6,6-tetramethyl-3,5-heptanedionato- ⁇ O3 (Ir(mphmq)2tmd).
  • the electron transport layer 225 may serve to move electrons injected from the second electrode 160 to the light emitting layer 224 .
  • the electron transport layer 225 may include TPBi(2,2′,2′′- (1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)), Alq3(Tris(8-hydroxyquinoline) Aluminum), PCBM(Phenyl-C61-butyric acid methyl ester), TAZ(3 -(4-biphenyl)-4-phenyl-5-(4-tertbutylphenyl)-1,2,4-triazole), BPhen(4,7-Diphenyl-1,10-phenanthroline), BAlq(Bis(8-hydroxy) -2-methylquinoline)-(4-phenylphenoxy)aluminum), TSPO1 (diphenylphosphine oxide-4-(triphenylsilyl)phenyl), B4PyMPM [bis-4,6-
  • the electron transport layer 225 may include 4,7-diphenyl-1,10-phenanthroline (BPhen).
  • BPhen 4,7-diphenyl-1,10-phenanthroline
  • the hole transport layer 223 further includes an electron leakage control layer formed on a surface adjacent to the emission layer 224
  • the electron transport layer 225 includes a hole leakage control layer formed on a surface adjacent to the emission layer 224 . It may further include, wherein the electron leakage control layer and the hole leakage control layer is a high efficiency, high efficiency, It is possible to implement an organic light emitting structure having low voltage and long life characteristics.
  • whether the HOMO-LUMO state density of the electron leakage control layer and the hole leakage control layer overlaps between the HOMO-LUMO state density of the host material contained in the light emitting layer 224 (eg, overlap ratio) can be adjusted within a predetermined range.
  • the LUMO state density of the host and the LUMO state density of the hole leakage control layer overlap each other, and the LUMO state density of the host and the LUMO state density of the electron-leakage control layer are adjusted so that they do not overlap.
  • the electron leakage control layer includes at least one selected from the group consisting of an arylene group, a heteroarylene group, hydrogen, deuterium, a halogen group, a cyano group, a nitro group, and an amino group
  • the hole leakage control layer includes a moiety (eg, , EDG group, EWG group), but is not limited thereto.
  • the electron injection layer 226 may serve to inject electrons injected from the second electrode 227 into the emission layer 224 .
  • the electron injection layer 226 may include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth metal compound, a rare earth metal compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof. At least one may be included, and preferably, the electron injection layer 226 may include lithium quinolate (Liq).
  • the second electrode 227 may be commonly connected to a power voltage to inject electrons into the electron transport layer.
  • the second electrode 227 may include at least one of a metal material, an ionized metal material, an alloy material, a metal ink material in a colloidal state in a predetermined liquid, and a transparent metal oxide.
  • the metal material include lithium fluoride/aluminum (LiF/Al), lithium (Li), magnesium (Mg), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), and magnesium-indium (Mg).
  • -In magnesium-silver (Mg-Ag), ytterbium (Yb), platinum (Pt), gold (Au), nickel (Ni), copper (Cu), barium (Ba), silver (Ag), silver nano
  • wire AgNWs
  • ruthenium (Ru), lead (Pd), rhodium (Rh), iridium (Ir), osmium (Os), calcium (Ca), and cesium (Cs) is included. can do.
  • carbon (C), a conductive polymer, or a combination thereof may be used as the metal material.
  • the carbon (C) material may include at least one of carbon nanotubes (CNT) and graphene, and the conductive polymer material may include polyethylenedioxythiophene:polystyrenesulfonate (PEDOT:PSS).
  • CNT carbon nanotubes
  • PES polyethylenedioxythiophene:polystyrenesulfonate
  • the transparent metal oxide may include at least one of indium tin oxide (ITO), fluorine-doped tin oxide (FTO), antimony tin oxide (ATO), and aluminum doped zinc oxide (AZO).
  • ITO indium tin oxide
  • FTO fluorine-doped tin oxide
  • ATO antimony tin oxide
  • AZO aluminum doped zinc oxide
  • the second electrode 227 may be formed of magnesium-silver (Mg-Ag).
  • the capping layer 228 may include at least one of Alq3 (Tris(8-hydroxyquinolinato)aluminium), NPB, and molybdenum trioxide (MoO 3 ).
  • the capping layer 228 may be formed of an inorganic capping layer based on molybdenum trioxide (MoO 3 ).
  • the organic light emitting structures 221 to 228 may further include a charge generation layer, preferably, the charge generation layer is 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN) may include
  • 3A to 3C are diagrams for explaining device characteristics of an organic light emitting device according to an exemplary embodiment.
  • reference numeral 310 denotes voltage-current density characteristics of an existing organic light-emitting device (Reference) and an organic light-emitting device (Devices A, B, and C) according to an embodiment.
  • reference numeral 320 denotes luminance-current density characteristics of an existing organic light emitting device (Reference) and an organic light emitting device (Device A, B, C) according to an embodiment
  • reference numeral 330 shows the luminance-external quantum efficiency (luminance-EQE) characteristics of the conventional organic light-emitting device (Reference) and the organic light-emitting devices (Devices A, B, and C) according to an embodiment.
  • the conventional organic light-emitting device refers to a front resonance device manufactured by a general deposition method
  • the organic light-emitting devices (Devices A, B, and C) according to an embodiment have different thicknesses of the inorganic material layers to each other. It refers to an organic light emitting device according to an embodiment in which nano-island structures of different shapes are formed.
  • Device A refers to an organic light-emitting device in which a nano-island structure is formed through an inorganic material layer formed to a thickness of 25 nm to 75 nm
  • Device B is an organic light-emitting device in which a nano-island structure is formed through an inorganic material layer formed to a thickness of 75 nm to 125 nm
  • Device C refers to an organic light emitting device in which a nano-island structure is formed through an inorganic material layer formed to a thickness of 125 nm to 175 nm.
  • 4A to 4G are diagrams for explaining optical characteristics of an organic light emitting diode according to an exemplary embodiment.
  • reference numeral 410 denotes the wavelength-intensity characteristics (ie, the wavelength-intensity) of the conventional organic light-emitting device (Reference) and the organic light-emitting devices (Devices A, B, and C) according to an embodiment.
  • Each EL (angular EL) spectrum change) characteristic is shown, and reference numeral 420 denotes a viewing angle of an existing organic light emitting device (Reference) and an organic light emitting device (Device A, B, C) according to an embodiment - color shift (viewing angle) - color shift) characteristics, and reference numeral 430 denotes angular luminance distribution characteristics of the conventional organic light emitting device (Reference) and the organic light emitting device (Device A, B, C) according to an embodiment. show
  • each of reference numerals 440 to 470 denotes a wavelength-intensity characteristic according to an angle ranging from 0° to 60° between the conventional organic light-emitting device (Reference) and the organic light-emitting device (Device A, B, and C) according to an embodiment. - intensity) is shown.
  • optical characteristics of the conventional organic light emitting device (Reference) and the organic light emitting devices (Devices A, B, and C) according to an embodiment may be summarized as shown in Table 2 below.
  • Item Reference Device A Device B Device C (x, y) a 1000 cd/m 2 (0.642, 0.358) (0.639, 0.360) (0.637, 0.362) (0.633, 0.366) Full width at half maximum (FWHM) (nm) 1000 cd/m 2 34.3 39.6 42.5 44.4 Peak wavelength (nm) 1000 cd/m 2 606 605 605 604 Color shift b,c 1000 cd/m 2 0.059 0.018 0.013 0.005 a: CIE 1931 color coordinates b: measured from 0° to 60° c: CIE 1976 chromaticity
  • the organic light emitting devices (Devices A, B, and C) according to the exemplary embodiment apply a nano-island structure, so that light is reflected in all directions due to diffuse reflection in the device, thereby improving color shift and light distribution according to the viewing angle. It can be confirmed that there is
  • the organic light emitting devices (Devices A, B, and C) according to the exemplary embodiment have an increased width at half maximum (FWHM) compared to the conventional organic light emitting device (Reference) by applying the nano-island structure, which is a nanostructure. It was found that the microresonance effect was reduced according to the application.
  • FWHM width at half maximum
  • the organic light emitting diode according to an embodiment is implemented as a rear resonance element, it was found that there is almost no reduction in efficiency compared to the front resonance element denoted by reference numerals 410 to 470. That is, the organic light emitting diode according to the exemplary embodiment can effectively improve the viewing angle in both the top light emitting device and the bottom light emitting device.
  • 5A to 5D are diagrams for explaining characteristics according to a change in the thickness of an inorganic material layer of an organic light emitting diode according to an exemplary embodiment.
  • reference numeral 510 denotes a nano-island structure of an organic light emitting device according to an embodiment formed through an inorganic material layer formed to a thickness of 50 nm
  • reference numeral 520 denotes an inorganic material layer formed to a thickness of 100 nm. It shows the nano-island structure of the organic light emitting device according to an embodiment formed through.
  • reference numeral 530 denotes a nano-island structure of an organic light emitting device according to an embodiment formed through an inorganic material layer formed to a thickness of 150 nm
  • reference numeral 540 denotes an inorganic material layer formed to a thickness of 200 nm according to an embodiment. A nano-island structure of an organic light emitting device is shown.
  • the nano-island structure shown in reference numerals 510 to 540 is exposed to an environment of a temperature of 5 ° C. to 40 ° C. and a humidity of 30% to 100% of the inorganic material layers formed with different thicknesses for 20 minutes (min). can be formed.
  • nano-island structures having various shapes and sizes such as spherical, oval, and irregular shapes, are formed according to the thickness of the inorganic layer.
  • FIG. 6 is a view for explaining a method of manufacturing an organic light emitting device according to an exemplary embodiment.
  • FIG. 6 is a view for explaining an example of manufacturing an organic light emitting device according to an exemplary embodiment described with reference to FIGS. 1 to 5D .
  • FIG. 1 to FIG. 5D A description that overlaps with the content will be omitted.
  • step 610 in the method of manufacturing an organic light emitting device according to an exemplary embodiment, at least one nano-island structure may be formed on a substrate.
  • the inorganic material layer formed on the substrate is exposed to an environment of preset temperature and humidity conditions to form a nano-island structure.
  • a method of manufacturing a nano-island structure according to an embodiment will be described in more detail later with reference to FIGS. 7A to 7B.
  • an organic light emitting structure may be formed on the substrate on which the nano-island structure is formed.
  • the method of manufacturing an organic light emitting device includes sequentially stacking a first electrode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, a second electrode, and a capping layer.
  • An organic light emitting structure may be formed.
  • FIGS. 7A to 7B are diagrams for explaining a method of manufacturing a nano-island structure according to an embodiment.
  • the method of manufacturing the nano-island structure according to the embodiment may form an inorganic material layer 712 on a substrate 711 .
  • the inorganic layer 712 may include cesium chloride (CsCl), cesium fluoride (CsF), cesium iodide (CsI), cesium bromide (CsBr), calcium chloride (CaCl 2 ), and lanthanum chloride (LaCl 3 ).
  • CsCl cesium chloride
  • CsF cesium fluoride
  • CsI cesium iodide
  • CsBr cesium bromide
  • CaCl 2 cesium chloride
  • LaCl 3 lanthanum chloride
  • the inorganic layer 712 may be a cesium chloride layer.
  • the pitch and depth of the nano-island structure described below may be adjusted according to the thickness of the inorganic layer 712 formed on the substrate 711 .
  • the method of manufacturing the nano-island structure according to the embodiment may form the inorganic material layer 712 on the substrate 711 to a thickness of 25 nm to 200 nm.
  • the nano-island structure manufacturing method exposes the substrate 711 on which the inorganic material layer 712 is formed to an environment of preset temperature and humidity conditions to form the nano-island structure (NI). can be formed
  • step 720 in the method of manufacturing the nano-island structure according to the embodiment, the inorganic material layer 712 formed to a predetermined thickness is exposed to an environment of preset temperature and humidity conditions, so that the nano-island structure NI is formed. can be formed.
  • the method for manufacturing a nano-island structure is that the formed inorganic material layer 720 is exposed to an environment of a temperature of 5° C. to 40° C. and a humidity of 30% to 100%, so that the nano- An island structure NI may be formed.
  • the viewing angle characteristic can be improved by using the nano-island structure as an omnidirectional scatterer of the organic light emitting device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention relates to an organic light-emitting device and a method for manufacturing same, and an organic light-emitting device according to an embodiment includes: a substrate on which at least one nano-island structure is formed; and an organic light-emitting structure formed on the substrate, wherein, as the substrate, an inorganic material layer is formed, and the formed inorganic material layer is exposed to an environment including a preset temperature and humidity conditions to form nano-island structures.

Description

색안정성 확보를 위해 나노-섬 구조체를 구비하는 유기 발광 소자 및 그 제조방법An organic light emitting device having a nano-island structure to ensure color stability and a method for manufacturing the same
본 발명은 유기 발광 소자 및 그 제조방법에 관한 것으로, 보다 상세하게는 유기 발광 소자에 구비된 기판의 일측면에 나노-섬 구조체를 형성하는 기술적 사상에 관한 것이다.The present invention relates to an organic light emitting device and a method for manufacturing the same, and more particularly, to a technical idea of forming a nano-island structure on one side of a substrate provided in an organic light emitting device.
유기 발광 소자(organic light emitting diode, OLED)의 외부 양자 효율은 이론적으로 하기 수학식1과 같이 산출이 된다. The external quantum efficiency of an organic light emitting diode (OLED) is theoretically calculated as in Equation 1 below.
[수학식1][Equation 1]
Figure PCTKR2021009101-appb-I000001
Figure PCTKR2021009101-appb-I000001
여기서,
Figure PCTKR2021009101-appb-I000002
은 외부 양자 효율,
Figure PCTKR2021009101-appb-I000003
은 내부 양자 효율,
Figure PCTKR2021009101-appb-I000004
은 광추출 효율,
Figure PCTKR2021009101-appb-I000005
는 엑시톤(exciton)의 생성량,
Figure PCTKR2021009101-appb-I000006
는 엑시톤의 방사 붕괴 효율(efficiency of radiative decay of excitons)를 의미한다.
here,
Figure PCTKR2021009101-appb-I000002
is the external quantum efficiency,
Figure PCTKR2021009101-appb-I000003
is the internal quantum efficiency,
Figure PCTKR2021009101-appb-I000004
Silver light extraction efficiency,
Figure PCTKR2021009101-appb-I000005
is the amount of exciton produced,
Figure PCTKR2021009101-appb-I000006
denotes the efficiency of radiative decay of excitons.
수학식1에 의거하였을 때, 밖으로 나오는 외부 양자 효율을 높이기 위해서는 내부 양자 효율이 높아야 한다. 내부 양자 효율을 높이기 위해선 엑시톤의 생성량이 많아야 하며 이를 위해선 이상적인 전하 밸런스(charge balance)를 갖춰야 한다. 또한 전하 밸런스를 이상적으로 맞출 경우 계면에서의 열화를 억제할 수 있어 수명 향상에 도움이 된다. 이와 같은 이유로 유기 발광 소자의 전하 밸런스를 맞추고 소자를 최적화 시키는 작업은 상당한 중요성을 갖는다.Based on Equation 1, in order to increase the external quantum efficiency coming out, the internal quantum efficiency must be high. In order to increase the internal quantum efficiency, the amount of exciton generation must be large, and for this purpose, an ideal charge balance must be obtained. In addition, if the charge balance is ideally matched, deterioration at the interface can be suppressed, which helps to improve the lifespan. For this reason, it is very important to balance the charge of the organic light emitting device and optimize the device.
유기 발광 소자의 전하 밸런스를 맞추기 위해서는 전극에서 주입되는 캐리어(carrier)들이 엑시톤을 형성하고 재결합(recombination)하는 재결합 존(recombination zone)이 발광층(emission layer, EML)의 중앙부분에서 형성되어야 한다. 이 때, 재결합 존은 전자와 정공의 주입특성에 영향을 받는다. 계면 간 에너지 장벽이 0.3 eV 내외로 이상적이라고 했을 때, 전자와 정공의 주입특성은 각각의 물질이 갖는 이동성(mobility)에 따른 차이를 보인다.In order to balance the charge of the organic light emitting diode, a recombination zone in which carriers injected from the electrode form excitons and recombine should be formed in the central portion of the emission layer (EML). In this case, the recombination zone is affected by electron and hole injection characteristics. When it is assumed that the energy barrier between the interfaces is ideal around 0.3 eV, the electron and hole injection characteristics show a difference according to the mobility of each material.
이와 같이 재료에 따른 이동도나 주입특성의 차이를 보상하기 위해 두께 최적화를 통해 효율을 극대화하는 경우 내부 양자효율이 100%까지도 얻어진다는 보고가 많다.As described above, there are many reports that internal quantum efficiency can be obtained up to 100% when efficiency is maximized through thickness optimization to compensate for differences in mobility or implantation characteristics depending on materials.
하지만, 이러한 경우에도 외부양자효율은 20%를 넘기가 어려운데, 이는 빛이 소자를 빠져 나오면서, 도파관 모드(waveguide mode), 기판 모드(substrate mode), 표면 플라즈몬 소자 모드(surface plasomon polariton mode), 흡수 모드(absorption) 등의 모드를 통해 소실이 되기 때문이다. 이를 통해 소실되는 빛의 양은 80%에 육박한다. However, even in this case, it is difficult for the external quantum efficiency to exceed 20%, which means that as light exits the device, waveguide mode, substrate mode, surface plasmon polariton mode, and absorption This is because it is lost through a mode such as absorption. The amount of light lost through this approach approaches 80%.
이에, 종래에는 소실되는 빛을 최소화하기 위해, 광확산 필름, 고굴절 기판, 내부 광산란층 적용 등 다양한 외광 추출 기법들이 연구되고 있으며, 이 밖에도 디스플레이 패널 업체들은 미소 공진 구조를 적용한 유기 발광 소자를 통해 고해상도 소형 디스플레이의 외광 효율을 극대화하고 있다.Accordingly, in the prior art, various external light extraction techniques such as a light diffusion film, a high refractive substrate, and an internal light scattering layer application are being studied to minimize light loss. It maximizes the external light efficiency of small displays.
다만, 이러한 기술들은 전면으로의 빛이 강화되고 측면으로는 빛이 약해지게 되므로, 이러한 시야각 특성 열화에 대한 문제를 해결하기 위해 전방위 산란체의 도입을 고민해야 하는데, 실제로 나노 기공성 필름(nanoporous film)을 도입하여 미소 공진 소자에서의 시야각 특성의 열화를 억제했다는 연구 결과들이 발표된 바 있다. However, in these technologies, since the light to the front is strengthened and the light is weakened to the side, it is necessary to consider the introduction of an omnidirectional scatterer in order to solve the problem of such deterioration of the viewing angle characteristics. ) was introduced to suppress the deterioration of the viewing angle characteristics in the microresonant device.
그러나, 이러한 연구들은 제조 공정이 복잡하므로 실제 공정 상에 적용하기 어렵다는 문제가 있다.However, these studies have a problem in that it is difficult to apply them to an actual process because the manufacturing process is complicated.
본 발명은 무기물을 이용하여 형성되는 나노-섬 구조체를 유기 발광 소자의 전방위 산란체로 활용하여 시야각 특성을 개선할 수 있는 유기 발광 소자 및 그 제조방법을 제공하고자 한다. An object of the present invention is to provide an organic light-emitting device capable of improving viewing angle characteristics by using a nano-island structure formed using an inorganic material as an omnidirectional scatterer of the organic light-emitting device, and a method for manufacturing the same.
또한, 본 발명은 나노-섬 구조체로 인해 유기 발광 소자 내에서 전방위로 빛이 반사되어 색 변이 및 광분포 특성을 개선할 수 있는 유기 발광 소자 및 그 제조방법을 제공하고자 한다.Another object of the present invention is to provide an organic light emitting device capable of improving color shift and light distribution characteristics by reflecting light in all directions within the organic light emitting device due to the nano-island structure, and a method for manufacturing the same.
본 발명의 일실시예에 따른 유기 발광 소자는 적어도 하나 이상의 나노-섬 구조체(nano-island structures)가 형성된 기판 및 기판 상에 형성된 유기 발광 구조체를 포함하고, 기판은 무기물층이 형성되고, 형성된 무기물층이 기설정된 온도 및 습도 조건의 환경에 노출되어 나노-섬 구조체가 형성될 수 있다. An organic light emitting device according to an embodiment of the present invention includes a substrate on which at least one nano-island structure is formed and an organic light emitting structure formed on the substrate, wherein the substrate includes an inorganic material layer and the formed inorganic material The layer may be exposed to an environment of predetermined temperature and humidity conditions to form a nano-island structure.
일측에 따르면, 무기물층은 염화 세슘(CsCl), 플루오린화 세슘(CsF), 아이오딘화 세슘(CsI), 브롬화 세슘(CsBr), 염화 칼슘(CaCl2) 및 염화 란탄(LaCl3) 중 적어도 하나를 포함할 수 있다.According to one side, the inorganic layer is at least one of cesium chloride (CsCl), cesium fluoride (CsF), cesium iodide (CsI), cesium bromide (CsBr), calcium chloride (CaCl 2 ) and lanthanum chloride (LaCl 3 ) may include
일측에 따르면, 나노-섬 구조체는 형성된 무기물층의 두께에 따라 피치(pitch) 및 깊이(depth)가 조절될 수 있다. According to one side, the pitch and depth of the nano-island structure may be adjusted according to the thickness of the formed inorganic material layer.
일측에 따르면, 무기물층은 25nm 내지 200nm의 두께로 기판 상에 형성될 수 있다. According to one side, the inorganic material layer may be formed on the substrate to a thickness of 25 nm to 200 nm.
일측에 따르면, 기판은 형성된 무기물층이 5℃ 내지 40℃의 온도 및 30% 내지 100%의 습도 조건의 환경에 노출되어 나노-섬 구조체가 형성될 수 있다.According to one side of the substrate, the formed inorganic layer is exposed to an environment of a temperature of 5° C. to 40° C. and a humidity of 30% to 100% to form a nano-island structure.
일측에 따르면, 유기 발광 구조체는 제1 전극, 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층, 제2 전극 및 캡핑층이 적층되어 형성될 수 있다. According to one side, the organic light emitting structure may be formed by stacking a first electrode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, a second electrode, and a capping layer.
본 발명의 일실시예에 따른 유기 발광 소자의 제조방법은 기판 상에 적어도 하나 이상의 나노-섬 구조체(nano-island structures)를 형성하는 단계 및 나노-섬 구조체가 형성된 기판 상에 유기 발광 구조체를 형성하는 단계를 포함하고, 나노-섬 구조체를 형성하는 단계는 기판 상에 형성된 무기물층이 기설정된 온도 및 습도 조건의 환경에 노출되어 나노-섬 구조체가 형성될 수 있다. A method of manufacturing an organic light emitting device according to an embodiment of the present invention comprises the steps of forming at least one nano-island structure on a substrate and forming the organic light emitting structure on the substrate on which the nano-island structure is formed. and forming the nano-island structure by exposing the inorganic material layer formed on the substrate to an environment of preset temperature and humidity conditions to form the nano-island structure.
일측에 따르면, 무기물층은 염화 세슘(CsCl), 플루오린화 세슘(CsF), 아이오딘화 세슘(CsI), 브롬화 세슘(CsBr), 염화 칼슘(CaCl2) 및 염화 란탄(LaCl3) 중 적어도 하나를 포함할 수 있다.According to one side, the inorganic layer is at least one of cesium chloride (CsCl), cesium fluoride (CsF), cesium iodide (CsI), cesium bromide (CsBr), calcium chloride (CaCl 2 ) and lanthanum chloride (LaCl 3 ) may include
일측에 따르면, 나노-섬 구조체를 형성하는 단계는 25nm 내지 200nm의 두께로 기판 상에 무기물층을 형성할 수 있다. According to one side, forming the nano-island structure may form an inorganic material layer on the substrate to a thickness of 25 nm to 200 nm.
일측에 따르면, 나노-섬 구조체를 형성하는 단계는 형성된 무기물층이 5℃ 내지 40℃의 온도 및 30% 내지 100%의 습도 조건의 환경에 노출되어 나노-섬 구조체가 형성될 수 있다.According to one side, in the step of forming the nano-island structure, the formed inorganic material layer is exposed to an environment of a temperature of 5° C. to 40° C. and a humidity of 30% to 100% to form a nano-island structure.
일실시예에 따르면, 본 발명은 나노-섬 구조체를 유기 발광 소자의 전방위 산란체로 활용하여 시야각 특성을 개선할 수 있다. According to one embodiment, in the present invention, the viewing angle characteristic can be improved by using the nano-island structure as an omnidirectional scatterer of the organic light emitting device.
일실시예에 따르면, 본 발명은 나노-섬 구조체로 인해 유기 발광 소자 내에서 전방위로 빛이 반사되어 색 변이 및 광분포 특성을 개선할 수 있다.According to one embodiment, according to the present invention, light is reflected in all directions in the organic light emitting device due to the nano-island structure, thereby improving color shift and light distribution characteristics.
도 1은 일실시예에 따른 유기 발광 소자를 설명하기 위한 도면이다.1 is a view for explaining an organic light emitting device according to an embodiment.
도 2는 일실시예에 따른 유기 발광 소자의 구현예를 설명하기 위한 도면이다.2 is a view for explaining an embodiment of an organic light emitting device according to an embodiment.
도 3a 내지 도 3c는 일실시예에 따른 유기 발광 소자의 소자 특성을 설명하기 위한 도면이다.3A to 3C are diagrams for explaining device characteristics of an organic light emitting device according to an exemplary embodiment.
도 4a 내지 도 4g는 일실시예에 따른 유기 발광 소자의 광학 특성을 설명하기 위한 도면이다.4A to 4G are diagrams for explaining optical characteristics of an organic light emitting diode according to an exemplary embodiment.
도 5a 내지 도 5d는 일실시예에 따른 유기 발광 소자의 무기물층 두께 변화에 따른 특성을 설명하기 위한 도면이다.5A to 5D are diagrams for explaining characteristics according to a change in the thickness of an inorganic material layer of an organic light emitting diode according to an exemplary embodiment.
도 6은 일실시예에 따른 유기 발광 소자의 제조방법을 설명하기 위한 도면이다. 6 is a view for explaining a method of manufacturing an organic light emitting device according to an exemplary embodiment.
도 7a 내지 도 7b는 일실시예에 따른 나노-섬 구조체의 제조방법을 설명하기 위한 도면이다.7A to 7B are diagrams for explaining a method of manufacturing a nano-island structure according to an embodiment.
본 명세서에 개시되어 있는 본 발명의 개념에 따른 실시예들에 대해서 특정한 구조적 또는 기능적 설명들은 단지 본 발명의 개념에 따른 실시예들을 설명하기 위한 목적으로 예시된 것으로서, 본 발명의 개념에 따른 실시예들은 다양한 형태로 실시될 수 있으며 본 명세서에 설명된 실시예들에 한정되지 않는다.Specific structural or functional descriptions of the embodiments according to the concept of the present invention disclosed in this specification are only exemplified for the purpose of explaining the embodiments according to the concept of the present invention, and the embodiment according to the concept of the present invention These may be embodied in various forms and are not limited to the embodiments described herein.
본 발명의 개념에 따른 실시예들은 다양한 변경들을 가할 수 있고 여러 가지 형태들을 가질 수 있으므로 실시예들을 도면에 예시하고 본 명세서에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시예들을 특정한 개시형태들에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 변경, 균등물, 또는 대체물을 포함한다.Since the embodiments according to the concept of the present invention may have various changes and may have various forms, the embodiments will be illustrated in the drawings and described in detail herein. However, this is not intended to limit the embodiments according to the concept of the present invention to specific disclosed forms, and includes changes, equivalents, or substitutes included in the spirit and scope of the present invention.
제1 또는 제2 등의 용어를 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만, 예를 들면 본 발명의 개념에 따른 권리 범위로부터 이탈되지 않은 채, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소는 제1 구성요소로도 명명될 수 있다.Terms such as first or second may be used to describe various elements, but the elements should not be limited by the terms. The terms are used only for the purpose of distinguishing one element from another, for example, without departing from the scope of the present invention, a first element may be named a second element, and similar The second component may also be referred to as the first component.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 표현들, 예를 들면 "~사이에"와 "바로~사이에" 또는 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.When a component is referred to as being “connected” or “connected” to another component, it may be directly connected or connected to the other component, but it is understood that other components may exist in between. it should be On the other hand, when it is said that a certain element is "directly connected" or "directly connected" to another element, it should be understood that the other element does not exist in the middle. Expressions describing the relationship between elements, for example, “between” and “between” or “directly adjacent to”, etc. should be interpreted similarly.
본 명세서에서 사용한 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함으로 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is used only to describe specific embodiments, and is not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present specification, terms such as "comprise" or "have" are intended to designate that the described feature, number, step, operation, component, part, or combination thereof exists, and includes one or more other features or numbers, It should be understood that the possibility of the presence or addition of steps, operations, components, parts or combinations thereof is not precluded in advance.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in a commonly used dictionary should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present specification. does not
이하, 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다. 그러나, 특허출원의 범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. However, the scope of the patent application is not limited or limited by these embodiments. Like reference numerals in each figure indicate like elements.
도 1은 일실시예에 따른 유기 발광 소자를 설명하기 위한 도면이다.1 is a view for explaining an organic light emitting device according to an embodiment.
도 1을 참조하면, 일실시예에 따른 유기 발광 소자(100)는 나노-섬 구조체를 유기 발광 소자의 전방위 산란체로 활용하여 시야각 특성을 개선할 수 있다.Referring to FIG. 1 , the organic light emitting device 100 according to an embodiment may improve viewing angle characteristics by using the nano-island structure as an omnidirectional scatterer of the organic light emitting device.
또한, 유기 발광 소자(100)는 나노-섬 구조체로 인해 유기 발광 소자 내에서 전방위로 빛이 반사되어 색 변이 및 광분포 특성을 개선할 수 있다. In addition, the organic light emitting device 100 may improve color shift and light distribution characteristics by reflecting light in all directions within the organic light emitting device due to the nano-island structure.
이를 위해, 유기 발광 소자(100)는 적어도 하나 이상의 나노-섬 구조체(nano-island structures, NI)가 형성된 기판(110)과, 기판(110) 상에 형성된 유기 발광 구조체(120)를 포함할 수 있다. To this end, the organic light emitting device 100 may include a substrate 110 on which at least one or more nano-island structures (NI) are formed, and an organic light emitting structure 120 formed on the substrate 110 . have.
구체적으로, 일실시예에 따른 기판(110)은 무기물층(111)이 형성되고, 형성된 무기물층(111)이 기설정된 온도 및 습도 조건의 환경에 노출되어 나노-섬 구조체(NI)가 형성될 수 있다. Specifically, in the substrate 110 according to an embodiment, an inorganic material layer 111 is formed, and the formed inorganic material layer 111 is exposed to an environment of preset temperature and humidity conditions to form a nano-island structure NI. can
예를 들면, 기판(110)은 글래스 기판(glass substrate)일 수 있으며, 무기물층(111)은 염화 세슘(CsCl), 플루오린화 세슘(CsF), 아이오딘화 세슘(CsI), 브롬화 세슘(CsBr), 염화 칼슘(CaCl2) 및 염화 란탄(LaCl3) 중 적어도 하나를 포함할 수 있다. 바람직하게는 무기물층(111)은 염화 세슘층일 수 있다. For example, the substrate 110 may be a glass substrate, and the inorganic layer 111 may be cesium chloride (CsCl), cesium fluoride (CsF), cesium iodide (CsI), or cesium bromide (CsBr). ), calcium chloride (CaCl 2 ), and lanthanum chloride (LaCl 3 ) It may include at least one. Preferably, the inorganic material layer 111 may be a cesium chloride layer.
일측에 따르면, 나노-섬 구조체(NI)는 형성된 무기물층(111)의 두께에 따라 피치(pitch) 및 깊이(depth)가 조절될 수 있으며, 바람직하게는 무기물층(111)은 25nm 내지 200nm의 두께로 기판(110) 상에 형성될 수 있다.According to one side, in the nano-island structure NI, a pitch and a depth may be adjusted according to the thickness of the formed inorganic material layer 111 , and preferably, the inorganic material layer 111 has a thickness of 25 nm to 200 nm. The thickness may be formed on the substrate 110 .
또한, 기판(110)은 형성된 무기물층(111)이 5℃ 내지 40℃의 온도 및 30% 내지 100%의 습도 조건의 환경에 노출되어 나노-섬 구조체(NI)가 형성될 수 있다. 바람직하게는, 나노-섬 구조체(NI)는 27℃의 온도 조건과 50%의 습도 조건에서 형성될 수 있다.In addition, in the substrate 110 , the formed inorganic material layer 111 is exposed to an environment of a temperature of 5° C. to 40° C. and a humidity of 30% to 100% to form a nano-island structure (NI). Preferably, the nano-island structure (NI) may be formed under a temperature condition of 27° C. and a humidity condition of 50%.
구체적으로, 나노-섬 구조체(NI)는 기판(110)의 일측면에 열증착된 염화 세슘층, 즉 무기물층(111)이 5℃ 이상에서 40℃이하의 온도 범위와, 30% 이상에서 100% 미만의 습도 범위 내의 환경에 노출됨에 따라 발생되는 무기물층(111)의 디웨팅(dewetting)을 통해 형성될 수 있으며, 이때 나노-섬 구조체(NI)는 반구형, 타원형 및 부정형 중 적어도 하나의 형상으로 형성될 수 있다.Specifically, the nano-island structure (NI) has a cesium chloride layer thermally deposited on one side of the substrate 110, that is, the inorganic material layer 111 in a temperature range of 5° C. or more to 40° C. or less, and 30% or more to 100 It may be formed through dewetting of the inorganic material layer 111 generated by exposure to an environment within a humidity range of less than %, wherein the nano-island structure (NI) has at least one shape of a hemispherical shape, an oval shape, and an irregular shape. can be formed with
일측에 따르면, 유기 발광 구조체(120)는 제1 전극, 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층, 제2 전극 및 캡핑층이 적층되어 형성될 수 있다. According to one side, the organic light emitting structure 120 may be formed by stacking a first electrode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, a second electrode, and a capping layer.
예를 들면, 유기 발광 구조체(120)는 전면 발광소자(일례로, 전면 공진소자) 또는 배면 발광소자(일례로, 배면 공진소자)일 수 있다. For example, the organic light emitting structure 120 may be a top light emitting device (eg, a front resonance device) or a bottom light emitting device (eg, a rear resonance device).
일측에 따르면, 나노-섬 구조체(NI)는 유기 발광 구조체(120)가 전면 발광소자인 경우에 기판(110)의 상부, 즉 기판(110)과 유기 발광 구조체(120) 사이에 형성될 수 있다. 또한, 나노-섬 구조체(NI)는 유기 발광 구조체(120)가 배면 발광소자인 경우에 기판(110)의 하부에 형성될 수 있다. According to one side, the nano-island structure NI may be formed on the upper portion of the substrate 110 when the organic light emitting structure 120 is a top light emitting device, that is, between the substrate 110 and the organic light emitting structure 120 . . Also, when the organic light emitting structure 120 is a bottom light emitting device, the nano-island structure NI may be formed under the substrate 110 .
일실시예에 따른 유기 발광 구조체(120)는 이후 실시예 도 2를 통해 보다 구체적으로 설명하기로 한다.The organic light emitting structure 120 according to an embodiment will be described in more detail later with reference to FIG. 2 .
도 2는 일실시예에 따른 유기 발광 소자의 구현예를 설명하기 위한 도면이다.2 is a view for explaining an embodiment of an organic light emitting device according to an embodiment.
다시 말해, 도 2는 도 1을 통해 설명한 일실시예에 따른 유기 발광 소자의 구현 예시를 설명하기 위한 도면으로, 이하에서 도 2를 통해 설명하는 내용 중 도 1을 통해 설명한 내용과 중복되는 설명은 생략하기로 한다.In other words, FIG. 2 is a diagram for explaining an example of implementation of the organic light emitting diode according to the embodiment described with reference to FIG. 1 , and the description overlaps with the content described with reference to FIG. 1 among the contents described with reference to FIG. 2 below. to be omitted.
도 2를 참조하면, 일실시예에 따른 유기 발광 소자(200)는 적어도 하나 이상의 나노-섬 구조체(NI)가 형성된 기판(210)과, 기판(210) 상에 형성된 유기 발광 구조체(220)를 포함할 수 있다.Referring to FIG. 2 , the organic light emitting device 200 according to an embodiment includes a substrate 210 on which at least one nano-island structure (NI) is formed, and an organic light emitting structure 220 formed on the substrate 210 . may include
구체적으로, 기판(210)은 무기물층(211)이 형성되고, 형성된 무기물층(211)이 기설정된 온도 및 습도 조건의 환경에 노출되어 나노-섬 구조체(NI)가 형성될 수 있다.Specifically, the substrate 210 may have an inorganic material layer 211 formed thereon, and the formed inorganic material layer 211 may be exposed to an environment of preset temperature and humidity conditions to form a nano-island structure NI.
또한, 유기 발광 구조체(220)는 제1 전극(221), 정공 주입층(222), 정공 수송층(223), 발광층(224), 전자 수송층(225), 전자 주입층(226), 제2 전극(227) 및 캡핑층(228)이 적층되어 형성될 수 있다.In addition, the organic light emitting structure 220 includes a first electrode 221 , a hole injection layer 222 , a hole transport layer 223 , a light emitting layer 224 , an electron transport layer 225 , an electron injection layer 226 , and a second electrode. 227 and the capping layer 228 may be stacked.
예를 들면, 제1 전극(221)은 애노드(anode) 전극이고, 제2 전극(227)은 캐소드 전극(cathode) 전극일 수 있다. For example, the first electrode 221 may be an anode electrode, and the second electrode 227 may be a cathode electrode.
보다 구체적으로, 제1 전극(221)은 발광층(224)에 정공을 제공하는 전극으로서, 투과형 전극, 반사형 전극 또는 이들의 적층 구조로 형성될 수 있다.More specifically, the first electrode 221 is an electrode that provides holes to the emission layer 224 , and may be formed of a transmissive electrode, a reflective electrode, or a stacked structure thereof.
투과형 전극 물질로는 투명하고 전도성이 우수한 산화인듐주석(ITO), 산화인듐아연(IZO), 산화주석(SnO2), 산화 아연(ZnO), 금속산화물/금속/금속산화물 다중층, 그래핀(graphene), 카본 나노 튜브(carbon nano tube) 및 폴리에틸렌디옥시티오펜:폴리스티렌설포네이트(PEDOT:PSS) 중 적어도 어느 하나를 포함할 수 있다.Transmissive electrode materials include indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO 2 ), zinc oxide (ZnO), metal oxide/metal/metal oxide multilayer, graphene ( graphene), carbon nanotubes, and polyethylenedioxythiophene:polystyrenesulfonate (PEDOT:PSS).
반사형 전극 물질로는 Ag/ITO, Ag/IZO, 알루미늄-리튬(Al-Li), 마그네슘-인듐(Mg-In), 마그네슘-은(Mg-Ag), 알루미늄/은(Al/Ag), 리튬 플로라이드/알루미늄(LiF/Al), 리튬(Li), 마그네슘(Mg), 알루미늄(Al), 알루미늄-리튬(Al-Li), 칼슘(Ca), 마그네슘-인듐(Mg-In), 마그네슘-은(Mg-Ag), 이터븀 (Yb), 플래티넘(Pt), 금(Au), 니켈(Ni), 구리(Cu), 바륨(Ba), 은(Ag), 은나노와이어(AgNWs), 인듐(In), 루테늄(Ru), 납(Pd), 로듐(Rh), 이리듐(Ir), 오스뮴(Os), 칼슘(Ca) 및 세슘(Cs) 중 적어도 어느 하나를 포함할 수 있다.Examples of reflective electrode materials include Ag/ITO, Ag/IZO, aluminum-lithium (Al-Li), magnesium-indium (Mg-In), magnesium-silver (Mg-Ag), aluminum/silver (Al/Ag), Lithium Fluoride/Aluminum (LiF/Al), Lithium (Li), Magnesium (Mg), Aluminum (Al), Aluminum-Lithium (Al-Li), Calcium (Ca), Magnesium-Indium (Mg-In), Magnesium -Silver (Mg-Ag), ytterbium (Yb), platinum (Pt), gold (Au), nickel (Ni), copper (Cu), barium (Ba), silver (Ag), silver nanowire (AgNWs), It may include at least one of indium (In), ruthenium (Ru), lead (Pd), rhodium (Rh), iridium (Ir), osmium (Os), calcium (Ca), and cesium (Cs).
바람직하게, 제1 전극(221)은 고 반사성 전극으로서, 알루미늄/은(Al/Ag)의 다층 구조로 형성될 수 있다. Preferably, the first electrode 221 is a highly reflective electrode, and may be formed of a multilayer structure of aluminum/silver (Al/Ag).
제1 전극(221) 상에 형성되는 정공 주입층(222)은 제1 전극(221)으로부터 주입된 정공을 발광층(224)으로 주입하는 역할을 할 수 있다.The hole injection layer 222 formed on the first electrode 221 may serve to inject holes injected from the first electrode 221 into the emission layer 224 .
정공 주입층(222)으로는 공지의 정공 주입층용 물질이 사용될 수 있고, 예를 들면, 정공 주입층(222)은 PEDOT:PSS(poly(3,4-ethylenedioxythiophene) polystyrene sulfonate), NPB(N,N-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'diamine), TPD(N,N'-bis(3-methlyphenyl)-N,N'-diphenyl-[1,1'- biphenyl]-4,4'-diamine), TAPC(1,1- Bis[4-[N,N'-di(p-tolyl)amino]phenyl]cyclohexane), HMTPD((3-tolyl)amino]3,3'-dimethylbiphenyl), TCTA(Tris(4-carbazoyl-9-ylphenyl)amine), P3HT(Poly(3-hexylthiophene-2,5-diyl)), 2TNATA(4,4',4′''-tris(N-(2-naphthyl)-N-phenyl-amino)-triphenylamine), m-MTDATA (4,4',4''-Tris[phenyl(m-tolyl)amino]triphenylamine), DNTPD(N,N' -bis-[4-(di-m-tolylamino)phenyl]-N,N'-diphenylbiphenyl-4,4' -diamine), NPD(N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine(α-NPD)), DPPD(N,N' -diphenyl-p-phenylenediamine), 4BTPD (2,2'-bis(4-ditolylaminophenyl)-1,1'-biphenyl), 3BTPD (2,2' -bis(3-ditolylaminophenyl)-1,1'-biphenyl) 및 DTASi (bis[4-(p,p'-ditolylamino)-phenyl]diphenylsilane)으로 이루어진 그룹으로부터 선택된 적어도 어느 하나를 포함할 수 있다.As the hole injection layer 222, a known material for the hole injection layer may be used. For example, the hole injection layer 222 may be PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate), NPB (N, N-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'diamine), TPD(N,N'-bis(3-methlyphenyl)-N,N'- diphenyl-[1,1'-biphenyl]-4,4'-diamine), TAPC(1,1-Bis[4-[N,N'-di(p-tolyl)amino]phenyl]cyclohexane), HMTPD ( (3-tolyl)amino]3,3'-dimethylbiphenyl), TCTA(Tris(4-carbazoyl-9-ylphenyl)amine), P3HT(Poly(3-hexylthiophene-2,5-diyl)), 2TNATA(4, 4',4'''-tris(N-(2-naphthyl)-N-phenyl-amino)-triphenylamine), m-MTDATA (4,4',4''-Tris[phenyl(m-tolyl)amino ]triphenylamine), DNTPD(N,N'-bis-[4-(di-m-tolylamino)phenyl]-N,N'-diphenylbiphenyl-4,4'-diamine), NPD(N,N'-bis( 1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine(α-NPD)), DPPD(N,N'-diphenyl-p-phenylenediamine), 4BTPD (2, 2'-bis(4-ditolylaminophenyl)-1,1'-biphenyl), 3BTPD (2,2'-bis(3-ditolylaminophenyl)-1,1'-biphenyl) and DTASi (bis[4-(p,p) It may include at least one selected from the group consisting of '-ditolylamino)-phenyl]diphenylsilane).
바람직하게는, 정공 주입층(222)은 스핀 코팅법을 이용하여 형성될 수 있으며, 코팅 조건은 정공 주입층(222)의 재료로서 사용하는 화합물, 목적하는 하는 정공 주입층(120)의 구조 및 열적 특성에 따라 상이하지만, 약 2,000rpm 내지 5,000rpm의 코팅 속도, 코팅 후 용매 제거를 위한 열처리 온도는 약 80℃ 내지 200℃의 온도 범위에서 적절히 선택될 수 있다.Preferably, the hole injection layer 222 may be formed using a spin coating method, and the coating conditions are a compound used as a material of the hole injection layer 222, a desired structure of the hole injection layer 120, and Although different depending on the thermal properties, the coating speed of about 2,000 rpm to 5,000 rpm, and the heat treatment temperature for removing the solvent after coating may be appropriately selected in a temperature range of about 80° C. to 200° C.
즉, 정공 주입층(222)은 용액 공정으로 형성됨으로써, 대면적 공정이 가능하고, 공정 시간을 단축시킬 수 있으며, 제1 전극(221) 및 제2 전극(227)의 반도체 특성에 대한 제한을 감소시킬 수 있다.That is, since the hole injection layer 222 is formed by a solution process, a large-area process is possible, the process time can be shortened, and restrictions on the semiconductor properties of the first electrode 221 and the second electrode 227 are reduced. can be reduced
정공 수송층(223)은 제1 전극으로부터 주입되는 정공을 발광층(224)으로 이동시키는 역할을 하며, VB-FNPD(9,9-Bis[4-[(4-ethenylphenyl)methoxy]phenyl]-N2, N7-di-1-naphthalenyl-N2,N7-diphenyl-9H-Fluorene-2,7-diamine), VNPB(N4,N4'-Di(naphthalen-1-yl)-N4,N4'-bis(4-vinylphenyl)biphenyl-4,4'-diamine), TFB(Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl) diphenylamine)]), PTAA(Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]), Poly-TPD(Poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)-benzidine]), Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(N,N'-diphenyl)-N,N'-di(p-butylphenyl)-1,4-diamino-benzene)] end capped with dimethylphenyl, Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(N,N' -bis{4-butylphenyl}-benzidine-N,N'-{1,4-diphenylene})], Poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-(N,N'bis{p-butylphenyl}-1,4-diaminophenylene)], Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(N,N'-bis{p-butylphenyl}-1,1'-biphenylene-4,4'-diamine)] 및 Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(pbutylphenyl)) diphenylamine)] 이루어진 그룹으로부터 선택된 적어도 어느 하나를 포함할 수 있다.The hole transport layer 223 serves to move the holes injected from the first electrode to the light emitting layer 224, and VB-FNPD(9,9-Bis[4-[(4-ethenylphenyl)methoxy]phenyl]-N2, N7-di-1-naphthalenyl-N2,N7-diphenyl-9H-Fluorene-2,7-diamine), VNPB(N4,N4'-Di(naphthalen-1-yl)-N4,N4'-bis(4- vinylphenyl)biphenyl-4,4'-diamine), TFB(Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl) diphenylamine) ]), PTAA(Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]), Poly-TPD(Poly[N,N'-bis(4-butylphenyl)-N,N'-bis (phenyl)-benzidine]), Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(N,N'-diphenyl)-N,N'-di(p-butylphenyl)-1,4 -diamino-benzene)] end capped with dimethylphenyl, Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(N,N' -bis{4-butylphenyl}-benzidine-N,N' -{1,4-diphenylene})], Poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-(N,N'bis{p-butylphenyl}-1,4-diaminophenylene)], Poly [(9,9-dioctylfluorenyl-2,7-diyl)-alt-(N,N'-bis{p-butylphenyl}-1,1'-biphenylene-4,4'-diamine)] and Poly[(9 ,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(pbutylphenyl)) diphenylamine)] It may contain one.
바람직하게는, 정공 수송층(223)은 N0-bis(naphthalen-1-yl)-N, N0-bis(phenyl)benzidine (NPB)을 포함할 수 있다.Preferably, the hole transport layer 223 may include N0-bis(naphthalen-1-yl)-N or N0-bis(phenyl)benzidine (NPB).
발광층(224)은 제1 전극(221)으로부터 주입되어 정공 수송층(223)을 경유한 정공과 제2 전극(227)으로부터 주입되어 전자 수송층(225)을 경유한 전자가 재결합하여 엑시톤을 생성하고, 생성된 엑시톤이 여기상태에서 기저상태로 변하면서 발광하는 층으로서, 단층 또는 복층으로 구성될 수 있다.In the light emitting layer 224, holes injected from the first electrode 221 and passed through the hole transport layer 223 and electrons injected from the second electrode 227 and passed through the electron transport layer 225 recombine to generate excitons, A layer that emits light while the generated excitons change from an excited state to a ground state, and may be composed of a single layer or a multilayer.
예를 들면, 발광층(224)은 호스트(host)에 발광 도펀트(dopant)를 더 부가하여 제조될 수 있으며, 형광 발광형 호스트의 재료로는 트리스(8-히드록시-퀴놀리나토)알루미늄 (Alq3), 9,10-디(나프티-2-일)안트라센 (AND), 3-Tert-부틸-9,10-디(나프티-2-일)안트라센 (TBADN), 4,4'-비스(2,2-디페닐-에텐-1-일)-4,4'-디메틸페닐 (DPVBi), 4,4'-비스Bis(2,2-디페닐-에텐-1-일)-4,4'-디메틸페닐 (p-DMDPVBi), Tert(9,9-디아릴플루오렌)s (TDAF), 2-(9,9'-스피로비플루오렌-2-일)-9,9'-스피로비플루오렌 (BSDF), 2,7-비스(9,9'-스피로비플루오렌-2-일)-9,9'-스피로비플루오렌(TSDF), 비스(9,9-디아릴플루오렌)s (BDAF) 및 4,4'-비스(2,2-디페닐-에텐-1-일)-4,4'-디-(tert-부틸)페닐 (p-TDPVBi) 중 적어도 어느 하나를 포함할 수 있고, 인광형 호스트의 재료로는 1,3-비스(카바졸-9-일)벤젠 (mCP), 1,3,5-트리스(카바졸-9-일)벤젠 (tCP), 4,4',4"-리스(카바졸-9-일)트리페닐아민 (TCTA), 4,4'-비스(카바졸-9-일)비페닐 (CBP), 4,4'-비스Bis(9-카바졸일)-2,2'-디메틸-비페닐 (CBDP), 4,4'-비스(카바졸-9-일)-9,9-디메틸-플루오렌 (DMFL-CBP), 4,4'-비스(카바졸-9-일)-9,9-비스bis(9-페닐-9H-카바졸)플루오렌 (FL-4CBP), 4,4'-비스(카바졸-9-일)-9,9-디-톨일-플루오렌 (DPFL-CBP) 및 9,9-비스(9-페닐-9H-카바졸)플루오렌 (FL-2CBP) 중 적어도 어느 하나를 포함할 수 있다.For example, the light emitting layer 224 may be manufactured by further adding a light emitting dopant to a host, and as a material of the fluorescent host, tris (8-hydroxy-quinolinato) aluminum (Alq3) ), 9,10-di (naphthi-2-yl) anthracene (AND), 3-Tert-butyl-9,10-di (naphthi-2-yl) anthracene (TBADN), 4,4'-bis (2 ,2-Diphenyl-ethen-1-yl)-4,4'-dimethylphenyl (DPVBi), 4,4'-bisBis(2,2-diphenyl-ethen-1-yl)-4,4' -Dimethylphenyl (p-DMDPVBi), Tert(9,9-diarylfluorene)s (TDAF), 2-(9,9'-spirobifluoren-2-yl)-9,9'-spirobi Fluorene (BSDF), 2,7-bis(9,9'-spirobifluoren-2-yl)-9,9'-spirobifluorene (TSDF), bis(9,9-diarylfluorene) )s (BDAF) and at least one of 4,4'-bis(2,2-diphenyl-ethen-1-yl)-4,4'-di-(tert-butyl)phenyl (p-TDPVBi) The phosphorescent host material may include 1,3-bis(carbazol-9-yl)benzene (mCP), 1,3,5-tris(carbazol-9-yl)benzene (tCP), 4,4',4"-lys(carbazol-9-yl)triphenylamine (TCTA), 4,4'-bis(carbazol-9-yl)biphenyl (CBP), 4,4'-bis Bis(9-carbazolyl)-2,2'-dimethyl-biphenyl (CBDP), 4,4'-bis(carbazol-9-yl)-9,9-dimethyl-fluorene (DMFL-CBP), 4,4'-bis(carbazol-9-yl)-9,9-bisbis(9-phenyl-9H-carbazole)fluorene (FL-4CBP), 4,4'-bis(carbazole-9 -yl)-9,9-di-tolyl-fluorene (DPFL-CBP) and 9,9-bis(9-phenyl-9H-carbazole) fluorene (FL-2CBP) may include at least one have.
바람직하게는, 발광층(224)은 호스트 재료로서 beryllium bisbenzo[h]quinolin-10-olate (Bebq2) 및 도펀트 재로로서 bis[2,4-dimethyl-6-(4-methyl-2-quinolinyl-κN)phenyl-κC] (2,2,6,6-tetramethyl-3,5-heptanedionato-κO3 (Ir(mphmq)2tmd)를 포함할 수 있다.Preferably, the light emitting layer 224 includes beryllium bisbenzo[h]quinolin-10-olate (Bebq2) as a host material and bis[2,4-dimethyl-6-(4-methyl-2-quinolinyl-κN) as a dopant material. phenyl-κC] (2,2,6,6-tetramethyl-3,5-heptanedionato-κO3 (Ir(mphmq)2tmd).
전자 수송층(225)은 제2 전극(160)으로부터 주입된 전자를 발광층(224)으로 이동시키는 역할을 할 수 있으며, 예를 들면, 전자 수송층(225)은 TPBi(2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)), Alq3(Tris(8-hydroxyquinoline) Aluminum), PCBM(Phenyl-C61-butyric acid methyl ester), TAZ(3-(4-biphenyl)-4-phenyl-5-(4-tertbutylphenyl)-1,2,4-triazole), BPhen(4,7-Diphenyl-1,10-phenanthroline), BAlq(Bis(8-hydroxy-2-methylquinoline)-(4-phenylphenoxy)aluminum), TSPO1 (diphenylphosphine oxide-4-(triphenylsilyl)phenyl), B4PyMPM [bis-4,6-(3,5-di-4-pyridylphenyl)-2-methylpyrimidine], TmPyPB (Two pyridine-containing triphenylbenzene derivatives of 1,3,5-tri(m-pyrid- 3-yl-phenyl)benzene), 3TPYMB (tris-[3-(3-pyridyl)mesityl] borane), TpPyPB (1,3,5-tri( p -pyrid-3-yl-phenyl)benzene), TPPB (1,3,5-tris[3,5-bis(3-pyridinyl)phenyl]benzene) 및 BCP(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) 중 적어도 하나를 포함할 수 있다.The electron transport layer 225 may serve to move electrons injected from the second electrode 160 to the light emitting layer 224 . For example, the electron transport layer 225 may include TPBi(2,2′,2″- (1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)), Alq3(Tris(8-hydroxyquinoline) Aluminum), PCBM(Phenyl-C61-butyric acid methyl ester), TAZ(3 -(4-biphenyl)-4-phenyl-5-(4-tertbutylphenyl)-1,2,4-triazole), BPhen(4,7-Diphenyl-1,10-phenanthroline), BAlq(Bis(8-hydroxy) -2-methylquinoline)-(4-phenylphenoxy)aluminum), TSPO1 (diphenylphosphine oxide-4-(triphenylsilyl)phenyl), B4PyMPM [bis-4,6-(3,5-di-4-pyridylphenyl)-2-methylpyrimidine ], TmPyPB (Two pyridine-containing triphenylbenzene derivatives of 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene), 3TPYMB (tris-[3-(3-pyridyl)mesityl] borane), TpPyPB (1,3,5-tri(p-pyrid-3-yl-phenyl)benzene), TPPB (1,3,5-tris[3,5-bis(3-pyridinyl)phenyl]benzene) and BCP(2 ,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) may be included.
바람직하게는, 전자 수송층(225)은 4,7-diphenyl-1,10-phenanthroline (BPhen)을 포함할 수 있다. Preferably, the electron transport layer 225 may include 4,7-diphenyl-1,10-phenanthroline (BPhen).
한편, 정공 수송층(223)은 발광층(224)과의 인접면에 형성되는 전자 누설 제어층을 더 포함하고, 전자 수송층(225)은 발광층(224)과의 인접면에 형성되는 정공 누설 제어층을 더 포함할 수 있으며, 여기서 전자 누설 제어층과 정공 누설 제어층은 HOMO 상태밀도(HOMO-Density of States) 및 LUMO 상태밀도(LUMO- Density of States)와 같은 소정 물성이 특정 범위로 제어되어 고효율, 저전압 및 장수명 특성을 갖는 유기 발광 구조체를 구현할 수 있다.Meanwhile, the hole transport layer 223 further includes an electron leakage control layer formed on a surface adjacent to the emission layer 224 , and the electron transport layer 225 includes a hole leakage control layer formed on a surface adjacent to the emission layer 224 . It may further include, wherein the electron leakage control layer and the hole leakage control layer is a high efficiency, high efficiency, It is possible to implement an organic light emitting structure having low voltage and long life characteristics.
구체적으로, 일실시예에 따른 유기 발광 구조체는 전자 누설 제어층과 정공 누설 제어층의 HOMO-LUMO 상태밀도와 발광층(224)에 함유된 호스트(host) 재료의 HOMO-LUMO 상태밀도 간의 겹침 여부(예, 중첩율)가 소정범위로 조절될 수 있다. Specifically, in the organic light emitting structure according to an embodiment, whether the HOMO-LUMO state density of the electron leakage control layer and the hole leakage control layer overlaps between the HOMO-LUMO state density of the host material contained in the light emitting layer 224 ( (eg, overlap ratio) can be adjusted within a predetermined range.
예를 들면, LUMO 상태밀도를 기준으로, 호스트의 LUMO 상태밀도와 정공 누설 제어층의 LUMO 상태밀도는 서로 중첩되고, 호스트의 LUMO 상태밀도와 전자-누설 제어층의 LUMO 상태밀도는 비중첩 되도록 조절될 수 있다. For example, based on the LUMO state density, the LUMO state density of the host and the LUMO state density of the hole leakage control layer overlap each other, and the LUMO state density of the host and the LUMO state density of the electron-leakage control layer are adjusted so that they do not overlap. can be
즉, 전자는 LUMO 에너지 준위를 따라 이동하게 되고, LUMO 상태밀도 관점에서 정공 누설 제어층과 호스트 간의 LUMO 상태밀도가 서로 중첩될 경우, 정공 누설 제어층으로부터 호스트로의 상태밀도(LUMO 상태밀도) 겹침을 통해 신속한 전자전달 효과를 나타내어 유기 전계 발광 소자의 효율 증대를 도모할수 있다. 또한 전자 누설 제어층과 호스트 간의 LUMO 상태밀도 겹침(중첩)이 없을 경우, 발광층(224)으로 이동한 전자가 전자 누설 제어층으로 확산되거나 이동하는 현상을 억제시켜 전자 블로킹(blocking) 효과를 나타낼 수 있으며, 이에 따라 전자가 발광층(224)을 넘어 정공 수송층(30)으로 이동할 경우 나타나는, 산화에 의한 비가역적 분해 반응과 이로 인한 유기 발광 소자의 수명저하를 막아 장수명 특성을 발휘할 수 있다.That is, electrons move along the LUMO energy level, and when the LUMO density of states between the hole leakage control layer and the host overlaps with each other in terms of LUMO density of states, the density of states from the hole leakage control layer to the host (LUMO density of states) overlap. Through this, it is possible to achieve a rapid electron transfer effect, thereby increasing the efficiency of the organic electroluminescent device. In addition, when there is no overlap (overlapping) of the LUMO density of states between the electron leakage control layer and the host, the electron blocking effect can be exhibited by suppressing the diffusion or movement of electrons moving to the light emitting layer 224 to the electron leakage control layer. Accordingly, it is possible to exhibit long life characteristics by preventing an irreversible decomposition reaction due to oxidation, which occurs when electrons move beyond the light emitting layer 224 to the hole transport layer 30, and a decrease in the lifespan of the organic light emitting device.
예를 들면, 전자 누설 제어층은 아릴렌기, 헤테로아릴렌기, 수소, 중수소, 할로겐기, 시아노기, 니트로기 및 아미노기로 구성된 군 중 적어도 하나를 포함하고, 정공 누설 제어층은 모이어티(일례로, EDG기, EWG기)를 포함할 수 있으나, 이에 한정되는 것은 아니다.For example, the electron leakage control layer includes at least one selected from the group consisting of an arylene group, a heteroarylene group, hydrogen, deuterium, a halogen group, a cyano group, a nitro group, and an amino group, and the hole leakage control layer includes a moiety (eg, , EDG group, EWG group), but is not limited thereto.
전자 주입층(226)은 제2 전극(227)으로부터 주입된 전자를 발광층(224)으로 주입시키는 역할을 할 수 있다.The electron injection layer 226 may serve to inject electrons injected from the second electrode 227 into the emission layer 224 .
예를 들면, 전자 주입층(226)은 알칼리 금속, 알칼리 토금속, 희토류 금속, 알칼리 금속 화합물, 알칼리 토금속 화합물, 희토류 금속 화합물, 알칼리 금속 착체, 알칼리 토금속 착체, 희토류 금속 착체 또는 이들 중 임의의 조합 중 적어도 어느 하나를 포함할 수 있고, 바람직하게는, 전자 주입층(226)은 lithium quinolate(Liq)를 포함할 수 있다. For example, the electron injection layer 226 may include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth metal compound, a rare earth metal compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof. At least one may be included, and preferably, the electron injection layer 226 may include lithium quinolate (Liq).
제2 전극(227)은 전원 전압에 공통 연결되어 전자 수송층으로 전자를 주입시키는 역할을 할 수 있다. The second electrode 227 may be commonly connected to a power voltage to inject electrons into the electron transport layer.
예를 들면, 제2 전극(227)은 금속 물질, 이온화된 금속 물질, 합금 물질, 소정의 액체 속에서 콜로이드(colloid) 상태인 금속 잉크 물질 및 투명 금속 산화물 중 적어도 어느 하나를 포함할 수 있다.For example, the second electrode 227 may include at least one of a metal material, an ionized metal material, an alloy material, a metal ink material in a colloidal state in a predetermined liquid, and a transparent metal oxide.
금속 물질의 구체적인 예로서는 리튬플로라이드/알루미늄(LiF/Al), 리튬(Li), 마그네슘(Mg), 알루미늄(Al), 알루미늄-리튬(Al-Li), 칼슘(Ca), 마그네슘-인듐(Mg-In), 마그네슘-은(Mg-Ag), 이터븀 (Yb), 플래티넘(Pt), 금(Au), 니켈(Ni), 구리(Cu), 바륨(Ba), 은(Ag), 은나노와이어 (AgNWs), 인듐(In), 루테늄(Ru), 납(Pd), 로듐(Rh), 이리듐(Ir), 오스뮴(Os), 칼슘 (Ca) 및 세슘(Cs) 중 적어도 어느 하나를 포함할 수 있다. 또한, 금속 물질로 탄소(C), 전도성 고분자 또는 이들의 조합이 사용될 수도 있다.Specific examples of the metal material include lithium fluoride/aluminum (LiF/Al), lithium (Li), magnesium (Mg), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), and magnesium-indium (Mg). -In), magnesium-silver (Mg-Ag), ytterbium (Yb), platinum (Pt), gold (Au), nickel (Ni), copper (Cu), barium (Ba), silver (Ag), silver nano At least one of wire (AgNWs), indium (In), ruthenium (Ru), lead (Pd), rhodium (Rh), iridium (Ir), osmium (Os), calcium (Ca), and cesium (Cs) is included. can do. In addition, carbon (C), a conductive polymer, or a combination thereof may be used as the metal material.
탄소(C) 물질로는 탄소나노튜브(CNT) 및 그래핀(graphene) 중 적어도 어느 하나를 포함할 수 있고, 전도성 고분자 물질로는 폴리에틸렌디옥시티오펜:폴리스티렌설포네이트(PEDOT:PSS)를 포함할 수 있다.The carbon (C) material may include at least one of carbon nanotubes (CNT) and graphene, and the conductive polymer material may include polyethylenedioxythiophene:polystyrenesulfonate (PEDOT:PSS). can
또한, 투명 금속 산화물은 ITO(Indium Tin Oxide), FTO(Fluorine-doped Tin Oxide), ATO(Antimony Tin Oxide) 및 AZO(Aluminum doped Zinc Oxide) 중 적어도 어느 하나를 포함할 수 있다.In addition, the transparent metal oxide may include at least one of indium tin oxide (ITO), fluorine-doped tin oxide (FTO), antimony tin oxide (ATO), and aluminum doped zinc oxide (AZO).
바람직하게는, 제2 전극(227)은 마그네슘-은(Mg-Ag)으로 형성될 수 있다. Preferably, the second electrode 227 may be formed of magnesium-silver (Mg-Ag).
캡핑층(228)은 Alq3(Tris(8-hydroxyquinolinato)aluminium), NPB 및 삼산화몰리브덴(MoO3) 중 적어도 하나를 포함할 수 있다. 바람직하게는, 캡핑층(228)은 삼산화몰리브덴(MoO3) 기반의 무기 캡핑층으로 형성될 수 있다.The capping layer 228 may include at least one of Alq3 (Tris(8-hydroxyquinolinato)aluminium), NPB, and molybdenum trioxide (MoO 3 ). Preferably, the capping layer 228 may be formed of an inorganic capping layer based on molybdenum trioxide (MoO 3 ).
일측에 따르면, 유기 발광 구조체(221 내지 228)는 전하 생성층을 더 포함할 수 있으며, 바람직하게는, 전하 생성층은 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile(HAT-CN)를 포함할 수 있다.According to one side, the organic light emitting structures 221 to 228 may further include a charge generation layer, preferably, the charge generation layer is 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN) may include
도 3a 내지 도 3c는 일실시예에 따른 유기 발광 소자의 소자 특성을 설명하기 위한 도면이다.3A to 3C are diagrams for explaining device characteristics of an organic light emitting device according to an exemplary embodiment.
도 3a 내지 도 3c를 참조하면, 참조부호 310은 기존 유기 발광 소자(Reference)와 일실시예에 따른 유기 발광 소자(Device A, B, C)의 전압 - 전류 밀도(voltage - current density) 특성을 도시하고, 참조부호 320은 기존 유기 발광 소자(Reference)와 일실시예에 따른 유기 발광 소자(Device A, B, C)의 휘도 - 전류 밀도(luminance - current density) 특성을 도시하며, 참조부호 330은 기존 유기 발광 소자(Reference)와 일실시예에 따른 유기 발광 소자(Device A, B, C)의 휘도 - 외부 양자 효율(luminance - EQE) 특성을 도시한다. 3A to 3C , reference numeral 310 denotes voltage-current density characteristics of an existing organic light-emitting device (Reference) and an organic light-emitting device (Devices A, B, and C) according to an embodiment. In the figure, reference numeral 320 denotes luminance-current density characteristics of an existing organic light emitting device (Reference) and an organic light emitting device (Device A, B, C) according to an embodiment, and reference numeral 330 . shows the luminance-external quantum efficiency (luminance-EQE) characteristics of the conventional organic light-emitting device (Reference) and the organic light-emitting devices (Devices A, B, and C) according to an embodiment.
구체적으로, 기존 유기 발광 소자(Reference)는 일반적인 증착 방식으로 제작된 전면 공진 소자를 의미하고, 일실시예에 따른 유기 발광 소자(Device A, B, C)는 무기물층의 두께를 서로 다르게 하여 서로 다른 형상의 나노-섬 구조체가 형성된 일실시예에 따른 유기 발광 소자를 의미한다. Specifically, the conventional organic light-emitting device (Reference) refers to a front resonance device manufactured by a general deposition method, and the organic light-emitting devices (Devices A, B, and C) according to an embodiment have different thicknesses of the inorganic material layers to each other. It refers to an organic light emitting device according to an embodiment in which nano-island structures of different shapes are formed.
여기서, Device A는 25nm 내지 75nm 두께로 형성된 무기물층을 통해 나노-섬 구조체가 형성된 유기 발광 소자를 의미하고, Device B는 75nm 내지 125nm 두께로 형성된 무기물층을 통해 나노-섬 구조체가 형성된 유기 발광 소자를 의미하며, Device C는 125nm 내지 175nm 두께로 형성된 무기물층을 통해 나노-섬 구조체가 형성된 유기 발광 소자를 의미한다. Here, Device A refers to an organic light-emitting device in which a nano-island structure is formed through an inorganic material layer formed to a thickness of 25 nm to 75 nm, and Device B is an organic light-emitting device in which a nano-island structure is formed through an inorganic material layer formed to a thickness of 75 nm to 125 nm. means, and Device C refers to an organic light emitting device in which a nano-island structure is formed through an inorganic material layer formed to a thickness of 125 nm to 175 nm.
참조부호 310 내지 330에 따르면, 기존 유기 발광 소자(Reference)와 일실시예에 따른 유기 발광 소자(Device A, B, C)의 소자 특성은 하기 표1과 같이 정리될 수 있다.Referring to reference numerals 310 to 330, device characteristics of the conventional organic light emitting device (Reference) and the organic light emitting devices (Devices A, B, and C) according to an embodiment may be summarized as shown in Table 1 below.
ItemItem ReferenceReference Device ADevice A Device BDevice B Device CDevice C
구동 전압(Oprating voltage)(V)Operating voltage (V) 1000 cd/m2 1000 cd/m 2 4.44.4 4.64.6 4.74.7 5.35.3
전류 효율(Current efficiency)(cd/A)Current efficiency (cd/A) MaxMax 58.6(1.00)58.6 (1.00) 26.0(0.44)26.0 (0.44) 18.2(0.31)18.2 (0.31) 17.0(0.29)17.0 (0.29)
1000 cd/m2 1000 cd/m 2 55.9(1.00)55.9 (1.00) 25.9(0.46)25.9 (0.46) 18.2(0.32)18.2 (0.32) 16.5(0.30)16.5 (0.30)
전력 효율(Power efficiency)(lm/W)Power efficiency (lm/W) MaxMax 47.5(1.00)47.5 (1.00) 20.0(0.42)20.0 (0.42) 14.7(0.31)14.7 (0.31) 14.4(0.30)14.4 (0.30)
1000 cd/m2 1000 cd/m 2 29.3(1.00)29.3 (1.00) 16.7(0.57)16.7 (0.57) 11.1(0.38)11.1 (0.38) 9.0(0.31)9.0 (0.31)
외부 양자 효율(EQE)(%)External Quantum Efficiency (EQE) (%) MaxMax 19.2(1.00)19.2 (1.00) 13.0(0.68)13.0 (0.68) 9.6(0.50)9.6 (0.50) 9.0(0.47)9.0 (0.47)
1000 cd/m2 1000 cd/m 2 18.2(1.00)18.2 (1.00) 13.0(0.72)13.0 (0.72) 9.6(0.53)9.6 (0.53) 8.6(0.47)8.6 (0.47)
도 4a 내지 도 4g는 일실시예에 따른 유기 발광 소자의 광학 특성을 설명하기 위한 도면이다.4A to 4G are diagrams for explaining optical characteristics of an organic light emitting diode according to an exemplary embodiment.
도 4a 내지 도 4g를 참조하면, 참조부호 410은 기존 유기 발광 소자(Reference)와 일실시예에 따른 유기 발광 소자(Device A, B, C)의 파장 - 강도 특성(wavelength - intensity)(즉, 각 EL(angular EL) 스펙트럼 변화) 특성을 도시하고, 참조부호 420은 기존 유기 발광 소자(Reference)와 일실시예에 따른 유기 발광 소자(Device A, B, C)의 시야각 - 컬러 시프트(viewing angle - color shift) 특성을 도시하며, 참조부호 430은 기존 유기 발광 소자(Reference)와 일실시예에 따른 유기 발광 소자(Device A, B, C)의 각도 루미네선스 분포(angular luminance distribution) 특성을 도시한다. 4A to 4G , reference numeral 410 denotes the wavelength-intensity characteristics (ie, the wavelength-intensity) of the conventional organic light-emitting device (Reference) and the organic light-emitting devices (Devices A, B, and C) according to an embodiment. Each EL (angular EL) spectrum change) characteristic is shown, and reference numeral 420 denotes a viewing angle of an existing organic light emitting device (Reference) and an organic light emitting device (Device A, B, C) according to an embodiment - color shift (viewing angle) - color shift) characteristics, and reference numeral 430 denotes angular luminance distribution characteristics of the conventional organic light emitting device (Reference) and the organic light emitting device (Device A, B, C) according to an embodiment. show
또한, 참조부호 440 내지 470 각각은 기존 유기 발광 소자(Reference)와 일실시예에 따른 유기 발광 소자(Device A, B, C)의 0° 내지 60° 범위의 각도에 따른 파장 - 강도 특성(wavelength - intensity)을 도시한다.In addition, each of reference numerals 440 to 470 denotes a wavelength-intensity characteristic according to an angle ranging from 0° to 60° between the conventional organic light-emitting device (Reference) and the organic light-emitting device (Device A, B, and C) according to an embodiment. - intensity) is shown.
참조부호 410 내지 470에 따르면, 기존 유기 발광 소자(Reference)와 일실시예에 따른 유기 발광 소자(Device A, B, C)의 광학 특성은 하기 표2와 같이 정리될 수 있다.Referring to reference numerals 410 to 470, optical characteristics of the conventional organic light emitting device (Reference) and the organic light emitting devices (Devices A, B, and C) according to an embodiment may be summarized as shown in Table 2 below.
ItemItem ReferenceReference Device ADevice A Device BDevice B Device CDevice C
(x, y)a (x, y) a 1000 cd/m2 1000 cd/m 2 (0.642, 0.358)(0.642, 0.358) (0.639, 0.360)(0.639, 0.360) (0.637, 0.362)(0.637, 0.362) (0.633, 0.366)(0.633, 0.366)
반치폭(FWHM)(nm)Full width at half maximum (FWHM) (nm) 1000 cd/m2 1000 cd/m 2 34.334.3 39.639.6 42.542.5 44.444.4
피크 파장(Peak wavelength)(nm)Peak wavelength (nm) 1000 cd/m2 1000 cd/m 2 606606 605605 605605 604604
컬러 시프트(Color shiftb,c)Color shift b,c 1000 cd/m2 1000 cd/m 2 0.0590.059 0.0180.018 0.0130.013 0.0050.005
a: CIE 1931 color coordinates
b: measured from 0°to 60°
c: CIE 1976 chromaticity
a: CIE 1931 color coordinates
b: measured from 0° to 60°
c: CIE 1976 chromaticity
즉, 일실시예에 따른 유기 발광 소자(Device A, B, C)는 나노-섬 구조체를 적용함으로써, 소자 내 난반사로 인하여 전방위로 빛이 반사되어 시야각에 따른 색 변이 및 광분포를 개선할 수 있음을 확인할 수 있다.That is, the organic light emitting devices (Devices A, B, and C) according to the exemplary embodiment apply a nano-island structure, so that light is reflected in all directions due to diffuse reflection in the device, thereby improving color shift and light distribution according to the viewing angle. It can be confirmed that there is
또한, 일실시예에 따른 유기 발광 소자(Device A, B, C)는 나노-섬 구조체를 적용함으로써, 기존 유기 발광 소자(Reference) 대비 반치폭(FWHM)이 증가하는 것을 확인할 수 있으며, 이는 나노 구조 적용에 따라 미소 공진 효과가 감소한 결과로 나타났다. In addition, it can be seen that the organic light emitting devices (Devices A, B, and C) according to the exemplary embodiment have an increased width at half maximum (FWHM) compared to the conventional organic light emitting device (Reference) by applying the nano-island structure, which is a nanostructure. It was found that the microresonance effect was reduced according to the application.
한편, 일실시예에 따른 유기 발광 소자는 배면 공진 소자로 구현된 경우에도, 참조부호 410 내지 470의 전면 공진 소자 대비 효율 감소가 거의 없는 것으로 나타났다. 즉, 일실시예에 따른 유기 발광 소자는 전면 발광 소자 및 배면 발광 소자 모두에서 효율적으로 시야각을 개선할 수 있다.On the other hand, even when the organic light emitting diode according to an embodiment is implemented as a rear resonance element, it was found that there is almost no reduction in efficiency compared to the front resonance element denoted by reference numerals 410 to 470. That is, the organic light emitting diode according to the exemplary embodiment can effectively improve the viewing angle in both the top light emitting device and the bottom light emitting device.
도 5a 내지 도 5d는 일실시예에 따른 유기 발광 소자의 무기물층 두께 변화에 따른 특성을 설명하기 위한 도면이다.5A to 5D are diagrams for explaining characteristics according to a change in the thickness of an inorganic material layer of an organic light emitting diode according to an exemplary embodiment.
도 5a 내지 도 5d를 참조하면, 참조부호 510은 50nm 두께로 형성된 무기물층을 통해 형성된 일실시예에 따른 유기 발광 소자의 나노-섬 구조체를 도시하고, 참조부호 520은 100nm 두께로 형성된 무기물층을 통해 형성된 일실시예에 따른 유기 발광 소자의 나노-섬 구조체를 도시한다.5A to 5D, reference numeral 510 denotes a nano-island structure of an organic light emitting device according to an embodiment formed through an inorganic material layer formed to a thickness of 50 nm, and reference numeral 520 denotes an inorganic material layer formed to a thickness of 100 nm. It shows the nano-island structure of the organic light emitting device according to an embodiment formed through.
또한, 참조부호 530은 150nm 두께로 형성된 무기물층을 통해 형성된 일실시예에 따른 유기 발광 소자의 나노-섬 구조체를 도시하고, 참조부호 540은 200nm 두께로 형성된 무기물층을 통해 형성된 일실시예에 따른 유기 발광 소자의 나노-섬 구조체를 도시한다.In addition, reference numeral 530 denotes a nano-island structure of an organic light emitting device according to an embodiment formed through an inorganic material layer formed to a thickness of 150 nm, and reference numeral 540 denotes an inorganic material layer formed to a thickness of 200 nm according to an embodiment. A nano-island structure of an organic light emitting device is shown.
한편, 참조부호 510 내지 540에 도시된 나노-섬 구조체는 5℃ 내지 40℃의 온도 및 30% 내지 100%의 습도 조건의 환경에 서로 다른 두께로 형성된 무기물층이 20분(min)간 노출되어 형성될 수 있다. On the other hand, the nano-island structure shown in reference numerals 510 to 540 is exposed to an environment of a temperature of 5 ° C. to 40 ° C. and a humidity of 30% to 100% of the inorganic material layers formed with different thicknesses for 20 minutes (min). can be formed.
참조부호 510 내지 540에 따르면, 일실시예에 따른 유기 발광 소자는 무기물층의 두께에 따라, 구형, 타원형 및 부정형과 같이 다양한 형상과, 크기를 갖는 나노-섬 구조체가 형성되는 것을 확인할 수 있다.According to reference numerals 510 to 540, in the organic light emitting device according to an embodiment, it can be confirmed that nano-island structures having various shapes and sizes, such as spherical, oval, and irregular shapes, are formed according to the thickness of the inorganic layer.
도 6은 일실시예에 따른 유기 발광 소자의 제조방법을 설명하기 위한 도면이다.6 is a view for explaining a method of manufacturing an organic light emitting device according to an exemplary embodiment.
다시 말해, 도 6은 도 1 내지 도 5d를 통해 설명한 일실시예에 따른 유기 발광 소자의 제조예를 설명하기 위한 도면으로, 이하에서 도 6을 통해 설명하는 내용 중 도 1 내지 도 5d를 통해 설명한 내용과 중복되는 설명은 생략하기로 한다.In other words, FIG. 6 is a view for explaining an example of manufacturing an organic light emitting device according to an exemplary embodiment described with reference to FIGS. 1 to 5D . Among the contents described with reference to FIG. 6 below, FIG. 1 to FIG. 5D . A description that overlaps with the content will be omitted.
도 6을 참조하면, 610 단계에서 일실시예에 따른 유기 발광 소자의 제조방법은 기판 상에 적어도 하나 이상의 나노-섬 구조체(nano-island structures)를 형성할 수 있다. Referring to FIG. 6 , in step 610 , in the method of manufacturing an organic light emitting device according to an exemplary embodiment, at least one nano-island structure may be formed on a substrate.
구체적으로, 610 단계에서 일실시예에 따른 유기 발광 소자의 제조방법은 기판 상에 형성된 무기물층이 기설정된 온도 및 습도 조건의 환경에 노출되어 나노-섬 구조체가 형성될 수 있다. Specifically, in the method of manufacturing an organic light emitting device according to an embodiment in step 610, the inorganic material layer formed on the substrate is exposed to an environment of preset temperature and humidity conditions to form a nano-island structure.
일실시예에 따른 나노-섬 구조체의 제조방법은 이후 실시예 도 7a 내지 7b를 통해 보다 구체적으로 설명하기로 한다.A method of manufacturing a nano-island structure according to an embodiment will be described in more detail later with reference to FIGS. 7A to 7B.
다음으로, 620 단계에서 일실시예에 따른 유기 발광 소자의 제조방법은 나노-섬 구조체가 형성된 기판 상에 유기 발광 구조체를 형성할 수 있다. Next, in step 620 , in the method of manufacturing an organic light emitting device according to an embodiment, an organic light emitting structure may be formed on the substrate on which the nano-island structure is formed.
일측에 따르면, 620 단계에서 일실시예에 따른 유기 발광 소자의 제조방법은 제1 전극, 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층, 제2 전극 및 캡핑층을 순차적으로 적층하여 유기 발광 구조체를 형성할 수 있다.According to one side, in step 620, the method of manufacturing an organic light emitting device according to an embodiment includes sequentially stacking a first electrode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, a second electrode, and a capping layer. An organic light emitting structure may be formed.
도 7a 내지 도 7b는 일실시예에 따른 나노-섬 구조체의 제조방법을 설명하기 위한 도면이다.7A to 7B are diagrams for explaining a method of manufacturing a nano-island structure according to an embodiment.
다시 말해, 이하에서 도 7a 내지 도 7b를 통해 설명하는 내용은 도 6의 610 단계에서 수행될 수 있다.In other words, the contents described below with reference to FIGS. 7A to 7B may be performed in operation 610 of FIG. 6 .
도 7a 내지 도 7b를 참조하면, 710 단계에서 일실시예에 따른 나노-섬 구조체의 제조방법은 기판(711) 상에 무기물층(712)을 형성할 수 있다. 7A to 7B , in step 710 , the method of manufacturing the nano-island structure according to the embodiment may form an inorganic material layer 712 on a substrate 711 .
예를 들면, 무기물층(712)은 염화 세슘(CsCl), 플루오린화 세슘(CsF), 아이오딘화 세슘(CsI), 브롬화 세슘(CsBr), 염화 칼슘(CaCl2) 및 염화 란탄(LaCl3) 중 적어도 하나를 포함할 수 있다. 바람직하게는 무기물층(712)은 염화 세슘층일 수 있다. For example, the inorganic layer 712 may include cesium chloride (CsCl), cesium fluoride (CsF), cesium iodide (CsI), cesium bromide (CsBr), calcium chloride (CaCl 2 ), and lanthanum chloride (LaCl 3 ). may include at least one of Preferably, the inorganic layer 712 may be a cesium chloride layer.
일측에 따르면, 무기물층(712)은 기판(711)에 형성된 무기물층(712)의 두께에 따라 이하에서 설명하는 나노-섬 구조체의 피치(pitch) 및 깊이(depth)가 조절될 수 있다. According to one side, in the inorganic layer 712 , the pitch and depth of the nano-island structure described below may be adjusted according to the thickness of the inorganic layer 712 formed on the substrate 711 .
예를 들면, 710 단계에서 일실시예에 따른 나노-섬 구조체의 제조방법은 25nm 내지 200nm의 두께로 기판(711) 상에 무기물층(712)을 형성할 수 있다. For example, in step 710 , the method of manufacturing the nano-island structure according to the embodiment may form the inorganic material layer 712 on the substrate 711 to a thickness of 25 nm to 200 nm.
다음으로, 720 단계에서 일실시예에 따른 나노-섬 구조체의 제조방법은 무기물층(712)이 형성된 기판(711)을 기설정된 온도 및 습도 조건의 환경에 노출하여 나노-섬 구조체(NI)를 형성할 수 있다. Next, in step 720, the nano-island structure manufacturing method according to an embodiment exposes the substrate 711 on which the inorganic material layer 712 is formed to an environment of preset temperature and humidity conditions to form the nano-island structure (NI). can be formed
다시 말해, 720 단계에서 일실시예에 따른 나노-섬 구조체의 제조방법은 소정의 두께로 형성된 무기물층(712)이 기설정된 온도 및 습도 조건의 환경에 노출되어, 나노-섬 구조체(NI)가 형성될 수 있다.In other words, in step 720, in the method of manufacturing the nano-island structure according to the embodiment, the inorganic material layer 712 formed to a predetermined thickness is exposed to an environment of preset temperature and humidity conditions, so that the nano-island structure NI is formed. can be formed.
예를 들면, 720 단계에서 일실시예에 따른 나노-섬 구조체의 제조방법은 형성된 무기물층(720)이 5℃ 내지 40℃의 온도 및 30% 내지 100%의 습도 조건의 환경에 노출되어 나노-섬 구조체(NI)가 형성될 수 있다.For example, in step 720, the method for manufacturing a nano-island structure according to an embodiment is that the formed inorganic material layer 720 is exposed to an environment of a temperature of 5° C. to 40° C. and a humidity of 30% to 100%, so that the nano- An island structure NI may be formed.
결국, 본 발명을 이용하면, 나노-섬 구조체를 유기 발광 소자의 전방위 산란체로 활용하여 시야각 특성을 개선할 수 있다. As a result, by using the present invention, the viewing angle characteristic can be improved by using the nano-island structure as an omnidirectional scatterer of the organic light emitting device.
또한, 본 발명을 이용하면, 나노-섬 구조체로 인해 유기 발광 소자 내에서 전방위로 빛이 반사되어 색 변이 및 광분포 특성을 개선할 수 있다.In addition, when the present invention is used, light is reflected in all directions in the organic light emitting device due to the nano-island structure, thereby improving color shift and light distribution characteristics.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들면, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 장치, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.As described above, although the embodiments have been described with reference to the limited drawings, various modifications and variations are possible by those skilled in the art from the above description. For example, the described techniques are performed in an order different from the described method, and/or the described components, such as devices, structures, devices, circuits, etc., are combined or combined in a different form than the described method, or other components Or substituted or substituted by equivalents may achieve an appropriate result.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.Therefore, other implementations, other embodiments, and equivalents to the claims are also within the scope of the following claims.

Claims (10)

  1. 적어도 하나 이상의 나노-섬 구조체(nano-island structures)가 형성된 기판 및 a substrate having at least one nano-island structure formed thereon; and
    상기 기판 상에 형성된 유기 발광 구조체The organic light emitting structure formed on the substrate
    를 포함하고, including,
    상기 기판은, The substrate is
    무기물층이 형성되고, 상기 형성된 무기물층이 기설정된 온도 및 습도 조건의 환경에 노출되어 상기 나노-섬 구조체가 형성되는An inorganic material layer is formed, and the formed inorganic material layer is exposed to an environment of preset temperature and humidity conditions to form the nano-island structure
    유기 발광 소자.organic light emitting device.
  2. 제1항에 있어서, According to claim 1,
    상기 무기물층은, The inorganic material layer,
    염화 세슘(CsCl), 플루오린화 세슘(CsF), 아이오딘화 세슘(CsI), 브롬화 세슘(CsBr), 염화 칼슘(CaCl2) 및 염화 란탄(LaCl3) 중 적어도 하나를 포함하는containing at least one of cesium chloride (CsCl), cesium fluoride (CsF), cesium iodide (CsI), cesium bromide (CsBr), calcium chloride (CaCl 2 ) and lanthanum chloride (LaCl 3 )
    유기 발광 소자.organic light emitting device.
  3. 제1항에 있어서, According to claim 1,
    상기 나노-섬 구조체는, The nano-island structure,
    상기 형성된 무기물층의 두께에 따라 피치(pitch) 및 깊이(depth)가 조절되는The pitch and depth are adjusted according to the thickness of the formed inorganic material layer.
    유기 발광 소자.organic light emitting device.
  4. 제3항에 있어서, 4. The method of claim 3,
    상기 무기물층은, The inorganic material layer,
    25nm 내지 200nm의 두께로 상기 기판 상에 형성되는formed on the substrate with a thickness of 25 nm to 200 nm
    유기 발광 소자.organic light emitting device.
  5. 제1항에 있어서, According to claim 1,
    상기 기판은, The substrate is
    상기 형성된 무기물층이 5℃ 내지 40℃의 온도 및 30% 내지 100%의 습도 조건의 환경에 노출되어 상기 나노-섬 구조체가 형성되는 The formed inorganic material layer is exposed to an environment of a temperature of 5 ° C. to 40 ° C. and a humidity condition of 30% to 100% to form the nano-island structure.
    유기 발광 소자.organic light emitting device.
  6. 제1항에 있어서, According to claim 1,
    상기 유기 발광 구조체는,The organic light emitting structure,
    제1 전극, 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층, 제2 전극 및 캡핑층이 적층되어 형성되는The first electrode, the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, the electron injection layer, the second electrode and the capping layer are formed by stacking
    유기 발광 소자.organic light emitting device.
  7. 기판 상에 적어도 하나 이상의 나노-섬 구조체(nano-island structures)를 형성하는 단계 및 forming at least one or more nano-island structures on a substrate; and
    상기 나노-섬 구조체가 형성된 기판 상에 유기 발광 구조체를 형성하는 단계Forming an organic light emitting structure on the substrate on which the nano-island structure is formed
    를 포함하고, including,
    상기 나노-섬 구조체를 형성하는 단계는, Forming the nano-island structure comprises:
    상기 기판 상에 형성된 무기물층이 기설정된 온도 및 습도 조건의 환경에 노출되어 상기 나노-섬 구조체가 형성되는 The inorganic material layer formed on the substrate is exposed to an environment of preset temperature and humidity conditions to form the nano-island structure
    유기 발광 소자의 제조방법.A method of manufacturing an organic light emitting device.
  8. 제7항에 있어서, 8. The method of claim 7,
    상기 무기물층은, The inorganic material layer,
    염화 세슘(CsCl), 플루오린화 세슘(CsF), 아이오딘화 세슘(CsI), 브롬화 세슘(CsBr), 염화 칼슘(CaCl2) 및 염화 란탄(LaCl3) 중 적어도 하나를 포함하는containing at least one of cesium chloride (CsCl), cesium fluoride (CsF), cesium iodide (CsI), cesium bromide (CsBr), calcium chloride (CaCl 2 ) and lanthanum chloride (LaCl 3 )
    유기 발광 소자의 제조방법.A method of manufacturing an organic light emitting device.
  9. 제7항에 있어서, 8. The method of claim 7,
    상기 나노-섬 구조체를 형성하는 단계는, Forming the nano-island structure comprises:
    25nm 내지 200nm의 두께로 상기 기판 상에 상기 무기물층을 형성하는 forming the inorganic material layer on the substrate to a thickness of 25 nm to 200 nm
    유기 발광 소자의 제조방법.A method for manufacturing an organic light emitting device.
  10. 제7항에 있어서, 8. The method of claim 7,
    상기 나노-섬 구조체를 형성하는 단계는, Forming the nano-island structure comprises:
    상기 형성된 무기물층이 5℃ 내지 40℃의 온도 및 30% 내지 100%의 습도 조건의 환경에 노출되어 상기 나노-섬 구조체가 형성되는The formed inorganic material layer is exposed to an environment of a temperature of 5 ° C. to 40 ° C. and a humidity condition of 30% to 100% to form the nano-island structure.
    유기 발광 소자의 제조방법.A method for manufacturing an organic light emitting device.
PCT/KR2021/009101 2020-07-15 2021-07-15 Organic light-emitting device including nano-island structures for obtaining color stability and method for manufacturing same WO2022015074A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200087691 2020-07-15
KR10-2020-0087691 2020-07-15
KR10-2021-0092588 2021-07-15
KR1020210092588A KR102623188B1 (en) 2020-07-15 2021-07-15 Organic light emitting device including nano-island structures for improve color stability and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2022015074A1 true WO2022015074A1 (en) 2022-01-20

Family

ID=79555691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009101 WO2022015074A1 (en) 2020-07-15 2021-07-15 Organic light-emitting device including nano-island structures for obtaining color stability and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2022015074A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062857A2 (en) * 2009-11-20 2011-05-26 Universal Display Corporation Oleds with low-index islands to enhance outcoupling of light
KR20130108207A (en) * 2012-03-23 2013-10-02 주식회사 엘지화학 Organic light emitting device
US20140027727A1 (en) * 2012-07-30 2014-01-30 Electronics And Telecommunications Research Institute Organic light emitting devices and methods of fabricating the same
KR20150018246A (en) * 2013-08-09 2015-02-23 한국전자통신연구원 An organic emitting diode and method of fabricating the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062857A2 (en) * 2009-11-20 2011-05-26 Universal Display Corporation Oleds with low-index islands to enhance outcoupling of light
KR20130108207A (en) * 2012-03-23 2013-10-02 주식회사 엘지화학 Organic light emitting device
US20140027727A1 (en) * 2012-07-30 2014-01-30 Electronics And Telecommunications Research Institute Organic light emitting devices and methods of fabricating the same
KR20150018246A (en) * 2013-08-09 2015-02-23 한국전자통신연구원 An organic emitting diode and method of fabricating the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIM NAM SU, JAE HO SONG, DAE YOUNG KIM, AND MIN CHUL SUH: "Suppression of viewing angle dependence of top emitting OLEDs by applying nanostructured reflective anode", SID SYMPOSIUM DIGEST OF TECHNICAL PAPERS, vol. 51, no. 1, 25 September 2020 (2020-09-25), XP055889608, ISSN: 0097-996X *
TO BAO DONG; YU CHIA-CHEN; HO JENG-RONG; KAN HUNG-CHIH; HSU CHIA CHEN: "Enhancing light extraction efficiency of organic light-emitting diodes by embedding tungsten trioxide islands or network structure pattern-transferred from a self-assembled deliquesce cesium chloride mask", ORGANIC ELECTRONICS, ELSEVIER, AMSTERDAM, NL, vol. 53, 1 January 1900 (1900-01-01), AMSTERDAM, NL, pages 160 - 164, XP085319685, ISSN: 1566-1199, DOI: 10.1016/j.orgel.2017.11.028 *
WEI TONGBO, KONG QINGFENG, WANG JUNXI, LI JING: "Improving light extraction of InGaN-based light emitting diodes with a roughened p-GaN surface using CsCl nano-islands ", OPTICS EXPRESS, OSA PUBLISHING, US, vol. 93, no. 18, 10 January 2011 (2011-01-10), US , XP055889599, ISSN: 1094-4087 *

Similar Documents

Publication Publication Date Title
EP3499598B1 (en) Organic light-emitting diode and preparation method thereof, and display device
JP4903234B2 (en) Organic light emitting device
WO2016133252A1 (en) Organic light-emitting element comprising host, phosphorescent dopant, and fluorescent dopant
KR100922760B1 (en) Organic light emitting device
KR100918401B1 (en) Organic light emitting device
KR100922755B1 (en) Organic light emitting device
CN106560935B (en) Organic electroluminescent device
WO2010056070A2 (en) Low voltage-driven organic electroluminescence device, and manufacturing method thereof
KR101973287B1 (en) An organic light emitting device comprising a hole transffer layer comprising an complex and method for preparing the same
TW201448309A (en) Organic light-emitting device and flat panel display device comprising the same
KR20070008973A (en) Organic light emitting display
KR20200016538A (en) Organic light emitting diode and organic light emitting device having the diode
WO2015041461A1 (en) Organic light-emitting element
EP2525424A1 (en) Organic light emitting diode device
KR20180047601A (en) Organic Light Emitting Device and Organic Light Emitting Display Device
WO2022015074A1 (en) Organic light-emitting device including nano-island structures for obtaining color stability and method for manufacturing same
KR102536929B1 (en) Organic light emitting diode
KR102623188B1 (en) Organic light emitting device including nano-island structures for improve color stability and manufacturing method thereof
CN114628466A (en) Display device
KR102529195B1 (en) Organic light emitting device including nano-island structures based on dewetting and manufacturing method thereof
KR102325066B1 (en) Organic light emitting device including nano-structures and manufacturing method thereof
US11974449B2 (en) Tandem organic light emitting element and display device including the same
TWI844194B (en) Organic light emitting display device
KR20190070058A (en) Light emitting diode and light emitting device having the diode
US20220045296A1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842316

Country of ref document: EP

Kind code of ref document: A1