WO2022014990A1 - Bladder monitoring device and urine discharge system using same - Google Patents

Bladder monitoring device and urine discharge system using same Download PDF

Info

Publication number
WO2022014990A1
WO2022014990A1 PCT/KR2021/008897 KR2021008897W WO2022014990A1 WO 2022014990 A1 WO2022014990 A1 WO 2022014990A1 KR 2021008897 W KR2021008897 W KR 2021008897W WO 2022014990 A1 WO2022014990 A1 WO 2022014990A1
Authority
WO
WIPO (PCT)
Prior art keywords
bladder
urine
monitoring device
light
calculating
Prior art date
Application number
PCT/KR2021/008897
Other languages
French (fr)
Korean (ko)
Inventor
김세환
Original Assignee
단국대학교 천안캠퍼스 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200086812A external-priority patent/KR102185227B1/en
Priority claimed from KR1020200118414A external-priority patent/KR102475827B1/en
Application filed by 단국대학교 천안캠퍼스 산학협력단 filed Critical 단국대학교 천안캠퍼스 산학협력단
Publication of WO2022014990A1 publication Critical patent/WO2022014990A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/20Measuring for diagnostic purposes; Identification of persons for measuring urological functions restricted to the evaluation of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes

Definitions

  • the present invention relates to a bladder monitoring device for monitoring the condition of the bladder and measuring the amount of urine in the bladder, and a urine discharge system using the same for measuring the amount of urine in the bladder.
  • An object of the present invention is to provide a bladder monitoring device that measures the amount of urine in the bladder so that a patient who does not feel the need to urinate monitors the amount of urine stored in his/her bladder, and monitors the condition of the bladder by measuring the blood flow in the bladder.
  • Another object of the present invention is to provide a urine drainage system that allows the patient to discharge the urine filled in the bladder of the patient at an appropriate time by measuring the amount of urine.
  • a bladder monitoring device is disclosed.
  • the bladder monitoring device measures the reflected signal intensity for each wavelength of the light irradiator for irradiating multi-wavelength near infrared (NIR) to the bladder, and the optical signal reflected and diffused from the bladder, Calculate reflectance using a photodetector including a plurality of photosensors disposed sequentially away from the light irradiator and the measured reflected signal intensity, and calculate the light absorbance using the calculated reflectance, , by calculating the moisture content in the bladder using the calculated light absorption, and a control unit for calculating the amount of urine.
  • NIR near infrared
  • a bladder monitoring apparatus attached to a user's body and a bladder monitoring method performed by a user terminal are disclosed.
  • the bladder monitoring device periodically measures the amount of urine in the bladder and transmits the measured urine amount data to the user terminal, so that the user monitors the amount of urine, the user terminal Outputting a ratio of the amount of urine to the bladder capacity, when the ratio exceeds a threshold, outputting, by the user terminal, an alarm signal so that the user performs urination, and the ratio is reduced to less than the threshold according to the urination and stopping, by the user terminal, from outputting the alarm signal.
  • a urine excretion system is disclosed.
  • a urine discharge system is inserted into the urethra to measure the urine volume in the bladder and a urine drainer for discharging the urine filled in the bladder to the outside, and when the measured urine volume exceeds a preset threshold, the A bladder monitoring device for transmitting a driving command to the urine ejector to drive the urine ejector, wherein the bladder monitoring device includes a light irradiator for irradiating multi-wavelength Near Infrared (NIR) to the bladder, reflected from the bladder and measuring the reflected signal intensity for each wavelength of the diffused optical signal, and calculating the reflectance using a photodetector including a plurality of photosensors disposed sequentially away from the light irradiator and the measured reflected signal intensity and a control unit for calculating the amount of urine by calculating the light absorbance using the calculated reflectivity and calculating the moisture content in the bladder using the calculated light absorbance.
  • NIR Near Infrared
  • the bladder monitoring device measures the amount of urine in the bladder so that the patient who does not feel the need to urinate monitors the amount of urine stored in his/her bladder, thereby conveniently monitoring the amount of urine in the bladder even if the patient does not feel the urge to urinate. You may be asked to urinate at an appropriate time.
  • the urine discharge system can discharge the urine filled in the bladder of the patient at an appropriate time through measurement of the amount of urine even if the patient does not feel the urge to urinate.
  • FIG. 1 is a view schematically illustrating the configuration of a urine discharge system according to an embodiment of the present invention.
  • FIG. 2 is a view schematically illustrating the configuration of a bladder monitoring device according to an embodiment of the present invention.
  • 3 to 6 are views for explaining a bladder monitoring device according to an embodiment of the present invention.
  • FIG. 7 and 8 are views showing an example of implementing a bladder monitoring device according to an embodiment of the present invention.
  • FIG. 9 is a view showing an example of use of the bladder monitoring device implemented as in FIG. 7 or FIG. 8 .
  • FIG. 10 is a diagram schematically illustrating the configuration of a system in which a bladder monitoring method according to an embodiment of the present invention is performed.
  • FIG. 11 is a flowchart illustrating a bladder monitoring method according to an embodiment of the present invention.
  • FIG. 12 is a view for explaining a bladder monitoring method according to an embodiment of the present invention.
  • FIG. 13 and 14 are views exemplarily showing a urine discharger according to an embodiment of the present invention.
  • FIG. 1 is a view schematically illustrating the configuration of a urine discharge system according to an embodiment of the present invention.
  • a urine discharge system may include a bladder monitoring device 100 , a user terminal 200 , and a urine discharger 300 .
  • the bladder monitoring apparatus 100 measures the amount of urine in the bladder at a location where the bladder is located in the stomach of the patient, and transmits the urine amount measurement information to the user terminal 200 and the urine ejector 300 .
  • the bladder monitoring apparatus 100 may transmit a driving command to the urine ejector 300 to drive the urine ejector 300 .
  • the user terminal 200 is a terminal of a patient that measures the amount of urine in the bladder, and receives urine amount measurement information transmitted from the bladder monitoring device 100 in real time, and outputs the received urine amount measurement information together with an alarm signal to notify the patient. .
  • the user terminal 200 may be equipped with an application for managing and controlling the bladder monitoring apparatus 100 and the urine ejector 300 . Therefore, the user terminal 200 checks the urine volume measurement information received from the bladder monitoring device 100, and when the amount of urine in the patient's bladder exceeds a preset threshold, a message and an alarm signal notifying the patient that urination should be performed can be printed out. In addition, when the amount of urine in the patient's bladder exceeds a preset threshold according to the setting, the user terminal 200 outputs a message and an alarm signal as well as a driving command to the urine ejector 300 to drive the urine ejector 300 can also be sent.
  • Urine ejector 300 is inserted into the urethra of the patient to discharge the urine filled in the bladder to the outside.
  • the urine ejector 300 may be driven by receiving a driving command directly from a patient through a predetermined input unit, or by receiving a driving command from the bladder monitoring apparatus 100 or the user terminal 200 .
  • the urine ejector 300 may include a communication unit (not shown) that receives a driving command from the bladder monitoring device 100 or the user terminal 200 .
  • the bladder monitoring apparatus 100 and the urine discharger 300 of the urine discharge system according to the embodiment of the present invention will be described later in detail with reference to FIGS. 2 to 14 .
  • FIG. 2 is a diagram schematically illustrating the configuration of a bladder monitoring device according to an embodiment of the present invention
  • FIGS. 3 to 6 are diagrams for explaining a bladder monitoring device according to an embodiment of the present invention.
  • a bladder monitoring apparatus according to an embodiment of the present invention will be described with reference to FIG. 2 , with reference to FIGS. 3 to 6 .
  • the bladder monitoring apparatus 100 includes a light irradiation unit 110 , a light detection unit 120 , an output unit 130 , an input unit 140 , a communication unit 150 , and a control unit. 160 may be included.
  • the light irradiator 110 irradiates a multi-wavelength near infrared (NIR) from a portion where the bladder is located in the patient's stomach to the bladder.
  • NIR near infrared
  • the light irradiation unit 110 may irradiate near-infrared rays having a preset irradiation signal intensity for each wavelength according to the control of the controller 160 .
  • the light irradiator 110 may be configured to include one light source 111 as shown in FIG. 2 , and the light source 111 is a Laser Diode (LD) or Light-Emitting Diode (LED). Alternatively, it may be composed of an organic light-emitting diode (OLED).
  • LD Laser Diode
  • LED Light-Emitting Diode
  • OLED organic light-emitting diode
  • the photodetector 120 measures the signal intensity for each wavelength of an optical signal in which multi-wavelength near-infrared rays irradiated to the bladder by the light irradiator 110 are reflected and diffused from the bladder.
  • the photodetector 120 may be configured to include a plurality of photosensors 121 that are sequentially disposed away from the light source 111 , and the photosensors 121 include It may be composed of a photodiode (PD), an IR enhanced PD, an avalanche photodiode (APD), or a CCD or CMOS.
  • PD photodiode
  • APD avalanche photodiode
  • CCD or CMOS complementary metal-oxide
  • the output unit 130 outputs an audible or visual signal.
  • the output unit 130 may include a status indicator lamp and/or a buzzer for displaying operating states such as driving start, measurement, and measurement completion of the bladder monitoring apparatus 100 according to an embodiment of the present invention. have.
  • the output unit 130 may further include a display module (not shown) for displaying and outputting information received or processed by the bladder monitoring apparatus 100 according to an embodiment of the present invention. That is, the display module may output an analysis result (such as the amount of urine in the bladder) of the control unit 160 , which will be described later, on the diffuse optics detected by the light detection unit 120 .
  • a display module for displaying and outputting information received or processed by the bladder monitoring apparatus 100 according to an embodiment of the present invention. That is, the display module may output an analysis result (such as the amount of urine in the bladder) of the control unit 160 , which will be described later, on the diffuse optics detected by the light detection unit 120 .
  • the display module may be implemented as a liquid crystal display or the like.
  • the display module and the sensor sensing a touch operation form a layered structure (ie, a touch screen)
  • the display module may be used as an input device in addition to an output device.
  • a touch screen is used as a display module, a sensor for detecting a touch operation will be referred to as an input unit 140 to be described later.
  • the input unit 140 is a user interface for receiving various commands from a user, and there is no particular limitation in its implementation method.
  • the input unit 140 may include a plurality of manipulation units, and these manipulation units may be manufactured as a key pad, a touch pad (static pressure/capacitance), a wheel key, a jog switch, or the like.
  • the communication unit 150 performs wired/wireless communication with the user terminal.
  • the communication unit 150 may include a USB (Universal Serial Bus) module, a Bluetooth module, a Wi-Fi module, etc., and short-range wireless communication such as Bluetooth or Wi-Fi or Data can be transmitted to a user terminal such as a smart phone or a desktop PC using short-distance wired communication such as USB.
  • USB Universal Serial Bus
  • Bluetooth Bluetooth
  • Wi-Fi Wireless Fidelity
  • Data can be transmitted to a user terminal such as a smart phone or a desktop PC using short-distance wired communication such as USB.
  • the controller 160 basically controls the overall operation of the bladder monitoring apparatus 100 according to the embodiment of the present invention.
  • control unit 160 controls the light irradiator 110 and the light detection unit 120 to irradiate multi-wavelength near-infrared rays to the bladder region, respectively, and measure the reflected signal intensity for each wavelength of the optical signal reflected and diffused from the bladder region. can do.
  • controller 160 measures the amount of urine in the bladder by measuring the moisture content in the bladder through the analysis of the detected diffuse optics using the signal intensity for each wavelength of the measured optical signal.
  • the controller 160 calculates a reflectance by using the measured reflected signal intensity for each wavelength of the reflected and diffused optical signal, calculates the light absorbance for each wavelength using the calculated reflectance, and calculates the calculated wavelength
  • the water content in the bladder can be calculated using the light absorbance of each star.
  • the controller 160 may calculate the blood flow along with the moisture content of the bladder by using the light absorption for each wavelength.
  • HHb deoxidized hemoglobin
  • O2Hb oxidized hemoglobin
  • deoxidized hemoglobin (HHb) and oxidized hemoglobin (O2Hb) are blood flow indicators. Therefore, it is possible to measure the amount of urine filled in the bladder by measuring the moisture content in the bladder, and the blood flow in the bladder can be calculated by measuring the amounts of deoxidized hemoglobin (HHb) and oxidized hemoglobin (O2Hb) in the bladder.
  • the wavelength at which the light absorption peak of body water exists is 960 nm, 1180 nm, 1440 nm, and the like.
  • the light irradiator 110 may be controlled to irradiate.
  • the controller 160 In order to measure the moisture content in the bladder, the controller 160 first calculates the ratio of the reflected signal intensity of the light signal reflected and diffused from the bladder part to the irradiation signal intensity of the near-infrared irradiated by the light irradiator 110, reflectivity can be calculated.
  • control unit 160 may calculate the light absorption for each wavelength using the following equation.
  • R( ⁇ ) is the reflectance
  • (x, y)
  • a' is the albedo indicating the reflectance at the surface
  • a' ⁇ ' s / ( ⁇ a + ⁇ ' s )
  • ⁇ a is the light absorption
  • ⁇ ' s is the light output
  • z 0 is the distance from the region of interest (ROI) to the measurement surface (the skin surface of the bladder region)
  • z 0 ( ⁇ a + ⁇ ' s ) -1
  • ⁇ eff is the effective attenuation coefficient
  • ⁇ eff [3 ⁇ a ( ⁇ a + ⁇ ' s )] 1/2
  • r 1 is positive from the region of interest
  • r 1 [(z - z 0 ) 2 + ⁇ 2 ] 1/2
  • z b is the core of the Extrapolate boundary condition, which assumes that the flux of photons disappears.
  • R( ⁇ ) is the reflectivity
  • R exp ( ⁇ ) is the experimental value (experimental R) of the reflectance measured in the physiological tissue using the experimental system
  • is the system parameter set in the experimental system.
  • Equations 1 and 2 the light absorption ⁇ a , the light output ⁇ ′ s and the system parameter ⁇ are unknown. Since at least three equations are required to calculate the solutions of these three unknowns, one light source 111 and at least three photosensors 121 are required, respectively, as shown in FIG. 5 . That is, using the reflected signal intensity measured at three points, from Equations 1 and 2, three equations for the three unknowns of the light absorption ⁇ a , the light output ⁇ ' s and the system parameter ⁇ will be generated. and values of the light absorption ⁇ a , the light output ⁇ ′ s and the system parameter ⁇ can be calculated from the generated three equations.
  • control unit 160 may calculate the moisture content of the first measurement region 10 using the following equation from the calculated light absorption.
  • oxidized hemoglobin O2Hb
  • deoxidized hemoglobin HHb
  • body water water
  • lipid lipid
  • [O2Hb], [HHb], [water] and [lipid] ] is the content of oxidized hemoglobin (O2Hb), deoxidized hemoglobin (HHb), body water (water) and fat (lipid), respectively, is the light absorption by wavelength.
  • Equation 3 the contents of oxidized hemoglobin (O2Hb), deoxidized hemoglobin (HHb), body water (water) and fat (lipid) can be calculated using the least squares method, and oxidized hemoglobin (O2Hb) and deoxidized hemoglobin (O2Hb) and deoxidized hemoglobin (
  • the content of HHb) may be calculated as an absolute value in mol unit, and the content of body water (water) and fat (lipid) may be calculated as a relative value in % unit.
  • the light irradiation unit 110 and the light detection unit 120 may be configured to include one light source 111 and at least five photosensors 121 , respectively.
  • the photodetector 120 includes five (R 1 , R 2 , R ). 3 , R 4 and R 5 ) of the photosensor 121 may be configured.
  • control unit 160 calculates the first moisture content of the first measurement region 10 calculated using the optical sensor 121 of R 1 , R 2 , and R 3 , and R 3 , R 4 and R 5 .
  • the second moisture content of the second measurement region 20 calculated using the optical sensor 121 of .
  • the amount of oxidized hemoglobin (O2Hb) and deoxidized hemoglobin (HHb) calculated together with the water content is used for monitoring the condition of the bladder by observing changes in blood flow, or accumulated as big data for a long period of time, and personal bladder through big data analysis can be used for state analysis.
  • FIG. 7 and 8 are diagrams showing an example of implementing a bladder monitoring device according to an embodiment of the present invention
  • FIG. 9 is a diagram showing an example of using the bladder monitoring device implemented as in FIG. 7 or 8 .
  • the bladder monitoring apparatus 100 is a measurement in which one light source 111 and five optical sensors 121 arranged to be sequentially away from the light source 111 are mounted. It may be implemented by being composed of a board for control 160 and a board for control 170 on which a plurality of electronic components 175 are mounted.
  • the light irradiation unit 110 and the light detection unit 120 described above are implemented in the measurement substrate 160 , and the light irradiation unit 110 using a plurality of electronic components 175 mounted on the control substrate 170 .
  • a configuration other than the photodetector 120 that is, the output unit 130 , the input unit 140 , the communication unit 150 , the control unit 160 , and the like may be implemented.
  • a power interface connected to a battery module for supplying power may be implemented on the control board 170 .
  • the measurement board 160 and the control board 170 are provided with connectors 161 and 171 , respectively, and may be electrically connected through the provided connectors 161 and 171 .
  • the measurement substrate 160 irradiates light to the bladder region and directly contacts the patient's skin in order to detect the reflected light, and thus may be formed of a flexible material.
  • the bladder monitoring apparatus 100 implemented in this way may have a flexible patch shape as a whole, and may be operated by being attached to the user's body by providing a separate attachment means.
  • the bladder monitoring device 100 is coupled to both sides of the body 180 and the body 180 to which the light source module 185 and the operation button 181 are mounted, and the optical sensor array modules 197 and 198 ) and a pair of pads 191 and 192 to which the adhesive parts 195 and 196 are mounted can be implemented.
  • the above-described light irradiation unit 110, output unit 130, input unit 140, communication unit 150, control unit 160, etc. may be implemented, and a rechargeable battery for power supply. can be installed.
  • the operation button 181 mounted on the main body 180 may be one of the input units 140 .
  • the plurality of light sources 111 constituting the light source module 185 may generate at least four multi-wavelength lights in a band of 600 to 1100 nm.
  • the photosensor array modules 197 and 198 are mounted on the pads 191 and 192. As shown in FIG. 8, the photosensor array modules 197 and 198 have a plurality of photosensors 121 arranged in a matrix form. can be formed.
  • adhesive parts 195 and 196 are mounted on the pads 191 and 192 , and the adhesive parts 195 and 196 are attached to the skin and serve to attach the bladder monitoring device 100 to the user's body.
  • the body 180 and the pads 191 and 192 may be configured to be detachably attached to each other by providing separate attachment and detachment means.
  • the pads 191 and 192 are manufactured for one-time use and can be used and thrown away by the user.
  • the main body 180 can be continuously used by charging the battery. That is, the pads 191 and 192 may be separated from the body 180 and discarded after use.
  • the bladder monitoring device 100 may be attached to a portion of the user's stomach where the bladder 35 is located, and may measure the amount of urine in the bladder 35 as described above.
  • FIG. 10 is a diagram schematically illustrating the configuration of a system in which a bladder monitoring method according to an embodiment of the present invention is performed
  • FIG. 11 is a flowchart showing a bladder monitoring method according to an embodiment of the present invention
  • FIG. It is a diagram for explaining a bladder monitoring method according to an embodiment of the present invention.
  • a bladder monitoring method according to an embodiment of the present invention will be described with reference to FIGS. 10 to 12 .
  • the system may include a bladder monitoring device 100 , a user terminal 200 , and a bladder monitoring server 400 .
  • step S1010 the bladder monitoring apparatus 100 periodically measures the amount of urine in the bladder and transmits the measured urine amount data to the user terminal 200 .
  • the bladder monitoring apparatus 100 irradiates multi-wavelength near-infrared rays to the bladder, measures the reflected signal intensity for each wavelength of the optical signal reflected and diffused from the bladder according to the near-infrared irradiation, and the measured reflected signal
  • the reflectance may be calculated using the intensity
  • the light absorbance may be calculated using the calculated reflectivity
  • the moisture content in the bladder may be calculated as urine volume using the calculated light absorbance.
  • step S1020 the user terminal 200 may visualize and output the ratio (%) of the urine volume to the bladder capacity in text, animation, etc. as shown in FIG. 9 so that the user monitors the urine volume according to the reception of the urine volume data. have.
  • step S1030 the user terminal 200 determines whether the ratio (%) of the urine volume to the bladder capacity exceeds a threshold.
  • step S1040 when the ratio (%) of the urine volume to the bladder capacity exceeds the threshold, the user terminal 200 outputs a visual and audible alarm signal.
  • the wearable device 210 may output an alarm signal through vibration or sound and may output a message indicating that the amount of urine exceeds a threshold.
  • the user can urinate according to the output of the alarm signal, and when the ratio of the urine volume to the bladder capacity according to urination decreases to less than a threshold value, the user terminal 200 can stop the output of the alarm signal, and the wearable The device 210 may also transmit an alarm stop command.
  • the bladder monitoring device 100 not only calculates the amount of urine in the bladder, but also deoxidized hemoglobin (HHb) and oxidized hemoglobin (O2Hb) in the bladder by using the optical signal reflected from the bladder according to the near-infrared irradiation. By measuring the amount of blood flow can be calculated.
  • HHb deoxidized hemoglobin
  • O2Hb oxidized hemoglobin
  • the bladder monitoring apparatus 100 may transmit not only urine volume data but also blood flow data to the user terminal 200 , and the user terminal 200 outputs a change in blood flow so that the user monitors blood flow according to the reception of the blood flow data. can do.
  • the user terminal 200 may indicate the blood flow change in a blood flow change graph as shown in FIG. 12 .
  • the graph shown in FIG. 12 shows changes in the amounts of deoxidized hemoglobin (HHb) and oxidized hemoglobin (O 2 Hb) according to age. That is, Fig. 12 (a) shows the change in blood flow measured when the urine is discharged from a 7-year-old, (b) of FIG. 12 (b) is a 31-year-old male, and (c) of FIG. 12 is a 43-year-old female. As shown in FIG. 12 , it can be seen that as the age increases, the movement of blood flow in the bladder during urine discharge is weaker.
  • bladder monitoring through observation of changes in blood flow as described above can simply confirm a difference according to age or a normal level of blood flow, and cannot accurately diagnose an individual's bladder condition.
  • the user terminal 200 may be equipped with a bladder monitoring application for performing the above-described bladder monitoring method.
  • the user terminal 200 may generate personalized data by driving the bladder monitoring application to perform the bladder monitoring method, while accumulating blood flow data and urine volume data of the user's bladder of the user terminal 200 .
  • the personalized data may be referred to as small data. Using this small data, personalized bladder diagnosis and treatment can be made.
  • the bladder monitoring server 400 may receive the user's small data from the user terminal 200 to generate big data. That is, the bladder monitoring server 400 may generate big data on the blood flow in the bladder by accumulating small data of several users from the plurality of user terminals 200 .
  • FIG. 13 and 14 are views exemplarily showing a urine discharger according to an embodiment of the present invention.
  • the urine discharger 300 may be configured to include a miniature magnetic field valve pump 310 and a remote controller 320 .
  • the magnetic field valve pump 310 is inserted into the urethra of the patient, and is driven when receiving a drive command signal wirelessly from the remote controller 320 to discharge urine filled in the patient's bladder to the outside.
  • the remote controller 320 includes a button for the user to input a driving command, and when receiving a driving command through the button, wirelessly transmits a driving command signal to the magnetic field valve pump 310 .
  • the remote controller 320 generates a magnetic field when a button is pressed, and the generated magnetic field is applied to the magnetic field valve pump 310 , thereby activating and driving the magnetic field valve pump 310 .
  • the remote controller 320 may receive a driving command from the bladder monitoring device 100 or the user terminal 200 having a communication function, and may be driven from the bladder monitoring device 100 or the user terminal 200 .
  • a driving command signal may be transmitted to the magnetic field valve pump 310 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Cardiology (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A bladder monitoring device and a urine discharge system using same are disclosed. The bladder monitoring device comprises: a light emitting unit for emitting near-infrared (NIR) rays having multiple wavelengths to the bladder; a light detecting unit for measuring reflection signal intensity for each wavelength of optical signals reflected and diffused from the bladder and configured to comprise a plurality of optical sensors sequentially disposed away from the light emitting unit; and a control unit for calculating reflectance by using the measured reflection signal intensity, calculating light absorbance by using the calculated reflectance, and calculating a water content in the bladder by using the calculated light absorbance, thereby calculating the amount of urine.

Description

방광 모니터링 장치 및 이를 이용한 소변 배출 시스템Bladder monitoring device and urine drainage system using same
본 발명은 방광 상태를 모니터링하고 방광 내의 소변의 양을 측정하기 위한 방광 모니터링 장치 및 이를 이용한 방광 내의 소변량 측정을 통한 소변 배출 시스템에 관한 것이다.The present invention relates to a bladder monitoring device for monitoring the condition of the bladder and measuring the amount of urine in the bladder, and a urine discharge system using the same for measuring the amount of urine in the bladder.
척수 손상, 척수 수술 등으로 인하여 요의(micturition desire)를 느끼지 못하는 환자들의 경우, 스스로 배뇨(urination) 및 도뇨(catheterization) 시점을 판단하기가 어려우므로, 방광 내 소변량을 모니터링하여 적절한 시점에 배뇨를 실시하는 것이 매우 중요하다. 또한, 알츠하이머나 파킨슨 증상이 심해지면, 이로 인하여 환자 스스로 배뇨(urination) 및 도뇨(catheterization) 시점을 판단하기가 어려워진다. 만약, 적절한 빈도와 시점에 적정량의 배뇨 및 도뇨를 하지 못하면, 빈뇨, 요실금, 요정체와 같은 가벼운 방광 기능 장애부터 요로감염, 수신증, 방광요관 역류와 같은 합병증까지 유발될 수 있다.For patients who do not feel a micturition desire due to spinal cord injury or spinal cord surgery, it is difficult to determine the timing of urination and catheterization by themselves. It is very important to carry out In addition, when Alzheimer's or Parkinson's symptoms worsen, it becomes difficult for the patient to determine the timing of urination and catheterization. If an appropriate amount of urination and catheterization is not performed at an appropriate frequency and time, from mild bladder dysfunction such as frequent urination, urinary incontinence, and urinary retention, to complications such as urinary tract infection, hydronephrosis, and vesicoureteral reflux.
종래에는, 환자가 병원에 내원한 후, 초음파 장비를 활용하여 해당 환자의 방광의 용적 및 소변량을 측정할 수는 있었으나, 초음파 프로브의 정확한 위치를 선정하기가 어렵고, 가격이 고가였기 때문에, 자가 모니터링의 용도로 활용되기에는 적합하지 않았다.Conventionally, after a patient visits a hospital, it is possible to measure the bladder volume and urine volume of the patient using ultrasound equipment, but it is difficult to select an accurate location of the ultrasound probe and the price is high, so self-monitoring It was not suitable for use in
또한, 종래에 생체 임피던스 정보에 기초하여 방광과 관련된 기능을 감지하는 방법이 있으나, 이는 별도의 시술이 요구되는 이식형 의료 기기를 통한 방법이었고, 전기 임피던스 단층 촬영(EIT; Electrical Impedance Tomography)을 통한 임피던스 분포 영상(impedance distribution image)을 분석하기 위한 고가의 장비를 필요로 하였기 때문에, 자가 모니터링 용도로 사용되기는 어려웠다.Also, conventionally, there is a method of detecting a function related to the bladder based on bioimpedance information, but this was a method through an implantable medical device requiring a separate procedure, and was performed through Electrical Impedance Tomography (EIT). Because it required expensive equipment to analyze the impedance distribution image, it was difficult to be used for self-monitoring purposes.
따라서, 자가 모니터링 용도로 사용 가능하며 적절한 시점에 소변을 배출시키는 시스템이 요구된다.Therefore, there is a need for a system that can be used for self-monitoring purposes and that discharges urine at an appropriate time.
본 발명은 요의를 느끼지 못하는 환자가 자신의 방광 내에 저장된 소변량을 모니터링하도록 방광 내의 소변량을 측정하며, 방광의 혈류량을 측정하여 방광의 상태를 모니터링하는 방광 모니터링 장치를 제공하기 위한 것이다.An object of the present invention is to provide a bladder monitoring device that measures the amount of urine in the bladder so that a patient who does not feel the need to urinate monitors the amount of urine stored in his/her bladder, and monitors the condition of the bladder by measuring the blood flow in the bladder.
또한, 본 발명은 환자가 소변량 측정을 통해 적절한 시점에 환자의 방광 내에 채워진 소변을 배출시키는 소변 배출 시스템을 제공하기 위한 것이다.Another object of the present invention is to provide a urine drainage system that allows the patient to discharge the urine filled in the bladder of the patient at an appropriate time by measuring the amount of urine.
본 발명의 일 측면에 따르면, 방광 모니터링 장치가 개시된다.According to one aspect of the present invention, a bladder monitoring device is disclosed.
본 발명의 실시예에 따른 방광 모니터링 장치는, 상기 방광으로 다파장의 근적외선(NIR: Near Infrared)을 조사하는 광조사부, 상기 방광으로부터 반사 및 확산된 광신호의 파장별 반사신호세기를 측정하며, 상기 광조사부로부터 순차적으로 멀어지도록 배치된 복수의 광센서를 포함하는 광검출부 및 상기 측정된 반사신호세기를 이용하여 반사도(Reflectance)를 산출하고, 상기 산출된 반사도를 이용하여 광흡수도를 산출하고, 상기 산출된 광흡수도를 이용하여 상기 방광 내의 수분함량을 산출함으로써, 상기 소변량을 산출하는 제어부를 포함한다.The bladder monitoring device according to an embodiment of the present invention measures the reflected signal intensity for each wavelength of the light irradiator for irradiating multi-wavelength near infrared (NIR) to the bladder, and the optical signal reflected and diffused from the bladder, Calculate reflectance using a photodetector including a plurality of photosensors disposed sequentially away from the light irradiator and the measured reflected signal intensity, and calculate the light absorbance using the calculated reflectance, , by calculating the moisture content in the bladder using the calculated light absorption, and a control unit for calculating the amount of urine.
본 발명의 다른 측면에 따르면, 사용자의 몸에 부착되는 방광 모니터링 장치 및 사용자 단말이 수행하는 방광 모니터링 방법이 개시된다.According to another aspect of the present invention, a bladder monitoring apparatus attached to a user's body and a bladder monitoring method performed by a user terminal are disclosed.
본 발명의 실시예에 따른 방광 모니터링 방법은, 상기 방광 모니터링 장치가 방광 내의 소변량을 주기적으로 측정하여 측정된 소변량 데이터를 상기 사용자 단말로 전송하는 단계, 상기 사용자가 소변량을 모니터링하도록, 상기 사용자 단말이 상기 방광 용량 대비 소변량의 비율을 출력하는 단계, 상기 비율이 임계치를 초과하는 경우, 상기 사용자 단말이 상기 사용자가 배뇨를 수행하도록 알람신호를 출력하는 단계 및 상기 배뇨에 따라 상기 비율이 임계치 미만으로 감소하면, 상기 사용자 단말이 상기 알람신호의 출력을 중지하는 단계를 포함한다.In the bladder monitoring method according to an embodiment of the present invention, the bladder monitoring device periodically measures the amount of urine in the bladder and transmits the measured urine amount data to the user terminal, so that the user monitors the amount of urine, the user terminal Outputting a ratio of the amount of urine to the bladder capacity, when the ratio exceeds a threshold, outputting, by the user terminal, an alarm signal so that the user performs urination, and the ratio is reduced to less than the threshold according to the urination and stopping, by the user terminal, from outputting the alarm signal.
본 발명의 다른 측면에 따르면, 소변 배출 시스템이 개시된다.According to another aspect of the present invention, a urine excretion system is disclosed.
본 발명의 실시예에 따른 소변 배출 시스템은, 요도에 삽입되어 방광 내에 채워진 소변을 외부로 배출시키는 소변 배출기 및 상기 방광 내의 소변량을 측정하고, 상기 측정된 소변량이 미리 설정된 임계치를 초과한 경우, 상기 소변 배출기가 구동하도록 상기 소변 배출기로 구동명령을 전송하는 방광 모니터링 장치를 포함하되, 상기 방광 모니터링 장치는, 상기 방광으로 다파장의 근적외선(NIR: Near Infrared)을 조사하는 광조사부, 상기 방광으로부터 반사 및 확산된 광신호의 파장별 반사신호세기를 측정하며, 상기 광조사부로부터 순차적으로 멀어지도록 배치된 복수의 광센서를 포함하는 광검출부 및 상기 측정된 반사신호세기를 이용하여 반사도(Reflectance)를 산출하고, 상기 산출된 반사도를 이용하여 광흡수도를 산출하고, 상기 산출된 광흡수도를 이용하여 상기 방광 내의 수분함량을 산출함으로써, 상기 소변량을 산출하는 제어부를 포함한다.A urine discharge system according to an embodiment of the present invention is inserted into the urethra to measure the urine volume in the bladder and a urine drainer for discharging the urine filled in the bladder to the outside, and when the measured urine volume exceeds a preset threshold, the A bladder monitoring device for transmitting a driving command to the urine ejector to drive the urine ejector, wherein the bladder monitoring device includes a light irradiator for irradiating multi-wavelength Near Infrared (NIR) to the bladder, reflected from the bladder and measuring the reflected signal intensity for each wavelength of the diffused optical signal, and calculating the reflectance using a photodetector including a plurality of photosensors disposed sequentially away from the light irradiator and the measured reflected signal intensity and a control unit for calculating the amount of urine by calculating the light absorbance using the calculated reflectivity and calculating the moisture content in the bladder using the calculated light absorbance.
본 발명의 실시예에 따른 방광 모니터링 장치는, 요의를 느끼지 못하는 환자가 자신의 방광 내에 저장된 소변량을 모니터링하도록 방광 내의 소변량을 측정함으로써, 환자가 요의를 느끼지 못하더라도 방광 내 소변량을 간편하게 모니터링하여 적절한 시점에 배뇨를 하게 할 수 있다.The bladder monitoring device according to an embodiment of the present invention measures the amount of urine in the bladder so that the patient who does not feel the need to urinate monitors the amount of urine stored in his/her bladder, thereby conveniently monitoring the amount of urine in the bladder even if the patient does not feel the urge to urinate. You may be asked to urinate at an appropriate time.
또한, 방광의 혈류량을 측정하여 방광의 상태를 모니터링함으로써, 방광의 건강상태를 진단하게 할 수 있다.In addition, by measuring the blood flow of the bladder and monitoring the condition of the bladder, it is possible to diagnose the health condition of the bladder.
또한, 본 발명의 실시예에 따른 소변 배출 시스템은, 환자가 요의를 느끼지 못하더라도 소변량 측정을 통해 적절한 시점에 환자의 방광 내에 채워진 소변을 배출시킬 수 있다.In addition, the urine discharge system according to an embodiment of the present invention can discharge the urine filled in the bladder of the patient at an appropriate time through measurement of the amount of urine even if the patient does not feel the urge to urinate.
도 1은 본 발명의 실시예에 따른 소변 배출 시스템의 구성을 개략적으로 예시하여 나타낸 도면.1 is a view schematically illustrating the configuration of a urine discharge system according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 방광 모니터링 장치의 구성을 개략적으로 예시하여 나타낸 도면.2 is a view schematically illustrating the configuration of a bladder monitoring device according to an embodiment of the present invention.
도 3 내지 도 6은 본 발명의 실시예에 따른 방광 모니터링 장치를 설명하기 위한 도면.3 to 6 are views for explaining a bladder monitoring device according to an embodiment of the present invention.
도 7 및 도 8은 본 발명의 실시예에 따른 방광 모니터링 장치를 구현한 예를 나타낸 도면.7 and 8 are views showing an example of implementing a bladder monitoring device according to an embodiment of the present invention.
도 9는 도 7 또는 도 8과 같이 구현된 방광 모니터링 장치의 사용예를 나타낸 도면.9 is a view showing an example of use of the bladder monitoring device implemented as in FIG. 7 or FIG. 8 .
도 10은 본 발명의 실시예에 따른 방광 모니터링 방법이 수행되는 시스템의 구성을 개략적으로 예시하여 나타낸 도면.10 is a diagram schematically illustrating the configuration of a system in which a bladder monitoring method according to an embodiment of the present invention is performed.
도 11은 본 발명의 실시예에 따른 방광 모니터링 방법을 나타낸 흐름도.11 is a flowchart illustrating a bladder monitoring method according to an embodiment of the present invention.
도 12는 본 발명의 실시예에 따른 방광 모니터링 방법을 설명하기 위한 도면.12 is a view for explaining a bladder monitoring method according to an embodiment of the present invention.
도 13 및 도 14는 본 발명의 실시예에 따른 소변 배출기를 예시하여 나타낸 도면.13 and 14 are views exemplarily showing a urine discharger according to an embodiment of the present invention.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다. 또한, 명세서에 기재된 "...부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다.As used herein, the singular expression includes the plural expression unless the context clearly dictates otherwise. In this specification, terms such as "consisting of" or "comprising" should not be construed as necessarily including all of the various components or various steps described in the specification, some of which components or some steps are It should be construed that it may not include, or may further include additional components or steps. In addition, terms such as "...unit" and "module" described in the specification mean a unit that processes at least one function or operation, which may be implemented as hardware or software, or a combination of hardware and software. .
이하, 본 발명의 다양한 실시예들을 첨부된 도면을 참조하여 상술하겠다. Hereinafter, various embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 소변 배출 시스템의 구성을 개략적으로 예시하여 나타낸 도면이다.1 is a view schematically illustrating the configuration of a urine discharge system according to an embodiment of the present invention.
도 1을 참조하면, 도 1은 본 발명의 실시예에 따른 소변 배출 시스템은, 방광 모니터링 장치(100), 사용자 단말(200) 및 소변 배출기(300)를 포함하여 구성될 수 있다.Referring to FIG. 1 , a urine discharge system according to an embodiment of the present invention may include a bladder monitoring device 100 , a user terminal 200 , and a urine discharger 300 .
방광 모니터링 장치(100)는 환자의 배에서 방광이 위치하는 부위에서 방광 내의 소변량을 측정하고, 소변량 측정정보를 사용자 단말(200) 및 소변 배출기(300)로 전송한다.The bladder monitoring apparatus 100 measures the amount of urine in the bladder at a location where the bladder is located in the stomach of the patient, and transmits the urine amount measurement information to the user terminal 200 and the urine ejector 300 .
예를 들어, 방광 모니터링 장치(100)는 환자 방광 내의 소변량이 미리 설정된 임계치를 초과한 경우, 소변 배출기(300)가 구동하도록 소변 배출기(300)로 구동명령을 전송할 수도 있다.For example, when the amount of urine in the patient's bladder exceeds a preset threshold, the bladder monitoring apparatus 100 may transmit a driving command to the urine ejector 300 to drive the urine ejector 300 .
사용자 단말(200)은 방광 내의 소변량을 측정하는 환자의 단말로서, 방광 모니터링 장치(100)로부터 전송되는 소변량 측정정보를 실시간 수신하고, 수신된 소변량 측정정보를 환자에게 알리기 위하여 알람신호와 함께 출력한다.The user terminal 200 is a terminal of a patient that measures the amount of urine in the bladder, and receives urine amount measurement information transmitted from the bladder monitoring device 100 in real time, and outputs the received urine amount measurement information together with an alarm signal to notify the patient. .
예를 들어, 사용자 단말(200)은 방광 모니터링 장치(100) 및 소변 배출기(300)를 관리 및 제어하는 어플리케이션을 탑재할 수 있다. 그래서, 사용자 단말(200)은 방광 모니터링 장치(100)로부터 수신된 소변량 측정정보를 확인하여 환자 방광 내의 소변량이 미리 설정된 임계치를 초과한 경우, 환자에게 배뇨가 실시되어야 함을 알리는 메시지 및 알람신호를 출력할 수 있다. 또한, 사용자 단말(200)은 설정하기에 따라 환자 방광 내의 소변량이 미리 설정된 임계치를 초과한 경우, 메시지 및 알람신호의 출력뿐만 아니라, 소변 배출기(300)가 구동하도록 소변 배출기(300)로 구동명령을 전송할 수도 있다.For example, the user terminal 200 may be equipped with an application for managing and controlling the bladder monitoring apparatus 100 and the urine ejector 300 . Therefore, the user terminal 200 checks the urine volume measurement information received from the bladder monitoring device 100, and when the amount of urine in the patient's bladder exceeds a preset threshold, a message and an alarm signal notifying the patient that urination should be performed can be printed out. In addition, when the amount of urine in the patient's bladder exceeds a preset threshold according to the setting, the user terminal 200 outputs a message and an alarm signal as well as a driving command to the urine ejector 300 to drive the urine ejector 300 can also be sent.
소변 배출기(300)는 환자의 요도에 삽입되어 방광 내에 채워진 소변을 외부로 배출시킨다. Urine ejector 300 is inserted into the urethra of the patient to discharge the urine filled in the bladder to the outside.
예를 들어, 소변 배출기(300)는 소정의 입력부를 통해 환자로부터 직접 구동명령을 입력받거나, 방광 모니터링 장치(100) 또는 사용자 단말(200)로부터 구동명령을 수신하여 구동될 수 있다. 이를 위하여, 소변 배출기(300)는 방광 모니터링 장치(100) 또는 사용자 단말(200)로부터 구동명령을 수신하는 통신부(미도시) 포함할 수 있다.For example, the urine ejector 300 may be driven by receiving a driving command directly from a patient through a predetermined input unit, or by receiving a driving command from the bladder monitoring apparatus 100 or the user terminal 200 . To this end, the urine ejector 300 may include a communication unit (not shown) that receives a driving command from the bladder monitoring device 100 or the user terminal 200 .
이와 같은 본 발명의 실시예에 따른 소변 배출 시스템의 방광 모니터링 장치(100) 및 소변 배출기(300)에 대해서는 이후, 도 2 내지 도 14를 참조하여 상세히 후술하기로 한다.The bladder monitoring apparatus 100 and the urine discharger 300 of the urine discharge system according to the embodiment of the present invention will be described later in detail with reference to FIGS. 2 to 14 .
도 2는 본 발명의 실시예에 따른 방광 모니터링 장치의 구성을 개략적으로 예시하여 나타낸 도면이고, 도 3 내지 도 6은 본 발명의 실시예에 따른 방광 모니터링 장치를 설명하기 위한 도면이다. 이하에서는, 도 2를 중심으로, 본 발명의 실시예에 따른 방광 모니터링 장치에 대하여 설명하되, 도 3 내지 도 6을 참조하기로 한다.2 is a diagram schematically illustrating the configuration of a bladder monitoring device according to an embodiment of the present invention, and FIGS. 3 to 6 are diagrams for explaining a bladder monitoring device according to an embodiment of the present invention. Hereinafter, a bladder monitoring apparatus according to an embodiment of the present invention will be described with reference to FIG. 2 , with reference to FIGS. 3 to 6 .
도 2를 참조하면, 본 발명의 실시예에 따른 방광 모니터링 장치(100)는, 광조사부(110), 광검출부(120), 출력부(130), 입력부(140), 통신부(150) 및 제어부(160)를 포함하여 구성될 수 있다.Referring to FIG. 2 , the bladder monitoring apparatus 100 according to an embodiment of the present invention includes a light irradiation unit 110 , a light detection unit 120 , an output unit 130 , an input unit 140 , a communication unit 150 , and a control unit. 160 may be included.
광조사부(110)는 환자의 배에서 방광이 위치하는 부위에서 방광으로 다파장의 근적외선(NIR: Near Infrared)을 조사한다. 이때, 광조사부(110)는 제어부(160)의 제어에 따라 미리 설정된 조사신호세기를 가지는 근적외선을 파장별로 조사할 수 있다.The light irradiator 110 irradiates a multi-wavelength near infrared (NIR) from a portion where the bladder is located in the patient's stomach to the bladder. In this case, the light irradiation unit 110 may irradiate near-infrared rays having a preset irradiation signal intensity for each wavelength according to the control of the controller 160 .
예를 들어, 광조사부(110)는 도 2에 도시된 바와 같이, 하나의 광원(111)을 포함하여 구성될 수 있으며, 광원(111)은 LD(Laser Diode), LED(Light-Emitting Diode) 또는 OLED(Organic Light-Emitting Diode)로 구성될 수 있다.For example, the light irradiator 110 may be configured to include one light source 111 as shown in FIG. 2 , and the light source 111 is a Laser Diode (LD) or Light-Emitting Diode (LED). Alternatively, it may be composed of an organic light-emitting diode (OLED).
광검출부(120)는 광조사부(110)에 의하여 방광에 조사된 다파장 근적외선이 방광으로부터 반사 및 확산된 광신호의 파장별 신호세기를 측정한다.The photodetector 120 measures the signal intensity for each wavelength of an optical signal in which multi-wavelength near-infrared rays irradiated to the bladder by the light irradiator 110 are reflected and diffused from the bladder.
예를 들어, 광검출부(120)는 도 2에 도시된 바와 같이, 광원(111)으로부터 순차적으로 멀어지도록 배치된 복수의 광센서(121)를 포함하여 구성될 수 있으며, 광센서(121)는 PD(Photodiode), IR enhanced PD, APD(Avalanche Photodiode)나 CCD, CMOS로 구성될 수 있다.For example, as shown in FIG. 2 , the photodetector 120 may be configured to include a plurality of photosensors 121 that are sequentially disposed away from the light source 111 , and the photosensors 121 include It may be composed of a photodiode (PD), an IR enhanced PD, an avalanche photodiode (APD), or a CCD or CMOS.
출력부(130)는 청각적 또는 시각적 신호를 출력한다. 예를 들어, 출력부(130)는 본 발명의 실시예에 따른 방광 모니터링 장치(100)의 구동시작, 측정중, 측정완료 등과 같은 동작상태를 표시하는 상태표시램프 및/또는 부저를 포함할 수 있다.The output unit 130 outputs an audible or visual signal. For example, the output unit 130 may include a status indicator lamp and/or a buzzer for displaying operating states such as driving start, measurement, and measurement completion of the bladder monitoring apparatus 100 according to an embodiment of the present invention. have.
또한, 출력부(130)는 본 발명의 실시예에 따른 방광 모니터링 장치(100)가 입력받거나 처리한 정보를 표시하여 출력하는 디스플레이 모듈(미도시)을 더 포함할 수도 있다. 즉, 디스플레이 모듈은 광검출부(120)에 의하여 검출되는 확산광(Diffuse optics)에 대한 후술할 제어부(160)의 분석결과(방광 내의 소변량 등)를 출력할 수 있다.In addition, the output unit 130 may further include a display module (not shown) for displaying and outputting information received or processed by the bladder monitoring apparatus 100 according to an embodiment of the present invention. That is, the display module may output an analysis result (such as the amount of urine in the bladder) of the control unit 160 , which will be described later, on the diffuse optics detected by the light detection unit 120 .
예를 들어, 디스플레이 모듈은 액정 디스플레이(liquid crystal display) 등으로 구현될 수 있다. 또한, 디스플레이 모듈과 터치 동작을 감지하는 센서가 상호 레이어 구조를 이루는 경우(즉, 터치 스크린), 디스플레이 모듈은 출력 장치 이외에 입력 장치로도 사용될 수 있다. 이하, 디스플레이 모듈로 터치 스크린이 사용되는 경우, 터치 동작을 감지하는 센서는 후술할 입력부(140)로 지칭하도록 한다.For example, the display module may be implemented as a liquid crystal display or the like. In addition, when the display module and the sensor sensing a touch operation form a layered structure (ie, a touch screen), the display module may be used as an input device in addition to an output device. Hereinafter, when a touch screen is used as a display module, a sensor for detecting a touch operation will be referred to as an input unit 140 to be described later.
입력부(140)는 사용자로부터 각종 명령을 입력받기 위한 사용자 인터페이스(user interface)로서, 그 구현 방식에는 특별한 제한이 없다. 예를 들어, 입력부(140)는 복수의 조작 유닛들을 포함할 수 있으며, 이러한 조작 유닛들은 키 패드(key pad), 터치 패드(정압/정전), 휠 키, 조그 스위치 등으로 제작될 수 있다.The input unit 140 is a user interface for receiving various commands from a user, and there is no particular limitation in its implementation method. For example, the input unit 140 may include a plurality of manipulation units, and these manipulation units may be manufactured as a key pad, a touch pad (static pressure/capacitance), a wheel key, a jog switch, or the like.
통신부(150)는 사용자 단말과 유무선 통신을 수행한다.The communication unit 150 performs wired/wireless communication with the user terminal.
예를 들어, 통신부(150)는 USB(Universal Serial Bus) 모듈, 블루투스(Bluetooth) 모듈, 와이파이(wifi) 모듈 등을 포함할 수 있으며, 블루투스(Bluetooth) 또는 와이파이(wifi)와 같은 근거리 무선통신이나 USB와 같은 근거리 유선통신을 이용하여, 스마트폰이나 데스크탑 PC와 같은 사용자 단말로 데이터를 전송할 수 있다.For example, the communication unit 150 may include a USB (Universal Serial Bus) module, a Bluetooth module, a Wi-Fi module, etc., and short-range wireless communication such as Bluetooth or Wi-Fi or Data can be transmitted to a user terminal such as a smart phone or a desktop PC using short-distance wired communication such as USB.
제어부(160)는 기본적으로, 본 발명의 실시예에 따른 방광 모니터링 장치(100)의 전반적인 동작을 제어한다.The controller 160 basically controls the overall operation of the bladder monitoring apparatus 100 according to the embodiment of the present invention.
즉, 제어부(160)는 광조사부(110) 및 광검출부(120)가 각각 방광 부위에 다파장의 근적외선을 조사하고, 방광 부위로부터 반사 및 확산된 광신호의 파장별 반사신호세기를 측정하도록 제어할 수 있다.That is, the control unit 160 controls the light irradiator 110 and the light detection unit 120 to irradiate multi-wavelength near-infrared rays to the bladder region, respectively, and measure the reflected signal intensity for each wavelength of the optical signal reflected and diffused from the bladder region. can do.
또한, 제어부(160)는 측정된 광신호의 파장별 신호세기를 이용하여 검출된 확산광(Diffuse optics)의 분석을 통해 방광 내의 수분함량을 측정함으로써, 방광 내 소변량을 측정한다.In addition, the controller 160 measures the amount of urine in the bladder by measuring the moisture content in the bladder through the analysis of the detected diffuse optics using the signal intensity for each wavelength of the measured optical signal.
즉, 제어부(160)는 반사 및 확산된 광신호의 측정된 파장별 반사신호세기를 이용하여 반사도(Reflectance)를 산출하고, 산출된 반사도를 이용하여 파장별 광흡수도를 산출하고, 산출된 파장별 광흡수도를 이용하여 방광 내의 수분함량을 산출할 수 있다.That is, the controller 160 calculates a reflectance by using the measured reflected signal intensity for each wavelength of the reflected and diffused optical signal, calculates the light absorbance for each wavelength using the calculated reflectance, and calculates the calculated wavelength The water content in the bladder can be calculated using the light absorbance of each star.
이때, 제어부(160)는 파장별 광흡수도를 이용하여 방광의 수분함량과 함께, 혈류량을 산출할 수 있다.In this case, the controller 160 may calculate the blood flow along with the moisture content of the bladder by using the light absorption for each wavelength.
도 3 및 도 4를 참조하면, 근적외선 대역에는, 콜라겐(collagen), 체수분(water), 지방(lipid), 탈산화 헤모글로빈(HHb), 산화 헤모글로빈(O2Hb) 등의 85% 이상의 생체조직 성분의 광흡수 피크가 존재한다. 여기서, 탈산화 헤모글로빈(HHb) 및 산화 헤모글로빈(O2Hb)는 혈류량 지표이다. 따라서, 방광 내의 수분함량의 측정을 통해 방광 내에 채워진 소변의 양 측정이 가능하며, 방광의 탈산화 헤모글로빈(HHb) 및 산화 헤모글로빈(O2Hb)의 양 측정을 통해 방광의 혈류량이 산출될 수 있다. 체수분의 광흡수 피크가 존재하는 파장은 960nm, 1180nm, 1440nm 등이다.3 and 4, in the near-infrared band, collagen, body water (water), fat (lipid), deoxidized hemoglobin (HHb), oxidized hemoglobin (O2Hb) of 85% or more of biological tissue components such as light There is an absorption peak. Here, deoxidized hemoglobin (HHb) and oxidized hemoglobin (O2Hb) are blood flow indicators. Therefore, it is possible to measure the amount of urine filled in the bladder by measuring the moisture content in the bladder, and the blood flow in the bladder can be calculated by measuring the amounts of deoxidized hemoglobin (HHb) and oxidized hemoglobin (O2Hb) in the bladder. The wavelength at which the light absorption peak of body water exists is 960 nm, 1180 nm, 1440 nm, and the like.
예를 들어, 물의 광흡수 피크는 근적외선 파장 중 960nm, 1180nm, 1440nm 등의 파장에 존재하므로, 도 4에 도시된 바와 같이, 물의 광흡수 피크 파장과 둔감한 650nm~900nm 대역의 파장을 가지는 근적외선을 조사하도록 광조사부(110)가 제어될 수 있다.For example, since the light absorption peak of water exists at wavelengths such as 960 nm, 1180 nm, and 1440 nm among the near-infrared wavelengths, as shown in FIG. The light irradiator 110 may be controlled to irradiate.
제어부(160)는 방광 내의 수분함량을 측정하기 위하여 우선, 광조사부(110)가 조사하는 근적외선의 조사신호세기에 대하여, 방광 부위로부터 반사 및 확산된 광신호의 반사신호세기의 비율을 산출함으로써, 반사도를 산출할 수 있다.In order to measure the moisture content in the bladder, the controller 160 first calculates the ratio of the reflected signal intensity of the light signal reflected and diffused from the bladder part to the irradiation signal intensity of the near-infrared irradiated by the light irradiator 110, reflectivity can be calculated.
그리고, 제어부(160)는 하기 수학식을 이용하여 파장별 광흡수도를 산출할 수 있다.And, the control unit 160 may calculate the light absorption for each wavelength using the following equation.
[수학식 1][Equation 1]
Figure PCTKR2021008897-appb-I000001
Figure PCTKR2021008897-appb-I000001
여기서, R(ρ)는 반사도이고, ρ=(x, y)이고, a'는 표면에서의 반사율을 나타내는 알베도(albedo)로서, a' = μ's / (μa + μ's)이고, μa는 광흡수도이고, μ's는 광산출도이고, z0는 관심영역(ROI: Region of Interest)으로부터 측정표면(방광 부위의 피부표면) 까지의 거리로서, z0 = (μa + μ's)-1이고, μeff는 유효감쇄계수(effective attenuation coefficient)로서, μeff = [3 μaa + μ's)]1/2이고, r1는 관심영역으로부터 양의 광소스(positive impulse source)까지의 거리로서, r1 = [(z - z0)2 + ρ 2]1/2이고, zb는 Extrapolate boundary condition의 핵심으로서, 광자의 Flux가 사라진다고 가정하는 가상경계의 값이고, r2는 관심영역으로부터 음의 광소스(negative impulse source)까지의 거리로서, r2 = [(z + z0 + 2zb)2 + ρ 2]1/2이다.Here, R(ρ) is the reflectance, ρ=(x, y), a' is the albedo indicating the reflectance at the surface, a' = μ' s / (μ a + μ' s ), and , μ a is the light absorption, μ' s is the light output, z 0 is the distance from the region of interest (ROI) to the measurement surface (the skin surface of the bladder region), z 0 = (μ a + μ' s ) -1 , μ eff is the effective attenuation coefficient, μ eff = [3 μ aa + μ' s )] 1/2 , r 1 is positive from the region of interest As the distance to the positive impulse source of , r 1 = [(z - z 0 ) 2 + ρ 2 ] 1/2 , and z b is the core of the Extrapolate boundary condition, which assumes that the flux of photons disappears. The value of the virtual boundary, r 2 is the distance from the region of interest to the negative impulse source, and r 2 = [(z + z 0 + 2z b ) 2 + ρ 2 ] 1/2 .
[수학식 2][Equation 2]
Figure PCTKR2021008897-appb-I000002
Figure PCTKR2021008897-appb-I000002
여기서, R(ρ)는 반사도이고, Rexp(ρ)는 실험시스템을 이용하여 생리학적인 조직에서 측정된 반사도의 실험값(experimental R)이고, α는 실험시스템에 설정된 시스템파라미터이다.Here, R(ρ) is the reflectivity, R exp (ρ) is the experimental value (experimental R) of the reflectance measured in the physiological tissue using the experimental system, and α is the system parameter set in the experimental system.
수학식 1과 수학식 2에서, 광흡수도 μa, 광산출도 μ's 및 시스템파라미터 α는 미지수이다. 이러한 3개의 미지수의 해를 계산하기 위해서는 적어도 3개의 방정식이 필요하므로, 각각 도 5에 도시된 바와 같이, 1개의 광원(111) 및 최소 3개의 광센서(121)가 필요하다. 즉, 3개의 지점에서 측정된 반사신호세기를 이용하여, 수학식 1 및 2로부터, 광흡수도 μa, 광산출도 μ's 및 시스템파라미터 α의 3개 미지수에 대한 3개의 방정식이 생성될 수 있고, 생성된 3개의 방정식으로부터, 광흡수도 μa, 광산출도 μ's 및 시스템파라미터 α의 값이 산출될 수 있다.In Equations 1 and 2, the light absorption μ a , the light output μ′ s and the system parameter α are unknown. Since at least three equations are required to calculate the solutions of these three unknowns, one light source 111 and at least three photosensors 121 are required, respectively, as shown in FIG. 5 . That is, using the reflected signal intensity measured at three points, from Equations 1 and 2, three equations for the three unknowns of the light absorption μ a , the light output μ' s and the system parameter α will be generated. and values of the light absorption μ a , the light output μ′ s and the system parameter α can be calculated from the generated three equations.
그리고, 제어부(160)는 산출된 광흡수도로부터 하기 수학식을 이용하여 제1 측정영역(10)의 수분함량을 산출할 수 있다.Then, the control unit 160 may calculate the moisture content of the first measurement region 10 using the following equation from the calculated light absorption.
[수학식 3][Equation 3]
Figure PCTKR2021008897-appb-I000003
Figure PCTKR2021008897-appb-I000003
여기서,
Figure PCTKR2021008897-appb-I000004
,
Figure PCTKR2021008897-appb-I000005
,
Figure PCTKR2021008897-appb-I000006
Figure PCTKR2021008897-appb-I000007
는 각각 산화 헤모글로빈(O2Hb), 탈산화 헤모글로빈(HHb), 체수분(water) 및 지방(lipid)의 파장별 광소멸계수(extinction rate)이고, [O2Hb], [HHb], [water] 및 [lipid]는 각각 산화 헤모글로빈(O2Hb), 탈산화 헤모글로빈(HHb), 체수분(water) 및 지방(lipid)의 함량이고,
Figure PCTKR2021008897-appb-I000008
는 파장별 광흡수도이다.
here,
Figure PCTKR2021008897-appb-I000004
,
Figure PCTKR2021008897-appb-I000005
,
Figure PCTKR2021008897-appb-I000006
and
Figure PCTKR2021008897-appb-I000007
is the extinction rate for each wavelength of oxidized hemoglobin (O2Hb), deoxidized hemoglobin (HHb), body water (water) and lipid (lipid), [O2Hb], [HHb], [water] and [lipid] ] is the content of oxidized hemoglobin (O2Hb), deoxidized hemoglobin (HHb), body water (water) and fat (lipid), respectively,
Figure PCTKR2021008897-appb-I000008
is the light absorption by wavelength.
수학식 3에서, 산화 헤모글로빈(O2Hb), 탈산화 헤모글로빈(HHb), 체수분(water) 및 지방(lipid)의 함량은 최소자승법을 이용하여 산출될 수 있으며, 산화 헤모글로빈(O2Hb)과 탈산화 헤모글로빈(HHb)의 함량은 mol 단위의 절대값으로 산출되고, 체수분(water)과 지방(lipid)의 함량은 % 단위의 상대값으로 산출될 수 있다.In Equation 3, the contents of oxidized hemoglobin (O2Hb), deoxidized hemoglobin (HHb), body water (water) and fat (lipid) can be calculated using the least squares method, and oxidized hemoglobin (O2Hb) and deoxidized hemoglobin ( The content of HHb) may be calculated as an absolute value in mol unit, and the content of body water (water) and fat (lipid) may be calculated as a relative value in % unit.
본 발명의 실시예에 따르면, 광조사부(110) 및 광검출부(120)는 각각, 1개의 광원(111) 및 최소 5개의 광센서(121)를 포함하여 구성될 수 있다.According to an embodiment of the present invention, the light irradiation unit 110 and the light detection unit 120 may be configured to include one light source 111 and at least five photosensors 121 , respectively.
즉, 도 6을 참조하면, 방광(30)은 피부층(11) 아래쪽의 내장층(12)에 위치하므로, 방광(30)에서 반사 및 확산된 광신호를 획득하기 위하여 광원(111)으로부터 충분히 떨어진 R4 및 R5와 같은 추가적인 광센서(121)가 필요하다. 따라서, 전술한 바와 같이 방광 내의 수분함량의 산출을 위해서는 최소 3개의 광센서(121)가 필요하므로, 도 6에 도시된 바와 같이, 광검출부(120)는 5개(R1, R2, R3, R4 및 R5)의 광센서(121)로 구성될 수 있다.That is, referring to FIG. 6 , since the bladder 30 is located in the visceral layer 12 under the skin layer 11 , it is sufficiently far away from the light source 111 to obtain the optical signal reflected and diffused from the bladder 30 . Additional photosensors 121 such as R 4 and R 5 are required. Therefore, as described above, since at least three photosensors 121 are required to calculate the moisture content in the bladder, as shown in FIG. 6 , the photodetector 120 includes five (R 1 , R 2 , R ). 3 , R 4 and R 5 ) of the photosensor 121 may be configured.
그래서, 제어부(160)는 R1, R2 및 R3의 광센서(121)를 이용하여 산출된 제1 측정영역(10)의 제1 수분함량을 산출하고, R3, R4 및 R5의 광센서(121)를 이용하여 산출된 제2 측정영역(20)의 제2 수분함량을 산출하고, 제2 수분함량에서 제1 수분함량을 빼서 방광(30) 내의 수분함량을 산출할 수 있다.Therefore, the control unit 160 calculates the first moisture content of the first measurement region 10 calculated using the optical sensor 121 of R 1 , R 2 , and R 3 , and R 3 , R 4 and R 5 . The second moisture content of the second measurement region 20 calculated using the optical sensor 121 of .
한편, 수분함량과 함께 산출되는 산화 헤모글로빈(O2Hb) 및 탈산화 헤모글로빈(HHb)의 양은, 혈류량의 변화 관찰을 통한 방광 상태 모니터링에 이용되거나, 장기간동안 빅데이터로 축적되어 빅데이터 분석을 통한 개인 방광의 상태 분석에 이용될 수 있다.On the other hand, the amount of oxidized hemoglobin (O2Hb) and deoxidized hemoglobin (HHb) calculated together with the water content is used for monitoring the condition of the bladder by observing changes in blood flow, or accumulated as big data for a long period of time, and personal bladder through big data analysis can be used for state analysis.
도 7 및 도 8은 본 발명의 실시예에 따른 방광 모니터링 장치를 구현한 예를 나타낸 도면이고, 도 9는 도 7 또는 도 8과 같이 구현된 방광 모니터링 장치의 사용예를 나타낸 도면이다.7 and 8 are diagrams showing an example of implementing a bladder monitoring device according to an embodiment of the present invention, and FIG. 9 is a diagram showing an example of using the bladder monitoring device implemented as in FIG. 7 or 8 .
도 7을 참조하면, 본 발명의 실시예에 따른 방광 모니터링 장치(100)는, 하나의 광원(111) 및 광원(111)으로부터 순차적으로 멀어지도록 배치된 5개의 광센서(121)가 장착된 측정용 기판(160) 및 복수의 전자부품(175)이 장착된 제어용 기판(170)으로 구성되어 구현될 수 있다.Referring to FIG. 7 , the bladder monitoring apparatus 100 according to an embodiment of the present invention is a measurement in which one light source 111 and five optical sensors 121 arranged to be sequentially away from the light source 111 are mounted. It may be implemented by being composed of a board for control 160 and a board for control 170 on which a plurality of electronic components 175 are mounted.
즉, 측정용 기판(160)에는, 전술한 광조사부(110) 및 광검출부(120)가 구현되며, 제어용 기판(170)에 장착되는 복수의 전자부품(175)을 이용하여, 광조사부(110) 및 광검출부(120) 외의 구성 즉, 출력부(130), 입력부(140), 통신부(150), 제어부(160) 등이 구현될 수 있다. 또한, 제어용 기판(170)에는 전원공급을 위한 배터리 모듈과 연결되는 전원 인터페이스가 구현될 수 있다.That is, the light irradiation unit 110 and the light detection unit 120 described above are implemented in the measurement substrate 160 , and the light irradiation unit 110 using a plurality of electronic components 175 mounted on the control substrate 170 . ) and a configuration other than the photodetector 120 , that is, the output unit 130 , the input unit 140 , the communication unit 150 , the control unit 160 , and the like may be implemented. In addition, a power interface connected to a battery module for supplying power may be implemented on the control board 170 .
여기서, 측정용 기판(160) 및 제어용 기판(170)은 각각 커넥터(161, 171)를 구비하며, 구비된 커넥터(161, 171)를 통해 전기적으로 연결될 수 있다.Here, the measurement board 160 and the control board 170 are provided with connectors 161 and 171 , respectively, and may be electrically connected through the provided connectors 161 and 171 .
측정용 기판(160)은 방광 부위에 광을 조사하고 반사된 광을 검출하기 위하여 환자의 피부에 직접 접촉하므로, 플렉서블(Flexible)한 재질로 형성될 수 있다.The measurement substrate 160 irradiates light to the bladder region and directly contacts the patient's skin in order to detect the reflected light, and thus may be formed of a flexible material.
이와 같이 구현되는 방광 모니터링 장치(100)는, 전체적으로 플렉서블(Flexible)한 패치(Patch) 형태를 가질 수 있으며, 별도의 부착수단을 구비하여 사용자의 몸에 부착되어 동작될 수 있다.The bladder monitoring apparatus 100 implemented in this way may have a flexible patch shape as a whole, and may be operated by being attached to the user's body by providing a separate attachment means.
도 8을 참조하면, 방광 모니터링 장치(100)는, 광원 모듈(185) 및 조작용 버튼(181)이 장착된 본체(180) 및 본체(180) 양측에 결합되며 광센서 어레이 모듈(197, 198) 및 접착부(195, 196)가 장착된 한 쌍의 패드(191, 192)로 구성되어 구현될 수 있다.Referring to FIG. 8 , the bladder monitoring device 100 is coupled to both sides of the body 180 and the body 180 to which the light source module 185 and the operation button 181 are mounted, and the optical sensor array modules 197 and 198 ) and a pair of pads 191 and 192 to which the adhesive parts 195 and 196 are mounted can be implemented.
즉, 본체(180)에는, 전술한 광조사부(110), 출력부(130), 입력부(140), 통신부(150), 제어부(160) 등이 구현될 수 있으며, 전원공급을 위하여 충전 가능한 배터리가 장착될 수 있다. 본체(180)에 장착된 조작용 버튼(181)은 입력부(140) 중 하나일 수 있다. 그리고, 광원 모듈(185)을 구성하는 복수의 광원(111)은 600~1100nm 대역에서 최소 4개의 다파장 광을 발생시킬 수 있다.That is, in the main body 180, the above-described light irradiation unit 110, output unit 130, input unit 140, communication unit 150, control unit 160, etc. may be implemented, and a rechargeable battery for power supply. can be installed. The operation button 181 mounted on the main body 180 may be one of the input units 140 . In addition, the plurality of light sources 111 constituting the light source module 185 may generate at least four multi-wavelength lights in a band of 600 to 1100 nm.
패드(191, 192)에는 광센서 어레이 모듈(197, 198)이 장착되는데, 도 8에 도시된 바와 같이, 광센서 어레이 모듈(197, 198)은 다수의 광센서(121)가 매트릭스 형태로 배열되어 형성될 수 있다.The photosensor array modules 197 and 198 are mounted on the pads 191 and 192. As shown in FIG. 8, the photosensor array modules 197 and 198 have a plurality of photosensors 121 arranged in a matrix form. can be formed.
또한, 패드(191, 192)에는 접착부(195, 196)가 장착되는데, 접착부(195, 196)는 피부에 부착되어 방광 모니터링 장치(100)를 사용자의 몸에 부착하기 위한 역할을 한다.In addition, adhesive parts 195 and 196 are mounted on the pads 191 and 192 , and the adhesive parts 195 and 196 are attached to the skin and serve to attach the bladder monitoring device 100 to the user's body.
본체(180)와 패드(191, 192)는 별도의 탈부착 수단을 구비하여 서로 탈부착되도록 구성될 수 있다. 그리고, 패드(191, 192)는 1회용으로 사용하도록 제작되어 사용자가 쓰고 버릴 수 있다. 반면에, 본체(180)는 배터리 충전을 통해 지속적으로 사용할 수 있다. 즉, 패드(191, 192)는 사용 후, 본체(180)로부터 분리되어 버려질 수 있다.The body 180 and the pads 191 and 192 may be configured to be detachably attached to each other by providing separate attachment and detachment means. In addition, the pads 191 and 192 are manufactured for one-time use and can be used and thrown away by the user. On the other hand, the main body 180 can be continuously used by charging the battery. That is, the pads 191 and 192 may be separated from the body 180 and discarded after use.
이와 같은 방광 모니터링 장치(100)는, 도 9에 도시된 바와 같이, 사용자의 배에서 방광(35)이 위치하는 부위에 부착되어, 전술한 바와 같이 방광(35) 내의 소변량을 측정할 수 있다.As shown in FIG. 9 , the bladder monitoring device 100 may be attached to a portion of the user's stomach where the bladder 35 is located, and may measure the amount of urine in the bladder 35 as described above.
도 10은 본 발명의 실시예에 따른 방광 모니터링 방법이 수행되는 시스템의 구성을 개략적으로 예시하여 나타낸 도면이고, 도 11은 본 발명의 실시예에 따른 방광 모니터링 방법을 나타낸 흐름도이고, 도 12는 본 발명의 실시예에 따른 방광 모니터링 방법을 설명하기 위한 도면이다. 이하, 도 10 내지 도 12를 참조하여, 본 발명의 실시예에 따른 방광 모니터링 방법을 설명하기로 한다.10 is a diagram schematically illustrating the configuration of a system in which a bladder monitoring method according to an embodiment of the present invention is performed, FIG. 11 is a flowchart showing a bladder monitoring method according to an embodiment of the present invention, and FIG. It is a diagram for explaining a bladder monitoring method according to an embodiment of the present invention. Hereinafter, a bladder monitoring method according to an embodiment of the present invention will be described with reference to FIGS. 10 to 12 .
우선, 도 10을 참조하면, 시스템은 방광 모니터링 장치(100), 사용자 단말(200) 및 방광 모니터링 서버(400)를 포함하여 구성될 수 있다.First, referring to FIG. 10 , the system may include a bladder monitoring device 100 , a user terminal 200 , and a bladder monitoring server 400 .
도 11을 참조하면, S1010 단계에서, 방광 모니터링 장치(100)는 방광 내의 소변량을 주기적으로 측정하여 측정된 소변량 데이터를 사용자 단말(200)로 전송한다. Referring to FIG. 11 , in step S1010 , the bladder monitoring apparatus 100 periodically measures the amount of urine in the bladder and transmits the measured urine amount data to the user terminal 200 .
즉, 방광 모니터링 장치(100)는 전술한 바와 같이, 방광으로 다파장의 근적외선을 조사하고, 근적외선 조사에 따라 방광으로부터 반사 및 확산된 광신호의 파장별 반사신호세기를 측정하고, 측정된 반사신호세기를 이용하여 반사도를 산출하고, 산출된 반사도를 이용하여 광흡수도를 산출하고, 산출된 광흡수도를 이용하여 방광 내의 수분함량을 소변량으로 산출할 수 있다.That is, as described above, the bladder monitoring apparatus 100 irradiates multi-wavelength near-infrared rays to the bladder, measures the reflected signal intensity for each wavelength of the optical signal reflected and diffused from the bladder according to the near-infrared irradiation, and the measured reflected signal The reflectance may be calculated using the intensity, the light absorbance may be calculated using the calculated reflectivity, and the moisture content in the bladder may be calculated as urine volume using the calculated light absorbance.
S1020 단계에서, 사용자 단말(200)은 소변량 데이터의 수신에 따라 사용자가 소변량을 모니터링하도록 도 9에 도시된 바와 같이, 방광 용량 대비 소변량의 비율(%)을 텍스트, 애니메이션 등으로 시각화하여 출력할 수 있다.In step S1020, the user terminal 200 may visualize and output the ratio (%) of the urine volume to the bladder capacity in text, animation, etc. as shown in FIG. 9 so that the user monitors the urine volume according to the reception of the urine volume data. have.
S1030 단계에서, 사용자 단말(200)은 방광 용량 대비 소변량의 비율(%)이 임계치를 초과하는지 여부를 판단한다.In step S1030, the user terminal 200 determines whether the ratio (%) of the urine volume to the bladder capacity exceeds a threshold.
S1040 단계에서, 사용자 단말(200)은 방광 용량 대비 소변량의 비율(%)이 임계치를 초과하는 경우, 시각 및 청각적인 알람신호를 출력한다.In step S1040, when the ratio (%) of the urine volume to the bladder capacity exceeds the threshold, the user terminal 200 outputs a visual and audible alarm signal.
이때, 사용자 단말(200)은 도 10에 도시된 바와 같이, 사용자가 착용하는 스마트워치와 같은 웨어러블 기기(210)와 연동되어 있는 경우, 소변량의 임계치 초과를 알리기 위하여 웨어러블 기기(210)로 알람발생 명령을 전송할 수 있다. 이에 따라, 웨어러블 기기(210)는 진동이나 소리로 알람신호를 출력하고 소변량이 임계치가 초과했음을 나타내는 메시지를 출력할 수 있다.At this time, when the user terminal 200 is interlocked with a wearable device 210 such as a smart watch worn by the user, as shown in FIG. command can be sent. Accordingly, the wearable device 210 may output an alarm signal through vibration or sound and may output a message indicating that the amount of urine exceeds a threshold.
이러한 알람신호의 출력에 따라 사용자는 배뇨를 수행할 수 있으며, 배뇨에 따라 방광 용량 대비 소변량의 비율이 임계치 미만으로 감소하게 되면, 사용자 단말(200)은 알람신호의 출력을 중지할 수 있으며, 웨어러블 기기(210)로도 알람중지 명령을 전송할 수 있다.The user can urinate according to the output of the alarm signal, and when the ratio of the urine volume to the bladder capacity according to urination decreases to less than a threshold value, the user terminal 200 can stop the output of the alarm signal, and the wearable The device 210 may also transmit an alarm stop command.
전술한 S1020 단계에서, 방광 모니터링 장치(100)는 근적외선 조사에 따라 방광으로부터 반사된 광신호를 이용하여, 방광 내의 소변량을 산출할 뿐만 아니라, 방광의 탈산화 헤모글로빈(HHb) 및 산화 헤모글로빈(O2Hb)의 양 측정을 통해 혈류량을 산출할 수 있다.In the above-described step S1020, the bladder monitoring device 100 not only calculates the amount of urine in the bladder, but also deoxidized hemoglobin (HHb) and oxidized hemoglobin (O2Hb) in the bladder by using the optical signal reflected from the bladder according to the near-infrared irradiation. By measuring the amount of blood flow can be calculated.
즉, 방광 모니터링 장치(100)는 소변량 데이터 뿐만 아니라, 혈류량 데이터를 사용자 단말(200)로 전송할 수 있으며, 사용자 단말(200)은 혈류량 데이터의 수신에 따라 사용자가 혈류량을 모니터링하도록 혈류량의 변화를 출력할 수 있다.That is, the bladder monitoring apparatus 100 may transmit not only urine volume data but also blood flow data to the user terminal 200 , and the user terminal 200 outputs a change in blood flow so that the user monitors blood flow according to the reception of the blood flow data. can do.
예를 들어, 사용자 단말(200)은 도 12에 도시된 바와 같은 혈류량 변화 그래프로 혈류량 변화를 나타낼 수 있다.For example, the user terminal 200 may indicate the blood flow change in a blood flow change graph as shown in FIG. 12 .
도 12에 도시된 그래프는 연령에 따른 탈산화 헤모글로빈(HHb) 및 산화 헤모글로빈(O2Hb)의 양 변화를 나타낸다. 즉, 도 12의 (a)는 7세 여야, 도 12의 (b)는 31세 남자, 도 12의 (c)는 43세 여자의 소변 배출 시 측정된 혈류량 변화를 나타낸다. 도 12에 도시된 바와 같이, 나이가 많을수록 소변 배출 중 방광의 혈류 움직임이 약한 것을 알 수 있다.The graph shown in FIG. 12 shows changes in the amounts of deoxidized hemoglobin (HHb) and oxidized hemoglobin (O 2 Hb) according to age. That is, Fig. 12 (a) shows the change in blood flow measured when the urine is discharged from a 7-year-old, (b) of FIG. 12 (b) is a 31-year-old male, and (c) of FIG. 12 is a 43-year-old female. As shown in FIG. 12 , it can be seen that as the age increases, the movement of blood flow in the bladder during urine discharge is weaker.
그러나, 이와 같은 혈류량 변화 관찰을 통한 방광 모니터링은 단순히, 나이에 따른 차이나 혈류량의 정상 수치 여부를 확인될 수 있을 뿐, 개인의 방광 상태의 진단이 정확히 이루어질 수 없다.However, bladder monitoring through observation of changes in blood flow as described above can simply confirm a difference according to age or a normal level of blood flow, and cannot accurately diagnose an individual's bladder condition.
따라서, 개인의 방광 상태를 보다 정확히 모니터링하기 위해서는, 방광 모니터링 장치(100)를 이용하여 주기적으로 측정된 혈류량 데이터 및 소변량 데이터의 축적이 필요하다.Accordingly, in order to more accurately monitor an individual's bladder condition, it is necessary to accumulate blood flow data and urine volume data periodically measured using the bladder monitoring apparatus 100 .
즉, 본 발명의 실시예에 따르면, 사용자 단말(200)은 전술한 방광 모니터링 방법을 수행하는 방광 모니터링 어플리케이션을 탑재할 수 있다. 그래서, 사용자 단말(200)은 방광 모니터링 어플리케이션을 구동하여, 방광 모니터링 방법을 수행하는 한편, 사용자 단말(200)의 사용자의 방광의 혈류량 데이터 및 소변량 데이터를 축적하여 개인화 데이터를 생성할 수 있다. 여기서, 개인화 데이터는 스몰 데이터(small data)라 할 수 있다. 이 스몰 데이터를 이용하여 개인 맞춤형 방광 진단 및 치료가 이루어질 수 있다.That is, according to an embodiment of the present invention, the user terminal 200 may be equipped with a bladder monitoring application for performing the above-described bladder monitoring method. Thus, the user terminal 200 may generate personalized data by driving the bladder monitoring application to perform the bladder monitoring method, while accumulating blood flow data and urine volume data of the user's bladder of the user terminal 200 . Here, the personalized data may be referred to as small data. Using this small data, personalized bladder diagnosis and treatment can be made.
다시, 도 10을 참조하면, 방광 모니터링 서버(400)는 사용자 단말(200)로부터 해당 사용자의 스몰 데이터를 수신하여 빅데이터를 생성할 수 있다. 즉, 방광 모니터링 서버(400)는 다수의 사용자 단말(200)로부터 여러 사용자의 스몰 데이터를 축적함으로써, 방광의 혈류량에 대한 빅데이터를 생성할 수 있다.Again, referring to FIG. 10 , the bladder monitoring server 400 may receive the user's small data from the user terminal 200 to generate big data. That is, the bladder monitoring server 400 may generate big data on the blood flow in the bladder by accumulating small data of several users from the plurality of user terminals 200 .
도 13 및 도 14는 본 발명의 실시예에 따른 소변 배출기를 예시하여 나타낸 도면이다.13 and 14 are views exemplarily showing a urine discharger according to an embodiment of the present invention.
도 13 및 도 14를 참조하면, 본 발명의 실시예에 따른 소변 배출기(300)는 초소형의 자기장 밸브펌프(310) 및 리모트 컨트롤러(320)를 포함하여 구성될 수 있다.13 and 14 , the urine discharger 300 according to an embodiment of the present invention may be configured to include a miniature magnetic field valve pump 310 and a remote controller 320 .
자기장 밸브펌프(310)는 환자의 요도에 삽입되며, 리모트 컨트롤러(320)로부터 무선으로 구동명령신호를 수신하면 구동하여, 환자의 방광 내에 채워진 소변을 외부로 배출시킨다.The magnetic field valve pump 310 is inserted into the urethra of the patient, and is driven when receiving a drive command signal wirelessly from the remote controller 320 to discharge urine filled in the patient's bladder to the outside.
리모트 컨트롤러(320)는 사용자가 구동명령을 입력하는 버튼을 구비하며, 버튼을 통해 구동명령을 입력받으면 자기장 밸브펌프(310)로 무선으로 구동명령신호를 전송한다.The remote controller 320 includes a button for the user to input a driving command, and when receiving a driving command through the button, wirelessly transmits a driving command signal to the magnetic field valve pump 310 .
예를 들어, 리모트 컨트롤러(320)는 버튼이 눌려지면 자기장을 발생시키고, 발생된 자기장이 자기장 밸브펌프(310)에 인가됨으로써, 자기장 밸브펌프(310)가 활성화되어 구동할 수 있다.For example, the remote controller 320 generates a magnetic field when a button is pressed, and the generated magnetic field is applied to the magnetic field valve pump 310 , thereby activating and driving the magnetic field valve pump 310 .
예를 들어, 리모트 컨트롤러(320)는 통신 기능을 구비하여 방광 모니터링 장치(100) 또는 사용자 단말(200)로부터 구동명령을 수신할 수 있으며, 방광 모니터링 장치(100) 또는 사용자 단말(200)로부터 구동명령이 수신되면 자기장 밸브펌프(310)로 구동명령신호를 전송할 수 있다.For example, the remote controller 320 may receive a driving command from the bladder monitoring device 100 or the user terminal 200 having a communication function, and may be driven from the bladder monitoring device 100 or the user terminal 200 . When the command is received, a driving command signal may be transmitted to the magnetic field valve pump 310 .
상기한 본 발명의 실시예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대한 통상의 지식을 가지는 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 하기의 특허청구범위에 속하는 것으로 보아야 할 것이다.The above-described embodiments of the present invention have been disclosed for purposes of illustration, and various modifications, changes, and additions will be possible within the spirit and scope of the present invention by those skilled in the art having ordinary knowledge of the present invention, and such modifications, changes and additions should be considered as belonging to the following claims.

Claims (14)

  1. 방광 모니터링 장치에 있어서,A bladder monitoring device comprising:
    상기 방광으로 다파장의 근적외선(NIR: Near Infrared)을 조사하는 광조사부;a light irradiator for irradiating multi-wavelength near infrared (NIR) to the bladder;
    상기 방광으로부터 반사 및 확산된 광신호의 파장별 반사신호세기를 측정하며, 상기 광조사부로부터 순차적으로 멀어지도록 배치된 복수의 광센서를 포함하는 광검출부; 및a photodetector for measuring the reflected signal intensity for each wavelength of the optical signal reflected and diffused from the bladder, the photodetector including a plurality of photosensors disposed to be sequentially away from the light irradiator; and
    상기 측정된 반사신호세기를 이용하여 반사도(Reflectance)를 산출하고, 상기 산출된 반사도를 이용하여 광흡수도를 산출하고, 상기 산출된 광흡수도를 이용하여 상기 방광 내의 수분함량을 산출함으로써, 상기 소변량을 산출하는 제어부를 포함하는 방광 모니터링 장치.By calculating the reflectance (Reflectance) using the measured reflected signal strength, calculating the light absorbance using the calculated reflectance, and calculating the moisture content in the bladder using the calculated light absorbance, the Bladder monitoring device comprising a control unit for calculating the amount of urine.
  2. 제1항에 있어서,According to claim 1,
    상기 제어부는 상기 근적외선의 조사신호세기에 대한 상기 반사신호세기의 비율을 상기 반사도로 산출하는 것을 특징으로 하는 방광 모니터링 장치.The control unit bladder monitoring device, characterized in that for calculating the ratio of the reflected signal strength to the irradiation signal strength of the near-infrared light as the reflectivity.
  3. 제1항에 있어서,According to claim 1,
    상기 제어부는 하기 수학식을 이용하여 상기 광흡수도를 산출하는 것을 특징으로 하는 방광 모니터링 장치.The controller is a bladder monitoring device, characterized in that for calculating the light absorption by using the following equation.
    Figure PCTKR2021008897-appb-I000009
    Figure PCTKR2021008897-appb-I000009
    Figure PCTKR2021008897-appb-I000010
    Figure PCTKR2021008897-appb-I000010
    여기서, R(ρ)는 반사도이고, ρ=(x, y)이고, a'는 표면에서의 반사율을 나타내는 알베도(albedo)로서, a' = μ's / (μa + μ's)이고, μa는 광흡수도이고, μ's는 광산출도이고, z0는 관심영역(ROI: Region of Interest)으로부터 측정표면(방광 부위의 피부표면) 까지의 거리로서, z0 = (μa + μ's)-1이고, μeff는 유효감쇄계수(effective attenuation coefficient)로서, μeff = [3 μaa + μ's)]1/2이고, r1는 관심영역으로부터 양의 광소스(positive impulse source)까지의 거리로서, r1 = [(z - z0)2 + ρ 2]1/2이고, zb는 Extrapolate boundary condition의 핵심으로서, 광자의 Flux가 사라진다고 가정하는 가상경계의 값이고, r2는 관심영역으로부터 음의 광소스(negative impulse source)까지의 거리로서, r2 = [(z + z0 + 2zb)2 + ρ 2]1/2이고, Rexp(ρ)는 실험시스템을 이용하여 생리학적인 조직에서 측정된 반사도의 실험값(experimental R)이고, α는 실험시스템에 설정된 시스템파라미터임Here, R(ρ) is the reflectance, ρ=(x, y), a' is the albedo indicating the reflectance at the surface, a' = μ' s / (μ a + μ' s ), and , μ a is the light absorption, μ' s is the light output, z 0 is the distance from the region of interest (ROI) to the measurement surface (the skin surface of the bladder region), z 0 = (μ a + μ' s ) -1 , μ eff is the effective attenuation coefficient, μ eff = [3 μ aa + μ' s )] 1/2 , r 1 is positive from the region of interest As the distance to the positive impulse source of , r 1 = [(z - z 0 ) 2 + ρ 2 ] 1/2 , and z b is the core of the Extrapolate boundary condition, which assumes that the flux of photons disappears. is the value of the virtual boundary, r 2 is the distance from the region of interest to the negative impulse source, r 2 = [(z + z 0 + 2z b ) 2 + ρ 2 ] 1/2 , R exp (ρ) is the experimental value (experimental R) of reflectance measured in physiological tissues using the experimental system, and α is the system parameter set in the experimental system.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 광흡수도 μa, 상기 광산출도 μ's 및 상기 시스템파라미터 α는 미지수이되,The light absorption μ a , the light emission μ' s and the system parameter α are unknown,
    상기 광검출부는,The photodetector,
    상기 미지수의 해의 계산을 위한 3개의 방정식을 생성하기 위하여, 최소 3개의 광센서를 포함하는 것을 특징으로 하는 방광 모니터링 장치.and at least three optical sensors to generate three equations for the calculation of the solution of the unknown.
  5. 제1항에 있어서,According to claim 1,
    상기 제어부는 상기 산출된 광흡수도로부터 하기 수학식을 이용하여 상기 수분함량을 산출하는 것을 특징으로 하는 방광 모니터링 장치.The control unit is a bladder monitoring device, characterized in that for calculating the moisture content by using the following equation from the calculated light absorption.
    Figure PCTKR2021008897-appb-I000011
    Figure PCTKR2021008897-appb-I000011
    여기서,
    Figure PCTKR2021008897-appb-I000012
    ,
    Figure PCTKR2021008897-appb-I000013
    ,
    Figure PCTKR2021008897-appb-I000014
    Figure PCTKR2021008897-appb-I000015
    는 각각 산화 헤모글로빈(O2Hb), 탈산화 헤모글로빈(HHb), 체수분(water) 및 지방(lipid)의 파장별 광소멸계수(extinction rate)이고, [O2Hb], [HHb], [water] 및 [lipid]는 각각 산화 헤모글로빈(O2Hb), 탈산화 헤모글로빈(HHb), 체수분(water) 및 지방(lipid)의 함량이고,
    Figure PCTKR2021008897-appb-I000016
    는 파장별 광흡수도임
    here,
    Figure PCTKR2021008897-appb-I000012
    ,
    Figure PCTKR2021008897-appb-I000013
    ,
    Figure PCTKR2021008897-appb-I000014
    and
    Figure PCTKR2021008897-appb-I000015
    is the extinction rate for each wavelength of oxidized hemoglobin (O2Hb), deoxidized hemoglobin (HHb), body water (water) and lipid (lipid), [O2Hb], [HHb], [water] and [lipid] ] is the content of oxidized hemoglobin (O2Hb), deoxidized hemoglobin (HHb), body water (water) and fat (lipid), respectively,
    Figure PCTKR2021008897-appb-I000016
    is the light absorption by wavelength
  6. 제5항에 있어서,6. The method of claim 5,
    상기 광검출부는 상기 광조사부로부터 순차적으로 멀어지도록 배치된 제1 내지 제5 광센서를 포함하되,The photodetector includes first to fifth photosensors disposed sequentially away from the light irradiator,
    상기 제어부는,The control unit is
    상기 제1 내지 제3 광센서를 이용하여 산출된 제1 측정영역의 제1 수분함량을 산출하고, 상기 제3 내지 제5 광센서를 이용하여 산출된 제2 측정영역의 제2 수분함량을 산출하고, 상기 제2 수분함량에서 상기 제1 수분함량을 빼서 상기 방광 내의 수분함량을 산출하는 것을 특징으로 하는 방광 모니터링 장치.The first moisture content of the first measurement region calculated by using the first to third optical sensors is calculated, and the second moisture content of the second measurement region calculated by using the third to fifth optical sensors is calculated. and subtracting the first moisture content from the second moisture content to calculate the moisture content in the bladder.
  7. 제1항에 있어서,According to claim 1,
    상기 방광 모니터링 장치는 상기 소변량을 주기적으로 측정하여 소변량 데이터를 사용자 단말로 전송하되,The bladder monitoring device periodically measures the amount of urine and transmits the data of the amount of urine to the user terminal,
    상기 사용자 단말은 사용자가 소변량을 모니터링하도록 방광 용량 대비 소변량의 비율을 출력하고, 상기 비율이 임계치를 초과하는 경우, 상기 사용자가 배뇨를 수행하도록 알람신호를 출력하는 것을 특징으로 하는 방광 모니터링 장치.The user terminal outputs a ratio of the urine volume to the bladder capacity so that the user can monitor the urine volume, and when the ratio exceeds a threshold, an alarm signal is output to allow the user to urinate.
  8. 제1항에 있어서,According to claim 1,
    상기 방광 모니터링 장치는 플렉서블(Flexible)한 패치(Patch) 형태로 제작되어, 환자의 배에서 상기 방광이 위치하는 부위에 부착되어 상기 소변량을 측정하는 것을 특징으로 하는 방광 모니터링 장치.The bladder monitoring device is manufactured in the form of a flexible patch, and is attached to a portion of the patient's stomach where the bladder is located to measure the amount of urine.
  9. 제1항에 있어서,According to claim 1,
    상기 방광 모니터링 장치는,The bladder monitoring device,
    상기 광조사부의 광원으로 구성된 광원 모듈이 장착된 본체; 및a body mounted with a light source module composed of a light source of the light irradiation unit; and
    상기 본체 양측에 결합되며, 상기 복수의 광센서가 매트릭스 형태로 배열되어 형성된 광센서 어레이 모듈 및 피부에 부착되는 접착부가 장착된 한 쌍의 패드로 구성되되,It is coupled to both sides of the main body, and the plurality of photosensors are arranged in a matrix form, and it consists of an optical sensor array module and a pair of pads equipped with an adhesive part attached to the skin,
    상기 본체는 상기 제어부를 포함하는 것을 특징으로 하는 방광 모니터링 장치.The main body bladder monitoring device, characterized in that it comprises the control unit.
  10. 사용자의 몸에 부착되는 방광 모니터링 장치 및 사용자 단말이 수행하는 방광 모니터링 방법에 있어서,A bladder monitoring device attached to a user's body and a bladder monitoring method performed by a user terminal, the method comprising:
    상기 방광 모니터링 장치가 방광 내의 소변량을 주기적으로 측정하여 측정된 소변량 데이터를 상기 사용자 단말로 전송하는 단계;The bladder monitoring device periodically measuring the amount of urine in the bladder and transmitting the measured urine amount data to the user terminal;
    상기 사용자가 소변량을 모니터링하도록, 상기 사용자 단말이 상기 방광 용량 대비 소변량의 비율을 출력하는 단계;outputting, by the user terminal, a ratio of the amount of urine to the bladder capacity so that the user monitors the amount of urine;
    상기 비율이 임계치를 초과하는 경우, 상기 사용자 단말이 상기 사용자가 배뇨를 수행하도록 알람신호를 출력하는 단계; 및outputting, by the user terminal, an alarm signal so that the user performs urination when the ratio exceeds a threshold; and
    상기 배뇨에 따라 상기 비율이 임계치 미만으로 감소하면, 상기 사용자 단말이 상기 알람신호의 출력을 중지하는 단계를 포함하는 것을 특징으로 하는 방광 모니터링 방법.and when the ratio decreases to less than a threshold according to the urination, stopping, by the user terminal, the output of the alarm signal.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 소변량 데이터를 상기 사용자 단말로 전송하는 단계는,Transmitting the urine volume data to the user terminal comprises:
    상기 방광 모니터링 장치가 상기 방광으로 다파장의 근적외선(NIR: Near Infrared)을 조사하는 단계;irradiating, by the bladder monitoring device, a multi-wavelength near infrared (NIR) to the bladder;
    상기 방광 모니터링 장치가 상기 방광으로부터 반사 및 확산된 광신호의 파장별 반사신호세기를 측정하는 단계;measuring, by the bladder monitoring device, the reflected signal intensity for each wavelength of the optical signal reflected and diffused from the bladder;
    상기 방광 모니터링 장치가 상기 측정된 반사신호세기를 이용하여 반사도(Reflectance)를 산출하는 단계;calculating, by the bladder monitoring device, reflectance using the measured reflected signal strength;
    상기 방광 모니터링 장치가 상기 산출된 반사도를 이용하여 광흡수도를 산출하는 단계; 및calculating, by the bladder monitoring device, light absorption using the calculated reflectivity; and
    상기 방광 모니터링 장치가 상기 산출된 광흡수도를 이용하여 상기 방광 내의 수분함량을 산출함으로써, 상기 소변량을 산출하는 단계를 포함하는 것을 특징으로 하는 방광 모니터링 방법.and calculating, by the bladder monitoring device, the moisture content in the bladder using the calculated light absorbance, thereby calculating the urine volume.
  12. 소변 배출 시스템에 있어서,In the urine excretion system,
    요도에 삽입되어 방광 내에 채워진 소변을 외부로 배출시키는 소변 배출기; 및Urine ejector inserted into the urethra to discharge the urine filled in the bladder to the outside; and
    상기 방광 내의 소변량을 측정하고, 상기 측정된 소변량이 미리 설정된 임계치를 초과한 경우, 상기 소변 배출기가 구동하도록 상기 소변 배출기로 구동명령을 전송하는 방광 모니터링 장치를 포함하되,and a bladder monitoring device that measures the amount of urine in the bladder and transmits a driving command to the urine ejector to drive the urine ejector when the measured amount of urine exceeds a preset threshold,
    상기 방광 모니터링 장치는,The bladder monitoring device,
    상기 방광으로 다파장의 근적외선(NIR: Near Infrared)을 조사하는 광조사부;a light irradiator for irradiating multi-wavelength near infrared (NIR) to the bladder;
    상기 방광으로부터 반사 및 확산된 광신호의 파장별 반사신호세기를 측정하며, 상기 광조사부로부터 순차적으로 멀어지도록 배치된 복수의 광센서를 포함하는 광검출부; 및a photodetector for measuring the reflected signal intensity for each wavelength of the optical signal reflected and diffused from the bladder, the photodetector including a plurality of photosensors sequentially disposed away from the light irradiator; and
    상기 측정된 반사신호세기를 이용하여 반사도(Reflectance)를 산출하고, 상기 산출된 반사도를 이용하여 광흡수도를 산출하고, 상기 산출된 광흡수도를 이용하여 상기 방광 내의 수분함량을 산출함으로써, 상기 소변량을 산출하는 제어부를 포함하는 것을 특징으로 하는 소변 배출 시스템.By calculating the reflectance (Reflectance) using the measured reflected signal strength, calculating the light absorbance using the calculated reflectance, and calculating the moisture content in the bladder using the calculated light absorbance, the Urine discharge system, characterized in that it comprises a control unit for calculating the amount of urine.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 소변 배출 시스템은,The urine excretion system,
    상기 방광 모니터링 장치로부터 전송되는 소변량 측정정보를 수신하고, 상기 측정된 소변량이 미리 설정된 임계치를 초과한 경우, 배뇨가 실시되어야 함을 알리는 메시지 및 알람신호를 출력하고, 상기 소변 배출기가 구동하도록 상기 소변 배출기로 구동명령을 전송하는 사용자 단말을 더 포함하는 것을 특징으로 하는 소변 배출 시스템.Receives urine volume measurement information transmitted from the bladder monitoring device, and when the measured urine volume exceeds a preset threshold, outputs a message and an alarm signal informing that urination should be performed, and drives the urine ejector Urine discharge system, characterized in that it further comprises a user terminal for transmitting a driving command to the ejector.
  14. 제12항에 있어서,13. The method of claim 12,
    상기 소변 배출기는,The urine ejector,
    상기 요도에 삽입되며, 구동명령신호가 수신되면 구동하여, 상기 방광 내에 채워진 소변을 외부로 배출시키는 자기장 밸브펌프; 및a magnetic field valve pump inserted into the urethra and driven when a drive command signal is received to discharge urine filled in the bladder to the outside; and
    상기 자기장 밸브펌프로 상기 구동명령신호를 전송하는 리모트 컨트롤러를 포함하되,Including a remote controller for transmitting the drive command signal to the magnetic field valve pump,
    상기 리모트 컨트롤러는,The remote controller is
    사용자가 구동명령을 입력하는 버튼을 구비하여, 상기 버튼을 통해 상기 구동명령을 입력받으면 상기 구동명령신호를 생성하거나,A button for a user to input a driving command is provided, and when the driving command is received through the button, the driving command signal is generated, or
    상기 방광 모니터링 장치 또는 사용자 단말로부터 상기 구동명령을 수신하면 상기 구동명령신호를 생성하는 것을 특징으로 하는 소변 배출 시스템.Urine discharge system, characterized in that generating the drive command signal when receiving the drive command from the bladder monitoring device or the user terminal.
PCT/KR2021/008897 2020-07-14 2021-07-12 Bladder monitoring device and urine discharge system using same WO2022014990A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0086812 2020-07-14
KR1020200086812A KR102185227B1 (en) 2020-07-14 2020-07-14 Apparatus and method for monitoring bladder
KR10-2020-0118414 2020-09-15
KR1020200118414A KR102475827B1 (en) 2020-09-15 2020-09-15 Urine drainage system

Publications (1)

Publication Number Publication Date
WO2022014990A1 true WO2022014990A1 (en) 2022-01-20

Family

ID=79555606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008897 WO2022014990A1 (en) 2020-07-14 2021-07-12 Bladder monitoring device and urine discharge system using same

Country Status (1)

Country Link
WO (1) WO2022014990A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515664A (en) * 2005-11-18 2009-04-16 ネルコー ピューリタン ベネット エルエルシー System and method for assessing one or more body fluid indices
US20100094204A1 (en) * 2007-02-21 2010-04-15 C.R. Bard, Inc. Acs therapy system
KR101715102B1 (en) * 2015-11-05 2017-03-10 주식회사 피치텍 Near infrared radiation apparatus and near infrared radiation system
JP2018528041A (en) * 2015-07-27 2018-09-27 ユニヴァーシティ・オブ・セントラル・ランカシャー Method and apparatus for estimating bladder status
US20190209067A1 (en) * 2017-12-21 2019-07-11 Incube Labs, Llc Devices and methods for sensing bladder fullness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515664A (en) * 2005-11-18 2009-04-16 ネルコー ピューリタン ベネット エルエルシー System and method for assessing one or more body fluid indices
US20100094204A1 (en) * 2007-02-21 2010-04-15 C.R. Bard, Inc. Acs therapy system
JP2018528041A (en) * 2015-07-27 2018-09-27 ユニヴァーシティ・オブ・セントラル・ランカシャー Method and apparatus for estimating bladder status
KR101715102B1 (en) * 2015-11-05 2017-03-10 주식회사 피치텍 Near infrared radiation apparatus and near infrared radiation system
US20190209067A1 (en) * 2017-12-21 2019-07-11 Incube Labs, Llc Devices and methods for sensing bladder fullness

Similar Documents

Publication Publication Date Title
US11540754B2 (en) Using near and far detectors to measure oxygen saturation
US11857319B2 (en) System and method for monitoring the life of a physiological sensor
KR102185227B1 (en) Apparatus and method for monitoring bladder
TWI794181B (en) Oximetry device with laparoscopic extension
US6560470B1 (en) Electrical lockout photoplethysmographic measurement system
WO2010002097A1 (en) Apparatus for testing urine
WO2010082748A2 (en) Form of a sensor module for measuring a photoplethysmogram for removing a motion artifact and method
KR100591239B1 (en) Apparatus for measuring health conditions of a mobile phone and a method for controlling informations of the same
WO2015076462A1 (en) Method and apparatus for measuring bio signal
WO2022173103A1 (en) Wearable device for measuring multiple biosignals, and artificial-intelligence-based remote monitoring system using same
EP1547515A1 (en) Optical fibre catheter pulse oximeter
WO2022014990A1 (en) Bladder monitoring device and urine discharge system using same
KR20010096186A (en) Integral medical diagnosis apparatus
KR102415948B1 (en) Apparatus for bladder function monitoring based on physiological information
CN108463168A (en) Physiological sensing device and physiological monitoring devices including the physiological sensing device
WO2021225370A1 (en) Diabetic complication monitoring device and diabetic complication management system using same
US20140303475A1 (en) Device to Aid in Diagnosing Infiltration or Extravasation in Animalia Tissue
KR20220036160A (en) Urine drainage system
WO2022103119A1 (en) Portable medical diagnosis device and disease diagnosis method using same
CN216675746U (en) Disposable wearable percutaneous jaundice detector and eye-shade
CN211121639U (en) Body temperature sensor for detecting human health of patient
KR102241058B1 (en) Pad Type Instrument For Diagnosing Female Sexual Function
CN218792232U (en) Craniocerebral injury monitoring device based on near infrared spectrum technology
TWI794168B (en) Oximeter device and method for forming the same
CN207506578U (en) A kind of plug-type non-invasive blood sugar instrument of finger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21841460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21841460

Country of ref document: EP

Kind code of ref document: A1