WO2022014709A1 - Metal carbide film-coated member and method for producing same - Google Patents
Metal carbide film-coated member and method for producing same Download PDFInfo
- Publication number
- WO2022014709A1 WO2022014709A1 PCT/JP2021/026851 JP2021026851W WO2022014709A1 WO 2022014709 A1 WO2022014709 A1 WO 2022014709A1 JP 2021026851 W JP2021026851 W JP 2021026851W WO 2022014709 A1 WO2022014709 A1 WO 2022014709A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbide
- gas
- film
- metal carbide
- vanadium
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/32—Carbides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/42—Silicides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/20—Carburising
- C23C8/22—Carburising of ferrous surfaces
Definitions
- the present invention relates to a metal carbide film covering member in which a metal carbide film is formed on a steel material, and a method for manufacturing the same.
- Patent Document 1 contains vanadium and carbon such as vanadium carbide film (VC film) and vanadium nitride film (VCN film), which are rich in lubricity on steel materials of cutting tools, gear cutting tools or forging tools. It is disclosed to coat the membrane.
- Patent Document 2 discloses that a titanium carbide film (TiC) is coated on a steel material such as a mold and a tool.
- the metal carbide film covering member in which the metal carbide film containing metal and carbon such as vanadium and titanium is directly formed on the surface of the steel material is the steel material and the metal carbide in the Rockwell indentation test. It was found that the adhesion to the membrane was low. Therefore, it is desired to improve the adhesion between the steel material and the metal carbide film in order to improve the performance as the metal carbide film covering member.
- the present invention has been made in view of the above circumstances, and is a metal carbide film coating member capable of improving the adhesion between the steel material and the metal carbide film in the Rockwell indentation test of the metal carbide film coating member, and a method for manufacturing the same.
- the purpose is to provide.
- the present inventor has applied a metal carbide film on a specific carbide layer formed on the surface of a steel material to perform a rockwell indentation test on a metal carbide film covering member.
- the present invention has been completed by finding that the adhesion in the above-mentioned is improved and thereby the above-mentioned object is achieved.
- a metal carbide film covering member which is a member. Steel materials with a carbide layer on the surface and The carbide layer comprises one or more metals selected from the group consisting of V, Ti, Al, Cr, Nb and Si and a metal carbide film containing carbon.
- the ratio of the maximum peak intensity [carbide strength] of X-ray diffraction derived from metal carbides of steel materials to the maximum peak intensity [Fe intensity] of X-ray diffraction derived from ⁇ -Fe is the peak intensity ratio [carbide strength / Fe strength]. ].
- the peak intensity ratio of the carbide layer is 0.5 to 4.0.
- the peak intensity ratio of the carbide layer is 2.0 or less.
- the peak intensity ratio of the carbide layer is 1.0 or less.
- the metal carbide film is a silica carbide vanadium film containing vanadium, silicon, and carbon. In the silica carbide vanadium film, the total of the vanadium element concentration, the silicon element concentration, and the carbon element concentration in the film is 90 at% or more.
- the vanadium element concentration in the silica carbide vanadium film is 8 to 30 at%
- the silicon element concentration is 8 to 30 at%
- the carbon element concentration is 40 to 80 at%.
- a method for manufacturing a metal carbide film covering member A plasma carbide treatment process that forms a carbide layer on the surface of the steel material, It has a metal carbide film forming step of forming a metal carbide film containing carbon and one or more metals selected from the group consisting of V, Ti, Al, Cr, Nb and Si on the carbide layer.
- the ratio of the maximum peak intensity [carbide strength] of X-ray diffraction derived from metal carbides of steel materials to the maximum peak intensity [Fe intensity] of X-ray diffraction derived from ⁇ -Fe is the peak intensity ratio [carbide strength / Fe strength]. ]
- the carbide layer is formed so that the peak intensity ratio of the carbide layer after the plasma carbide treatment step is 0.5 to 4.0.
- the carbide layer is provided so that [the peak intensity ratio of the steel material after the plasma carbonization treatment step / the peak intensity ratio of the steel material before the plasma carbonization treatment step] satisfies 2.4 to 19.
- a method for manufacturing a metal carbide film covering member A plasma carbide treatment process that forms a carbide layer on the surface of the steel material, It has a metal carbide film forming step of forming a metal carbide film containing carbon and one or more metals selected from the group consisting of V, Ti, Al, Cr, Nb and Si on the carbide layer.
- the plasma carbonization treatment step is performed in an atmosphere in which a carbon source gas supplied as a treatment gas and a hydrogen gas are converted into plasma.
- the carbon source gas flow rate / hydrogen gas flow rate which is the flow rate ratio of the carbon source gas to the hydrogen gas, is 0.01 to 0.40.
- the ratio of the volumetric flow rate of hydrogen gas: carbon source gas: argon gas is It is 1: 0.01 to 0.40: 0.01 to 0.10.
- the carbon source gas is methane gas.
- the metal carbide film is a silica carbide vanadium film containing vanadium, silicon, and carbon. In the silica carbide vanadium film, the total of the vanadium element concentration, the silicon element concentration, and the carbon element concentration in the film is 90 at% or more.
- the vanadium element concentration in the silica carbide vanadium film is 8 to 30 at%, the silicon element concentration is 8 to 30 at%, and the carbon element concentration is 40 to 80 at%.
- the symbol "-" used in the expression of the numerical range in the present specification indicates a range of a predetermined numerical value or more and a predetermined numerical value or less.
- FIG. It is a figure which shows the schematic structure of the metal carbide film covering member which concerns on one Embodiment of this invention. It is a figure which shows an example of a plasma processing apparatus. It is a figure which shows the shape of a test piece. It is a figure which shows the X-ray diffraction analysis result of the test piece surface before the plasma carbonization treatment process, and the test piece surface after the plasma carbonization treatment process. It is a figure which shows the rockwell indentation test result of Example 1.
- FIG. It is a figure which shows the rockwell indentation test result of Example 2.
- FIG. It is a figure which shows the rockwell indentation test result of the comparative example 1.
- FIG. It is an electron microscope image which shows the cross section of the sample of Example 1.
- the metal carbide film covering member 1 of the present embodiment is composed of a steel material 2 having a carbide layer 2a formed on its surface and a metal carbide film 3 directly formed on the carbide layer 2a of the steel material 2. ing.
- the steel grade of the steel material is not particularly limited, and a steel grade suitable for the application of the metal carbide film covering member 1 may be used.
- Examples of the steel type include high-speed tool steel (high-speed steel) such as SKH51, so-called cold tool steel such as SKD11 and DC53 trade name manufactured by Daido Special Steel Co., Ltd., or cold die steel (cold die steel). Etc. can be adopted.
- the carbide layer 2a is a layer in which carbon is permeated and diffused from the surface of the steel material to precipitate metal carbides in the steel material. More specifically, the carbide layer 2a is derived from a peak derived from ⁇ -Fe by measurement by a tilt angle incident method using an X-ray diffraction analyzer and a metal carbide such as M6C type carbide, M23C6 type carbide, and M7C3 type carbide. It is a layer where a peak can be obtained.
- the amount of metal carbide on the surface of the steel material can be evaluated by looking at the ratio between the peak intensity derived from ⁇ -Fe and the peak intensity derived from metal carbides such as M6C type carbides, M23C6 type carbides, and M7C3 type carbides. can.
- the peak intensity in the present specification is calculated based on the analysis result performed under the conditions of the X-ray diffraction analysis described in the examples described later.
- the peak intensity with the stronger peak intensity is taken as the maximum peak intensity of X-ray diffraction derived from metal carbide.
- the measurement of the peak intensity in the present specification is performed by fitting a curve representing the intensity distribution obtained by the X-ray diffractometer and using the curve after the fitting.
- the steel grade is high-speed tool steel (high-speed steel) such as SKH51, so-called cold tool steel such as SKD11 and DC53 trade name manufactured by Daido Special Steel Co., Ltd., or cold die steel (cold die steel).
- high-speed steel high-speed steel
- cold tool steel such as SKD11 and DC53 trade name manufactured by Daido Special Steel Co., Ltd.
- cold die steel cold die steel
- the ratio of the maximum peak intensity [carbide intensity] of X-ray diffraction derived from the metal carbide of the steel material obtained by the tilt angle incident method to the maximum peak intensity [Fe intensity] of the X-ray diffraction derived from ⁇ -Fe. is defined as the peak intensity ratio [carbide intensity / Fe intensity].
- the carbide layer 2a is a layer having a peak intensity ratio of 0.5 to 4.0.
- the peak intensity ratio is less than 0.5, the amount of metal carbides deposited in the steel material 2 is small, and the effect of improving the adhesion between the steel material 2 and the metal carbide film 3 cannot be obtained.
- the peak strength ratio exceeds 4.0 a large amount of cementite is deposited in the steel material 2, the steel material becomes brittle, and the effect of improving the adhesion cannot be obtained.
- the metal carbide film 3 described later is formed on the carbide layer 2a having a peak intensity ratio of 0.5 to 4.0, the adhesion between the steel material 2 and the metal carbide film 3 in the Rockwell indentation test is improved.
- the reason why the adhesion is improved is not clear, but it is considered that the adhesion is improved by improving the chemical compatibility between the steel material 2 and the metal carbide film 3 and eliminating the inconsistency of the lattice.
- the metal carbide film 3 is, for example, a silica carbide vanadium film
- the peak intensity ratio is preferably 0.6 or more, and more preferably 0.7 or more.
- the metal carbide film 3 is, for example, a silica carbide vanadium film
- the peak intensity ratio is preferably 2.0 or less, more preferably 1.0 or less.
- the metal carbide film 3 formed on the steel material 2 is a film containing one or more metals and carbon selected from the group consisting of V, Ti, Al, Cr, Nb and Si.
- the metal carbide film 3 includes VC (vanadium carbide), TiC (titanium carbide), AlC (aluminum carbide), CrC (chromium carbide), NbC (niobium carbide), SiC (silicon carbide), VCS (vanadium carbide).
- TiSiC Tiitanium Carbide
- other metal carbides are contained in the whole or part of the film.
- the metal carbide film 3 is VC (vanadium carbide) or VCSC (silica). It is preferably a vanadium-based film such as vanadium carbide).
- the vanadium-based film can be used for high-speed tool steel such as SKH51, cold tool steel such as SKD11 and DC53, or steel for cold dies, which are generally used as materials to be molded in press-formed products and steel materials for various tools.
- it is a film with excellent lubricity and can effectively suppress damage due to contact friction with the mating material.
- the metal carbide film 3 preferably has a total of 90 at% or more of the element concentration of one or more metals selected from the group consisting of V, Ti, Al, Cr, Nb and Si and the carbon element concentration. It is more preferably 93 at% or more, and further preferably 95 at% or more. Further, the metal carbide film 3 may contain a non-metal element of 10 at% or less, excluding the carbon element. Examples of non-metal elements include fluorine, argon, chlorine and hydrogen contained in the raw material gas supplied in the process of forming the metal carbide film 3, and oxygen and nitrogen contained in the residual gas in the chamber of the film forming apparatus. Can be mentioned. The non-metal element contained in the metal carbide film 3 is preferably 7 at% or less. More preferably, it is 5 at% or less. The metal element concentration and the carbon element concentration in the metal carbide film 3 can be measured by composition analysis by EPMA.
- the metal carbide film 3 is a silica carbide vanadium film
- the vanadium element concentration is 8 to 30 at%
- the silicon element concentration is 8 to 30 at%
- the carbon element concentration is 40 to 80 at%.
- the vanadium element concentration is 8 to 30 at%
- the effect of improving the lubricity derived from vanadium is likely to be obtained, and the coefficient of friction between the silica carbide vanadium film and other members is likely to be low.
- the silicon element concentration is 8 to 30 at%, amorphous silicon carbide (SiC) is likely to be formed in the silica carbide vanadium carbide film, and an oxide film is formed on the film surface when the silica carbide vanadium carbide film slides with other members.
- the friction coefficient between the silica carbide vanadium film and other members tends to be low.
- the carbon element concentration is 40 to 80 at%, amorphous silicon carbide (SiC) or amorphous carbon is likely to be formed in the silica carbide vanadium carbide film, and the coefficient of friction between the silica carbide vanadium film and other members is likely to be low.
- the vanadium element concentration is more preferably 9 at% or more. Further, the vanadium element concentration is more preferably 25 at% or less.
- the silicon element concentration is more preferably 9 at% or more. Further, the silicon element concentration is more preferably 25 at% or less.
- the carbon element concentration is more preferably 50 at% or more. Further, the carbon element concentration is more preferably 80 at% or less.
- the film thickness of the metal carbide film 3 is appropriately changed according to the characteristics required for the metal carbide film covering member 1, but is preferably 0.5 to 4 ⁇ m, for example.
- the hardness of the metal carbide film 3 is preferably 2000 HV or more, and preferably 4000 HV or less. preferable.
- the manufacturing method described below comprises a plasma carbonization treatment step of forming a carbide layer 2a on the surface of the steel material and a metal carbide film forming step of coating the metal carbide film 3 on the steel material 2 subjected to the plasma carbonization treatment step. ..
- ⁇ Plasma carbonization process> In the plasma carbonization treatment step of the steel material, carbon is permeated and diffused from the surface of the steel material before the metal carbide film 3 is formed on the steel material 2, and the metal carbide is precipitated in the steel material, and the peak intensity ratio is 0.5 to 4 This is a step of forming the carbide layer 2a to be 0.0. Even if the steel material has a low peak intensity ratio, the peak intensity ratio can be increased by performing this step. In the case of SKH51, which is a kind of high-speed tool steel, it is possible to increase the peak strength ratio by 3 times or more by performing this step.
- a method for forming the carbide layer 2a of the steel material 2 includes plasma carbonization treatment.
- the plasma carbonization treatment is a treatment in which hydrogen gas and carbon source gas supplied as a treatment gas are turned into plasma, and the steel material is placed in a plasma-like atmosphere to deposit metal carbides on the surface of the steel material.
- the atmospheric temperature during the plasma carbonization treatment step can be set to 350 to 650 ° C., so that the strain due to heat of the steel material 2 can be suppressed. Further, the plasma carbonization treatment can suppress the generation of soot, which simplifies the maintenance work.
- the film forming apparatus 10 includes a chamber 11 into which the steel material 2 is carried, an electrode member 12 on the anode side, an electrode member 13 on the cathode side, and a pulse power supply 14.
- a gas supply pipe 15 to which a processing gas or a raw material gas is supplied is connected to the upper part of the chamber 11, and a gas exhaust pipe 16 for exhausting the gas in the chamber 11 is connected to the lower part of the chamber 11.
- the gas exhaust pipe 16 is provided with a vacuum pump (not shown).
- the electrode member 13 on the cathode side also serves as a support base for supporting the steel material 2, and the steel material 2 carried into the chamber 11 is placed on the cathode.
- a heater (not shown) is provided inside the chamber 11, and the temperature of the steel material is adjusted by adjusting the atmospheric temperature in the chamber 11 with the heater.
- the plasma carbide treatment step of the steel material 2 and the metal carbide film forming step are performed by the same apparatus. This makes it possible to efficiently manufacture the metal carbide film covering member 1 as compared with the case where separate devices are used. Further, by performing the plasma carbide treatment step of the steel material 2 and the metal carbide film forming step in the same apparatus, it is possible to suppress the formation of an oxide layer at the interface between the carbide layer 2a and the metal carbide film 3.
- the carbon source gas as the treatment gas for example, a hydrocarbon gas such as methane gas, ethane gas, ethylene gas, and acetylene gas is used.
- the gas exemplified here may be supplied alone or may be supplied as a mixture of two or more kinds of gases. It is preferable to use the same gas as the carbon source gas used in the step of forming the metal carbide film 3 described later. From the viewpoint of obtaining the metal carbide film covering member 1 having better adhesion, it is preferable to use methane gas as the carbon source gas.
- argon gas may be supplied in addition to hydrogen gas and carbon source gas.
- Argon gas is preferably supplied as needed because it contributes to the stabilization of plasma and the improvement of ion density by ionizing other molecules by argon ions.
- the flow rate of each gas is a "volume flow rate” and is controlled by the mass flow controller.
- the "volumetric flow rate” in the present specification is a "flow rate converted to a standard state” that does not depend on the actual operating temperature and pressure of the gas, and the "standard state” is 101.3 kPa (1 atm), 0 ° C.
- the flow ratio [carbon source gas flow rate / hydrogen gas flow rate] between the carbon source gas supplied as the treatment gas and the hydrogen gas is preferably 0.01 to 0.40.
- the carbon source gas flow rate / hydrogen gas flow rate is 0.01 or more, it becomes easier to form the carbide layer 2a in the steel material 2, and the adhesion between the steel material 2 and the metal carbide film 3 in the metal carbide film covering member 1 is further improved.
- the carbon source gas flow rate / hydrogen gas flow rate is 0.40 or less, the formation of amorphous carbon that reduces the adhesion is suppressed, and the adhesion between the steel material 2 and the metal carbide film 3 in the metal carbide film covering member 1 is further improved. Can be improved.
- the carbon source gas flow rate / hydrogen gas flow rate may be varied during the plasma carbonization treatment step as long as it is in the range of 0.01 to 0.40, but it is preferably constant.
- the carbon source gas flow rate / hydrogen gas flow rate is preferably 0.02 or more. Further, the carbon source gas flow rate / hydrogen gas flow rate is preferably 0.20 or less.
- the ratio of hydrogen gas: carbon source gas: argon gas volume flow rate is 1: when the volume flow rate of hydrogen gas is 1. 0.01 to 0.40: Preferably 0.01 to 0.10. More preferably, the ratio of the volumetric flow rate of hydrogen gas: carbon source gas: argon gas is 1: 0.02 to 0.20: 0.01 to 0.10.
- the atmospheric temperature in the chamber 11 is preferably 350 to 650 ° C.
- the atmospheric temperature in the chamber 11 is preferably 400 ° C. or higher, preferably 550 ° C. or lower.
- the atmospheric temperature in the chamber 11 can be adjusted by changing the heater set temperature according to the plasma conditions.
- the duty ratio in the plasma carbonization treatment is preferably 5% to 90%.
- the duty ratio is preferably 15% or more, and preferably 60% or less.
- the voltage of the pulse power supply 14 in the plasma carbonization treatment is preferably 1000 to 2000 V.
- the voltage of the pulse power supply 14 is preferably 1100 V or more, and preferably 1800 V or less.
- the power density when a pulse voltage is applied between the electrode member 12 on the anode side and the electrode member 13 on the cathode side is preferably 1200 to 2000 W / m 2, for example.
- the power density is preferably 1400 W / m 2 or more.
- the power density is preferably 1800 W / m 2 or less.
- the power density [W / m 2 ] is a value calculated by power [W] / cathode surface area [m 2].
- “Cathode surface area [m 2 ]” is the total value of the surface area of the steel material 2 and the surface area of the electrode member 13 on the cathode side. For example, in the film forming apparatus 10 of FIG.
- the surface area of the cathode in the film forming apparatus 10 is the total value of the surface area of the electrode member 13 on the cathode side and the surface area of the steel material. The area of the contact surface between the electrically connected members is not included in the surface area of the cathode.
- the electrode member 13 on the cathode side, the jig, and the jig are used. It is electrically connected to the steel material.
- the value is the surface area of the cathode.
- Power [W] is a value calculated by voltage [V] x current [A].
- Voltage is the set voltage of the pulse power supply 14, and
- current is a value calculated by (maximum current + minimum current) / 2 in the plasma carbonization processing process using the current value displayed on the pulse power supply 14. Is.
- the pressure in the chamber 11 is preferably set to 30 to 200 Pa. In order to make the plasma more stable and facilitate the carbonization treatment, the pressure in the chamber 11 is preferably 40 Pa or more, preferably 100 Pa or less.
- the processing time of the plasma carbonization treatment process differs depending on the type and shape of the steel material. Therefore, the carbonization treatment time is appropriately changed, but is preferably 60 to 360 minutes, for example.
- the carbonization treatment time is preferably 120 minutes or more, and preferably 300 minutes or less.
- the means for converting the treatment gas into plasma is not particularly limited.
- a steel material 2 having a carbide layer 2a having a peak intensity ratio [carbide strength / Fe strength] of 0.5 to 4.0 can be obtained.
- the peak strength ratio of the steel material 2 after the plasma carbonization treatment step / the peak strength ratio of the steel material before the plasma carbonization treatment step is preferably 2.4 to 19.
- Metal carbide film forming process Next, a metal for coating the surface of the steel material after the plasma carbide treatment step with a metal carbide film 3 containing one or more metals selected from the group consisting of V, Ti, Al, Cr, Nb and Si and carbon. Carbide film forming step is performed.
- the metal carbide film 3 may be formed by any method as long as the metal carbide film 3 can be formed.
- the method for forming the metal carbide film 3 include a plasma CVD method, an arc ion plating method, a sputtering method, and an unbalanced magnetron sputtering method.
- the plasma CVD method is preferable.
- the plasma carbide treatment of the steel material 2 and the film formation of the metal carbide film 3 can be performed by the same plasma processing device, as compared with the case where different devices are used. Therefore, the metal carbide film covering member 1 can be efficiently manufactured. Further, by performing the plasma carbide treatment of the steel material 2 and the film formation of the metal carbide film 3 with the same apparatus, it is possible to suppress the formation of an oxide layer at the interface between the carbide layer 2a and the metal carbide film 3.
- the raw material gas includes a gas containing one or more metals selected from the group consisting of V, Ti, Al, Cr, Nb and Si, a carbon source gas, and the like.
- Hydrogen gas is supplied into the chamber 11, and a pulse voltage is applied between the electrode member 12 on the anode side and the electrode member 13 on the cathode side using the pulse power supply 14.
- the raw material gas is turned into plasma between the electrode member 12 on the anode side and the electrode member 13 on the cathode side, and the metal carbide film 3 is formed on the surface of the steel material 2.
- V vanadium chloride gas
- Ti titanium chloride gas
- Al aluminum chloride gas
- Cr chromium chloride gas
- Nb niobium chloride gas
- Si silicon chloride gas.
- vanadium tetrachloride (VCl 4 ) gas and vanadium trichloride (VOCl 3 ) gas are used as the vanadium chloride gas.
- vanadium tetrachloride gas is preferable because it is easily available, is a liquid at room temperature, and is easily supplied as a gas.
- silicon source gas for example, a silane gas such as monosilane gas, disilane gas, dichlorosilane gas, trichlorosilane gas, silicon tetrachloride gas, or silicon tetrachloride gas is used.
- the gas exemplified here may be supplied alone or may be supplied as a mixture of two or more kinds of gases. Further, among these gases, it is preferable to use silicon tetrachloride (SiCl 4 ) gas, which can easily remove chlorine atoms by hydrogen plasma, is thermally stable, and decomposes only in plasma.
- the carbon source gas for example, a hydrocarbon gas such as methane gas, ethane gas, ethylene gas, and acetylene gas is used.
- the gas exemplified here may be supplied alone or may be supplied as a mixture of two or more kinds of gases. It is preferable to use methane gas. By using methane gas, it becomes easy to control the amount of carbon, and by containing a large amount of hydrogen in the membrane, the amount of chlorine in the membrane can be reduced.
- an organic silane gas having a molecular structure in which a hydrocarbon functional group is bonded to silicon may be used as a gas that serves as both a silicon source gas and a carbon source gas.
- the organic silane gas is not particularly limited as long as it has a molecular structure in which a hydrocarbon functional group is bonded to silicon, and for example, monomethylsilane gas, dimethylsilane gas, trimethylsilane gas, tetramethylsilane gas and the like may be used.
- a mixed gas of an organic silane gas and a carbon source gas may be used.
- the silica carbide vanadium film When the silica carbide vanadium film is formed as the metal carbide film 3, if the raw material gas contains vanadium chloride gas, the silica carbide vanadium film inevitably contains the residue excluding vanadium, silicon and carbon as impurities. Contains chlorine. Since hydrogen gas is easily combined with chlorine, when the raw material gas contains hydrogen gas, chlorine generated from vanadium chloride gas is easily combined with hydrogen and discharged to the outside of the system. As a result, it is possible to suppress the mixing of chlorine into the silica carbide vanadium carbide film. The rest of the silica carbide vanadium film may contain unavoidable impurities other than chlorine.
- the volumetric flow rate of the hydrogen gas supplied into the chamber 11 is the volumetric flow rate of vanadium chloride gas and the volume of silicon tetrachloride gas. It is preferably 5 to 25 times the total flow rate.
- vanadium chloride gas, silicon source gas, carbon source gas, hydrogen gas, and argon gas are supplied as raw material gas in the metal carbide film forming step
- the volumetric flow rate of vanadium chloride gas is 1, vanadium chloride gas and
- the ratio of the volumetric flow rates of the silicon source gas, the carbon source gas, the hydrogen gas, and the argon gas is preferably 1: 0.25 to 2: 3 to 20:20 to 35: 0.5 to 2. This makes it easy to obtain a silica carbide vanadium film having a total of 90 at% or more of the vanadium element concentration, the silicon element concentration, and the carbon element concentration in the film.
- the argon gas Since the argon gas contributes to the stabilization of the plasma and the improvement of the ion density by ionizing other molecules by the argon ion, it is supplied into the chamber 11 as needed in the metal carbide film forming step.
- the pressure in the chamber 11 in the metal carbide film forming step is preferably set to, for example, 30 to 200 Pa.
- the pressure in the chamber 11 is more preferably 50 to 150 Pa.
- the electric power supplied in the metal carbide film forming step is preferably 200 to 2500 W.
- Power [W]" is a value calculated by voltage [V] x current [A].
- the “voltage” is the set voltage of the pulse power supply 14.
- the “current” is a value calculated by (maximum current + minimum current) / 2 in the metal carbide film forming step using the current value displayed on the pulse power supply 14.
- the electric power can be adjusted by changing the setting value of the duty ratio.
- the voltage in the metal carbide film forming step is preferably 1000 to 2000 V.
- the duty ratio in the metal carbide film forming step is preferably 5% to 60%.
- a metal carbide film containing one or more metals and carbon selected from the group consisting of V, Ti, Al, Cr, Nb and Si on the carbide layer 2a of the steel material 2. 3 is formed. This makes it possible to manufacture the metal carbide film covering member 1 having excellent adhesion in the Rockwell indentation test.
- a test piece of a metal carbide coating member having a silica carbide vanadium film formed as a metal carbide film on a steel material having a carbide layer formed on the surface of the steel material was prepared by plasma carbonization treatment, and the following measurements were performed.
- X-ray diffraction analysis In the X-ray diffraction analysis, an X-ray diffraction analyzer (SmartLab manufactured by Rigaku Co., Ltd.) was used, and in order to obtain only information near the surface of the test piece, the analysis was carried out under the following conditions by the tilt angle incident method.
- ⁇ Membrane hardness measurement> It is carried out by the nanoindentation method using FISCHER SCOPE® H100C manufactured by Fischer Instruments. Specifically, a Berkovich-type diamond indenter is pushed into the test piece with a maximum pushing load of 3 mN, and the pushing depth is continuously measured. Vickers hardness converted from Martens hardness and Martens hardness using "Product name: WIN-HCU (registered trademark)", which is software manufactured by Fisher Instruments, from the obtained measurement data of the indentation depth. Calculate the hardness. The calculated Vickers hardness is displayed on the screen of the measuring device, and this value is treated as the hardness of the film at the measurement point. In this example, the Vickers hardness of any 20 points on the outermost surface of each test piece was obtained, and the average value of the obtained hardness was taken as the Vickers hardness of the silica carbide vanadium film.
- ⁇ Film thickness measurement> The thickness of the silica carbide vanadium film is calculated by cutting the test piece vertically, polishing the cut surface with a mirror surface, observing the cut surface at a magnification of 1000 times with a metallurgical microscope, and calculating based on the observed image information. It was measured.
- ⁇ Rockwell indentation test> The Rockwell hardness tester is set on the C scale to give indentations to the surface of the silica carbide vanadium film of the test piece. Then, the circumference of the indentation was observed using a metallurgical microscope. Then, the degree of film peeling of the test piece was determined based on the well-known indentation peeling criteria in the Rockwell indentation test, and the adhesion of the silica carbide vanadium film coating member was evaluated.
- the test piece is prepared by the following procedure. First, a ⁇ 22 round bar made of SKH51, which is a kind of high-speed tool steel, is cut at intervals of 6 to 7 mm, and a mirror-polished surface of the cut round bar as shown in FIG. 3 is tested. Used as a steel material for one piece. As the film forming apparatus, an apparatus having a structure as shown in FIG. 2 was used, and a pulse power source was used as a power source.
- the above-mentioned test piece for microstructure photograph measurement was put in this plating solution and kept at 120 ° C. for 2 hours. After holding for 2 hours, the test piece was taken out from the plating solution, and the test piece was cut in the direction perpendicular to the film forming surface using a cutting machine. This cut test piece was embedded in a resin to prepare a sample. Then, the cross section of the sample was polished with emery paper, and the polished surface was mirror-finished with a buff.
- nitric acid (JIS K) Ethanol was mixed with (equivalent to 62% of 1308) and the sample was immersed in the resulting 3% nitric acid corrosive solution for 5 minutes.
- the cross section of the sample was observed at a magnification of 10000 times using a field emission scanning electron microscope (JSM-7001F manufactured by JEOL Ltd.), and a cross section image was obtained.
- JSM-7001F field emission scanning electron microscope
- Example 1 a steel material for a test piece is set in the chamber of the film forming apparatus, and the inside of the chamber is evacuated for 30 minutes to reduce the pressure in the chamber to 10 Pa or less. At this time, the heater is not operated. The heater is provided inside the chamber, and the atmospheric temperature inside the chamber is measured by a sheath thermocouple. Subsequently, the set temperature of the heater is set to 200 ° C., and the baking process of the steel material is performed for 10 minutes. After that, the power of the heater is turned off, and the film forming apparatus is left for 30 minutes to cool the inside of the chamber.
- hydrogen gas is supplied into the chamber at a flow rate of 100 ml / min, and the displacement is adjusted so that the pressure in the chamber is 100 Pa. Then, the atmosphere in the chamber is heated for 30 minutes so that the temperature of the atmosphere in the chamber becomes 525 ° C.
- the flow rate of hydrogen gas as the processing gas is set to 98 ml / min
- the flow rate of methane gas as the carbon source gas is set to 5 ml / min
- the flow rate of argon gas is set to 3 ml / min
- the gas is supplied into the chamber.
- the total pressure in the chamber is maintained at 58 Pa
- the atmosphere temperature in the chamber is set to 525 ° C
- the voltage of the pulse power supply is set to 1400 V
- the Duty ratio is set to 40%
- the atmosphere is plasmated with hydrogen gas, methane gas and argon gas.
- the steel material is subjected to plasma carbonization treatment for 120 minutes.
- the flow rate ratio [carbon source gas flow rate / hydrogen gas flow rate] between methane gas, which is a carbon source gas supplied as a treatment gas, and hydrogen gas is 0.05.
- FIG. 4 shows the results of X-ray diffraction analysis of the test piece subjected to the carbonization treatment under the above conditions.
- a diffraction peak derived from M6C type carbide was present near 5 °.
- the test piece after the plasma carbonization treatment step has a weaker diffraction peak intensity derived from ⁇ -Fe and a stronger diffraction peak intensity derived from the metal carbide which is an M6C type carbide than the test piece before the plasma carbonization treatment step.
- carbon permeated and diffused from the surface of the steel material metal carbides were deposited in the steel material, and a carbide layer was formed in the steel material.
- Table 1 The conditions of the plasma carbonization treatment step of Example 1 above are shown in Table 1 below. In addition, Table 1 also shows the carbonization conditions of Examples 2 to 3 and Comparative Example 1 described later.
- the flow rate of vanadium tetrachloride gas as vanadium chloride gas is 3 ml / min
- the flow rate of silicon tetrachloride gas as an example of silicon source gas is 4.5 ml / min, as an example of carbon source gas.
- the flow rate of methane gas is set to 15 ml / min
- the flow rate of hydrogen gas is set to 98 ml / min
- the flow rate of argon gas is set to 3 ml / min, and each gas is supplied into the chamber.
- the flow rate ratio of vanadium tetrachloride gas, silicon tetrachloride gas, carbon source gas, hydrogen gas and argon gas is 1: 1.5: 5: 33: 1 when the flow rate of vanadium tetrachloride gas is 1.
- Each gas is supplied so as to be.
- the displacement is adjusted so that the pressure in the chamber is 58 Pa.
- the voltage of the pulse power supply is set to 1400 V, and the duty ratio is set to 40%.
- the power of the pulse power supply at this time is 420 W.
- each gas is turned into plasma, vanadium, silicon, and carbon are adsorbed on the steel material, and a silica carbide vanadium film containing vanadium, silicon, and carbon is formed on the steel material having a carbide layer on the surface.
- the silica carbide vanadium film forming treatment under the above conditions was carried out for 4 hours, and the silica carbide vanadium film having a film thickness of 1.2 ⁇ m was coated on the steel material to obtain the test piece of Example 1.
- the Rockwell indentation test was performed on the test piece of Example 1 by the above-mentioned method. As the test result, an image of the indented portion of the test piece of Example 1 after the Rockwell indentation test is shown in FIG. The Rockwell indentation test result was determined to be HF1 based on the indentation peeling criterion.
- Example 2 In the plasma carbonization treatment step, a test piece was prepared under the same conditions as in Example 1 except that the plasma carbonization treatment step was performed for 4 hours. An image of the indented portion of the test piece of Example 2 after the Rockwell indentation test is shown in FIG. The Rockwell indentation test result was determined to be HF1 based on the indentation peeling criterion.
- Example 3 In the plasma carbonization treatment step, the flow rate of methane gas supplied as the treatment gas is set to 3 ml / min, and the flow rate ratio of the carbon source gas methane gas to hydrogen gas [carbon source gas flow rate / hydrogen gas flow rate] is set to 0.03. , A test piece was prepared under the same conditions as in Example 1 except that the plasma carbonization treatment step was carried out for 4 hours. An image of the indentation portion of the test piece of Example 3 after the Rockwell indentation test is shown in FIG. The Rockwell indentation test result was determined to be HF1 based on the indentation peeling criterion.
- Comparative Example 1 A test piece was prepared under the same conditions as in Example 1 except that the plasma carbonization treatment step was not carried out. An image of the indentation portion of the test piece of Comparative Example 1 after the Rockwell indentation test is shown in FIG. The Rockwell indentation test result was determined to be HF4 based on the indentation peeling criterion.
- Table 2 below shows the results of X-ray diffraction analysis performed on the test piece before the formation of the silica carbide vanadium film.
- Table 2 compares the peak intensity ratios of the test pieces before the formation of the vanadium carbide film.
- the peak intensity ratio of the test piece before the formation of the silica carbide vanadium film in Examples 1 and 3 is the peak intensity ratio of the carbide layer formed by the plasma carbonization treatment.
- the peak intensity ratio of the test piece before the formation of the silica carbide vanadium film is the peak intensity ratio of the steel material which has not been subjected to the plasma carbonization treatment.
- Table 2 also shows the ratio of the peak strength ratio of the steel material after the plasma carbonization treatment step of Example 1 to the peak strength ratio of the steel material before the plasma carbonization treatment step.
- the peak intensity ratio of the test piece of Example 1 in which the indentation peeling determination in the Rockwell indentation test is HF1 is 0.82
- the peak intensity ratio of the test piece of Example 3 is It is 0.63
- the peak intensity ratio of the test piece of Comparative Example 1 in which the indentation peeling determination is HF4 is 0.16. That is, according to the results of this example, it can be seen that the adhesion between the steel material and the metal carbide film can be improved when the peak intensity ratio is within a specific range.
- the intensity ratio was 5.1.
- the peak intensity ratio of the carbide layer after the plasma carbonization treatment / the peak intensity ratio of the steel material before the plasma carbonization treatment was 3.9.
- the film thickness of the test pieces of Examples 1 to 3 was measured and the composition of the silica carbide vanadium film was analyzed by the above-mentioned method.
- the film hardness of the test piece of Example 1 was also measured by the above-mentioned method.
- Table 3 The results of the above film hardness measurement, film thickness measurement, and composition analysis of the silica carbide vanadium carbide film are shown in Table 3 below.
- FIG. 9 is an electron microscope image showing a cross section of the sample of Example 1.
- the sample of Example 1 it was confirmed that no oxide layer was formed at the interface between the carbide layer and the metal carbide film.
- electron microscope images were obtained in the same manner for the samples of Example 2 and Example 3, but no oxide layer was formed in any of the samples.
- the present invention can be used for coating a hard film on a mold or a tool, for example, an automobile part such as a gear. That is, the metal carbide film covering member according to the present invention is used, for example, as a mold, a tool, or an automobile part.
- Metal carbide film covering member 2 Steel material 2a Carbide layer 3 Metal carbide film 10 Formation device 11 Chamber 12 Electrode member on the anode side 13 Electrode member on the anode side 14 Pulse power supply 15 Gas supply pipe 16 Gas exhaust pipe
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Vapour Deposition (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
This metal carbide film-coated member has a steel material having a carbide layer at the surface and has, on the carbide layer, a metal carbide film that contains carbon and at least one metal selected from the group consisting of V, Ti, Al, Cr, Nb, and Si, wherein, defining the ratio between the maximum x-ray diffraction peak intensity [carbide intensity] originating with the metal carbide of the steel material and the maximum x-ray diffraction peak intensity [Fe intensity] originating with α-Fe, the peak intensity ratio for the carbide layer [carbide intensity/Fe intensity] is 0.5-4.0.
Description
本発明は、鋼材に金属炭化物膜が形成された金属炭化物膜被覆部材およびその製造方法に関する。
The present invention relates to a metal carbide film covering member in which a metal carbide film is formed on a steel material, and a method for manufacturing the same.
従来、プレス成形用の金型や切削工具、歯切工具、鍛造工具等において、被成形材との接触摩擦や工具の相手材との接触摩擦による傷つきを防ぐため、鋼材上に硬質皮膜を被覆することが知られている。例えば、特許文献1には、切削工具、歯切工具又は鍛造工具の鋼材上に潤滑性に富む、炭化バナジウム膜(VC膜)、炭窒化バナジウム膜(VCN膜)等のバナジウムと炭素を含有する膜を被覆することが開示されている。特許文献2には、金型及び工具等の鋼材上に炭化チタン膜(TiC)を被覆することが開示されている。
Conventionally, in press forming dies, cutting tools, gear cutting tools, forging tools, etc., a hard film is coated on the steel material to prevent damage due to contact friction with the material to be molded and contact friction with the mating material of the tool. It is known to do. For example, Patent Document 1 contains vanadium and carbon such as vanadium carbide film (VC film) and vanadium nitride film (VCN film), which are rich in lubricity on steel materials of cutting tools, gear cutting tools or forging tools. It is disclosed to coat the membrane. Patent Document 2 discloses that a titanium carbide film (TiC) is coated on a steel material such as a mold and a tool.
本発明者らの検討によれば、鋼材の表面に、バナジウムやチタン等の金属と炭素を含む金属炭化物膜が直接形成された金属炭化物膜被覆部材は、ロックウェル圧痕試験において、鋼材と金属炭化物膜との密着性が低いことが判明した。したがって、金属炭化物膜被覆部材としての性能を向上させるために鋼材と金属炭化物膜との密着性を向上させることが望まれる。
According to the study by the present inventors, the metal carbide film covering member in which the metal carbide film containing metal and carbon such as vanadium and titanium is directly formed on the surface of the steel material is the steel material and the metal carbide in the Rockwell indentation test. It was found that the adhesion to the membrane was low. Therefore, it is desired to improve the adhesion between the steel material and the metal carbide film in order to improve the performance as the metal carbide film covering member.
本発明は、上記事情に鑑みてなされたものであり、金属炭化物膜被覆部材のロックウェル圧痕試験における鋼材と金属炭化物膜との密着性を向上させることができる金属炭化物膜被覆部材およびその製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is a metal carbide film coating member capable of improving the adhesion between the steel material and the metal carbide film in the Rockwell indentation test of the metal carbide film coating member, and a method for manufacturing the same. The purpose is to provide.
本発明者は、上記課題を解決するために鋭意研究を重ねた結果、鋼材の表面に形成された特定の炭化物層上に金属炭化物膜を被覆することで金属炭化物膜被覆部材のロックウェル圧痕試験における密着性が向上し、それにより上記の目的が達成されることを見出し、本発明を完成させた。
As a result of intensive research to solve the above problems, the present inventor has applied a metal carbide film on a specific carbide layer formed on the surface of a steel material to perform a rockwell indentation test on a metal carbide film covering member. The present invention has been completed by finding that the adhesion in the above-mentioned is improved and thereby the above-mentioned object is achieved.
上記課題を解決する本発明を以下に例示する。
[1]金属炭化物膜被覆部材であって、
炭化物層を表面に有する鋼材と、
前記炭化物層上にV、Ti、Al、Cr、NbおよびSiよりなる群から選択される1種以上の金属と炭素を含む金属炭化物膜と、を有し、
鋼材の金属炭化物に由来するX線回折の最大ピーク強度[炭化物強度]と、α―Feに由来するX線回折の最大ピーク強度[Fe強度]との比をピーク強度比[炭化物強度/Fe強度]と定義したとき、前記炭化物層の前記ピーク強度比が0.5~4.0である。
[2][1]に記載の金属炭化物膜被覆部材において、
前記炭化物層の前記ピーク強度比が2.0以下である。
[3][1]に記載の金属炭化物膜被覆部材において、
前記炭化物層の前記ピーク強度比が1.0以下である。
[4][1]に記載の金属炭化物膜被覆部材において、
前記金属炭化物膜は、バナジウムと、珪素と、炭素とを含有する珪炭化バナジウム膜であり、
前記珪炭化バナジウム膜は、膜中のバナジウム元素濃度と、珪素元素濃度と、炭素元素濃度の合計が90at%以上である。
[5][4]に記載の金属炭化物膜被覆部材において、
前記珪炭化バナジウム膜中のバナジウム元素濃度が8~30at%、珪素元素濃度が8~30at%、炭素元素濃度が40~80at%である。
[6]金属炭化物膜被覆部材の製造方法であって、
鋼材の表面に炭化物層を形成するプラズマ炭化処理工程と、
前記炭化物層上に、V、Ti、Al、Cr、NbおよびSiよりなる群から選択される1種以上の金属と炭素を含む金属炭化物膜を形成する金属炭化物膜形成工程とを有し、
鋼材の金属炭化物に由来するX線回折の最大ピーク強度[炭化物強度]と、α―Feに由来するX線回折の最大ピーク強度[Fe強度]との比をピーク強度比[炭化物強度/Fe強度]と定義したとき、前記プラズマ炭化処理工程において、該プラズマ炭化処理工程後の前記炭化物層の前記ピーク強度比が0.5~4.0となるように該炭化物層を形成する。
[7][6]に記載の金属炭化物膜被覆部材の製造方法において、
前記プラズマ炭化処理工程で、[前記プラズマ炭化処理工程後の鋼材の前記ピーク強度比/前記プラズマ炭化処理工程前の鋼材の前記ピーク強度比]が2.4~19を満たすように前記炭化物層を形成する。
[8]金属炭化物膜被覆部材の製造方法であって、
鋼材の表面に炭化物層を形成するプラズマ炭化処理工程と、
前記炭化物層上に、V、Ti、Al、Cr、NbおよびSiよりなる群から選択される1種以上の金属と炭素を含む金属炭化物膜を形成する金属炭化物膜形成工程とを有し、
前記プラズマ炭化処理工程は、処理ガスとして供給される炭素源ガスと水素ガスとをプラズマ化した雰囲気下で行われる。
[9][8]に記載の金属炭化物膜被覆部材の製造方法において、
前記炭素源ガスと前記水素ガスの流量比である炭素源ガス流量/水素ガス流量が0.01~0.40である。
[10][9]に記載の金属炭化物膜被覆部材の製造方法において、
前記プラズマ炭化処理工程の処理ガスとして水素ガス、炭素源ガスおよびアルゴンガスを供給し、前記水素ガスの体積流量を1としたときに、水素ガス:炭素源ガス:アルゴンガスの体積流量の比が1:0.01~0.40:0.01~0.10である。
[11][8]に記載の金属炭化物膜被覆部材の製造方法において、
前記炭素源ガスは、メタンガスである。
[12][6]に記載の金属炭化物膜被覆部材の製造方法において、
前記金属炭化物膜は、バナジウムと、珪素と、炭素とを含む珪炭化バナジウム膜であり、
前記珪炭化バナジウム膜は、膜中のバナジウム元素濃度と、珪素元素濃度と、炭素元素濃度の合計が90at%以上である。
[13][12]に記載の金属炭化物膜被覆部材の製造方法において、
前記珪炭化バナジウム膜中のバナジウム元素濃度が8~30at%、珪素元素濃度が8~30at%、炭素元素濃度が40~80at%である。
なお、本明細書中の数値範囲の表現に用いられている記号「~」は、所定の数値以上且つ所定の数値以下の範囲のことを示している。 The present invention that solves the above problems will be exemplified below.
[1] A metal carbide film covering member, which is a member.
Steel materials with a carbide layer on the surface and
The carbide layer comprises one or more metals selected from the group consisting of V, Ti, Al, Cr, Nb and Si and a metal carbide film containing carbon.
The ratio of the maximum peak intensity [carbide strength] of X-ray diffraction derived from metal carbides of steel materials to the maximum peak intensity [Fe intensity] of X-ray diffraction derived from α-Fe is the peak intensity ratio [carbide strength / Fe strength]. ], The peak intensity ratio of the carbide layer is 0.5 to 4.0.
[2] In the metal carbide film covering member according to [1],
The peak intensity ratio of the carbide layer is 2.0 or less.
[3] In the metal carbide film covering member according to [1],
The peak intensity ratio of the carbide layer is 1.0 or less.
[4] In the metal carbide film covering member according to [1],
The metal carbide film is a silica carbide vanadium film containing vanadium, silicon, and carbon.
In the silica carbide vanadium film, the total of the vanadium element concentration, the silicon element concentration, and the carbon element concentration in the film is 90 at% or more.
[5] In the metal carbide film covering member according to [4],
The vanadium element concentration in the silica carbide vanadium film is 8 to 30 at%, the silicon element concentration is 8 to 30 at%, and the carbon element concentration is 40 to 80 at%.
[6] A method for manufacturing a metal carbide film covering member.
A plasma carbide treatment process that forms a carbide layer on the surface of the steel material,
It has a metal carbide film forming step of forming a metal carbide film containing carbon and one or more metals selected from the group consisting of V, Ti, Al, Cr, Nb and Si on the carbide layer.
The ratio of the maximum peak intensity [carbide strength] of X-ray diffraction derived from metal carbides of steel materials to the maximum peak intensity [Fe intensity] of X-ray diffraction derived from α-Fe is the peak intensity ratio [carbide strength / Fe strength]. ], In the plasma carbide treatment step, the carbide layer is formed so that the peak intensity ratio of the carbide layer after the plasma carbide treatment step is 0.5 to 4.0.
[7] In the method for manufacturing a metal carbide film covering member according to [6],
In the plasma carbonization treatment step, the carbide layer is provided so that [the peak intensity ratio of the steel material after the plasma carbonization treatment step / the peak intensity ratio of the steel material before the plasma carbonization treatment step] satisfies 2.4 to 19. Form.
[8] A method for manufacturing a metal carbide film covering member.
A plasma carbide treatment process that forms a carbide layer on the surface of the steel material,
It has a metal carbide film forming step of forming a metal carbide film containing carbon and one or more metals selected from the group consisting of V, Ti, Al, Cr, Nb and Si on the carbide layer.
The plasma carbonization treatment step is performed in an atmosphere in which a carbon source gas supplied as a treatment gas and a hydrogen gas are converted into plasma.
[9] In the method for manufacturing a metal carbide film covering member according to [8],
The carbon source gas flow rate / hydrogen gas flow rate, which is the flow rate ratio of the carbon source gas to the hydrogen gas, is 0.01 to 0.40.
[10] In the method for manufacturing a metal carbide film covering member according to [9],
When hydrogen gas, carbon source gas and argon gas are supplied as the processing gas in the plasma carbonization treatment step and the volumetric flow rate of the hydrogen gas is 1, the ratio of the volumetric flow rate of hydrogen gas: carbon source gas: argon gas is It is 1: 0.01 to 0.40: 0.01 to 0.10.
[11] In the method for manufacturing a metal carbide film covering member according to [8],
The carbon source gas is methane gas.
[12] In the method for manufacturing a metal carbide film covering member according to [6],
The metal carbide film is a silica carbide vanadium film containing vanadium, silicon, and carbon.
In the silica carbide vanadium film, the total of the vanadium element concentration, the silicon element concentration, and the carbon element concentration in the film is 90 at% or more.
[13] In the method for manufacturing a metal carbide film covering member according to [12],
The vanadium element concentration in the silica carbide vanadium film is 8 to 30 at%, the silicon element concentration is 8 to 30 at%, and the carbon element concentration is 40 to 80 at%.
The symbol "-" used in the expression of the numerical range in the present specification indicates a range of a predetermined numerical value or more and a predetermined numerical value or less.
[1]金属炭化物膜被覆部材であって、
炭化物層を表面に有する鋼材と、
前記炭化物層上にV、Ti、Al、Cr、NbおよびSiよりなる群から選択される1種以上の金属と炭素を含む金属炭化物膜と、を有し、
鋼材の金属炭化物に由来するX線回折の最大ピーク強度[炭化物強度]と、α―Feに由来するX線回折の最大ピーク強度[Fe強度]との比をピーク強度比[炭化物強度/Fe強度]と定義したとき、前記炭化物層の前記ピーク強度比が0.5~4.0である。
[2][1]に記載の金属炭化物膜被覆部材において、
前記炭化物層の前記ピーク強度比が2.0以下である。
[3][1]に記載の金属炭化物膜被覆部材において、
前記炭化物層の前記ピーク強度比が1.0以下である。
[4][1]に記載の金属炭化物膜被覆部材において、
前記金属炭化物膜は、バナジウムと、珪素と、炭素とを含有する珪炭化バナジウム膜であり、
前記珪炭化バナジウム膜は、膜中のバナジウム元素濃度と、珪素元素濃度と、炭素元素濃度の合計が90at%以上である。
[5][4]に記載の金属炭化物膜被覆部材において、
前記珪炭化バナジウム膜中のバナジウム元素濃度が8~30at%、珪素元素濃度が8~30at%、炭素元素濃度が40~80at%である。
[6]金属炭化物膜被覆部材の製造方法であって、
鋼材の表面に炭化物層を形成するプラズマ炭化処理工程と、
前記炭化物層上に、V、Ti、Al、Cr、NbおよびSiよりなる群から選択される1種以上の金属と炭素を含む金属炭化物膜を形成する金属炭化物膜形成工程とを有し、
鋼材の金属炭化物に由来するX線回折の最大ピーク強度[炭化物強度]と、α―Feに由来するX線回折の最大ピーク強度[Fe強度]との比をピーク強度比[炭化物強度/Fe強度]と定義したとき、前記プラズマ炭化処理工程において、該プラズマ炭化処理工程後の前記炭化物層の前記ピーク強度比が0.5~4.0となるように該炭化物層を形成する。
[7][6]に記載の金属炭化物膜被覆部材の製造方法において、
前記プラズマ炭化処理工程で、[前記プラズマ炭化処理工程後の鋼材の前記ピーク強度比/前記プラズマ炭化処理工程前の鋼材の前記ピーク強度比]が2.4~19を満たすように前記炭化物層を形成する。
[8]金属炭化物膜被覆部材の製造方法であって、
鋼材の表面に炭化物層を形成するプラズマ炭化処理工程と、
前記炭化物層上に、V、Ti、Al、Cr、NbおよびSiよりなる群から選択される1種以上の金属と炭素を含む金属炭化物膜を形成する金属炭化物膜形成工程とを有し、
前記プラズマ炭化処理工程は、処理ガスとして供給される炭素源ガスと水素ガスとをプラズマ化した雰囲気下で行われる。
[9][8]に記載の金属炭化物膜被覆部材の製造方法において、
前記炭素源ガスと前記水素ガスの流量比である炭素源ガス流量/水素ガス流量が0.01~0.40である。
[10][9]に記載の金属炭化物膜被覆部材の製造方法において、
前記プラズマ炭化処理工程の処理ガスとして水素ガス、炭素源ガスおよびアルゴンガスを供給し、前記水素ガスの体積流量を1としたときに、水素ガス:炭素源ガス:アルゴンガスの体積流量の比が1:0.01~0.40:0.01~0.10である。
[11][8]に記載の金属炭化物膜被覆部材の製造方法において、
前記炭素源ガスは、メタンガスである。
[12][6]に記載の金属炭化物膜被覆部材の製造方法において、
前記金属炭化物膜は、バナジウムと、珪素と、炭素とを含む珪炭化バナジウム膜であり、
前記珪炭化バナジウム膜は、膜中のバナジウム元素濃度と、珪素元素濃度と、炭素元素濃度の合計が90at%以上である。
[13][12]に記載の金属炭化物膜被覆部材の製造方法において、
前記珪炭化バナジウム膜中のバナジウム元素濃度が8~30at%、珪素元素濃度が8~30at%、炭素元素濃度が40~80at%である。
なお、本明細書中の数値範囲の表現に用いられている記号「~」は、所定の数値以上且つ所定の数値以下の範囲のことを示している。 The present invention that solves the above problems will be exemplified below.
[1] A metal carbide film covering member, which is a member.
Steel materials with a carbide layer on the surface and
The carbide layer comprises one or more metals selected from the group consisting of V, Ti, Al, Cr, Nb and Si and a metal carbide film containing carbon.
The ratio of the maximum peak intensity [carbide strength] of X-ray diffraction derived from metal carbides of steel materials to the maximum peak intensity [Fe intensity] of X-ray diffraction derived from α-Fe is the peak intensity ratio [carbide strength / Fe strength]. ], The peak intensity ratio of the carbide layer is 0.5 to 4.0.
[2] In the metal carbide film covering member according to [1],
The peak intensity ratio of the carbide layer is 2.0 or less.
[3] In the metal carbide film covering member according to [1],
The peak intensity ratio of the carbide layer is 1.0 or less.
[4] In the metal carbide film covering member according to [1],
The metal carbide film is a silica carbide vanadium film containing vanadium, silicon, and carbon.
In the silica carbide vanadium film, the total of the vanadium element concentration, the silicon element concentration, and the carbon element concentration in the film is 90 at% or more.
[5] In the metal carbide film covering member according to [4],
The vanadium element concentration in the silica carbide vanadium film is 8 to 30 at%, the silicon element concentration is 8 to 30 at%, and the carbon element concentration is 40 to 80 at%.
[6] A method for manufacturing a metal carbide film covering member.
A plasma carbide treatment process that forms a carbide layer on the surface of the steel material,
It has a metal carbide film forming step of forming a metal carbide film containing carbon and one or more metals selected from the group consisting of V, Ti, Al, Cr, Nb and Si on the carbide layer.
The ratio of the maximum peak intensity [carbide strength] of X-ray diffraction derived from metal carbides of steel materials to the maximum peak intensity [Fe intensity] of X-ray diffraction derived from α-Fe is the peak intensity ratio [carbide strength / Fe strength]. ], In the plasma carbide treatment step, the carbide layer is formed so that the peak intensity ratio of the carbide layer after the plasma carbide treatment step is 0.5 to 4.0.
[7] In the method for manufacturing a metal carbide film covering member according to [6],
In the plasma carbonization treatment step, the carbide layer is provided so that [the peak intensity ratio of the steel material after the plasma carbonization treatment step / the peak intensity ratio of the steel material before the plasma carbonization treatment step] satisfies 2.4 to 19. Form.
[8] A method for manufacturing a metal carbide film covering member.
A plasma carbide treatment process that forms a carbide layer on the surface of the steel material,
It has a metal carbide film forming step of forming a metal carbide film containing carbon and one or more metals selected from the group consisting of V, Ti, Al, Cr, Nb and Si on the carbide layer.
The plasma carbonization treatment step is performed in an atmosphere in which a carbon source gas supplied as a treatment gas and a hydrogen gas are converted into plasma.
[9] In the method for manufacturing a metal carbide film covering member according to [8],
The carbon source gas flow rate / hydrogen gas flow rate, which is the flow rate ratio of the carbon source gas to the hydrogen gas, is 0.01 to 0.40.
[10] In the method for manufacturing a metal carbide film covering member according to [9],
When hydrogen gas, carbon source gas and argon gas are supplied as the processing gas in the plasma carbonization treatment step and the volumetric flow rate of the hydrogen gas is 1, the ratio of the volumetric flow rate of hydrogen gas: carbon source gas: argon gas is It is 1: 0.01 to 0.40: 0.01 to 0.10.
[11] In the method for manufacturing a metal carbide film covering member according to [8],
The carbon source gas is methane gas.
[12] In the method for manufacturing a metal carbide film covering member according to [6],
The metal carbide film is a silica carbide vanadium film containing vanadium, silicon, and carbon.
In the silica carbide vanadium film, the total of the vanadium element concentration, the silicon element concentration, and the carbon element concentration in the film is 90 at% or more.
[13] In the method for manufacturing a metal carbide film covering member according to [12],
The vanadium element concentration in the silica carbide vanadium film is 8 to 30 at%, the silicon element concentration is 8 to 30 at%, and the carbon element concentration is 40 to 80 at%.
The symbol "-" used in the expression of the numerical range in the present specification indicates a range of a predetermined numerical value or more and a predetermined numerical value or less.
本発明によれば、金属炭化物膜被覆部材のロックウェル圧痕試験における鋼材と金属炭化物膜との密着性を向上させることができる。
According to the present invention, it is possible to improve the adhesion between the steel material and the metal carbide film in the rockwell indentation test of the metal carbide film covering member.
以下、本発明の一実施形態について、図面を参照しながら説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the present specification and the drawings, the elements having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.
図1に示すように本実施形態の金属炭化物膜被覆部材1は、表面に炭化物層2aが形成された鋼材2と、鋼材2の炭化物層2a上に直接形成された金属炭化物膜3で構成されている。
As shown in FIG. 1, the metal carbide film covering member 1 of the present embodiment is composed of a steel material 2 having a carbide layer 2a formed on its surface and a metal carbide film 3 directly formed on the carbide layer 2a of the steel material 2. ing.
<鋼材>
鋼材の鋼種は特に限定されず、金属炭化物膜被覆部材1の用途に応じて適した鋼種が用いられればよい。鋼種としては、例えばSKH51などの高速度工具鋼(ハイス鋼)、SKD11、大同特殊鋼株式会社製の商品名DC53などのいわゆる冷間工具鋼、または冷間金型用鋼(冷間ダイス鋼)等が採用され得る。 <Steel material>
The steel grade of the steel material is not particularly limited, and a steel grade suitable for the application of the metal carbidefilm covering member 1 may be used. Examples of the steel type include high-speed tool steel (high-speed steel) such as SKH51, so-called cold tool steel such as SKD11 and DC53 trade name manufactured by Daido Special Steel Co., Ltd., or cold die steel (cold die steel). Etc. can be adopted.
鋼材の鋼種は特に限定されず、金属炭化物膜被覆部材1の用途に応じて適した鋼種が用いられればよい。鋼種としては、例えばSKH51などの高速度工具鋼(ハイス鋼)、SKD11、大同特殊鋼株式会社製の商品名DC53などのいわゆる冷間工具鋼、または冷間金型用鋼(冷間ダイス鋼)等が採用され得る。 <Steel material>
The steel grade of the steel material is not particularly limited, and a steel grade suitable for the application of the metal carbide
<炭化物層2a>
炭化物層2aは、鋼材表面から炭素を浸透拡散させ、鋼材中に金属炭化物を析出させた層である。詳述すると、炭化物層2aは、X線回折解析装置を用いて傾角入射法による測定によりα―Feに由来するピークと、M6C型炭化物、M23C6型炭化物、M7C3型炭化物などの金属炭化物に由来するピークとが得られる層である。鋼材表面の金属炭化物の量は、α―Feに由来するピーク強度と、M6C型炭化物、M23C6型炭化物、M7C3型炭化物などの金属炭化物に由来するピーク強度との比を見ることで評価することができる。なお、本明細書におけるピーク強度は、後述の実施例に記載されたX線回折解析の条件で実施される解析結果に基づいて算出される。 <Carbide layer 2a>
Thecarbide layer 2a is a layer in which carbon is permeated and diffused from the surface of the steel material to precipitate metal carbides in the steel material. More specifically, the carbide layer 2a is derived from a peak derived from α-Fe by measurement by a tilt angle incident method using an X-ray diffraction analyzer and a metal carbide such as M6C type carbide, M23C6 type carbide, and M7C3 type carbide. It is a layer where a peak can be obtained. The amount of metal carbide on the surface of the steel material can be evaluated by looking at the ratio between the peak intensity derived from α-Fe and the peak intensity derived from metal carbides such as M6C type carbides, M23C6 type carbides, and M7C3 type carbides. can. The peak intensity in the present specification is calculated based on the analysis result performed under the conditions of the X-ray diffraction analysis described in the examples described later.
炭化物層2aは、鋼材表面から炭素を浸透拡散させ、鋼材中に金属炭化物を析出させた層である。詳述すると、炭化物層2aは、X線回折解析装置を用いて傾角入射法による測定によりα―Feに由来するピークと、M6C型炭化物、M23C6型炭化物、M7C3型炭化物などの金属炭化物に由来するピークとが得られる層である。鋼材表面の金属炭化物の量は、α―Feに由来するピーク強度と、M6C型炭化物、M23C6型炭化物、M7C3型炭化物などの金属炭化物に由来するピーク強度との比を見ることで評価することができる。なお、本明細書におけるピーク強度は、後述の実施例に記載されたX線回折解析の条件で実施される解析結果に基づいて算出される。 <
The
本明細書における鋼材のα―Feに由来するX線回折の最大ピーク強度とは、2θ=44.6°付近(例えば44.4°~44.8°の間)に現れる最大ピークの強度である。本明細書における鋼材の金属炭化物に由来するX線回折の最大ピーク強度とは、M6C型炭化物については2θ=42.5(例えば42.3°~42.7°の間)付近に現れる最大ピークの強度であり、M23C6型炭化物およびM7C3型炭化物については2θ=44°付近に現れる最大ピークの強度である。なお、X線回折パターンにおいて、鋼材の金属炭化物に由来するX線回折のピークとして、2θ=42.5°付近に現れるX線回折ピークと、2θ=44°(例えば43.8°~44.2°の間)付近に現れるX線回折ピークがともに現れた場合は、ピーク強度がより強い方のピーク強度を金属炭化物に由来するX線回折の最大ピーク強度とする。また、本明細書におけるピーク強度の測定は、X線回折装置によって得られた強度分布を表す曲線をフィッティングし、そのフィッティング後の曲線を用いて行われる。例えば上記のα―Feに由来するX線回折の最大ピーク強度とは、フィッティング後の強度曲線の2θ=44.6°付近に現れる最大ピークの強度のことを意味している。
The maximum peak intensity of X-ray diffraction derived from α-Fe of a steel material in the present specification is the intensity of the maximum peak appearing in the vicinity of 2θ = 44.6 ° (for example, between 44.4 ° and 44.8 °). be. The maximum peak intensity of X-ray diffraction derived from metal carbides of steel materials in the present specification is the maximum peak appearing near 2θ = 42.5 (for example, between 42.3 ° and 42.7 °) for M6C type carbides. It is the intensity of the maximum peak appearing in the vicinity of 2θ = 44 ° for M23C6 type carbide and M7C3 type carbide. In the X-ray diffraction pattern, X-ray diffraction peaks appearing near 2θ = 42.5 ° and 2θ = 44 ° (for example, 43.8 ° to 44 °) as peaks of X-ray diffraction derived from metal carbides of steel materials. When both X-ray diffraction peaks appearing near (between 2 °) appear together, the peak intensity with the stronger peak intensity is taken as the maximum peak intensity of X-ray diffraction derived from metal carbide. Further, the measurement of the peak intensity in the present specification is performed by fitting a curve representing the intensity distribution obtained by the X-ray diffractometer and using the curve after the fitting. For example, the maximum peak intensity of the X-ray diffraction derived from α-Fe means the intensity of the maximum peak appearing in the vicinity of 2θ = 44.6 ° of the intensity curve after fitting.
なお、鋼材の鋼種がSKH51などの高速度工具鋼(ハイス鋼)、SKD11、大同特殊鋼株式会社製の商品名DC53などのいわゆる冷間工具鋼、または冷間金型用鋼(冷間ダイス鋼)の場合、M6C型炭化物としてFe6C、W6C、Cr6C、V6Cなどが析出すると推察される。
The steel grade is high-speed tool steel (high-speed steel) such as SKH51, so-called cold tool steel such as SKD11 and DC53 trade name manufactured by Daido Special Steel Co., Ltd., or cold die steel (cold die steel). In the case of), it is presumed that Fe 6 C, W 6 C, Cr 6 C, V 6 C and the like are deposited as M6C type carbides.
ここで、傾角入射法によって得られる、鋼材の金属炭化物に由来するX線回折の最大ピーク強度[炭化物強度]と、α―Feに由来するX線回折の最大ピーク強度[Fe強度]との比をピーク強度比[炭化物強度/Fe強度]と定義する。炭化物層2aは、そのピーク強度比が0.5~4.0となる層である。ピーク強度比が0.5未満だと、鋼材2中に析出する金属炭化物が少なく、鋼材2と金属炭化物膜3との密着性を向上させる効果が得られない。また、ピーク強度比が4.0を超えると、鋼材2中にセメンタイトが多く析出し、鋼材が脆くなり密着性を向上させる効果が得られない。
Here, the ratio of the maximum peak intensity [carbide intensity] of X-ray diffraction derived from the metal carbide of the steel material obtained by the tilt angle incident method to the maximum peak intensity [Fe intensity] of the X-ray diffraction derived from α-Fe. Is defined as the peak intensity ratio [carbide intensity / Fe intensity]. The carbide layer 2a is a layer having a peak intensity ratio of 0.5 to 4.0. When the peak intensity ratio is less than 0.5, the amount of metal carbides deposited in the steel material 2 is small, and the effect of improving the adhesion between the steel material 2 and the metal carbide film 3 cannot be obtained. Further, when the peak strength ratio exceeds 4.0, a large amount of cementite is deposited in the steel material 2, the steel material becomes brittle, and the effect of improving the adhesion cannot be obtained.
ピーク強度比が0.5~4.0である炭化物層2a上に後述の金属炭化物膜3が形成されると、ロックウェル圧痕試験における鋼材2と金属炭化物膜3との密着性が向上する。密着性が向上する理由は定かではないが、鋼材2と金属炭化物膜3の化学的な相性の改善や格子の不整合の解消がなされることによって密着性が向上すると考えられる。金属炭化物膜3が例えば珪炭化バナジウム膜である場合、ピーク強度比は0.6以上であることが好ましく、0.7以上であることがさらに好ましい。また、金属炭化物膜3が例えば珪炭化バナジウム膜である場合、ピーク強度比は2.0以下であることが好ましく、1.0以下であることがさらに好ましい。
When the metal carbide film 3 described later is formed on the carbide layer 2a having a peak intensity ratio of 0.5 to 4.0, the adhesion between the steel material 2 and the metal carbide film 3 in the Rockwell indentation test is improved. The reason why the adhesion is improved is not clear, but it is considered that the adhesion is improved by improving the chemical compatibility between the steel material 2 and the metal carbide film 3 and eliminating the inconsistency of the lattice. When the metal carbide film 3 is, for example, a silica carbide vanadium film, the peak intensity ratio is preferably 0.6 or more, and more preferably 0.7 or more. Further, when the metal carbide film 3 is, for example, a silica carbide vanadium film, the peak intensity ratio is preferably 2.0 or less, more preferably 1.0 or less.
<金属炭化物膜>
鋼材2上に形成される金属炭化物膜3は、V、Ti、Al、Cr、NbおよびSiよりなる群から選択される1種以上の金属と炭素を含む膜である。例えば、金属炭化物膜3は、VC(炭化バナジウム)、TiC(炭化チタン)、AlC(炭化アルミニウム)、CrC(炭化クロム)、NbC(炭化ニオブ)、SiC(炭化ケイ素)、VSiC(珪炭化バナジウム)、TiSiC(珪炭化チタン)などの金属炭化物を膜全体もしくは一部に含有した膜である。なお、金属炭化物膜被覆部材1がプレス成形用金型や各種工具(切削工具、歯切工具、鍛造工具等)に適用される場合、金属炭化物膜3は、VC(炭化バナジウム)やVSiC(珪炭化バナジウム)等のバナジウム系膜であることが好ましい。バナジウム系膜は、プレス成形品の被成形材や各種工具の鋼材として一般的に使用されるSKH51などの高速度工具鋼、SKD11、DC53などの冷間工具鋼、または冷間金型用鋼に対して潤滑性に富む膜であり、相手材との接触摩擦による傷つきを効果的に抑制することができる。 <Metal carbide film>
Themetal carbide film 3 formed on the steel material 2 is a film containing one or more metals and carbon selected from the group consisting of V, Ti, Al, Cr, Nb and Si. For example, the metal carbide film 3 includes VC (vanadium carbide), TiC (titanium carbide), AlC (aluminum carbide), CrC (chromium carbide), NbC (niobium carbide), SiC (silicon carbide), VCS (vanadium carbide). , TiSiC (Titanium Carbide) and other metal carbides are contained in the whole or part of the film. When the metal carbide film covering member 1 is applied to a press forming mold or various tools (cutting tool, gear cutting tool, forging tool, etc.), the metal carbide film 3 is VC (vanadium carbide) or VCSC (silica). It is preferably a vanadium-based film such as vanadium carbide). The vanadium-based film can be used for high-speed tool steel such as SKH51, cold tool steel such as SKD11 and DC53, or steel for cold dies, which are generally used as materials to be molded in press-formed products and steel materials for various tools. On the other hand, it is a film with excellent lubricity and can effectively suppress damage due to contact friction with the mating material.
鋼材2上に形成される金属炭化物膜3は、V、Ti、Al、Cr、NbおよびSiよりなる群から選択される1種以上の金属と炭素を含む膜である。例えば、金属炭化物膜3は、VC(炭化バナジウム)、TiC(炭化チタン)、AlC(炭化アルミニウム)、CrC(炭化クロム)、NbC(炭化ニオブ)、SiC(炭化ケイ素)、VSiC(珪炭化バナジウム)、TiSiC(珪炭化チタン)などの金属炭化物を膜全体もしくは一部に含有した膜である。なお、金属炭化物膜被覆部材1がプレス成形用金型や各種工具(切削工具、歯切工具、鍛造工具等)に適用される場合、金属炭化物膜3は、VC(炭化バナジウム)やVSiC(珪炭化バナジウム)等のバナジウム系膜であることが好ましい。バナジウム系膜は、プレス成形品の被成形材や各種工具の鋼材として一般的に使用されるSKH51などの高速度工具鋼、SKD11、DC53などの冷間工具鋼、または冷間金型用鋼に対して潤滑性に富む膜であり、相手材との接触摩擦による傷つきを効果的に抑制することができる。 <Metal carbide film>
The
金属炭化物膜3は、V、Ti、Al、Cr、NbおよびSiよりなる群から選択される1種以上の金属の元素濃度と、炭素元素濃度との合計が90at%以上であることが好ましい。より好ましくは93at%以上であり、さらに好ましくは95at%以上である。また、金属炭化物膜3は、炭素元素を除き、10at%以下の非金属元素が含まれていてもよい。非金属元素の例としては、金属炭化物膜3の形成工程で供給される原料ガスに含まれるフッ素、アルゴン、塩素、水素や、成膜装置のチャンバー内の残存ガスに含まれる酸素、窒素などが挙げられる。金属炭化物膜3に含まれる非金属元素は、7at%以下であることが好ましい。さらに好ましくは、5at%以下である。なお、金属炭化物膜3中の金属元素濃度と、炭素元素濃度は、EPMAによる組成分析によって測定することができる。
The metal carbide film 3 preferably has a total of 90 at% or more of the element concentration of one or more metals selected from the group consisting of V, Ti, Al, Cr, Nb and Si and the carbon element concentration. It is more preferably 93 at% or more, and further preferably 95 at% or more. Further, the metal carbide film 3 may contain a non-metal element of 10 at% or less, excluding the carbon element. Examples of non-metal elements include fluorine, argon, chlorine and hydrogen contained in the raw material gas supplied in the process of forming the metal carbide film 3, and oxygen and nitrogen contained in the residual gas in the chamber of the film forming apparatus. Can be mentioned. The non-metal element contained in the metal carbide film 3 is preferably 7 at% or less. More preferably, it is 5 at% or less. The metal element concentration and the carbon element concentration in the metal carbide film 3 can be measured by composition analysis by EPMA.
金属炭化物膜3が、珪炭化バナジウム膜である場合、バナジウム元素濃度が8~30at%、珪素元素濃度が8~30at%、炭素元素濃度が40~80at%であることが好ましい。バナジウム元素濃度が8~30at%の場合、バナジウム由来の潤滑性向上の効果が得られやすくなり、珪炭化バナジウム膜と他部材との摩擦係数が低くなりやすい。珪素元素濃度が8~30at%の場合、珪炭化バナジウム膜中にアモルファスな炭化珪素(SiC)が形成されやすくなり、珪炭化バナジウム膜が他部材と摺動した際に膜表面に酸化被膜が形成され、珪炭化バナジウム膜と他部材との摩擦係数が低くなりやすい。炭素元素濃度が40~80at%の場合、珪炭化バナジウム膜中にアモルファスな炭化珪素(SiC)やアモルファスな炭素が形成されやすくなり、珪炭化バナジウム膜と他部材との摩擦係数が低くなりやすい。なお、バナジウム元素濃度は9at%以上であることがより好ましい。また、バナジウム元素濃度は25at%以下であることがより好ましい。珪素元素濃度は9at%以上であることがより好ましい。また、珪素元素濃度は25at%以下であることがより好ましい。炭素元素濃度は50at%以上であることがより好ましい。また、炭素元素濃度は80at%以下であることがより好ましい。
When the metal carbide film 3 is a silica carbide vanadium film, it is preferable that the vanadium element concentration is 8 to 30 at%, the silicon element concentration is 8 to 30 at%, and the carbon element concentration is 40 to 80 at%. When the vanadium element concentration is 8 to 30 at%, the effect of improving the lubricity derived from vanadium is likely to be obtained, and the coefficient of friction between the silica carbide vanadium film and other members is likely to be low. When the silicon element concentration is 8 to 30 at%, amorphous silicon carbide (SiC) is likely to be formed in the silica carbide vanadium carbide film, and an oxide film is formed on the film surface when the silica carbide vanadium carbide film slides with other members. Therefore, the friction coefficient between the silica carbide vanadium film and other members tends to be low. When the carbon element concentration is 40 to 80 at%, amorphous silicon carbide (SiC) or amorphous carbon is likely to be formed in the silica carbide vanadium carbide film, and the coefficient of friction between the silica carbide vanadium film and other members is likely to be low. The vanadium element concentration is more preferably 9 at% or more. Further, the vanadium element concentration is more preferably 25 at% or less. The silicon element concentration is more preferably 9 at% or more. Further, the silicon element concentration is more preferably 25 at% or less. The carbon element concentration is more preferably 50 at% or more. Further, the carbon element concentration is more preferably 80 at% or less.
金属炭化物膜3の膜厚は、金属炭化物膜被覆部材1に要求される特性に応じて適宜変更されるが、例えば0.5~4μmであることが好ましい。
The film thickness of the metal carbide film 3 is appropriately changed according to the characteristics required for the metal carbide film covering member 1, but is preferably 0.5 to 4 μm, for example.
金属炭化物膜3が例えば金型や工具、歯車のような自動車部品等の硬質膜として用いられる場合は、金属炭化物膜3の硬さは、2000HV以上であることが好ましく、4000HV以下であることが好ましい。
When the metal carbide film 3 is used as a hard film for automobile parts such as molds, tools, and gears, the hardness of the metal carbide film 3 is preferably 2000 HV or more, and preferably 4000 HV or less. preferable.
次に、金属炭化物膜被覆部材1の製造方法について説明する。以下で説明する製造方法は、鋼材表面に炭化物層2aを形成するプラズマ炭化処理工程と、プラズマ炭化処理工程を行った鋼材2の上に金属炭化物膜3を被覆する金属炭化物膜形成工程とからなる。
Next, a method for manufacturing the metal carbide film covering member 1 will be described. The manufacturing method described below comprises a plasma carbonization treatment step of forming a carbide layer 2a on the surface of the steel material and a metal carbide film forming step of coating the metal carbide film 3 on the steel material 2 subjected to the plasma carbonization treatment step. ..
<プラズマ炭化処理工程>
鋼材のプラズマ炭化処理工程は、鋼材2上に金属炭化物膜3の形成を行う前に、鋼材表面から炭素を浸透拡散させ、鋼材中に金属炭化物を析出させてピーク強度比が0.5~4.0となる炭化物層2aを形成する工程である。ピーク強度比がもともと低い鋼材であっても、本工程を行うことでピーク強度比を高くすることができる。高速度工具鋼の一種であるSKH51の場合は、本工程を行うことでピーク強度比を3倍以上高くすることが可能となる。 <Plasma carbonization process>
In the plasma carbonization treatment step of the steel material, carbon is permeated and diffused from the surface of the steel material before themetal carbide film 3 is formed on the steel material 2, and the metal carbide is precipitated in the steel material, and the peak intensity ratio is 0.5 to 4 This is a step of forming the carbide layer 2a to be 0.0. Even if the steel material has a low peak intensity ratio, the peak intensity ratio can be increased by performing this step. In the case of SKH51, which is a kind of high-speed tool steel, it is possible to increase the peak strength ratio by 3 times or more by performing this step.
鋼材のプラズマ炭化処理工程は、鋼材2上に金属炭化物膜3の形成を行う前に、鋼材表面から炭素を浸透拡散させ、鋼材中に金属炭化物を析出させてピーク強度比が0.5~4.0となる炭化物層2aを形成する工程である。ピーク強度比がもともと低い鋼材であっても、本工程を行うことでピーク強度比を高くすることができる。高速度工具鋼の一種であるSKH51の場合は、本工程を行うことでピーク強度比を3倍以上高くすることが可能となる。 <Plasma carbonization process>
In the plasma carbonization treatment step of the steel material, carbon is permeated and diffused from the surface of the steel material before the
プラズマ炭化処理工程において、鋼材2の炭化物層2aを形成する方法としては、プラズマ炭化処理が挙げられる。プラズマ炭化処理は、処理ガスとして供給される水素ガスと炭素源ガスをプラズマ化させ、プラズマ化した雰囲気下に鋼材を置くことで鋼材表面に金属炭化物を析出させる処理である。プラズマ炭化処理によれば、プラズマ炭化処理工程時の雰囲気温度を350~650℃とすることが可能であるため、鋼材2の熱による歪みを抑制することができる。また、プラズマ炭化処理は、ススの発生を抑制できるため、メンテナンス作業が簡易になる。
In the plasma carbonization treatment step, a method for forming the carbide layer 2a of the steel material 2 includes plasma carbonization treatment. The plasma carbonization treatment is a treatment in which hydrogen gas and carbon source gas supplied as a treatment gas are turned into plasma, and the steel material is placed in a plasma-like atmosphere to deposit metal carbides on the surface of the steel material. According to the plasma carbonization treatment, the atmospheric temperature during the plasma carbonization treatment step can be set to 350 to 650 ° C., so that the strain due to heat of the steel material 2 can be suppressed. Further, the plasma carbonization treatment can suppress the generation of soot, which simplifies the maintenance work.
プラズマ炭化処理工程では、例えば図2のような成膜装置10を用いることができる。成膜装置10は、鋼材2が搬入されるチャンバー11と、陽極側の電極部材12と、陰極側の電極部材13と、パルス電源14とを備えている。チャンバー11の上部には処理ガスまたは原料ガスが供給されるガス供給管15が接続され、チャンバー11の下部にはチャンバー11内のガスを排気するガス排気管16が接続されている。ガス排気管16には真空ポンプ(不図示)が設けられている。陰極側の電極部材13は鋼材2を支持する支持台としての役割も有しており、チャンバー11内に搬入された鋼材2は陰極上に載置される。また、チャンバー11の内部にはヒーター(不図示)が設けられており、ヒーターでチャンバー11内の雰囲気温度が調節されることで鋼材温度が調節される。後述のように金属炭化物膜3をプラズマCVD法で形成する場合、図2のような成膜装置10を用いれば、鋼材2のプラズマ炭化処理工程と、金属炭化物膜形成工程を同一の装置で行うことができ、別々の装置を使用する場合と比較して、効率良く金属炭化物膜被覆部材1を製造することができる。また、鋼材2のプラズマ炭化処理工程と、金属炭化物膜形成工程を同一の装置で行うことで、炭化物層2aと金属炭化物膜3との界面に酸化層が形成されることを抑制できる。
In the plasma carbonization treatment step, for example, the film forming apparatus 10 as shown in FIG. 2 can be used. The film forming apparatus 10 includes a chamber 11 into which the steel material 2 is carried, an electrode member 12 on the anode side, an electrode member 13 on the cathode side, and a pulse power supply 14. A gas supply pipe 15 to which a processing gas or a raw material gas is supplied is connected to the upper part of the chamber 11, and a gas exhaust pipe 16 for exhausting the gas in the chamber 11 is connected to the lower part of the chamber 11. The gas exhaust pipe 16 is provided with a vacuum pump (not shown). The electrode member 13 on the cathode side also serves as a support base for supporting the steel material 2, and the steel material 2 carried into the chamber 11 is placed on the cathode. Further, a heater (not shown) is provided inside the chamber 11, and the temperature of the steel material is adjusted by adjusting the atmospheric temperature in the chamber 11 with the heater. When the metal carbide film 3 is formed by the plasma CVD method as described later, if the film forming apparatus 10 as shown in FIG. 2 is used, the plasma carbide treatment step of the steel material 2 and the metal carbide film forming step are performed by the same apparatus. This makes it possible to efficiently manufacture the metal carbide film covering member 1 as compared with the case where separate devices are used. Further, by performing the plasma carbide treatment step of the steel material 2 and the metal carbide film forming step in the same apparatus, it is possible to suppress the formation of an oxide layer at the interface between the carbide layer 2a and the metal carbide film 3.
プラズマ炭化処理工程では、処理ガスである炭素源ガスとしては、例えばメタンガス、エタンガス、エチレンガス、アセチレンガスなどの炭化水素ガスが用いられる。ここで例示されるガスは単独で供給されてもよいし、2種以上のガスが混合されて供給されてもよい。後述する金属炭化物膜3の形成工程に使用される炭素源ガスと同様のガスを使用することが好ましい。より密着性に優れた金属炭化物膜被覆部材1を得るという観点からは、炭素源ガスとしてメタンガスを使用することが好ましい。また、処理ガスとして水素ガスと炭素源ガスの他にアルゴンガスを供給してもよい。アルゴンガスは、アルゴンイオンが他の分子をイオン化することでプラズマの安定化やイオン密度の向上に寄与するため、必要に応じて供給することが好ましい。なお、各ガスの流量は「体積流量」であり、マスフロコントローラーにて制御される。本明細書における「体積流量」は、実際のガスの使用温度および圧力に依存しない「標準状態に換算した流量」であり、「標準状態」は、101.3kPa(1atm)、0℃である。
In the plasma carbonization treatment step, as the carbon source gas as the treatment gas, for example, a hydrocarbon gas such as methane gas, ethane gas, ethylene gas, and acetylene gas is used. The gas exemplified here may be supplied alone or may be supplied as a mixture of two or more kinds of gases. It is preferable to use the same gas as the carbon source gas used in the step of forming the metal carbide film 3 described later. From the viewpoint of obtaining the metal carbide film covering member 1 having better adhesion, it is preferable to use methane gas as the carbon source gas. Further, as the processing gas, argon gas may be supplied in addition to hydrogen gas and carbon source gas. Argon gas is preferably supplied as needed because it contributes to the stabilization of plasma and the improvement of ion density by ionizing other molecules by argon ions. The flow rate of each gas is a "volume flow rate" and is controlled by the mass flow controller. The "volumetric flow rate" in the present specification is a "flow rate converted to a standard state" that does not depend on the actual operating temperature and pressure of the gas, and the "standard state" is 101.3 kPa (1 atm), 0 ° C.
プラズマ炭化処理においては、処理ガスとして供給される炭素源ガスと水素ガスとの流量比[炭素源ガス流量/水素ガス流量]が0.01~0.40であることが好ましい。炭素源ガス流量/水素ガス流量が0.01以上であれば、鋼材2中に炭化物層2aをより生成させやすくなり、金属炭化物膜被覆部材1における鋼材2と金属炭化物膜3の密着性をさらに向上させることができる。炭素源ガス流量/水素ガス流量が0.40以下であれば、密着性を低減させるアモルファスな炭素の生成が抑制され、金属炭化物膜被覆部材1における鋼材2と金属炭化物膜3の密着性をさらに向上させることができる。炭素源ガス流量/水素ガス流量は、0.01~0.40の範囲内であればプラズマ炭化処理工程中に変動させてもよいが、一定にすることが好ましい。炭素源ガス流量/水素ガス流量は0.02以上であることが好ましい。また、炭素源ガス流量/水素ガス流量は0.20以下であることが好ましい。
In the plasma carbonization treatment, the flow ratio [carbon source gas flow rate / hydrogen gas flow rate] between the carbon source gas supplied as the treatment gas and the hydrogen gas is preferably 0.01 to 0.40. When the carbon source gas flow rate / hydrogen gas flow rate is 0.01 or more, it becomes easier to form the carbide layer 2a in the steel material 2, and the adhesion between the steel material 2 and the metal carbide film 3 in the metal carbide film covering member 1 is further improved. Can be improved. When the carbon source gas flow rate / hydrogen gas flow rate is 0.40 or less, the formation of amorphous carbon that reduces the adhesion is suppressed, and the adhesion between the steel material 2 and the metal carbide film 3 in the metal carbide film covering member 1 is further improved. Can be improved. The carbon source gas flow rate / hydrogen gas flow rate may be varied during the plasma carbonization treatment step as long as it is in the range of 0.01 to 0.40, but it is preferably constant. The carbon source gas flow rate / hydrogen gas flow rate is preferably 0.02 or more. Further, the carbon source gas flow rate / hydrogen gas flow rate is preferably 0.20 or less.
処理ガスとして水素ガス、炭素源ガスおよびアルゴンガスを用いたプラズマ炭化処理においては、水素ガスの体積流量を1としたときに、水素ガス:炭素源ガス:アルゴンガスの体積流量の比が1:0.01~0.40:0.01~0.10であることが好ましい。さらに好ましくは、水素ガス:炭素源ガス:アルゴンガスの体積流量の比が1:0.02~0.20:0.01~0.10である。
In plasma carbonization treatment using hydrogen gas, carbon source gas and argon gas as the treatment gas, the ratio of hydrogen gas: carbon source gas: argon gas volume flow rate is 1: when the volume flow rate of hydrogen gas is 1. 0.01 to 0.40: Preferably 0.01 to 0.10. More preferably, the ratio of the volumetric flow rate of hydrogen gas: carbon source gas: argon gas is 1: 0.02 to 0.20: 0.01 to 0.10.
図2の成膜装置10でプラズマ炭化処理を行う場合には、チャンバー11内に水素ガスと炭素源ガスが供給された状態で陽極側の電極部材12と陰極側の電極部材13の間にパルス電圧を印加する。ここで雰囲気温度、Duty比、電圧、チャンバー11内圧力を調整することにより、水素ガスと炭素源ガスをプラズマ化することができる。
When the plasma carbonization treatment is performed by the film forming apparatus 10 of FIG. 2, a pulse is formed between the electrode member 12 on the anode side and the electrode member 13 on the cathode side while hydrogen gas and carbon source gas are supplied into the chamber 11. Apply voltage. Here, by adjusting the ambient temperature, duty ratio, voltage, and pressure inside the chamber 11, hydrogen gas and carbon source gas can be turned into plasma.
炭化処理中における熱による鋼材2の軟化を抑制するためには、チャンバー11内の雰囲気温度は350~650℃であることが好ましい。チャンバー11内の雰囲気温度は、好ましくは400℃以上であり、好ましくは550℃以下である。チャンバー11内の雰囲気温度は、プラズマ条件に応じてヒーター設定温度を変更することで調節することができる。
In order to suppress the softening of the steel material 2 due to heat during the carbonization treatment, the atmospheric temperature in the chamber 11 is preferably 350 to 650 ° C. The atmospheric temperature in the chamber 11 is preferably 400 ° C. or higher, preferably 550 ° C. or lower. The atmospheric temperature in the chamber 11 can be adjusted by changing the heater set temperature according to the plasma conditions.
Duty比は、パルス1周期あたりの電圧印加時間で定義され、Duty比(%)=100×電圧印加時間(ON time)/{電圧印加時間(ON time)+電圧印加停止時間(OFF time)}で算出される。なお、直流のパルス電源14を用いる場合、プラズマ炭化処理におけるDuty比は5%~90%であることが好ましい。Duty比は、好ましくは15%以上であり、好ましくは60%以下である。プラズマ炭化処理におけるパルス電源14の電圧は1000~2000Vであることが好ましい。パルス電源14の電圧は、好ましくは1100V以上であり、好ましくは1800V以下である。
The duty ratio is defined by the voltage application time per pulse cycle, and the duty ratio (%) = 100 × voltage application time (ON time) / {voltage application time (ON time) + voltage application stop time (OFF time)} It is calculated by. When the DC pulse power supply 14 is used, the duty ratio in the plasma carbonization treatment is preferably 5% to 90%. The duty ratio is preferably 15% or more, and preferably 60% or less. The voltage of the pulse power supply 14 in the plasma carbonization treatment is preferably 1000 to 2000 V. The voltage of the pulse power supply 14 is preferably 1100 V or more, and preferably 1800 V or less.
プラズマ炭化処理における、陽極側の電極部材12と陰極側の電極部材13の間にパルス電圧を印加したときの電力密度は例えば1200~2000W/m2であることが好ましい。電力密度は、好ましくは1400W/m2以上である。また、電力密度は、好ましくは1800W/m2以下である。電力密度[W/m2]は、電力[W]/陰極の表面積[m2]で算出される値である。“陰極の表面積[m2]”は、鋼材2の表面積と陰極側の電極部材13の表面積の合計値である。例えば図2の成膜装置10においては、陰極側の電極部材13に鋼材が載置されているため、通電時には陰極側の電極部材13を介して鋼材にも電圧が印加される。すなわち、鋼材2は、陰極側の電極部材13と電気的に接続されることで陰極となる。このため、成膜装置10における陰極の表面積は、陰極側の電極部材13の表面積と、鋼材の表面積の合計値となる。なお、電気的に接続される部材同士の接触面の面積については、陰極の表面積には含めないこととする。また、鋼材を治具(図示せず)にセットし、治具を陰極側の電極部材13に載置してプラズマ炭化処理を行う場合には、陰極側の電極部材13と、治具と、鋼材とが電気的に接続される。この場合、陰極側の電極部材13と治具の接触面の面積および治具と鋼材の接触面の面積を除いた、陰極側の電極部材13の表面積と治具の表面積と鋼材の表面積の合計値が陰極の表面積である。“電力[W]”は、電圧[V]×電流[A]で算出される値である。“電圧”はパルス電源14の設定電圧であり、“電流”は、パルス電源14に表示される電流値を用い、プラズマ炭化処理工程内における(最大電流+最小電流)/2で算出される値である。
In the plasma carbonization treatment, the power density when a pulse voltage is applied between the electrode member 12 on the anode side and the electrode member 13 on the cathode side is preferably 1200 to 2000 W / m 2, for example. The power density is preferably 1400 W / m 2 or more. The power density is preferably 1800 W / m 2 or less. The power density [W / m 2 ] is a value calculated by power [W] / cathode surface area [m 2]. “Cathode surface area [m 2 ]” is the total value of the surface area of the steel material 2 and the surface area of the electrode member 13 on the cathode side. For example, in the film forming apparatus 10 of FIG. 2, since the steel material is placed on the electrode member 13 on the cathode side, a voltage is also applied to the steel material via the electrode member 13 on the cathode side when energized. That is, the steel material 2 becomes a cathode by being electrically connected to the electrode member 13 on the cathode side. Therefore, the surface area of the cathode in the film forming apparatus 10 is the total value of the surface area of the electrode member 13 on the cathode side and the surface area of the steel material. The area of the contact surface between the electrically connected members is not included in the surface area of the cathode. Further, when the steel material is set on a jig (not shown) and the jig is placed on the electrode member 13 on the cathode side to perform plasma carbonization treatment, the electrode member 13 on the cathode side, the jig, and the jig are used. It is electrically connected to the steel material. In this case, the total surface area of the electrode member 13 on the cathode side, the surface area of the jig, and the surface area of the steel material excluding the area of the contact surface between the electrode member 13 on the cathode side and the jig and the area of the contact surface between the jig and the steel material. The value is the surface area of the cathode. "Power [W]" is a value calculated by voltage [V] x current [A]. "Voltage" is the set voltage of the pulse power supply 14, and "current" is a value calculated by (maximum current + minimum current) / 2 in the plasma carbonization processing process using the current value displayed on the pulse power supply 14. Is.
チャンバー11内の圧力は30~200Paに設定することが好ましい。よりプラズマが安定し、炭化処理を容易に行うためには、チャンバー11内の圧力は、好ましくは40Pa以上、好ましくは100Pa以下である。プラズマ炭化処理工程の処理時間は、鋼材の種類や形状により異なってくる。このため、炭化処理時間は適宜変更されるものであるが、例えば60~360分であることが好ましい。炭化処理時間は、好ましくは120分以上であり、好ましくは300分以下である。
The pressure in the chamber 11 is preferably set to 30 to 200 Pa. In order to make the plasma more stable and facilitate the carbonization treatment, the pressure in the chamber 11 is preferably 40 Pa or more, preferably 100 Pa or less. The processing time of the plasma carbonization treatment process differs depending on the type and shape of the steel material. Therefore, the carbonization treatment time is appropriately changed, but is preferably 60 to 360 minutes, for example. The carbonization treatment time is preferably 120 minutes or more, and preferably 300 minutes or less.
なお、プラズマ炭化処理工程では、処理ガスである水素ガスと炭素源ガスをプラズマ化することができれば、処理ガスをプラズマ化させる手段は特に限定されない。
In the plasma carbonization treatment step, as long as hydrogen gas and carbon source gas, which are treatment gases, can be converted into plasma, the means for converting the treatment gas into plasma is not particularly limited.
以上のようなプラズマ炭化処理工程によって、ピーク強度比[炭化物強度/Fe強度]が0.5~4.0となる炭化物層2aを有した鋼材2が得られる。
By the plasma carbonization treatment step as described above, a steel material 2 having a carbide layer 2a having a peak intensity ratio [carbide strength / Fe strength] of 0.5 to 4.0 can be obtained.
なお、プラズマ炭化処理工程後の鋼材2のピーク強度比/プラズマ炭化処理工程前の鋼材のピーク強度比は2.4~19であることが好ましい。プラズマ炭化処理工程後の鋼材2のピーク強度比とプラズマ炭化処理工程前の鋼材のピーク強度比が上記の関係を満たすようにプラズマ炭化処理工程を行うことで、鋼材2と金属炭化物膜3の密着性が向上しやすくなる。
The peak strength ratio of the steel material 2 after the plasma carbonization treatment step / the peak strength ratio of the steel material before the plasma carbonization treatment step is preferably 2.4 to 19. By performing the plasma carbonization treatment step so that the peak intensity ratio of the steel material 2 after the plasma carbonization treatment step and the peak intensity ratio of the steel material before the plasma carbonization treatment step satisfy the above relationship, the steel material 2 and the metal carbide film 3 adhere to each other. It becomes easier to improve the sex.
<金属炭化物膜形成工程>
次に、プラズマ炭化処理工程後の鋼材の表面にV、Ti、Al、Cr、NbおよびSiよりなる群から選択される1種以上の金属と炭素を含む金属炭化物膜3を被覆するための金属炭化物膜形成工程を行う。 <Metal carbide film forming process>
Next, a metal for coating the surface of the steel material after the plasma carbide treatment step with ametal carbide film 3 containing one or more metals selected from the group consisting of V, Ti, Al, Cr, Nb and Si and carbon. Carbide film forming step is performed.
次に、プラズマ炭化処理工程後の鋼材の表面にV、Ti、Al、Cr、NbおよびSiよりなる群から選択される1種以上の金属と炭素を含む金属炭化物膜3を被覆するための金属炭化物膜形成工程を行う。 <Metal carbide film forming process>
Next, a metal for coating the surface of the steel material after the plasma carbide treatment step with a
金属炭化物膜形成工程では、金属炭化物膜3を形成することができれば、どのような方法で金属炭化物膜3が形成されてもよい。金属炭化物膜3の形成方法としては、例えばプラズマCVD法、アークイオンプレーティング法、スパッタ法、アンバランスドマグネトロンスパッタ法などがある。好ましくは、プラズマCVD法である。プラズマCVD法で金属炭化物膜3を形成する場合、鋼材2のプラズマ炭化処理と、金属炭化物膜3の成膜を同一のプラズマ処理装置で行うことができ、別々の装置を使用する場合と比較して、効率良く金属炭化物膜被覆部材1を製造することができる。また、鋼材2のプラズマ炭化処理と、金属炭化物膜3の成膜を同一の装置で行うことで、炭化物層2aと金属炭化物膜3との界面に酸化層が形成されることを抑制できる。
In the metal carbide film forming step, the metal carbide film 3 may be formed by any method as long as the metal carbide film 3 can be formed. Examples of the method for forming the metal carbide film 3 include a plasma CVD method, an arc ion plating method, a sputtering method, and an unbalanced magnetron sputtering method. The plasma CVD method is preferable. When the metal carbide film 3 is formed by the plasma CVD method, the plasma carbide treatment of the steel material 2 and the film formation of the metal carbide film 3 can be performed by the same plasma processing device, as compared with the case where different devices are used. Therefore, the metal carbide film covering member 1 can be efficiently manufactured. Further, by performing the plasma carbide treatment of the steel material 2 and the film formation of the metal carbide film 3 with the same apparatus, it is possible to suppress the formation of an oxide layer at the interface between the carbide layer 2a and the metal carbide film 3.
プラズマCVD法で金属炭化物膜3を形成する場合、原料ガスとして、V、Ti、Al、Cr、NbおよびSiよりなる群から選択される1種以上の金属を含むガスと、炭素源ガスと、水素ガスをチャンバー11内に供給し、パルス電源14を用いて陽極側の電極部材12と陰極側の電極部材13の間にパルス電圧を印加する。これにより、陽極側の電極部材12と陰極側の電極部材13の間で原料ガスがプラズマ化し、鋼材2の表面に金属炭化物膜3が形成される。V、Ti、Al、Cr、NbおよびSiよりなる群から選択される1種以上の金属を含むガスとして、Vの一例としては塩化バナジウムガス、Tiの一例としては塩化チタンガス、Alの一例としては塩化アルミニウムガス、Crの一例としては塩化クロムガス、Nbの一例としては塩化ニオブガス、Siの一例としては塩化珪素ガスが挙げられる。
When the metal carbide film 3 is formed by the plasma CVD method, the raw material gas includes a gas containing one or more metals selected from the group consisting of V, Ti, Al, Cr, Nb and Si, a carbon source gas, and the like. Hydrogen gas is supplied into the chamber 11, and a pulse voltage is applied between the electrode member 12 on the anode side and the electrode member 13 on the cathode side using the pulse power supply 14. As a result, the raw material gas is turned into plasma between the electrode member 12 on the anode side and the electrode member 13 on the cathode side, and the metal carbide film 3 is formed on the surface of the steel material 2. As a gas containing one or more metals selected from the group consisting of V, Ti, Al, Cr, Nb and Si, as an example of V, vanadium chloride gas, as an example of Ti, titanium chloride gas, as an example of Al. Is an aluminum chloride gas, an example of Cr is chromium chloride gas, an example of Nb is niobium chloride gas, and an example of Si is silicon chloride gas.
金属炭化物膜3として珪炭化バナジウム膜を形成する場合、塩化バナジウムガスとしては、例えば四塩化バナジウム(VCl4)ガス、三塩化酸化バナジウム(VOCl3)ガスが用いられる。なお、ガスを構成する元素の数が少なく、珪炭化バナジウム膜中の不純物を取り除くことが容易になるという観点では、塩化バナジウムガスとして四塩化バナジウムガスを用いることが好ましい。また、四塩化バナジウムガスは、入手が容易で、常温において液体であり、ガスとしての供給が容易な点でも好ましい。
When the silica carbide vanadium film is formed as the metal carbide film 3, for example, vanadium tetrachloride (VCl 4 ) gas and vanadium trichloride (VOCl 3 ) gas are used as the vanadium chloride gas. It is preferable to use vanadium tetrachloride gas as the vanadium chloride gas from the viewpoint that the number of elements constituting the gas is small and impurities in the silica carbide vanadium film can be easily removed. Further, vanadium tetrachloride gas is preferable because it is easily available, is a liquid at room temperature, and is easily supplied as a gas.
珪素源ガスとしては、例えばモノシランガス、ジシランガス、ジクロロシランガス、トリクロロシランガス、四塩化珪素ガス、四フッ化珪素ガス等のシラン系ガス等が用いられる。ここで例示されるガスは単独で供給されてもよいし、2種以上のガスが混合されて供給されてもよい。また、これらのガスの中では、水素プラズマによって容易に塩素原子を取り去ることができ、熱的に安定で、かつ、プラズマ中でのみ分解する四塩化珪素(SiCl4)ガスを用いることが好ましい。
As the silicon source gas, for example, a silane gas such as monosilane gas, disilane gas, dichlorosilane gas, trichlorosilane gas, silicon tetrachloride gas, or silicon tetrachloride gas is used. The gas exemplified here may be supplied alone or may be supplied as a mixture of two or more kinds of gases. Further, among these gases, it is preferable to use silicon tetrachloride (SiCl 4 ) gas, which can easily remove chlorine atoms by hydrogen plasma, is thermally stable, and decomposes only in plasma.
炭素源ガスとしては、例えばメタンガス、エタンガス、エチレンガス、アセチレンガスなどの炭化水素ガスが用いられる。ここで例示されるガスは単独で供給されてもよいし、2種以上のガスが混合されて供給されてもよい。メタンガスを用いることが好ましい。メタンガスを用いることで炭素量のコントロールが容易になり、かつ膜中に水素が多く含まれることによって膜中の塩素量を少なくすることができる。
As the carbon source gas, for example, a hydrocarbon gas such as methane gas, ethane gas, ethylene gas, and acetylene gas is used. The gas exemplified here may be supplied alone or may be supplied as a mixture of two or more kinds of gases. It is preferable to use methane gas. By using methane gas, it becomes easy to control the amount of carbon, and by containing a large amount of hydrogen in the membrane, the amount of chlorine in the membrane can be reduced.
また、金属炭化物膜3として珪炭化バナジウム膜を形成する場合、珪素源ガスと炭素源ガスを兼ねるガスとして、珪素に炭化水素官能基が結合した分子構造の有機シランガスを用いてもよい。有機シランガスは、珪素に炭化水素官能基が結合した分子構造のものであれば特に限定されないが、例えばモノメチルシランガス、ジメチルシランガス、トリメチルシランガス、テトラメチルシランガス等が用いられてもよい。なお、金属炭化物膜3として珪炭化バナジウム膜を形成する場合、有機シランガスと炭素源ガスの混合ガスを用いてもよい。
Further, when the silica carbide vanadium film is formed as the metal carbide film 3, an organic silane gas having a molecular structure in which a hydrocarbon functional group is bonded to silicon may be used as a gas that serves as both a silicon source gas and a carbon source gas. The organic silane gas is not particularly limited as long as it has a molecular structure in which a hydrocarbon functional group is bonded to silicon, and for example, monomethylsilane gas, dimethylsilane gas, trimethylsilane gas, tetramethylsilane gas and the like may be used. When forming a silica carbide vanadium film as the metal carbide film 3, a mixed gas of an organic silane gas and a carbon source gas may be used.
金属炭化物膜3として珪炭化バナジウム膜を形成する場合、原料ガスに塩化バナジウムガスが含まれていると、珪炭化バナジウム膜には、バナジウム、珪素および炭素を除いた残部に必然的に不純物としての塩素が含まれる。水素ガスは塩素と結合しやすいことから、原料ガスに水素ガスが含まれる場合には、塩化バナジウムガスから発生する塩素が水素と結合して系外に排出されやすくなる。これにより、珪炭化バナジウム膜中への塩素の混入を抑えることができる。なお、珪炭化バナジウム膜の残部には、塩素以外にも不可避的不純物が含まれ得る。
When the silica carbide vanadium film is formed as the metal carbide film 3, if the raw material gas contains vanadium chloride gas, the silica carbide vanadium film inevitably contains the residue excluding vanadium, silicon and carbon as impurities. Contains chlorine. Since hydrogen gas is easily combined with chlorine, when the raw material gas contains hydrogen gas, chlorine generated from vanadium chloride gas is easily combined with hydrogen and discharged to the outside of the system. As a result, it is possible to suppress the mixing of chlorine into the silica carbide vanadium carbide film. The rest of the silica carbide vanadium film may contain unavoidable impurities other than chlorine.
金属炭化物膜形成工程において、原料ガスとして塩化バナジウムガスおよび四塩化珪素ガスを供給する場合、チャンバー11内に供給される水素ガスの体積流量は、塩化バナジウムガスの体積流量と四塩化珪素ガスの体積流量の合計に対して5倍~25倍であることが好ましい。
When vanadium chloride gas and silicon tetrachloride gas are supplied as raw material gas in the metal carbide film forming step, the volumetric flow rate of the hydrogen gas supplied into the chamber 11 is the volumetric flow rate of vanadium chloride gas and the volume of silicon tetrachloride gas. It is preferably 5 to 25 times the total flow rate.
金属炭化物膜形成工程において、原料ガスとして塩化バナジウムガス、珪素源ガス、炭素源ガス、水素ガス、アルゴンガスを供給する場合、塩化バナジウムガスの体積流量を1としたときに、塩化バナジウムガスと、珪素源ガスと、炭素源ガスと、水素ガスと、アルゴンガスの体積流量の比は1:0.25~2:3~20:20~35:0.5~2であることが好ましい。これにより、膜中のバナジウム元素濃度、珪素元素濃度、炭素元素濃度の合計が90at%以上となる珪炭化バナジウム膜が得られやすくなる。
When vanadium chloride gas, silicon source gas, carbon source gas, hydrogen gas, and argon gas are supplied as raw material gas in the metal carbide film forming step, when the volumetric flow rate of vanadium chloride gas is 1, vanadium chloride gas and The ratio of the volumetric flow rates of the silicon source gas, the carbon source gas, the hydrogen gas, and the argon gas is preferably 1: 0.25 to 2: 3 to 20:20 to 35: 0.5 to 2. This makes it easy to obtain a silica carbide vanadium film having a total of 90 at% or more of the vanadium element concentration, the silicon element concentration, and the carbon element concentration in the film.
なお、アルゴンガスは、アルゴンイオンが他の分子をイオン化させることによってプラズマの安定化やイオン密度の向上に寄与するため、金属炭化物膜形成工程においても必要に応じてチャンバー11内に供給される。
Since the argon gas contributes to the stabilization of the plasma and the improvement of the ion density by ionizing other molecules by the argon ion, it is supplied into the chamber 11 as needed in the metal carbide film forming step.
金属炭化物膜形成工程におけるチャンバー11内の圧力は、例えば30~200Paに設定されることが好ましい。チャンバー11内の圧力は50~150Paであることがより好ましい。また、金属炭化物膜形成工程において供給される電力は、200~2500Wであることが好ましい。“電力[W]”は、電圧[V]×電流[A]で算出される値である。“電圧”はパルス電源14の設定電圧である。“電流”はパルス電源14に表示される電流値を用いた、金属炭化物膜形成工程内における(最大電流+最小電流)/2で算出される値である。電力は、Duty比の設定値を変更することで調節することができる。なお、直流のパルス電源14を用いる場合、金属炭化物膜形成工程における電圧は、1000~2000Vであることが好ましい。また、直流のパルス電源14を用いる場合、金属炭化物膜形成工程におけるDuty比は5%~60%であることが好ましい。
The pressure in the chamber 11 in the metal carbide film forming step is preferably set to, for example, 30 to 200 Pa. The pressure in the chamber 11 is more preferably 50 to 150 Pa. Further, the electric power supplied in the metal carbide film forming step is preferably 200 to 2500 W. "Power [W]" is a value calculated by voltage [V] x current [A]. The “voltage” is the set voltage of the pulse power supply 14. The "current" is a value calculated by (maximum current + minimum current) / 2 in the metal carbide film forming step using the current value displayed on the pulse power supply 14. The electric power can be adjusted by changing the setting value of the duty ratio. When the DC pulse power supply 14 is used, the voltage in the metal carbide film forming step is preferably 1000 to 2000 V. When the DC pulse power supply 14 is used, the duty ratio in the metal carbide film forming step is preferably 5% to 60%.
以上のような金属炭化物膜形成工程によって、鋼材2の炭化物層2aの上にV、Ti、Al、Cr、NbおよびSiよりなる群から選択される1種以上の金属と炭素を含む金属炭化物膜3が形成される。これにより、ロックウェル圧痕試験における密着性に優れた金属炭化物膜被覆部材1を製造することができる。
By the metal carbide film forming step as described above, a metal carbide film containing one or more metals and carbon selected from the group consisting of V, Ti, Al, Cr, Nb and Si on the carbide layer 2a of the steel material 2. 3 is formed. This makes it possible to manufacture the metal carbide film covering member 1 having excellent adhesion in the Rockwell indentation test.
以上、本発明の実施形態の一例について説明したが、本発明はかかる例に限定されない。当業者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
Although an example of the embodiment of the present invention has been described above, the present invention is not limited to such an example. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the technical ideas described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs to.
鋼材にプラズマ炭化処理を施し、表面に炭化物層を生成した鋼材の上に金属炭化物膜として珪炭化バナジウム膜を形成した金属炭化物被覆部材の試験片を作製し、以下の測定を行った。
A test piece of a metal carbide coating member having a silica carbide vanadium film formed as a metal carbide film on a steel material having a carbide layer formed on the surface of the steel material was prepared by plasma carbonization treatment, and the following measurements were performed.
<X線回折解析>
X線回折解析は、X線回折解析装置(Rigaku社製 SmartLab)を用いて、試験片の表面近傍の情報のみを得るため、傾角入射法により下記の条件で解析を実施した。
---------------------------------------------------------------------
入射角:1.0°
X線源:CuKα線
X線出力:40kV、20mA
スキャン軸:2θ/θ
ゴニオメーター:RINT2000 広角ゴニオメーター
スキャン範囲:20°~80°
検出器:シンチレーションカウンタ
入射スリット:1°
スキャンモード:STEP
長手制限スリット:10mm
スキャンスピード:1.0sec
受光スリット1:1.25mm
ステップ幅:0.05°
受光スリット2:0.3mm
---------------------------------------------------------------------
そして、上記条件のX線回折解析によって得られたX線回折パターンから、金属炭化物に由来するX線回折の最大ピーク強度[炭化物強度]と、α―Feに由来するX線回折の最大ピーク強度[Fe強度]を特定した。最大ピーク強度の特定はExcel(登録商標)2010のソルバー機能を用いて次のようにして行う。まず、X線回折解析によって得られたX線回折パターンから回折角2θ=42.5°付近と2θ=44.6°付近にピークトップを有するピークをガウス型の基本波形と直線のバックグラウンドの重ね合わせにより近似する。次に、ピーク強度、ピーク半値全幅及びピーク位置を最適化し当該ピークに含まれる重なり合った2つのピークの各々をカーブフィッティングすることによりピーク分離を行う。そして、当該フィッティングにより得られた、この時のガウス関数の最大値を最大ピーク強度とした。なお、カーブフィッティングは最小二乗法で行う。 <X-ray diffraction analysis>
In the X-ray diffraction analysis, an X-ray diffraction analyzer (SmartLab manufactured by Rigaku Co., Ltd.) was used, and in order to obtain only information near the surface of the test piece, the analysis was carried out under the following conditions by the tilt angle incident method.
-------------------------------------------------- -------------------------------------------------- -------------------
Incident angle: 1.0 °
X-ray source: CuKα ray
X-ray output: 40kV, 20mA
Scan axis: 2θ / θ
Goniometer: RINT2000 Wide-angle goniometer Scan range: 20 ° -80 °
Detector: Scintillation counter Incident slit: 1 °
Scan mode: STEP
Longitudinal limiting slit: 10 mm
Scan speed: 1.0sec
Light receiving slit 1: 1.25 mm
Step width: 0.05 °
Light receiving slit 2: 0.3 mm
-------------------------------------------------- -------------------------------------------------- -------------------
Then, from the X-ray diffraction pattern obtained by the X-ray diffraction analysis under the above conditions, the maximum peak intensity [carbide intensity] of the X-ray diffraction derived from the metal carbide and the maximum peak intensity of the X-ray diffraction derived from α-Fe are obtained. [Fe strength] was specified. The maximum peak intensity is specified as follows using the solver function of Excel (registered trademark) 2010. First, from the X-ray diffraction pattern obtained by X-ray diffraction analysis, the peaks having peak tops at the diffraction angles around 2θ = 42.5 ° and 2θ = 44.6 ° are the Gaussian basic waveform and the linear background. Approximate by superimposing. Next, peak separation is performed by optimizing the peak intensity, full width at half maximum and peak position, and curve-fitting each of the two overlapping peaks included in the peak. Then, the maximum value of the Gaussian function at this time obtained by the fitting was taken as the maximum peak intensity. Curve fitting is performed by the least squares method.
X線回折解析は、X線回折解析装置(Rigaku社製 SmartLab)を用いて、試験片の表面近傍の情報のみを得るため、傾角入射法により下記の条件で解析を実施した。
---------------------------------------------------------------------
入射角:1.0°
X線源:CuKα線
X線出力:40kV、20mA
スキャン軸:2θ/θ
ゴニオメーター:RINT2000 広角ゴニオメーター
スキャン範囲:20°~80°
検出器:シンチレーションカウンタ
入射スリット:1°
スキャンモード:STEP
長手制限スリット:10mm
スキャンスピード:1.0sec
受光スリット1:1.25mm
ステップ幅:0.05°
受光スリット2:0.3mm
---------------------------------------------------------------------
そして、上記条件のX線回折解析によって得られたX線回折パターンから、金属炭化物に由来するX線回折の最大ピーク強度[炭化物強度]と、α―Feに由来するX線回折の最大ピーク強度[Fe強度]を特定した。最大ピーク強度の特定はExcel(登録商標)2010のソルバー機能を用いて次のようにして行う。まず、X線回折解析によって得られたX線回折パターンから回折角2θ=42.5°付近と2θ=44.6°付近にピークトップを有するピークをガウス型の基本波形と直線のバックグラウンドの重ね合わせにより近似する。次に、ピーク強度、ピーク半値全幅及びピーク位置を最適化し当該ピークに含まれる重なり合った2つのピークの各々をカーブフィッティングすることによりピーク分離を行う。そして、当該フィッティングにより得られた、この時のガウス関数の最大値を最大ピーク強度とした。なお、カーブフィッティングは最小二乗法で行う。 <X-ray diffraction analysis>
In the X-ray diffraction analysis, an X-ray diffraction analyzer (SmartLab manufactured by Rigaku Co., Ltd.) was used, and in order to obtain only information near the surface of the test piece, the analysis was carried out under the following conditions by the tilt angle incident method.
-------------------------------------------------- -------------------------------------------------- -------------------
Incident angle: 1.0 °
X-ray source: CuKα ray
X-ray output: 40kV, 20mA
Scan axis: 2θ / θ
Goniometer: RINT2000 Wide-angle goniometer Scan range: 20 ° -80 °
Detector: Scintillation counter Incident slit: 1 °
Scan mode: STEP
Longitudinal limiting slit: 10 mm
Scan speed: 1.0sec
Light receiving slit 1: 1.25 mm
Step width: 0.05 °
Light receiving slit 2: 0.3 mm
-------------------------------------------------- -------------------------------------------------- -------------------
Then, from the X-ray diffraction pattern obtained by the X-ray diffraction analysis under the above conditions, the maximum peak intensity [carbide intensity] of the X-ray diffraction derived from the metal carbide and the maximum peak intensity of the X-ray diffraction derived from α-Fe are obtained. [Fe strength] was specified. The maximum peak intensity is specified as follows using the solver function of Excel (registered trademark) 2010. First, from the X-ray diffraction pattern obtained by X-ray diffraction analysis, the peaks having peak tops at the diffraction angles around 2θ = 42.5 ° and 2θ = 44.6 ° are the Gaussian basic waveform and the linear background. Approximate by superimposing. Next, peak separation is performed by optimizing the peak intensity, full width at half maximum and peak position, and curve-fitting each of the two overlapping peaks included in the peak. Then, the maximum value of the Gaussian function at this time obtained by the fitting was taken as the maximum peak intensity. Curve fitting is performed by the least squares method.
<膜硬さ測定>
Fischer Instruments製のFISCHER SCOPE(登録商標)H100Cを用いたナノインデンテーション法により実施する。具体的には、最大押し込み荷重を3mNとして試験片にバーコビッチ型のダイヤモンド圧子を押し込み、連続的に押し込み深さを計測する。得られた押し込み深さの計測データからフィッシャー・インストルメンツ社製のソフトウエアである「商品名:WIN-HCU(登録商標)」を用いて、マルテンス硬さ、マルテンス硬さから換算されるビッカース硬さを算出する。算出されたビッカース硬さは測定装置の画面に表示され、この数値を測定点における膜の硬度として扱う。本実施例では、各試験片の最表面の任意の20点のビッカース硬さを求め、得られた硬度の平均値を珪炭化バナジウム膜のビッカース硬さとした。 <Membrane hardness measurement>
It is carried out by the nanoindentation method using FISCHER SCOPE® H100C manufactured by Fischer Instruments. Specifically, a Berkovich-type diamond indenter is pushed into the test piece with a maximum pushing load of 3 mN, and the pushing depth is continuously measured. Vickers hardness converted from Martens hardness and Martens hardness using "Product name: WIN-HCU (registered trademark)", which is software manufactured by Fisher Instruments, from the obtained measurement data of the indentation depth. Calculate the hardness. The calculated Vickers hardness is displayed on the screen of the measuring device, and this value is treated as the hardness of the film at the measurement point. In this example, the Vickers hardness of any 20 points on the outermost surface of each test piece was obtained, and the average value of the obtained hardness was taken as the Vickers hardness of the silica carbide vanadium film.
Fischer Instruments製のFISCHER SCOPE(登録商標)H100Cを用いたナノインデンテーション法により実施する。具体的には、最大押し込み荷重を3mNとして試験片にバーコビッチ型のダイヤモンド圧子を押し込み、連続的に押し込み深さを計測する。得られた押し込み深さの計測データからフィッシャー・インストルメンツ社製のソフトウエアである「商品名:WIN-HCU(登録商標)」を用いて、マルテンス硬さ、マルテンス硬さから換算されるビッカース硬さを算出する。算出されたビッカース硬さは測定装置の画面に表示され、この数値を測定点における膜の硬度として扱う。本実施例では、各試験片の最表面の任意の20点のビッカース硬さを求め、得られた硬度の平均値を珪炭化バナジウム膜のビッカース硬さとした。 <Membrane hardness measurement>
It is carried out by the nanoindentation method using FISCHER SCOPE® H100C manufactured by Fischer Instruments. Specifically, a Berkovich-type diamond indenter is pushed into the test piece with a maximum pushing load of 3 mN, and the pushing depth is continuously measured. Vickers hardness converted from Martens hardness and Martens hardness using "Product name: WIN-HCU (registered trademark)", which is software manufactured by Fisher Instruments, from the obtained measurement data of the indentation depth. Calculate the hardness. The calculated Vickers hardness is displayed on the screen of the measuring device, and this value is treated as the hardness of the film at the measurement point. In this example, the Vickers hardness of any 20 points on the outermost surface of each test piece was obtained, and the average value of the obtained hardness was taken as the Vickers hardness of the silica carbide vanadium film.
<膜厚測定>
珪炭化バナジウム膜の膜厚は、試験片を垂直に切断して切断面を鏡面研磨した後、金属顕微鏡の倍率を1000倍として切断面を観察し、観察した画像情報に基づいて算出することで測定された。 <Film thickness measurement>
The thickness of the silica carbide vanadium film is calculated by cutting the test piece vertically, polishing the cut surface with a mirror surface, observing the cut surface at a magnification of 1000 times with a metallurgical microscope, and calculating based on the observed image information. It was measured.
珪炭化バナジウム膜の膜厚は、試験片を垂直に切断して切断面を鏡面研磨した後、金属顕微鏡の倍率を1000倍として切断面を観察し、観察した画像情報に基づいて算出することで測定された。 <Film thickness measurement>
The thickness of the silica carbide vanadium film is calculated by cutting the test piece vertically, polishing the cut surface with a mirror surface, observing the cut surface at a magnification of 1000 times with a metallurgical microscope, and calculating based on the observed image information. It was measured.
<珪炭化バナジウム膜の組成分析>
試験片に形成された珪炭化バナジウム膜の組成を分析した。分析条件は次の通りである。
EPMA:日本電子株式会社製JXA-8530F
測定モード:半定量分析
加速電圧:15kV
照射電流:1.0×10-7A
ビーム形状:スポット
ビーム径設定値:0
分光結晶:LDE6H, TAP, LDE5H, PETH, LIFH, LDE1H <Composition analysis of silica carbide vanadium carbide>
The composition of the silica carbide vanadium carbide film formed on the test piece was analyzed. The analysis conditions are as follows.
EPMA: JXA-8530F manufactured by JEOL Ltd.
Measurement mode: Semi-quantitative analysis Acceleration voltage: 15kV
Irradiation current: 1.0 × 10 -7 A
Beam shape: Spot Beam diameter set value: 0
Spectral crystals: LDE6H, TAP, LDE5H, PETH, LIFH, LDE1H
試験片に形成された珪炭化バナジウム膜の組成を分析した。分析条件は次の通りである。
EPMA:日本電子株式会社製JXA-8530F
測定モード:半定量分析
加速電圧:15kV
照射電流:1.0×10-7A
ビーム形状:スポット
ビーム径設定値:0
分光結晶:LDE6H, TAP, LDE5H, PETH, LIFH, LDE1H <Composition analysis of silica carbide vanadium carbide>
The composition of the silica carbide vanadium carbide film formed on the test piece was analyzed. The analysis conditions are as follows.
EPMA: JXA-8530F manufactured by JEOL Ltd.
Measurement mode: Semi-quantitative analysis Acceleration voltage: 15kV
Irradiation current: 1.0 × 10 -7 A
Beam shape: Spot Beam diameter set value: 0
Spectral crystals: LDE6H, TAP, LDE5H, PETH, LIFH, LDE1H
<ロックウェル圧痕試験>
ロックウェル硬度計をCスケールに設定し、試験片の珪炭化バナジウム膜表面に圧痕を付与する。その後、金属顕微鏡を用いて圧痕周囲を観察した。そして、ロックウェル圧痕試験において周知の圧痕剥離判定基準に基づき、試験片の膜剥離度合いを判定し、珪炭化バナジウム膜被覆部材の密着性を評価した。 <Rockwell indentation test>
The Rockwell hardness tester is set on the C scale to give indentations to the surface of the silica carbide vanadium film of the test piece. Then, the circumference of the indentation was observed using a metallurgical microscope. Then, the degree of film peeling of the test piece was determined based on the well-known indentation peeling criteria in the Rockwell indentation test, and the adhesion of the silica carbide vanadium film coating member was evaluated.
ロックウェル硬度計をCスケールに設定し、試験片の珪炭化バナジウム膜表面に圧痕を付与する。その後、金属顕微鏡を用いて圧痕周囲を観察した。そして、ロックウェル圧痕試験において周知の圧痕剥離判定基準に基づき、試験片の膜剥離度合いを判定し、珪炭化バナジウム膜被覆部材の密着性を評価した。 <Rockwell indentation test>
The Rockwell hardness tester is set on the C scale to give indentations to the surface of the silica carbide vanadium film of the test piece. Then, the circumference of the indentation was observed using a metallurgical microscope. Then, the degree of film peeling of the test piece was determined based on the well-known indentation peeling criteria in the Rockwell indentation test, and the adhesion of the silica carbide vanadium film coating member was evaluated.
試験片は次の手順で作製される。まず、高速度工具鋼の一種であるSKH51からなるφ22の丸棒を6~7mm間隔で切断して、図3に示されるような切断された丸棒の成膜面を鏡面研磨したものを試験片用の鋼材として使用した。成膜装置は図2に示されるような構造の装置が使用され、電源はパルス電源を用いた。
The test piece is prepared by the following procedure. First, a φ22 round bar made of SKH51, which is a kind of high-speed tool steel, is cut at intervals of 6 to 7 mm, and a mirror-polished surface of the cut round bar as shown in FIG. 3 is tested. Used as a steel material for one piece. As the film forming apparatus, an apparatus having a structure as shown in FIG. 2 was used, and a pulse power source was used as a power source.
<酸化層形成確認>
日本カニゼン株式会社製のシューマーメッキ液(ブルーシューマー 2L)を10ml用意し、精製水を40ml加えて合計50mlとなるように調整し、メッキ液を調製した。このメッキ液の中に、組織写真測定用の上記試験片を入れて、120℃で2時間保持した。2時間保持した後、試験片をメッキ液より取り出し、切断機を用いて試験片を成膜面に対し垂直方向に切断した。この切断した試験片を、樹脂に埋めて試料を作製した。その後、エメリー紙により試料の断面研磨を行い、バフで研磨面を鏡面仕上げした。そして、JIS G 0553に規定された硝酸アルコール法(ナイタール法)に基づき、硝酸(JIS K
1308の62%と同等のもの)とエタノールとを混合し、得られた硝酸3%の腐食液に試料を5分間浸漬させた。その後、電界放出形走査電子顕微鏡(日本電子製 JSM-7001F)を用いて試料の断面を倍率10000倍で観察し、断面画像を取得した。そして、取得した断面画像から炭化物層と金属炭化物膜との界面に酸化層が形成されているかを観察した。酸化物層は、通常結晶粒界が優先的に酸化され、電子顕微鏡での観察時に通常組織と比較して暗色で観察されるため、その色味や形状により酸化層の有無の判断が可能である。 <Confirmation of oxide layer formation>
10 ml of Schumer plating solution (Blue Schumer 2L) manufactured by Japan Kanigen Co., Ltd. was prepared, and 40 ml of purified water was added to adjust the total to 50 ml to prepare a plating solution. The above-mentioned test piece for microstructure photograph measurement was put in this plating solution and kept at 120 ° C. for 2 hours. After holding for 2 hours, the test piece was taken out from the plating solution, and the test piece was cut in the direction perpendicular to the film forming surface using a cutting machine. This cut test piece was embedded in a resin to prepare a sample. Then, the cross section of the sample was polished with emery paper, and the polished surface was mirror-finished with a buff. Then, based on the nitric acid alcohol method (Nital method) specified in JIS G 0553, nitric acid (JIS K)
Ethanol was mixed with (equivalent to 62% of 1308) and the sample was immersed in the resulting 3% nitric acid corrosive solution for 5 minutes. Then, the cross section of the sample was observed at a magnification of 10000 times using a field emission scanning electron microscope (JSM-7001F manufactured by JEOL Ltd.), and a cross section image was obtained. Then, from the obtained cross-sectional image, it was observed whether an oxide layer was formed at the interface between the carbide layer and the metal carbide film. Since the grain boundaries of the oxide layer are usually preferentially oxidized and observed in a darker color than the normal structure when observed with an electron microscope, it is possible to determine the presence or absence of the oxide layer based on its color and shape. be.
日本カニゼン株式会社製のシューマーメッキ液(ブルーシューマー 2L)を10ml用意し、精製水を40ml加えて合計50mlとなるように調整し、メッキ液を調製した。このメッキ液の中に、組織写真測定用の上記試験片を入れて、120℃で2時間保持した。2時間保持した後、試験片をメッキ液より取り出し、切断機を用いて試験片を成膜面に対し垂直方向に切断した。この切断した試験片を、樹脂に埋めて試料を作製した。その後、エメリー紙により試料の断面研磨を行い、バフで研磨面を鏡面仕上げした。そして、JIS G 0553に規定された硝酸アルコール法(ナイタール法)に基づき、硝酸(JIS K
1308の62%と同等のもの)とエタノールとを混合し、得られた硝酸3%の腐食液に試料を5分間浸漬させた。その後、電界放出形走査電子顕微鏡(日本電子製 JSM-7001F)を用いて試料の断面を倍率10000倍で観察し、断面画像を取得した。そして、取得した断面画像から炭化物層と金属炭化物膜との界面に酸化層が形成されているかを観察した。酸化物層は、通常結晶粒界が優先的に酸化され、電子顕微鏡での観察時に通常組織と比較して暗色で観察されるため、その色味や形状により酸化層の有無の判断が可能である。 <Confirmation of oxide layer formation>
10 ml of Schumer plating solution (Blue Schumer 2L) manufactured by Japan Kanigen Co., Ltd. was prepared, and 40 ml of purified water was added to adjust the total to 50 ml to prepare a plating solution. The above-mentioned test piece for microstructure photograph measurement was put in this plating solution and kept at 120 ° C. for 2 hours. After holding for 2 hours, the test piece was taken out from the plating solution, and the test piece was cut in the direction perpendicular to the film forming surface using a cutting machine. This cut test piece was embedded in a resin to prepare a sample. Then, the cross section of the sample was polished with emery paper, and the polished surface was mirror-finished with a buff. Then, based on the nitric acid alcohol method (Nital method) specified in JIS G 0553, nitric acid (JIS K)
Ethanol was mixed with (equivalent to 62% of 1308) and the sample was immersed in the resulting 3% nitric acid corrosive solution for 5 minutes. Then, the cross section of the sample was observed at a magnification of 10000 times using a field emission scanning electron microscope (JSM-7001F manufactured by JEOL Ltd.), and a cross section image was obtained. Then, from the obtained cross-sectional image, it was observed whether an oxide layer was formed at the interface between the carbide layer and the metal carbide film. Since the grain boundaries of the oxide layer are usually preferentially oxidized and observed in a darker color than the normal structure when observed with an electron microscope, it is possible to determine the presence or absence of the oxide layer based on its color and shape. be.
≪実施例1≫
まず、成膜装置のチャンバー内に試験片用の鋼材をセットし、30分間チャンバー内を真空引きし、チャンバー内の圧力を10Pa以下まで小さくする。このとき、ヒーターは作動させない。なお、ヒーターはチャンバーの内部に設けられており、チャンバー内の雰囲気温度はシース熱電対で測定している。続いて、ヒーターの設定温度を200℃とし、10分間鋼材のベーキング処理を行う。その後、ヒーターの電源を切り、30分間成膜装置を放置してチャンバー内を冷却する。 << Example 1 >>
First, a steel material for a test piece is set in the chamber of the film forming apparatus, and the inside of the chamber is evacuated for 30 minutes to reduce the pressure in the chamber to 10 Pa or less. At this time, the heater is not operated. The heater is provided inside the chamber, and the atmospheric temperature inside the chamber is measured by a sheath thermocouple. Subsequently, the set temperature of the heater is set to 200 ° C., and the baking process of the steel material is performed for 10 minutes. After that, the power of the heater is turned off, and the film forming apparatus is left for 30 minutes to cool the inside of the chamber.
まず、成膜装置のチャンバー内に試験片用の鋼材をセットし、30分間チャンバー内を真空引きし、チャンバー内の圧力を10Pa以下まで小さくする。このとき、ヒーターは作動させない。なお、ヒーターはチャンバーの内部に設けられており、チャンバー内の雰囲気温度はシース熱電対で測定している。続いて、ヒーターの設定温度を200℃とし、10分間鋼材のベーキング処理を行う。その後、ヒーターの電源を切り、30分間成膜装置を放置してチャンバー内を冷却する。 << Example 1 >>
First, a steel material for a test piece is set in the chamber of the film forming apparatus, and the inside of the chamber is evacuated for 30 minutes to reduce the pressure in the chamber to 10 Pa or less. At this time, the heater is not operated. The heater is provided inside the chamber, and the atmospheric temperature inside the chamber is measured by a sheath thermocouple. Subsequently, the set temperature of the heater is set to 200 ° C., and the baking process of the steel material is performed for 10 minutes. After that, the power of the heater is turned off, and the film forming apparatus is left for 30 minutes to cool the inside of the chamber.
次に、チャンバー内に100ml/minの流量で水素ガスを供給し、排気量を調節してチャンバー内の圧力を100Paとする。そして、チャンバー内の雰囲気温度が525℃になるよう、30分間チャンバー内の雰囲気を加熱する。
Next, hydrogen gas is supplied into the chamber at a flow rate of 100 ml / min, and the displacement is adjusted so that the pressure in the chamber is 100 Pa. Then, the atmosphere in the chamber is heated for 30 minutes so that the temperature of the atmosphere in the chamber becomes 525 ° C.
次に、電圧を800V、Duty比を40%に設定し、ユニポーラ出力形式で直流パルス電源を作動させる。これにより、チャンバー内の電極間で水素ガスがプラズマ化する。その後、水素ガスの流量を98ml/minに設定すると共に3ml/minの流量のアルゴンガスをチャンバー内に供給する。また、排気量を調節してチャンバー内の全圧が58Paとなるようにする。そして、パルス電源の電圧を1400V、Duty比を40%、チャンバー内の雰囲気温度が525℃になるように設定する。これにより電極間で水素ガスおよびアルゴンガスがプラズマ化した状態となる。
Next, set the voltage to 800V and the duty ratio to 40%, and operate the DC pulse power supply in the unipolar output format. As a result, hydrogen gas is turned into plasma between the electrodes in the chamber. After that, the flow rate of hydrogen gas is set to 98 ml / min, and argon gas having a flow rate of 3 ml / min is supplied into the chamber. Further, the displacement is adjusted so that the total pressure in the chamber becomes 58 Pa. Then, the voltage of the pulse power supply is set to 1400 V, the duty ratio is set to 40%, and the atmospheric temperature in the chamber is set to 525 ° C. As a result, hydrogen gas and argon gas are turned into plasma between the electrodes.
<プラズマ炭化処理工程>
次に、処理ガスとして水素ガスの流量を98ml/min、炭素源ガスとしてメタンガスの流量を5ml/min、アルゴンガスの流量を3ml/minに設定し、チャンバー内に供給する。チャンバー内の全圧を58Paに維持し、チャンバー内の雰囲気温度を525℃、パルス電源の電圧を1400V、Duty比を40%に設定し、水素ガス、メタンガスおよびアルゴンガスがプラズマ化した雰囲気下で、鋼材に対し、プラズマ炭化処理を120分間行う。なお、処理ガスとして供給される炭素源ガスであるメタンガスと水素ガスとの流量比[炭素源ガス流量/水素ガス流量]は、0.05である。 <Plasma carbonization process>
Next, the flow rate of hydrogen gas as the processing gas is set to 98 ml / min, the flow rate of methane gas as the carbon source gas is set to 5 ml / min, and the flow rate of argon gas is set to 3 ml / min, and the gas is supplied into the chamber. The total pressure in the chamber is maintained at 58 Pa, the atmosphere temperature in the chamber is set to 525 ° C, the voltage of the pulse power supply is set to 1400 V, the Duty ratio is set to 40%, and the atmosphere is plasmated with hydrogen gas, methane gas and argon gas. , The steel material is subjected to plasma carbonization treatment for 120 minutes. The flow rate ratio [carbon source gas flow rate / hydrogen gas flow rate] between methane gas, which is a carbon source gas supplied as a treatment gas, and hydrogen gas is 0.05.
次に、処理ガスとして水素ガスの流量を98ml/min、炭素源ガスとしてメタンガスの流量を5ml/min、アルゴンガスの流量を3ml/minに設定し、チャンバー内に供給する。チャンバー内の全圧を58Paに維持し、チャンバー内の雰囲気温度を525℃、パルス電源の電圧を1400V、Duty比を40%に設定し、水素ガス、メタンガスおよびアルゴンガスがプラズマ化した雰囲気下で、鋼材に対し、プラズマ炭化処理を120分間行う。なお、処理ガスとして供給される炭素源ガスであるメタンガスと水素ガスとの流量比[炭素源ガス流量/水素ガス流量]は、0.05である。 <Plasma carbonization process>
Next, the flow rate of hydrogen gas as the processing gas is set to 98 ml / min, the flow rate of methane gas as the carbon source gas is set to 5 ml / min, and the flow rate of argon gas is set to 3 ml / min, and the gas is supplied into the chamber. The total pressure in the chamber is maintained at 58 Pa, the atmosphere temperature in the chamber is set to 525 ° C, the voltage of the pulse power supply is set to 1400 V, the Duty ratio is set to 40%, and the atmosphere is plasmated with hydrogen gas, methane gas and argon gas. , The steel material is subjected to plasma carbonization treatment for 120 minutes. The flow rate ratio [carbon source gas flow rate / hydrogen gas flow rate] between methane gas, which is a carbon source gas supplied as a treatment gas, and hydrogen gas is 0.05.
上記条件による炭化処理を実施した試験片のX線回折解析の結果を図4に示す。図4に示されるように、プラズマ炭化処理工程前の試験片およびプラズマ炭化処理工程後の試験片ともに2θ=44.6°付近にα-Feに由来する回折ピークが存在し、2θ=42.5°付近にM6C型炭化物に由来する回折ピークが存在した。プラズマ炭化処理工程後の試験片は、プラズマ炭化処理工程前の試験片よりもα-Feに由来する回折ピーク強度が弱くなり、M6C型炭化物である金属炭化物に由来する回折ピーク強度が強くなっている。図4の結果から、鋼材の表面から炭素が浸透拡散し、鋼材中に金属炭化物が析出して鋼材中に炭化物層が生成されたことが確認された。
FIG. 4 shows the results of X-ray diffraction analysis of the test piece subjected to the carbonization treatment under the above conditions. As shown in FIG. 4, both the test piece before the plasma carbonization treatment step and the test piece after the plasma carbonization treatment step have a diffraction peak derived from α-Fe near 2θ = 44.6 °, and 2θ = 42. A diffraction peak derived from M6C type carbide was present near 5 °. The test piece after the plasma carbonization treatment step has a weaker diffraction peak intensity derived from α-Fe and a stronger diffraction peak intensity derived from the metal carbide which is an M6C type carbide than the test piece before the plasma carbonization treatment step. There is. From the results shown in FIG. 4, it was confirmed that carbon permeated and diffused from the surface of the steel material, metal carbides were deposited in the steel material, and a carbide layer was formed in the steel material.
以上の実施例1のプラズマ炭化処理工程の条件を下記表1に示す。なお、表1には後述の実施例2~3および比較例1の炭化条件についても示されている。
The conditions of the plasma carbonization treatment step of Example 1 above are shown in Table 1 below. In addition, Table 1 also shows the carbonization conditions of Examples 2 to 3 and Comparative Example 1 described later.
<珪炭化バナジウム膜形成工程>
プラズマ炭化処理工程の後、塩化バナジウムガスとしての四塩化バナジウムガスの流量を3ml/min、珪素源ガスの一例としての四塩化珪素ガスの流量を4.5ml/min、炭素源ガスの一例としてのメタンガスの流量を15ml/min、水素ガスの流量を98ml/min、アルゴンガスの流量を3ml/minに設定してチャンバー内に各ガスを供給する。換言すると、四塩化バナジウムガスの流量を1としたときの四塩化バナジウムガス、四塩化珪素ガス、炭素源ガス、水素ガスおよびアルゴンガスの流量比が1:1.5:5:33:1となるように各ガスを供給する。このとき、排気量を調節してチャンバー内の圧力を58Paとする。そして、パルス電源の電圧を1400V、Duty比を40%に設定する。このときのパルス電源の電力は420Wである。これにより各ガスがプラズマ化し、バナジウム、珪素、炭素が鋼材に吸着し、表面に炭化物層を有する鋼材上にバナジウム、珪素、炭素を含有する珪炭化バナジウム膜が形成される。上記の条件による珪炭化バナジウム膜形成処理を4時間行い、鋼材上に膜厚が1.2μmの珪炭化バナジウム膜を被覆することで、実施例1の試験片を得た。 <Vanadium carbide film forming process>
After the plasma carbonization treatment step, the flow rate of vanadium tetrachloride gas as vanadium chloride gas is 3 ml / min, the flow rate of silicon tetrachloride gas as an example of silicon source gas is 4.5 ml / min, as an example of carbon source gas. The flow rate of methane gas is set to 15 ml / min, the flow rate of hydrogen gas is set to 98 ml / min, and the flow rate of argon gas is set to 3 ml / min, and each gas is supplied into the chamber. In other words, the flow rate ratio of vanadium tetrachloride gas, silicon tetrachloride gas, carbon source gas, hydrogen gas and argon gas is 1: 1.5: 5: 33: 1 when the flow rate of vanadium tetrachloride gas is 1. Each gas is supplied so as to be. At this time, the displacement is adjusted so that the pressure in the chamber is 58 Pa. Then, the voltage of the pulse power supply is set to 1400 V, and the duty ratio is set to 40%. The power of the pulse power supply at this time is 420 W. As a result, each gas is turned into plasma, vanadium, silicon, and carbon are adsorbed on the steel material, and a silica carbide vanadium film containing vanadium, silicon, and carbon is formed on the steel material having a carbide layer on the surface. The silica carbide vanadium film forming treatment under the above conditions was carried out for 4 hours, and the silica carbide vanadium film having a film thickness of 1.2 μm was coated on the steel material to obtain the test piece of Example 1.
プラズマ炭化処理工程の後、塩化バナジウムガスとしての四塩化バナジウムガスの流量を3ml/min、珪素源ガスの一例としての四塩化珪素ガスの流量を4.5ml/min、炭素源ガスの一例としてのメタンガスの流量を15ml/min、水素ガスの流量を98ml/min、アルゴンガスの流量を3ml/minに設定してチャンバー内に各ガスを供給する。換言すると、四塩化バナジウムガスの流量を1としたときの四塩化バナジウムガス、四塩化珪素ガス、炭素源ガス、水素ガスおよびアルゴンガスの流量比が1:1.5:5:33:1となるように各ガスを供給する。このとき、排気量を調節してチャンバー内の圧力を58Paとする。そして、パルス電源の電圧を1400V、Duty比を40%に設定する。このときのパルス電源の電力は420Wである。これにより各ガスがプラズマ化し、バナジウム、珪素、炭素が鋼材に吸着し、表面に炭化物層を有する鋼材上にバナジウム、珪素、炭素を含有する珪炭化バナジウム膜が形成される。上記の条件による珪炭化バナジウム膜形成処理を4時間行い、鋼材上に膜厚が1.2μmの珪炭化バナジウム膜を被覆することで、実施例1の試験片を得た。 <Vanadium carbide film forming process>
After the plasma carbonization treatment step, the flow rate of vanadium tetrachloride gas as vanadium chloride gas is 3 ml / min, the flow rate of silicon tetrachloride gas as an example of silicon source gas is 4.5 ml / min, as an example of carbon source gas. The flow rate of methane gas is set to 15 ml / min, the flow rate of hydrogen gas is set to 98 ml / min, and the flow rate of argon gas is set to 3 ml / min, and each gas is supplied into the chamber. In other words, the flow rate ratio of vanadium tetrachloride gas, silicon tetrachloride gas, carbon source gas, hydrogen gas and argon gas is 1: 1.5: 5: 33: 1 when the flow rate of vanadium tetrachloride gas is 1. Each gas is supplied so as to be. At this time, the displacement is adjusted so that the pressure in the chamber is 58 Pa. Then, the voltage of the pulse power supply is set to 1400 V, and the duty ratio is set to 40%. The power of the pulse power supply at this time is 420 W. As a result, each gas is turned into plasma, vanadium, silicon, and carbon are adsorbed on the steel material, and a silica carbide vanadium film containing vanadium, silicon, and carbon is formed on the steel material having a carbide layer on the surface. The silica carbide vanadium film forming treatment under the above conditions was carried out for 4 hours, and the silica carbide vanadium film having a film thickness of 1.2 μm was coated on the steel material to obtain the test piece of Example 1.
実施例1の試験片に対し、前述の方法でロックウェル圧痕試験を行った。その試験結果としてロックウェル圧痕試験後の実施例1の試験片の圧痕部の画像を図5に示す。ロックウェル圧痕試験結果は、圧痕剥離判定基準に基づきHF1であると判断した。
The Rockwell indentation test was performed on the test piece of Example 1 by the above-mentioned method. As the test result, an image of the indented portion of the test piece of Example 1 after the Rockwell indentation test is shown in FIG. The Rockwell indentation test result was determined to be HF1 based on the indentation peeling criterion.
≪実施例2≫
プラズマ炭化処理工程において、プラズマ炭化処理工程を4時間行ったことを除き、実施例1と同様の条件で試験片を作製した。ロックウェル圧痕試験後の実施例2の試験片の圧痕部の画像を図6に示す。ロックウェル圧痕試験結果は、圧痕剥離判定基準に基づきHF1であると判断した。 << Example 2 >>
In the plasma carbonization treatment step, a test piece was prepared under the same conditions as in Example 1 except that the plasma carbonization treatment step was performed for 4 hours. An image of the indented portion of the test piece of Example 2 after the Rockwell indentation test is shown in FIG. The Rockwell indentation test result was determined to be HF1 based on the indentation peeling criterion.
プラズマ炭化処理工程において、プラズマ炭化処理工程を4時間行ったことを除き、実施例1と同様の条件で試験片を作製した。ロックウェル圧痕試験後の実施例2の試験片の圧痕部の画像を図6に示す。ロックウェル圧痕試験結果は、圧痕剥離判定基準に基づきHF1であると判断した。 << Example 2 >>
In the plasma carbonization treatment step, a test piece was prepared under the same conditions as in Example 1 except that the plasma carbonization treatment step was performed for 4 hours. An image of the indented portion of the test piece of Example 2 after the Rockwell indentation test is shown in FIG. The Rockwell indentation test result was determined to be HF1 based on the indentation peeling criterion.
≪実施例3≫
プラズマ炭化処理工程において、処理ガスとして供給するメタンガスの流量を3ml/minに設定し、炭素源ガスであるメタンガスと水素ガスとの流量比[炭素源ガス流量/水素ガス流量]を0.03とし、プラズマ炭化処理工程を4時間行ったことを除き、実施例1と同様の条件で試験片を作製した。ロックウェル圧痕試験後の実施例3の試験片の圧痕部の画像を図7に示す。ロックウェル圧痕試験結果は、圧痕剥離判定基準に基づきHF1であると判断した。 << Example 3 >>
In the plasma carbonization treatment step, the flow rate of methane gas supplied as the treatment gas is set to 3 ml / min, and the flow rate ratio of the carbon source gas methane gas to hydrogen gas [carbon source gas flow rate / hydrogen gas flow rate] is set to 0.03. , A test piece was prepared under the same conditions as in Example 1 except that the plasma carbonization treatment step was carried out for 4 hours. An image of the indentation portion of the test piece of Example 3 after the Rockwell indentation test is shown in FIG. The Rockwell indentation test result was determined to be HF1 based on the indentation peeling criterion.
プラズマ炭化処理工程において、処理ガスとして供給するメタンガスの流量を3ml/minに設定し、炭素源ガスであるメタンガスと水素ガスとの流量比[炭素源ガス流量/水素ガス流量]を0.03とし、プラズマ炭化処理工程を4時間行ったことを除き、実施例1と同様の条件で試験片を作製した。ロックウェル圧痕試験後の実施例3の試験片の圧痕部の画像を図7に示す。ロックウェル圧痕試験結果は、圧痕剥離判定基準に基づきHF1であると判断した。 << Example 3 >>
In the plasma carbonization treatment step, the flow rate of methane gas supplied as the treatment gas is set to 3 ml / min, and the flow rate ratio of the carbon source gas methane gas to hydrogen gas [carbon source gas flow rate / hydrogen gas flow rate] is set to 0.03. , A test piece was prepared under the same conditions as in Example 1 except that the plasma carbonization treatment step was carried out for 4 hours. An image of the indentation portion of the test piece of Example 3 after the Rockwell indentation test is shown in FIG. The Rockwell indentation test result was determined to be HF1 based on the indentation peeling criterion.
≪比較例1≫
プラズマ炭化処理工程を実施しなかったことを除き、実施例1と同様の条件で試験片を作製した。ロックウェル圧痕試験後の比較例1の試験片の圧痕部の画像を図8に示す。ロックウェル圧痕試験結果は、圧痕剥離判定基準に基づきHF4であると判断した。 << Comparative Example 1 >>
A test piece was prepared under the same conditions as in Example 1 except that the plasma carbonization treatment step was not carried out. An image of the indentation portion of the test piece of Comparative Example 1 after the Rockwell indentation test is shown in FIG. The Rockwell indentation test result was determined to be HF4 based on the indentation peeling criterion.
プラズマ炭化処理工程を実施しなかったことを除き、実施例1と同様の条件で試験片を作製した。ロックウェル圧痕試験後の比較例1の試験片の圧痕部の画像を図8に示す。ロックウェル圧痕試験結果は、圧痕剥離判定基準に基づきHF4であると判断した。 << Comparative Example 1 >>
A test piece was prepared under the same conditions as in Example 1 except that the plasma carbonization treatment step was not carried out. An image of the indentation portion of the test piece of Comparative Example 1 after the Rockwell indentation test is shown in FIG. The Rockwell indentation test result was determined to be HF4 based on the indentation peeling criterion.
以上のロックウェル圧痕試験の結果より、鋼材の炭化物層の上に珪炭化バナジウム膜が形成された実施例1~3の試験片は、炭化物層を有しない鋼材に直接珪炭化バナジウム膜が形成された比較例1の試験片よりも、ロックウェル圧痕試験における密着性に優れた部材であることがわかる。
From the results of the above Rockwell indentation test, in the test pieces of Examples 1 to 3 in which the silica carbide vanadium film was formed on the carbide layer of the steel material, the silica carbide vanadium film was directly formed on the steel material having no carbide layer. It can be seen that the member has better adhesion in the Rockwell indentation test than the test piece of Comparative Example 1.
以下の表2は、珪炭化バナジウム膜形成前の試験片に対して実施したX線回折解析の結果である。表2では、珪炭化バナジウム膜形成前の試験片のピーク強度比を比較している。なお、実施例1および実施例3における、珪炭化バナジウム膜形成前の試験片のピーク強度比とは、プラズマ炭化処理によって形成された炭化物層のピーク強度比のことである。一方、比較例1ではプラズマ炭化処理が行われていないことから、珪炭化バナジウム膜形成前の試験片のピーク強度比とは、プラズマ炭化処理がされていない鋼材のピーク強度比のことである。また、表2では実施例1のプラズマ炭化処理工程後の鋼材のピーク強度比とプラズマ炭化処理工程前の鋼材のピーク強度比との比も示している。
Table 2 below shows the results of X-ray diffraction analysis performed on the test piece before the formation of the silica carbide vanadium film. Table 2 compares the peak intensity ratios of the test pieces before the formation of the vanadium carbide film. The peak intensity ratio of the test piece before the formation of the silica carbide vanadium film in Examples 1 and 3 is the peak intensity ratio of the carbide layer formed by the plasma carbonization treatment. On the other hand, since the plasma carbonization treatment is not performed in Comparative Example 1, the peak intensity ratio of the test piece before the formation of the silica carbide vanadium film is the peak intensity ratio of the steel material which has not been subjected to the plasma carbonization treatment. Table 2 also shows the ratio of the peak strength ratio of the steel material after the plasma carbonization treatment step of Example 1 to the peak strength ratio of the steel material before the plasma carbonization treatment step.
表2に示されているように、ロックウェル圧痕試験における圧痕剥離判定がHF1である実施例1の試験片のピーク強度比は0.82であり、実施例3の試験片のピーク強度比は0.63である。一方、圧痕剥離判定がHF4である比較例1の試験片のピーク強度比は0.16である。すなわち、本実施例の結果によれば、ピーク強度比が特定の範囲内にある場合には、鋼材と金属炭化物膜の密着性を向上させられることがわかる。
As shown in Table 2, the peak intensity ratio of the test piece of Example 1 in which the indentation peeling determination in the Rockwell indentation test is HF1 is 0.82, and the peak intensity ratio of the test piece of Example 3 is It is 0.63. On the other hand, the peak intensity ratio of the test piece of Comparative Example 1 in which the indentation peeling determination is HF4 is 0.16. That is, according to the results of this example, it can be seen that the adhesion between the steel material and the metal carbide film can be improved when the peak intensity ratio is within a specific range.
なお、実施例1の試験片のピーク強度比と、比較例1の試験片のピーク強度比との比、すなわち、プラズマ炭化処理後の炭化物層のピーク強度比/プラズマ炭化処理前の鋼材のピーク強度比は、5.1であった。また、実施例3における、プラズマ炭化処理後の炭化物層のピーク強度比/プラズマ炭化処理前の鋼材のピーク強度比は、3.9であった。
The ratio of the peak intensity ratio of the test piece of Example 1 to the peak intensity ratio of the test piece of Comparative Example 1, that is, the peak intensity ratio of the carbonized material layer after the plasma carbonization treatment / the peak of the steel material before the plasma carbonization treatment. The intensity ratio was 5.1. Further, in Example 3, the peak intensity ratio of the carbide layer after the plasma carbonization treatment / the peak intensity ratio of the steel material before the plasma carbonization treatment was 3.9.
次に、実施例1~3の試験片に対し、前述の方法で膜厚測定と珪炭化バナジウム膜の組成分析を行った。また、実施例1の試験片に対しては前述の方法による膜硬さ測定も行った。以上の膜硬さ測定、膜厚測定、珪炭化バナジウム膜の組成分析の結果を以下の表3に示す。
Next, the film thickness of the test pieces of Examples 1 to 3 was measured and the composition of the silica carbide vanadium film was analyzed by the above-mentioned method. In addition, the film hardness of the test piece of Example 1 was also measured by the above-mentioned method. The results of the above film hardness measurement, film thickness measurement, and composition analysis of the silica carbide vanadium carbide film are shown in Table 3 below.
次に、前述の<酸化層形成確認>の手順に沿って作製された試料の断面の電子顕微鏡画像を取得した。図9は、実施例1の試料の断面を示す電子顕微鏡画像である。実施例1の試料においては、炭化物層と金属炭化物膜の界面には酸化層が形成されていないことが確認された。また、実施例2および実施例3の試料についても同様に電子顕微鏡画像を取得したが、いずれの試料においても酸化層は形成されていなかった。
Next, an electron microscope image of a cross section of the sample prepared according to the above-mentioned procedure of <confirmation of oxide layer formation> was acquired. FIG. 9 is an electron microscope image showing a cross section of the sample of Example 1. In the sample of Example 1, it was confirmed that no oxide layer was formed at the interface between the carbide layer and the metal carbide film. In addition, electron microscope images were obtained in the same manner for the samples of Example 2 and Example 3, but no oxide layer was formed in any of the samples.
本発明は、金型や工具、例えば歯車のような自動車部品等に対する硬質膜の被覆処理に利用することができる。すなわち、本発明に係る金属炭化物膜被覆部材は、例えば金型や工具、自動車部品として用いられる。
The present invention can be used for coating a hard film on a mold or a tool, for example, an automobile part such as a gear. That is, the metal carbide film covering member according to the present invention is used, for example, as a mold, a tool, or an automobile part.
1 金属炭化物膜被覆部材
2 鋼材
2a 炭化物層
3 金属炭化物膜
10 成膜装置
11 チャンバー
12 陽極側の電極部材
13 陰極側の電極部材
14 パルス電源
15 ガス供給管
16 ガス排気管
1 Metal carbidefilm covering member 2 Steel material 2a Carbide layer 3 Metal carbide film 10 Formation device 11 Chamber 12 Electrode member on the anode side 13 Electrode member on the anode side 14 Pulse power supply 15 Gas supply pipe 16 Gas exhaust pipe
2 鋼材
2a 炭化物層
3 金属炭化物膜
10 成膜装置
11 チャンバー
12 陽極側の電極部材
13 陰極側の電極部材
14 パルス電源
15 ガス供給管
16 ガス排気管
1 Metal carbide
Claims (13)
- 金属炭化物膜被覆部材であって、
炭化物層を表面に有する鋼材と、
前記炭化物層上にV、Ti、Al、Cr、NbおよびSiよりなる群から選択される1種以上の金属と炭素を含む金属炭化物膜と、を有し、
鋼材の金属炭化物に由来するX線回折の最大ピーク強度[炭化物強度]と、α―Feに由来するX線回折の最大ピーク強度[Fe強度]との比をピーク強度比[炭化物強度/Fe強度]と定義したとき、前記炭化物層の前記ピーク強度比が0.5~4.0である。 It is a metal carbide film covering member and
Steel materials with a carbide layer on the surface and
The carbide layer comprises one or more metals selected from the group consisting of V, Ti, Al, Cr, Nb and Si and a metal carbide film containing carbon.
The ratio of the maximum peak intensity [carbide strength] of X-ray diffraction derived from metal carbides of steel materials to the maximum peak intensity [Fe intensity] of X-ray diffraction derived from α-Fe is the peak intensity ratio [carbide strength / Fe strength]. ], The peak intensity ratio of the carbide layer is 0.5 to 4.0. - 請求項1に記載の金属炭化物膜被覆部材において、
前記炭化物層の前記ピーク強度比が2.0以下である。 In the metal carbide film covering member according to claim 1,
The peak intensity ratio of the carbide layer is 2.0 or less. - 請求項1に記載の金属炭化物膜被覆部材において、
前記炭化物層の前記ピーク強度比が1.0以下である。 In the metal carbide film covering member according to claim 1,
The peak intensity ratio of the carbide layer is 1.0 or less. - 請求項1に記載の金属炭化物膜被覆部材において、
前記金属炭化物膜は、バナジウムと、珪素と、炭素とを含有する珪炭化バナジウム膜であり、
前記珪炭化バナジウム膜は、膜中のバナジウム元素濃度と、珪素元素濃度と、炭素元素濃度の合計が90at%以上である。 In the metal carbide film covering member according to claim 1,
The metal carbide film is a silica carbide vanadium film containing vanadium, silicon, and carbon.
In the silica carbide vanadium film, the total of the vanadium element concentration, the silicon element concentration, and the carbon element concentration in the film is 90 at% or more. - 請求項4に記載の金属炭化物膜被覆部材において、
前記珪炭化バナジウム膜中のバナジウム元素濃度が8~30at%、珪素元素濃度が8~30at%、炭素元素濃度が40~80at%である。 In the metal carbide film covering member according to claim 4,
The vanadium element concentration in the silica carbide vanadium film is 8 to 30 at%, the silicon element concentration is 8 to 30 at%, and the carbon element concentration is 40 to 80 at%. - 金属炭化物膜被覆部材の製造方法であって、
鋼材の表面に炭化物層を形成するプラズマ炭化処理工程と、
前記炭化物層上に、V、Ti、Al、Cr、NbおよびSiよりなる群から選択される1種以上の金属と炭素を含む金属炭化物膜を形成する金属炭化物膜形成工程とを有し、
鋼材の金属炭化物に由来するX線回折の最大ピーク強度[炭化物強度]と、α―Feに由来するX線回折の最大ピーク強度[Fe強度]との比をピーク強度比[炭化物強度/Fe強度]と定義したとき、前記プラズマ炭化処理工程において、該プラズマ炭化処理工程後の前記炭化物層の前記ピーク強度比が0.5~4.0となるように該炭化物層を形成する。 A method for manufacturing a metal carbide film covering member.
A plasma carbide treatment process that forms a carbide layer on the surface of the steel material,
It has a metal carbide film forming step of forming a metal carbide film containing carbon and one or more metals selected from the group consisting of V, Ti, Al, Cr, Nb and Si on the carbide layer.
The ratio of the maximum peak intensity [carbide strength] of X-ray diffraction derived from metal carbides of steel materials to the maximum peak intensity [Fe intensity] of X-ray diffraction derived from α-Fe is the peak intensity ratio [carbide strength / Fe strength]. ], In the plasma carbide treatment step, the carbide layer is formed so that the peak intensity ratio of the carbide layer after the plasma carbide treatment step is 0.5 to 4.0. - 請求項6に記載の金属炭化物膜被覆部材の製造方法において、
前記プラズマ炭化処理工程で、[前記プラズマ炭化処理工程後の鋼材の前記ピーク強度比/前記プラズマ炭化処理工程前の鋼材の前記ピーク強度比]が2.4~19を満たすように前記炭化物層を形成する。 In the method for manufacturing a metal carbide film covering member according to claim 6.
In the plasma carbonization treatment step, the carbide layer is provided so that [the peak intensity ratio of the steel material after the plasma carbonization treatment step / the peak intensity ratio of the steel material before the plasma carbonization treatment step] satisfies 2.4 to 19. Form. - 金属炭化物膜被覆部材の製造方法であって、
鋼材の表面に炭化物層を形成するプラズマ炭化処理工程と、
前記炭化物層上に、V、Ti、Al、Cr、NbおよびSiよりなる群から選択される1種以上の金属と炭素を含む金属炭化物膜を形成する金属炭化物膜形成工程とを有し、
前記プラズマ炭化処理工程は、処理ガスとして供給される炭素源ガスと水素ガスとをプラズマ化した雰囲気下で行われる。 A method for manufacturing a metal carbide film covering member.
A plasma carbide treatment process that forms a carbide layer on the surface of the steel material,
It has a metal carbide film forming step of forming a metal carbide film containing carbon and one or more metals selected from the group consisting of V, Ti, Al, Cr, Nb and Si on the carbide layer.
The plasma carbonization treatment step is performed in an atmosphere in which a carbon source gas supplied as a treatment gas and a hydrogen gas are converted into plasma. - 請求項8に記載の金属炭化物膜被覆部材の製造方法において、
前記炭素源ガスと前記水素ガスの流量比である炭素源ガス流量/水素ガス流量が0.01~0.40である。 In the method for manufacturing a metal carbide film covering member according to claim 8,
The carbon source gas flow rate / hydrogen gas flow rate, which is the flow rate ratio of the carbon source gas to the hydrogen gas, is 0.01 to 0.40. - 請求項9に記載の金属炭化物膜被覆部材の製造方法において、
前記プラズマ炭化処理工程の処理ガスとして水素ガス、炭素源ガスおよびアルゴンガスを供給し、前記水素ガスの体積流量を1としたときに、水素ガス:炭素源ガス:アルゴンガスの体積流量の比が1:0.01~0.40:0.01~0.10である。 In the method for manufacturing a metal carbide film covering member according to claim 9.
When hydrogen gas, carbon source gas and argon gas are supplied as the processing gas in the plasma carbonization treatment step and the volumetric flow rate of the hydrogen gas is 1, the ratio of the volumetric flow rate of hydrogen gas: carbon source gas: argon gas is It is 1: 0.01 to 0.40: 0.01 to 0.10. - 請求項8に記載の金属炭化物膜被覆部材の製造方法において、
前記炭素源ガスは、メタンガスである。 In the method for manufacturing a metal carbide film covering member according to claim 8,
The carbon source gas is methane gas. - 請求項6に記載の金属炭化物膜被覆部材の製造方法において、
前記金属炭化物膜は、バナジウムと、珪素と、炭素とを含む珪炭化バナジウム膜であり、
前記珪炭化バナジウム膜は、膜中のバナジウム元素濃度と、珪素元素濃度と、炭素元素濃度の合計が90at%以上である。 In the method for manufacturing a metal carbide film covering member according to claim 6.
The metal carbide film is a silica carbide vanadium film containing vanadium, silicon, and carbon.
In the silica carbide vanadium film, the total of the vanadium element concentration, the silicon element concentration, and the carbon element concentration in the film is 90 at% or more. - 請求項12に記載の金属炭化物膜被覆部材の製造方法において、
前記珪炭化バナジウム膜中のバナジウム元素濃度が8~30at%、珪素元素濃度が8~30at%、炭素元素濃度が40~80at%である。
In the method for manufacturing a metal carbide film covering member according to claim 12,
The vanadium element concentration in the silica carbide vanadium film is 8 to 30 at%, the silicon element concentration is 8 to 30 at%, and the carbon element concentration is 40 to 80 at%.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-121902 | 2020-07-16 | ||
JP2020121902 | 2020-07-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022014709A1 true WO2022014709A1 (en) | 2022-01-20 |
Family
ID=79555687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/026851 WO2022014709A1 (en) | 2020-07-16 | 2021-07-16 | Metal carbide film-coated member and method for producing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022019697A (en) |
WO (1) | WO2022014709A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62677A (en) * | 1985-03-14 | 1987-01-06 | Toshiba Corp | Refrigerant compressor |
JPS62103368A (en) * | 1985-10-31 | 1987-05-13 | Toshiba Corp | Ceramic coating metal |
JPH04301085A (en) * | 1991-03-28 | 1992-10-23 | Mazda Motor Corp | Manufacture of wear-resistant member |
JPH04333577A (en) * | 1991-05-07 | 1992-11-20 | Asahi Daiyamondo Kogyo Kk | Production of diamond coated tool |
JP2019035108A (en) * | 2017-08-14 | 2019-03-07 | Dowaサーモテック株式会社 | Vanadium silicide carbide nitride film, member covering vanadium silicide carbide nitride film and method for manufacturing the same |
-
2021
- 2021-07-16 JP JP2021118172A patent/JP2022019697A/en active Pending
- 2021-07-16 WO PCT/JP2021/026851 patent/WO2022014709A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62677A (en) * | 1985-03-14 | 1987-01-06 | Toshiba Corp | Refrigerant compressor |
JPS62103368A (en) * | 1985-10-31 | 1987-05-13 | Toshiba Corp | Ceramic coating metal |
JPH04301085A (en) * | 1991-03-28 | 1992-10-23 | Mazda Motor Corp | Manufacture of wear-resistant member |
JPH04333577A (en) * | 1991-05-07 | 1992-11-20 | Asahi Daiyamondo Kogyo Kk | Production of diamond coated tool |
JP2019035108A (en) * | 2017-08-14 | 2019-03-07 | Dowaサーモテック株式会社 | Vanadium silicide carbide nitride film, member covering vanadium silicide carbide nitride film and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2022019697A (en) | 2022-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3105962B2 (en) | Amorphous thin film having solid lubricity and method for producing the same | |
JP6963932B2 (en) | Vanadium Nitride Silica Nitride Film, Vanadium Nitride Silica Nitride Membrane Coating Member and Its Manufacturing Method | |
KR102056206B1 (en) | Hard film coating tool and method for manufacturing said tool | |
JP6507959B2 (en) | Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer | |
JP2015157351A (en) | Surface coating cutting tool in which hard coating layer is excellent in chipping resistance | |
WO2018124279A1 (en) | Vanadium silicon nitride film, vanadium silicon nitride film coated member, and method for manufacturing same | |
JP4246827B2 (en) | Member coated with diamond-like carbon film | |
JP7244387B2 (en) | Manufacturing method of vanadium siliconitride film-coated member and vanadium siliconitride film-coated member | |
Wongpanya et al. | Nanomechanical properties and thermal stability of Al–N-co-doped DLC films prepared by filtered cathodic vacuum arc deposition | |
WO2022014709A1 (en) | Metal carbide film-coated member and method for producing same | |
US20140193594A1 (en) | Metal object with diamond-like carbon film and method for forming diamond-like carbon film | |
WO2021065865A1 (en) | Vanadium silicarbide film, vanadium silicarbide film-coated member, and method for producing vanadium silicarbide film-coated member | |
JP6875886B2 (en) | Vanadium nitride film coating member and its manufacturing method | |
JP4612147B2 (en) | Amorphous hard carbon film and method for producing the same | |
WO2018021466A1 (en) | Vanadium nitride film, vanadium nitride film coated member, and method for manufacturing same | |
CN115786875A (en) | Coating with enhanced toughness and wear resistance and preparation method and application thereof | |
JP6270131B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP2002516924A (en) | Method for applying a lubricating layer to an exposed surface subjected to frictional stress of an object and an object having a lubricating layer adhered to the exposed surface | |
He et al. | Improving the anticorrosion and mechanical behaviour of PACVD TiN | |
JP7304725B2 (en) | Vanadium silicitride film-coated member and manufacturing method thereof | |
JPWO2020189252A1 (en) | Cover cutting tool | |
WO2022215651A1 (en) | Vanadium silicon carbide film coated member and method for manufacturing same, and vanadium silicon carbide film-forming substrate and method for manufacturing same | |
WO2024202936A1 (en) | Diamond electrode | |
Wierzchoń et al. | The PACVD method for surface layer deposition using a glow discharge in H2+ N2+ Ti (OC3H7) 4 | |
JP7348422B1 (en) | Diamond electrode and diamond electrode manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21841606 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21841606 Country of ref document: EP Kind code of ref document: A1 |