WO2022014702A1 - Metal-organic framework, and method for manufacturing same - Google Patents

Metal-organic framework, and method for manufacturing same Download PDF

Info

Publication number
WO2022014702A1
WO2022014702A1 PCT/JP2021/026797 JP2021026797W WO2022014702A1 WO 2022014702 A1 WO2022014702 A1 WO 2022014702A1 JP 2021026797 W JP2021026797 W JP 2021026797W WO 2022014702 A1 WO2022014702 A1 WO 2022014702A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
ion
ligand
cluster
organic
Prior art date
Application number
PCT/JP2021/026797
Other languages
French (fr)
Japanese (ja)
Inventor
巧 今野
信人 吉成
康浩 中澤
智史 山下
Original Assignee
国立研究開発法人 科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人 科学技術振興機構 filed Critical 国立研究開発法人 科学技術振興機構
Priority to JP2022536460A priority Critical patent/JPWO2022014702A1/ja
Publication of WO2022014702A1 publication Critical patent/WO2022014702A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/57Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C323/58Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups with amino groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table

Definitions

  • the present invention relates to a metal-organic framework and a method for producing the same.
  • the metal organic structure is a compound having a coordination network structure constructed by a coordinate bond between a metal ion and a polydentate ligand and a covalent bond in the polydentate ligand. Since some metal-organic frameworks have relatively large voids inside, such metal-organic frameworks are expected as functional porous materials such as gas adsorbents, gas storage materials, and gas separators. ..
  • metal-organic polymer chains a second metal ion is introduced into the metal-organic polymer chain in addition to the first metal ion for maintaining the coordination network structure.
  • tert-butyl-5- (4-pyridyl) catalyst Mn III Cl) metal-organic framework in which an active site having a manganese ion is incorporated in a metal-organic polymer chain) is 2,2-dimethyl-2H-. It has been described that it is useful as a catalyst for the asymmetric epoxidation reaction of chromene.
  • Non-Patent Document 2 Dy 3+ and (dysprosium ion) OH - cubane-type structure to (hydroxo ions) components containing ([Dy 4 ( ⁇ 3 -OH ) 4] structure), and two The molecular structure of the low molecular weight complexes and the magnetic properties of these low molecular weight complexes are described.
  • Non-Patent Document 2 although the cubane-type structures of these small molecule complexes are similar, a slight difference in the angle of Dy—O—Dy greatly affects the difference in the magnetic properties of the small molecule complex. Is also described. Further, conventionally, compounds containing rare earth elements have been used as light emitting materials and the like.
  • the metal-organic framework having a metal-organic polymer chain into which a metal ion having functionality is introduced is extremely useful as a functional material such as a catalyst material, a magnetic material, and a light emitting material.
  • a functional material such as a catalyst material, a magnetic material, and a light emitting material.
  • Non-Patent Document 2 it is important to investigate the relationship between the molecular structure of a functional material and its function and obtain new findings in order to improve the functional material, but it is low.
  • a crystallization step for obtaining a sample for single crystal X-ray crystal structure analysis is indispensable in addition to the step of synthesizing the low molecular complex.
  • the obtained metal-organic structure can be used as it is as a sample for single crystal X-ray crystal structure analysis, so that the functional material composed of the metal-organic structure can be used. Suitable for further enhancement of functionality.
  • an object of the present invention is to provide a metal-organic framework containing a cubane-type structure, which is suitably used as a functional material, and a method for producing the same.
  • the present inventors have accumulated anionic polynuclear metal complexes to form a crystal lattice, and an ionic solid formed by the presence of a cationic species in the gaps of the crystal lattice has ionic conduction because the cationic species has high motility. It has been found to be useful as a body (Patent Document 1).
  • Patent Document 1 the molecular structure of the polynuclear metal complex containing a plurality of metal ions and having an appropriate size, such as this anionic polynuclear metal complex, is a metal containing a Cuban-type structure. We have found that it is also suitable as a partial structure of an organic structure, and have completed the present invention.
  • At least one is a polydentate ligand coordinating to M beta ions (ligand L alpha 1), metal organic structures.
  • M ⁇ 1 ion a divalent or trivalent metal ion in which the cluster ( ⁇ ) can form a complex having an octahedral molecular structure having a coordination number of 6 as the M ⁇ ion. capable of forming a complex with a tetrahedral molecular structure of 4, monovalent or divalent metal ion (M alpha 2 ions), is intended to include metal organic structure according to [1].
  • the M ⁇ 1 ion is an ion of one kind of metal selected from the group consisting of the metals of the 8th, 9th, and 10th groups of the periodic table, Cr, and Mn
  • the M ⁇ 2 ion is an ion.
  • T 1 represents a first atom (ligand atoms t 1) or a group containing a coordination atom t 1 coordinating to M alpha ion
  • T 2 is coordinated to M alpha ion
  • T 3 is an atom coordinating to an M ⁇ ion (coordinating atom t 3 ) or a coordinating atom t 3
  • G represents a linking group.
  • T 1- GT 2 is an atomic group that forms a 5-membered chelate ring or a 6-membered chelate ring by coordinating the coordination atom t 1 and the coordination atom t 2 to the M ⁇ ion.
  • the cluster ( ⁇ ) is represented by the following formula (2).
  • M ⁇ 1 represents a divalent or trivalent metal ion capable of forming a complex having an octahedral molecular structure having a coordination number of 6
  • M ⁇ 2 is a tetrahedron having a coordination number of 4.
  • L ⁇ 1 represents a polydentate ligand that also coordinates with M ⁇ ion
  • E represents H ⁇ , O 2 -, S 2-, Se 2-, Te 2-, F -, Cl -, Br - or I - it represents a.
  • n is ( valence of M ⁇ 1 ⁇ 4) + ( valence of M ⁇ 2 ⁇ 4) + ( valence of L ⁇ 1 ⁇ 12) + (valence of E). It is a number calculated by ⁇ m).
  • the aggregate of clusters ( ⁇ ) is derived from the anion portion of the ionic flow type ionic solid, and the ionic flow type ionic solid contains a metal ion and a polydentate ligand.
  • the metal organic structure according to any one of [1] to [6], wherein the anionic polynuclear metal complex accumulates to form a crystal lattice, and a cationic species exists in the gaps of the crystal lattice.
  • M ⁇ represents a metal ion constituting a cubane-type structure
  • L ⁇ represents a carboxylate ligand.
  • p is an integer of 0 to 10
  • q is an integer of 0 to 10 (where p + q ⁇ 1)
  • r is ( valence of M ⁇ ⁇ 4) + (-1 ⁇ 4) + (value of L ⁇ ). It is a number calculated by (number ⁇ q).
  • the ligand L ⁇ 1 has a carboxylate group, and a coordinate bond is formed between the carboxylate group of the ligand L ⁇ 1 and the M ⁇ ion.
  • the metal-organic framework according to any one of [12].
  • [14] The metal-organic framework according to any one of [1] to [13], wherein the composition formula of the metal-organic structure is represented by the following formula (4).
  • A represents a cation or anion.
  • ⁇ (M ⁇ ) 4 (OH) 4 (H 2 O) p (L ⁇ ) q ⁇ is an r-valent cation
  • M ⁇ represents a metal ion constituting a cubane-type structure
  • L ⁇ is a carboxy.
  • p is an integer of 0 to 10 and q is an integer of 0 to 10 (where p + q ⁇ 1).
  • M ⁇ 1 is a complex having an octahedral molecular structure with a coordination number of 6.
  • M ⁇ 2 represents a monovalent or divalent metal ion that can form a complex with a tetrahedral molecular structure having a coordination number of 4, L ⁇ 1.
  • E represents a coordinating polydentate ligand to M beta ion
  • E is, H -, O 2-, S 2-, Se 2-, Te 2-, F -, Cl -, Br - or I - represents a.
  • m is 0 or 1.
  • B represents a solvent molecule, and t is an integer of 20 to 100.
  • a method for producing a metal organic structure in which a metal ion and an anionic polynuclear metal complex containing a polydentate ligand are accumulated to form a crystal lattice, and a cation species is formed in the gap of the crystal lattice.
  • a metal-organic structure having a Cuban-type structure within a metal-organic polymer chain comprising contacting an existing ionic flow-type ionic solid with a solution containing d-block transition metal ions or f-block transition metal ions. How to make a body.
  • a metal-organic framework containing a cubane-type structure which is suitably used as a functional material, and a method for producing the same are provided.
  • 5 is a powder X-ray diffraction pattern of the metal-organic framework obtained in Examples 1 to 8. It is a figure which shows the cubane type structure in the metal-organic framework obtained in Examples 1-8. It is a figure which shows the result of the DC magnetic susceptibility measurement of the metal-organic framework obtained in Examples 2-8. It is a graph which shows the light emitting property of the metal-organic framework obtained in Example 12.
  • 6 is a graph (comparison of magnetic field change rates at 4K) showing the magnetic refrigeration characteristics of the metal-organic framework obtained in Example 8. 6 is a graph showing the magnetic refrigeration characteristics of the metal-organic framework obtained in Example 8 (comparison by initial temperature at 2.2 T / min).
  • metal-organic structure metal organic structure of the present invention is a cluster (alpha) and clusters (beta) metal organic structure containing a structural unit, respectively, the cluster (alpha) is a metal ion (M alpha ion), and those comprising a ligand (ligand L alpha) coordinating to M alpha ions, clusters (beta) is cubane-type of the metal ion (M beta ions) the essential components is intended to include a structure, at least one ligand L alpha is a polydentate ligand coordinating to M beta ions (ligand L alpha 1), a metal organic structures.
  • M ⁇ ion represents a metal ion in a cluster ( ⁇ ).
  • Ligand L alpha represents a ligand in the cluster (alpha), in the ligand L alpha, M ligand coordinating to ⁇ ion L alpha to "ligand L alpha 1 "is expressed.
  • M ⁇ ion represents a metal ion constituting a cubane-type structure in a cluster ( ⁇ ).
  • the “cluster” refers to an atomic group consisting of a plurality of metal ions and a plurality of ligands, which form a structural unit of a metal-organic framework.
  • cluster ( ⁇ ) or “aggregate of clusters ( ⁇ )” may be used.
  • the former represents a structural unit of a metal-organic framework [one cluster ( ⁇ )], and the latter is composed of all clusters ( ⁇ ) in the metal-organic framework (that is, an “aggregate of clusters ( ⁇ )”). Is an ideological one that remains when elements other than the cluster ( ⁇ ) are eliminated from the metal-organic framework). This also applies to "cluster ( ⁇ )” and “aggregate of cluster ( ⁇ )”.
  • Cluster ( ⁇ ) constituting the metal organic structure of the present invention, M alpha ions, and are those containing a ligand L alpha, at least one ligand L alpha is ligand L alpha 1 Is.
  • Examples of the M ⁇ ion include a transition metal ion and a metal ion of a main group element.
  • transition metal ions or metal ions of Group 12 of the periodic table are preferable as M ⁇ ions because stable metal-organic structures can be efficiently formed.
  • the number of M ⁇ ions contained in the cluster ( ⁇ ) is preferably 4 to 15, more preferably 6 to 10.
  • the cluster ( ⁇ ) tends to be small, and when the number of M ⁇ ions contained in the cluster ( ⁇ ) is large, the cluster ( ⁇ ) becomes large.
  • the cluster ( ⁇ ) becomes larger, the distance between the centers of a certain cluster ( ⁇ ) and the adjacent cluster ( ⁇ ) tends to become longer, so that the cluster ( ⁇ ) having a large cluster ( ⁇ ) as a constituent unit is used. Aggregates of are prone to large spaces between clusters ( ⁇ ).
  • the space generated between the clusters ( ⁇ ) is not too small.
  • the space generated between the clusters ( ⁇ ) is not too large. Since the cluster ( ⁇ ) contains 4 to 15 M ⁇ ions, the cluster ( ⁇ ) can be more stably contained in the space generated between the clusters ( ⁇ ), and the cluster ( ⁇ ) and the cluster ( ⁇ ) can be accommodated more stably. It becomes easy to obtain a more stable metal-organic structure having each of the constituent units.
  • a preferred example of the molecular structure of the cluster ( ⁇ ) is one similar to the molecular structure of an anionic polynuclear metal complex constituting a known ionic flow type ionic solid (hereinafter, this anionic property).
  • the polynuclear metal complex may be referred to as an "anionic polynuclear metal complex ( ⁇ )".
  • anionic polynuclear metal complex ( ⁇ ) include the anionic dissimilar metals described in WO2018 / 079831 and WO2019 / 208753. Complexes can be mentioned.). Since it is easy to obtain a cluster ( ⁇ ) having a molecular structure similar to the molecular structure of the anionic polynuclear metal complex ( ⁇ ), the number of M ⁇ ions contained in the cluster ( ⁇ ) is particularly preferably eight.
  • the phrase "the molecular structure of the cluster ( ⁇ ) and the molecular structure of the anionic polynuclear metal complex ( ⁇ ) are similar” means the number of metal ions contained in the cluster ( ⁇ ) and the anionic polynuclear metal complex ( ⁇ ). And the coordination type (chelate coordination, cross-linking coordination, etc.) of the ligands that coordinate to these metal ions are the same, and the number of coordination atoms that coordinate to these metal ions is substantially the same. It means that they are the same (same except for the coordination of solvent molecules, etc.). Whether or not the molecular structures of the two molecules are similar can be determined by performing a single crystal X-ray crystal structure analysis.
  • the cluster ( ⁇ ) may contain one kind of metal ion or two or more kinds of metal ions as M ⁇ ions. Since it is easy to obtain a cluster ( ⁇ ) having a molecular structure similar to the molecular structure of the anionic polynuclear metal complex ( ⁇ ), it is preferable to contain two kinds of metal ions as M ⁇ ions.
  • a divalent or trivalent metal ion (hereinafter, hereinafter, which can form a complex having an octahedral molecular structure having a coordination number of 6) can be formed. It may be referred to as M ⁇ 1 ion) and a monovalent or divalent metal ion (hereinafter referred to as M ⁇ 2 ion) capable of forming a complex having a tetrahedral molecular structure having a coordination number of 4. There is.) Is preferable.
  • the ionic radius of the M ⁇ 1 ion is usually 60 to 90 pm, preferably 70 to 80 pm.
  • Ionic radius of M alpha 2 ions is generally 60 ⁇ 90 pm, preferably 70 ⁇ 75 pm.
  • Examples of the M ⁇ 1 ion include an ion of one kind of metal selected from the group consisting of the metals of Group 8, Group 9, and Group 10 of the periodic table, Cr, and Mn.
  • Rh 3+ , Ir 3+ , or Co 3+ is preferable, and Rh 3+ or Ir 3+ is more preferable as the M ⁇ 1 ion because stable clusters ( ⁇ ) are easily formed.
  • Co 3+ is preferable as the M ⁇ 1 ion.
  • Examples of the M ⁇ 2 ion include an ion of one kind of metal selected from the group consisting of the metals of Group 11 and Group 12 of the periodic table.
  • Zn 2+ , Cu + or Ag + is preferable, and Zn 2+ is more preferable, because stable clusters ( ⁇ ) are likely to be formed.
  • M ⁇ 1 ion and M ⁇ 2 ion include (Rh 3+ / Zn 2+ ), (Rh 3+ / Cu + ), (Rh 3+ / Ag + ), and so on. Examples thereof include (Ir 3+ / Zn 2+ ), (Co 3+ / Ag + ), and (Co 3+ / Zn 2+).
  • the cluster ( ⁇ ) Since it is easy to obtain a cluster ( ⁇ ) having a molecular structure similar to that of the anionic polynuclear metal complex ( ⁇ ), the cluster ( ⁇ ) contains four M ⁇ 1 ions and four M ⁇ 2 ions. It is preferable to include it.
  • the ligand L ⁇ is not particularly limited as long as it can coordinate with the M ⁇ ion.
  • the ligand L ⁇ may be an electrically neutral ligand or an anionic ligand. Further, when the ligand L ⁇ has an asymmetric center, the ligand L ⁇ is composed of a mixture of a plurality of types of optical isomers even if it is composed of one kind of optical isomers. There may be.
  • Electrically neutral ligands include acyclic amines such as diethylamine and triethylamine; nitrogen-containing heterocycles such as pyrrole, pyridine and imidazole; ethers such as acetonitrile and diethyl ether; ketones such as acetone: Hosphins such as triphenylphosphine; nitriles such as acetonitrile; water molecules; and the like can be mentioned.
  • Anionic ligands include hydride ion; hydroxide ion; oxide ion; sulfide ion; selenium ion; telluride ion; fluoride ion; chloride ion; bromide ion; iodide ion; cyanide. Ions; alcoholoxo ions such as methoxoions; aryloxo ions such as phenoxoions; carboxylate ions such as acetate ions; and the like.
  • the ligand L alpha may be a multidentate ligand having a coordinating group in these ligands one or more.
  • a polydentate ligand include diamines such as ethylenediamine; ⁇ -diketones such as acetylacetonate ion; picolinate ion; amino acid ligand such as glycinate ion; and the like.
  • Cluster (alpha) is to the ligand L alpha may contain one or may contain two or more.
  • the number of ligands L alpha included in the cluster (alpha) is generally 5 to 30, preferably 8-20, more preferably 10-15, particularly preferably 12 or 13.
  • Tend to cluster (alpha) number of ligands L alpha contained in a small and cluster (alpha) is small, the cluster (alpha) number of ligands L alpha contained in many a cluster (alpha) is Tends to grow.
  • the size of the cluster ( ⁇ ) tends to affect the formation and stabilization of the cluster ( ⁇ ).
  • Cluster (alpha) is that containing 5 to 30 ligands L alpha, and cluster (alpha) and clusters (beta) respectively constitutional units, tends stable metal organic structures obtained.
  • At least one ligand L alpha is a polydentate ligand coordinating to M beta ions (ligand L alpha 1).
  • the ligand L ⁇ 1 is preferably 2 to 5 because the ligand L ⁇ 1 coordinates to both the M ⁇ ion and the M ⁇ ion metal ions and a stable metal-organic structure is easily formed. It is a locus ligand, more preferably a tridental or tetradentate ligand.
  • the ligand L alpha 1 is particularly preferably a tridentate ligand.
  • Examples of the ligand L ⁇ 1 include those represented by the following formula (1).
  • T 1 represents a first atom (ligand atoms t 1) or a group containing a coordination atom t 1 coordinating to M alpha ion
  • T 2 is coordinated to M alpha ion
  • T 3 is an atom coordinating to an M ⁇ ion (coordinating atom t 3 ) or a coordinating atom t 3
  • G represents a linking group.
  • T 1- GT 2 is an atomic group that forms a 5-membered chelate ring or a 6-membered chelate ring by coordinating the coordination atom t 1 and the coordination atom t 2 to the M ⁇ ion.
  • T 1 is a coordinating atom t 1
  • coordination atom t 1 is typically forms part of the anionic groups together with the atoms in G.
  • T 2 is a coordination atom t 2 or T 3 is a coordination atom t 3
  • the coordination atom t 2 and the coordination atom t 3 are usually anions together with the atoms in G. It constitutes a part of the sex group.
  • Examples of such a coordinate atom include an oxygen atom constituting an alcohole group, a sulfur atom constituting a thiolate group, and the like.
  • T 1 is a group containing the coordinating atom t 1
  • T 1 is usually an anionic group or an electrically neutral group, or is part of a coordinating structure with the atoms in G. Is the basis that constitutes.
  • T 2 is a group containing a coordination atom t 2 or when T 3 is a group containing a coordination atom t 3
  • T 2 and T 3 are usually anionic groups or electrically. Is a neutral group, or is a group that forms part of a coordinating structure with the atoms in G.
  • T 1 , T 2 , T 3 (hereinafter referred to as "T 1 etc.") are anionic groups, examples of T 1 etc.
  • T 1 and the like include carboxylate groups (coordinating atoms are oxygen atoms). ..
  • T 1 and the like are electrically neutral groups
  • examples of T 1 and the like include an amino group (coordinating atom is a nitrogen atom) and a phosphino group (coordinating atom is a phosphorus atom).
  • the T 1 and the like include an alkoxy group (the coordinating atom is an oxygen atom) and a thioether structure that form an ether structure. Examples thereof include an alkylthio group (coordinating atom is a sulfur atom) constituting the alkylthio group.
  • Examples of the atom constituting G include a hydrogen atom, a carbon atom, an oxygen atom, and a nitrogen atom.
  • the number of atoms constituting G (however, excluding hydrogen atoms) is usually 2 to 15, preferably 2 to 10, and more preferably 2 to 5.
  • T 1 is preferably a coordination atom that constitutes a part of an anionic group together with an atom in G, and more preferably a sulfur atom that constitutes a thiolate group.
  • T 2 is preferably an electrically neutral group, more preferably an amino group.
  • T 3 is preferably an anionic group, more preferably a carboxylate group. Since T 1 , T 2 , and T 3 are the above-mentioned groups, it becomes easy to obtain a cluster ( ⁇ ) having a molecular structure similar to the molecular structure of the anionic polynuclear metal complex ( ⁇ ).
  • the ligand L ⁇ 1 is an amino acid ligand (in the present specification, the “amino acid ligand” is an amino acid having a total charge of 0 in addition to a function as a ligand. , Including those in which protonated or deprotonated amino acids function as ligands.). Since the ligand L ⁇ 1 is an amino acid ligand, it is possible to efficiently form a cluster ( ⁇ ) having a molecular structure similar to the molecular structure of the anionic polynuclear metal complex ( ⁇ ).
  • amino acid ligand examples include those represented by the following formula (5).
  • R represents an amino acid side chain having T 1
  • r 1 , r 2 , and r 3 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • -N (r 1) (r 2) is, T 2 in the formula (1) (t 2 is nitrogen atom) and, -C (O) O - is, T 3 (t 3 in the formula (1) Is an oxygen atom).
  • alkyl groups of r 1, r 2, carbon atoms represented by r 3 1 ⁇ 5, a methyl group, an ethyl group, n- propyl group, an isopropyl group, n- butyl group, s- butyl, t- butyl Groups, isobutyl groups and the like can be mentioned. Since liable anionic polynuclear metal complex (alpha) of the molecular structure similar to the molecular structure of the cluster (alpha) is obtained, as the r 1, r 2, r 3 , preferably a hydrogen atom or a methyl group, a hydrogen atom More preferred.
  • amino acid ligand examples include those shown below.
  • r 1 , r 2 , and r 3 have the same meanings as described above.
  • the ligands represented by the formulas (5-1) to (5-5) are ligands in which T 1 has a negative charge and can form a 5-membered chelate ring.
  • the ligand represented by the formulas (5-6) and (5-7) is a ligand in which T 1 has a negative charge and can form a 6-membered chelate ring.
  • the ligand represented by the formula (5-8) is a ligand in which T 1 is electrically neutral and can form a 6-membered chelate ring.
  • the coordination represented by the formulas (5-1) to (5-7) is easy to obtain.
  • the child is preferable, because the ligand represented by the formula (5-3), the formula (5-4), or the formula (5-6) stably forms a 5-membered ring or a 6-membered ring together with the metal.
  • formula (5-3) include cysteine
  • examples of formula (5-4) include penicillamine
  • formula (5-6) includes homocysteine.
  • Cluster (alpha) is to the ligand L alpha 1 may contain one or may contain two or more. Number of ligands L alpha 1 included in cluster (alpha) is usually 8 to 24, preferably 8 to 16, more preferably 12.
  • the cluster ( ⁇ ) can be a hydride ion (H ⁇ ), an oxide ion (O 2- ), a sulfide ion (S 2- ), a serene product ion (Se 2- ), and a telluride ion (Te), if necessary. 2), fluoride ion (F -), chloride ion (Cl -), bromide ion (Br -), and iodide ion (I -) ligand selected from the group consisting of (hereinafter, "coordination It may be described as "child E”).
  • Ligand E is a relatively small anion. Coordination of the ligand E to the M ⁇ ion may further stabilize the cluster ( ⁇ ). Since this effect can be easily obtained, the ligand E is preferably an oxide ion, a sulfide ion, a chloride ion, or a bromide ion, and more preferably an oxide ion or a sulfide ion.
  • Examples of the cluster ( ⁇ ) include those represented by the following formula (2).
  • M ⁇ 1 represents a divalent or trivalent metal ion capable of forming a complex having an octahedral molecular structure having a coordination number of 6
  • M ⁇ 2 is a tetrahedron having a coordination number of 4.
  • L ⁇ 1 represents a polydentate ligand that also coordinates with M ⁇ ion
  • E represents H ⁇ , O 2 -, S 2-, Se 2-, Te 2-, F -, Cl -, Br - or I - it represents a.
  • n is ( valence of M ⁇ 1 ⁇ 4) + ( valence of M ⁇ 2 ⁇ 4) + ( valence of L ⁇ 1 ⁇ 12) + (valence of E). It is a number calculated by ⁇ m).
  • n is usually an integer of 4 to 14, preferably an integer of 6 to 8.
  • the molecular structure of the cluster ( ⁇ ) represented by the formula (2) is similar to the molecular structure of the anionic polynuclear metal complex ( ⁇ ) (for example, the molecular structure represented by FIG. 2 of WO2019 / 208753). Can be mentioned.
  • FIG. 1 (a) shows a metal-organic framework [Lu 0.33 [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] [Rh 4 Zn 4 (L-cys) 12 O] ⁇ nH 2 From the results of crystal structure analysis of O (OAc represents acetate ion; the same applies hereinafter)], only the cluster ( ⁇ ) portion ([Rh 4 Zn 4 (L-cys) 12 O] 6- ) is represented. Is.
  • FIG. 1 (b) schematically shows [Rh 4 Zn 4 (L-cys) 12 O] 6- .
  • the carboxylate oxygen of the L-cysteine-derived ligand (L-cys) constituting [Rh 4 Zn 4 (L-cys) 12 O] 6-.
  • the atom is not coordinated to the Rh ion or Zn ion, and forms a coordinate bond with the Lu ion in [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+. Can be done.
  • the aggregate of clusters ( ⁇ ) constituting the metal-organic framework of the present invention is formed by regularly arranging the clusters ( ⁇ ).
  • the aggregate of clusters ( ⁇ ) is preferably derived from the anion portion of the ionic flow type ionic solid.
  • the "ionic solid” means a solid containing a cationic species and an anionic species as essential constituents.
  • the "ionic flow type ionic solid” means an ionic solid having ionic fluidity. Examples of the ionic flow type ionic solid include those in which anionic polynuclear metal complexes are accumulated to form a crystal lattice and a cationic species is present in the gaps between the crystal lattices. "Cation species are present in the gaps of the crystal lattice” means that the anionic polynuclear metal complex is bound to a specific position forming the crystal lattice, whereas the cation species is a free position in the gaps of the crystal lattice. Refers to the state that exists in. Since it has such a structure, this ionic flow type ionic solid has a cation exchange ability.
  • Examples of the metal ion constituting the anionic polynuclear metal complex include the same as those described as the M ⁇ ion.
  • the multidentate ligand constituting the anionic polynuclear metal complexes include the same as described as ligands L 1.
  • anionic polynuclear metal complex a known complex can be used.
  • known complexes include the anionic dissimilar metal complexes described in WO2018 / 079831 and WO2019 / 208753.
  • Examples of the cation species constituting the ionic flow type ionic solid include metal ions.
  • Specific examples of the cation species include Li + , Na + , K + , Rb + , Cs + , Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Ra 2+ and the like.
  • Na + , K + , Rb + , Cs + , Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ are preferable, and Na + or K is preferable because the metal-organic framework of the present invention can be obtained more efficiently.
  • the ionic flow type ionic solid for example, the ionic solid described in WO2018 / 079831 and WO2019 / 208753 can be preferably used.
  • a metal-organic polymer chain of a metal-organic framework can be efficiently formed.
  • the cluster ( ⁇ ) constituting the metal-organic structure of the present invention includes a cubane-type structure in which a metal ion (M ⁇ ion) is an essential component.
  • Examples of the M ⁇ ion include an ion of a d-block transition metal or an ion of an f-block transition metal.
  • Specific examples of d-block transition metal ions include Sc 3+ , Co 2+ , Ni 2+ , Cu + , Y 3+ and the like.
  • Specific examples of f-block transition metal ion La 3+, Ce 3+, Pr 3+, Nd 3+, Pm 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+, Dy 3+, Ho 3+, Er 3+, Tm 3+ , Yb 3+ , Lu 3+ and the like.
  • Tb 3+ is preferable when the metal-organic framework of the present invention is used as a light emitting material
  • Gd 3+ is preferable when it is used as a magnetic refrigeration material.
  • M ⁇ ions preferably satisfy the following requirements 1 and 2.
  • Requirement 1 A monovalent, divalent or trivalent metal ion capable of forming a complex having a polyhedral molecular structure having a coordination number of 4 or more.
  • Requirement 2 The ionic radius is 70 to 120 pm.
  • the number of M ⁇ ions contained in the cluster ( ⁇ ) is usually 3 or 4.
  • the cluster ( ⁇ ) may have metal ions that do not form a cubane-type structure.
  • the total number of metal ions contained in the cluster ( ⁇ ) is preferably 3 to 10, more preferably 3 to 6.
  • the cluster ( ⁇ ) occupies the space generated between the clusters ( ⁇ ). Further, the cluster ( ⁇ ) forms a part of the metal-organic polymer chain of the metal-organic framework by forming a coordinate bond between the M ⁇ ion and the ligand L ⁇ 1. Become. When the cluster ( ⁇ ) contains 3 to 10 metal ions, it becomes easy to obtain a stable metal-organic structure having the cluster ( ⁇ ) and the cluster ( ⁇ ) as constituent units, respectively.
  • Examples of the cubane-type structure in the cluster ( ⁇ ) include a complete cubane-type structure with four nuclei and an incomplete cubane-type structure with three nuclei.
  • a schematic diagram of a complete cubane-type structure of four nuclei is shown in FIG. 2 (a).
  • metal ions occupy the place indicated by M ⁇ , and the remaining vertices are between two or more metal ions such as hydroxide ion and oxide ion. Is occupied by a ligand that bridges with one atom.),
  • a complete Cuban-type structure is formed.
  • the hexahedron shown in FIG. 2A is a cube, but the four-core complete cubane-type structure may be represented by a hexahedron other than the cube.
  • FIG. 2 (b) A schematic diagram of the incomplete cubane-type structure of the three nuclei is shown in FIG. 2 (b).
  • the 3-nucleus incomplete cubane-type structure is a structure in which one metal ion and the monatomic cross-linking ligand coordinated to the metal ion are removed from the 4-nucleus complete cubane-type structure.
  • the monoatomic bridging ligands constituting the cubane-type structure in the cluster ( ⁇ ) include hydroxide ion (OH ⁇ ), oxide ion (O 2- ), and alcohol ion (RO ⁇ , R are alkyl groups. ), Sulfide ion (S 2- ) and the like. Of these, hydroxide ions are preferred.
  • a four-nucleus complete cubane-type structure is preferable because the cluster ( ⁇ ) is more stabilized.
  • the M ⁇ ion satisfies the following requirements 1'and 2', a cluster ( ⁇ ) having a complete cubane-type structure of four nuclei is easily formed.
  • Requirement 1' A divalent or trivalent metal ion capable of forming a complex having a polyhedral molecular structure having a coordination number of 5 to 8.
  • Requirement 2' The ionic radius is 75 to 115 pm.
  • the cluster ( ⁇ ) may contain a ligand other than the monatomic cross-linking ligand constituting the cubane-type structure.
  • the monoatomic ligands other than bridging ligands constituting the cubane-type structure those exemplified as the ligand L alpha (excluding monoatomic bridging ligands described above) can be mentioned.
  • the cluster ( ⁇ ) has a carboxylate ligand because a more stable cluster ( ⁇ ) can be easily obtained when the coordination number of M ⁇ ions is large (for example, the coordination number is 7 or 8). Is preferable.
  • Examples of the carboxylate ligand include acetate ion, propionate ion, benzoate ion and the like.
  • the carboxylate ligand may function as a cross-linking ligand that bridges between two or more M ⁇ ions.
  • Examples of the cluster ( ⁇ ) include those represented by the following formula (3).
  • M ⁇ represents a metal ion constituting a cubane-type structure
  • L 2 represents a carboxylate ligand.
  • p is an integer of 0 to 10
  • q is an integer of 0 to 10 (where p + q ⁇ 1)
  • r is ( valence of M ⁇ ⁇ 4) + (-1 ⁇ 4) + (value of L 2). It is a number calculated by (number ⁇ q).
  • the M ⁇ and L 2 of the cluster ( ⁇ ) represented by the equation (3) are as described above, respectively.
  • r is usually an integer of 4 to 6.
  • FIG. 3A shows a metal-organic framework (Lu 0.33 [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] [Rh 4 Zn 4 (L-cys) 12 O] ⁇ nH 2 From the result of the crystal structure analysis of O), only the part of the cluster ( ⁇ ) ([Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+ ) is shown.
  • FIG. 3 (b) schematically shows [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+ .
  • [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+ is composed of 4 Lu ions and 4 hydroxoions. It has a complete cubane-type structure with four nuclei.
  • the acetate ion functions as a cross-linking ligand that bridges between the two Lu ions.
  • the carboxylate group of the cysteine ligand contained therein crosslinks between the two Lu ions like the above-mentioned acetate ion [FIG. 1 (c)].
  • the metal-organic framework of the present invention contains the cluster ( ⁇ ) and the cluster ( ⁇ ) as a constituent unit, and the ligand L ⁇ 1 in the cluster ( ⁇ ) is a cubic of the cluster ( ⁇ ). It is also coordinated with metal ions (M ⁇ ions) contained in the mold structure.
  • the ligand L ⁇ 1 crosslinks the M ⁇ ion and the M ⁇ ion to form a stable metal-organic framework.
  • the carboxylate group of the ligand L ⁇ 1 is coordinated to the M ⁇ ion. Since the coordinating group that coordinates with the M ⁇ ion is a carboxylate group, a more stable metal-organic structure can be easily formed.
  • the size of the clusters ( ⁇ ) usually affects the size of the space created between the clusters ( ⁇ ). Also, the size of the space created between the clusters ( ⁇ ) affects the stability of the clusters ( ⁇ ). Therefore, the cluster ( ⁇ ) is stabilized by adjusting the number and types of metal ions (M ⁇ ions) and ligands L ⁇ that compose the cluster ( ⁇ ) and optimizing the size of the cluster ( ⁇ ). It is preferable to make it.
  • the cluster ( ⁇ ) When the cluster ( ⁇ ) is formally represented as one sphere in consideration of the spread of atoms constituting the cluster ( ⁇ ), such a sphere (hereinafter, may be referred to as “sphere ( ⁇ )”).
  • the diameter of is usually 1.0 to 3.0 nm, preferably 1.2 to 2.0 nm.
  • the diameter of the sphere ( ⁇ ) can be calculated based on the result of single crystal X-ray crystal structure analysis. For example, when the cluster ( ⁇ ) has the molecular structure shown in FIG. 1, the atom located at the farthest position from the center of the cluster ( ⁇ ) is the oxygen atom of the carboxylate group, and therefore a certain carboxy.
  • the value of the longest distance between the oxygen atom of the rate group and the oxygen atom of another carboxylate group can be mimicked as the diameter of the sphere ( ⁇ ).
  • the diameter of the sphere ( ⁇ ) corresponding to [Rh 4 Zn 4 (L-cys) 12 O] 6- is 1.537 nm.
  • [Ir 4 Zn 4 (L-cys) 12 O] The diameter of the sphere ( ⁇ ) corresponding to 6- is 1.550 nm.
  • the value of the ratio of the diameter of the sphere ( ⁇ ) to the radius of the M ⁇ ion [sphere ( ⁇ ) / M ⁇ ion] is usually 14.0 to 19.0, preferably 14.2 to 18.5, more preferably. It is 14.6 to 17.3.
  • the value of the ratio of the diameter of the sphere ( ⁇ ) to the radius of the M ⁇ ion is within the above range, a more stable metal-organic structure can be easily obtained.
  • the size of the cluster ( ⁇ ) can be changed by adjusting the number and types of the metal ions (M ⁇ ions) and the ligand L ⁇ constituting the cluster ( ⁇ ).
  • M ⁇ ions metal ions
  • L ⁇ ligand L ⁇ constituting the cluster ( ⁇ ).
  • the anionic dissimilar metal complex [[Rh 4 Ag 4 (L-cys) 12 ] 8- ] constituting the ionic solid described in Patent Document 1
  • the one corresponding to the diameter of the sphere ( ⁇ ) is used. It was calculated to be 1.567 nm. Therefore, clusters ( ⁇ ) derived from this anionic heterogeneous metal complex are expected to be suitable for stabilizing metal-organic frameworks containing larger M ⁇ ions.
  • composition formula representing the metal-organic framework examples include those represented by the following formula (4).
  • A represents a cation or anion.
  • ⁇ (M ⁇ ) 4 (OH) 4 (H 2 O) p (L ⁇ ) q ⁇ is an r-valent cation
  • M ⁇ represents a metal ion constituting a cubane-type structure
  • L ⁇ is a carboxy.
  • p is an integer of 0 to 10 and q is an integer of 0 to 10 (where p + q ⁇ 1).
  • M ⁇ 1 is a complex having an octahedral molecular structure with a coordination number of 6.
  • M ⁇ 2 represents a monovalent or divalent metal ion that can form a complex with a tetrahedral molecular structure having a coordination number of 4, L ⁇ 1.
  • E represents a coordinating polydentate ligand to M beta ion
  • E is, H -, O 2-, S 2-, Se 2-, Te 2-, F -, Cl -, Br - or I - represents a.
  • m is 0 or 1.
  • B represents a solvent molecule, and t is an integer of 20 to 100.
  • such A includes Li + , Na + , K + , Rb + , Cs + , Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Ra 2+ , Co 2+ , Ni 2+, Sc 3+, Y 3+ , La 3+, Ce 3+, Pr 3+, Nd 3+, Pm 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+, Dy 3+, Ho 3+, Er 3+, Tm 3+, Yb 3+ , Lu 3+ and the like.
  • A is an anion
  • B is the solvent molecule used for the synthesis.
  • B include water; alcohols such as methanol and ethanol; ketones such as acetone; ethers such as diethyl ether and tetrahydrofuran; nitriles such as acetonitrile; halogenated hydrocarbons such as chloroform; and the like.
  • the cluster ( ⁇ ) is [Rh 4 Zn 4 (L—cys) 12 O] 6- , and the cluster ( ⁇ ). ) Is [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+ .
  • the molecular structure of the metal-organic framework is shown in FIG.
  • FIG. 4A is a packing structure diagram of crystals of a metal-organic framework.
  • FIG. 4B is a schematic diagram of crystals of a metal-organic framework.
  • [Rh 4 Zn 4 (L-cys) 12 O] 6- is represented by a pink sphere, and [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+ is represented by an orange sphere.
  • FIG. 4 (c) shows one [Rh 4 Zn 4 (L-cys) 12 O] 6- and three [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+ around it. Is a diagram showing how is forming a coordination bond.
  • FIG. 4 (c) shows one [Rh 4 Zn 4 (L-cys) 12 O] 6- and three [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+ around it. Is a diagram showing how is forming a coordination bond.
  • this metal-organic framework is composed of [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+ and [Rh 4 Zn 4 (L-). cys) 12 O] It has a metal-organic polymer chain formed by a coordination bond between 6-.
  • the metal-organic framework of the present invention has a cubane-type structure in which a metal ion (M ⁇ ion) is an essential component in a metal-organic polymer chain. Therefore, the metal-organic framework of the present invention can be suitably used as a magnetic material such as a magnetic refrigeration material, a light emitting material, and a functional material such as a catalyst material.
  • the magnetic refrigeration material is a substance that has a magnetic refrigeration effect.
  • the magnetic refrigeration effect is a cooling method that utilizes a change in entropy due to a magnetic field. That is, when a magnetic field is applied to a magnetic refrigerated material, the magnetic moments caused by the unpaired electrons of atoms (ions) are regularly aligned in the direction of the magnetic field lines, and the reduced entropy is released as heat. On the other hand, when the magnetic field is removed from the magnetic refrigerated material, the direction of the magnetic moment becomes irregular and the entropy increases, so that the temperature of the magnetic refrigerated material decreases in the adiabatic state. By using this cycle, the surroundings can be cooled efficiently.
  • the 4 He is used as a refrigerant, it is possible to realize a very low temperature of about 2K.
  • the metal-organic framework of the present invention is suitably used as a magnetic refrigeration material under such cryogenic conditions. That is, the cluster ( ⁇ ) constituting the metal-organic structure of the present invention contains a cubane-type structure, but when metal ions having unpaired electrons form a cubane-type structure, interaction between spins is unlikely to occur. .. Therefore, in the metal-organic framework of the present invention, the change in magnetic entropy due to the magnetic field operation is large mainly in the temperature region of about 2K or less, which makes it suitable as a magnetic refrigerating material under the above-mentioned extremely low temperature conditions. Further, in the metal-organic framework of the present invention, the cubane-type structure is stabilized and the cubane-type structure is regularly integrated. These points are also considered to have a favorable effect on the magnetic refrigeration effect.
  • Gd 3+ ions are preferable as the metal ions contained in the cubane-type structure. Since the Gd 3+ ion has a large spin quantum number and a high maximum spin degree of freedom, it has a high responsiveness to a magnetic field and a large change in magnetic entropy. Therefore, it is easy to obtain a magnetic refrigeration material having a larger cooling capacity.
  • the method for producing a metal-organic structure of the present invention is a method for producing a metal-organic structure having a Cuban-type structure in a metal-organic polymer chain, and is a method for producing a metal ion and a metal-organic structure.
  • Anionic polynuclear metal complexes containing polydentate ligands accumulate to form a crystal lattice, and an ionic flow type ionic solid in which a cation species exists in the gaps of the crystal lattice is an ion of a d-block transition metal or an f-block. It has a step of contacting with a solution containing an ion of a transition metal.
  • Examples of the ionic flow type ionic solid include those similar to those previously shown in the description of the invention of the metal-organic framework.
  • Examples of the d-block transition metal ion and the f-block transition metal ion include the same as those previously shown in the description of the invention of the metal-organic framework.
  • a solution containing d-block transition metal ions or f-block transition metal ions can be prepared by dissolving a salt of d-block transition metal ions or a salt of f-block transition metal ions in an appropriate solvent. ..
  • the solvent of the solution containing the metal ion for forming the cubane type structure is not particularly limited as long as it does not dissolve the ionic flow type ionic solid or the metal-organic structure of the present invention.
  • a mixed solvent may be used to adjust the solubility of the ionic flow type ionic solid or the metal-organic framework.
  • Specific examples of the solvent used include water; alcohols such as methanol, ethanol, propyl alcohol, and isopropyl alcohol; and a mixed solvent of water and alcohols; and the like.
  • the contact operation, the contact time, and the contact temperature are not particularly limited.
  • an ionic flow type ionic solid is immersed in a solution containing a metal ion for forming a cubane type structure, and is left as it is at around room temperature (for example, 5 to 25 ° C.) for 1 day to 1 month, preferably about 1 week.
  • room temperature for example, 5 to 25 ° C.
  • ionic fluid solids can also be manufactured with reference to, for example, WO2019 / 208753 and WO2018 / 079831.
  • the metal-organic framework synthesized in the examples Since the number of zinc atoms contained in the cluster ( ⁇ ) of the metal-organic framework synthesized in the examples is 4, if Ln / Zn is a value near 1, the metal-organic framework is cluster ( ⁇ ). It is expected to have a cubane-type structure of four nuclei with the same amount. Further, from the value of K / Zn, it can be seen to what extent the structure similar to the ionic flow type ionic solid of the starting material remains. Regarding the "metal-organic framework having a cubane-type structure" obtained in the examples described later, fluorescent X-ray analysis was performed on the products in all the examples, and the analysis results were used to determine the composition.
  • the obtained solid is a metal-organic framework having a Cuban-type structure [Lu 0.33 [ ⁇ Lu 4 (OH) 4 ( H 2 O) 7 (OAc) 3 ⁇ ⁇ Rh 4 Zn 4 (L-cys) 12 O ⁇ ] ⁇ nH 2 O].
  • Tb 0.33 [ ⁇ Tb 4 (OH) 4 (H 2 O) 7 (OAc) 3 ⁇ ⁇ Rh 4 Zn 4 (L-cys) 12 O ⁇ ] ⁇ nH 2 O] was obtained.
  • Gd (OAc) 3 gadolinium acetate
  • the obtained solid is a metal-organic framework having a Cuban-type structure [Co [ ⁇ Co 4 (OH) 4 (H 2 O). ) 9 ⁇ ⁇ Rh 4 Zn 4 (L-cys) 12 O ⁇ ] ⁇ nH 2 O].
  • Example 12 A metal-organic structure having a cubane-type structure is the same as in Example 7, except that the ionic flow-type ionic solid (2) is used instead of the ionic flow-type ionic solid (1) in Example 7.
  • the body [[ ⁇ Tb 4 (OH) 4 (OAc) 2 ⁇ ⁇ Ir 4 Zn 4 (L-cys) 12 O ⁇ ] ⁇ nH 2 O] was obtained.
  • Example 13 A metal organic structure having a cubane-type structure in the same manner as in Example 1 except that the ionic flow type ionic solid (2) was used instead of the ionic flow type ionic solid (1) in Example 1.
  • the body [Lu 0.33 [ ⁇ Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ⁇ ⁇ Ir 4 Zn 4 (L-cys) 12 O ⁇ ] ⁇ nH 2 O] was obtained.
  • a metal organic structure having a Cuban-type structure [Yb 0.33 [ ⁇ Yb 4 (OH) 4 (H 2 O) 7 (OPr) 3 ⁇ ⁇ Rh 4 Zn 4 (L-cys) 12 O ⁇ ]. nH 2 O] was obtained.
  • Example 21 A metal-organic structure having a cubane-type structure in the same manner as in Example 1 except that the ionic flow type ionic solid (3) was used instead of the ionic flow type ionic solid (1) in Example 1.
  • the spectrum in the range of 420 to 750 nm is the emission spectrum
  • the spectrum in the range of 250 to 480 nm is the excitation spectrum.
  • Sharp signal emission spectra are all attributed with emission from Tb 3+ ions (489nm: 5 D 4 ⁇ 7 F 6, 544nm: 5 D 4 ⁇ 7 F 5, 584nm: 5 D 4 ⁇ 7 F 4, 620 nm: 5 D 4 ⁇ 7 F 3 ).
  • This heat bath was introduced into a superconducting magnet (8T manufactured by Cryogenics, UK) set at each temperature of 2.0-10.0K, and a magnetic field was applied from 0T to 5T at a speed of 2.2T / min. A temperature rise of 2.33 K was observed. Further, after confirming that the temperature was cooled to 4.0 K while maintaining the application of 5 T, a temperature drop of 2.76 K was observed when the magnetic field was reduced from 5 T to 0 T at a speed of 2.2 T / min. Further, when the sweep speed of the magnetic field was increased to 3.54 T / min, the temperature drop increased up to 3.26 K, and the sample temperature reached 0.74 K, which was 1 K or less. The changes in the magnetic field and temperature are shown in FIGS. 9 and 10.
  • the metal-organic framework of the present invention it is possible to create an extremely low temperature of 1 K or less by applying a magnetic field without using 3 He or the like.
  • This temperature change indicates the existence of a magnetic refrigeration effect derived from Gd ions in the sample, which has a large magnetic moment due to the cubane structure but does not cause order formation and is paramagnetic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)

Abstract

Provided are a metal-organic framework suitably used as a functional material, and a method for manufacturing same, the metal-organic framework containing a cluster (α) and a cluster (β) as constituent units respectively, wherein the cluster (α) contains a metal ion (Mα ion) and ligands (ligands Lα) that coordinate with the Mα ion, the cluster (β) contains a cubane-type structure containing a metal ion (Mβ ion) as an essential component, and at least one of the ligands Lα is a polydentate ligand (ligand Lα 1) that also coordinates with the Mβ ion.

Description

金属有機構造体、及びその製造方法Metal-organic framework and its manufacturing method
 本発明は、金属有機構造体、及びその製造方法に関する。 The present invention relates to a metal-organic framework and a method for producing the same.
 金属有機構造体(MOF)は、金属イオンと多座配位子間の配位結合と、多座配位子内の共有結合によって構築された配位ネットワーク構造を有する化合物である。一部の金属有機構造体は内部に比較的大きな空隙を有するため、そのような金属有機構造体は、ガス吸着材、ガス貯蔵材、ガス分離材等の機能性多孔質材料として期待されている。 The metal organic structure (MOF) is a compound having a coordination network structure constructed by a coordinate bond between a metal ion and a polydentate ligand and a covalent bond in the polydentate ligand. Since some metal-organic frameworks have relatively large voids inside, such metal-organic frameworks are expected as functional porous materials such as gas adsorbents, gas storage materials, and gas separators. ..
 近年、空隙内への分子の取り込みの選択性を高めたり、配位ネットワーク構造を構成する分子鎖(以下、「金属-有機高分子鎖」ということがある。)に新たな機能を付与したりするために、配位ネットワーク構造を維持するための第1の金属イオンに加えて、第2の金属イオンを金属-有機高分子鎖に導入することが行われている。 In recent years, the selectivity of the uptake of molecules into the voids has been improved, and new functions have been added to the molecular chains constituting the coordination network structure (hereinafter, sometimes referred to as "metal-organic polymer chains"). In order to do so, a second metal ion is introduced into the metal-organic polymer chain in addition to the first metal ion for maintaining the coordination network structure.
 例えば、非特許文献1には、[Zn(bpdc)L](bpdc=biphenyldicarboxylate,L=(R,R)-(-)-1,2-cyclohexanediamino-N,N’-bis(3-tert-butyl-5-(4-pyridyl)salicylidene)MnIIICl)(金属-有機高分子鎖にマンガンイオンを有する活性部位を組み込んで成る金属有機構造体)が、2,2-dimethyl-2H-chromeneの不斉エポキシ化反応の触媒として有用であることが記載されている。 For example, Non-Patent Document 1 describes [Zn 2 (bpdc) 2 L] (bpdc = biphenyldicularboxylate, L = (R, R)-(−) -1,2-cyclohexanediamino-N, N'-bis (3-). tert-butyl-5- (4-pyridyl) catalyst Mn III Cl) (metal-organic framework in which an active site having a manganese ion is incorporated in a metal-organic polymer chain) is 2,2-dimethyl-2H-. It has been described that it is useful as a catalyst for the asymmetric epoxidation reaction of chromene.
 本発明に関連して、キュバン型構造を含む低分子錯体が磁性材料として興味深い性質を有することが知られている。
 例えば、非特許文献2には、Dy3+(ジスプロシウムイオン)とOH(ヒドロキソイオン)を構成要素とするキュバン型構造([Dy(μ-OH)]構造)を含む、2種の低分子錯体の分子構造や、これらの低分子錯体の磁気的性質が記載されている。非特許文献2には、これらの低分子錯体のキュバン型構造は類似するものの、Dy-O-Dyの角度のわずかな違いが、低分子錯体の磁気的性質の違いに大きく影響していることも記載されている。
 また、従来、希土類元素を含有する化合物は、発光材料等として利用されてきた。
In connection with the present invention, it is known that a small molecule complex containing a cubane-type structure has interesting properties as a magnetic material.
For example, Non-Patent Document 2, Dy 3+ and (dysprosium ion) OH - cubane-type structure to (hydroxo ions) components containing ([Dy 4 (μ 3 -OH ) 4] structure), and two The molecular structure of the low molecular weight complexes and the magnetic properties of these low molecular weight complexes are described. In Non-Patent Document 2, although the cubane-type structures of these small molecule complexes are similar, a slight difference in the angle of Dy—O—Dy greatly affects the difference in the magnetic properties of the small molecule complex. Is also described.
Further, conventionally, compounds containing rare earth elements have been used as light emitting materials and the like.
国際公開2018/079831号International Publication No. 2018/079831
 上記のように、機能性を有する金属イオンが導入された金属-有機高分子鎖を有する金属有機構造体は、触媒材料、磁性材料、発光材料等の機能性材料として極めて有用である。
 また、非特許文献2に記載されるように、機能性材料の分子構造とその機能との関係を調べ、新たな知見を得ることは、機能性材料を改良するうえで重要であるが、低分子錯体の分子構造を明らかにするためには、低分子錯体の合成工程に加えて、単結晶X線結晶構造解析用試料を得るための結晶化工程が不可欠である。
 一方、金属有機構造体においては、通常、得られた金属有機構造体をそのまま単結晶X線結晶構造解析用の試料として用いることができるため、金属有機構造体で構成された機能性材料は、更なる高機能化に適している。
As described above, the metal-organic framework having a metal-organic polymer chain into which a metal ion having functionality is introduced is extremely useful as a functional material such as a catalyst material, a magnetic material, and a light emitting material.
Further, as described in Non-Patent Document 2, it is important to investigate the relationship between the molecular structure of a functional material and its function and obtain new findings in order to improve the functional material, but it is low. In order to clarify the molecular structure of a molecular complex, a crystallization step for obtaining a sample for single crystal X-ray crystal structure analysis is indispensable in addition to the step of synthesizing the low molecular complex.
On the other hand, in the metal-organic framework, usually, the obtained metal-organic structure can be used as it is as a sample for single crystal X-ray crystal structure analysis, so that the functional material composed of the metal-organic structure can be used. Suitable for further enhancement of functionality.
 このような状況下、本発明は、機能性材料として好適に用いられる、キュバン型構造を含む金属有機構造体、及びその製造方法を提供することを目的とする。 Under such circumstances, an object of the present invention is to provide a metal-organic framework containing a cubane-type structure, which is suitably used as a functional material, and a method for producing the same.
 本発明者らは、アニオン性多核金属錯体が集積して結晶格子を形成し、結晶格子の隙間にカチオン種が存在して成るイオン性固体は、カチオン種が高い運動性を有するため、イオン伝導体等として有用であることを見出している(特許文献1)。
 本発明者らがさらに検討を行った結果、このアニオン性多核金属錯体のような、複数の金属イオンを含有し、適度な大きさを有する多核金属錯体の分子構造は、キュバン型構造を含む金属有機構造体の部分構造としても適することを見出し、本発明を完成するに至った。
The present inventors have accumulated anionic polynuclear metal complexes to form a crystal lattice, and an ionic solid formed by the presence of a cationic species in the gaps of the crystal lattice has ionic conduction because the cationic species has high motility. It has been found to be useful as a body (Patent Document 1).
As a result of further studies by the present inventors, the molecular structure of the polynuclear metal complex containing a plurality of metal ions and having an appropriate size, such as this anionic polynuclear metal complex, is a metal containing a Cuban-type structure. We have found that it is also suitable as a partial structure of an organic structure, and have completed the present invention.
 かくして本発明によれば、下記〔1〕~〔14〕の金属有機構造体、及び〔15〕の金属有機構造体の製造方法が提供される。
〔1〕クラスター(α)及びクラスター(β)をそれぞれ構成単位として含有する金属有機構造体であって、クラスター(α)が、金属イオン(Mαイオン)、及び、Mαイオンに配位する配位子(配位子Lα)を含むものであり、クラスター(β)が、金属イオン(Mβイオン)を必須の構成要素とするキュバン型構造を含むものであり、配位子Lαの少なくとも1種は、Mβイオンにも配位する多座配位子(配位子Lα )である、金属有機構造体。
〔2〕クラスター(α)が、Mαイオンとして、配位数6の八面体型分子構造を有する錯体を形成し得る、2価又は3価の金属イオン(Mα イオン)と、配位数4の四面体型分子構造を有する錯体を形成し得る、1価又は2価の金属イオン(Mα イオン)と、を含むものである、〔1〕に記載の金属有機構造体。
〔3〕Mα イオンが、周期表第8族、第9族、及び第10族の金属、Cr、並びにMnからなる群から選ばれる1種の金属のイオンであり、Mα イオンが、周期表第11族、及び第12族の金属からなる群から選ばれる1種の金属のイオンである、〔2〕に記載の金属有機構造体。
〔4〕配位子Lα が、下記式(1)で表されるものである、〔1〕~〔3〕のいずれかに記載の金属有機構造体。
Thus, according to the present invention, the following metal-organic frameworks [1] to [14] and a method for producing the metal-organic framework [15] are provided.
[1] A metal-organic framework containing a cluster (α) and a cluster (β) as constituent units, respectively, in which the cluster (α) coordinates with a metal ion (M α ion) and an M α ion. It contains a ligand (ligand L α ), and the cluster (β) contains a Cuban-type structure having a metal ion (M β ion) as an essential component, and the ligand L α. at least one is a polydentate ligand coordinating to M beta ions (ligand L alpha 1), metal organic structures.
[2] Coordination with a divalent or trivalent metal ion (M α 1 ion) in which the cluster (α) can form a complex having an octahedral molecular structure having a coordination number of 6 as the M α ion. capable of forming a complex with a tetrahedral molecular structure of 4, monovalent or divalent metal ion (M alpha 2 ions), is intended to include metal organic structure according to [1].
[3] The M α 1 ion is an ion of one kind of metal selected from the group consisting of the metals of the 8th, 9th, and 10th groups of the periodic table, Cr, and Mn, and the M α 2 ion is an ion. The metal organic structure according to [2], which is an ion of one kind of metal selected from the group consisting of the metals of Group 11 and Group 12 of the Periodic Table.
[4] The metal-organic framework according to any one of [1] to [3], wherein the ligand Lα 1 is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)中、Tは、Mαイオンに配位する第1の原子(配位原子t)又は配位原子tを含む基を表し、Tは、Mαイオンに配位する第2の原子(配位原子t)又は配位原子tを含む基を表し、Tは、Mβイオンに配位する原子(配位原子t)又は配位原子tを含む基を表し、Gは、連結基を表す。T-G-Tは、配位原子tと配位原子tがMαイオンに配位することで、5員キレート環又は6員キレート環を形成する原子団である。
〔5〕配位子Lα がアミノ酸である、〔1〕~〔4〕のいずれかに記載の金属有機構造体。
〔6〕クラスター(α)が下記式(2)で表されるものである、〔1〕~〔5〕のいずれかに記載の金属有機構造体。
Wherein (1), T 1 represents a first atom (ligand atoms t 1) or a group containing a coordination atom t 1 coordinating to M alpha ion, T 2 is coordinated to M alpha ion Represents a group containing a second atom (coordinating atom t 2 ) or a coordinating atom t 2, where T 3 is an atom coordinating to an M β ion (coordinating atom t 3 ) or a coordinating atom t 3 . Represents a group containing, and G represents a linking group. T 1- GT 2 is an atomic group that forms a 5-membered chelate ring or a 6-membered chelate ring by coordinating the coordination atom t 1 and the coordination atom t 2 to the M α ion.
[5] The metal-organic framework according to any one of [1] to [4], wherein the ligand Lα 1 is an amino acid.
[6] The metal-organic framework according to any one of [1] to [5], wherein the cluster (α) is represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(2)中、Mα は、配位数6の八面体型分子構造の錯体を形成し得る、2価又は3価の金属イオンを表し、Mα は、配位数4の四面体型分子構造の錯体を形成し得る、1価又は2価の金属イオンを表し、Lα は、Mβイオンにも配位する多座配位子を表し、Eは、H、O2-、S2-、Se2-、Te2-、F、Cl、Br又はIを表す。mは、0又は1であり、nは、(Mα の価数×4)+(Mα の価数×4)+(Lα の価数×12)+(Eの価数×m)で算出される数である。
〔7〕クラスター(α)の集合体が、イオン流動型イオン性固体のアニオン部に由来するものであって、前記イオン流動型イオン性固体が、金属イオン、及び、多座配位子を含むアニオン性多核金属錯体が、集積して結晶格子を形成し、結晶格子の隙間にカチオン種が存在してなるものである、〔1〕~〔6〕のいずれかに記載の金属有機構造体。
〔8〕Mβイオンが、dブロック遷移金属のイオン又はfブロック遷移金属のイオンである、〔1〕~〔7〕のいずれかに記載の金属有機構造体。
〔9〕Mβイオンが、以下の要件1及び2を満たすものである、〔1〕~〔8〕のいずれかに記載の金属有機構造体。
要件1:配位数4以上の多面体型分子構造の錯体を形成し得る、1価、2価又は3価の金属イオンである。
要件2:イオン半径が、70~120pmである。
〔10〕クラスター(β)中のキュバン型構造が、4核の完全キュバン型構造、又は3核の不完全キュバン型構造である、〔1〕~〔9〕のいずれかに記載の金属有機構造体。
〔11〕クラスター(β)中のキュバン型構造が、さらに水酸化物イオンを構成要素とするものである、〔1〕~〔10〕のいずれかに記載の金属有機構造体。
〔12〕クラスター(β)が下記式(3)で表されるものである、〔1〕~〔11〕のいずれかに記載の金属有機構造体。
In formula (2), M α 1 represents a divalent or trivalent metal ion capable of forming a complex having an octahedral molecular structure having a coordination number of 6, and M α 2 is a tetrahedron having a coordination number of 4. Represents a monovalent or divalent metal ion capable of forming a complex of body type molecular structure, L α 1 represents a polydentate ligand that also coordinates with M β ion, and E represents H − , O 2 -, S 2-, Se 2-, Te 2-, F -, Cl -, Br - or I - it represents a. m is 0 or 1, and n is ( valence of M α 1 × 4) + ( valence of M α 2 × 4) + ( valence of L α 1 × 12) + (valence of E). It is a number calculated by × m).
[7] The aggregate of clusters (α) is derived from the anion portion of the ionic flow type ionic solid, and the ionic flow type ionic solid contains a metal ion and a polydentate ligand. The metal organic structure according to any one of [1] to [6], wherein the anionic polynuclear metal complex accumulates to form a crystal lattice, and a cationic species exists in the gaps of the crystal lattice.
[8] The metal-organic framework according to any one of [1] to [7], wherein the M β ion is an ion of a d-block transition metal or an ion of an f-block transition metal.
[9] The metal-organic framework according to any one of [1] to [8], wherein the M β ion satisfies the following requirements 1 and 2.
Requirement 1: A monovalent, divalent or trivalent metal ion capable of forming a complex having a polyhedral molecular structure having a coordination number of 4 or more.
Requirement 2: The ionic radius is 70 to 120 pm.
[10] The metal-organic structure according to any one of [1] to [9], wherein the cubane-type structure in the cluster (β) is a complete cubane-type structure with four nuclei or an incomplete cubane-type structure with three nuclei. body.
[11] The metal-organic structure according to any one of [1] to [10], wherein the cubane-type structure in the cluster (β) further comprises a hydroxide ion as a component.
[12] The metal-organic framework according to any one of [1] to [11], wherein the cluster (β) is represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(3)中、Mβは、キュバン型構造を構成する金属イオンを表し、Lβは、カルボキシレート配位子を表す。pは0~10の整数、qは0~10の整数であり(ただし、p+q≧1)、rは、(Mβの価数×4)+(-1×4)+(Lβの価数×q)で算出される数である。
〔13〕配位子Lα がカルボキシレート基を有するものであって、配位子Lα のカルボキシレート基とMβイオンとの間に配位結合が形成されている、〔1〕~〔12〕のいずれかに記載の金属有機構造体。
〔14〕金属有機構造体の組成式が下記式(4)で表されるものである、〔1〕~〔13〕のいずれかに記載の金属有機構造体。
In formula (3), M β represents a metal ion constituting a cubane-type structure, and L β represents a carboxylate ligand. p is an integer of 0 to 10, q is an integer of 0 to 10 (where p + q ≧ 1), and r is ( valence of M β × 4) + (-1 × 4) + (value of L β). It is a number calculated by (number × q).
[13] The ligand L α 1 has a carboxylate group, and a coordinate bond is formed between the carboxylate group of the ligand L α 1 and the M β ion. [1] The metal-organic framework according to any one of [12].
[14] The metal-organic framework according to any one of [1] to [13], wherein the composition formula of the metal-organic structure is represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(4)中、Aは、カチオン又はアニオンを表す。{(Mβ(OH)(HO)(Lβ}はr価のカチオンであり、Mβは、キュバン型構造を構成する金属イオンを表し、Lβは、カルボキシレート配位子を表す。pは0~10の整数、qは0~10の整数である(ただし、p+q≧1)。{(Mα (Mα (Lα 12(E)}はn価のアニオンであり、Mα は、配位数6の八面体型分子構造の錯体を形成し得る、2価又は3価の金属イオンを表し、Mα は、配位数4の四面体型分子構造の錯体を形成し得る、1価又は2価の金属イオンを表し、Lα は、Mβイオンにも配位する多座配位子を表し、Eは、H、O2-、S2-、Se2-、Te2-、F、Cl、Br又はIを表す。mは、0又は1である。Bは溶媒分子を表し、tは、20~100の整数である。y、zはそれぞれ独立に、0超1以下の数であり、xは、(Aの価数×x)+(r×y)-(n×z)=0を満たす数である。
〔15〕金属有機構造体の製造方法であって、金属イオン、及び、多座配位子を含むアニオン性多核金属錯体が、集積して結晶格子を形成し、結晶格子の隙間にカチオン種が存在するイオン流動型イオン性固体を、dブロック遷移金属のイオン又はfブロック遷移金属のイオンを含有する溶液と接触させる工程を有する、金属-有機高分子鎖内にキュバン型構造を有する金属有機構造体の製造方法。
In formula (4), A represents a cation or anion. {(M β ) 4 (OH) 4 (H 2 O) p (L β ) q } is an r-valent cation, M β represents a metal ion constituting a cubane-type structure, and L β is a carboxy. Represents a rate ligand. p is an integer of 0 to 10 and q is an integer of 0 to 10 (where p + q ≧ 1). {(M α 1 ) 4 (M α 2 ) 4 (L α 1 ) 12 (E) m } is an n-valent anion, and M α 1 is a complex having an octahedral molecular structure with a coordination number of 6. Representing a divalent or trivalent metal ion that can be formed, M α 2 represents a monovalent or divalent metal ion that can form a complex with a tetrahedral molecular structure having a coordination number of 4, L α 1. represents a coordinating polydentate ligand to M beta ion, E is, H -, O 2-, S 2-, Se 2-, Te 2-, F -, Cl -, Br - or I - represents a. m is 0 or 1. B represents a solvent molecule, and t is an integer of 20 to 100. y and z are independently numbers greater than 0 and 1 or less, and x is a number satisfying (valence of A × x) + (r × y) − (n × z) = 0.
[15] A method for producing a metal organic structure, in which a metal ion and an anionic polynuclear metal complex containing a polydentate ligand are accumulated to form a crystal lattice, and a cation species is formed in the gap of the crystal lattice. A metal-organic structure having a Cuban-type structure within a metal-organic polymer chain, comprising contacting an existing ionic flow-type ionic solid with a solution containing d-block transition metal ions or f-block transition metal ions. How to make a body.
 本発明によれば、機能性材料として好適に用いられる、キュバン型構造を含む金属有機構造体、及びその製造方法が提供される。 According to the present invention, a metal-organic framework containing a cubane-type structure, which is suitably used as a functional material, and a method for producing the same are provided.
クラスター(α)〔[RhZn(L-cys)12O]6-〕の分子構造を表す図である。It is a figure which shows the molecular structure of a cluster (α) [[Rh 4 Zn 4 (L-cys) 12 O] 6-]. クラスター(β)中のキュバン型構造を説明する模式図である。It is a schematic diagram explaining the cubane type structure in a cluster (β). クラスター(β)〔[Lu(OH)(HO)(OAc)5+〕の分子構造を表す図である。It is a figure which shows the molecular structure of a cluster (β) [[Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+]. クラスター(α)が、[RhZn(L-cys)12O]6-であり、クラスター(β)が、[Lu(OH)(HO)(OAc)5+である金属有機構造体の分子構造を表す図である。The cluster (α) is [Rh 4 Zn 4 (L-cys) 12 O] 6- , and the cluster (β) is [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+ . It is a figure which shows the molecular structure of a certain metal organic structure. 実施例1~8で得られた金属有機構造体の粉末X線回折パターンである。5 is a powder X-ray diffraction pattern of the metal-organic framework obtained in Examples 1 to 8. 実施例1~8で得られた金属有機構造体中のキュバン型構造を表す図である。It is a figure which shows the cubane type structure in the metal-organic framework obtained in Examples 1-8. 実施例2~8で得られた金属有機構造体の直流磁化率測定の結果を示す図である。It is a figure which shows the result of the DC magnetic susceptibility measurement of the metal-organic framework obtained in Examples 2-8. 実施例12で得られた金属有機構造体の発光特性を示すグラフである。It is a graph which shows the light emitting property of the metal-organic framework obtained in Example 12. 実施例8で得られた金属有機構造体の磁気冷凍特性を示すグラフ(4Kにおける磁場変化速度の比較)である。6 is a graph (comparison of magnetic field change rates at 4K) showing the magnetic refrigeration characteristics of the metal-organic framework obtained in Example 8. 実施例8で得られた金属有機構造体の磁気冷凍特性を示すグラフ(2.2T/minにおける初期温度による比較)である。6 is a graph showing the magnetic refrigeration characteristics of the metal-organic framework obtained in Example 8 (comparison by initial temperature at 2.2 T / min).
 以下、本発明を、1)金属有機構造体、及び、2)金属有機構造体の製造方法に項分けして詳細に説明する。 Hereinafter, the present invention will be described in detail by dividing it into 1) a metal-organic framework and 2) a method for producing a metal-organic structure.
1)金属有機構造体
 本発明の金属有機構造体は、クラスター(α)及びクラスター(β)をそれぞれ構成単位として含有する金属有機構造体であって、クラスター(α)が、金属イオン(Mαイオン)、及び、Mαイオンに配位する配位子(配位子Lα)を含むものであり、クラスター(β)が、金属イオン(Mβイオン)を必須の構成要素とするキュバン型構造を含むものであり、配位子Lαの少なくとも1種は、Mβイオンにも配位する多座配位子(配位子Lα )である、金属有機構造体である。
1) metal-organic structure metal organic structure of the present invention is a cluster (alpha) and clusters (beta) metal organic structure containing a structural unit, respectively, the cluster (alpha) is a metal ion (M alpha ion), and those comprising a ligand (ligand L alpha) coordinating to M alpha ions, clusters (beta) is cubane-type of the metal ion (M beta ions) the essential components is intended to include a structure, at least one ligand L alpha is a polydentate ligand coordinating to M beta ions (ligand L alpha 1), a metal organic structures.
 上記のように、本明細書においては、本発明の構成要素を省略して記載することがある。省略した記載が表すものはそれぞれ以下の通りである。
 「Mαイオン」は、クラスター(α)中の金属イオンを表す。
 「配位子Lα」は、クラスター(α)中の配位子を表し、配位子Lαの中で、Mβイオンにも配位する配位子Lαを「配位子Lα 」と表す。
 「Mβイオン」は、クラスター(β)中のキュバン型構造を構成する金属イオンを表す。
As described above, the components of the present invention may be omitted in the present specification. The omitted descriptions are as follows.
ion” represents a metal ion in a cluster (α).
"Ligand L alpha" represents a ligand in the cluster (alpha), in the ligand L alpha, M ligand coordinating to β ion L alpha to "ligand L alpha 1 "is expressed.
“M β ion” represents a metal ion constituting a cubane-type structure in a cluster (β).
 本発明において、「クラスター」とは、複数の金属イオンと、複数の配位子が集積して成る原子集団であって、金属有機構造体の構成単位を成すものをいう。
 また、本発明を説明する際に、「クラスター(α)」や「クラスター(α)の集合体」を用いることがある。前者は金属有機構造体の構成単位〔1つのクラスター(α)〕を表し、後者は金属有機構造体中の全クラスター(α)で構成されるもの(すなわち、「クラスター(α)の集合体」とは、観念的なものであって、金属有機構造体から、クラスター(α)以外の要素を消去したときに残るもの)を表す。これは、「クラスター(β)」と「クラスター(β)の集合体」についても同様である。
In the present invention, the "cluster" refers to an atomic group consisting of a plurality of metal ions and a plurality of ligands, which form a structural unit of a metal-organic framework.
Further, in explaining the present invention, "cluster (α)" or "aggregate of clusters (α)" may be used. The former represents a structural unit of a metal-organic framework [one cluster (α)], and the latter is composed of all clusters (α) in the metal-organic framework (that is, an “aggregate of clusters (α)”). Is an ideological one that remains when elements other than the cluster (α) are eliminated from the metal-organic framework). This also applies to "cluster (β)" and "aggregate of cluster (β)".
〔クラスター(α)〕
 本発明の金属有機構造体を構成するクラスター(α)は、Mαイオン、及び、配位子Lαを含むものであり、配位子Lαの少なくとも1種は、配位子Lα である。
[Cluster (α)]
Cluster (alpha) constituting the metal organic structure of the present invention, M alpha ions, and are those containing a ligand L alpha, at least one ligand L alpha is ligand L alpha 1 Is.
 Mαイオンとしては、遷移金属イオン、又は典型元素の金属イオンが挙げられる。これらの中でも、安定な金属有機構造体を効率よく形成することができることから、Mαイオンとしては遷移金属イオン又は周期表第12族の金属のイオンが好ましい。 Examples of the M α ion include a transition metal ion and a metal ion of a main group element. Among these, transition metal ions or metal ions of Group 12 of the periodic table are preferable as M α ions because stable metal-organic structures can be efficiently formed.
 クラスター(α)に含まれるMαイオンの数は、好ましくは4~15個、より好ましくは6~10個である。
 クラスター(α)に含まれるMαイオンの数が少ないと、クラスター(α)が小さくなる傾向があり、クラスター(α)に含まれるMαイオンの数が多いと、クラスター(α)が大きくなる傾向がある。また、クラスター(α)が大きくなるにつれて、あるクラスター(α)とその隣のクラスター(α)の中心間距離が長くなる傾向があるため、大きなクラスター(α)を構成単位とするクラスター(α)の集合体は、クラスター(α)間に大きな空間が生じる傾向がある。
The number of M α ions contained in the cluster (α) is preferably 4 to 15, more preferably 6 to 10.
When the number of M α ions contained in the cluster (α) is small, the cluster (α) tends to be small, and when the number of M α ions contained in the cluster (α) is large, the cluster (α) becomes large. Tend. Further, as the cluster (α) becomes larger, the distance between the centers of a certain cluster (α) and the adjacent cluster (α) tends to become longer, so that the cluster (α) having a large cluster (α) as a constituent unit is used. Aggregates of are prone to large spaces between clusters (α).
 クラスター(α)間に生じる空間にクラスター(β)を収容するという観点からは、クラスター(α)間に生じる空間は小さ過ぎないことが好ましい。一方、配位子Lα とMβイオンの間に配位結合を形成させるという観点からは、クラスター(α)間に生じる空間は大き過ぎないことが好ましい。
 クラスター(α)が4~15個のMαイオンを含むことで、クラスター(α)間に生じる空間にクラスター(β)をより安定に収容することができ、クラスター(α)とクラスター(β)をそれぞれ構成単位とする、より安定な金属有機構造体が得られ易くなる。
From the viewpoint of accommodating the cluster (β) in the space generated between the clusters (α), it is preferable that the space generated between the clusters (α) is not too small. On the other hand, from the viewpoint of forming a coordination bond between the ligand L α 1 and the M β ion, it is preferable that the space generated between the clusters (α) is not too large.
Since the cluster (α) contains 4 to 15 M α ions, the cluster (β) can be more stably contained in the space generated between the clusters (α), and the cluster (α) and the cluster (β) can be accommodated more stably. It becomes easy to obtain a more stable metal-organic structure having each of the constituent units.
 後述するように、クラスター(α)の分子構造の好ましい例として、既知のイオン流動型イオン性固体を構成するアニオン性多核金属錯体の分子構造に類似するものが挙げられる(以下において、このアニオン性多核金属錯体を「アニオン性多核金属錯体(α)」と記載することがある。アニオン性多核金属錯体(α)としては、例えば、WO2018/079831号やWO2019/208753号に記載のアニオン性異種金属錯体が挙げられる。)。
 アニオン性多核金属錯体(α)の分子構造に類似する分子構造のクラスター(α)が得られ易いことから、クラスター(α)に含まれるMαイオンの数は、特に好ましくは8個である。
As will be described later, a preferred example of the molecular structure of the cluster (α) is one similar to the molecular structure of an anionic polynuclear metal complex constituting a known ionic flow type ionic solid (hereinafter, this anionic property). The polynuclear metal complex may be referred to as an "anionic polynuclear metal complex (α)". Examples of the anionic polynuclear metal complex (α) include the anionic dissimilar metals described in WO2018 / 079831 and WO2019 / 208753. Complexes can be mentioned.).
Since it is easy to obtain a cluster (α) having a molecular structure similar to the molecular structure of the anionic polynuclear metal complex (α), the number of Mα ions contained in the cluster (α) is particularly preferably eight.
 なお、「クラスター(α)の分子構造とアニオン性多核金属錯体(α)の分子構造が類似する」とは、クラスター(α)とアニオン性多核金属錯体(α)において、含有する金属イオンの数と、これらの金属イオンに配位する配位子の配位形式(キレート配位、架橋配位等)が一致しているとともに、これらの金属イオンに配位する配位原子の数が実質的に同一(溶媒分子等の配位を除き同一)であることをいう。
 2つの分子の分子構造が類似するか否かは、単結晶X線結晶構造解析を行うことにより判断することができる。
The phrase "the molecular structure of the cluster (α) and the molecular structure of the anionic polynuclear metal complex (α) are similar" means the number of metal ions contained in the cluster (α) and the anionic polynuclear metal complex (α). And the coordination type (chelate coordination, cross-linking coordination, etc.) of the ligands that coordinate to these metal ions are the same, and the number of coordination atoms that coordinate to these metal ions is substantially the same. It means that they are the same (same except for the coordination of solvent molecules, etc.).
Whether or not the molecular structures of the two molecules are similar can be determined by performing a single crystal X-ray crystal structure analysis.
 クラスター(α)は、Mαイオンとして、金属イオンを1種含有してもよいし、2種以上含有してもよい。
 アニオン性多核金属錯体(α)の分子構造に類似する分子構造のクラスター(α)が得られ易いことから、Mαイオンとして、金属イオンを2種含有することが好ましい。
The cluster (α) may contain one kind of metal ion or two or more kinds of metal ions as M α ions.
Since it is easy to obtain a cluster (α) having a molecular structure similar to the molecular structure of the anionic polynuclear metal complex (α), it is preferable to contain two kinds of metal ions as M α ions.
 クラスター(α)が金属イオンを2種含有する場合、金属イオンの組み合わせとしては、配位数6の八面体型分子構造を有する錯体を形成し得る、2価又は3価の金属イオン(以下、Mα イオンと記載することがある。)と、配位数4の四面体型分子構造を有する錯体を形成し得る、1価又は2価の金属イオン(以下、Mα イオンと記載することがある。)の組み合わせが好ましい。
 金属イオンをこのように組み合わせて用いることで、アニオン性多核金属錯体(α)の分子構造に類似する分子構造を有するクラスター(α)が得られ易くなる。
When the cluster (α) contains two kinds of metal ions, as a combination of the metal ions, a divalent or trivalent metal ion (hereinafter, hereinafter, which can form a complex having an octahedral molecular structure having a coordination number of 6) can be formed. It may be referred to as M α 1 ion) and a monovalent or divalent metal ion (hereinafter referred to as M α 2 ion) capable of forming a complex having a tetrahedral molecular structure having a coordination number of 4. There is.) Is preferable.
By using the metal ions in this combination, it becomes easy to obtain a cluster (α) having a molecular structure similar to the molecular structure of the anionic polynuclear metal complex (α).
 Mα イオンのイオン半径は、通常60~90pm、好ましくは70~80pmである。
 Mα イオンのイオン半径は、通常60~90pm、好ましく70~75pmである。
 Mα イオンのイオン半径とMα イオンのイオン半径が、上記範囲内であることで、アニオン性多核金属錯体(α)の分子構造に類似する分子構造のクラスター(α)が得られ易くなる。
 本明細書において、イオン半径は、ShannonとPrewittが実測に基づいて整理した値に,Shannonが改良を加えて得られたものである(化学便覧基礎編5版II-887p,表16.35)。
The ionic radius of the M α 1 ion is usually 60 to 90 pm, preferably 70 to 80 pm.
Ionic radius of M alpha 2 ions is generally 60 ~ 90 pm, preferably 70 ~ 75 pm.
When the ionic radius of the M α 1 ion and the ionic radius of the M α 2 ion are within the above ranges, it is easy to obtain a cluster (α) having a molecular structure similar to the molecular structure of the anionic polynuclear metal complex (α). Become.
In the present specification, the ionic radius is obtained by Shannon's improvement on the value arranged by Shannon and Prewitt based on the actual measurement (Chemical Handbook Basic Edition, 5th Edition II-887p, Table 16.35). ..
 Mα イオンとしては、周期表第8族、第9族、及び第10族の金属、Cr、並びにMnからなる群から選ばれる1種の金属のイオンが挙げられる。
 これらの中でも、安定なクラスター(α)が形成されやすいことから、Mα イオンとしては、Rh3+、Ir3+、又はCo3+が好ましく、Rh3+又はIr3+がより好ましい。また、原料が安価であるという観点からは、Mα イオンとしては、Co3+が好ましい。
Examples of the M α 1 ion include an ion of one kind of metal selected from the group consisting of the metals of Group 8, Group 9, and Group 10 of the periodic table, Cr, and Mn.
Among these, Rh 3+ , Ir 3+ , or Co 3+ is preferable, and Rh 3+ or Ir 3+ is more preferable as the M α 1 ion because stable clusters (α) are easily formed. Further, from the viewpoint that the raw material is inexpensive, Co 3+ is preferable as the M α 1 ion.
 Mα イオンとしては、周期表第11族、及び第12族の金属からなる群から選ばれる1種の金属のイオンが挙げられる。
 これらの中でも、安定なクラスター(α)が形成されやすいことから、Zn2+、Cu又はAgが好ましく、Zn2+がより好ましい。
Examples of the M α 2 ion include an ion of one kind of metal selected from the group consisting of the metals of Group 11 and Group 12 of the periodic table.
Among these, Zn 2+ , Cu + or Ag + is preferable, and Zn 2+ is more preferable, because stable clusters (α) are likely to be formed.
 Mα イオンとMα イオンの好ましい組み合わせ(Mα イオン/Mα イオン)としては、(Rh3+/Zn2+)、(Rh3+/Cu)、(Rh3+/Ag)、(Ir3+/Zn2+)、(Co3+/Ag)、(Co3+/Zn2+)が挙げられる。 Preferred combinations of M α 1 ion and M α 2 ion (M α 1 ion / M α 2 ion) include (Rh 3+ / Zn 2+ ), (Rh 3+ / Cu + ), (Rh 3+ / Ag + ), and so on. Examples thereof include (Ir 3+ / Zn 2+ ), (Co 3+ / Ag + ), and (Co 3+ / Zn 2+).
 アニオン性多核金属錯体(α)の分子構造に類似する分子構造のクラスター(α)が得られ易いことから、クラスター(α)は、Mα イオンを4個含み、Mα イオンを4個含むことが好ましい。 Since it is easy to obtain a cluster (α) having a molecular structure similar to that of the anionic polynuclear metal complex (α), the cluster (α) contains four M α 1 ions and four M α 2 ions. It is preferable to include it.
 配位子Lαは、Mαイオンに配位し得るものであれば特に限定されない。
 配位子Lαは、電気的に中性の配位子であってもよいし、アニオン性の配位子であってもよい。
 また、配位子Lαが不斉中心を有するものである場合、配位子Lαは一種類の光学異性体からなるものであっても、複数種の光学異性体の混合物からなるものであってもよい。
The ligand L α is not particularly limited as long as it can coordinate with the M α ion.
The ligand may be an electrically neutral ligand or an anionic ligand.
Further, when the ligand L α has an asymmetric center, the ligand L α is composed of a mixture of a plurality of types of optical isomers even if it is composed of one kind of optical isomers. There may be.
 電気的に中性の配位子としては、ジエチルアミン、トリエチルアミン等の非環状アミン類;ピロール、ピリジン、イミダゾール等の含窒素複素環類;テトラヒドロフラン、ジエチルエーテル等のエーテル類;アセトン等のケトン類:トリフェニルホスフィン等のホスフィン類;アセトニトリル等のニトリル類;水分子;等が挙げられる。 Electrically neutral ligands include acyclic amines such as diethylamine and triethylamine; nitrogen-containing heterocycles such as pyrrole, pyridine and imidazole; ethers such as acetonitrile and diethyl ether; ketones such as acetone: Hosphins such as triphenylphosphine; nitriles such as acetonitrile; water molecules; and the like can be mentioned.
 アニオン性の配位子としては、ヒドリドイオン;水酸化物イオン;酸化物イオン;硫化物イオン;セレン化物イオン;テルル化物イオン;フッ化物イオン;塩化物イオン;臭化物イオン;ヨウ化物イオン;シアン化物イオン;メトキソイオン等のアルコキソイオン類;フェノキソイオン等のアリールオキソイオン類;アセテートイオン等のカルボキシレートイオン類;等が挙げられる。 Anionic ligands include hydride ion; hydroxide ion; oxide ion; sulfide ion; selenium ion; telluride ion; fluoride ion; chloride ion; bromide ion; iodide ion; cyanide. Ions; alcoholoxo ions such as methoxoions; aryloxo ions such as phenoxoions; carboxylate ions such as acetate ions; and the like.
 配位子Lαは、これらの配位子中の配位基を1種又は2種以上有する多座配位子であってもよい。このような多座配位子としては、エチレンジアミン等のジアミン類;アセチルアセトネートイオン等のβ-ジケトン類;ピコリン酸イオン;グリシネートイオン等のアミノ酸配位子;等が挙げられる。
 クラスター(α)は、配位子Lαを1種含有してもよいし、2種以上含有してもよい。
The ligand L alpha, may be a multidentate ligand having a coordinating group in these ligands one or more. Examples of such a polydentate ligand include diamines such as ethylenediamine; β-diketones such as acetylacetonate ion; picolinate ion; amino acid ligand such as glycinate ion; and the like.
Cluster (alpha) is to the ligand L alpha may contain one or may contain two or more.
 クラスター(α)に含まれる配位子Lαの数は、通常5~30個、好ましくは8~20個、より好ましくは10~15個、特に好ましくは12又は13個である。
 クラスター(α)に含まれる配位子Lαの数が少ないとクラスター(α)が小さくなる傾向があり、クラスター(α)に含まれる配位子Lαの数が多いとクラスター(α)が大きくなる傾向がある。
 先に説明したように、クラスター(α)の大きさは、クラスター(β)の形成と安定化に影響する傾向がある。
 クラスター(α)が5~30個の配位子Lαを含むことで、クラスター(α)とクラスター(β)をそれぞれ構成単位とする、安定な金属有機構造体が得られ易くなる。
The number of ligands L alpha included in the cluster (alpha) is generally 5 to 30, preferably 8-20, more preferably 10-15, particularly preferably 12 or 13.
Tend to cluster (alpha) number of ligands L alpha contained in a small and cluster (alpha) is small, the cluster (alpha) number of ligands L alpha contained in many a cluster (alpha) is Tends to grow.
As described above, the size of the cluster (α) tends to affect the formation and stabilization of the cluster (β).
Cluster (alpha) is that containing 5 to 30 ligands L alpha, and cluster (alpha) and clusters (beta) respectively constitutional units, tends stable metal organic structures obtained.
 配位子Lαの少なくとも1種は、Mβイオンにも配位する多座配位子(配位子Lα )である。
 配位子Lα がMαイオンとMβイオンの両方の金属イオンに配位し、安定な金属有機構造体が形成され易いことから、配位子Lα は、好ましくは2~5座の配位子であり、より好ましくは3座又は4座の配位子である。
 特に、アニオン性多核金属錯体(α)の分子構造に類似する分子構造のクラスター(α)が得られ易いことから、配位子Lα は、特に好ましくは3座配位子である。
At least one ligand L alpha is a polydentate ligand coordinating to M beta ions (ligand L alpha 1).
The ligand L α 1 is preferably 2 to 5 because the ligand L α 1 coordinates to both the M α ion and the M β ion metal ions and a stable metal-organic structure is easily formed. It is a locus ligand, more preferably a tridental or tetradentate ligand.
In particular, since it is easy clusters of molecular structure similar to the molecular structure of the anionic polynuclear metal complex (α) (α) is obtained, the ligand L alpha 1 is particularly preferably a tridentate ligand.
 配位子Lα としては、下記式(1)で表されるものが挙げられる。 Examples of the ligand L α 1 include those represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(1)中、Tは、Mαイオンに配位する第1の原子(配位原子t)又は配位原子tを含む基を表し、Tは、Mαイオンに配位する第2の原子(配位原子t)又は配位原子tを含む基を表し、Tは、Mβイオンに配位する原子(配位原子t)又は配位原子tを含む基を表し、Gは、連結基を表す。T-G-Tは、配位原子tと配位原子tがMαイオンに配位することで、5員キレート環又は6員キレート環を形成する原子団である。 Wherein (1), T 1 represents a first atom (ligand atoms t 1) or a group containing a coordination atom t 1 coordinating to M alpha ion, T 2 is coordinated to M alpha ion Represents a group containing a second atom (coordinating atom t 2 ) or a coordinating atom t 2, where T 3 is an atom coordinating to an M β ion (coordinating atom t 3 ) or a coordinating atom t 3 . Represents a group containing, and G represents a linking group. T 1- GT 2 is an atomic group that forms a 5-membered chelate ring or a 6-membered chelate ring by coordinating the coordination atom t 1 and the coordination atom t 2 to the M α ion.
 Tが配位原子tである場合、配位原子tは、通常、G中の原子とともにアニオン性基の一部を構成する。同様に、Tが配位原子tである場合や、Tが配位原子tである場合も、配位原子t、配位原子tは、通常、G中の原子とともにアニオン性基の一部を構成する。
 そのような配位原子等としては、アルコレート基を構成する酸素原子、チオレート基を構成する硫黄原子等が挙げられる。
If T 1 is a coordinating atom t 1, coordination atom t 1 is typically forms part of the anionic groups together with the atoms in G. Similarly, when T 2 is a coordination atom t 2 or T 3 is a coordination atom t 3 , the coordination atom t 2 and the coordination atom t 3 are usually anions together with the atoms in G. It constitutes a part of the sex group.
Examples of such a coordinate atom include an oxygen atom constituting an alcohole group, a sulfur atom constituting a thiolate group, and the like.
 Tが配位原子tを含む基である場合、Tは、通常、アニオン性基若しくは電気的に中性の基であるか、又は、G中の原子とともに配位性構造の一部を構成する基である。同様に、Tが配位原子tを含む基である場合や、Tが配位原子tを含む基である場合も、T、Tは、通常、アニオン性基若しくは電気的に中性の基であるか、又は、G中の原子とともに配位性構造の一部を構成する基である。
 T、T、T(以下、「T等」と記載する。)がアニオン性基である場合、T等としては、カルボキシレート基(配位原子は酸素原子)等が挙げられる。
 T等が電気的に中性の基である場合、T等としては、アミノ基(配位原子は窒素原子)、ホスフィノ基(配位原子はリン原子)等が挙げられる。
 T等が、G中の原子とともに配位性構造の一部を構成する基である場合、T等としては、エーテル構造を構成するアルコキシ基(配位原子は酸素原子)、チオエーテル構造を構成するアルキルチオ基(配位原子は硫黄原子)等が挙げられる。
When T 1 is a group containing the coordinating atom t 1 , T 1 is usually an anionic group or an electrically neutral group, or is part of a coordinating structure with the atoms in G. Is the basis that constitutes. Similarly, when T 2 is a group containing a coordination atom t 2 or when T 3 is a group containing a coordination atom t 3 , T 2 and T 3 are usually anionic groups or electrically. Is a neutral group, or is a group that forms part of a coordinating structure with the atoms in G.
When T 1 , T 2 , T 3 (hereinafter referred to as "T 1 etc.") are anionic groups, examples of T 1 etc. include carboxylate groups (coordinating atoms are oxygen atoms). ..
When T 1 and the like are electrically neutral groups, examples of T 1 and the like include an amino group (coordinating atom is a nitrogen atom) and a phosphino group (coordinating atom is a phosphorus atom).
When T 1 and the like are groups that form a part of the coordinating structure together with the atoms in G, the T 1 and the like include an alkoxy group (the coordinating atom is an oxygen atom) and a thioether structure that form an ether structure. Examples thereof include an alkylthio group (coordinating atom is a sulfur atom) constituting the alkylthio group.
 Gを構成する原子としては、水素原子、炭素原子、酸素原子、窒素原子が挙げられる。
 Gを構成する原子の数(ただし、水素原子を除く。)は、通常2~15個、好ましくは2~10、より好ましくは2~5個である。
Examples of the atom constituting G include a hydrogen atom, a carbon atom, an oxygen atom, and a nitrogen atom.
The number of atoms constituting G (however, excluding hydrogen atoms) is usually 2 to 15, preferably 2 to 10, and more preferably 2 to 5.
 Tは、好ましくはG中の原子とともにアニオン性基の一部を構成する配位原子であり、より好ましくはチオレート基を構成する硫黄原子である。
 Tは、好ましくは電気的に中性の基であり、より好ましくはアミノ基である。
 Tは、好ましくはアニオン性基であり、より好ましくはカルボキシレート基である。
 T、T、Tがそれぞれ上記の基であることで、アニオン性多核金属錯体(α)の分子構造に類似する分子構造のクラスター(α)が得られ易くなる。
T 1 is preferably a coordination atom that constitutes a part of an anionic group together with an atom in G, and more preferably a sulfur atom that constitutes a thiolate group.
T 2 is preferably an electrically neutral group, more preferably an amino group.
T 3 is preferably an anionic group, more preferably a carboxylate group.
Since T 1 , T 2 , and T 3 are the above-mentioned groups, it becomes easy to obtain a cluster (α) having a molecular structure similar to the molecular structure of the anionic polynuclear metal complex (α).
 配位子Lα としては、アミノ酸配位子(本明細書において、「アミノ酸配位子」とは、全体の電荷が0の状態のアミノ酸が配位子として機能しているものに加えて、プロトン化や脱プロトン化したアミノ酸が配位子として機能しているものを含む。)が挙げられる。
 配位子Lα がアミノ酸配位子であることで、アニオン性多核金属錯体(α)の分子構造に類似する分子構造のクラスター(α)を効率よく形成することができる。
The ligand L α 1 is an amino acid ligand (in the present specification, the “amino acid ligand” is an amino acid having a total charge of 0 in addition to a function as a ligand. , Including those in which protonated or deprotonated amino acids function as ligands.).
Since the ligand 1 is an amino acid ligand, it is possible to efficiently form a cluster (α) having a molecular structure similar to the molecular structure of the anionic polynuclear metal complex (α).
 アミノ酸配位子としては、下記式(5)で表されるものが挙げられる。 Examples of the amino acid ligand include those represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(5)中、Rは、Tを有するアミノ酸側鎖を表し、r、r、rは、それぞれ独立に、水素原子又は炭素数1~5のアルキル基を表す。-N(r)(r)が、式(1)中のT(tは窒素原子)であり、-C(O)Oが、式(1)中のT(tは酸素原子)である。 In formula (5), R represents an amino acid side chain having T 1 , and r 1 , r 2 , and r 3 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. -N (r 1) (r 2) is, T 2 in the formula (1) (t 2 is nitrogen atom) and, -C (O) O - is, T 3 (t 3 in the formula (1) Is an oxygen atom).
 r、r、rで表される炭素数1~5のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、イソブチル基等が挙げられる。
 アニオン性多核金属錯体(α)の分子構造に類似する分子構造のクラスター(α)が得られ易いことから、r、r、rとしては、水素原子又はメチル基が好ましく、水素原子がより好ましい。
The alkyl groups of r 1, r 2, carbon atoms represented by r 3 1 ~ 5, a methyl group, an ethyl group, n- propyl group, an isopropyl group, n- butyl group, s- butyl, t- butyl Groups, isobutyl groups and the like can be mentioned.
Since liable anionic polynuclear metal complex (alpha) of the molecular structure similar to the molecular structure of the cluster (alpha) is obtained, as the r 1, r 2, r 3 , preferably a hydrogen atom or a methyl group, a hydrogen atom More preferred.
 アミノ酸配位子としては、以下に示すものが挙げられる。なお、式中、r、r、rは、前記と同じ意味を表す。 Examples of the amino acid ligand include those shown below. In the formula, r 1 , r 2 , and r 3 have the same meanings as described above.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(5-1)~(5-5)で表される配位子は、Tが負の電荷を有し、かつ、5員キレート環を形成し得る配位子である。
 式(5-6)、(5-7)で表される配位子は、Tが負の電荷を有し、かつ、6員キレート環を形成し得る配位子である。
 式(5-8)で表される配位子は、Tが電気的に中性であって、かつ、6員キレート環を形成し得る配位子である。
The ligands represented by the formulas (5-1) to (5-5) are ligands in which T 1 has a negative charge and can form a 5-membered chelate ring.
The ligand represented by the formulas (5-6) and (5-7) is a ligand in which T 1 has a negative charge and can form a 6-membered chelate ring.
The ligand represented by the formula (5-8) is a ligand in which T 1 is electrically neutral and can form a 6-membered chelate ring.
 これらの中でも、アニオン性多核金属錯体(α)の分子構造に類似する分子構造のクラスター(α)が得られ易いことから、式(5-1)~(5-7)で表される配位子が好ましく、式(5-3)、式(5-4)、又は式(5-6)で表される配位子が金属とともに5員環または6員環が安定に形成されるためより好ましい。式(5-3)の例としてはシステイン、式(5-4)の例としてはペニシラミン、式(5-6)としては、ホモシステインを挙げることができる。 Among these, since it is easy to obtain a cluster (α) having a molecular structure similar to the molecular structure of the anionic polynuclear metal complex (α), the coordination represented by the formulas (5-1) to (5-7) is easy to obtain. The child is preferable, because the ligand represented by the formula (5-3), the formula (5-4), or the formula (5-6) stably forms a 5-membered ring or a 6-membered ring together with the metal. preferable. Examples of formula (5-3) include cysteine, examples of formula (5-4) include penicillamine, and formula (5-6) includes homocysteine.
 クラスター(α)は、配位子Lα を1種含有してもよいし、2種以上含有してもよい。
 クラスター(α)に含まれる配位子Lα の数は、通常8~24個、好ましくは8~16個、より好ましくは12個である。
Cluster (alpha) is to the ligand L alpha 1 may contain one or may contain two or more.
Number of ligands L alpha 1 included in cluster (alpha) is usually 8 to 24, preferably 8 to 16, more preferably 12.
 クラスター(α)は、必要に応じて、ヒドリドイオン(H)、酸化物イオン(O2-)、硫化物イオン(S2-)、セレン化物イオン(Se2-)、テルル化物イオン(Te2-)、フッ化物イオン(F)、塩化物イオン(Cl)、臭化物イオン(Br)、及びヨウ化物イオン(I)からなる群から選ばれる配位子(以下、「配位子E」と記載することがある。)を含有することが好ましい。 The cluster (α) can be a hydride ion (H ), an oxide ion (O 2- ), a sulfide ion (S 2- ), a serene product ion (Se 2- ), and a telluride ion (Te), if necessary. 2), fluoride ion (F -), chloride ion (Cl -), bromide ion (Br -), and iodide ion (I -) ligand selected from the group consisting of (hereinafter, "coordination It may be described as "child E").
 配位子Eは、比較的小さいアニオンである。配位子EがMαイオンに配位することで、クラスター(α)がより安定化する場合がある。
 この効果が得られ易いことから、配位子Eとしては、酸化物イオン、硫化物イオン、塩化物イオン、又は臭化物イオンが好ましく、酸化物イオン、又は硫化物イオンがより好ましい。
Ligand E is a relatively small anion. Coordination of the ligand E to the M α ion may further stabilize the cluster (α).
Since this effect can be easily obtained, the ligand E is preferably an oxide ion, a sulfide ion, a chloride ion, or a bromide ion, and more preferably an oxide ion or a sulfide ion.
 クラスター(α)としては、下記式(2)で表されるものが挙げられる。 Examples of the cluster (α) include those represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(2)中、Mα は、配位数6の八面体型分子構造の錯体を形成し得る、2価又は3価の金属イオンを表し、Mα は、配位数4の四面体型分子構造の錯体を形成し得る、1価又は2価の金属イオンを表し、Lα は、Mβイオンにも配位する多座配位子を表し、Eは、H、O2-、S2-、Se2-、Te2-、F、Cl、Br又はIを表す。mは、0又は1であり、nは、(Mα の価数×4)+(Mα の価数×4)+(Lα の価数×12)+(Eの価数×m)で算出される数である。 In formula (2), M α 1 represents a divalent or trivalent metal ion capable of forming a complex having an octahedral molecular structure having a coordination number of 6, and M α 2 is a tetrahedron having a coordination number of 4. Represents a monovalent or divalent metal ion capable of forming a complex of body type molecular structure, L α 1 represents a polydentate ligand that also coordinates with M β ion, and E represents H − , O 2 -, S 2-, Se 2-, Te 2-, F -, Cl -, Br - or I - it represents a. m is 0 or 1, and n is ( valence of M α 1 × 4) + ( valence of M α 2 × 4) + ( valence of L α 1 × 12) + (valence of E). It is a number calculated by × m).
 式(2)で表されるクラスター(α)のMα 、Mα 、Lα 、及びEは、それぞれ、先に説明した通りである。nは、通常4~14の整数であり、好ましくは6~8の整数である。 The M α 1 , M α 2 , L α 1 , and E of the cluster (α) represented by the equation (2) are as described above, respectively. n is usually an integer of 4 to 14, preferably an integer of 6 to 8.
 式(2)で表されるクラスター(α)の分子構造としては、アニオン性多核金属錯体(α)の分子構造(例えば、WO2019/208753号の図2で表される分子構造)に類似するものが挙げられる。 The molecular structure of the cluster (α) represented by the formula (2) is similar to the molecular structure of the anionic polynuclear metal complex (α) (for example, the molecular structure represented by FIG. 2 of WO2019 / 208753). Can be mentioned.
 式(2)で表されるクラスター(α)の分子構造の一例として、[RhZn(L-cys)12O]6-(L-cysは、L-システイン由来の配位子を表す。以下同じ)の分子構造を図1に示す。
 図1(a)は、金属有機構造体〔Lu0.33[Lu(OH)(HO)(OAc)][RhZn(L-cys)12O]・nHO(OAcは、アセテートイオンを表す。以下同じ)〕の結晶構造解析の結果から、クラスター(α)の部分([RhZn(L-cys)12O]6-)のみを表したものである。
 図1(b)は、[RhZn(L-cys)12O]6-を模式的に表したものである。
 図1(c)は、1つの[RhZn(L-cys)12O]6-と、このクラスター(α)との間で配位結合を形成する、[Lu(OH)(HO)(OAc)5+中のキュバン型構造の関係を表す図である。
As an example of the molecular structure of the cluster (α) represented by the formula (2), [Rh 4 Zn 4 (L-cys) 12 O] 6- (L-cys represents a ligand derived from L-cysteine). The molecular structure of (the same applies hereinafter) is shown in FIG.
FIG. 1 (a) shows a metal-organic framework [Lu 0.33 [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] [Rh 4 Zn 4 (L-cys) 12 O] · nH 2 From the results of crystal structure analysis of O (OAc represents acetate ion; the same applies hereinafter)], only the cluster (α) portion ([Rh 4 Zn 4 (L-cys) 12 O] 6- ) is represented. Is.
FIG. 1 (b) schematically shows [Rh 4 Zn 4 (L-cys) 12 O] 6- .
FIG. 1 (c) shows [Lu 4 (OH) 4 ( Lu 4 (OH) 4) forming a coordinate bond between one [Rh 4 Zn 4 (L-cys) 12 O] 6- and this cluster (α). H 2 O) 7 (OAc) 3 ] It is a figure showing the relationship of the cubane type structure in 5+.
 図1(a)~(c)で示されるように、[RhZn(L-cys)12O]6-を構成するL-システイン由来の配位子(L-cys)のカルボキシレート酸素原子は、RhイオンやZnイオンに配位しておらず、[Lu(OH)(HO)(OAc)5+中のLuイオンとの間で配位結合を形成することができる。 As shown in FIGS. 1 (a) to 1 (c), the carboxylate oxygen of the L-cysteine-derived ligand (L-cys) constituting [Rh 4 Zn 4 (L-cys) 12 O] 6-. The atom is not coordinated to the Rh ion or Zn ion, and forms a coordinate bond with the Lu ion in [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+. Can be done.
 本発明の金属有機構造体を構成するクラスター(α)の集合体は、クラスター(α)が規則的に配列されて成るものである。
 クラスター(α)の集合体は、イオン流動型イオン性固体のアニオン部に由来するものが好ましい。
The aggregate of clusters (α) constituting the metal-organic framework of the present invention is formed by regularly arranging the clusters (α).
The aggregate of clusters (α) is preferably derived from the anion portion of the ionic flow type ionic solid.
 「イオン性固体」とは、カチオン種とアニオン種を必須の構成成分とする固体をいう。
 「イオン流動型イオン性固体」とは、イオン流動性を有するイオン性固体をいう。イオン流動型イオン性固体としては、アニオン性多核金属錯体が集積して結晶格子を形成し、その結晶格子の隙間にカチオン種が存在して成るものが挙げられる。「結晶格子の隙間にカチオン種が存在する」とは、アニオン性多核金属錯体が結晶格子を形成する特定の位置に束縛されているのに対して、カチオン種は結晶格子の隙間において自由な位置に存在している状態を指している。このような構造を有することから、このイオン流動型イオン性固体は、カチオン交換能を有する。
The "ionic solid" means a solid containing a cationic species and an anionic species as essential constituents.
The "ionic flow type ionic solid" means an ionic solid having ionic fluidity. Examples of the ionic flow type ionic solid include those in which anionic polynuclear metal complexes are accumulated to form a crystal lattice and a cationic species is present in the gaps between the crystal lattices. "Cation species are present in the gaps of the crystal lattice" means that the anionic polynuclear metal complex is bound to a specific position forming the crystal lattice, whereas the cation species is a free position in the gaps of the crystal lattice. Refers to the state that exists in. Since it has such a structure, this ionic flow type ionic solid has a cation exchange ability.
 アニオン性多核金属錯体を構成する金属イオンとしては、Mαイオンとして説明したものと同様のものが挙げられる。
 アニオン性多核金属錯体を構成する多座配位子としては、配位子Lとして説明したものと同様のものが挙げられる。
Examples of the metal ion constituting the anionic polynuclear metal complex include the same as those described as the M α ion.
The multidentate ligand constituting the anionic polynuclear metal complexes include the same as described as ligands L 1.
 アニオン性多核金属錯体としては、既知の錯体を用いることができる。既知の錯体としては、例えば、WO2018/079831号やWO2019/208753号に記載のアニオン性異種金属錯体が挙げられる。 As the anionic polynuclear metal complex, a known complex can be used. Examples of known complexes include the anionic dissimilar metal complexes described in WO2018 / 079831 and WO2019 / 208753.
 イオン流動型イオン性固体を構成するカチオン種としては、金属イオンが挙げられる。
 カチオン種の具体例としては、Li、Na、K、Rb、Cs、Be2+、Mg2+、Ca2+、Sr2+、Ba2+、Ra2+等が挙げられる。これらの中でも、本発明の金属有機構造体がより効率よく得られることから、Na、K、Rb、Cs、Mg2+、Ca2+、Sr2+、Ba2+が好ましく、Na又はKがより好ましい。
Examples of the cation species constituting the ionic flow type ionic solid include metal ions.
Specific examples of the cation species include Li + , Na + , K + , Rb + , Cs + , Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Ra 2+ and the like. Among these, Na + , K + , Rb + , Cs + , Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ are preferable, and Na + or K is preferable because the metal-organic framework of the present invention can be obtained more efficiently. + Is more preferable.
 イオン流動型イオン性固体としては、例えば、WO2018/079831号やWO2019/208753号に記載のイオン性固体を好適に用いることができる。 As the ionic flow type ionic solid, for example, the ionic solid described in WO2018 / 079831 and WO2019 / 208753 can be preferably used.
 クラスター(α)の集合体として、イオン流動型イオン性固体のアニオン部を利用することで、金属有機構造体の金属-有機高分子鎖を効率よく形成することができる。 By using the anion portion of an ionic flow type ionic solid as an aggregate of clusters (α), a metal-organic polymer chain of a metal-organic framework can be efficiently formed.
〔クラスター(β)〕
 本発明の金属有機構造体を構成するクラスター(β)は、金属イオン(Mβイオン)を必須の構成要素とするキュバン型構造を含むものである。
[Cluster (β)]
The cluster (β) constituting the metal-organic structure of the present invention includes a cubane-type structure in which a metal ion (M β ion) is an essential component.
 Mβイオンとしては、dブロック遷移金属のイオン又はfブロック遷移金属のイオンが挙げられる。
 dブロック遷移金属のイオンの具体例としては、Sc3+、Co2+、Ni2+、Cu、Y3+等が挙げられる。
 fブロック遷移金属のイオンの具体例としては、La3+、Ce3+、Pr3+、Nd3+、Pm3+、Sm3+、Eu3+、Gd3+、Tb3+、Dy3+、Ho3+、Er3+、Tm3+、Yb3+、Lu3+等が挙げられる。
 これらの中でも、本発明の金属有機構造体を発光材料として用いる場合は、Tb3+が好ましく、磁気冷凍材料として用いる場合は、Gd3+が好ましい。
Examples of the M β ion include an ion of a d-block transition metal or an ion of an f-block transition metal.
Specific examples of d-block transition metal ions include Sc 3+ , Co 2+ , Ni 2+ , Cu + , Y 3+ and the like.
Specific examples of f-block transition metal ion, La 3+, Ce 3+, Pr 3+, Nd 3+, Pm 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+, Dy 3+, Ho 3+, Er 3+, Tm 3+ , Yb 3+ , Lu 3+ and the like.
Among these, Tb 3+ is preferable when the metal-organic framework of the present invention is used as a light emitting material , and Gd 3+ is preferable when it is used as a magnetic refrigeration material.
 クラスター(α)とクラスター(β)をそれぞれ構成単位とする、より安定な金属有機構造体が得られ易いことから、Mβイオンとしては、以下の要件1及び2を満たすものが好ましい。
要件1:配位数4以上の多面体型分子構造の錯体を形成し得る、1価、2価又は3価の金属イオンである。
要件2:イオン半径が、70~120pmである。
Since it is easy to obtain a more stable metal-organic framework having clusters (α) and clusters (β) as constituent units, M β ions preferably satisfy the following requirements 1 and 2.
Requirement 1: A monovalent, divalent or trivalent metal ion capable of forming a complex having a polyhedral molecular structure having a coordination number of 4 or more.
Requirement 2: The ionic radius is 70 to 120 pm.
 Mβイオンが要件1を満たすことで、より安定なキュバン型構造が形成され易くなる。
 Mβイオンが要件2を満たすことで、適度な大きさのクラスター(β)が形成され、より安定な金属有機構造体を得ることができる。
When the M β ion satisfies the requirement 1, a more stable cubane-type structure is easily formed.
When the M β ion satisfies the requirement 2, clusters (β) having an appropriate size are formed, and a more stable metal-organic structure can be obtained.
 クラスター(β)に含まれるMβイオンの数は、通常、3個又は4個である。
 クラスター(β)は、キュバン型構造を構成しない金属イオンを有してもよい。
 クラスター(β)に含まれる金属イオンの合計は、好ましくは3~10個、より好ましくは3~6個である
The number of M β ions contained in the cluster (β) is usually 3 or 4.
The cluster (β) may have metal ions that do not form a cubane-type structure.
The total number of metal ions contained in the cluster (β) is preferably 3 to 10, more preferably 3 to 6.
 上記のように、クラスター(β)は、クラスター(α)間に生じる空間を占めるものである。また、クラスター(β)は、Mβイオンと配位子Lα との間で配位結合を形成することで、金属有機構造体の金属-有機高分子鎖の一部を構成することになる。
 クラスター(β)が3~10個の金属イオンを含むことで、クラスター(α)とクラスター(β)をそれぞれ構成単位とする、安定な金属有機構造体が得られ易くなる。
As described above, the cluster (β) occupies the space generated between the clusters (α). Further, the cluster (β) forms a part of the metal-organic polymer chain of the metal-organic framework by forming a coordinate bond between the M β ion and the ligand L α 1. Become.
When the cluster (β) contains 3 to 10 metal ions, it becomes easy to obtain a stable metal-organic structure having the cluster (α) and the cluster (β) as constituent units, respectively.
 クラスター(β)中のキュバン型構造としては、4核の完全キュバン型構造や、3核の不完全キュバン型構造が挙げられる。
 4核の完全キュバン型構造の模式図を図2(a)に示す。6面体の8個の頂点の中で、Mβで示した場所を金属イオンが占め、残りの頂点を単原子架橋配位子(水酸化物イオン、酸化物イオン等の2以上の金属イオン間を1つの原子で架橋する配位子をいう。)が占めることで、完全キュバン型構造が形成される。
 なお、図2(a)に示す6面体は立方体であるが、4核の完全キュバン型構造は立方体以外の6面体で表されるものであってもよい。
Examples of the cubane-type structure in the cluster (β) include a complete cubane-type structure with four nuclei and an incomplete cubane-type structure with three nuclei.
A schematic diagram of a complete cubane-type structure of four nuclei is shown in FIG. 2 (a). Among the eight vertices of the hexahedron, metal ions occupy the place indicated by M β , and the remaining vertices are between two or more metal ions such as hydroxide ion and oxide ion. Is occupied by a ligand that bridges with one atom.), A complete Cuban-type structure is formed.
The hexahedron shown in FIG. 2A is a cube, but the four-core complete cubane-type structure may be represented by a hexahedron other than the cube.
 3核の不完全キュバン型構造の模式図を図2(b)に示す。3核の不完全キュバン型構造は、4核の完全キュバン型構造から1個の金属イオンと、その金属イオンに配位していた単原子架橋配位子を除去して成る構造である。 A schematic diagram of the incomplete cubane-type structure of the three nuclei is shown in FIG. 2 (b). The 3-nucleus incomplete cubane-type structure is a structure in which one metal ion and the monatomic cross-linking ligand coordinated to the metal ion are removed from the 4-nucleus complete cubane-type structure.
 クラスター(β)中のキュバン型構造を構成する単原子架橋配位子としては、水酸化物イオン(OH)、酸化物イオン(O2-)、アルコキソイオン(RO、Rはアルキル基を表す。)、硫化物イオン(S2-)等が挙げられる。これらの中でも、水酸化物イオンが好ましい。 The monoatomic bridging ligands constituting the cubane-type structure in the cluster (β) include hydroxide ion (OH ), oxide ion (O 2- ), and alcohol ion (RO , R are alkyl groups. ), Sulfide ion (S 2- ) and the like. Of these, hydroxide ions are preferred.
 クラスター(β)がより安定化することから、キュバン型構造としては、4核の完全キュバン型構造が好ましい。
 Mβイオンが、以下の要件1’、要件2’を満たすことで、4核の完全キュバン型構造を有するクラスター(β)が形成され易くなる。
要件1’:配位数5~8の多面体型分子構造の錯体を形成し得る、2価又は3価の金属イオンである。
要件2’:イオン半径が、75~115pmである。
As the cubane-type structure, a four-nucleus complete cubane-type structure is preferable because the cluster (β) is more stabilized.
When the M β ion satisfies the following requirements 1'and 2', a cluster (β) having a complete cubane-type structure of four nuclei is easily formed.
Requirement 1': A divalent or trivalent metal ion capable of forming a complex having a polyhedral molecular structure having a coordination number of 5 to 8.
Requirement 2': The ionic radius is 75 to 115 pm.
 クラスター(β)は、キュバン型構造を構成する単原子架橋配位子以外の配位子を含有してもよい。
 キュバン型構造を構成する単原子架橋配位子以外の配位子としては、配位子Lαとして例示したもの(ただし、上記の単原子架橋配位子を除く)が挙げられる。
 Mβイオンの配位数が多い場合(例えば、配位数が7や8)、より安定なクラスター(β)が得られ易いことから、クラスター(β)は、カルボキシレート配位子を有することが好ましい。
 カルボキシレート配位子としては、アセテートイオン、プロピオネートイオン、ベンゾエートイオン等が挙げられる。
 カルボキシレート配位子は、2以上のMβイオン間を架橋する架橋配位子として機能していてもよい。
The cluster (β) may contain a ligand other than the monatomic cross-linking ligand constituting the cubane-type structure.
The monoatomic ligands other than bridging ligands constituting the cubane-type structure, those exemplified as the ligand L alpha (excluding monoatomic bridging ligands described above) can be mentioned.
The cluster (β) has a carboxylate ligand because a more stable cluster (β) can be easily obtained when the coordination number of M β ions is large (for example, the coordination number is 7 or 8). Is preferable.
Examples of the carboxylate ligand include acetate ion, propionate ion, benzoate ion and the like.
The carboxylate ligand may function as a cross-linking ligand that bridges between two or more M β ions.
 クラスター(β)としては、下記式(3)で表されるものが挙げられる。 Examples of the cluster (β) include those represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(3)中、Mβは、キュバン型構造を構成する金属イオンを表し、Lは、カルボキシレート配位子を表す。pは0~10の整数、qは0~10の整数であり(ただし、p+q≧1)、rは、(Mβの価数×4)+(-1×4)+(Lの価数×q)で算出される数である。 In formula (3), M β represents a metal ion constituting a cubane-type structure, and L 2 represents a carboxylate ligand. p is an integer of 0 to 10, q is an integer of 0 to 10 (where p + q ≧ 1), and r is ( valence of M β × 4) + (-1 × 4) + (value of L 2). It is a number calculated by (number × q).
 式(3)で表されるクラスター(β)のMβ、及びLは、それぞれ、先に説明した通りである。rは、通常、4~6の整数である。 The M β and L 2 of the cluster (β) represented by the equation (3) are as described above, respectively. r is usually an integer of 4 to 6.
 式(3)で表されるクラスター(β)の分子構造の一例として、[Lu(OH)(HO)(OAc)5+の分子構造を図3に示す。
 図3(a)は、金属有機構造体(Lu0.33[Lu(OH)(HO)(OAc)][RhZn(L-cys)12O]・nHO)の結晶構造解析の結果から、クラスター(β)の部分([Lu(OH)(HO)(OAc)5+)のみを表したものである。
 図3(b)は、[Lu(OH)(HO)(OAc)5+を模式的に表したものである。
As an example of the molecular structure of the cluster (β) represented by the formula (3), the molecular structure of [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+ is shown in FIG.
FIG. 3A shows a metal-organic framework (Lu 0.33 [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] [Rh 4 Zn 4 (L-cys) 12 O] · nH 2 From the result of the crystal structure analysis of O), only the part of the cluster (β) ([Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+ ) is shown.
FIG. 3 (b) schematically shows [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+ .
 図3(a)、(b)で示されるように、[Lu(OH)(HO)(OAc)5+は、4個のLuイオンと4個のヒドロキソイオンで構成される4核の完全キュバン型構造を有する。また、アセテートイオンが、2個のLuイオン間を架橋する架橋配位子として機能している。
 なお、図3には表してないが、1つの[Lu(OH)(HO)(OAc)5+の周りには、3つの[RhZn(L-cys)12O]6-が存在している。そして、これらに含まれるシステイン配位子のカルボキシレート基が、上記のアセテートイオンのように、2個のLuイオン間を架橋している〔図1(c)〕。
As shown in FIGS. 3 (a) and 3 (b), [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+ is composed of 4 Lu ions and 4 hydroxoions. It has a complete cubane-type structure with four nuclei. In addition, the acetate ion functions as a cross-linking ligand that bridges between the two Lu ions.
Although not shown in FIG. 3, there are three [Rh 4 Zn 4 (L-cys) 12 around one [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+. O] 6- exists. Then, the carboxylate group of the cysteine ligand contained therein crosslinks between the two Lu ions like the above-mentioned acetate ion [FIG. 1 (c)].
〔金属有機構造体〕
 本発明の金属有機構造体は、前記クラスター(α)及びクラスター(β)を構成単位として含有するものであって、クラスター(α)中の配位子Lα が、クラスター(β)のキュバン型構造に含まれる金属イオン(Mβイオン)にも配位して成るものである。
[Metal-organic framework]
The metal-organic framework of the present invention contains the cluster (α) and the cluster (β) as a constituent unit, and the ligand 1 in the cluster (α) is a cubic of the cluster (β). It is also coordinated with metal ions (M β ions) contained in the mold structure.
 配位子Lα が、MαイオンとMβイオンを架橋することで、安定な金属有機構造体が形成される。
 配位子Lα がカルボキシレート基を有するものである場合、配位子Lα のカルボキシレート基が、Mβイオンに配位していることが好ましい。Mβイオンに配位する配位基がカルボキシレート基であることで、より安定な金属有機構造体が形成され易くなる。
The ligand L α 1 crosslinks the M α ion and the M β ion to form a stable metal-organic framework.
When the ligand L α 1 has a carboxylate group, it is preferable that the carboxylate group of the ligand L α 1 is coordinated to the M β ion. Since the coordinating group that coordinates with the M β ion is a carboxylate group, a more stable metal-organic structure can be easily formed.
 上記のように、通常、クラスター(α)の大きさは、クラスター(α)間に生じる空間の大きさに影響する。また、クラスター(α)間に生じる空間の大きさは、クラスター(β)の安定性に影響する。
 したがって、クラスター(α)を構成する金属イオン(Mαイオン)や配位子Lαの数や種類を調節し、クラスター(α)の大きさを最適化することにより、クラスター(β)を安定化することが好ましい。
As mentioned above, the size of the clusters (α) usually affects the size of the space created between the clusters (α). Also, the size of the space created between the clusters (α) affects the stability of the clusters (β).
Therefore, the cluster (β) is stabilized by adjusting the number and types of metal ions (M α ions) and ligands L α that compose the cluster (α) and optimizing the size of the cluster (α). It is preferable to make it.
 クラスター(α)を構成する原子の広がりを考慮して、クラスター(α)を形式的に1つの球体として表したとき、そのような球体(以下、「球体(α)」ということがある。)の直径は、通常1.0~3.0nm、好ましくは1.2~2.0nmである。
 球体(α)の直径は、単結晶X線結晶構造解析の結果を基にして、算出することができる。
 例えば、クラスター(α)が図1で示される分子構造を有するものである場合、クラスター(α)の中心から最も離れた位置に存在する原子は、カルボキシレート基の酸素原子であるため、あるカルボキシレート基の酸素原子と、別のカルボキシレート基の酸素原子の間の距離の中で最長のものの数値を、球体(α)の直径と擬制することができる。
 具体的には、後述する実施例で得られた金属有機構造体に関しては、[RhZn(L-cys)12O]6-に対応する球体(α)の直径は1.537nmであり、[IrZn(L-cys)12O]6-に対応する球体(α)の直径は1.550nmである。
When the cluster (α) is formally represented as one sphere in consideration of the spread of atoms constituting the cluster (α), such a sphere (hereinafter, may be referred to as “sphere (α)”). The diameter of is usually 1.0 to 3.0 nm, preferably 1.2 to 2.0 nm.
The diameter of the sphere (α) can be calculated based on the result of single crystal X-ray crystal structure analysis.
For example, when the cluster (α) has the molecular structure shown in FIG. 1, the atom located at the farthest position from the center of the cluster (α) is the oxygen atom of the carboxylate group, and therefore a certain carboxy. The value of the longest distance between the oxygen atom of the rate group and the oxygen atom of another carboxylate group can be mimicked as the diameter of the sphere (α).
Specifically, with respect to the metal-organic framework obtained in the examples described later, the diameter of the sphere (α) corresponding to [Rh 4 Zn 4 (L-cys) 12 O] 6- is 1.537 nm. , [Ir 4 Zn 4 (L-cys) 12 O] The diameter of the sphere (α) corresponding to 6- is 1.550 nm.
 球体(α)の直径とMβイオンの半径の比の値〔球体(α)/Mβイオン〕は、通常14.0~19.0、好ましくは14.2~18.5、より好ましくは14.6~17.3である。球体(α)の直径とMβイオンの半径の比の値が上記範囲内であることで、より安定な金属有機構造体が得られ易くなる。 The value of the ratio of the diameter of the sphere (α) to the radius of the M β ion [sphere (α) / M β ion] is usually 14.0 to 19.0, preferably 14.2 to 18.5, more preferably. It is 14.6 to 17.3. When the value of the ratio of the diameter of the sphere (α) to the radius of the M β ion is within the above range, a more stable metal-organic structure can be easily obtained.
 上記のように、クラスター(α)を構成する金属イオン(Mαイオン)や配位子Lαの数や種類を調節することで、クラスター(α)の大きさを変えることができる。
 例えば、前述の特許文献1に記載のイオン性固体を構成するアニオン性異種金属錯体〔[RhAg(L-cys)128-〕について、球体(α)の直径に相当するものを算出すると、1.567nmであった。したがって、このアニオン性異種金属錯体由来のクラスター(α)は、より大きなMβイオンを含む金属有機構造体を安定化するのに適することが予想される。
As described above, the size of the cluster (α) can be changed by adjusting the number and types of the metal ions (M α ions) and the ligand L α constituting the cluster (α).
For example, with respect to the anionic dissimilar metal complex [[Rh 4 Ag 4 (L-cys) 12 ] 8- ] constituting the ionic solid described in Patent Document 1, the one corresponding to the diameter of the sphere (α) is used. It was calculated to be 1.567 nm. Therefore, clusters (α) derived from this anionic heterogeneous metal complex are expected to be suitable for stabilizing metal-organic frameworks containing larger M β ions.
 金属有機構造体を表す組成式としては、下記式(4)で表されるものが挙げられる。 Examples of the composition formula representing the metal-organic framework include those represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(4)中、Aは、カチオン又はアニオンを表す。{(Mβ(OH)(HO)(Lβ}はr価のカチオンであり、Mβは、キュバン型構造を構成する金属イオンを表し、Lβは、カルボキシレート配位子を表す。pは0~10の整数、qは0~10の整数である(ただし、p+q≧1)。{(Mα (Mα (Lα 12(E)}はn価のアニオンであり、Mα は、配位数6の八面体型分子構造の錯体を形成し得る、2価又は3価の金属イオンを表し、Mα は、配位数4の四面体型分子構造の錯体を形成し得る、1価又は2価の金属イオンを表し、Lα は、Mβイオンにも配位する多座配位子を表し、Eは、H、O2-、S2-、Se2-、Te2-、F、Cl、Br又はIを表す。mは、0又は1である。Bは溶媒分子を表し、tは、20~100の整数である。y、zはそれぞれ独立に、0超1以下の数であり、xは、(Aの価数×x)+(r×y)-(n×z)=0を満たす数である。 In formula (4), A represents a cation or anion. {(M β ) 4 (OH) 4 (H 2 O) p (L β ) q } is an r-valent cation, M β represents a metal ion constituting a cubane-type structure, and L β is a carboxy. Represents a rate ligand. p is an integer of 0 to 10 and q is an integer of 0 to 10 (where p + q ≧ 1). {(M α 1 ) 4 (M α 2 ) 4 (L α 1 ) 12 (E) m } is an n-valent anion, and M α 1 is a complex having an octahedral molecular structure with a coordination number of 6. Representing a divalent or trivalent metal ion that can be formed, M α 2 represents a monovalent or divalent metal ion that can form a complex with a tetrahedral molecular structure having a coordination number of 4, L α 1. represents a coordinating polydentate ligand to M beta ion, E is, H -, O 2-, S 2-, Se 2-, Te 2-, F -, Cl -, Br - or I - represents a. m is 0 or 1. B represents a solvent molecule, and t is an integer of 20 to 100. y and z are independently numbers greater than 0 and 1 or less, and x is a number satisfying (valence of A × x) + (r × y) − (n × z) = 0.
 式(4)で表される組成式中の{(Mβ(OH)(HO)(Lβ}と{(Mα (Mα (Lα 12(E)}は先に説明した通りである。
 Aがカチオンである場合、そのようなAとしては、Li、Na、K、Rb、Cs、Be2+、Mg2+、Ca2+、Sr2+、Ba2+、Ra2+、Co2+、Ni2+、Sc3+、Y3+、La3+、Ce3+、Pr3+、Nd3+、Pm3+、Sm3+、Eu3+、Gd3+、Tb3+、Dy3+、Ho3+、Er3+、Tm3+、Yb3+、Lu3+等が挙げられる。
 Aがアニオンである場合、そのようなAとしては、O2-、S2-、Se2-、Te2-、F、Cl、Br、I、OH、OAc(アセテートイオン)等が挙げられる。
 Bは、合成に用いた溶媒分子である。Bとしては、水;メタノール、エタノール等のアルコール類;アセトン等のケトン類;ジエチルエーテル、テトラヒドロフラン等のエーテル類;アセトニトリル等のニトリル類;クロロホルム等のハロゲン化炭化水素類;等が挙げられる。
{(M β ) 4 (OH) 4 (H 2 O) p (L β ) q } and {(M α 1 ) 4 (M α 2 ) 4 (L) in the composition formula represented by the formula (4). α 1 ) 12 (E) m } is as described above.
When A is a cation, such A includes Li + , Na + , K + , Rb + , Cs + , Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Ra 2+ , Co 2+ , Ni 2+, Sc 3+, Y 3+ , La 3+, Ce 3+, Pr 3+, Nd 3+, Pm 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+, Dy 3+, Ho 3+, Er 3+, Tm 3+, Yb 3+ , Lu 3+ and the like.
If A is an anion, as such A, O 2-, S 2-, Se 2-, Te 2-, F -, Cl -, Br -, I -, OH -, OAc - ( acetate ion ) Etc. can be mentioned.
B is the solvent molecule used for the synthesis. Examples of B include water; alcohols such as methanol and ethanol; ketones such as acetone; ethers such as diethyl ether and tetrahydrofuran; nitriles such as acetonitrile; halogenated hydrocarbons such as chloroform; and the like.
 式(4)で表される組成式を有する金属有機構造体の分子構造の一例として、クラスター(α)が、[RhZn(L-cys)12O]6-であり、クラスター(β)が、[Lu(OH)(HO)(OAc)5+である金属有機構造体の分子構造を図4に示す。 As an example of the molecular structure of the metal-organic framework having the composition formula represented by the formula (4), the cluster (α) is [Rh 4 Zn 4 (L—cys) 12 O] 6- , and the cluster (β). ) Is [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+ . The molecular structure of the metal-organic framework is shown in FIG.
 図4(a)は、金属有機構造体の結晶のパッキング構造図である。
 図4(b)は、金属有機構造体の結晶の模式図である。[RhZn(L-cys)12O]6-をピンク色の球で表し、[Lu(OH)(HO)(OAc)5+をオレンジ色の球で表している。
 図4(c)は、1つの[RhZn(L-cys)12O]6-と、その周りの3つの[Lu(OH)(HO)(OAc)5+が配位結合を形成している様子を表す図である。
 図4(d)は、1つの[Lu(OH)(HO)(OAc)5+と、その周りの3つの[RhZn(L-cys)12O]6-が配位結合を形成している様子を表す図である。
FIG. 4A is a packing structure diagram of crystals of a metal-organic framework.
FIG. 4B is a schematic diagram of crystals of a metal-organic framework. [Rh 4 Zn 4 (L-cys) 12 O] 6- is represented by a pink sphere, and [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+ is represented by an orange sphere. There is.
FIG. 4 (c) shows one [Rh 4 Zn 4 (L-cys) 12 O] 6- and three [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+ around it. Is a diagram showing how is forming a coordination bond.
FIG. 4 (d) shows one [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+ and three [Rh 4 Zn 4 (L-cys) 12 O] 6- around it. Is a diagram showing how is forming a coordination bond.
 図4(a)~(d)で示されるように、この金属有機構造体は、[Lu(OH)(HO)(OAc)5+と[RhZn(L-cys)12O]6-の間の配位結合によって形成された金属-有機高分子鎖を有するものである。 As shown in FIGS. 4 (a) to 4 (d), this metal-organic framework is composed of [Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 ] 5+ and [Rh 4 Zn 4 (L-). cys) 12 O] It has a metal-organic polymer chain formed by a coordination bond between 6-.
 本発明の金属有機構造体は、金属-有機高分子鎖内に、金属イオン(Mβイオン)を必須の構成要素とするキュバン型構造を有するものである。
 したがって、本発明の金属有機構造体は、磁気冷凍材料等の磁性材料、発光材料、触媒材料等の機能性材料として好適に利用することができる。
The metal-organic framework of the present invention has a cubane-type structure in which a metal ion (M β ion) is an essential component in a metal-organic polymer chain.
Therefore, the metal-organic framework of the present invention can be suitably used as a magnetic material such as a magnetic refrigeration material, a light emitting material, and a functional material such as a catalyst material.
 磁気冷凍材料は、磁気冷凍効果を有する物質である。磁気冷凍効果とは、磁場によるエントロピーの変化を利用した冷却方法である。すなわち、磁気冷凍材料に磁場を加えると、原子(イオン)の不対電子に起因する磁気モーメントが磁力線の方向へ規則的にそろえられ、エントロピーの減少分が熱として放出される。一方、磁気冷凍材料から磁場を取り去ると磁気モーメントの方向は不規則になり、エントロピーが増加するため、断熱状態では磁気冷凍材料の温度が低下する。このサイクルを利用することにより周囲を効率よく冷却することができる。 The magnetic refrigeration material is a substance that has a magnetic refrigeration effect. The magnetic refrigeration effect is a cooling method that utilizes a change in entropy due to a magnetic field. That is, when a magnetic field is applied to a magnetic refrigerated material, the magnetic moments caused by the unpaired electrons of atoms (ions) are regularly aligned in the direction of the magnetic field lines, and the reduced entropy is released as heat. On the other hand, when the magnetic field is removed from the magnetic refrigerated material, the direction of the magnetic moment becomes irregular and the entropy increases, so that the temperature of the magnetic refrigerated material decreases in the adiabatic state. By using this cycle, the surroundings can be cooled efficiently.
 一般に、Heを冷媒として用いる場合、2K程度の極低温を実現することができる。
 本発明の金属有機構造体は、そのような極低温条件における磁気冷凍材料として好適に用いられる。
 すなわち、本発明の金属有機構造体を構成するクラスター(β)は、キュバン型構造を含むものであるが、不対電子を有する金属イオンがキュバン型構造を構成する場合、スピン間の相互作用が生じ難い。このため、本発明の金属有機構造体においては、主として2K程度以下の温度領域において、磁場操作による磁気エントロピー変化が大きく、上記の極低温条件における磁気冷凍材料として適したものとなる。
 また、本発明の金属有機構造体においては、キュバン型構造が安定化されているとともに、キュバン型構造が規則性をもって集約されている。これらの点も、磁気冷凍効果に好ましい影響を与えていると考えられる。
In general, the 4 He is used as a refrigerant, it is possible to realize a very low temperature of about 2K.
The metal-organic framework of the present invention is suitably used as a magnetic refrigeration material under such cryogenic conditions.
That is, the cluster (β) constituting the metal-organic structure of the present invention contains a cubane-type structure, but when metal ions having unpaired electrons form a cubane-type structure, interaction between spins is unlikely to occur. .. Therefore, in the metal-organic framework of the present invention, the change in magnetic entropy due to the magnetic field operation is large mainly in the temperature region of about 2K or less, which makes it suitable as a magnetic refrigerating material under the above-mentioned extremely low temperature conditions.
Further, in the metal-organic framework of the present invention, the cubane-type structure is stabilized and the cubane-type structure is regularly integrated. These points are also considered to have a favorable effect on the magnetic refrigeration effect.
 本発明の金属有機構造体を磁気冷凍材料として用いる場合、キュバン型構造に含まれる金属イオンとしては、Gd3+イオンが好ましい。Gd3+イオンは、大きなスピン量子数を有し、最大スピン自由度が高いため、磁場に対する応答性も高く、磁気エントロピー変化が大きい。このため、より大きな冷却能力を有する磁気冷凍材料が得られ易い。 When the metal-organic structure of the present invention is used as a magnetic refrigeration material, Gd 3+ ions are preferable as the metal ions contained in the cubane-type structure. Since the Gd 3+ ion has a large spin quantum number and a high maximum spin degree of freedom, it has a high responsiveness to a magnetic field and a large change in magnetic entropy. Therefore, it is easy to obtain a magnetic refrigeration material having a larger cooling capacity.
2)金属有機構造体の製造方法
 本発明の金属有機構造体の製造方法は、金属-有機高分子鎖内にキュバン型構造を有する金属有機構造体の製造方法であって、金属イオン、及び、多座配位子を含むアニオン性多核金属錯体が、集積して結晶格子を形成し、結晶格子の隙間にカチオン種が存在するイオン流動型イオン性固体を、dブロック遷移金属のイオン又はfブロック遷移金属のイオンを含有する溶液と接触させる工程を有するものである。
2) Method for producing a metal-organic structure The method for producing a metal-organic structure of the present invention is a method for producing a metal-organic structure having a Cuban-type structure in a metal-organic polymer chain, and is a method for producing a metal ion and a metal-organic structure. Anionic polynuclear metal complexes containing polydentate ligands accumulate to form a crystal lattice, and an ionic flow type ionic solid in which a cation species exists in the gaps of the crystal lattice is an ion of a d-block transition metal or an f-block. It has a step of contacting with a solution containing an ion of a transition metal.
 イオン流動型イオン性固体としては、先に、金属有機構造体の発明の説明の中で示したものと同様のものが挙げられる。
 dブロック遷移金属のイオンやfブロック遷移金属のイオンとしては、先に、金属有機構造体の発明の説明の中で示したものと同様のものが挙げられる。
Examples of the ionic flow type ionic solid include those similar to those previously shown in the description of the invention of the metal-organic framework.
Examples of the d-block transition metal ion and the f-block transition metal ion include the same as those previously shown in the description of the invention of the metal-organic framework.
 dブロック遷移金属のイオン又はfブロック遷移金属のイオンを含有する溶液は、dブロック遷移金属のイオンの塩、又はfブロック遷移金属のイオンの塩を適当な溶媒に溶かすことで調製することができる。
 これらの塩に含まれるアニオンとしては、F、Cl、Br、I、OAc、NO 、SO 2-等が挙げられる。
A solution containing d-block transition metal ions or f-block transition metal ions can be prepared by dissolving a salt of d-block transition metal ions or a salt of f-block transition metal ions in an appropriate solvent. ..
The anion contained in the salts thereof, F -, Cl -, Br -, I -, OAc -, NO 3 -, SO 4 2- , and the like.
 キュバン型構造形成用の金属イオンを含有する溶液の溶媒は、イオン流動型イオン性固体や、本発明の金属有機構造体を溶解しないものであれば、特に制限されない。イオン流動型イオン性固体や、金属有機構造体の溶解性を調節するために、混合溶媒を用いてもよい。用いる溶媒の具体例としては、水;メタノール、エタノール、プロピルアルコール、イソプロピルアルコール等のアルコール類;及び、水とアルコール類との混合溶媒;等が挙げられる。 The solvent of the solution containing the metal ion for forming the cubane type structure is not particularly limited as long as it does not dissolve the ionic flow type ionic solid or the metal-organic structure of the present invention. A mixed solvent may be used to adjust the solubility of the ionic flow type ionic solid or the metal-organic framework. Specific examples of the solvent used include water; alcohols such as methanol, ethanol, propyl alcohol, and isopropyl alcohol; and a mixed solvent of water and alcohols; and the like.
 イオン流動型イオン性固体を、キュバン型構造形成用の金属イオンを含有する溶液と接触させる工程においては、接触操作、接触時間、接触温度は特に制限されない。
 例えば、イオン流動型イオン性固体をキュバン型構造形成用の金属イオンを含有する溶液に浸漬させ、そのまま、室温付近(例えば、5~25℃)で、1日から1月、好ましくは1週間程度静置することで、本発明の金属有機構造体を得ることができる。
In the step of contacting the ionic flow type ionic solid with the solution containing the metal ion for forming the cubane type structure, the contact operation, the contact time, and the contact temperature are not particularly limited.
For example, an ionic flow type ionic solid is immersed in a solution containing a metal ion for forming a cubane type structure, and is left as it is at around room temperature (for example, 5 to 25 ° C.) for 1 day to 1 month, preferably about 1 week. By standing still, the metal-organic structure of the present invention can be obtained.
 以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は、以下の実施例になんら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
〔合成例1〕K[RhZn(L-cys)12O]・47.5HOの合成
 WO2019/208753号の実施例1に記載の方法に従って、K[RhZn(L-cys)12O]・47.5HO(以下、「イオン流動型イオン性固体(1)」と記載することがある。)を合成した。
 イオン流動型イオン性固体(1)は、黄色固体であった。
[Synthesis Example 1] K 6 [Rh 4 Zn 4 (L-cys) 12 O] ・ Synthesis of 47.5H 2 O According to the method described in Example 1 of WO2019 / 208753, K 6 [Rh 4 Zn 4 (Synthesis Example 1) L-cys) 12 O] · 47.5H 2 O (hereinafter, may be referred to as “ionic flow type ionic solid (1)”) was synthesized.
The ionic flow type ionic solid (1) was a yellow solid.
〔合成例2〕K[IrZn(L-cys)12O]・40HOの合成
 合成例1において、Δ-H[Rh(L-cys)]に代えて、Δ-H[Ir(L-cys)]を用いたこと以外は、合成例1と同様にして、K[IrZn(L-cys)12O]・40HO(以下、「イオン流動型イオン性固体(2)」と記載することがある。)を合成した。
[Synthesis Example 2] K 6 [Ir 4 Zn 4 (L-cys) 12 O] · 40H 2 O Synthesis In Synthesis Example 1, Δ-H 3 [Rh (L-cys) 3 ] is replaced with Δ-. K 6 [Ir 4 Zn 4 (L-cys) 12 O] · 40H 2 O (hereinafter, “ion”, in the same manner as in Synthesis Example 1 except that H 3 [Ir (L-cys) 3] was used. It may be described as "flowable ionic solid (2)").
〔合成例3〕K[RhAg(L-cys)12]・nHOの合成
 WO2018/079831の実施例1において、水酸化リチウムの代わりに水酸化カリウムを用いたこと以外は、WO2018/079831の実施例1に記載の方法に従って、K[RhAg(L-cys)12]・nHO(以下、「イオン流動型イオン性固体(3)」と記載することがある。)を合成した。
In Synthesis Example 3] K 8 [Rh 4 Ag 4 ( L-cys) 12] · nH 2 O Example 1 Synthesis WO2018 / 079831, and except for using potassium hydroxide instead of lithium hydroxide, according to the method described in example 1 of WO2018 / 079831, K 8 [Rh 4 Ag 4 (L-cys) 12] · nH 2 O ( hereinafter, may be referred to as "ion fluidized ionic solid (3)" There is.) Was synthesized.
 なお、これら以外のイオン流動性固体に関しても、例えば、WO2019/208753号や、WO2018/079831号を参考にして製造することが出来る。 It should be noted that other ionic fluid solids can also be manufactured with reference to, for example, WO2019 / 208753 and WO2018 / 079831.
 以下の実施例で得られた金属有機構造体について、それぞれ以下の分析を行った。
〔蛍光X線分析〕
 測定用試料を、マイラーフィルムを貼ったポリテトラフルオロエチレン製試料セルに導入し、エネルギー分散型蛍光X線分析装置(島津製作所社製、EDX-7000)を用いて、真空下で蛍光X線分析を行った。
 得られたLn、Zn、Kの各強度から、亜鉛原子の数に対するランタノイド原子の数(Ln/Zn)と、亜鉛原子の数に対するカリウム原子の数(K/Zn)とを算出した。
 実施例で合成した金属有機構造体のクラスター(α)に含まれる亜鉛原子の数が4であることから、Ln/Znが1付近の値であれば、金属有機構造体は、クラスター(α)と等量の4核のキュバン型構造を有していることが予想される。
 また、K/Znの値から、出発物質のイオン流動型イオン性固体に近い構造が、どの程度残存しているかが分かる。
 なお、後述する実施例で得られた「キュバン型構造を有する金属有機構造体」については、全ての実施例において生成物について蛍光X線分析を行い、分析結果を組成の決定に利用した。
The following analysis was performed on the metal-organic frameworks obtained in the following examples.
[Fluorescent X-ray analysis]
The measurement sample was introduced into a polytetrafluoroethylene sample cell with a Mylar film attached, and X-ray fluorescence analysis was performed under vacuum using an energy dispersive X-ray fluorescence analyzer (EDX-7000, manufactured by Shimadzu Corporation). Was done.
From the obtained strengths of Ln, Zn, and K, the number of lanthanoid atoms (Ln / Zn) with respect to the number of zinc atoms and the number of potassium atoms (K / Zn) with respect to the number of zinc atoms were calculated.
Since the number of zinc atoms contained in the cluster (α) of the metal-organic framework synthesized in the examples is 4, if Ln / Zn is a value near 1, the metal-organic framework is cluster (α). It is expected to have a cubane-type structure of four nuclei with the same amount.
Further, from the value of K / Zn, it can be seen to what extent the structure similar to the ionic flow type ionic solid of the starting material remains.
Regarding the "metal-organic framework having a cubane-type structure" obtained in the examples described later, fluorescent X-ray analysis was performed on the products in all the examples, and the analysis results were used to determine the composition.
〔粉末X線回折〕
 キャピラリー管に粉体サンプルを導入し、これを密封した。キャピラリー管を回転させながらX線を照射し、粉末X線回折像を得た。
 測定装置としては、SPring-8 BL02B2に装備されている粉末X線回折装置を使用した(λ=1.0Å、検出器:MYTHEN microstrip X-ray detector、Dectris社製)。
 鋭い回折像を示した場合、固体が結晶性を有していることがわかる。
 特に、実施例で得られた金属有機構造体に関しては、2θ=4°付近に現れる(111)面由来のピークが、2θ=5°付近に現れる(200)面由来のピークよりも小さい場合、キュバン型構造が形成されていることを示唆する。
 実施例1~8で得られた金属有機構造体についての測定結果を図5に示す。
[Powder X-ray diffraction]
A powder sample was introduced into a capillary tube and sealed. X-rays were irradiated while rotating the capillary tube, and a powder X-ray diffraction image was obtained.
As a measuring device, a powder X-ray diffractometer equipped in SPring-8 BL02B2 was used (λ = 1.0 Å, detector: MYTHEN microtrip X-ray detector, manufactured by Detector).
When a sharp diffraction image is shown, it can be seen that the solid has crystallinity.
In particular, regarding the metal-organic framework obtained in the examples, when the peak derived from the (111) plane appearing near 2θ = 4 ° is smaller than the peak derived from the (200) plane appearing near 2θ = 5 °, It suggests that a cubane-type structure is formed.
The measurement results for the metal-organic frameworks obtained in Examples 1 to 8 are shown in FIG.
〔単結晶X線結晶構造解析〕
 金属有機構造体について、100Kの温度に調整した窒素気流下で単結晶X線結晶構造解析を行った。
 測定装置としては、Pohang Accelerator Laboratory (PAL,韓国浦項市)BL-2Dに装備されている単結晶X線回折装置を使用した(λ=0.62997Å、検出器:MX225HS、Rayonic社製)。
 実施例1~8で得られた金属有機構造体中のキュバン型構造を図6に示す。
 なお、以下の実施例で得られた「キュバン型構造を有する金属有機構造体」については、実施例1~8以外の実施例で得られたものについても単結晶X線結晶構造解析を行い、その構造を確認した。
[Single crystal X-ray crystal structure analysis]
A single crystal X-ray crystal structure analysis was performed on the metal-organic framework under a nitrogen stream adjusted to a temperature of 100 K.
As a measuring device, a single crystal X-ray diffractometer equipped in Pohang Accelerator Laboratory (PAL, Pohang City, South Korea) BL-2D was used (λ = 0.62997Å, detector: MX225HS, manufactured by Rayonic).
The cubane-type structure in the metal-organic framework obtained in Examples 1 to 8 is shown in FIG.
Regarding the "metal-organic framework having a cubane-type structure" obtained in the following examples, single crystal X-ray crystal structure analysis was also performed on those obtained in examples other than Examples 1 to 8. I confirmed the structure.
〔実施例1〕
 イオン流動型イオン性固体(1)100mgを、0.02M酢酸ルテチウム〔Lu(OAc)〕溶液〔水/エタノール(v/v=1/3)〕20mLに浸し、そのまま静置した。1週間後、デカンテーションにより上澄み液を除去し、残った黄色固体を、0.1M酢酸ルテチウム水溶液20mLに浸し、さらに1週間静置した。
 次いで、固体を濾取して、これを乾燥した。収量は100mg(収率90%)であった。
 蛍光X線分析、粉末X線回折、及び単結晶X線結晶構造解析の結果、得られた固体は、キュバン型構造を有する金属有機構造体〔Lu0.33[{Lu(OH)(HO)(OAc)}{RhZn(L-cys)12O}]・nHO〕であることが分かった。
[Example 1]
Ion flow type ionic solid (1) 100 mg was immersed in 20 mL of 0.02 M lutetium acetate [Lu (OAc) 3 ] solution [water / ethanol (v / v = 1/3)] and allowed to stand as it was. After 1 week, the supernatant was removed by decantation, and the remaining yellow solid was immersed in 20 mL of a 0.1 M lutetium acetate aqueous solution and allowed to stand for another week.
The solid was then collected by filtration and dried. The yield was 100 mg (yield 90%).
As a result of fluorescent X-ray analysis, powder X-ray diffraction, and single crystal X-ray crystal structure analysis, the obtained solid is a metal-organic framework having a Cuban-type structure [Lu 0.33 [{Lu 4 (OH) 4 ( H 2 O) 7 (OAc) 3 } {Rh 4 Zn 4 (L-cys) 12 O}] · nH 2 O].
〔実施例2〕
 実施例1において、酢酸ルテチウム溶液の代わりに、酢酸イットリビウム〔Yb(OAc)〕溶液〔水/エタノール(v/v=1/3)〕を用いたこと以外は、実施例1と同様にして、キュバン型構造を有する金属有機構造体〔Yb0.33[{Yb(OH)(HO)(OAc)}{RhZn(L-cys)12O}]・nHO〕を得た。
[Example 2]
In Example 1, the same procedure as in Example 1 except that ytterbium acetate [Yb (OAc) 3 ] solution [water / ethanol (v / v = 1/3)] was used instead of the lutetium acetate solution. , Metallic organic structure with Cuban-type structure [Yb 0.33 [{Yb 4 (OH) 4 (H 2 O) 7 (OAc) 3 } {Rh 4 Zn 4 (L-cys) 12 O}] · nH 2 O] was obtained.
〔実施例3〕
 実施例1において、酢酸ルテチウム溶液の代わりに、酢酸ツリウム〔Tm(OAc)〕溶液〔水/エタノール(v/v=1/3)〕を用いたこと以外は、実施例1と同様にして、キュバン型構造を有する金属有機構造体〔Tm0.33[{Tm(OH)(HO)(OAc)}{RhZn(L-cys)12O}]・nHO〕を得た。
[Example 3]
In Example 1, the same procedure as in Example 1 except that a thulium acetate [Tm (OAc) 3 ] solution [water / ethanol (v / v = 1/3)] was used instead of the lutetium acetate solution. , Metallic organic structure with Cuban-type structure [Tm 0.33 [{Tm 4 (OH) 4 (H 2 O) 7 (OAc) 3 } {Rh 4 Zn 4 (L-cys) 12 O}] · nH 2 O] was obtained.
〔実施例4〕
 実施例1において、酢酸ルテチウム溶液の代わりに、酢酸エルビウム〔Er(OAc)〕溶液〔水/エタノール(v/v=1/3)〕を用いたこと以外は、実施例1と同様にして、キュバン型構造を有する金属有機構造体〔Er0.33[{Er(OH)(HO)(OAc)}{RhZn(L-cys)12O}]・nHO〕を得た。
[Example 4]
In Example 1, the same procedure as in Example 1 except that an erbium acetate [Er (OAc) 3 ] solution [water / ethanol (v / v = 1/3)] was used instead of the lutetium acetate solution. , Metallic organic structure with cubane-type structure [Er 0.33 [{Er 4 (OH) 4 (H 2 O) 7 (OAc) 3 } {Rh 4 Zn 4 (L-cys) 12 O}] · nH 2 O] was obtained.
〔実施例5〕
 実施例1において、酢酸ルテチウム溶液の代わりに、酢酸ホルミウム〔Ho(OAc)〕溶液〔水/エタノール(v/v=1/3)〕を用いたこと以外は、実施例1と同様にして、キュバン型構造を有する金属有機構造体〔Ho0.33[{Ho(OH)(HO)(OAc)}{RhZn(L-cys)12O}]・nHO〕を得た。
[Example 5]
In Example 1, the same procedure as in Example 1 except that a holmium acetate [Ho (OAc) 3 ] solution [water / ethanol (v / v = 1/3)] was used instead of the lutetium acetate solution. , Metallic organic structure with Cuban-type structure [Ho 0.33 [{Ho 4 (OH) 4 (H 2 O) 7 (OAc) 3 } {Rh 4 Zn 4 (L-cys) 12 O}] · nH 2 O] was obtained.
〔実施例6〕
 実施例1において、酢酸ルテチウム溶液の代わりに、酢酸ジスプロシウム〔Dy(OAc)〕溶液〔水/エタノール(v/v=1/3)〕を用いたこと以外は、実施例1と同様にして、キュバン型構造を有する金属有機構造体〔Dy0.33[{Dy(OH)(HO)(OAc)}{RhZn(L-cys)12O}]・nHO〕を得た。
[Example 6]
In Example 1, the same procedure as in Example 1 except that a dysprosium acetate [Dy (OAc) 3 ] solution [water / ethanol (v / v = 1/3)] was used instead of the lutetium acetate solution. , Metallic organic structure with Cuban-type structure [Dy 0.33 [{Dy 4 (OH) 4 (H 2 O) 7 (OAc) 3 } {Rh 4 Zn 4 (L-cys) 12 O}] · nH 2 O] was obtained.
〔実施例7〕
 実施例1において、酢酸ルテチウム溶液の代わりに、酢酸テルビウム〔Tb(OAc)〕溶液〔水/エタノール(v/v=1/3)〕を用いたこと以外は、実施例1と同様にして、キュバン型構造を有する金属有機構造体〔Tb0.33[{Tb(OH)(HO)(OAc)}{RhZn(L-cys)12O}]・nHO〕を得た。
[Example 7]
In Example 1, the same procedure as in Example 1 except that a terbium acetate [Tb (OAc) 3 ] solution [water / ethanol (v / v = 1/3)] was used instead of the lutetium acetate solution. , Metal-organic framework with cubane-type structure [Tb 0.33 [{Tb 4 (OH) 4 (H 2 O) 7 (OAc) 3 } {Rh 4 Zn 4 (L-cys) 12 O}] · nH 2 O] was obtained.
〔実施例8〕
 実施例1において、酢酸ルテチウム溶液の代わりに、酢酸ガドリニウム〔Gd(OAc)〕溶液〔水/エタノール(v/v=1/3)〕を用いたこと以外は、実施例1と同様にして、キュバン型構造を有する金属有機構造体〔Gd0.33[{Gd(OH)(HO)(OAc)}{RhZn(L-cys)12O}]・nHO〕を得た。
[Example 8]
In Example 1, the same procedure as in Example 1 except that a gadolinium acetate [Gd (OAc) 3 ] solution [water / ethanol (v / v = 1/3)] was used instead of the lutetium acetate solution. , Metallic organic structure with Cuban-type structure [Gd 0.33 [{Gd 4 (OH) 4 (H 2 O) 7 (OAc) 3 } {Rh 4 Zn 4 (L-cys) 12 O}] · nH 2 O] was obtained.
〔実施例9〕
 イオン流動型イオン性固体(1)100mgを、0.1M酢酸コバルト〔Co(OAc)〕溶液〔水/エタノール(v/v=1/3)〕20mLに浸し、そのまま静置した。1週間後、デカンテーションにより上澄み液を除去し、残ったピンク色固体を、水/エタノール混合溶媒(v/v=1/3)に浸し、さらに1週間静置した。
 次いで、固体を濾取して、これを乾燥した。収量は100mg(90%)であった。
 蛍光X線分析、粉末X線回折、及び単結晶X線結晶構造解析の結果、得られた固体は、キュバン型構造を有する金属有機構造体〔Co[{Co(OH)(HO)}{RhZn(L-cys)12O}]・nHO〕であることが分かった。
[Example 9]
100 mg of the ionic flow type ionic solid (1) was immersed in 20 mL of a 0.1 M cobalt acetate [Co (OAc) 2 ] solution [water / ethanol (v / v = 1/3)] and allowed to stand as it was. After 1 week, the supernatant was removed by decantation, and the remaining pink solid was immersed in a water / ethanol mixed solvent (v / v = 1/3) and allowed to stand for another week.
The solid was then collected by filtration and dried. The yield was 100 mg (90%).
As a result of fluorescent X-ray analysis, powder X-ray diffraction, and single crystal X-ray crystal structure analysis, the obtained solid is a metal-organic framework having a Cuban-type structure [Co [{Co 4 (OH) 4 (H 2 O). ) 9 } {Rh 4 Zn 4 (L-cys) 12 O}] · nH 2 O].
〔実施例10〕
 実施例9において、酢酸コバルト溶液の代わりに、酢酸ニッケル〔Ni(OAc)〕溶液〔水/エタノール(v/v=1/3)〕を用いたこと以外は、実施例9と同様にして、キュバン型構造を有する金属有機構造体〔Ni[{Ni(OH)(HO)}{RhZn(L-cys)12O}]・nHO〕を得た。
[Example 10]
In Example 9, the same procedure as in Example 9 except that a nickel acetate [Ni (OAc) 2 ] solution [water / ethanol (v / v = 1/3)] was used instead of the cobalt acetate solution. , A metal organic structure having a Cuban-type structure [Ni [{Ni 4 (OH) 4 (H 2 O) 9 } {Rh 4 Zn 4 (L-cys) 12 O}] · nH 2 O] was obtained.
〔実施例11〕
 実施例9において、酢酸コバルト溶液の代わりに、酢酸銅〔Cu(OAc)〕溶液〔水/エタノール(v/v=1/3)〕を用いたこと以外は、実施例9と同様にして、キュバン型構造を有する金属有機構造体〔Cu[{Cu(OH)(HO)}{RhZn(L-cys)12O}]・nHO〕を得た。
[Example 11]
In the same manner as in Example 9 except that a copper acetate [Cu (OAc) 2 ] solution [water / ethanol (v / v = 1/3)] was used instead of the cobalt acetate solution. , A metal organic structure having a Cuban-type structure [Cu [{Cu 4 (OH) 4 (H 2 O) 9 } {Rh 4 Zn 4 (L-cys) 12 O}] · nH 2 O] was obtained.
〔実施例12〕
 実施例7において、イオン流動型イオン性固体(1)の代わりに、イオン流動型イオン性固体(2)を用いたこと以外は、実施例7と同様にして、キュバン型構造を有する金属有機構造体〔[{Tb(OH)(OAc)}{IrZn(L-cys)12O}]・nHO〕を得た。
[Example 12]
A metal-organic structure having a cubane-type structure is the same as in Example 7, except that the ionic flow-type ionic solid (2) is used instead of the ionic flow-type ionic solid (1) in Example 7. The body [[{Tb 4 (OH) 4 (OAc) 2 } {Ir 4 Zn 4 (L-cys) 12 O}] · nH 2 O] was obtained.
〔実施例13〕
 実施例1において、イオン流動型イオン性固体(1)の代わりに、イオン流動型イオン性固体(2)を用いたこと以外は、実施例1と同様にして、キュバン型構造を有する金属有機構造体〔Lu0.33[{Lu(OH)(HO)(OAc)}{IrZn(L-cys)12O}]・nHO〕を得た。
[Example 13]
A metal organic structure having a cubane-type structure in the same manner as in Example 1 except that the ionic flow type ionic solid (2) was used instead of the ionic flow type ionic solid (1) in Example 1. The body [Lu 0.33 [{Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 } {Ir 4 Zn 4 (L-cys) 12 O}] · nH 2 O] was obtained.
〔実施例14〕
 実施例13において、酢酸ルテチウム溶液の代わりに、酢酸イットリビウム〔Yb(OAc)〕溶液〔水/エタノール(v/v=1/3)〕を用いたこと以外は、実施例13と同様にして、キュバン型構造を有する金属有機構造体〔Yb0.33[{Yb(OH)(HO)(OAc)}{IrZn(L-cys)12O}]・nHO〕を得た。
[Example 14]
In Example 13, the same procedure as in Example 13 except that ytterbium acetate [Yb (OAc) 3 ] solution [water / ethanol (v / v = 1/3)] was used instead of the lutetium acetate solution. , Metallic organic structure with Cuban-type structure [Yb 0.33 [{Yb 4 (OH) 4 (H 2 O) 7 (OAc) 3 } {Ir 4 Zn 4 (L-cys) 12 O}] · nH 2 O] was obtained.
〔実施例15〕
 実施例13において、酢酸ルテチウム溶液の代わりに、酢酸ツリウム〔Tm(OAc)〕溶液〔水/エタノール(v/v=1/3)〕を用いたこと以外は、実施例13と同様にして、キュバン型構造を有する金属有機構造体〔Tm0.33[{Tm(OH)(HO)(OAc)}{IrZn(L-cys)12O}]・nHO〕を得た。
[Example 15]
In Example 13, the same procedure as in Example 13 except that a thulium acetate [Tm (OAc) 3 ] solution [water / ethanol (v / v = 1/3)] was used instead of the lutetium acetate solution. , Metallic organic structure with Cuban-type structure [Tm 0.33 [{Tm 4 (OH) 4 (H 2 O) 7 (OAc) 3 } {Ir 4 Zn 4 (L-cys) 12 O}] · nH 2 O] was obtained.
〔実施例16〕
 実施例13において、酢酸ルテチウム溶液の代わりに、酢酸エルビウム〔Er(OAc)〕溶液〔水/エタノール(v/v=1/3)〕を用いたこと以外は、実施例13と同様にして、キュバン型構造を有する金属有機構造体〔Er0.33[{Er(OH)(HO)(OAc)}{IrZn(L-cys)12O}]・nHO〕を得た。
[Example 16]
In Example 13, the same procedure as in Example 13 except that an erbium acetate [Er (OAc) 3 ] solution [water / ethanol (v / v = 1/3)] was used instead of the lutetium acetate solution. , Metallic organic structure with cubane-type structure [Er 0.33 [{Er 4 (OH) 4 (H 2 O) 7 (OAc) 3 } {Ir 4 Zn 4 (L-cys) 12 O}] · nH 2 O] was obtained.
〔実施例17〕
 実施例13において、酢酸ルテチウム溶液の代わりに、酢酸ホルミウム〔Ho(OAc)〕溶液〔水/エタノール(v/v=1/3)〕を用いたこと以外は、実施例13と同様にして、キュバン型構造を有する金属有機構造体〔Ho0.33[{Ho(OH)(HO)(OAc)}{IrZn(L-cys)12O}]・nHO〕を得た。
[Example 17]
In Example 13, the same procedure as in Example 13 except that a holmium acetate [Ho (OAc) 3 ] solution [water / ethanol (v / v = 1/3)] was used instead of the lutetium acetate solution. , Metallic organic structure with Cuban-type structure [Ho 0.33 [{Ho 4 (OH) 4 (H 2 O) 7 (OAc) 3 } {Ir 4 Zn 4 (L-cys) 12 O}] · nH 2 O] was obtained.
〔実施例18〕
 実施例13において、酢酸ルテチウム溶液の代わりに、酢酸ジスプロシウム〔Dy(OAc)〕溶液〔水/エタノール(v/v=1/3)〕を用いたこと以外は、実施例13と同様にして、キュバン型構造を有する金属有機構造体〔Dy0.33[{Dy(OH)(HO)(OAc)}{IrZn(L-cys)12O}]・nHO〕を得た。
[Example 18]
In Example 13, the same procedure as in Example 13 except that a dysprosium acetate [Dy (OAc) 3 ] solution [water / ethanol (v / v = 1/3)] was used instead of the lutetium acetate solution. , Metallic organic structure with Cuban-type structure [Dy 0.33 [{Dy 4 (OH) 4 (H 2 O) 7 (OAc) 3 } {Ir 4 Zn 4 (L-cys) 12 O}] · nH 2 O] was obtained.
〔実施例19〕
 実施例13において、酢酸ルテチウム溶液の代わりに、酢酸ガドリニウム〔Gd(OAc)〕溶液〔水/エタノール(v/v=1/3)〕を用いたこと以外は、実施例13と同様にして、キュバン型構造を有する金属有機構造体〔Gd0.33[{Gd(OH)(HO)(OAc)}{IrZn(L-cys)12O}]・nHO〕を得た。
[Example 19]
In Example 13, the same procedure as in Example 13 except that a gadolinium acetate [Gd (OAc) 3 ] solution [water / ethanol (v / v = 1/3)] was used instead of the lutetium acetate solution. , Metallic organic structure with Cuban-type structure [Gd 0.33 [{Gd 4 (OH) 4 (H 2 O) 7 (OAc) 3 } {Ir 4 Zn 4 (L-cys) 12 O}] · nH 2 O] was obtained.
〔実施例20〕
 実施例1において、酢酸ルテチウム溶液の代わりに、プロピオン酸イットリビウム〔Yb(OAc)〕溶液〔水/エタノール(v/v=1/3)〕を用いたこと以外は、実施例1と同様にして、キュバン型構造を有する金属有機構造体〔Yb0.33[{Yb(OH)(HO)(OPr)}{RhZn(L-cys)12O}]・nHO〕を得た。
[Example 20]
Same as in Example 1 except that ytterbium propionate [Yb (OAc) 3 ] solution [water / ethanol (v / v = 1/3)] was used instead of the lutetium acetate solution. A metal organic structure having a Cuban-type structure [Yb 0.33 [{Yb 4 (OH) 4 (H 2 O) 7 (OPr) 3 } {Rh 4 Zn 4 (L-cys) 12 O}]. nH 2 O] was obtained.
〔実施例21〕
 実施例1において、イオン流動型イオン性固体(1)の代わりに、イオン流動型イオン性固体(3)を用いたこと以外は、実施例1と同様にして、キュバン型構造を有する金属有機構造体〔Lu[{Lu(OH)(HO)(OAc)}{RhAg(L-cys)12}].nHO〕を得た。
[Example 21]
A metal-organic structure having a cubane-type structure in the same manner as in Example 1 except that the ionic flow type ionic solid (3) was used instead of the ionic flow type ionic solid (1) in Example 1. Body [Lu [{Lu 4 (OH) 4 (H 2 O) 7 (OAc) 3 } {Rh 4 Ag 4 (L-cys) 12 }]. nH 2 O] was obtained.
〔実施例22〕
 実施例21において、酢酸ルテチウム溶液の代わりに、酢酸イットリビウム〔Yb(OAc)〕溶液〔水/エタノール(v/v=1/3)〕を用いたこと以外は、実施例21と同様にして、キュバン型構造を有する金属有機構造体〔Yb[{Yb(OH)(HO)(OAc)}{RhAg(L-cys)12}].nHO〕を得た。
[Example 22]
In Example 21, the same procedure as in Example 21 except that ytterbium acetate [Yb (OAc) 3 ] solution [water / ethanol (v / v = 1/3)] was used instead of the lutetium acetate solution. , Metallic organic structure having a Cuban-type structure [Yb [{Yb 4 (OH) 4 (H 2 O) 7 (OAc) 3 } {Rh 4 Ag 4 (L-cys) 12 }]. nH 2 O] was obtained.
〔実施例23〕
 実施例21において、酢酸ルテチウム溶液の代わりに、酢酸ツリウム〔Tm(OAc)〕溶液〔水/エタノール(v/v=1/3)〕を用いたこと以外は、実施例21と同様にして、キュバン型構造を有する金属有機構造体〔Tm[{Tm(OH)(HO)(OAc)}{RhAg(L-cys)12}].nHO〕を得た。
[Example 23]
In Example 21, the same procedure as in Example 21 except that a thulium acetate [Tm (OAc) 3 ] solution [water / ethanol (v / v = 1/3)] was used instead of the lutetium acetate solution. , Metallic organic structure having a Cuban-type structure [Tm [{Tm 4 (OH) 4 (H 2 O) 7 (OAc) 3 } {Rh 4 Ag 4 (L-cys) 12 }]. nH 2 O] was obtained.
〔実施例24〕
 実施例21において、酢酸ルテチウム溶液の代わりに、酢酸エルビウム〔Er(OAc)〕溶液〔水/エタノール(v/v=1/3)〕を用いたこと以外は、実施例21と同様にして、キュバン型構造を有する金属有機構造体〔Er[{Er(OH)(HO)(OAc)}{RhAg(L-cys)12}].nHO〕を得た。
[Example 24]
In Example 21, the same procedure as in Example 21 except that an erbium acetate [Er (OAc) 3 ] solution [water / ethanol (v / v = 1/3)] was used instead of the lutetium acetate solution. , Metallic organic structure having a Cuban-type structure [Er [{Er 4 (OH) 4 (H 2 O) 7 (OAc) 3 } {Rh 4 Ag 4 (L-cys) 12 }]. nH 2 O] was obtained.
〔磁化率測定〕
 実施例2~8で得られた金属有機構造体を測定試料としてそれぞれ用いて、磁場0.1T、温度範囲2-300Kの条件で、直流磁化率測定を行った。
 測定装置としては、MPMS-2(カンタムデザイン社製)を使用した。
 測定結果を図7に示す。
[Measurement of magnetic susceptibility]
Using the metal-organic frameworks obtained in Examples 2 to 8 as measurement samples, the DC magnetic susceptibility was measured under the conditions of a magnetic field of 0.1 T and a temperature range of 2-300 K.
As a measuring device, MPMS-2 (manufactured by Quantum Design Co., Ltd.) was used.
The measurement results are shown in FIG.
〔発光特性〕
 実施例12で得られた金属有機構造体〔[{Tb(OH)(OAc)}{IrZn(L-cys)12O}]・nHO〕を固体試料として用いて、発光特性を調べた。
 測定装置として、蛍光分光光度計、FP-8500(日本分光社製)を使用し、室温(25℃)で測定を行った。
 発光スペクトルの測定は、励起波長350nmにて行い、励起スペクトルの測定は、発光波長544nmにて行った。
 測定結果を図8に示す。図8中、420~750nmの範囲のスペクトル(赤線)は、発光スペクトルであり、250~480nmの範囲のスペクトル(黒線)は、励起スペクトルである。
 発光スペクトルの鋭い信号は、いずれもTb3+イオン由来の発光と帰属される(489nm:、544nm:、584nm:、620nm:)。
[Light emission characteristics]
Using the metal-organic framework obtained in Example 12 [[{Tb 4 (OH) 4 (OAc) 2 } {Ir 4 Zn 4 (L-cys) 12 O}]], nH 2 O] as a solid sample. , The emission characteristics were investigated.
A fluorescence spectrophotometer, FP-8500 (manufactured by JASCO Corporation) was used as a measuring device, and measurement was performed at room temperature (25 ° C.).
The emission spectrum was measured at an excitation wavelength of 350 nm, and the excitation spectrum was measured at an emission wavelength of 544 nm.
The measurement results are shown in FIG. In FIG. 8, the spectrum in the range of 420 to 750 nm (red line) is the emission spectrum, and the spectrum in the range of 250 to 480 nm (black line) is the excitation spectrum.
Sharp signal emission spectra are all attributed with emission from Tb 3+ ions (489nm: 5 D 4 → 7 F 6, 544nm: 5 D 4 → 7 F 5, 584nm: 5 D 4 → 7 F 4, 620 nm: 5 D 47 F 3 ).
 実施例8で得られた金属有機構造体〔Gd0.33[{Gd(OH)(HO)(OAc)}{RhZn(L-cys)12O}]・nHO〕を固体試料として用いて、以下のように、磁気冷凍効果を調べた。
 金属材料の渦電流による温度変化を防ぐため、絶縁材料であるベークライト製のセルステージ(直径2cm)に10kΩルテニウムオキサイド抵抗温度計を2つ(試料用および参照用)設置し、熱浴を作製した。熱浴を構成する試料用の抵抗温度計に136.9μgの固体試料を設置した。この熱浴を、2.0-10.0Kの各温度に設定した超電導マグネット(英国クライオジェニックス社製 8T)に導入し、2.2T/minの速度で、0Tから5Tに磁場印加したところ、2.33Kの温度上昇を観測した。さらに、5T印加を維持したまま4.0Kに冷却されたのを確認した後に、2.2T/minの速度で5Tから0Tに磁場低減した場合には2.76Kの温度低下を観測した。さらに、磁場の掃引速度を3.54T/minに上昇させた場合には、温度低下が最大で3.26Kまで増加し、試料温度は1K以下の0.74Kまで到達した。磁場と温度の変化の状況を図9、10に示す。
 このように、本発明の金属有機構造体を用いることで、Heなどを使わずに磁場の印加で1K以下の極低温をつくることができる。この温度変化は、キュバン構造のため大きな磁気モーメントをもちながら、秩序形成を起こさず常磁性的になっている試料中のGdイオンに由来する磁気冷凍効果の存在を示す。
Metal-organic framework obtained in Example 8 [Gd 0.33 [{Gd 4 (OH) 4 (H 2 O) 7 (OAc) 3 } {Rh 4 Zn 4 (L-cys) 12 O}]. Using nH 2 O] as a solid sample, the magnetic refrigeration effect was investigated as follows.
In order to prevent the temperature change due to the eddy current of the metal material, two 10 kΩ ruthenium oxide resistance thermometers (one for the sample and one for reference) were installed on the cell stage (diameter 2 cm) made of Bakelite, which is an insulating material, and a hot bath was prepared. .. A 136.9 μg solid sample was placed in a resistance thermometer for the samples constituting the heat bath. This heat bath was introduced into a superconducting magnet (8T manufactured by Cryogenics, UK) set at each temperature of 2.0-10.0K, and a magnetic field was applied from 0T to 5T at a speed of 2.2T / min. A temperature rise of 2.33 K was observed. Further, after confirming that the temperature was cooled to 4.0 K while maintaining the application of 5 T, a temperature drop of 2.76 K was observed when the magnetic field was reduced from 5 T to 0 T at a speed of 2.2 T / min. Further, when the sweep speed of the magnetic field was increased to 3.54 T / min, the temperature drop increased up to 3.26 K, and the sample temperature reached 0.74 K, which was 1 K or less. The changes in the magnetic field and temperature are shown in FIGS. 9 and 10.
As described above, by using the metal-organic framework of the present invention, it is possible to create an extremely low temperature of 1 K or less by applying a magnetic field without using 3 He or the like. This temperature change indicates the existence of a magnetic refrigeration effect derived from Gd ions in the sample, which has a large magnetic moment due to the cubane structure but does not cause order formation and is paramagnetic.
〔参考例1〕K[CoZn(L-cys)12O]・nHOの合成
 WO2018/079831号の実施例2に記載の方法に従って、K[CoZn(L-cys)12O]・nHOを合成した。
[Reference Example 1] K 6 [Co 4 Zn 4 (L-cys) 12 O] ・Synthesis of nH 2 O According to the method described in Example 2 of WO2018 / 079831, K 6 [Co 4 Zn 4 (L-). cys) 12 O] ・ nH 2 O was synthesized.
〔参考例2〕K[CoAg(L-cys)12]・nHOの合成
 WO2018/079831号の実施例3に記載の方法に従って、K[CoAg(L-cys)12]・nHOを合成した。
[Reference Example 2] K 8 [Co 4 Ag 4 (L-cys) 12 ] ・Synthesis of nH 2 O According to the method described in Example 3 of WO2018 / 079831, K 8 [Co 4 Ag 4 (L-cys) ) 12] · nH the 2 O was synthesized.
〔参考例3〕Na[RhCu(L-cys)12]・nHOの合成
 Chem.Commun.,2021,57,5386-5389に記載の方法に従って、目的の化合物を合成した。すなわち、Δ-H[Rh(L-cys)]とCuClの1:1の混合物を水酸化ナトリウム水溶液で処理をして所定の操作を行いNa[RhCu(L-cys)12]・nHOを合成した。
Reference Example 3] Na 8 [Rh 4 Cu 4 ( L-cys) 12] · nH 2 O synthesis in Chem. Common. , 2021, 57, 5386-5389 to synthesize the compound of interest. That is, a 1: 1 mixture of Δ-H 3 [Rh (L-cys) 3 ] and CuCl was treated with an aqueous solution of sodium hydroxide and a predetermined operation was performed to perform Na 8 [Rh 4 Cu 4 (L-cys). 12] · nH the 2 O was synthesized.
〔参考例4〕Na[RhCu(L-cys)12O]・nHOの合成
 参考例3において、CuClの代わりにCuClを用いたこと以外は、参考例3と同様の操作を行い、Na[RhCu(L-cys)12O]・nHOを合成した。
[Reference Example 4] Synthesis of Na 8 [Rh 4 Cu 4 (L-cys) 12 O] and nH 2 O Similar to Reference Example 3 except that CuCl 2 was used instead of CuCl in Reference Example 3. An operation was performed to synthesize Na 8 [Rh 4 Cu 4 (L-cys) 12 O] and nH 2 O.
〔参考例5〕Na[IrCu(L-cys)12]・nHOの合成
 参考例3において、Δ-H[Rh(L-cys)]の代わりにΔ-H[Ir(L-cys)]を用いたこと以外は、参考例3と同様の操作を行い、Na[IrCu(L-cys)12]・nHOを合成した。
[Reference Example 5] Synthesis of Na 6 [Ir 4 Cu 4 (L-cys) 12 ] and nH 2 O In Reference Example 3, Δ-H 3 is used instead of Δ-H 3 [Rh (L-cys) 3]. The same operation as in Reference Example 3 was carried out except that [Ir (L-cys) 3 ] was used, and Na 6 [Ir 4 Cu 4 (L-cys) 12 ] and nH 2 O were synthesized.
〔参考例6〕K[RhHg(L-cys)12O]・nHOの合成
 WO2019/208753号の実施例1において、ZnBrの代わりにHg(ClO)を用いたこと以外は、WO2019/208753号の実施例1と同様の操作を行い、K[RhHg(L-cys)12O]・nHOを合成した。
[Reference Example 6] K 6 [Rh 4 Hg 4 (L-cys) 12 O] ・Synthesis of nH 2 O In Example 1 of WO2019 / 208753, Hg (ClO 4 ) 2 was used instead of ZnBr 2. except that performs the same operation as in example 1 of WO WO2019 / 208753, was synthesized K 6 [Rh 4 Hg 4 ( L-cys) 12 O] · nH 2 O.
 参考例1~6で得られた化合物について蛍光X線分析および単結晶X線結晶構造解析を行ったところ、これらの化合物には、イオン流動型イオン性固体(1)~(3)の構成成分と同様の構造のアニオン性多核金属錯体が含まれていることが確認できた。
 また、これらのアニオン性多核金属錯体の間の空間には、交換可能なカチオン種が存在していた。
 さらに、これらのアニオン性多核金属錯体の間の空間は、キュバン含有クラスターの形成に十分な広さを有していた。
 したがって、実施例1~24と同様の方法において、イオン流動型イオン性固体(1)~(3)の代わりに参考例1~6で得られた化合物を用いることにより、参考例1~6で得られた化合物由来のクラスター(α)と、金属イオン(Mβイオン)を必須の構成要素とするキュバン型構造を含むクラスター(β)とを有する、本発明の金属有機構造体を効率よく合成できる。
When the compounds obtained in Reference Examples 1 to 6 were subjected to fluorescent X-ray analysis and single crystal X-ray crystal structure analysis, these compounds contained components of ionic flow type ionic solids (1) to (3). It was confirmed that an anionic polynuclear metal complex having the same structure as that of the above was contained.
Also, exchangeable cation species were present in the space between these anionic polynuclear metal complexes.
In addition, the space between these anionic polynuclear metal complexes was large enough to form cubane-containing clusters.
Therefore, in the same method as in Examples 1 to 24, by using the compounds obtained in Reference Examples 1 to 6 instead of the ionic flow type ionic solids (1) to (3), in Reference Examples 1 to 6. Efficiently synthesizes the metal-organic structure of the present invention having a cluster (α) derived from the obtained compound and a cluster (β) containing a cubane-type structure containing a metal ion (M β ion) as an essential component. can.

Claims (15)

  1.  クラスター(α)及びクラスター(β)をそれぞれ構成単位として含有する金属有機構造体であって、
     クラスター(α)が、金属イオン(Mαイオン)、及び、Mαイオンに配位する配位子(配位子Lα)を含むものであり、
     クラスター(β)が、金属イオン(Mβイオン)を必須の構成要素とするキュバン型構造を含むものであり、
     配位子Lαの少なくとも1種は、Mβイオンにも配位する多座配位子(配位子Lα )である、金属有機構造体。
    A metal-organic framework containing clusters (α) and clusters (β) as constituent units, respectively.
    The cluster (α) contains a metal ion (M α ion) and a ligand (ligand L α ) coordinated to the M α ion.
    The cluster (β) contains a cubane-type structure containing a metal ion (M β ion) as an essential component.
    At least one ligand L alpha is a polydentate ligand coordinating to M beta ions (ligand L alpha 1), metal organic structures.
  2.  クラスター(α)が、Mαイオンとして、
    配位数6の八面体型分子構造を有する錯体を形成し得る、2価又は3価の金属イオン(Mα イオン)と、
    配位数4の四面体型分子構造を有する錯体を形成し得る、1価又は2価の金属イオン(Mα イオン)と、
    を含むものである、請求項1に記載の金属有機構造体。
    The cluster (α) is the M α ion.
    A divalent or trivalent metal ion (M α 1 ion) capable of forming a complex having an octahedral molecular structure with a coordination number of 6 and
    Capable of forming a complex with a tetrahedral molecular structure of the coordination number of 4, a monovalent or divalent metal ion (M alpha 2 ions),
    The metal-organic framework according to claim 1.
  3.  Mα イオンが、周期表第8族、第9族、及び第10族の金属、Cr、並びにMnからなる群から選ばれる1種の金属のイオンであり、
     Mα イオンが、周期表第11族、及び第12族の金属からなる群から選ばれる1種の金属のイオンである、請求項2に記載の金属有機構造体。
    The M α 1 ion is an ion of one kind of metal selected from the group consisting of the metals, Cr, and Mn of the 8th, 9th, and 10th groups of the periodic table.
    The metal-organic framework according to claim 2, wherein the M α 2 ion is an ion of one kind of metal selected from the group consisting of the metals of Group 11 and Group 12 of the Periodic Table.
  4.  配位子Lα が、下記式(1)で表されるものである、請求項1~3のいずれかに記載の金属有機構造体。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、Tは、Mαイオンに配位する第1の原子(配位原子t)又は配位原子tを含む基を表し、Tは、Mαイオンに配位する第2の原子(配位原子t)又は配位原子tを含む基を表し、Tは、Mβイオンに配位する原子(配位原子t)又は配位原子tを含む基を表し、Gは、連結基を表す。T-G-Tは、配位原子tと配位原子tがMαイオンに配位することで、5員キレート環又は6員キレート環を形成する原子団である。
    The metal-organic structure according to any one of claims 1 to 3, wherein the ligand L α 1 is represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    Wherein (1), T 1 represents a first atom (ligand atoms t 1) or a group containing a coordination atom t 1 coordinating to M alpha ion, T 2 is coordinated to M alpha ion Represents a group containing a second atom (coordinating atom t 2 ) or a coordinating atom t 2, where T 3 is an atom coordinating to an M β ion (coordinating atom t 3 ) or a coordinating atom t 3 . Represents a group containing, and G represents a linking group. T 1- GT 2 is an atomic group that forms a 5-membered chelate ring or a 6-membered chelate ring by coordinating the coordination atom t 1 and the coordination atom t 2 to the M α ion.
  5.  配位子Lα がアミノ酸である、請求項1~4のいずれかに記載の金属有機構造体。 The metal-organic framework according to any one of claims 1 to 4, wherein the ligand L α 1 is an amino acid.
  6.  クラスター(α)が下記式(2)で表されるものである、請求項1~5のいずれかに記載の金属有機構造体。
    Figure JPOXMLDOC01-appb-C000002
     式(2)中、Mα は、配位数6の八面体型分子構造の錯体を形成し得る、2価又は3価の金属イオンを表し、Mα は、配位数4の四面体型分子構造の錯体を形成し得る、1価又は2価の金属イオンを表し、Lα は、Mβイオンにも配位する多座配位子を表し、Eは、H、O2-、S2-、Se2-、Te2-、F、Cl、Br又はIを表す。mは、0又は1であり、nは、(Mα の価数×4)+(Mα の価数×4)+(Lα の価数×12)+(Eの価数×m)で算出される数である。
    The metal-organic structure according to any one of claims 1 to 5, wherein the cluster (α) is represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    In formula (2), M α 1 represents a divalent or trivalent metal ion capable of forming a complex having an octahedral molecular structure having a coordination number of 6, and M α 2 is a tetrahedron having a coordination number of 4. Represents a monovalent or divalent metal ion capable of forming a complex of body type molecular structure, L α 1 represents a polydentate ligand that also coordinates with M β ion, and E represents H − , O 2 -, S 2-, Se 2-, Te 2-, F -, Cl -, Br - or I - it represents a. m is 0 or 1, and n is ( valence of M α 1 × 4) + ( valence of M α 2 × 4) + ( valence of L α 1 × 12) + (valence of E). It is a number calculated by × m).
  7.  クラスター(α)の集合体が、イオン流動型イオン性固体のアニオン部に由来するものであって、
     前記イオン流動型イオン性固体が、金属イオン、及び、多座配位子を含むアニオン性多核金属錯体が、集積して結晶格子を形成し、結晶格子の隙間にカチオン種が存在してなるものである、請求項1~6のいずれかに記載の金属有機構造体。
    The aggregate of clusters (α) is derived from the anion part of the ionic flow type ionic solid.
    The ionic flow type ionic solid is formed by accumulating metal ions and an anionic polynuclear metal complex containing a polydentate ligand to form a crystal lattice, and cation species are present in the gaps of the crystal lattice. The metal organic structure according to any one of claims 1 to 6.
  8.  Mβイオンが、dブロック遷移金属のイオン又はfブロック遷移金属のイオンである、請求項1~7のいずれかに記載の金属有機構造体。 The metal-organic framework according to any one of claims 1 to 7, wherein the M β ion is an ion of a d-block transition metal or an ion of an f-block transition metal.
  9.  Mβイオンが、以下の要件1及び2を満たすものである、請求項1~8のいずれかに記載の金属有機構造体。
    要件1:配位数4以上の多面体型分子構造の錯体を形成し得る、1価、2価又は3価の金属イオンである。
    要件2:イオン半径が、70~120pmである。
    The metal-organic framework according to any one of claims 1 to 8, wherein the M β ion satisfies the following requirements 1 and 2.
    Requirement 1: A monovalent, divalent or trivalent metal ion capable of forming a complex having a polyhedral molecular structure having a coordination number of 4 or more.
    Requirement 2: The ionic radius is 70 to 120 pm.
  10.  クラスター(β)中のキュバン型構造が、4核の完全キュバン型構造、又は3核の不完全キュバン型構造である、請求項1~9のいずれかに記載の金属有機構造体。 The metal-organic structure according to any one of claims 1 to 9, wherein the cubane-type structure in the cluster (β) is a complete cubane-type structure with four nuclei or an incomplete cubane-type structure with three nuclei.
  11.  クラスター(β)中のキュバン型構造が、さらに水酸化物イオンを構成要素とするものである、請求項1~10のいずれかに記載の金属有機構造体。 The metal-organic structure according to any one of claims 1 to 10, wherein the cubane-type structure in the cluster (β) further contains a hydroxide ion as a component.
  12.  クラスター(β)が下記式(3)で表されるものである、請求項1~11のいずれかに記載の金属有機構造体。
    Figure JPOXMLDOC01-appb-C000003
     式(3)中、Mβは、キュバン型構造を構成する金属イオンを表し、Lβは、カルボキシレート配位子を表す。pは0~10の整数、qは0~10の整数であり(ただし、p+q≧1)、rは、(Mβの価数×4)+(-1×4)+(Lβの価数×q)で算出される数である。
    The metal-organic structure according to any one of claims 1 to 11, wherein the cluster (β) is represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000003
    In formula (3), M β represents a metal ion constituting a cubane-type structure, and L β represents a carboxylate ligand. p is an integer of 0 to 10, q is an integer of 0 to 10 (where p + q ≧ 1), and r is ( valence of M β × 4) + (-1 × 4) + (value of L β). It is a number calculated by (number × q).
  13.  配位子Lα がカルボキシレート基を有するものであって、配位子Lα のカルボキシレート基とMβイオンとの間に配位結合が形成されている、請求項1~12のいずれかに記載の金属有機構造体。 Ligand L alpha 1 is be one having a carboxylate group, coordinate bond between the ligand L alpha 1 carboxylate groups and M beta ions are formed, according to claim 1 to 12 The metal-organic framework according to any one.
  14.  金属有機構造体の組成式が下記式(4)で表されるものである、請求項1~13のいずれかに記載の金属有機構造体。
    Figure JPOXMLDOC01-appb-C000004
     式(4)中、Aは、カチオン又はアニオンを表す。{(Mβ(OH)(HO)(Lβ}はr価のカチオンであり、Mβは、キュバン型構造を構成する金属イオンを表し、Lβは、カルボキシレート配位子を表す。pは0~10の整数、qは0~10の整数である(ただし、p+q≧1)。{(Mα (Mα (Lα 12(E)}はn価のアニオンであり、Mα は、配位数6の八面体型分子構造の錯体を形成し得る、2価又は3価の金属イオンを表し、Mα は、配位数4の四面体型分子構造の錯体を形成し得る、1価又は2価の金属イオンを表し、Lα は、Mβイオンにも配位する多座配位子を表し、Eは、H、O2-、S2-、Se2-、Te2-、F、Cl、Br又はIを表す。mは、0又は1である。Bは溶媒分子を表し、tは、20~100の整数である。y、zはそれぞれ独立に、0超1以下の数であり、xは、(Aの価数×x)+(r×y)-(n×z)=0を満たす数である。
    The metal-organic structure according to any one of claims 1 to 13, wherein the composition formula of the metal-organic structure is represented by the following formula (4).
    Figure JPOXMLDOC01-appb-C000004
    In formula (4), A represents a cation or anion. {(M β ) 4 (OH) 4 (H 2 O) p (L β ) q } is an r-valent cation, M β represents a metal ion constituting a cubane-type structure, and L β is a carboxy. Represents a rate ligand. p is an integer of 0 to 10 and q is an integer of 0 to 10 (where p + q ≧ 1). {(M α 1 ) 4 (M α 2 ) 4 (L α 1 ) 12 (E) m } is an n-valent anion, and M α 1 is a complex having an octahedral molecular structure with a coordination number of 6. Representing a divalent or trivalent metal ion that can be formed, M α 2 represents a monovalent or divalent metal ion that can form a complex with a tetrahedral molecular structure having a coordination number of 4, L α 1. represents a coordinating polydentate ligand to M beta ion, E is, H -, O 2-, S 2-, Se 2-, Te 2-, F -, Cl -, Br - or I - represents a. m is 0 or 1. B represents a solvent molecule, and t is an integer of 20 to 100. y and z are independently numbers greater than 0 and 1 or less, and x is a number satisfying (valence of A × x) + (r × y) − (n × z) = 0.
  15.  金属有機構造体の製造方法であって、
     金属イオン、及び、多座配位子を含むアニオン性多核金属錯体が、集積して結晶格子を形成し、結晶格子の隙間にカチオン種が存在するイオン流動型イオン性固体を、
     dブロック遷移金属のイオン又はfブロック遷移金属のイオンを含有する溶液と接触させる工程を有する、金属-有機高分子鎖内にキュバン型構造を有する金属有機構造体の製造方法。
    It is a method for manufacturing metal-organic frameworks.
    An ionic flow-type ionic solid in which metal ions and anionic polynuclear metal complexes containing polydentate ligands accumulate to form a crystal lattice and cation species are present in the gaps of the crystal lattice.
    A method for producing a metal-organic framework having a cubane-type structure in a metal-organic polymer chain, which comprises a step of contacting with a solution containing d-block transition metal ions or f-block transition metal ions.
PCT/JP2021/026797 2020-07-17 2021-07-16 Metal-organic framework, and method for manufacturing same WO2022014702A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022536460A JPWO2022014702A1 (en) 2020-07-17 2021-07-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020122934 2020-07-17
JP2020-122934 2020-07-17

Publications (1)

Publication Number Publication Date
WO2022014702A1 true WO2022014702A1 (en) 2022-01-20

Family

ID=79555642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026797 WO2022014702A1 (en) 2020-07-17 2021-07-16 Metal-organic framework, and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2022014702A1 (en)
WO (1) WO2022014702A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023673A (en) * 2022-12-28 2023-04-28 黔南民族师范学院 Preparation method of two-dimensional and three-dimensional clover-shaped metal organic supermolecule and metal organic cage

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BARCLAY J. ELAINE, M.ISABEL DIAZ, DAVID J. EVANS, GABRIEL GARCIA, M. DOLORES SANTANA, M. CARMEN TORRALBA: "The binding of amino acids to the differentiated iron in 3:1 site- differentiated {Fe4S4} clusters", INORGANICA CHIMICA ACTA, ELSEVIER BV, NL, vol. 258, no. 2, 30 May 1997 (1997-05-30), NL , pages 211 - 219, XP055898577, ISSN: 0020-1693, DOI: 10.1016/S0020-1693(96)05515-6 *
IGASHIRA-KAMIYAMA ASAKO, FUJIOKA JUNJI, MITSUNAGA SEIICHI, NAKANO MOTOHIRO, KAWAMOTO TATSUYA, KONNO TAKUMI: "A new class of hydroxo-bridged heptacopper(II) clusters with an acentrosymmetric corner-sharing double- cuba ne framework supported by D-penicillaminedisulfides", CHEMISTRY - A EUROPEAN JOURNAL, vol. 14, no. 31, 30 November 2007 (2007-11-30), DE, pages 9512 - 9515, XP009534213, ISSN: 0947-6539, DOI: 10.1002/chem.200801299 *
YOSHINARI NOBUTO, NATTHAYA MEUNDAENG, HIROYASU TABE, YUSUKE YAMADA, SATOSHI YAMASHITA, YASUHIRO NAKAZAWA, TAKUMI KONNO: "Single-crystal-to- single-crystal installation of Ln4(OH)4 cuba nes in an anionic metallosupramolecular framework", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, ¬VERLAG CHEMIE| :, vol. 59, 13 August 2020 (2020-08-13), pages 18048 - 18053, XP055898584, ISSN: 1433-7851, DOI: 10.1002/anie.202008296 *
YOSHINARI NOBUTO, YAMASHITA SATOSHI, FUKUDA YOSUKE, NAKAZAWA YASUHIRO, KONNO TAKUMI: "Mobility of hydrated alkali metal ions in metallosupramolecular ionic crystals", CHEMICAL SCIENCE, ROYAL SOCIETY OF CHEMISTRY, UNITED KINGDOM, vol. 10, no. 2, 2 January 2019 (2019-01-02), United Kingdom , pages 587 - 593, XP055898578, ISSN: 2041-6520, DOI: 10.1039/C8SC04204G *
YOSHINARI, NOBUTO ET AL.: "Synthesis of highly functional rare earth hydroxide clusters: Method for simple synthesis in the crystal that does not require strict reaction conditions", KAGAKU - CHEMISTRY, KAGAKU DOJIN, KYOTO, JP, vol. 76, no. 3, 1 March 2021 (2021-03-01), JP , pages 43 - 46, XP009534230, ISSN: 0451-1964 *
YOSHINARI, NOBUTO; SODKHOMKHUM, RAPHEEPRAEW; FUKUDA, YOSUKE; KONNO, TAKUMI: "3PA-032 Transition Metal Ion Exchange on Single Crystals of an Anionic RhIII4ZnII4 Octanuclear Complex with L-Cysteinate", 67TH JSCC CONFERENCE, JAPAN SOCIETY OF COORDINATION CHEMISTRY; SAPPORO, JAPAN; SEPTEMBER 16-18, 2017, vol. 67, 1 September 2017 (2017-09-01) - 18 September 2017 (2017-09-18), pages 280, XP009534246 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023673A (en) * 2022-12-28 2023-04-28 黔南民族师范学院 Preparation method of two-dimensional and three-dimensional clover-shaped metal organic supermolecule and metal organic cage
CN116023673B (en) * 2022-12-28 2024-05-17 黔南民族师范学院 Preparation method of two-dimensional and three-dimensional clover-shaped metal organic supermolecule and metal organic cage

Also Published As

Publication number Publication date
JPWO2022014702A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
Stebler et al. Tetrakis (phenanthroline) di-. mu.-oxodimanganese (III, IV) tris (hexafluorophosphate). cntdot. acetonitrile and tetrakis (phenanthroline) di-. mu.-oxodimanganese (IV) tetraperchlorate. cntdot. acetonitrile: Crystal structure analyses at 100 K, interpretation of disorder, and optical, magnetic, and electrochemical results
Zhang et al. Using alkaline-earth metal ions to tune structural variations of 1, 3, 5-benzenetricarboxylate coordination polymers
Fu et al. Reversible single crystal to single crystal transformation with anion exchange-induced weak Cu 2+⋯ I− interactions and modification of the structures and properties of MOFs
Hendriks et al. Synthesis and characterization of coordination compounds of chelating ligands containing imidazole groups. The crystal and molecular structures of the dinuclear copper (I) and copper (II) compounds
Zhao et al. Investigation on structures, luminescent and magnetic properties of Ln III–M (M= Fe II HS, Co II) coordination polymers
Chen et al. Construction and characterization of several new lanthanide− organic frameworks: from 2D lattice to 2D double-layer and to porous 3D net with interweaving triple-stranded helixes
Jiang et al. Syntheses, structures and luminescent properties of zinc (II) coordination polymers based on bis (imidazole) and dicarboxylate
Fan et al. Rational assembly of functional Co-MOFs via a mixed-ligand strategy: synthesis, structure, topological variation, photodegradation properties and dye adsorption
Liu et al. Five dimeric thiogermanates with transition metal complexes of multidentate chelating amines: Syntheses, structures, magnetism and photoluminescence
Croitor et al. 1, 2-Cyclohexanedionedioxime as a useful co-ligand for fabrication of one-dimensional Zn (II) and Cd (II) coordination polymers with wheel-and-axle topology and luminescent properties
Cañadillas-Delgado et al. Dinuclear and two-and three-dimensional gadolinium (III) complexes with mono-and dicarboxylate ligands: synthesis, structure and magnetic properties
Wang et al. Polycarboxylate-directed semi-rigid pyridyl-amide-based various Ni II complexes: electrochemical properties and enhancements of photocatalytic activities by calcination
WO2022014702A1 (en) Metal-organic framework, and method for manufacturing same
Ma et al. Auxiliary ligand-directed and counter anion-templated effects on coordination networks based on semirigid 2-aminodiacetic terephthalic acid ligand
Zhou et al. A multifunctional nanocage-based MOF with tri-and tetranuclear zinc cluster secondary building units
Ke et al. Unusual undecanuclear heterobimetallic Zn 4 Ln 7 (Ln= Gd, Dy) nano-sized clusters encapsulating two peroxide anions through spontaneous intake of dioxygen
Viana et al. Structural and spectroscopic investigation of new luminescent hybrid materials based on calix [4] arene-tetracarboxylate and Ln3+ ions (Ln= Gd, Tb or Eu)
Greve et al. Synthesis, crystal structures and investigations on the dehydration reaction of the new coordination polymers poly [diaqua-(μ2-squarato-O, O′)-(μ2-4, 4′-bipyridine-N, N′) Me (II)] hydrate (Me= Co, Ni, Fe)
Li et al. 2D lanthanide–organic frameworks constructed from lanthanide acetate skeletons and benzotriazole-5-carboxylic acid connectors: synthesis, structure, luminescence and magnetic properties
Dai et al. 1D zigzag chain vs. 1D helical chain: the role of the supramolecular interactions on the formation of chiral architecture
Su et al. Homochiral ferroelectric three-dimensional cadmium (II) frameworks from racemic camphoric acid and 3, 5-di (imidazol-1-yl) benzoic acid
Su et al. Syntheses, structures, luminescence and magnetic properties of three high-nuclearity neodymium compounds based on mixed sulfonylcalix [4] arene-phosphonate ligands
Martins et al. A series of coordination networks constructed from the rigid ligand 4, 4′-ethynylenedibenzoate: topological diversity, entanglement, supramolecular interactions and photophysical properties
Sevov et al. K8In10Hg: A Zintl phase with isolated In10Hg clusters
Qian et al. A microporous europium–organic framework anchored with open–COOH groups for selective cation sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843536

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536460

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21843536

Country of ref document: EP

Kind code of ref document: A1