WO2022014500A1 - ニューラルネットワーク処理装置、情報処理装置、情報処理システム、電子機器、ニューラルネットワーク処理方法およびプログラム - Google Patents

ニューラルネットワーク処理装置、情報処理装置、情報処理システム、電子機器、ニューラルネットワーク処理方法およびプログラム Download PDF

Info

Publication number
WO2022014500A1
WO2022014500A1 PCT/JP2021/025989 JP2021025989W WO2022014500A1 WO 2022014500 A1 WO2022014500 A1 WO 2022014500A1 JP 2021025989 W JP2021025989 W JP 2021025989W WO 2022014500 A1 WO2022014500 A1 WO 2022014500A1
Authority
WO
WIPO (PCT)
Prior art keywords
coefficient
zero
variable
value
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2021/025989
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
聡 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Group Corp
Original Assignee
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Group Corp filed Critical Sony Group Corp
Priority to EP21842420.8A priority Critical patent/EP4184392A4/en
Priority to JP2022536329A priority patent/JPWO2022014500A1/ja
Priority to US18/010,377 priority patent/US20230267310A1/en
Priority to KR1020237004217A priority patent/KR20230038509A/ko
Priority to CN202180049508.9A priority patent/CN115843365A/zh
Publication of WO2022014500A1 publication Critical patent/WO2022014500A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • G06N3/0455Auto-encoder networks; Encoder-decoder networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • G06F17/153Multidimensional correlation or convolution
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0495Quantised networks; Sparse networks; Compressed networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means

Definitions

  • the input data DT11 is audio data for one channel in the time interval for 7910 samples.
  • the input data DT11 is audio data for one channel consisting of sample values of 7910 samples (time samples).
  • the intermediate data DT15 is converted into the identification result data DT16 of one dimension ⁇ 1 sample which is the output of the classifier, and the identification result data DT16 thus obtained is the result (identification) of the identification process for the input data DT11. Result) is output.
  • the processing boundary for the current frame is the sample position of the input data DT11 where the next arithmetic processing should be started after the arithmetic processing of the current frame is completed. Calculations must be made if this sample position does not match the sample position of the input data DT11 where the calculation processing for the immediately preceding frame adjacent to the current frame is started, that is, the sample position at the end (last) of the immediately preceding frame, which is the processing boundary of the immediately preceding frame. The amount and amount of memory cannot be reduced.
  • the number of sample advances was 10 in the convolution layer 1, whereas the number of sample advances was 10.
  • the number of sample advances is set to 8.
  • one frame is 1024 samples, and this 1025th sample is the last (last) sample of the immediately preceding frame, so the 1025th sample is the processing boundary in the immediately preceding frame. Therefore, in the example of FIG. 4, the processing boundary in the current frame adjacent to each other and the processing boundary in the immediately preceding frame coincide with each other. In particular, in this example, the position of the processing boundary of the frame is the boundary position of the frame. As a result, the convolution for the data (interval) other than the processing target in the current frame is performed in the past frame.
  • the number of taps and the number of sample advances in the convolution layer 3' are determined for the data shape and frame length of the input data DT11' and the configuration (structure) of each layer before the convolution layer 3'. Therefore, in the convolution layer 3', the processing boundaries of adjacent frames in the intermediate data DT 24 can be matched.
  • the quadrangle in the coefficient matrix shown by the arrow Q11 represents the filter coefficient
  • the numerical value in the quadrangle represents the value of the filter coefficient
  • the convolution processing unit 21 to the convolution processing unit 25 configure a classifier having a neural network structure described with reference to FIG.
  • the convolution processing unit 21 to the convolution processing unit 25 constitute a neural network.
  • the convolution processing unit 21 has a decoding unit 41, a memory 42, and a coefficient holding unit 43.
  • the convolution processing unit 25 has a decoding unit 81, a memory 82, and a coefficient holding unit 83.
  • step S105 of 9 A part of step S105 of 9 and corresponding to step S105b of FIG. 10).
  • the coefficient matrix Q11 is restored in the coefficient buffer 114, and the variable matrix Q14 to be processed is read out in the variable buffer 115.
  • the selector 203 inputs a value of “0” or “1” to the sparse matrix buffer 205 according to the control signal input from the determination circuit 202. For example, the selector 203 outputs “0” to the sparse matrix buffer 205 when a control signal indicating that the variable X is zero is input, and “1” when this control signal is not input. May be output.
  • the determination circuit 202 is configured to output a control signal indicating that the variable X is non-zero to the selector 203, and the selector 203 receives this control signal and outputs "1" to the sparse matrix buffer 205. You may.
  • the AND circuit 302 has a control signal “1” indicating that the variable X output from the determination circuit 202 is a non-zero variable, and the coefficient W output from the register 303 is a zero coefficient or a non-zero coefficient.
  • the logical product with the value (“0” or “1”) indicating the above is taken, and the result is input to the write buffer 206.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Neurology (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
PCT/JP2021/025989 2020-07-17 2021-07-09 ニューラルネットワーク処理装置、情報処理装置、情報処理システム、電子機器、ニューラルネットワーク処理方法およびプログラム Ceased WO2022014500A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21842420.8A EP4184392A4 (en) 2020-07-17 2021-07-09 NEURONAL NETWORK PROCESSING APPARATUS, INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING SYSTEM, ELECTRONIC INSTRUMENT, NEURONAL NETWORK PROCESSING METHOD AND PROGRAM
JP2022536329A JPWO2022014500A1 (enExample) 2020-07-17 2021-07-09
US18/010,377 US20230267310A1 (en) 2020-07-17 2021-07-09 Neural network processing apparatus, information processing apparatus, information processing system, electronic device, neural network processing method, and program
KR1020237004217A KR20230038509A (ko) 2020-07-17 2021-07-09 뉴럴 네트워크 처리 장치, 정보 처리 장치, 정보 처리 시스템, 전자 기기, 뉴럴 네트워크 처리 방법 및 프로그램
CN202180049508.9A CN115843365A (zh) 2020-07-17 2021-07-09 神经网络处理装置、信息处理装置、信息处理系统、电子设备、神经网络处理方法和程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020123312 2020-07-17
JP2020-123312 2020-07-17

Publications (1)

Publication Number Publication Date
WO2022014500A1 true WO2022014500A1 (ja) 2022-01-20

Family

ID=79555419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025989 Ceased WO2022014500A1 (ja) 2020-07-17 2021-07-09 ニューラルネットワーク処理装置、情報処理装置、情報処理システム、電子機器、ニューラルネットワーク処理方法およびプログラム

Country Status (6)

Country Link
US (1) US20230267310A1 (enExample)
EP (1) EP4184392A4 (enExample)
JP (1) JPWO2022014500A1 (enExample)
KR (1) KR20230038509A (enExample)
CN (1) CN115843365A (enExample)
WO (1) WO2022014500A1 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167153A1 (ja) * 2022-03-03 2023-09-07 ソニーグループ株式会社 情報処理装置及び情報処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079946A1 (ja) 2013-11-29 2015-06-04 ソニー株式会社 周波数帯域拡大装置および方法、並びにプログラム
WO2019146398A1 (ja) * 2018-01-23 2019-08-01 ソニー株式会社 ニューラルネットワーク処理装置および方法、並びにプログラム
JP2020500365A (ja) * 2016-10-27 2020-01-09 グーグル エルエルシー ニューラルネットワーク計算ユニットにおける入力データのスパース性の活用
JP2020517014A (ja) * 2017-04-17 2020-06-11 マイクロソフト テクノロジー ライセンシング,エルエルシー メモリ帯域幅利用を低減するために活性化データの圧縮及び復元を使用するニューラルネットワークプロセッサ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10891538B2 (en) * 2016-08-11 2021-01-12 Nvidia Corporation Sparse convolutional neural network accelerator
CN107239823A (zh) * 2016-08-12 2017-10-10 北京深鉴科技有限公司 一种用于实现稀疏神经网络的装置和方法
US10175980B2 (en) * 2016-10-27 2019-01-08 Google Llc Neural network compute tile
US20180330235A1 (en) * 2017-05-15 2018-11-15 National Taiwan University Apparatus and Method of Using Dual Indexing in Input Neurons and Corresponding Weights of Sparse Neural Network
US11481218B2 (en) * 2017-08-02 2022-10-25 Intel Corporation System and method enabling one-hot neural networks on a machine learning compute platform
WO2019053835A1 (ja) * 2017-09-14 2019-03-21 三菱電機株式会社 演算回路、演算方法、およびプログラム
US11966835B2 (en) * 2018-06-05 2024-04-23 Nvidia Corp. Deep neural network accelerator with fine-grained parallelism discovery
US10644721B2 (en) * 2018-06-11 2020-05-05 Tenstorrent Inc. Processing core data compression and storage system
JP7340926B2 (ja) * 2018-12-14 2023-09-08 日本光電工業株式会社 生体情報処理装置、生体情報センサ及び生体情報システム
US11625584B2 (en) * 2019-06-17 2023-04-11 Intel Corporation Reconfigurable memory compression techniques for deep neural networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079946A1 (ja) 2013-11-29 2015-06-04 ソニー株式会社 周波数帯域拡大装置および方法、並びにプログラム
JP2020500365A (ja) * 2016-10-27 2020-01-09 グーグル エルエルシー ニューラルネットワーク計算ユニットにおける入力データのスパース性の活用
JP2020517014A (ja) * 2017-04-17 2020-06-11 マイクロソフト テクノロジー ライセンシング,エルエルシー メモリ帯域幅利用を低減するために活性化データの圧縮及び復元を使用するニューラルネットワークプロセッサ
WO2019146398A1 (ja) * 2018-01-23 2019-08-01 ソニー株式会社 ニューラルネットワーク処理装置および方法、並びにプログラム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
I AN GOODFELLOWYOSHUA BENG IOAARON COURVILLE: "Deep Learning", 2016, THE MIT PRESS
KEVIN P. MURPHY: "Machine Learning: A Probabilistic Perspective", 2012, THE MIT PRESS
See also references of EP4184392A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167153A1 (ja) * 2022-03-03 2023-09-07 ソニーグループ株式会社 情報処理装置及び情報処理方法

Also Published As

Publication number Publication date
EP4184392A1 (en) 2023-05-24
US20230267310A1 (en) 2023-08-24
CN115843365A (zh) 2023-03-24
JPWO2022014500A1 (enExample) 2022-01-20
KR20230038509A (ko) 2023-03-20
EP4184392A4 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
JP7379524B2 (ja) ニューラルネットワークモデルの圧縮/解凍のための方法および装置
KR102822770B1 (ko) 웨이블릿 변환 기반 이미지 인코딩/디코딩 방법 및 장치
US10599935B2 (en) Processing artificial neural network weights
US8666179B2 (en) Image encoding apparatus and decoding apparatus
KR20210023006A (ko) 딥러닝 기반 이미지 압축 효율 향상을 위한 방법 및 시스템
JP7200950B2 (ja) ニューラルネットワーク処理装置および方法、並びにプログラム
WO2022014500A1 (ja) ニューラルネットワーク処理装置、情報処理装置、情報処理システム、電子機器、ニューラルネットワーク処理方法およびプログラム
CN103634598A (zh) 视频处理的转置缓冲
US8787686B2 (en) Image processing device and image processing method
US20050084169A1 (en) Image processing apparatus that can generate coded data applicable to progressive reproduction
EP2901411B1 (fr) Dispositif de decomposition d'images par transformee en ondelettes
US8861880B2 (en) Image processing device and image processing method
US9532044B2 (en) Arithmetic decoding device, image decoding apparatus and arithmetic decoding method
KR20240124304A (ko) 포인트 클라우드 압축을 위한 하이브리드 프레임워크
CN118575194A (zh) 用于点云压缩的可缩放框架
CN119364003B (zh) 图像编码方法、模块、设备、存储介质及程序产品
US20250150640A1 (en) Apparatus and method for image encoding and decoding
CN112188216B (zh) 视频数据的编码方法、装置、计算机设备及存储介质
KR20230096525A (ko) 1d 컨볼루션을 이용한 오디오 신호 분석 방법 및 오디오 신호 분석 장치
WO2025096198A1 (en) Learning-based mesh compression using latent mesh
JP2025530715A (ja) ストリーミングデータの処理
CN120409568A (zh) 数据处理方法、电子设备和可读介质
CN119946266A (zh) 用于图像编码和解码的装置和方法
JPWO2018230465A1 (ja) ノイズ除去処理システム、ノイズ除去処理回路およびノイズ除去処理方法
JPWO2016047472A1 (ja) 画像処理装置、画像処理方法、及び、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536329

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237004217

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021842420

Country of ref document: EP

Effective date: 20230217

WWW Wipo information: withdrawn in national office

Ref document number: 1020237004217

Country of ref document: KR