WO2022014484A1 - Foam paper laminate - Google Patents

Foam paper laminate Download PDF

Info

Publication number
WO2022014484A1
WO2022014484A1 PCT/JP2021/025927 JP2021025927W WO2022014484A1 WO 2022014484 A1 WO2022014484 A1 WO 2022014484A1 JP 2021025927 W JP2021025927 W JP 2021025927W WO 2022014484 A1 WO2022014484 A1 WO 2022014484A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
foamed
resin
paper
polyol
Prior art date
Application number
PCT/JP2021/025927
Other languages
French (fr)
Japanese (ja)
Inventor
光 浦辺
哲哉 佐井
友央 上野
嘉貢 西野
Original Assignee
日清食品ホールディングス株式会社
東洋インキScホールディングス株式会社
東洋インキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清食品ホールディングス株式会社, 東洋インキScホールディングス株式会社, 東洋インキ株式会社 filed Critical 日清食品ホールディングス株式会社
Priority to CN202180047509.XA priority Critical patent/CN115768625A/en
Publication of WO2022014484A1 publication Critical patent/WO2022014484A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the embodiment of the present invention relates to a foamed paper laminate.
  • Effervescent containers are widely used as containers for storing foods containing high-temperature or low-temperature liquids because they have excellent heat insulating properties.
  • foam containers are lacking in products generally called "cup noodles" that can be eaten in a few minutes by simply pouring an appropriate amount of boiling water into instant noodles such as ramen, udon, and soba noodles contained in a container. I can't.
  • Styrofoam containers and foamed paper containers are known as foaming containers for cup noodles, but in recent years, foamed paper containers have been attracting attention from the viewpoint of environmental load and safety.
  • the foamed paper container is manufactured using a foamed paper material having a paper base material and a thermoplastic resin layer that foams by heating at the time of manufacturing the container to form a heat insulating layer.
  • a printing layer including a printing pattern such as a decorative pattern, a company name, and a barcode is formed on the surface of a foamed paper container (foamed paper material). Therefore, it is desirable that the printing layer has excellent foaming followability without hindering foaming when the thermoplastic resin layer of the foamed paper material foams by heating to form a heat insulating layer.
  • the surface (printing surface) of the printed layer in the foamed paper laminate after the thermoplastic resin layer is foamed is smooth, has no cracks or swelling, and has an excellent appearance (hereinafter referred to as “foamed appearance”). It is desirable to have. Further, it is desirable that the printed surface is excellent in various resistances such as friction resistance and heat resistance required for manufacturing the container. Further, in the food field, since a solvent such as ethanol is widely used for disinfection, the printed layer is also required to have solvent resistance such as ethanol resistance.
  • Patent Document 1 and Patent Document 2 include an ink for a foamed paper container (foam cup) containing a binder resin and a pigment as the ink forming the print layer of the foamed paper container, and the binder resin contains a urethane resin. It is disclosed.
  • Patent Documents 3 to 5 disclose environment-friendly inks using biomass resin and laminates using the inks.
  • the printing layer in a foamed paper container is required to have various properties such as abrasion resistance and ethanol resistance, as well as special performance such as heat resistance, foam followability, and foam appearance. Above all, the heat resistance of the printed layer during heat processing is important.
  • the base material expands due to heat processing in the process of forming the foamed layer. Therefore, when the heat resistance of the printed layer is insufficient, troubles such as the printed layer peeling from the base material and depositing on the apparatus are likely to occur in the manufacturing process of the container. Therefore, the printed layer in the foamed paper container is required to have heat resistance that does not peel off from the base material even under the conditions of being heated and the base material expanding.
  • the base material expands with the heat processing that forms the foamed layer.
  • the base material is hardly deformed because the heat treatment is not performed after the print layer is formed. Due to these differences, it is desirable to simply replace the ink component for forming the print layer of the foamed paper container with the environment-friendly ink used for general purposes, such as heat resistance. It is difficult to obtain various characteristics at a sufficiently satisfactory level. Therefore, the development of a foamed paper container using a biomass resin is desired, but as described above, the adoption of a biomass resin has not progressed because the foamed paper container is required to have special performance.
  • the embodiment of the present invention has a printing layer containing a biomass resin, and excellent heat resistance, foaming followability, foaming appearance, and ethanol resistance can be obtained, and a foamed paper container can be obtained.
  • a foamed paper laminate that can be suitably used as a member.
  • the present inventors have diligently studied the resin components constituting the print layer of the foamed paper laminate, and formed a print layer containing a specific biomass resin to achieve heat resistance and foaming. We have found that good results can be obtained in terms of characteristics of the printed layer such as followability, foamed appearance, and ethanol resistance, and have completed the present invention. That is, the present invention relates to the following embodiments, but includes various embodiments without limitation.
  • One embodiment is a foamed paper composed of a base paper, a thermoplastic resin layer (A) provided on one side of the base paper, and a foamed thermoplastic resin layer (B) provided on the other side of the base paper. , And a foamed paper laminate provided with a printing layer provided on the foamed thermoplastic resin layer (B).
  • the print layer contains at least a binder resin and contains The binder resin relates to a foamed paper laminate containing a urethane resin having a structural unit derived from castor oil polyol.
  • the urethane resin preferably further has a structural unit derived from a polyester polyol which is a condensate of a dibasic acid and a diol.
  • the mass ratio (a1) / (a2) of the structural unit (a1) derived from castor oil polyol and the structural unit (a2) derived from polyester polyol is preferably 75/25 to 10/90.
  • the content of the structural unit derived from the polyether polyol is preferably 8% by mass or less based on the total mass of the urethane resin.
  • the weight average molecular weight of the castor oil polyol is preferably 1,000 to 5,000.
  • the binder resin further contains a vinyl chloride / vinyl acetate copolymer, and the content of the vinyl chloride / vinyl acetate copolymer is 5% by mass or more and 50% by mass or less based on the total mass of the binder resin. Is preferable.
  • the elongation rate of the binder resin is preferably 400% to 3,000%.
  • the disclosures of this application relate to the subject matter described in Japanese Patent Application No. 2020-12307 filed on July 17, 2020, the entire disclosure of which is incorporated herein by reference.
  • a foamed paper laminate having a printing layer containing a biomass resin, excellent heat resistance, foaming followability, foaming appearance, and ethanol resistance can be obtained, and can be suitably used as a member of a foamed paper container.
  • FIG. 1 is a perspective view showing a structural example of a foamed paper container provided with a foamed paper laminate according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view showing a part (reference numeral I portion) of the foamed paper container shown in FIG. 1 in an enlarged manner.
  • the foamed paper laminate is formed on a foamed paper having a thermoplastic resin layer (A), a paper base material, and a foamed thermoplastic resin layer (B) in that order, and on the surface of the foamed thermoplastic resin layer (B) of the foamed paper. It has a formed printed layer.
  • the printed layer preferably contains at least a biomass resin as a binder resin, and the biomass resin preferably contains at least a biomass-derived urethane resin.
  • the binder resin comprises a urethane resin having a structural unit derived from castor oil polyol.
  • the urethane resin is a biomass-derived urethane resin obtained by using at least castor oil polyol as a polyol component as a raw material. Details of such a biomass-derived urethane resin will be described later.
  • the foamed thermoplastic resin layer (B) has a number of foamed cells of 1000 cells / 1 cm 2 or more per unit surface area, and is a printed layer after being immersed in ethanol at 25 ° C. for 30 minutes.
  • the residual ratio is preferably 50% by mass or more.
  • the larger the number the smaller the bubbles existing in the foamed layer (B), and the smaller the number. It means that the bubbles existing in the foam layer (B) are large. When the bubbles existing in the foam layer (B) become large, appearance defects such as cracks and swelling of the printed surface are likely to occur.
  • the number of foamed cells per unit surface area of the foamed layer (B) is preferably 1000 cells / 1 cm 2 or more, and more preferably 1250 cells / 1 cm 2 or more.
  • the upper limit of the number of foamed cells is not particularly limited. In one embodiment, the number of foamed cells may be 1600 cells / cm 2 or less from the viewpoint of manufacturing conditions and the like.
  • the "number of foamed cells per unit area” is an independent cell (air bubble) existing in a range partitioned by a certain length in the vertical and horizontal (XY) directions on the surface of the foamed layer (B). It means a value calculated as the number of independent cells per 1 cm 2 by counting the number of. The number of independent cells is determined by removing the printed layer of the foamed paper laminate with a solvent, exposing the surface of the foamed layer (B), and then observing the surface of the foamed layer (B) using an optical microscope. To.
  • the thickness of the foam layer (B) is preferably 500 ⁇ m or more, more preferably 630 ⁇ m or more, from the viewpoint of heat insulating properties. If the thickness of the foamed layer (B) is 500 ⁇ m or more, the foamed paper laminate is formed into a cup-shaped container, and even when hot water of about 100 ° C. is poured into the container, the container is continuously held with bare hands. It becomes easy to hold in. On the other hand, from the viewpoint of resource saving, it is preferable that the amount of resin used is as small as possible. Further, from the viewpoint of heat insulating properties, the heat insulating layer does not need to be thick enough to have excessive quality. Therefore, the thickness of the foamed layer (B) is preferably 950 ⁇ m or less, more preferably 900 ⁇ m or less, and extremely preferably 800 ⁇ m or less.
  • the thickness of the foam layer (B) is preferably 500 to 950 ⁇ m, more preferably 500 to 900 ⁇ m, and even more preferably 500 to 800 ⁇ m.
  • the thickness of the foamed layer (B) is determined by observing the cross section of the foamed paper laminate with an optical micrograph and measuring the height from the upper surface of the paper substrate to the lower surface of the printed layer.
  • the foamed layer (B) of the foamed paper means a state after the thermoplastic resin layer is foamed by heating. That is, the foamed layer (B) is formed by heating and foaming an unexpanded thermoplastic resin layer (foamed thermoplastic resin layer forming layer (B 0)) as a precursor.
  • the foamed paper laminate in order to form the foamed paper laminate, it has a thermoplastic resin layer (A), a paper substrate, and a melting point lower than that of the thermoplastic resin layer (A), and is foamed by heat treatment.
  • a foamed paper material (foamed paper before heating) having a foamed thermoplastic resin layer forming layer (B 0) in sequence can be used.
  • the foamed paper material can be made of a material known in the art.
  • the constituent materials of the foamed paper laminate will be specifically described.
  • the paper base material constituting the foamed paper laminate is not particularly limited.
  • kraft paper or woodfree paper can be used.
  • the basis weight of the paper substrate is preferably 150 to 450 g / m 2 , and more preferably 250 to 400 g / m 2 .
  • the water content contained in the paper substrate is preferably 4 to 10% by mass, more preferably 5 to 8% by mass.
  • thermoplastic resin layer, foam layer forming layer the thermoplastic resin layer (A) and the foamed thermoplastic resin layer forming layer (B 0 ) (hereinafter, also referred to as the foamed layer forming layer (B 0 )) are conventionally known as container materials. It may be a film made of a resin material.
  • a film (thermoplastic resin film) made of at least one thermoplastic resin selected from the group consisting of stretched and unstretched polyolefins such as polyethylene and polypropylene, polyester, nylon, cellophane, and vinylon can be used.
  • a polyethylene film can be preferably used because it is excellent in laminating suitability and foamability.
  • at least one of the thermoplastic resin layer (A) and the foamed layer forming layer (B 0 ) is a film composed of a polyethylene resin derived from biomass.
  • the foamed paper material can be constructed by laminating thermoplastic resin films having different melting points on a paper base material.
  • the water content in the paper substrate evaporates during the heat treatment, and the evaporated water content is extruded to the softened foam layer forming layer (B 0 ) (low Mp resin film) side.
  • the low Mp resin film swells (foams) toward the outside, and a foamed layer (B) is formed.
  • the foam layer (B) thus formed functions as a heat insulating layer in the container.
  • thermoplastic resin layer (A) high Mp resin film
  • a material that does not melt or soften when the low Mp resin film foams by heat treatment is selected for the thermoplastic resin layer (A) (high Mp resin film).
  • the foam paper material is, for example, a high Mp polyethylene film having a melting point of about 125 ° C. to 140 ° C. on one surface (inside of the container) of a paper base material.
  • the low Mp polyethylene film foams to form a foamed layer by heating during the production of a foamed paper container or the like.
  • the high Mp polyethylene film preferably functions as a coating layer. That is, the coating layer can suppress the evaporation of the water content in the paper base material to the outside during the foaming of the low Mp polyethylene film, and can efficiently contribute the water content in the paper base material to the foaming.
  • the material of the foam layer forming layer (B 0 ) preferably contains a low density polyethylene resin (density 910 to 925 kg / m 3 , melting point 105 to 120 ° C.) among the polyethylene resins.
  • the density of the low-density polyethylene resin is more preferably 910 to 922 kg / m 3 , and even more preferably 910 to 918 kg / m 3 .
  • the material of the foam layer forming layer (B 0 ) As the material of the foam layer forming layer (B 0 ), a medium density polyethylene resin (density 925 to 940 kg / m 3 , melting point 115 to 130 ° C.) and a high density polyethylene resin (density 940 to 970 kg / m 3 , melting point 125 to 140).
  • the melt flow rate of the polyethylene resin (hereinafter referred to as “MFR”) is preferably 8 to 28 g / 10 minutes, and preferably 10 to 20 g / 10 minutes. More preferred.
  • a polyethylene film derived from biomass For example, “SHE150 (density 948 kg / m 3 , MFR 1 g / 10 minutes)" manufactured by Braskem Co., Ltd. is used as the thermoplastic resin layer (A), and Braskem Co., Ltd. is used as the material for the foam layer forming layer (B 0). "SBC818 (density 918 kg / m 3 , MFR 8.1 g / 10 minutes)" can be used.
  • the film thickness of the foamed layer forming layer (B 0 ) is preferably 40 ⁇ m or more, and more preferably 60 ⁇ m or more. By adjusting the film thickness to 40 ⁇ m or more, sufficient heat insulating properties can be obtained after the heat treatment.
  • the film thickness of the foam layer forming layer (B 0 ) is preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less, and extremely preferably 80 ⁇ m or less.
  • the printing layer is a coating film obtained by applying an ink composition to the surface of the foamed layer forming layer (B 0) of the foamed paper material.
  • the main component of the coating film constituting the printing layer (that is, the ink composition) is a binder resin, and the binder resin is characterized by containing at least a urethane resin having a structural unit derived from castor oil polyol.
  • the thickness of the printed layer (coating film after drying) is preferably 0.5 to 5.0 ⁇ m from the viewpoint of foaming suppressing power by the printed layer and abrasion resistance.
  • the thickness of the printed layer may be more preferably 0.5 to 4.0 ⁇ m, still more preferably 0.5 to 3.5 ⁇ m.
  • the environmental load can be reduced as compared with the case where the conventional resin derived from petroleum is used.
  • the biomass degree based on the total mass of the binder resin is preferably 10% by mass or more.
  • the print layer may contain a colorant and a binder resin.
  • the biomass content of the colorant and the binder resin in a total of 100 parts by mass is preferably 10% by mass or more. From the viewpoint of building a sound material-cycle society, the higher the biomass level, the more preferable.
  • the biomass degree is more preferably 15% by mass or more.
  • biomass degree means the proportion of biomass-derived raw materials in all the components used as raw materials. For example, it means the ratio of the components derived from biomass in the compound obtained after the synthesis of the binder resin. That is, among the components derived from biomass, if the raw materials are all derived from biomass such as vegetable oil, the degree of biomass is 100%.
  • the ratio of the raw material derived from biomass in the compound is the degree of biomass.
  • the biomass degree can be calculated by converting it into the raw material mass before the reaction, and is a value represented by the following formula (1).
  • Formula (1): Biomass degree 100 ⁇ total mass of biomass-derived components in the compound / total mass of the compound
  • biomass degree is expressed by the following formula.
  • Degree of biomass 100 x (mass of polyol derived from biomass x A%) / mass of urethane resin
  • “mass of urethane resin” is the sum of polyol derived from biomass and diisocyanate derived from petroleum, and is ".
  • the “polyol derived from biomass” is the total of all the polyols derived from biomass used in the urethane resin.
  • At least castor oil polyol is used as the polyol component, so that it is easy to increase the degree of biomass.
  • the degree of biomass can also be determined by measuring the concentration of radioactive carbon (14 C) in the compound using accelerator mass spectrometry or the like. Since no radioactive carbon is present in petroleum-derived compounds, biomass-derived compounds can also be distinguished from petroleum-derived compounds by the degree of biomass.
  • the ink composition contains a binder resin containing a urethane resin having a structural unit derived from castor oil polyol, and a solvent.
  • the ink composition may further comprise a colorant such as a pigment.
  • the ink composition may further contain various additives in addition to the above components, if necessary.
  • the composition of the ink composition will be described.
  • the printed layer does not inhibit the foaming of the foam layer forming layer (B 0) and has excellent foam followability.
  • the foaming of the foam layer forming layer (B 0 ) can be appropriately controlled by the printed layer.
  • the binder resin is the main component of the printing layer (coating film), it is possible to satisfactorily adjust the foaming followability and foaming suppressing power of the printed layer by selecting an appropriate binder resin form. can.
  • the binder resin preferably has an elongation rate of 50 to 4,000%, and more preferably 400 to 3,000%, from the viewpoint of foaming followability.
  • the binder resin preferably has an elongation rate of 50 to 4,000% and a stress of 0.1 mPa or more.
  • the term "elongation rate" described in the present specification refers to a sample having dimensions of 0.3 mm in thickness and 15 mm in width, using a small tensile tester manufactured by Intesco, with a tensile speed of 100 mm / min and a room temperature of 25. It means the value obtained by measuring at ° C.
  • the binder resin preferably has a stress of 0.1 mPa or more, more preferably 1 mPa or more, and even more preferably 5 mPa or more at an elongation rate of 50 to 4,000%.
  • the stress at an elongation rate of 50 to 4,000% is preferably 50 mPa or less, more preferably 40 mPa or less, and even more preferably 30 mPa or less.
  • the stress at an elongation rate of 50 to 4,000% of the binder resin containing the urethane resin may be 0.1 mPa to 50 mPa.
  • the binder resin has an elongation rate and stress in the above range, it becomes easy to obtain good results in terms of foaming appearance in addition to foaming followability. Further, a binder resin having an elongation rate and stress in the above range is preferable from the viewpoint of enhancing ethanol resistance because it is easy to obtain a desired residual rate of the printed layer.
  • the binder resin preferably contains at least a urethane resin from the viewpoint of foaming followability of the printed layer during foaming.
  • urethane resins obtained by reacting a polyol with diisocyanate.
  • a urethane urea resin obtained by extending a chain of a urethane prepolymer obtained by reacting a polyisocyanate with a polyol with an amine compound can be mentioned. That is, the urethane resin is a resin having a urethane bond, but even if it has a urea bond or the like, it is included in the concept.
  • a urethane resin When a urethane resin is used, it is excellent in various resistances such as light resistance, heat resistance, abrasion resistance, and blocking resistance, and is resistant to a low Mp resin film (foam layer forming layer (B 0 )) which is a base material at the time of printing.
  • An ink composition capable of forming a print layer having excellent adhesiveness can be easily formed. Further, by using the urethane resin, even when the ink composition is stored for a long period of time in an environment where heat or light is applied, the friction resistance and blocking resistance of the print layer and the low Mp resin film as a base material are used. Good results can also be obtained in various properties such as adhesiveness to the resin.
  • the urethane resin preferably has a weight average molecular weight in the range of 10,000 to 100,000. More preferably, it is 30,000 to 80,000. When the weight average molecular weight is within the above range, the blocking resistance of the printed layer, the solubility in an organic solvent, and the dispersibility of the pigment can be easily improved.
  • the urethane resin preferably has an amine value.
  • the amine value is preferably 0.5 to 40 mgKOH / g, more preferably 1 to 30 mgKOH / g, and even more preferably 3 to 20 mgKOH / g. When the amine value is within the above range, it becomes easy to improve the adhesion.
  • the urethane resin preferably has a glass transition temperature (Tg) of ⁇ 100 ° C. to 0 ° C.
  • Tg glass transition temperature
  • the Tg of the urethane resin may be more preferably ⁇ 10 ° C. or lower, still more preferably ⁇ 25 ° C. or lower.
  • the Tg may be ⁇ 100 ° C. or higher, preferably ⁇ 90 ° C. or higher, more preferably ⁇ 80 ° C. or higher, and even more preferably ⁇ 60 ° C. or higher.
  • a binder resin having a Tg in the above range is preferable from the viewpoint of ethanol resistance because it is easy to obtain a desired residual ratio of the printed layer.
  • the urethane resin is characterized by using a urethane resin derived from biomass, and includes a urethane resin having at least a structural unit (a1) derived from castor oil polyol.
  • Specific embodiments include urethane resins obtained by reacting a polyol containing a castor oil polyol with a diisocyanate.
  • a preferred embodiment is a urethane urea resin obtained by extending a chain of a urethane prepolymer obtained by reacting a polyisocyanate with a polyol containing a castor oil polyol with an amine compound.
  • diisocyanate known aromatic, aliphatic or alicyclic diisocyanates can be used.
  • the castor oil polyol may have a structural unit derived from ricinoleic acid (hereinafter, castor oil fatty acid) which is a component of castor oil.
  • a form in which the structural unit derived from ricinoleic acid is the main component in the total amount of castor oil polyol (50% by mass or more in the total amount of castor oil polyol) is preferable.
  • the structure is not particularly limited as long as the average number of functional groups of the hydroxyl group is 1 to 3, and examples thereof include castor oil and dehydrated castor oil.
  • castor oil fatty acid condensate obtained by condensing castor oil fatty acid with a polyol such as diol as an initiator, and hydrides thereof and the like can be mentioned.
  • These castor oil polyols can be used alone or in admixture of two or more.
  • the urethane resin preferably contains a structural unit derived from castor oil polyol in an amount of 10 to 80% by mass, more preferably 15 to 60% by mass, and more preferably 15 to 40% by mass, based on the resin solid content of the urethane resin. It is more preferable to contain it.
  • a structural unit derived from castor oil polyol is within the above range, it is easy to maintain or improve the dispersion stability of the colorant, the heat resistance of the printed layer, and the blocking resistance.
  • the molecular weight of the castor oil polyol is preferably 500 to 6,000, more preferably 1,000 to 5,000, still more preferably 1,500 to 4,000, and 1,500 to 3,500.
  • the range of is particularly preferable. When the weight average molecular weight is within the above range, it is easy to obtain excellent film strength and excellent adhesion to the foam layer forming layer (B 0) when the foamed paper laminate is formed. Become.
  • the urethane resin preferably contains a structural unit derived from a polyester polyol in addition to a structural unit derived from a castor oil polyol.
  • a structural unit derived from a castor oil polyol in addition to a structural unit derived from a castor oil polyol.
  • the polyester polyol is not limited to the following examples, but for example, adipic acid, phthalic anhydride, isophthalic acid, terephthalic acid, maleic acid, fumaric acid, succinic acid, oxalic acid, malonic acid, pimelic acid, and azelaic acid. , Sevacinic acid, suberic acid, glutaric acid, 1,4-cyclohexyldicarboxylic acid, etc., and ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol.
  • the amount of the polyester polyol used is such that the structural unit derived from the polyester polyol is contained in an amount of 15 to 80% by mass with respect to the resin solid content of the urethane resin from the viewpoint of heat resistance, film strength, and blocking resistance in the laminated body. It is preferable, more preferably 25 to 75% by mass.
  • the urethane resin preferably has a structural unit derived from a polyester polyol in addition to a structural unit derived from a castor oil polyol.
  • the polyester polyol is a condensate of the dibasic acid and the diol, and the mass ratio (a1) / (a2) of the structural unit (a1) derived from the castor oil polyol and the structural unit (a2) derived from the polyester polyol is , 75/25 to 10/90, more preferably 60/40 to 25/75, and even more preferably 50/50 to 25/75.
  • the binder resin contains a urethane resin obtained by using only castor oil polyol as a polyol component.
  • the binder resin contains a urethane resin obtained by using a castor oil polyol and a polyester polyol in combination as a polyol component.
  • the binder component may contain the urethane resin of the above embodiment and the urethane resin obtained by using only the polyester polyol as the polyol component.
  • a polyester polyol is used as the polyol component, it is more preferable that the structural unit derived from castor oil polyol and the structural unit derived from polyester polyol coexist in one polymer chain from the viewpoint of ink stability and the like. ..
  • the urethane resin may have a structural unit derived from a polyether polyol.
  • the polyether polyol is not particularly limited, and examples thereof include polyethylene glycol, polypropylene glycol, polytrimethylene glycol, polytetramethylene glycol, and copolymerized polyetherdiols thereof. These polyether polyols can be used alone or in admixture of two or more.
  • the content of the structural unit derived from the polyether polyol is preferably 8% by mass or less, preferably 5% by mass or less, based on the total mass of the urethane resin. It is more preferably 2% by mass or less, and may be 0% by mass. From the viewpoint of improving the heat resistance of the printed layer, it is extremely preferable that the urethane resin does not contain structural units derived from the polyether polyol.
  • the urethane resin may have a structural unit derived from a small molecule polyhydric alcohol.
  • a structural unit derived from a low molecular weight polyhydric alcohol By introducing a structural unit derived from a low molecular weight polyhydric alcohol, various physical properties required for a resin for printing ink such as pigment dispersibility, resin viscosity, solubility in an organic solvent, and blocking resistance can be adjusted.
  • the low molecular weight polyhydric alcohol is not limited to the following examples, and examples thereof include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, hexylene glycol, neopentyl glycol, and cyclohexanedimethanol.
  • Glycerin 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, hydrogenated bisphenol A, tri Examples thereof include methylolpropane, glycerin, pentaerythritol, and sorbitol. These small molecule polyhydric alcohols are used for the purpose of adjusting the molecular weight of the ink composition of the present invention and the distribution of hard segments and soft segments. These small molecule polyhydric alcohols can be used alone or in admixture of two or more.
  • the amine compound functions as a chain extender for the urethane prepolymer and imparts a urea bond to the urethane resin.
  • Examples of the amine compound include polyamines and amino alcohols.
  • the chain extender can be used alone or in combination of two or more.
  • polyamines examples include ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, isophoronediamine, dicyclohexylmethane-4,4'-diamine, and dimerdiamine obtained by converting the carboxyl group of dimer acid into an amino group.
  • examples thereof include amines having a hydroxyl group in the molecule, methyliminobispropylamine, lauryliminobispropylamine and the like having a tertiary amino group in the molecule.
  • amino alcohols examples include N, N-dimethylethanolamine, N, N-dimethylethanolamine, N, N-dibutylethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, N-methylethanolamine, and N-methyl.
  • reaction solvent For the production of the urethane resin, an organic solvent having no alcohol and / or a hydroxyl group, which is a medium described later, can be used.
  • alcohols include aliphatic alcohols having 1 to 7 carbon atoms such as methanol, ethanol, normal propanol, isopropanol, normal butanol, isobutanol, tertiary butanol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, and propylene glycol mono.
  • examples thereof include glycol monoethers such as propyl ether, propylene glycol monoisopropyl ether and propylene glycol monobutyl ether.
  • a tertiary alcohol having low reactivity is preferable from the viewpoint of reactivity with the isocyanate group, and examples thereof include tertiary butanol.
  • organic solvent having no hydroxyl group examples include esters such as ethyl acetate, butyl acetate and cellosolve acetate, ketones such as acetone, methyl ethyl ketone, isobutyl ketone and cyclohexanone, cyclic ethers such as tetrahydrofuran and dioxane, toluene and xylene and the like.
  • examples thereof include aromatic hydrocarbons, halogenated hydrocarbons such as methylene chloride and ethylene chloride, dimethylsulfoxide and dimethylsulfamide. Two or more kinds of these reaction solvents may be mixed and used.
  • the method for producing the urethane resin is not particularly limited, and the urethane resin can be produced by a general chain extension reaction.
  • a castor oil polyol, a polyol other than castor oil polyol, and a diisocyanate are reacted under a solvent-free environment or an organic solvent having no hydroxyl group to produce an isocyanate group-containing prepolymer.
  • the above reaction is carried out at an equivalent ratio in which the isocyanate group of the diisocyanate is excessive with respect to the hydroxyl groups of the castor oil polyol and the polyol other than the castor oil polyol.
  • the isocyanate group-containing prepolymer obtained as described above is dissolved in an organic solvent having no hydroxyl group and / or a tertiary alcohol having low reactivity with the isocyanate group to obtain a prepolymer solution.
  • an organic solvent having no hydroxyl group and / or a tertiary alcohol having low reactivity with the isocyanate group to obtain a prepolymer solution.
  • the previously prepared isocyanate group-containing prepolymer solution is added to the chain extender dissolved in a solvent to cause a chain extension reaction.
  • the solvent used to dissolve the chain extender may be the same as the organic solvent used in the production of the prepolymer.
  • diamines and amino alcohols are preferably used as the chain extender from the viewpoint of reactivity with the isocyanate group-containing prepolymer.
  • the ratio of sardine oil polyol, polyol other than sardine oil polyol, and diisocyanate is the ratio of the number of moles of isocyanate groups of diisocyanate to the number of moles of hydroxyl groups of sardine oil polyols and polyols other than sardine oil polyols. It is preferable to adjust the NCO / OH ratio so as to be in the range of 1.1 to 3.0. When the NCO / OH ratio is within the above range, it is easy to maintain or improve the blocking resistance and the adhesion to the substrate.
  • the above embodiment is characterized by containing a urethane resin as a constituent component of the print layer, but does not exclude the combined use of a binder resin other than the urethane resin.
  • a binder resin other than the urethane resin.
  • Specific examples thereof are acrylic resin, vinyl chloride resin, vinyl acetate resin, vinyl chloride / vinyl acetate copolymer, nitrocellulose and the like.
  • the combined use of urethane resin and vinyl chloride / vinyl acetate copolymer and / or nitrocellulose is preferable.
  • the binder resin further contains a vinyl chloride / vinyl acetate copolymer
  • the content is more preferably 70% by mass or more, further preferably 85% by mass or more.
  • the mass ratio of the urethane resin containing the urethane resin to the vinyl chloride / vinyl acetate copolymer is preferably 40:60 to 95: 5, and more preferably 55:45 to 90:10. , 70:30 to 90:10 is extremely preferable.
  • the ink composition may further comprise a colorant.
  • a colorant for example, those used in ordinary ink compositions such as organic pigments, inorganic pigments, and dyes may be used. C.I. I. Pigments can be preferably used.
  • organic pigments examples include azo-based, phthalocyanine-based, anthraquinone-based, perylene-based, perinone-based, quinacridone-based, thioindigo-based, dioxazine-based, isoindolinone-based, quinophthalone-based, azomethine-azo-based, dictopyrrolopyrrole-based, and isoindoline-based. Etc. are preferably mentioned.
  • inorganic pigment examples include carbon black, aluminum powder, bronze powder, chrome vermillion, chrome yellow, cadmium yellow, cadmium red, ultramarine, navy blue, red iron oxide, yellow iron oxide, iron black, titanium oxide, zinc oxide and the like. Be done.
  • the dye examples include tartradin lake, Rhodan 6G lake, Victoria pure blue lake, alkaline blue G toner, brilliant green lake, and the like, and coal tar and the like can also be used. Above all, it is preferable to use an organic pigment or an inorganic pigment from the viewpoint of water resistance and the like.
  • the colorant is not particularly limited, and may be an amount sufficient to secure the concentration and coloring power of the ink composition.
  • the content of the colorant is generally 0.5 to 50% by mass with respect to the total mass of the ink composition.
  • the colorant can be used alone or in combination of two or more.
  • the blending amount of the white pigment is preferably in the range of 20 to 50% by mass based on the total mass of the ink composition. From the viewpoint of hiding power, pigment concentration, and light resistance, it is preferable to use titanium dioxide as the white pigment.
  • a colored organic pigment and a colored inorganic pigment such as red iron oxide, prussian blue, ultramarine, carbon black, and graphite can be appropriately selected and used. Organic pigments are preferable from the viewpoint of color development and light resistance.
  • the blending amount of the colored pigment is preferably in the range of 5 to 30% by mass based on the total mass of the ink composition.
  • the ink composition comprises an organic solvent as a liquid medium.
  • organic solvent include, but are not limited to, aromatic organic solvents such as toluene and xylene, ketone organic solvents such as methyl ethyl ketone and methyl isobutyl ketone, ethyl acetate, n-propyl acetate and isopropyl acetate.
  • organic solvents such as isobutyl acetate, ester organic solvent, methanol, ethanol, n-propanol, isopropanol, n-butanol and other alcohol-based organic solvents, ethylene glycol monopropyl ether and propylene glycol monotyl ether and other glycol ether-based solvents. Can be used, and may be mixed and used. Of these, an organic solvent (non-toluene-based organic solvent) that does not contain aromatic organic solvents such as toluene and xylene is more preferable.
  • the compatibility between the urethane resin and the vinyl chloride copolymer resin, the organic solvent containing the ester-based organic solvent and the alcohol-based organic solvent is preferable, and the mass ratio (ester-based organic solvent) / (alcohol-based organic solvent) of these is 90. It is preferably / 10 to 40/60.
  • the gravure ink may contain water as a liquid medium, but the content thereof is preferably 0.1 to 5% by mass in 100% by mass of the liquid medium.
  • the ink layer and the ink composition may contain additives such as pigment derivatives, dispersants, wetting agents, adhesion aids, leveling agents, defoaming agents, antistatic agents, viscosity modifiers, chelate crosslinkers, as required.
  • additives such as pigment derivatives, dispersants, wetting agents, adhesion aids, leveling agents, defoaming agents, antistatic agents, viscosity modifiers, chelate crosslinkers, as required.
  • a trapping agent, an antiblocking agent, a wax component, an isocyanate-based curing agent, a silane coupling agent, or the like can be used.
  • the ink composition can be produced by a known method, for example, the method described in International Publication No. 2009/11800 pamphlet can be used. More specifically, a urethane resin, a vinyl chloride / vinyl acetate copolymer, and an organic solvent having a mass ratio (ester-based organic solvent) / (alcohol-based organic solvent) of 90/10 to 40/60 are sand milled. Dispersion treatment is performed with another bead mill for about 5 to 60 minutes, and a urethane resin, the above-mentioned organic solvent, a leveling agent and other additives are further added to the obtained dispersion, and the mixture is uniformly stirred to obtain an ink composition. be able to.
  • One embodiment relates to a method for manufacturing a foamed paper laminate. That is, one embodiment includes a foam paper having a thermoplastic resin layer (A), a paper base material, and a foam layer (B) in that order, and a printing layer formed on the surface of the foam layer (B) of the foam paper.
  • the present invention relates to a method for producing a foamed paper laminate having the above. More preferably, in the configuration of the foamed paper laminate, the number of foamed cells per unit surface area of the foamed layer (B) is 1000 cells / 1 cm 2 or more, and printing is performed after immersion in ethanol at 25 ° C. for 30 minutes.
  • the present invention relates to a method for producing a foamed paper laminate having a layer residual ratio of 50% by mass or more.
  • the method for producing the foamed paper laminate is described in the following steps (i) to (iv), that is, (i) the thermoplastic resin layer (A), the paper substrate, and the melting point lower than that of the thermoplastic resin layer (A).
  • a foamed paper material having sequentially having a foamed layer forming layer (B 0), which foams by heating.
  • (Ii) Preparing an ink composition containing a binder resin containing a urethane resin and a medium.
  • Applying the ink composition to the surface of the foam layer forming layer (B 0) of the foam paper material to form a print layer.
  • the foamed paper material having the printed layer is heated to foam the foamed layer forming layer (B 0 ) of the foamed paper material to form the foamed layer (B).
  • each step relating to (i) preparation of foamed paper material, (ii) preparation of ink composition, (iii) formation of printing layer, and (iv) formation of foamed layer (B) by heating is the same. It can be carried out according to a method well known in the technical field. Hereinafter, each step will be described.
  • Step (i): Preparation of foam paper material The preparation of the foamed paper material can be carried out, for example, according to the extrusion laminating method.
  • the constituent materials of the paper base material, the thermoplastic resin layer (A), and the foamed layer forming layer (B 0 ) constituting the foamed paper material are as described above.
  • the extrusion laminating method a well-known method such as a single laminating method, a tandem laminating method, a sandwich laminating method, and a coextrusion laminating method can be appropriately selected.
  • polyethylene resins having different melting points can be preferably used as the constituent materials of the thermoplastic resin layer (A) and the foamed layer forming layer (B 0).
  • the foam layer forming layer (B 0 ) is formed by using a polyethylene resin (low Mp polyethylene resin) having an Mp lower than the melting point (Mp) of the polyethylene resin constituting the thermoplastic resin layer (A).
  • a low Mp polyethylene resin is extruded into a film on one side of the paper substrate and a high Mp polyethylene resin is extruded into a film on the other surface of the paper substrate through a T-die extruder.
  • Mp melting point
  • the temperature of the polyethylene resin at the time of laminating is preferably 300 to 350 ° C, more preferably 320 ° C to 340 ° C. Within this temperature range, sufficient lamination strength can be realized between each polyethylene resin layer (A, B 0) and the paper substrate. It is preferable to control the surface temperature of the cooling roll that passes after laminating in the range of 10 to 50 ° C.
  • the laminating speed is preferably 50 to 130 m / min, more preferably 60 to 110 m / min. If the laminating speed is too slow, the productivity will be low, while if the laminating speed is too fast, the neck-in tends to reduce the yield.
  • Neck-in is a phenomenon in which the width of the extruded polyethylene resin film is smaller than the effective width of the T-die when the polyethylene resin is extruded into a film by a T-die extruder. At this time, both ends of the film are thicker than the central portion. When the thickness of both ends deviates from the standard, it is common to cut and remove both ends, but when the neck-in is severe, the area deviating from the standard increases and the yield decreases.
  • the air gap is preferably 300 mm or less, more preferably 200 mm or less. If the air gap is widened too much, the polyethylene resin will neck in and the yield will tend to decrease.
  • the air gap refers to the distance from the T-die extrusion port to the nip roll. It is preferable to surface-treat the polyethylene resin with ozone gas and / or oxygen gas while the polyethylene resin passes through the air gap. By performing the surface treatment using ozone gas and / or oxygen gas, the formation of an oxide film can be promoted and the adhesive force with the base material layer can be improved.
  • the amount of ozone gas and / or oxygen gas to be treated is not particularly limited, but 0.5 mg / m 2 or more is preferable from the viewpoint of promoting the oxidation of the polyethylene resin.
  • Step (ii): Preparation of ink composition The specific composition, production, and the like of the ink composition are as described above in the embodiment of the ink composition.
  • the binder resin is characterized by being a urethane resin produced by using at least castor oil polyol as a polyol component.
  • a biomass-derived urethane resin preferably has a stress of 0.1 mPa to 50 mPa at an elongation rate of 50 to 4,000%.
  • the formation of the print layer (iii) is not particularly limited, and a well-known technique can be applied.
  • a coater such as a bar coater, a roll coater, or a reverse roll coater may be used.
  • various printing methods can be applied.
  • the ink composition of the embodiment described above can be preferably used.
  • the print layer preferably comprises a plurality of layers.
  • the print layer may have a base layer that covers the entire surface of the foam layer forming layer (B 0 ) and a print pattern provided on at least a part of the surface of the base layer.
  • the base layer is composed of a white ink composition and the print pattern is formed of a color ink composition.
  • the thickness of the printed layer is preferably adjusted so that the film thickness of the dry coating film is 0.5 to 5 ⁇ m from the viewpoint of the foaming suppressing force of the printed layer and the friction resistance. ..
  • the film thickness of the printed layer (dry coating film) may be more preferably 0.5 to 4 ⁇ m, still more preferably 0.5 to 3.5 ⁇ m.
  • the print layer may include a plurality of layers and may have a transparent layer as the outermost layer thereof.
  • the lucidum can be configured using a pigment-free clear ink composition.
  • the appropriate heating temperature and heating time vary depending on the characteristics of the paper substrate used and the thermoplastic resin film.
  • a person skilled in the art can determine the combination conditions of the optimum heating temperature and heating time according to the material such as the thermoplastic resin film used.
  • the heat treatment is generally carried out in the molding process of the container. If the heating temperature during the heat treatment is too low, sufficient foamability cannot be obtained, and if the heating temperature is too high, the foaming cells are combined and swelling is likely to occur.
  • the heating temperature may be preferably 100 to 125 ° C, more preferably 110 to 120 ° C.
  • the heating time can be appropriately adjusted according to the heating temperature, but is preferably 3 to 10 minutes, more preferably 5 to 7 minutes.
  • the heating temperature is 110 to 123 ° C. It is preferable to adjust the heating time to 5 to 7 minutes. It is more preferable to adjust the heating temperature to 115 to 121 ° C. and the heating time to 5 to 7 minutes.
  • Any means such as hot air, electric heat, and electron beam can be used as the heating means.
  • a large amount of heat treatment can be carried out inexpensively by heating with hot air, electric heat, or the like in a tunnel provided with a transport means by a conveyor.
  • FIG. 1 is a perspective view showing the structure of a foamed paper container 10A obtained by performing a heat treatment after assembling and molding the container.
  • the foamed paper container 10A is composed of a container body member 10 made of a foamed paper laminate and a bottom plate member 12.
  • the high Mp resin film forms the inner wall surface 10a of the container
  • the printing layer on the low Mp resin film forms the outer wall surface 10b of the container.
  • FIG. 2 is a schematic cross-sectional view showing an enlarged reference numeral I portion of the container body member of the foam paper container shown in FIG.
  • the container body member (foamed paper laminate) 10 includes a high Mp resin film 20, a paper base material 30, and a low Mp resin film (foamed layer) 40 after foaming, in order from the inner wall surface 10a side (see FIG. 1) of the container. And a print layer 50, and the print layer 50 has a base layer 50a and a print pattern 50b.
  • Molding of foamed paper containers can be carried out by applying well-known technology. For example, a foamed paper laminate (foamed paper laminate before heating) on which a print layer is first formed is punched into a predetermined shape along a mold to obtain a container body member. Similarly, the bottom plate material is punched into a predetermined shape to obtain a bottom plate member. Next, the container body member and the bottom plate member are assembled and molded into the shape of the container by using a conventional container manufacturing apparatus. In the assembly and molding of the container by the container manufacturing apparatus, the high Mp resin film of the container body member forms the inner wall surface, the low Mp resin film forms the outer wall surface, and the laminated surface of the bottom plate member is on the inside. To carry out.
  • the low Mp resin film can be foamed to form a foamed layer (heat insulating layer), and a foamed paper container having heat insulating properties can be obtained. can.
  • one surface of the paper base material is made of medium-density or high-density polyethylene film. It is preferable to laminate the other surface (outer wall surface of the container) with a low-density polyethylene film.
  • the thickness of each film laminated on the paper substrate is not particularly limited. However, the thickness of the low Mp resin film constituting the outer wall surface of the container body is appropriately set so that the foamed film has a sufficient thickness to function as a heat insulating layer when the film is foamed. Is preferable.
  • the thickness of the film laminated on the paper substrate may be 40 to 150 ⁇ m.
  • the thickness of the film laminated on the paper substrate is not particularly limited. However, it is preferable to appropriately set the thickness of the film so that the permeability resistance of the contents is ensured when used as a heat-insulating foamed paper container. Since the thickness of the film to be laminated on the paper substrate varies depending on the resin material of the film used, it is desirable to be appropriately set by those skilled in the art in consideration of the characteristics of the resin material.
  • Binder resin (1) Raw material for urethane resin (castor oil polyol and other raw materials)
  • the castor oil polyols used in the synthesis of the following urethane resins are various commercially available polyols and polyols obtained by synthesizing according to a known method shown in JP-A-2005-320437.
  • the raw materials not described as "biomass-derived” in the raw materials described below are raw materials not derived from biomass.
  • IPDA isophoronediamine
  • IBPA iminobispropylamine
  • AEA N- (2-hydroxyethyl) ethylenediamine
  • IPA ethyl / 2-propanol
  • the mixture was added and then reacted at 80 ° C. for 1 hour to obtain a urethane resin solution PU1 (solid content 30%) having a weight average molecular weight of 65,000.
  • the weight average molecular weight of the urethane resin was measured as follows. (Weight average molecular weight) As a pretreatment, all the amino groups at both ends of the urethane resin are reacted with ⁇ , ⁇ -dimethyl-3-isopropenylbenzyl isocyanate. Then, for the pretreated urethane resin, Polystyrene GPC LF-604 (manufactured by Shodex) was used as a column, and gel permeation chromatography equipped with an RI detector (manufactured by GPC Shodex, GPC-104) was used as a developing solvent in tetrahydrofuran (GPC-104). The polystyrene-equivalent molecular weight when using THF) was obtained.
  • urethane resin solution solid content 30%
  • the gravure ink W1 is an ink using PU1 (a urethane resin having a structural unit derived from castor oil polyol and a structural unit derived from polyester polyol in one polymer chain).
  • the gravure ink 20 is an ink in which PU8 (urethane resin having a structural unit derived from castor oil polyol) and PU14 (urethane resin having a structural unit derived from polyester polyol) are used in combination. Therefore, from the viewpoint of ink stability, it can be seen that the urethane resin in which the structural unit derived from castor oil polyol and the structural unit derived from polyester polyol coexist in the polymer chain is preferable.
  • foamed paper laminate (1) Production example of foamed paper material
  • the foamed paper material is (step 1) a water vapor blocking layer obtained by extruding and laminating a medium density polyethylene resin (M) on one side of a paper base material. Then, the low-density polyethylene resin (L) was extruded and laminated on the other surface (non-laminated surface) of the paper substrate (step 2).
  • step 1 and step 2 Various conditions in step 1 and step 2 are as follows.
  • Paper substrate Moisture content 23 kg / m 3 , Basis weight 300 kg / m 3
  • Air gap 130 mm
  • Thickness 40 ⁇ m (thickness of the central part of the polyethylene resin layer)
  • Step 2 Low density polyethylene resin (L); Extrusion temperature (T die outlet temperature) described later: 310 ° C. Pick-up speed (lamination speed): 60 m / min Air gap: 130 mm Thickness: 50 ⁇ m
  • the low-density polyethylene resin (L) used in the above step 2 is a foam layer forming layer (B 0 ).
  • low-density polyethylene resin (L) low-density polyethylene resins (L2) and (L3) are used in Examples 23 and 24 and Comparative Example 2, and low-density polyethylene resin (L1) is used in other cases for foaming.
  • Manufactured paper material Details of the low-density polyethylene resins (L1), (L2) and (L3) are as follows. Low-density polyethylene resin (L1): Toso Co., Ltd.
  • MEK methyl ethyl ketone
  • NPAC n-propyl acetate
  • IPA 40: 40: 20 (mass ratio).
  • Dilute to (25 ° C., Zahn cup No. 3) and use a gravure printing machine with a corrosion of 30 ⁇ m on a low-density polyethylene resin (L1) as a foam paper material at a printing speed of 100 m / min to achieve a film thickness of 1.
  • L1 low-density polyethylene resin
  • the thickness of the printed layer was determined from a scanning electron microscope (SEM) photograph (magnification of 5000) of the cross section of the foamed paper laminate. The print layer was measured at any five points, and the average value thereof was taken as the film thickness of the print layer.
  • SEM scanning electron microscope
  • Example 2 Examples 2 to 25, Comparative Examples 1 to 3
  • Table 4 printing was performed in the same manner as in Example 1 except that each printing ink was used, and a printing layer having a film thickness of 1.5 ⁇ m was formed.
  • the film thickness of the print layer was 2.5 ⁇ m because the overprinting was performed.
  • the low-density polyethylene resin (L2) was used instead of the low-density polyethylene resin (L1), and in Example 24, the low-density polyethylene resin (L1) was replaced with the low-density polyethylene resin (L1). L3) was used.
  • the foam paper laminate (after foaming) is reheated to improve the heat resistance. evaluated. Specifically, first, with respect to the foam paper laminates of Examples 1 to 25 and Comparative Examples 1 to 3, an aluminum foil cut to the same size as the print layer was superposed on the surface of the print layer (coating film). Next, using a heat seal tester heated to 140 ° C., the aluminum foil portion was pressed at a pressure of 2 kg / cm 2 for 1 second.
  • the evaluation criteria are as follows. (Evaluation criteria) 5: No ink adhesion to the aluminum foil (ink adhesion cannot be confirmed). 4: Ink adhesion to the aluminum foil is confirmed, but it is less than 3%. 3: Ink adhesion to the aluminum foil is 3% or more and less than 10%. 2: Ink adhesion to aluminum foil is 10% or more and less than 30%. 1: Ink adhesion to aluminum foil is 30% or more.
  • the evaluation criteria are as follows. (Evaluation criteria) 5: Ink peeling is less than 30%. 4: Ink peeling is 30% or more and less than 40%. 3: Ink peeling is 40% or more and less than 60%. 2: Ink peeling is 60% or more and less than 70%. 1: Ink peeling is 70% or more.
  • the thickness of the foam layer and the number of foam cells of the foam paper laminate were measured according to the method described below.
  • the thickness of the foamed layer is 500 ⁇ m or more, and the number of foamed cells is 1250 cells / 1 cm 2 or more, so that sufficient heat insulating properties are obtained in practical use. I was able to confirm that it was possible.
  • the foam sheet laminate of Comparative Example 3 although the thickness of the foamed layer was greater than 500 [mu] m, a number of foamed cells is less than 1000/1 cm 2, not possible to obtain sufficient heat insulating property in a practical rice field.
  • the printed layer of the foamed paper laminate was removed with methyl ethyl ketone (MEK) to expose the surface of the foamed thermoplastic resin layer (foamed layer).
  • MEK methyl ethyl ketone
  • the surface of the foam layer was observed using an optical microscope (AZ100M manufactured by Nikon Corporation) (magnification 25 times), and an independent cell existing within a range partitioned by a certain length in the vertical and horizontal (XY) directions. The number of independent cells was obtained, and the value calculated as the number of independent cells per 1 cm 2 was obtained. Observation was performed at any 5 points, and the average value of these was taken as the number of foamed cells.
  • the film thickness of the foam layer was determined by observing the cross section of the foam paper laminate with an optical micrograph and measuring the height from the upper surface of the paper substrate to the lower surface of the print layer. Further, the film thickness before foaming corresponds to the film thickness of the foamed layer forming layer. Therefore, the value obtained by measuring the film thickness of the low-density polyethylene resin formed as the foam layer forming layer was used.
  • the present invention has a printed layer containing a biomass resin, excellent heat resistance, foaming followability, foaming appearance, and ethanol resistance are obtained, and is suitable as a member of a foamed paper container. It can be seen that a usable foamed paper laminate can be provided.

Abstract

Provided is a foam paper laminate comprising: a foam paper composed of a base paper, a thermoplastic resin layer (A) disposed on one surface of the base paper, and a foamed thermoplastic resin layer (B) disposed on the other surface of the base paper; and a printing layer disposed on the foamed thermoplastic resin layer (B), wherein the printing layer contains at least a binder resin, and the binder resin contains a urethane resin having a structural unit derived from castor oil polyol.

Description

発泡紙積層体Foam paper laminate
 本発明の実施形態は、発泡紙積層体に関する。 The embodiment of the present invention relates to a foamed paper laminate.
 発泡容器は、優れた断熱性を有することから、高温又は低温の液体を含む食品を収容するための容器として広く使用されている。なかでも、容器に収容したラーメン、うどん、及び蕎麦といった即席麺に適量の熱湯を注ぐだけで、数分後に食すことができる、一般的に「カップ麺」と称される製品において発泡容器は欠かせない。カップ麺用の発泡容器として、発泡スチロール製容器、及び発泡紙製容器が知られているが、近年、環境負荷及び安全性の観点から、発泡紙製容器が注目されている。 Effervescent containers are widely used as containers for storing foods containing high-temperature or low-temperature liquids because they have excellent heat insulating properties. In particular, foam containers are lacking in products generally called "cup noodles" that can be eaten in a few minutes by simply pouring an appropriate amount of boiling water into instant noodles such as ramen, udon, and soba noodles contained in a container. I can't. Styrofoam containers and foamed paper containers are known as foaming containers for cup noodles, but in recent years, foamed paper containers have been attracting attention from the viewpoint of environmental load and safety.
 発泡紙製容器は、紙基材と、容器製造時などの加熱によって発泡し、断熱層を形成する熱可塑性樹脂層とを有する発泡紙材料を用いて製造される。通常、発泡紙製容器(発泡紙材料)の表面には、装飾模様、社名、バーコードなどの印刷パターンを含む印刷層が形成される。そのため、印刷層は、発泡紙材料の熱可塑性樹脂層が加熱によって発泡し断熱層を形成する際に、発泡を妨げることなく、発泡追随性に優れることが望ましい。また、熱可塑性樹脂層が発泡した後の発泡紙積層体における印刷層の表面(印刷面)は、平滑であり、ひび割れ及び火脹れなどがなく、優れた外観(以下「発泡外観」という)を有することが望ましい。また、印刷面は、容器製造時に必要となる耐摩擦性及び耐熱性などの各種耐性に優れることが望ましい。さらに、食品分野では、消毒のためにエタノールなどの溶剤が汎用されることから、印刷層には耐エタノール性などの耐溶剤性も要求される。 The foamed paper container is manufactured using a foamed paper material having a paper base material and a thermoplastic resin layer that foams by heating at the time of manufacturing the container to form a heat insulating layer. Usually, a printing layer including a printing pattern such as a decorative pattern, a company name, and a barcode is formed on the surface of a foamed paper container (foamed paper material). Therefore, it is desirable that the printing layer has excellent foaming followability without hindering foaming when the thermoplastic resin layer of the foamed paper material foams by heating to form a heat insulating layer. Further, the surface (printing surface) of the printed layer in the foamed paper laminate after the thermoplastic resin layer is foamed is smooth, has no cracks or swelling, and has an excellent appearance (hereinafter referred to as “foamed appearance”). It is desirable to have. Further, it is desirable that the printed surface is excellent in various resistances such as friction resistance and heat resistance required for manufacturing the container. Further, in the food field, since a solvent such as ethanol is widely used for disinfection, the printed layer is also required to have solvent resistance such as ethanol resistance.
 従来から、発泡紙製容器の印刷層の形成には、グラビアインキ又はフレキソインキが用いられている。例えば、特許文献1及び特許文献2は、発泡紙製容器の印刷層を形成するインキとして、バインダー樹脂及び顔料を含み、上記バインダー樹脂がウレタン樹脂を含む発泡紙製容器(発泡カップ)用インキを開示している。 Conventionally, gravure ink or flexo ink has been used to form a printing layer of a foamed paper container. For example, Patent Document 1 and Patent Document 2 include an ink for a foamed paper container (foam cup) containing a binder resin and a pigment as the ink forming the print layer of the foamed paper container, and the binder resin contains a urethane resin. It is disclosed.
 一方、循環型社会を構築するために、近年、バイオマス樹脂が注目されている。例えば、フィルム状のバイオマス樹脂としては、ポリ乳酸(PLA)、又はバイオマス原料由来のポリエチレン樹脂などが商業化されている。また、特許文献3~5では、バイオマス樹脂を用いた環境対応型インキ、及び当該インキを使用した積層体が開示されている。 On the other hand, in recent years, biomass resin has been attracting attention in order to build a sound material-cycle society. For example, as the film-shaped biomass resin, polylactic acid (PLA), polyethylene resin derived from a biomass raw material, or the like has been commercialized. Further, Patent Documents 3 to 5 disclose environment-friendly inks using biomass resin and laminates using the inks.
国際公開第2009/119800号International Publication No. 2009/11800 特開2018-109131号公報Japanese Unexamined Patent Publication No. 2018-109131 特開2018-058955号公報Japanese Unexamined Patent Publication No. 2018-058955 特開2014-004799号公報Japanese Unexamined Patent Publication No. 2014-004799 特開2014-005414号公報Japanese Unexamined Patent Publication No. 2014-005414
 上述のように循環型社会を構築する観点から、発泡紙製容器の分野においても、従来の化石燃料から得られる樹脂に代えて動植物由来の原料を使用したバイオマス樹脂を採用することが望ましい。一方、発泡紙製容器における印刷層には、耐摩擦性及び耐エタノール性などの各種特性に加えて、耐熱性及び発泡追随性、並びに発泡外観などの特殊な性能も要求される。なかでも、加熱加工時の印刷層の耐熱性が重要である。 As mentioned above, from the viewpoint of building a sound material-cycle society, it is desirable to use biomass resin using animal and plant-derived raw materials instead of the resin obtained from conventional fossil fuels in the field of foamed paper containers as well. On the other hand, the printing layer in a foamed paper container is required to have various properties such as abrasion resistance and ethanol resistance, as well as special performance such as heat resistance, foam followability, and foam appearance. Above all, the heat resistance of the printed layer during heat processing is important.
 発泡紙製容器の用途では、容器の製造において、発泡層を形成する工程で加熱加工に伴い基材が膨張する。そのため、印刷層の耐熱性が不十分である場合、容器の製造過程で印刷層が基材から剥離し、装置に堆積するなどのトラブルが生じやすくなる。したがって、発泡紙製容器における印刷層には、加熱され、かつ基材が膨張する条件下であっても基材から剥離しない耐熱性が求められる。 In the use of foamed paper containers, in the manufacturing of containers, the base material expands due to heat processing in the process of forming the foamed layer. Therefore, when the heat resistance of the printed layer is insufficient, troubles such as the printed layer peeling from the base material and depositing on the apparatus are likely to occur in the manufacturing process of the container. Therefore, the printed layer in the foamed paper container is required to have heat resistance that does not peel off from the base material even under the conditions of being heated and the base material expanding.
 上述のように、発泡紙製容器の用途では発泡層を形成する加熱加工に伴い基材が膨張する。一方、包装などの一般的な用途では、印刷層形成後に加熱加工を実施することはないため、基材は殆ど変形しない。このような違いがあることから、発泡紙製容器の印刷層を形成するためのインキ成分を一般的な用途で使用される環境対応型インキに単純に置換えるだけでは耐熱性等の所望とする各種特性を十分に満足できるレベルで得ることは困難である。そのため、バイオマス樹脂を使用した発泡紙製容器の開発が望まれているが、上述のように発泡紙製容器では特殊な性能が要求されることからバイオマス樹脂の採用は進んでいない。したがって、本発明の実施形態は、上述の状況に鑑み、バイオマス樹脂を含む印刷層を有し、優れた耐熱性、発泡追随性、発泡外観、及び耐エタノール性が得られ、発泡紙製容器の部材として好適に使用できる発泡紙積層体を提供する。 As mentioned above, in the use of foamed paper containers, the base material expands with the heat processing that forms the foamed layer. On the other hand, in general applications such as packaging, the base material is hardly deformed because the heat treatment is not performed after the print layer is formed. Due to these differences, it is desirable to simply replace the ink component for forming the print layer of the foamed paper container with the environment-friendly ink used for general purposes, such as heat resistance. It is difficult to obtain various characteristics at a sufficiently satisfactory level. Therefore, the development of a foamed paper container using a biomass resin is desired, but as described above, the adoption of a biomass resin has not progressed because the foamed paper container is required to have special performance. Therefore, in view of the above situation, the embodiment of the present invention has a printing layer containing a biomass resin, and excellent heat resistance, foaming followability, foaming appearance, and ethanol resistance can be obtained, and a foamed paper container can be obtained. Provided is a foamed paper laminate that can be suitably used as a member.
 本発明者らは、上記課題を解決するために、発泡紙積層体の印刷層を構成する樹脂成分について鋭意検討を行い、特定のバイオマス樹脂を含む印刷層を形成することによって、耐熱性、発泡追随性、発泡外観、及び耐エタノール性といった印刷層の特性とにおいて良好な結果が得られることを見出し、本発明を完成するに至った。すなわち、本発明は以下の実施形態に関するが、これらに限定されることなく様々な実施形態を含む。 In order to solve the above problems, the present inventors have diligently studied the resin components constituting the print layer of the foamed paper laminate, and formed a print layer containing a specific biomass resin to achieve heat resistance and foaming. We have found that good results can be obtained in terms of characteristics of the printed layer such as followability, foamed appearance, and ethanol resistance, and have completed the present invention. That is, the present invention relates to the following embodiments, but includes various embodiments without limitation.
 一実施形態は、原紙と、上記原紙の一方の面に設けられた熱可塑性樹脂層(A)と、上記原紙の他方の面に設けられた発泡熱可塑性樹脂層(B)とからなる発泡紙、及び上記発泡熱可塑性樹脂層(B)上に設けられた印刷層を具備した発泡紙積層体であって、
 上記印刷層が、少なくともバインダー樹脂を含み、
 上記バインダー樹脂は、ひまし油ポリオール由来の構造単位を有するウレタン樹脂を含む、発泡紙積層体に関する。
One embodiment is a foamed paper composed of a base paper, a thermoplastic resin layer (A) provided on one side of the base paper, and a foamed thermoplastic resin layer (B) provided on the other side of the base paper. , And a foamed paper laminate provided with a printing layer provided on the foamed thermoplastic resin layer (B).
The print layer contains at least a binder resin and contains
The binder resin relates to a foamed paper laminate containing a urethane resin having a structural unit derived from castor oil polyol.
 一実施形態において、ウレタン樹脂は、二塩基酸とジオールとの縮合物であるポリエステルポリオール由来の構造単位をさらに有することが好ましい。ひまし油ポリオール由来の構造単位(a1)とポリエステルポリオール由来の構造単位(a2)との質量比(a1)/(a2)は、75/25~10/90であることが好ましい。 In one embodiment, the urethane resin preferably further has a structural unit derived from a polyester polyol which is a condensate of a dibasic acid and a diol. The mass ratio (a1) / (a2) of the structural unit (a1) derived from castor oil polyol and the structural unit (a2) derived from polyester polyol is preferably 75/25 to 10/90.
 一実施形態において、ウレタン樹脂の全質量を基準として、ポリエーテルポリオール由来の構造単位の含有量は8質量%以下であることが好ましい。 In one embodiment, the content of the structural unit derived from the polyether polyol is preferably 8% by mass or less based on the total mass of the urethane resin.
 一実施形態において、ひまし油ポリオールの重量平均分子量は、1,000~5,000であることが好ましい。 In one embodiment, the weight average molecular weight of the castor oil polyol is preferably 1,000 to 5,000.
 一実施形態において、バインダー樹脂は、さらに塩化ビニル/酢酸ビニル共重合体を含み、バインダー樹脂の全質量を基準として、塩化ビニル/酢酸ビニル共重合体の含有量は5質量%以上、50質量以下であることが好ましい。 In one embodiment, the binder resin further contains a vinyl chloride / vinyl acetate copolymer, and the content of the vinyl chloride / vinyl acetate copolymer is 5% by mass or more and 50% by mass or less based on the total mass of the binder resin. Is preferable.
 一実施形態において、バインダー樹脂の伸び率は、400%~3,000%であることが好ましい。
 本願の開示は、2020年7月17日に出願された特願2020-123027号に記載の主題と関連しており、その全ての開示内容は引用によりここに援用される。
In one embodiment, the elongation rate of the binder resin is preferably 400% to 3,000%.
The disclosures of this application relate to the subject matter described in Japanese Patent Application No. 2020-12307 filed on July 17, 2020, the entire disclosure of which is incorporated herein by reference.
 本発明によれば、バイオマス樹脂を含む印刷層を有し、優れた耐熱性、発泡追随性、発泡外観、及び耐エタノール性が得られ、発泡紙製容器の部材として好適に使用できる発泡紙積層体を提供することができる。 According to the present invention, a foamed paper laminate having a printing layer containing a biomass resin, excellent heat resistance, foaming followability, foaming appearance, and ethanol resistance can be obtained, and can be suitably used as a member of a foamed paper container. Can provide a body.
図1は、一実施形態である発泡紙積層体を具備してなる発泡紙製容器の構造例を示す斜視図である。FIG. 1 is a perspective view showing a structural example of a foamed paper container provided with a foamed paper laminate according to an embodiment. 図2は、図1に示した発泡紙製容器の一部(参照符号I部)を拡大して示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing a part (reference numeral I portion) of the foamed paper container shown in FIG. 1 in an enlarged manner.
 以下、本発明の実施形態について具体的に説明する。ただし、本発明は以下に記載する実施形態に限定されるものではなく、様々な実施形態を含む。 Hereinafter, embodiments of the present invention will be specifically described. However, the present invention is not limited to the embodiments described below, and includes various embodiments.
<1>発泡紙積層体
 一実施形態は、発泡紙積層体に関する。発泡紙積層体は、熱可塑性樹脂層(A)、紙基材、及び発泡熱可塑性樹脂層(B)を順次有する発泡紙と、上記発泡紙の上記発泡熱可塑性樹脂層(B)の表面に形成された印刷層とを有する。上記印刷層は、バインダー樹脂として少なくともバイオマス樹脂を含み、バイオマス樹脂は、少なくともバイオマス由来のウレタン樹脂を含むことが好ましい。一実施形態において、バインダー樹脂は、ひまし油ポリオール由来の構造単位を有するウレタン樹脂を含む。上記ウレタン樹脂は、原料となるポリオール成分として、少なくともひまし油ポリオールを使用して得られるバイオマス由来のウレタン樹脂である。このようなバイオマス由来のウレタン樹脂の詳細については後述する。
<1> Foamed Paper Laminated Material One embodiment relates to a foamed paper laminated body. The foamed paper laminate is formed on a foamed paper having a thermoplastic resin layer (A), a paper base material, and a foamed thermoplastic resin layer (B) in that order, and on the surface of the foamed thermoplastic resin layer (B) of the foamed paper. It has a formed printed layer. The printed layer preferably contains at least a biomass resin as a binder resin, and the biomass resin preferably contains at least a biomass-derived urethane resin. In one embodiment, the binder resin comprises a urethane resin having a structural unit derived from castor oil polyol. The urethane resin is a biomass-derived urethane resin obtained by using at least castor oil polyol as a polyol component as a raw material. Details of such a biomass-derived urethane resin will be described later.
 一実施形態において、上記発泡熱可塑性樹脂層(B)は、単位表面積あたりの発泡セル数が1000個/1cm以上であり、かつ25℃のエタノール中に、30分間浸漬した後の印刷層の残存率が50質量%以上であることが好ましい。 In one embodiment, the foamed thermoplastic resin layer (B) has a number of foamed cells of 1000 cells / 1 cm 2 or more per unit surface area, and is a printed layer after being immersed in ethanol at 25 ° C. for 30 minutes. The residual ratio is preferably 50% by mass or more.
 上記発泡熱可塑性樹脂層(B)(以下、発泡層(B)ともいう)の単位表面積あたりの発泡セル数は、数が多いほど発泡層(B)に存在する気泡が小さく、数が少ないほど発泡層(B)に存在する気泡が大きいことを意味する。発泡層(B)に存在する気泡が大きくなると、印刷面のひび割れ、及び火脹れといった外観不良が起こりやすくなる。 As for the number of foamed cells per unit surface surface of the foamed thermoplastic resin layer (B) (hereinafter, also referred to as foamed layer (B)), the larger the number, the smaller the bubbles existing in the foamed layer (B), and the smaller the number. It means that the bubbles existing in the foam layer (B) are large. When the bubbles existing in the foam layer (B) become large, appearance defects such as cracks and swelling of the printed surface are likely to occur.
 一実施形態において、発泡層(B)の単位表面積あたりの発泡セル数は、1000個/1cm以上であることが好ましく、1250個/1cm以上であることがより好ましい。発泡セル数が上記範囲である場合、発泡層(B)上に形成された印刷層において、ひび割れ及び火脹れのない優れた発泡外観を容易に得ることができる。一方、発泡セル数の上限は特に限定されない。一実施形態において、製造条件などの観点から、上記発泡セル数は1600個/1cm以下であってよい。 In one embodiment, the number of foamed cells per unit surface area of the foamed layer (B) is preferably 1000 cells / 1 cm 2 or more, and more preferably 1250 cells / 1 cm 2 or more. When the number of foamed cells is in the above range, an excellent foamed appearance without cracks and swelling can be easily obtained in the printed layer formed on the foamed layer (B). On the other hand, the upper limit of the number of foamed cells is not particularly limited. In one embodiment, the number of foamed cells may be 1600 cells / cm 2 or less from the viewpoint of manufacturing conditions and the like.
 ここで、「単位面積あたりの発泡セル数」とは、発泡層(B)の表面において、縦横(X-Y)方向に一定の長さで区画される範囲内に存在する独立セル(気泡)の数をカウントし、1cmあたりの独立セル数として算出される値を意味する。独立セル数は、発泡紙積層体の印刷層を溶剤で除去し、発泡層(B)の表面を露出させた後に、光学顕微鏡を用いて発泡層(B)の表面を観察することによって決定される。 Here, the "number of foamed cells per unit area" is an independent cell (air bubble) existing in a range partitioned by a certain length in the vertical and horizontal (XY) directions on the surface of the foamed layer (B). It means a value calculated as the number of independent cells per 1 cm 2 by counting the number of. The number of independent cells is determined by removing the printed layer of the foamed paper laminate with a solvent, exposing the surface of the foamed layer (B), and then observing the surface of the foamed layer (B) using an optical microscope. To.
 発泡層(B)の厚さは、断熱性の観点から、500μm以上であることが好ましく、630μm以上であることがより好ましい。発泡層(B)の厚みが500μm以上であれば、発泡紙積層体をカップ状の容器に成形し、その容器内に100℃程度の熱水を注いだ場合にも、容器を素手で継続的に保持することが容易となる。一方、省資源化の観点から、樹脂の使用量は、できる限り少ない方が好ましい。また、断熱性の観点からは、断熱層として過剰品質となるほどの厚みは必要ない。したがって、発泡層(B)の厚さは、950μm以下であることが好ましく、900μm以下であることがより好ましく、800μmであることが極めて好ましい。 The thickness of the foam layer (B) is preferably 500 μm or more, more preferably 630 μm or more, from the viewpoint of heat insulating properties. If the thickness of the foamed layer (B) is 500 μm or more, the foamed paper laminate is formed into a cup-shaped container, and even when hot water of about 100 ° C. is poured into the container, the container is continuously held with bare hands. It becomes easy to hold in. On the other hand, from the viewpoint of resource saving, it is preferable that the amount of resin used is as small as possible. Further, from the viewpoint of heat insulating properties, the heat insulating layer does not need to be thick enough to have excessive quality. Therefore, the thickness of the foamed layer (B) is preferably 950 μm or less, more preferably 900 μm or less, and extremely preferably 800 μm or less.
 上述の観点から、一実施形態において、上記発泡層(B)の厚さは、500~950μmが好ましく、500~900μmがより好ましく、500~800μmがさらに好ましい。発泡層(B)の厚さは、発泡紙積層体の断面を光学顕微鏡写真で観察し、紙基材の上面から、印刷層の下面までの高さを測定することによって決定される。 From the above viewpoint, in one embodiment, the thickness of the foam layer (B) is preferably 500 to 950 μm, more preferably 500 to 900 μm, and even more preferably 500 to 800 μm. The thickness of the foamed layer (B) is determined by observing the cross section of the foamed paper laminate with an optical micrograph and measuring the height from the upper surface of the paper substrate to the lower surface of the printed layer.
 上記実施形態の発泡紙積層体において、発泡紙の発泡層(B)は、加熱によって熱可塑性樹脂層が発泡した後の状態を意味する。すなわち、発泡層(B)は、前駆体となる未発泡の熱可塑性樹脂層(発泡熱可塑性樹脂層形成層(B))を加熱し、発泡させることによって形成される。一実施形態において、上記発泡紙積層体を構成するために、熱可塑性樹脂層(A)と、紙基材と、上記熱可塑性樹脂層(A)よりも低い融点を有し、加熱処理によって発泡する、発泡熱可塑性樹脂層形成層(B)とを順次有する発泡紙材料(加熱前発泡紙)を使用することができる。発泡紙材料は当技術分野で公知の材料から構成することができる。以下、発泡紙積層体の構成材料について具体的に説明する。 In the foamed paper laminate of the above embodiment, the foamed layer (B) of the foamed paper means a state after the thermoplastic resin layer is foamed by heating. That is, the foamed layer (B) is formed by heating and foaming an unexpanded thermoplastic resin layer (foamed thermoplastic resin layer forming layer (B 0)) as a precursor. In one embodiment, in order to form the foamed paper laminate, it has a thermoplastic resin layer (A), a paper substrate, and a melting point lower than that of the thermoplastic resin layer (A), and is foamed by heat treatment. A foamed paper material (foamed paper before heating) having a foamed thermoplastic resin layer forming layer (B 0) in sequence can be used. The foamed paper material can be made of a material known in the art. Hereinafter, the constituent materials of the foamed paper laminate will be specifically described.
(紙基材)
 発泡紙積層体を構成する紙基材は、特に限定されない。例えば、クラフト紙、又は上質紙を使用することができる。容器として使用する時に十分な強靭さを実現する観点から、紙基材の坪量は、150~450g/mであることが好ましく、250~400g/mであることがより好ましい。また、ポリエチレンなどの熱可塑性樹脂の好適な発泡性を得る観点から、紙基材に含まれる水分量は4~10質量%が好ましく、5~8質量%がより好ましい。
(Paper base material)
The paper base material constituting the foamed paper laminate is not particularly limited. For example, kraft paper or woodfree paper can be used. From the viewpoint of achieving sufficient toughness when used as a container, the basis weight of the paper substrate is preferably 150 to 450 g / m 2 , and more preferably 250 to 400 g / m 2 . Further, from the viewpoint of obtaining suitable foamability of a thermoplastic resin such as polyethylene, the water content contained in the paper substrate is preferably 4 to 10% by mass, more preferably 5 to 8% by mass.
(熱可塑性樹脂層、発泡層形成層)
 一実施形態において、熱可塑性樹脂層(A)、及び発泡熱可塑性樹脂層形成層(B)(以下、発泡層形成層(B)ともいう)は、それぞれ、従来から容器材料として周知の樹脂材料からなるフィルムであってよい。例えば、ポリエチレン、及びポリプロピレンなどの延伸及び無延伸ポリオレフィン、ポリエステル、ナイロン、セロファン、及びビニロンからなる群から選択される少なくとも1種の熱可塑性樹脂からなるフィルム(熱可塑性樹脂フィルム)を使用することができる。一実施形態において、ラミネート適性及び発泡性に優れることから、ポリエチレンフィルムを好適に使用することができる。さらに、環境負荷を低減させる観点から、熱可塑性樹脂層(A)及び発泡層形成層(B)の少なくとも一方は、バイオマス由来のポリエチレン樹脂から構成されるフィルムであることが好ましい。
(Thermoplastic resin layer, foam layer forming layer)
In one embodiment, the thermoplastic resin layer (A) and the foamed thermoplastic resin layer forming layer (B 0 ) (hereinafter, also referred to as the foamed layer forming layer (B 0 )) are conventionally known as container materials. It may be a film made of a resin material. For example, a film (thermoplastic resin film) made of at least one thermoplastic resin selected from the group consisting of stretched and unstretched polyolefins such as polyethylene and polypropylene, polyester, nylon, cellophane, and vinylon can be used. can. In one embodiment, a polyethylene film can be preferably used because it is excellent in laminating suitability and foamability. Further, from the viewpoint of reducing the environmental load, it is preferable that at least one of the thermoplastic resin layer (A) and the foamed layer forming layer (B 0 ) is a film composed of a polyethylene resin derived from biomass.
 発泡紙材料は、互いに融点が異なる熱可塑性樹脂フィルムを、それぞれ紙基材にラミネートすることによって構成することができる。ここで、熱可塑性樹脂層(A)として紙基材の一面に設けられる熱可塑性樹脂フィルムよりも、発泡層形成層(B)として紙基材の他面に設けられる熱可塑性樹脂フィルムの融点(Mp)が低くなるように材料を選択する。発泡紙材料では、加熱処理時に紙基材中の水分が蒸発し、その蒸発した水分が、軟化状態になった発泡層形成層(B)(低Mp樹脂フィルム)側に押し出される。そして、そのような押し出しに伴って上記低Mp樹脂フィルムが外側に向かって膨み(発泡し)、発泡層(B)が形成される。このようにして形成される発泡層(B)は、容器において断熱層として機能する。一方、熱可塑性樹脂層(A)(高Mp樹脂フィルム)については、低Mp樹脂フィルムが加熱処理によって発泡する時に、溶融又は軟化しない材料を選択する。 The foamed paper material can be constructed by laminating thermoplastic resin films having different melting points on a paper base material. Here, the melting point of the thermoplastic resin film provided on the other surface of the paper substrate as the foam layer forming layer (B 0 ) rather than the thermoplastic resin film provided on one surface of the paper substrate as the thermoplastic resin layer (A). Select the material so that (Mp) is low. In the foamed paper material, the water content in the paper substrate evaporates during the heat treatment, and the evaporated water content is extruded to the softened foam layer forming layer (B 0 ) (low Mp resin film) side. Then, with such extrusion, the low Mp resin film swells (foams) toward the outside, and a foamed layer (B) is formed. The foam layer (B) thus formed functions as a heat insulating layer in the container. On the other hand, for the thermoplastic resin layer (A) (high Mp resin film), a material that does not melt or soften when the low Mp resin film foams by heat treatment is selected.
 発泡紙積層体を使用して発泡紙製容器を製造する観点から、発泡紙材料は、例えば、紙基材の一面(容器の内側)に約125℃~140℃の融点を有する高Mpポリエチレンフィルム(熱可塑性樹脂層(A))、及び上記紙基材の他面(容器の外側)に約105℃~120℃の融点を有する低Mpポリエチレンフィルム(発泡層形成層(B))をそれぞれラミネートした構造を有してよい。発泡紙製容器の製造時などの加熱によって、低Mpポリエチレンフィルムが発泡して発泡層を形成する。一方、高Mpポリエチレンフィルムは、被覆層として機能することが好ましい。すなわち、被覆層は、低Mpポリエチレンフィルムの発泡中に、紙基材中の水分が外部に蒸散することを抑制し、紙基材中の水分を効率よく発泡に寄与させることが可能である。 From the viewpoint of producing a foam paper container using a foam paper laminate, the foam paper material is, for example, a high Mp polyethylene film having a melting point of about 125 ° C. to 140 ° C. on one surface (inside of the container) of a paper base material. (Thermoplastic resin layer (A)) and a low Mp polyethylene film (foam layer forming layer (B 0 )) having a melting point of about 105 ° C. to 120 ° C. on the other surface (outside of the container) of the paper substrate, respectively. It may have a laminated structure. The low Mp polyethylene film foams to form a foamed layer by heating during the production of a foamed paper container or the like. On the other hand, the high Mp polyethylene film preferably functions as a coating layer. That is, the coating layer can suppress the evaporation of the water content in the paper base material to the outside during the foaming of the low Mp polyethylene film, and can efficiently contribute the water content in the paper base material to the foaming.
 一実施形態において、発泡層形成層(B)の材料は、ポリエチレン樹脂のなかでも、低密度ポリエチレン樹脂(密度910~925kg/m、融点105~120℃)を含むことが好ましい。低密度ポリエチレン樹脂の密度は、より好ましくは910~922kg/mであり、さらに好ましくは910~918kg/mである。発泡層形成層(B)の材料として、中密度ポリエチレン樹脂(密度925~940kg/m、融点115~130℃)、及び高密度ポリエチレン樹脂(密度940~970kg/m、融点125~140℃)を使用した場合、融点が高く、十分な発泡性を得ることが困難となる傾向がある。また、均一に発泡した層を得る観点から、ポリエチレン樹脂のメルトフローレート(以下、「MFR」という)は、8~28g/10分であることが好ましく、10~20g/10分であることがより好ましい。
 一実施形態において、バイオマス由来のポリエチレンフィルムを組合せることが好ましい。例えば、熱可塑性樹脂層(A)としてブラスケム株式会社製の「SHE150(密度948Kg/m、MFR 1g/10分)」を使用し、発泡層形成層(B)の材料としてブラスケム株式会社製の「SBC818(密度918kg/m、MFR8.1g/10分)」を使用することができる。
In one embodiment, the material of the foam layer forming layer (B 0 ) preferably contains a low density polyethylene resin (density 910 to 925 kg / m 3 , melting point 105 to 120 ° C.) among the polyethylene resins. The density of the low-density polyethylene resin is more preferably 910 to 922 kg / m 3 , and even more preferably 910 to 918 kg / m 3 . As the material of the foam layer forming layer (B 0 ), a medium density polyethylene resin (density 925 to 940 kg / m 3 , melting point 115 to 130 ° C.) and a high density polyethylene resin (density 940 to 970 kg / m 3 , melting point 125 to 140). When ° C) is used, the melting point is high and it tends to be difficult to obtain sufficient foamability. Further, from the viewpoint of obtaining a uniformly foamed layer, the melt flow rate of the polyethylene resin (hereinafter referred to as “MFR”) is preferably 8 to 28 g / 10 minutes, and preferably 10 to 20 g / 10 minutes. More preferred.
In one embodiment, it is preferable to combine a polyethylene film derived from biomass. For example, "SHE150 (density 948 kg / m 3 , MFR 1 g / 10 minutes)" manufactured by Braskem Co., Ltd. is used as the thermoplastic resin layer (A), and Braskem Co., Ltd. is used as the material for the foam layer forming layer (B 0). "SBC818 (density 918 kg / m 3 , MFR 8.1 g / 10 minutes)" can be used.
 特に限定するものではないが、一実施形態において発泡層形成層(B)の膜厚は、40μm以上であることが好ましく、60μm以上であることがより好ましい。膜厚を40μm以上に調整することによって、加熱処理後に十分な断熱性を得ることができる。 Although not particularly limited, in one embodiment, the film thickness of the foamed layer forming layer (B 0 ) is preferably 40 μm or more, and more preferably 60 μm or more. By adjusting the film thickness to 40 μm or more, sufficient heat insulating properties can be obtained after the heat treatment.
 一方、省資源化の観点から、樹脂の使用量は、できる限り少ない方が好ましい。また、断熱性の観点においても、過剰品質となるほどの厚さは必要ない。したがって、発泡層形成層(B)の膜厚は、150μm以下であることが好ましく、100μm以下であることがより好ましく、80μm以下であることが極めて好ましい。 On the other hand, from the viewpoint of resource saving, it is preferable that the amount of resin used is as small as possible. Also, from the viewpoint of heat insulating properties, it is not necessary to have a thickness sufficient for excessive quality. Therefore, the film thickness of the foam layer forming layer (B 0 ) is preferably 150 μm or less, more preferably 100 μm or less, and extremely preferably 80 μm or less.
(印刷層)
 上記実施形態の発泡紙積層体において、印刷層は、発泡紙材料の発泡層形成層(B)の表面にインキ組成物を塗布して得られる塗膜である。印刷層(すなわちインキ組成物)を構成する塗膜の主成分はバインダー樹脂であり、バインダー樹脂は、少なくとも、ひまし油ポリオール由来の構造単位を有するウレタン樹脂を含むことを特徴とする。このようなバイオマス由来のウレタン樹脂を使用することで、加熱加工時の耐熱性及び発泡追随性、並びに発泡外観及び耐エタノールといった特性に優れ、発泡紙製容器の部材として好適に使用できる発泡紙積層体を実現することができる。
(Print layer)
In the foamed paper laminate of the above embodiment, the printing layer is a coating film obtained by applying an ink composition to the surface of the foamed layer forming layer (B 0) of the foamed paper material. The main component of the coating film constituting the printing layer (that is, the ink composition) is a binder resin, and the binder resin is characterized by containing at least a urethane resin having a structural unit derived from castor oil polyol. By using such a biomass-derived urethane resin, it is excellent in heat resistance and foaming followability during heat processing, as well as foaming appearance and ethanol resistance, and can be suitably used as a member of a foamed paper container. The body can be realized.
 一実施形態において、印刷層(乾燥後の塗膜)の厚さは、印刷層による発泡抑制力、及び耐摩擦性の観点から、0.5~5.0μmであることが好ましい。印刷層の厚さは、より好ましくは0.5~4.0μmであってよく、さらに好ましくは0.5~3.5μmであってよい。 In one embodiment, the thickness of the printed layer (coating film after drying) is preferably 0.5 to 5.0 μm from the viewpoint of foaming suppressing power by the printed layer and abrasion resistance. The thickness of the printed layer may be more preferably 0.5 to 4.0 μm, still more preferably 0.5 to 3.5 μm.
 上記実施形態では、印刷層を構成するバインダー樹脂としてバイオマス由来のウレタン樹脂を使用するため、従来の石油由来の樹脂を使用した場合よりも、環境負荷を低減することができる。このような観点から、バインダー樹脂の全質量を基準とするバイオマス度は10質量%以上であることが好ましい。他の実施形態において、印刷層は着色剤とバインダー樹脂とを含んでよい。この場合、着色剤とバインダー樹脂との合計100質量部とするバイオマス度は10質量%以上であることが好ましい。循環型社会を構築する観点において、バイオマス度は高いほど好ましい。具体的には、バイオマス度は15質量%以上であることがより好ましい。 In the above embodiment, since the urethane resin derived from biomass is used as the binder resin constituting the print layer, the environmental load can be reduced as compared with the case where the conventional resin derived from petroleum is used. From such a viewpoint, the biomass degree based on the total mass of the binder resin is preferably 10% by mass or more. In other embodiments, the print layer may contain a colorant and a binder resin. In this case, the biomass content of the colorant and the binder resin in a total of 100 parts by mass is preferably 10% by mass or more. From the viewpoint of building a sound material-cycle society, the higher the biomass level, the more preferable. Specifically, the biomass degree is more preferably 15% by mass or more.
 本明細書において「バイオマス度」とは、原料として使用した全成分におけるバイオマス由来の原料の割合を意味する。例えば、バインダー樹脂の合成後に得られる化合物におけるバイオマス由来の成分の割合を意味する。すなわち、バイオマス由来の成分において、原料が植物油等のように全てバイオマス由来からなるものであれば、バイオマス度は100%である。一方、バイオマス由来の原料とバイオマス由来でない(例えば石油に由来する)原料とが一定比率で反応して得られる化合物の場合は、化合物中のバイオマス由来の原料の割合がバイオマス度となる。この場合、バイオマス度は、反応前の原料質量に換算して計算でき、以下の式(1)で表される値である。
 式(1):バイオマス度=100×化合物中のバイオマス由来成分の全質量/化合物の全質量
As used herein, the term "biomass degree" means the proportion of biomass-derived raw materials in all the components used as raw materials. For example, it means the ratio of the components derived from biomass in the compound obtained after the synthesis of the binder resin. That is, among the components derived from biomass, if the raw materials are all derived from biomass such as vegetable oil, the degree of biomass is 100%. On the other hand, in the case of a compound obtained by reacting a raw material derived from biomass with a raw material not derived from biomass (for example, derived from petroleum) at a constant ratio, the ratio of the raw material derived from biomass in the compound is the degree of biomass. In this case, the biomass degree can be calculated by converting it into the raw material mass before the reaction, and is a value represented by the following formula (1).
Formula (1): Biomass degree = 100 × total mass of biomass-derived components in the compound / total mass of the compound
 より具体的には、例えば、バイオマス由来のポリオール(バイオマス度A%)と石油由来のジイソシアネートとの反応物であるウレタン樹脂の場合、バイオマス度は下式で表される。
  バイオマス度=100×(バイオマス由来のポリオールの質量×A%)/ウレタン樹脂の質量
 上記式において、「ウレタン樹脂の質量」とは、バイオマス由来のポリオールと石油由来のジイソシアネートとの和であり、「バイオマス由来のポリオール」とは、ウレタン樹脂に使用された全てのバイオマス由来のポリオールの合計である。
More specifically, for example, in the case of a urethane resin which is a reaction product of a biomass-derived polyol (biomass degree A%) and petroleum-derived diisocyanate, the biomass degree is expressed by the following formula.
Degree of biomass = 100 x (mass of polyol derived from biomass x A%) / mass of urethane resin In the above formula, "mass of urethane resin" is the sum of polyol derived from biomass and diisocyanate derived from petroleum, and is ". The "polyol derived from biomass" is the total of all the polyols derived from biomass used in the urethane resin.
 上記実施形態の発泡紙積層体では、ポリオール成分として、少なくともひまし油ポリオールを使用するため、バイオマス度を高めることが容易である。なお、バイオマス度は、加速器質量分析などを使用して化合物における放射性炭素(14C)の濃度を測定することによって決定することもできる。石油由来の化合物には放射性炭素が存在しないことから、バイオマス由来の化合物は、バイオマス度によって石油由来の化合物と区別することもできる。 In the foamed paper laminate of the above embodiment, at least castor oil polyol is used as the polyol component, so that it is easy to increase the degree of biomass. The degree of biomass can also be determined by measuring the concentration of radioactive carbon (14 C) in the compound using accelerator mass spectrometry or the like. Since no radioactive carbon is present in petroleum-derived compounds, biomass-derived compounds can also be distinguished from petroleum-derived compounds by the degree of biomass.
<2>インキ組成物
 一実施形態は、上記実施形態の発泡紙積層体の印刷層を形成するために好適に使用できるインキ組成物に関する。インキ組成物は、ひまし油ポリオール由来の構造単位を有するウレタン樹脂を含むバインダー樹脂、及び溶媒を含む。他の実施形態において、インキ組成物は、顔料などの着色剤をさらに含んでもよい。インキ組成物は、上記成分に加えて、必要に応じて、各種添加剤をさらに含んでもよい。以下、インキ組成物の構成について説明する。
<2> Ink Composition One embodiment relates to an ink composition that can be suitably used for forming a print layer of the foamed paper laminate of the above embodiment. The ink composition contains a binder resin containing a urethane resin having a structural unit derived from castor oil polyol, and a solvent. In other embodiments, the ink composition may further comprise a colorant such as a pigment. The ink composition may further contain various additives in addition to the above components, if necessary. Hereinafter, the composition of the ink composition will be described.
(バインダー樹脂)
 発泡層(B)を形成する加熱加工時に、印刷層は、発泡層形成層(B)の発泡を阻害せず、発泡追随性に優れることが好ましい。その一方で、印刷面のひび割れ及び火膨れといった発泡外観不良を抑制するためには、発泡層形成層(B)の発泡を印刷層によって適切に制御できることが好ましい。これに対し、バインダー樹脂は印刷層(塗膜)の主成分となるため、適切なバインダー樹脂の形態を選択することによって、印刷層の発泡追随性と発泡抑制力とを良好に調整することができる。
(Binder resin)
At the time of heat processing for forming the foam layer (B), it is preferable that the printed layer does not inhibit the foaming of the foam layer forming layer (B 0) and has excellent foam followability. On the other hand, in order to suppress foaming appearance defects such as cracks and fire swelling on the printed surface, it is preferable that the foaming of the foam layer forming layer (B 0 ) can be appropriately controlled by the printed layer. On the other hand, since the binder resin is the main component of the printing layer (coating film), it is possible to satisfactorily adjust the foaming followability and foaming suppressing power of the printed layer by selecting an appropriate binder resin form. can.
 バインダー樹脂は、発泡追随性の観点から、50~4,000%の伸び率を有することが好ましく、400~3,000%の伸び率を有することがより好ましい。一方、バインダー樹脂の伸び率が50~4,000%であっても応力が過剰に小さすぎると、印刷層が発泡に追随する一方で、発泡を適切に制御できずに、ひび割れ及び火膨れが発生し発泡外観が低下しやすくなる。したがって、発泡追随性と印刷面の発泡外観とを両立する観点から、バインダー樹脂は、伸び率が50~4,000%であり、かつ応力が0.1mPa以上であることが好ましい。 The binder resin preferably has an elongation rate of 50 to 4,000%, and more preferably 400 to 3,000%, from the viewpoint of foaming followability. On the other hand, if the stress is too small even if the elongation rate of the binder resin is 50 to 4,000%, the printed layer follows the foaming, but the foaming cannot be properly controlled, and cracks and swelling occur. It occurs and the foaming appearance tends to deteriorate. Therefore, from the viewpoint of achieving both foaming followability and foaming appearance on the printed surface, the binder resin preferably has an elongation rate of 50 to 4,000% and a stress of 0.1 mPa or more.
 なお、本明細書において記載する用語「伸び率」は、厚さ0.3mm、幅15mmの寸法を有するサンプルについて、インテスコ社製の小型引張り試験機を用いて、引張り速度100mm/分、室温25℃において測定して得られる値を意味する。 The term "elongation rate" described in the present specification refers to a sample having dimensions of 0.3 mm in thickness and 15 mm in width, using a small tensile tester manufactured by Intesco, with a tensile speed of 100 mm / min and a room temperature of 25. It means the value obtained by measuring at ° C.
 一実施形態において、バインダー樹脂は、伸び率50~4,000%における応力が0.1mPa以上であることが好ましく、1mPa以上であることがより好ましく、5mPa以上であることがさらに好ましい。一方、伸び率50~4,000%における応力は、50mPa以下であることが好ましく、40mPa以下であることがより好ましく、30mPa以下であることがさらに好ましい。ウレタン樹脂を含むバインダー樹脂の伸び率50~4,000%における応力は、0.1mPa~50mPaであればよい。 In one embodiment, the binder resin preferably has a stress of 0.1 mPa or more, more preferably 1 mPa or more, and even more preferably 5 mPa or more at an elongation rate of 50 to 4,000%. On the other hand, the stress at an elongation rate of 50 to 4,000% is preferably 50 mPa or less, more preferably 40 mPa or less, and even more preferably 30 mPa or less. The stress at an elongation rate of 50 to 4,000% of the binder resin containing the urethane resin may be 0.1 mPa to 50 mPa.
 バインダー樹脂が上記範囲の伸び率及び応力を有する場合、発泡追随性に加えて、発泡外観についても良好な結果を得ることが容易となる。また、上記範囲の伸び率及び応力を有するバインダー樹脂は、所望とする印刷層の残存率を得ることが容易であるため、耐エタノール性を高める観点からも好ましい。 When the binder resin has an elongation rate and stress in the above range, it becomes easy to obtain good results in terms of foaming appearance in addition to foaming followability. Further, a binder resin having an elongation rate and stress in the above range is preferable from the viewpoint of enhancing ethanol resistance because it is easy to obtain a desired residual rate of the printed layer.
(ウレタン樹脂)
 上述のように、発泡時の印刷層の発泡追随性などの観点から、バインダー樹脂は、少なくともウレタン樹脂を含むことが好ましい。具体的な実施形態として、ポリオールと、ジイソシアネートを反応させてなるウレタン樹脂が挙げられる。また、ポリイソシアネートと、ポリオールとを反応させて得られるウレタンプレポリマーを、アミン化合物によって鎖延長して得られる、ウレタンウレア樹脂が挙げられる。すなわち、ウレタン樹脂は、ウレタン結合を有する樹脂であるが、更にウレア結合などを有していてもその概念に含まれる。
(Urethane resin)
As described above, the binder resin preferably contains at least a urethane resin from the viewpoint of foaming followability of the printed layer during foaming. Specific embodiments include urethane resins obtained by reacting a polyol with diisocyanate. Further, a urethane urea resin obtained by extending a chain of a urethane prepolymer obtained by reacting a polyisocyanate with a polyol with an amine compound can be mentioned. That is, the urethane resin is a resin having a urethane bond, but even if it has a urea bond or the like, it is included in the concept.
 ウレタン樹脂を使用した場合、耐光性、耐熱性、耐摩擦性、及び耐ブロッキング性などの各種耐性に優れ、さらに印刷時に基材となる低Mp樹脂フィルム(発泡層形成層(B))に対する接着性に優れる印刷層を形成可能なインキ組成物を容易に構成することができる。また、ウレタン樹脂を使用することによって、インキ組成物を熱又は光が加わる環境下に長期にわたって保存した場合にも、印刷層の耐摩擦性、耐ブロッキング性、及び基材となる低Mp樹脂フィルムに対する接着性といった各種特性において良好な結果を得ることもできる。 When a urethane resin is used, it is excellent in various resistances such as light resistance, heat resistance, abrasion resistance, and blocking resistance, and is resistant to a low Mp resin film (foam layer forming layer (B 0 )) which is a base material at the time of printing. An ink composition capable of forming a print layer having excellent adhesiveness can be easily formed. Further, by using the urethane resin, even when the ink composition is stored for a long period of time in an environment where heat or light is applied, the friction resistance and blocking resistance of the print layer and the low Mp resin film as a base material are used. Good results can also be obtained in various properties such as adhesiveness to the resin.
 ウレタン樹脂は、重量平均分子量が10,000~100,000の範囲であることが好ましい。さらに好ましくは30,000~ 80,000である。重量平均分子量が上記範囲内である場合、印刷層の耐ブロッキング性、有機溶剤への溶解性、及び顔料分散性を容易に向上させることができる。 The urethane resin preferably has a weight average molecular weight in the range of 10,000 to 100,000. More preferably, it is 30,000 to 80,000. When the weight average molecular weight is within the above range, the blocking resistance of the printed layer, the solubility in an organic solvent, and the dispersibility of the pigment can be easily improved.
 ウレタン樹脂は、アミン価を有することが好ましい。当該アミン価としては、0.5~40mgKOH/gであることが好ましく、1~30mgKOH/gであることがより好ましく、3~20mgKOH/gであることが更に好ましい。アミン価が上記範囲内である場合、密着性を高めることが容易となる。 The urethane resin preferably has an amine value. The amine value is preferably 0.5 to 40 mgKOH / g, more preferably 1 to 30 mgKOH / g, and even more preferably 3 to 20 mgKOH / g. When the amine value is within the above range, it becomes easy to improve the adhesion.
 一実施形態において、ウレタン樹脂は、-100℃~0℃のガラス転移温度(Tg)を有することが好ましい。ウレタン樹脂のTgは、より好ましくは-10℃以下であってよく、さらに好ましくは-25℃以下であってよい。バインダー樹脂のTgが上記範囲内である場合、発泡紙材料の加熱処理時に優れた発泡追随性が得られ、及び断熱性の低下を抑制することができる。また、印刷面のひび割れ及び火脹れといった発泡外観不良を抑制することができる。Tgは-100℃以上であればよく、-90℃以上であることが好ましく、-80℃以上であることがより好ましく、-60℃以上であることが更に好ましい。Tgが上記範囲内のバインダー樹脂は、所望とする印刷層の残存率を得ることが容易であるため、耐エタノール性の観点でも好ましい。 In one embodiment, the urethane resin preferably has a glass transition temperature (Tg) of −100 ° C. to 0 ° C. The Tg of the urethane resin may be more preferably −10 ° C. or lower, still more preferably −25 ° C. or lower. When the Tg of the binder resin is within the above range, excellent foaming followability can be obtained during the heat treatment of the foamed paper material, and deterioration of the heat insulating property can be suppressed. In addition, it is possible to suppress foaming appearance defects such as cracks and swelling on the printed surface. The Tg may be −100 ° C. or higher, preferably −90 ° C. or higher, more preferably −80 ° C. or higher, and even more preferably −60 ° C. or higher. A binder resin having a Tg in the above range is preferable from the viewpoint of ethanol resistance because it is easy to obtain a desired residual ratio of the printed layer.
(ひまし油ポリオール由来の構造単位(a1)を有するウレタン樹脂)
 本発明の実施形態では、ウレタン樹脂として、バイオマス由来のウレタン樹脂を使用することを特徴とし、少なくともひまし油ポリオール由来の構造単位(a1)を有するウレタン樹脂を含む。具体的な実施形態として、ひまし油ポリオールを含むポリオールと、ジイソシアネートを反応させてなるウレタン樹脂が挙げられる。さらに、好ましい実施形態として、ポリイソシアネートと、ひまし油ポリオールを含むポリオールとを反応させて得られるウレタンプレポリマーを、アミン化合物によって鎖延長して得られる、ウレタンウレア樹脂が挙げられる。
(Urethane resin having a structural unit (a1) derived from castor oil polyol)
In the embodiment of the present invention, the urethane resin is characterized by using a urethane resin derived from biomass, and includes a urethane resin having at least a structural unit (a1) derived from castor oil polyol. Specific embodiments include urethane resins obtained by reacting a polyol containing a castor oil polyol with a diisocyanate. Further, a preferred embodiment is a urethane urea resin obtained by extending a chain of a urethane prepolymer obtained by reacting a polyisocyanate with a polyol containing a castor oil polyol with an amine compound.
 ジイソシアネートとしては、芳香族、脂肪族又は脂環族の公知のジイソシアネート類を使用することができる。例えば、1,5-ナフチレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、4,4’-ジベンジルイソシアネート、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、トリレンジイソシアネート、ブタン-1,4-ジイソシアネート、ヘキサメチレンジイソシアネート、イソプロピレンジイソシアネート、メチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、リジンジイソシアネート、ジシクロヘキシルメタン-4、4’-ジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート、ノルボルナンジイソシアネート、m-テトラメチルキシリレンジイソシアネートやダイマー酸のカルボキシル基をイソシアネート基に転化したダイマージイソシアネート等である。一実施形態において、イソホロンジイソシアネートが好ましい。 As the diisocyanate, known aromatic, aliphatic or alicyclic diisocyanates can be used. For example, 1,5-naphthylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-dibenzylisocyanate, dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, 1,3- Phenylene diisocyanate, 1,4-phenylenedi isocyanate, tolylene diisocyanate, butane-1,4-diisocyanate, hexamethylene diisocyanate, isopropylene diisocyanate, methylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, cyclohexane-1,4- Diisocyanate, xylylene diisocyanate, isophorone diisocyanate, lysine diisocyanate, dicyclohexylmethane-4, 4'-diisocyanate, 1,3-bis (isocyanatemethyl) cyclohexane, methylcyclohexane diisocyanate, norbornan diisocyanate, m-tetramethylxylylene diisocyanate and dimer acid Isocyanate diisocyanate obtained by converting the carboxyl group of the above into an isocyanate group. In one embodiment, isophorone diisocyanate is preferred.
 ポリオールとしては、ひまし油ポリオールを使用することを必須とするが、それ以外に、ポリエステルポリオール、ポリエーテルポリオール、低分子多価アルコール、ポリカーボネートポリオール等を使用することができる。ただし、いずれのポリオールも、ひまし油ポリオールに該当する場合を除く。以下、ポリオール成分についてより具体的に説明する。
(ひまし油ポリオール)
 ひまし油ポリオールとしては、ひまし油の構成成分であるリシノール酸(以下、ひまし油脂肪酸)由来の構造単位を有していればよい。リシノール酸由来の構造単位が、ひまし油ポリオール全量中の主成分(ひまし油ポリオール総量中50質量%以上)である形態が好ましい。水酸基の平均官能基数は1~3であれば特に構造は限定されず、例えば、ひまし油、及び脱水ひまし油が挙げられる。その他、ひまし油脂肪酸をジオール等のポリオールを開始剤として縮合することより得られるひまし油脂肪酸縮合物、及びこれらの水素化物等が挙げられる。これらのひまし油ポリオールは、単独で、又は2種以上を混合して用いることができる。
As the polyol, it is essential to use castor oil polyol, but other than that, polyester polyol, polyether polyol, low molecular weight polyhydric alcohol, polycarbonate polyol and the like can be used. However, all polyols do not correspond to castor oil polyols. Hereinafter, the polyol component will be described more specifically.
(Castor oil polyol)
The castor oil polyol may have a structural unit derived from ricinoleic acid (hereinafter, castor oil fatty acid) which is a component of castor oil. A form in which the structural unit derived from ricinoleic acid is the main component in the total amount of castor oil polyol (50% by mass or more in the total amount of castor oil polyol) is preferable. The structure is not particularly limited as long as the average number of functional groups of the hydroxyl group is 1 to 3, and examples thereof include castor oil and dehydrated castor oil. In addition, castor oil fatty acid condensate obtained by condensing castor oil fatty acid with a polyol such as diol as an initiator, and hydrides thereof and the like can be mentioned. These castor oil polyols can be used alone or in admixture of two or more.
 ウレタン樹脂は、ひまし油ポリオール由来の構造単位を、ウレタン樹脂の樹脂固形分に対して、10~80質量%含有することが好ましく、15~60質量%含有することがより好ましく、15~40質量%含有することが更に好ましい。ひまし油ポリオール由来の構造単位の含有量が上記範囲内である場合、着色剤の分散安定性、印刷層の耐熱性、及び耐ブロッキング性を維持するか、又は向上させることが容易である。 The urethane resin preferably contains a structural unit derived from castor oil polyol in an amount of 10 to 80% by mass, more preferably 15 to 60% by mass, and more preferably 15 to 40% by mass, based on the resin solid content of the urethane resin. It is more preferable to contain it. When the content of the structural unit derived from the castor oil polyol is within the above range, it is easy to maintain or improve the dispersion stability of the colorant, the heat resistance of the printed layer, and the blocking resistance.
 ひまし油ポリオールの分子量としては、重量平均分子量500~6,000であることが好ましく、1,000~5,000がより好ましく、1,500~4,000がさらに好ましく、1,500~3,500の範囲が特に好ましい。上記重量平均分子量が上記範囲内である場合、発泡紙積層体を構成した時に、優れた被膜強度が得られ、かつ発泡層形成層(B)との優れた密着性を得ることが容易となる。 The molecular weight of the castor oil polyol is preferably 500 to 6,000, more preferably 1,000 to 5,000, still more preferably 1,500 to 4,000, and 1,500 to 3,500. The range of is particularly preferable. When the weight average molecular weight is within the above range, it is easy to obtain excellent film strength and excellent adhesion to the foam layer forming layer (B 0) when the foamed paper laminate is formed. Become.
(ポリエステルポリオール)
 ウレタン樹脂は、ひまし油ポリオール由来の構造単位に加えて、ポリエステルポリオール由来する構造単位を含むことが好ましい。本発明者らの検討において、ひまし油ポリオールとポリエステルポリオールを併用して得られるウレタン樹脂を印刷層のバインダー樹脂として用いた場合、ひまし油ポリオールのみを用いて得られるウレタン樹脂を単独で使用した場合よりも優れた発泡外観及び耐熱性が得られる傾向があることが分かった。
(Polyester polyol)
The urethane resin preferably contains a structural unit derived from a polyester polyol in addition to a structural unit derived from a castor oil polyol. In the study by the present inventors, when the urethane resin obtained by using the castor oil polyol and the polyester polyol in combination is used as the binder resin of the printing layer, it is more than the case where the urethane resin obtained by using only the castor oil polyol is used alone. It was found that excellent foamed appearance and heat resistance tend to be obtained.
 上記ポリエステルポリオールとしては、以下の例には限定されないが、例えば、アジピン酸、無水フタル酸、イソフタル酸、テレフタル酸、マレイン酸、フマル酸、コハク酸、シュウ酸、マロン酸、ピメリン酸、アゼライン酸、セバシン酸、スベリン酸、グルタル酸、1、4-シクロヘキシルジカルボン酸、等の二塩基酸と、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2-メチル-1,3-プロパンジオール、3,3,5-トリメチルペンタンジオール、2、4-ジエチル-15-ペンタンジオール、1,12-オクタデカンジオール、1,2-アルカンジオール、1,3-アルカンジオール、1-モノグリセライド、2-モノグリセライド、1-モノグリセリンエーテル、2-モノグリセリンエーテル、等のジオールとのエステル化反応により得られる縮合物、本発明のジオールを開始剤として得られるカプロラクトン重合物、バレロラクトン重合物、メチルバレロラクトン重合物、乳酸重合物等のポリエステルジオール等が挙げられる。これらのポリエステルポリオールは単独で、または2種以上を混合して用いることができる。 The polyester polyol is not limited to the following examples, but for example, adipic acid, phthalic anhydride, isophthalic acid, terephthalic acid, maleic acid, fumaric acid, succinic acid, oxalic acid, malonic acid, pimelic acid, and azelaic acid. , Sevacinic acid, suberic acid, glutaric acid, 1,4-cyclohexyldicarboxylic acid, etc., and ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol. , 1,3-Butanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2-methyl-1, 3-Propanediol, 3,3,5-trimethylpentanediol, 2,4-diethyl-15-pentanediol, 1,12-octadecandiol, 1,2-alkanediol, 1,3-alkanediol, 1-monoglyceride , 2-Monoglyceride, 1-monoglycerin ether, 2-monoglycerin ether, etc., a condensate obtained by esterification reaction with a diol, a caprolactone polymer obtained by using the diol of the present invention as an initiator, a valerolactone polymer, Examples thereof include polyesterdiols such as methylvalerolactone polymers and lactic acid polymers. These polyester polyols can be used alone or in admixture of two or more.
 ポリエステルポリオールの使用量としては、積層体における耐熱性、被膜強度、耐ブロッキング性の観点から、ポリエステルポリオール由来の構造単位を、ウレタン樹脂の樹脂固形分に対して15~80質量%含有することが好ましく、より好ましくは25~75質量%である。 The amount of the polyester polyol used is such that the structural unit derived from the polyester polyol is contained in an amount of 15 to 80% by mass with respect to the resin solid content of the urethane resin from the viewpoint of heat resistance, film strength, and blocking resistance in the laminated body. It is preferable, more preferably 25 to 75% by mass.
 一実施形態において、ウレタン樹脂は、ひまし油ポリオール由来の構造単位に加え、ポリエステルポリオール由来の構造単位を有することが好ましい。当該ポリエステルポリオールは、上記二塩基酸と上記ジオールとの縮合物であり、ひまし油ポリオール由来の構造単位(a1)とポリエステルポリオール由来の構造単位(a2)との質量比(a1)/(a2)が、75/25~10/90であることが好ましく、60/40~25/75であることがより好ましく、50/50~25/75であることが更に好ましい。このように質量比を調整することによって、発泡追従性、耐熱性、及び耐エタノール性を容易に向上させることができる。 In one embodiment, the urethane resin preferably has a structural unit derived from a polyester polyol in addition to a structural unit derived from a castor oil polyol. The polyester polyol is a condensate of the dibasic acid and the diol, and the mass ratio (a1) / (a2) of the structural unit (a1) derived from the castor oil polyol and the structural unit (a2) derived from the polyester polyol is , 75/25 to 10/90, more preferably 60/40 to 25/75, and even more preferably 50/50 to 25/75. By adjusting the mass ratio in this way, foaming followability, heat resistance, and ethanol resistance can be easily improved.
 一実施形態において、バインダー樹脂は、ポリオール成分として、ひまし油ポリオールのみを用いて得られるウレタン樹脂を含む。他の実施形態において、バインダー樹脂は、ポリオール成分として、ひまし油ポリオールとポリエステルポリオールとを併用して得られるウレタン樹脂を含む。 さらに他の実施形態において、バインダー成分は、上記実施形態のウレタン樹脂と、ポリオール成分として、ポリエステルポリオールのみを用いて得られるウレタン樹脂とを含んでもよい。しかし、ポリオール成分としてポリエステルポリオールを使用する場合、インキ安定性等の観点から、ひまし油ポリオール由来の構造単位とポリエステルポリオール由来の構造単位とが一高分子鎖中に併存する形態とすることがより好ましい。 In one embodiment, the binder resin contains a urethane resin obtained by using only castor oil polyol as a polyol component. In another embodiment, the binder resin contains a urethane resin obtained by using a castor oil polyol and a polyester polyol in combination as a polyol component. In still another embodiment, the binder component may contain the urethane resin of the above embodiment and the urethane resin obtained by using only the polyester polyol as the polyol component. However, when a polyester polyol is used as the polyol component, it is more preferable that the structural unit derived from castor oil polyol and the structural unit derived from polyester polyol coexist in one polymer chain from the viewpoint of ink stability and the like. ..
(ポリエーテルポリオール)
 一実施形態において、ウレタン樹脂は、ポリエーテルポリオール由来の構造単位を有していてもよい。ポリエーテルポリオールとしては、特に限定するものではないが、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール、これらの共重合ポリエーテルジオール等を挙げることが出来る。これらのポリエーテルポリオールは単独で、または2種以上を混合して用いることができる。
(Polyether polyol)
In one embodiment, the urethane resin may have a structural unit derived from a polyether polyol. The polyether polyol is not particularly limited, and examples thereof include polyethylene glycol, polypropylene glycol, polytrimethylene glycol, polytetramethylene glycol, and copolymerized polyetherdiols thereof. These polyether polyols can be used alone or in admixture of two or more.
 ウレタン樹脂にポリエーテルポリオール由来の構造単位を導入することで、顔料分散性、樹脂粘度、及び有機溶剤に対する溶解性等の印刷インキ用の樹脂に求められる諸物性を調整することができる。一方、本発明者らの検討において、ポリエーテルポリオール由来の構造単位が多すぎると、発泡紙積層体の印刷層に必須の特性である耐熱性が低下することがわかってきた。このような観点から、一実施形態において、ウレタン樹脂の全質量を基準として、ポリエーテルポリオール由来の構造単位の含有量は、8質量%以下であることが好ましく、5質量%以下であることがより好ましく、2質量%以下であることがさらに好ましく、0質量%であってもよい。印刷層の耐熱性を向上させる観点から、ウレタン樹脂は、ポリエーテルポリオール由来の構造単位を含まないことが極めて好ましい。 By introducing a structural unit derived from a polyether polyol into a urethane resin, it is possible to adjust various physical properties required for a resin for printing ink, such as pigment dispersibility, resin viscosity, and solubility in an organic solvent. On the other hand, in the study by the present inventors, it has been found that if the number of structural units derived from the polyether polyol is too large, the heat resistance, which is an essential property for the printed layer of the foamed paper laminate, is lowered. From such a viewpoint, in one embodiment, the content of the structural unit derived from the polyether polyol is preferably 8% by mass or less, preferably 5% by mass or less, based on the total mass of the urethane resin. It is more preferably 2% by mass or less, and may be 0% by mass. From the viewpoint of improving the heat resistance of the printed layer, it is extremely preferable that the urethane resin does not contain structural units derived from the polyether polyol.
(低分子多価アルコール)
 一実施形態において、ウレタン樹脂は、低分子多価アルコール由来の構造単位を有していてもよい。低分子多価アルコール由来の構造単位を導入することで顔料分散性、樹脂粘度、及び有機溶剤に対する溶解性、耐ブロッキング性等の印刷インキ用の樹脂に求められる諸物性を調整することができる。
(Small molecule polyhydric alcohol)
In one embodiment, the urethane resin may have a structural unit derived from a small molecule polyhydric alcohol. By introducing a structural unit derived from a low molecular weight polyhydric alcohol, various physical properties required for a resin for printing ink such as pigment dispersibility, resin viscosity, solubility in an organic solvent, and blocking resistance can be adjusted.
 低分子多価アルコールとしては、以下の例には限定されないが、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブチレングリコール、ヘキシレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、グリセリン、1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、水添ビスフェノールA、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ソルビトール等が挙げられる。これらの低分子多価アルコールは、本発明のインキ組成物の分子量やハードセグメントとソフトセグメントの分布を調節したりする目的で使用される。これらの低分子多価アルコールは単独で、または2種以上を混合して用いることができる。 The low molecular weight polyhydric alcohol is not limited to the following examples, and examples thereof include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, hexylene glycol, neopentyl glycol, and cyclohexanedimethanol. Glycerin, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, hydrogenated bisphenol A, tri Examples thereof include methylolpropane, glycerin, pentaerythritol, and sorbitol. These small molecule polyhydric alcohols are used for the purpose of adjusting the molecular weight of the ink composition of the present invention and the distribution of hard segments and soft segments. These small molecule polyhydric alcohols can be used alone or in admixture of two or more.
(アミン化合物)
 上記アミン化合物はウレタンプレポリマーの鎖延長剤として機能し、ウレタン樹脂にウレア結合を与える。当該アミン化合物としては、例えば、ポリアミン類、アミノアルコール類、等が挙げられる。なお、鎖延長剤は単独、または2種以上を混合して用いることができる。
(Amine compound)
The amine compound functions as a chain extender for the urethane prepolymer and imparts a urea bond to the urethane resin. Examples of the amine compound include polyamines and amino alcohols. The chain extender can be used alone or in combination of two or more.
 ポリアミン類としては、例えば、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、イソホロンジアミン、ジシクロヘキシルメタン-4,4’-ジアミン、ダイマー酸のカルボキシル基をアミノ基に転化したダイマージアミンなどの他、N-(2-ヒドロキシエチル)エチレンジアミン、N-(2-ヒドロキシエチル)プロピレンジアミン、N-(2-ヒドロキシプロピル)エチレンジアミン、N-(2-ヒドロキシプロピル)プロピレンジアミン、N ,N’-ビス(2-ヒドロキシエチル エチレンジアミン、N,N’-ビス(2-ヒドロキシエチル)プロピレンジアミン、N,N’-ビス(2-ヒドロキシプロピル)エチレンジアミン、N,N’-ビス(2-ヒドロキシプロピル)プロピレンジアミン等の分子内に水酸基を有するアミン類、メチルイミノビスプロピルアミン、ラウリルイミノビスプロピルアミン等の分子内に3級アミノ基を有するアミン類が挙げられる。 Examples of polyamines include ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, isophoronediamine, dicyclohexylmethane-4,4'-diamine, and dimerdiamine obtained by converting the carboxyl group of dimer acid into an amino group. In addition, N- (2-hydroxyethyl) ethylenediamine, N- (2-hydroxyethyl) propylenediamine, N- (2-hydroxypropyl) ethylenediamine, N- (2-hydroxypropyl) propylenediamine, N, N'-bis (2-Hydroxyethyl ethylenediamine, N, N'-bis (2-hydroxyethyl) propylene diamine, N, N'-bis (2-hydroxypropyl) ethylenediamine, N, N'-bis (2-hydroxypropyl) propylene diamine Examples thereof include amines having a hydroxyl group in the molecule, methyliminobispropylamine, lauryliminobispropylamine and the like having a tertiary amino group in the molecule.
 アミノアルコール類としては、N,N-ジメチルエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジブチルエタノールアミン、N-(β-アミノエチル)エタノールアミン、N-メチルエタノールアミン、N-メチルジエタノールアミン、N-エチルエタノールアミン、N-エチルジエタノールアミン、N-n-ブチルエタノールアミン、N-t-ブチルジエタノールアミン、N-t-ブチルジエタノールアミン、N-(β-アミノエチル)イソプロパノールアミン、N,N-ジエチルイソプロパノールアミン等が挙げられる。 Examples of amino alcohols include N, N-dimethylethanolamine, N, N-dimethylethanolamine, N, N-dibutylethanolamine, N- (β-aminoethyl) ethanolamine, N-methylethanolamine, and N-methyl. Diethanolamine, N-ethylethanolamine, N-ethyldiethanolamine, Nn-butylethanolamine, Nt-butyldiethanolamine, Nt-butyldiethanolamine, N- (β-aminoethyl) isopropanolamine, N, N- Examples thereof include diethylisopropanolamine.
(反応溶剤)
 ウレタン樹脂の製造には、後述の媒体である、アルコール及び/または水酸基を持たない有機溶剤を用いることができる。
(Reaction solvent)
For the production of the urethane resin, an organic solvent having no alcohol and / or a hydroxyl group, which is a medium described later, can be used.
 アルコールとしては、メタノール、エタノール、ノルマルプロパノール、イソプロパノール、ノルマルブタノール、イソブタノール、ターシャリーブタノール等の炭素原子数1~7の脂肪族アルコール類、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノブチルエーテル等のグリコールモノエーテル類等が挙げられる。
 イソシアネート基含有のプレポリマー溶液製造の際には、イソシアネート基との反応性の観点から、反応性の低い3級アルコールが好ましく、例えば、ターシャリーブタノールなどが挙げられる。
Examples of alcohols include aliphatic alcohols having 1 to 7 carbon atoms such as methanol, ethanol, normal propanol, isopropanol, normal butanol, isobutanol, tertiary butanol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, and propylene glycol mono. Examples thereof include glycol monoethers such as propyl ether, propylene glycol monoisopropyl ether and propylene glycol monobutyl ether.
When producing a prepolymer solution containing an isocyanate group, a tertiary alcohol having low reactivity is preferable from the viewpoint of reactivity with the isocyanate group, and examples thereof include tertiary butanol.
 水酸基を持たない有機溶剤としては、例えば、酢酸エチル、酢酸ブチル、セロソルブアセテート等のエステル類、アセトン、メチルエチルケトン、イソブチルケトン、シクロヘキサノン等のケトン類、テトラヒドロフラン、ジオキサン等の環状エーテル類、トルエン、キシレン等の芳香族炭化水素類、メチレンクロリド、エチレンクロリド等のハロゲン化炭化水素類、ジメチルスルホキシド、ジメチルスルホアミド等が挙げられる。これらの反応溶剤は、2種以上混合して用いてもよい。 Examples of the organic solvent having no hydroxyl group include esters such as ethyl acetate, butyl acetate and cellosolve acetate, ketones such as acetone, methyl ethyl ketone, isobutyl ketone and cyclohexanone, cyclic ethers such as tetrahydrofuran and dioxane, toluene and xylene and the like. Examples thereof include aromatic hydrocarbons, halogenated hydrocarbons such as methylene chloride and ethylene chloride, dimethylsulfoxide and dimethylsulfamide. Two or more kinds of these reaction solvents may be mixed and used.
(ウレタン樹脂の製造)
 ウレタン樹脂を製造する方法としては、特に制限はなく、一般的な鎖延長反応で製造できる。
 例えば、無溶剤下、又は水酸基を持たない有機溶剤下で、ひまし油ポリオール、ひまし油ポリオール以外のポリオール、及びジイソシアネートを反応させてイソシアネート基含有のプレポリマーを製造する。ここで、上記反応はひまし油ポリオール及びひまし油ポリオール以外のポリオールの水酸基に対して、ジイソシアネートのイソシアネート基が過剰となる当量比で実施する。上記のようにして得られたイソシアネート基含有のプレポリマーを、水酸基を持たない有機溶剤及び/ または、イソシアネート基との反応性の低い3級アルコールに溶解させてプレポリマー溶液を得る。次いで、鎖延長剤を溶剤に溶解させたものに、先に調製したイソシアネート基含有のプレポリマー溶液を添加して鎖延長反応させる方法がある。
(Manufacturing of urethane resin)
The method for producing the urethane resin is not particularly limited, and the urethane resin can be produced by a general chain extension reaction.
For example, a castor oil polyol, a polyol other than castor oil polyol, and a diisocyanate are reacted under a solvent-free environment or an organic solvent having no hydroxyl group to produce an isocyanate group-containing prepolymer. Here, the above reaction is carried out at an equivalent ratio in which the isocyanate group of the diisocyanate is excessive with respect to the hydroxyl groups of the castor oil polyol and the polyol other than the castor oil polyol. The isocyanate group-containing prepolymer obtained as described above is dissolved in an organic solvent having no hydroxyl group and / or a tertiary alcohol having low reactivity with the isocyanate group to obtain a prepolymer solution. Next, there is a method in which the previously prepared isocyanate group-containing prepolymer solution is added to the chain extender dissolved in a solvent to cause a chain extension reaction.
 鎖延長剤を溶解させるために使用する溶剤は、プレポリマーの製造時に使用した有機溶剤と同じであってよい。溶剤としてアルコールを使用する場合は、イソシアネート基含有プレポリマーとの反応性の観点から、鎖延長剤はジアミン類、アミノアルコール類を用いるのが好ましい。 The solvent used to dissolve the chain extender may be the same as the organic solvent used in the production of the prepolymer. When alcohol is used as the solvent, diamines and amino alcohols are preferably used as the chain extender from the viewpoint of reactivity with the isocyanate group-containing prepolymer.
 ウレタン樹脂の製造において、ひまし油ポリオールと、ひまし油ポリオール以外のポリオールと、ジイソシアネートとの割合は、ジイソシアネートのイソシアネート基のモル数と、ひまし油ポリオール及びひまし油ポリオール以外のポリオールの水酸基とのモル数の比であるNCO/OH比を1.1~3.0の範囲となるように調整ことが好ましい。NCO/OH比が上記範囲内の場合、耐ブロッキング性、及び基材密着性を維持、又は向上することが容易である。 In the production of urethane resin, the ratio of sardine oil polyol, polyol other than sardine oil polyol, and diisocyanate is the ratio of the number of moles of isocyanate groups of diisocyanate to the number of moles of hydroxyl groups of sardine oil polyols and polyols other than sardine oil polyols. It is preferable to adjust the NCO / OH ratio so as to be in the range of 1.1 to 3.0. When the NCO / OH ratio is within the above range, it is easy to maintain or improve the blocking resistance and the adhesion to the substrate.
 なお、上記実施形態では、印刷層の構成成分としてウレタン樹脂を含むことを特徴とするが、ウレタン樹脂以外のバインダー樹脂の併用を除外するものではない。具体的には、アクリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、塩化ビニル/酢酸ビニル共重合体、ニトロセルロースなどが好適に挙げられる。 The above embodiment is characterized by containing a urethane resin as a constituent component of the print layer, but does not exclude the combined use of a binder resin other than the urethane resin. Specific examples thereof are acrylic resin, vinyl chloride resin, vinyl acetate resin, vinyl chloride / vinyl acetate copolymer, nitrocellulose and the like.
 なかでも、ウレタン樹脂と、塩化ビニル/酢酸ビニル共重合体及び/またはニトロセルロースとの併用が好適である。このようにバインダー樹脂が、さらに塩化ビニル/酢酸ビニル共重合体を含む場合、バインダー樹脂の全質量を基準として、ウレタン樹脂を50質量%以上含むことが好ましい。上記含有量は、70質量%以上であることがより好ましく、85質量%以上であることがさらに好ましい。また、ウレタン樹脂を含むウレタン樹脂と、塩化ビニル/酢酸ビニル共重合体との質量比は、40:60~95:5であることが好ましく、55:45~90:10であることがより好ましく、70:30~90:10であることが極めて好ましい。両者の質量比を上記範囲内に調整することで、発泡紙追従性、及び耐熱性を容易に向上させることができる。 Among them, the combined use of urethane resin and vinyl chloride / vinyl acetate copolymer and / or nitrocellulose is preferable. As described above, when the binder resin further contains a vinyl chloride / vinyl acetate copolymer, it is preferable to contain 50% by mass or more of the urethane resin based on the total mass of the binder resin. The content is more preferably 70% by mass or more, further preferably 85% by mass or more. The mass ratio of the urethane resin containing the urethane resin to the vinyl chloride / vinyl acetate copolymer is preferably 40:60 to 95: 5, and more preferably 55:45 to 90:10. , 70:30 to 90:10 is extremely preferable. By adjusting the mass ratio of both within the above range, the foam paper followability and heat resistance can be easily improved.
(着色剤)
 一実施形態において、インキ組成物はさらに着色剤を含んでもよい。着色剤としては、例えば、有機系顔料、無機系顔料、染料等の通常のインキ組成物において使用されるものであってよい。カラーインデックスに記載のC.I.ピグメントを好適に使用できる。
(Colorant)
In one embodiment, the ink composition may further comprise a colorant. As the colorant, for example, those used in ordinary ink compositions such as organic pigments, inorganic pigments, and dyes may be used. C.I. I. Pigments can be preferably used.
 有機顔料としては、例えば、アゾ系、フタロシアニン系、アントラキノン系、ペリレン系、ペリノン系、キナクリドン系、チオインジゴ系、ジオキサジン系、イソインドリノン系、キノフタロン系、アゾメチンアゾ系、ジクトピロロピロール系、イソインドリン系などが好適に挙げられる。 Examples of organic pigments include azo-based, phthalocyanine-based, anthraquinone-based, perylene-based, perinone-based, quinacridone-based, thioindigo-based, dioxazine-based, isoindolinone-based, quinophthalone-based, azomethine-azo-based, dictopyrrolopyrrole-based, and isoindoline-based. Etc. are preferably mentioned.
 無機顔料としては、例えば、カーボンブラック、アルミニウム粉、ブロンズ粉、クロムバーミリオン、黄鉛、カドミウムイエロー、カドミウムレッド、群青、紺青、ベンガラ、黄色酸化鉄、鉄黒、酸化チタン、酸化亜鉛等が挙げられる。 Examples of the inorganic pigment include carbon black, aluminum powder, bronze powder, chrome vermillion, chrome yellow, cadmium yellow, cadmium red, ultramarine, navy blue, red iron oxide, yellow iron oxide, iron black, titanium oxide, zinc oxide and the like. Be done.
 染料としては、例えば、タートラジンレーキ、ローダン6Gレーキ、ビクトリアピュアブルーレーキ、アルカリブルーGトーナー、ブリリアントグリーンレーキ等が挙げられ、この他、コールタール等を使用することもできる。なかでも、耐水性などの点から有機顔料または無機顔料を使用することが好ましい。 Examples of the dye include tartradin lake, Rhodan 6G lake, Victoria pure blue lake, alkaline blue G toner, brilliant green lake, and the like, and coal tar and the like can also be used. Above all, it is preferable to use an organic pigment or an inorganic pigment from the viewpoint of water resistance and the like.
 着色剤は、特に限定されず、インキ組成物の濃度及び着色力を確保するのに十分な量であればよい。例えば、着色剤の含有量は、インキ組成物の全質量に対して0.5~50質量%の割合が一般的である。また、着色剤は、単独で、または2種以上を併用して用いることができる。 The colorant is not particularly limited, and may be an amount sufficient to secure the concentration and coloring power of the ink composition. For example, the content of the colorant is generally 0.5 to 50% by mass with respect to the total mass of the ink composition. In addition, the colorant can be used alone or in combination of two or more.
 一実施形態において、白色のインキ組成物を調製する場合、白色顔料の配合量は、インキ組成物の全質量を基準として、20~50質量%の範囲とすることが好ましい。隠蔽性、顔料濃度、及び耐光性の観点から、白色顔料として二酸化チタンを使用することが好ましい。一方、有色のインキ組成物を調製する場合、有色の有機顔料、及びベンガラ、紺青、群青、カーボンブラック、黒鉛などの有色の無機顔料を適宜選択して使用することができる。発色性、及び耐光性の観点からは、有機顔料が好ましい。有色顔料の配合量は、インキ組成物の全質量を基準として、5~30質量%の範囲が好ましい。 In one embodiment, when a white ink composition is prepared, the blending amount of the white pigment is preferably in the range of 20 to 50% by mass based on the total mass of the ink composition. From the viewpoint of hiding power, pigment concentration, and light resistance, it is preferable to use titanium dioxide as the white pigment. On the other hand, when preparing a colored ink composition, a colored organic pigment and a colored inorganic pigment such as red iron oxide, prussian blue, ultramarine, carbon black, and graphite can be appropriately selected and used. Organic pigments are preferable from the viewpoint of color development and light resistance. The blending amount of the colored pigment is preferably in the range of 5 to 30% by mass based on the total mass of the ink composition.
(インキ媒体としての有機溶剤)
 一実施形態において、インキ組成物は液状媒体として有機溶剤を含む。以下に限定されるものではないが、使用される有機溶剤としては、トルエン、キシレンといった芳香族系有機溶剤、メチルエチルケトン、メチルイソブチルケトンといったケトン系有機溶剤、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸イソブチル、エステル系有機溶剤、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノールなどのアルコール系有機溶剤、エチレングリコールモノプロピルエーテル、プロピレングリコールモノチルエーテルなどのグリコールエーテル系溶剤など公知の有機溶剤を使用でき、混合して使用してもよい。なかでも、トルエン、キシレンといった芳香族系有機溶剤を含まない有機溶剤(ノントルエン系有機溶剤)がより好ましい。更には、ウレタン樹脂と塩化ビニル共重合樹脂の相溶性、エステル系有機溶剤とアルコール系有機溶剤を含む有機溶剤が好ましく、これらの質量比( エステル系有機溶剤)/(アルコール系有機溶剤)が90/10~40/60であることが好ましい。なお、グラビアインキは、液状媒体として水を含んでいてもよいが、その含有量は液状媒体100質量%中0.1~5質量%が好ましい。
(Organic solvent as an ink medium)
In one embodiment, the ink composition comprises an organic solvent as a liquid medium. Examples of the organic solvent used include, but are not limited to, aromatic organic solvents such as toluene and xylene, ketone organic solvents such as methyl ethyl ketone and methyl isobutyl ketone, ethyl acetate, n-propyl acetate and isopropyl acetate. Known organic solvents such as isobutyl acetate, ester organic solvent, methanol, ethanol, n-propanol, isopropanol, n-butanol and other alcohol-based organic solvents, ethylene glycol monopropyl ether and propylene glycol monotyl ether and other glycol ether-based solvents. Can be used, and may be mixed and used. Of these, an organic solvent (non-toluene-based organic solvent) that does not contain aromatic organic solvents such as toluene and xylene is more preferable. Further, the compatibility between the urethane resin and the vinyl chloride copolymer resin, the organic solvent containing the ester-based organic solvent and the alcohol-based organic solvent is preferable, and the mass ratio (ester-based organic solvent) / (alcohol-based organic solvent) of these is 90. It is preferably / 10 to 40/60. The gravure ink may contain water as a liquid medium, but the content thereof is preferably 0.1 to 5% by mass in 100% by mass of the liquid medium.
(添加剤)
 インキ層、及びインキ組成物は、必要に応じて添加剤、例えば、顔料誘導体、分散剤、湿潤剤、接着補助剤、レベリング剤、消泡剤、帯電防止剤、粘度調整剤、キレート架橋剤、トラッピング剤、ブロッキング防止剤、ワックス成分、イソシアネート系硬化剤、シランカップリング剤などを使用することができる。
(Additive)
The ink layer and the ink composition may contain additives such as pigment derivatives, dispersants, wetting agents, adhesion aids, leveling agents, defoaming agents, antistatic agents, viscosity modifiers, chelate crosslinkers, as required. A trapping agent, an antiblocking agent, a wax component, an isocyanate-based curing agent, a silane coupling agent, or the like can be used.
<インキ組成物の製造方法>
 インキ組成物は、公知の方法により製造することができる、例えば、国際公開第2009/119800号パンフレットに記載の方法などを用いることができる。より具体的には、ウレタン樹脂、塩化ビニル/酢酸ビニル共重合体、及び上記質量比(エステル系有機溶剤)/(アルコール系有機溶剤)が90/10~40/60である有機溶剤を、サンドミルその他のビーズミルで5~60分程度分散処理し、得られた分散体に対して更にウレタン樹脂、上記有機溶剤、更にレベリング剤その他の添加剤を加え、均一に攪拌することでインキ組成物を得ることができる。
<Manufacturing method of ink composition>
The ink composition can be produced by a known method, for example, the method described in International Publication No. 2009/11800 pamphlet can be used. More specifically, a urethane resin, a vinyl chloride / vinyl acetate copolymer, and an organic solvent having a mass ratio (ester-based organic solvent) / (alcohol-based organic solvent) of 90/10 to 40/60 are sand milled. Dispersion treatment is performed with another bead mill for about 5 to 60 minutes, and a urethane resin, the above-mentioned organic solvent, a leveling agent and other additives are further added to the obtained dispersion, and the mixture is uniformly stirred to obtain an ink composition. be able to.
<3>発泡紙積層体の製造方法
 一実施形態は、発泡紙積層体の製造方法に関する。すなわち、一実施形態は、熱可塑性樹脂層(A)、紙基材、及び発泡層(B)を順次有する発泡紙と、上記発泡紙の発泡層(B)の表面に形成された印刷層とを有する発泡紙積層体を製造するための方法に関する。より好ましくは、上記発泡紙積層体の構成において、上記発泡層(B)の単位表面積あたりの発泡セル数が1000個/1cm以上であり、25℃のエタノール中に30分間浸漬した後の印刷層の残存率が50質量%以上である発泡紙積層体を製造するための方法に関する。
<3> Method for manufacturing a foamed paper laminate One embodiment relates to a method for manufacturing a foamed paper laminate. That is, one embodiment includes a foam paper having a thermoplastic resin layer (A), a paper base material, and a foam layer (B) in that order, and a printing layer formed on the surface of the foam layer (B) of the foam paper. The present invention relates to a method for producing a foamed paper laminate having the above. More preferably, in the configuration of the foamed paper laminate, the number of foamed cells per unit surface area of the foamed layer (B) is 1000 cells / 1 cm 2 or more, and printing is performed after immersion in ethanol at 25 ° C. for 30 minutes. The present invention relates to a method for producing a foamed paper laminate having a layer residual ratio of 50% by mass or more.
 発泡紙積層体の製造方法は、以下の工程(i)~(iv)、すなわち
 (i)熱可塑性樹脂層(A)と、紙基材と、上記熱可塑性樹脂層(A)よりも低い融点を有し、加熱によって発泡する、発泡層形成層(B)とを順次有する、発泡紙材料を準備すること、
 (ii)ウレタン樹脂を含有するバインダー樹脂、及び媒体を含む、インキ組成物を準備すること、
 (iii)上記発泡紙材料の上記発泡層形成層(B)の表面に、上記インキ組成物を塗布して印刷層を形成すること、
 (iv)上記印刷層を有する上記発泡紙材料を加熱することによって、上記発泡紙材料の上記発泡層形成層(B)を発泡させ、発泡層(B)を形成することを含む。
The method for producing the foamed paper laminate is described in the following steps (i) to (iv), that is, (i) the thermoplastic resin layer (A), the paper substrate, and the melting point lower than that of the thermoplastic resin layer (A). To prepare a foamed paper material having, sequentially having a foamed layer forming layer (B 0), which foams by heating.
(Ii) Preparing an ink composition containing a binder resin containing a urethane resin and a medium.
(iii) Applying the ink composition to the surface of the foam layer forming layer (B 0) of the foam paper material to form a print layer.
(iv) The foamed paper material having the printed layer is heated to foam the foamed layer forming layer (B 0 ) of the foamed paper material to form the foamed layer (B).
 上記製造方法において、(i)発泡紙材料の準備、(ii)インキ組成物の準備、(iii)印刷層の形成、(iv)加熱による発泡層(B)の形成に関する各工程は、それぞれ当技術分野で周知の方法に従って実施することができる。以下、各工程について説明する。 In the above manufacturing method, each step relating to (i) preparation of foamed paper material, (ii) preparation of ink composition, (iii) formation of printing layer, and (iv) formation of foamed layer (B) by heating is the same. It can be carried out according to a method well known in the technical field. Hereinafter, each step will be described.
(工程(i):発泡紙材料の準備)
 (i)発泡紙材料の準備は、例えば、押出ラミネート法に従って実施することができる。発泡紙材料を構成する、紙基材、熱可塑性樹脂層(A)、及び発泡層形成層(B)の構成材料は先に説明したとおりである。押出ラミネート法として、シングルラミネート法、タンデムラミネート法、サンドウィッチラミネート法、及び共押出ラミネート法などの周知の方法を適宜選択することができる。一実施形態において、熱可塑性樹脂層(A)、及び発泡層形成層(B)の構成材料として、それぞれ融点の異なるポリエチレン樹脂を好適に使用することができる。
(Step (i): Preparation of foam paper material)
(I) The preparation of the foamed paper material can be carried out, for example, according to the extrusion laminating method. The constituent materials of the paper base material, the thermoplastic resin layer (A), and the foamed layer forming layer (B 0 ) constituting the foamed paper material are as described above. As the extrusion laminating method, a well-known method such as a single laminating method, a tandem laminating method, a sandwich laminating method, and a coextrusion laminating method can be appropriately selected. In one embodiment, polyethylene resins having different melting points can be preferably used as the constituent materials of the thermoplastic resin layer (A) and the foamed layer forming layer (B 0).
 発泡層形成層(B)は、熱可塑性樹脂層(A)を構成するポリエチレン樹脂の融点(Mp)よりも低いMpを有するポリエチレン樹脂(低Mpポリエチレン樹脂)を使用して構成する。発泡紙材料は、Tダイ押出機を通して、紙基材の片面に対して低Mpポリエチレン樹脂をフィルム状に押出し、また紙基材の他面に対して高Mpポリエチレン樹脂をフィルム状に押出すことによって製造することができる。 The foam layer forming layer (B 0 ) is formed by using a polyethylene resin (low Mp polyethylene resin) having an Mp lower than the melting point (Mp) of the polyethylene resin constituting the thermoplastic resin layer (A). For the foamed paper material, a low Mp polyethylene resin is extruded into a film on one side of the paper substrate and a high Mp polyethylene resin is extruded into a film on the other surface of the paper substrate through a T-die extruder. Can be manufactured by.
 ラミネート時のポリエチレン樹脂の温度(Tダイ直下の温度)は、300~350℃が好ましく、320℃~340℃がより好ましい。この温度範囲であれば、各ポリエチレン樹脂層(A、B)と紙基材との間に十分なラミネート強度を実現できる。ラミネート後に経由する冷却ロールの表面温度は10~50℃の範囲で制御することが好ましい。 The temperature of the polyethylene resin at the time of laminating (the temperature immediately below the T die) is preferably 300 to 350 ° C, more preferably 320 ° C to 340 ° C. Within this temperature range, sufficient lamination strength can be realized between each polyethylene resin layer (A, B 0) and the paper substrate. It is preferable to control the surface temperature of the cooling roll that passes after laminating in the range of 10 to 50 ° C.
 一実施形態において、ラミネート速度は、50~130m/分が好ましく、60~110m/分がより好ましい。ラミネート速度が遅すぎると生産性が低く、一方、ラミネート速度が早すぎると、ネックインによって歩留まりが低下する傾向がある。ネックインとは、Tダイ押出機によってポリエチレン樹脂を押出しフィルム化する際に、Tダイの有効幅よりも、押し出されたポリエチレン樹脂フィルムの幅が小さくなる現象である。この際、フィルムの両端部が中央部よりも厚くなる。両端部の厚みが規格から外れる場合には、両端部を切断・除去するのが一般的であるが、ネックインが酷い場合には、規格から外れる面積が増加するため、歩留まりが低下する。 In one embodiment, the laminating speed is preferably 50 to 130 m / min, more preferably 60 to 110 m / min. If the laminating speed is too slow, the productivity will be low, while if the laminating speed is too fast, the neck-in tends to reduce the yield. Neck-in is a phenomenon in which the width of the extruded polyethylene resin film is smaller than the effective width of the T-die when the polyethylene resin is extruded into a film by a T-die extruder. At this time, both ends of the film are thicker than the central portion. When the thickness of both ends deviates from the standard, it is common to cut and remove both ends, but when the neck-in is severe, the area deviating from the standard increases and the yield decreases.
 一実施形態において、エアギャップは、300mm以下が好ましく、200mm以下がより好ましい。エアギャップを広げすぎると、ポリエチレン樹脂がネックインし、歩留まりが低下する傾向がある。エアギャップとは、Tダイの押出口からニップロールまでの距離を指す。ポリエチレン樹脂がエアギャップを通過している間に、オゾンガス及び/又は酸素ガスを用いて、ポリエチレン樹脂の表面処理を行うことが好ましい。オゾンガス及び/又は酸素ガスを用いて表面処理を行うことによって、酸化被膜の形成を促進し、基材層との接着力を向上させることができる。オゾンガス及び/又は酸素ガスの処理量には特に限定はないが、ポリエチレン樹脂の酸化を促進する観点で、0.5mg/m以上が好ましい。 In one embodiment, the air gap is preferably 300 mm or less, more preferably 200 mm or less. If the air gap is widened too much, the polyethylene resin will neck in and the yield will tend to decrease. The air gap refers to the distance from the T-die extrusion port to the nip roll. It is preferable to surface-treat the polyethylene resin with ozone gas and / or oxygen gas while the polyethylene resin passes through the air gap. By performing the surface treatment using ozone gas and / or oxygen gas, the formation of an oxide film can be promoted and the adhesive force with the base material layer can be improved. The amount of ozone gas and / or oxygen gas to be treated is not particularly limited, but 0.5 mg / m 2 or more is preferable from the viewpoint of promoting the oxidation of the polyethylene resin.
(工程(ii):インキ組成物の調製)
 インキ組成物の具体的な構成、製造等については、先にインキ組成物の実施形態で説明したとおりである。
 一実施形態において、インキ組成物として、ウレタン樹脂を含むバインダー樹脂と、媒体とを含有するインキ組成物を調製することが好ましい。ここで、バインダー樹脂は、ポリオール成分として少なくともひまし油ポリオールを用いて製造されたウレタン樹脂であることを特徴とする。このようなバイオマス由来のウレタン樹脂は、伸び率50~4,000%における応力が0.1mPa~50mPaであることが好ましい。
(Step (ii): Preparation of ink composition)
The specific composition, production, and the like of the ink composition are as described above in the embodiment of the ink composition.
In one embodiment, it is preferable to prepare an ink composition containing a binder resin containing a urethane resin and a medium as the ink composition. Here, the binder resin is characterized by being a urethane resin produced by using at least castor oil polyol as a polyol component. Such a biomass-derived urethane resin preferably has a stress of 0.1 mPa to 50 mPa at an elongation rate of 50 to 4,000%.
(工程(iii):印刷層の形成)
 上記(iii)印刷層の形成については、特に限定されるものではなく、周知の技術を適用することができる。例えば、下地層として、発泡層形成層(B)(低Mp樹脂フィルム)の全面に白色のインキ組成物を印刷する場合、バーコーター、ロールコーター、リバースロールコーターなどのコーターをmもよい。その他、各種印刷方法を適用することができる。
(Step (iii): Formation of print layer)
The formation of the print layer (iii) is not particularly limited, and a well-known technique can be applied. For example, when a white ink composition is printed on the entire surface of the foam layer forming layer (B 0 ) (low Mp resin film) as the base layer, a coater such as a bar coater, a roll coater, or a reverse roll coater may be used. In addition, various printing methods can be applied.
 各種印刷方法のなかでも、グラビア印刷、又はフレキソ印刷による印刷方法を適用することが好ましい。これらの印刷方法による印刷層の形成時に、先に説明した実施形態のインキ組成物を好適に使用することができる。 Among various printing methods, it is preferable to apply a printing method by gravure printing or flexographic printing. When forming the print layer by these printing methods, the ink composition of the embodiment described above can be preferably used.
 一実施形態において、印刷層は複数の層を含むことが好ましい。印刷層は、発泡層形成層(B)の全表面を被覆する下地層と、下地層表面の少なくとも一部に設けられた印刷パターンとを有してよい。例えば、下地層は白色インキ組成物から構成され、印刷パターンはカラーインキ組成物から形成される。 In one embodiment, the print layer preferably comprises a plurality of layers. The print layer may have a base layer that covers the entire surface of the foam layer forming layer (B 0 ) and a print pattern provided on at least a part of the surface of the base layer. For example, the base layer is composed of a white ink composition and the print pattern is formed of a color ink composition.
 一実施形態において、印刷層の厚さは、印刷層による発泡抑制力、及び耐摩擦性の観点から、乾燥塗膜の膜厚が、0.5~5μmとなるように調整されることが好ましい。印刷層(乾燥塗膜)の膜厚は、より好ましくは0.5~4μmであってよく、さらに好ましくは0.5~3.5μmであってよい。ここで、印刷層が複数の層から構成される場合、印刷層の膜厚は、印刷層全体の厚さが上記範囲内となるように調整することが好ましい。 In one embodiment, the thickness of the printed layer is preferably adjusted so that the film thickness of the dry coating film is 0.5 to 5 μm from the viewpoint of the foaming suppressing force of the printed layer and the friction resistance. .. The film thickness of the printed layer (dry coating film) may be more preferably 0.5 to 4 μm, still more preferably 0.5 to 3.5 μm. Here, when the print layer is composed of a plurality of layers, it is preferable to adjust the film thickness of the print layer so that the thickness of the entire print layer is within the above range.
 他の実施形態において、印刷層は、複数の層を含んでよく、その最外層として透明層を有してもよい。透明層は、顔料を含まないクリアインキ組成物を使用して構成することができる。 In another embodiment, the print layer may include a plurality of layers and may have a transparent layer as the outermost layer thereof. The lucidum can be configured using a pigment-free clear ink composition.
(工程(iv):発泡層(B)の形成)
 上記(iv)加熱による発泡層(B)の形成において、適切な加熱温度及び加熱時間は、使用する紙基材、及び熱可塑性樹脂フィルムの特性に依存して変化する。当業者であれば、使用する熱可塑性樹脂フィルムなどの材料に応じて、最適な加熱温度と加熱時間との組合せ条件を決定することができる。特に限定するものではないが、一般的に、加熱処理は、容器の成形工程において実施される。加熱処理時の加熱温度が低すぎると十分な発泡性が得られず、加熱温度が高すぎると発泡セルが結合し火脹れが生じやすくなる。
(Step (iv): Formation of foam layer (B))
In the formation of the foamed layer (B) by the above (iv) heating, the appropriate heating temperature and heating time vary depending on the characteristics of the paper substrate used and the thermoplastic resin film. A person skilled in the art can determine the combination conditions of the optimum heating temperature and heating time according to the material such as the thermoplastic resin film used. Although not particularly limited, the heat treatment is generally carried out in the molding process of the container. If the heating temperature during the heat treatment is too low, sufficient foamability cannot be obtained, and if the heating temperature is too high, the foaming cells are combined and swelling is likely to occur.
 特に限定するものではないが、発泡層形成層を低密度ポリエチレンフィルムから構成する場合、加熱温度は、好ましくは100~125℃であってよく、より好ましくは110~120℃であってよい。加熱時間は、加熱温度に応じて適宜調整することができるが、3~10分間が好ましく、5分~7分がより好ましい。一実施形態において、発泡層形成層を低密度ポリエチレンフィルムから構成し、その上に先に説明したインキ組成物(ii)を使用して印刷層を形成する場合、加熱温度を110~123℃、加熱時間を5~7分に調整することが好ましい。加熱温度を115~121℃、加熱時間を5~7分に調整することがより好ましい。上記条件下で加熱を行った場合、印刷層によって加熱加工時の発泡層形成層の発泡を適切に制御することが容易となる。 Although not particularly limited, when the foamed layer forming layer is composed of a low-density polyethylene film, the heating temperature may be preferably 100 to 125 ° C, more preferably 110 to 120 ° C. The heating time can be appropriately adjusted according to the heating temperature, but is preferably 3 to 10 minutes, more preferably 5 to 7 minutes. In one embodiment, when the foam layer forming layer is composed of a low density polyethylene film and the printing layer is formed on the foam composition using the ink composition (ii) described above, the heating temperature is 110 to 123 ° C. It is preferable to adjust the heating time to 5 to 7 minutes. It is more preferable to adjust the heating temperature to 115 to 121 ° C. and the heating time to 5 to 7 minutes. When heating is performed under the above conditions, it becomes easy to appropriately control the foaming of the foam cambium during heat processing by the print layer.
 加熱手段として、熱風、電熱、電子線など任意の手段を使用できる。コンベヤによる搬送手段を備えたトンネル内で熱風又は電熱などによって加熱すれば、安価に大量の加熱処理を実施できる。 Any means such as hot air, electric heat, and electron beam can be used as the heating means. A large amount of heat treatment can be carried out inexpensively by heating with hot air, electric heat, or the like in a tunnel provided with a transport means by a conveyor.
<4>発泡紙製容器
 一実施形態は、上記実施形態の発泡紙積層体を具備する発泡紙製容器に関する。発泡紙製容器は、容器胴体部材と底板部材とから構成され、容器胴体部材が上記実施形態の発泡紙積層体から形成されることを特徴とする。図1は、容器の組み立て成形後に加熱処理を実施することによって得られる発泡紙製容器10Aの構造を示す斜視図である。図1に示すように、発泡紙製容器10Aは、発泡紙積層体から構成される容器胴体部材10と底板部材12とから構成される。容器胴体部材(発泡紙積層体)10において、高Mp樹脂フィルムが容器の内壁面10aを形成し、低Mp樹脂フィルム(発泡層)上の印刷層が容器の外壁面10bを形成する。
<4> Foam Paper Container One embodiment relates to a foam paper container provided with the foam paper laminate of the above embodiment. The foamed paper container is composed of a container body member and a bottom plate member, and the container body member is formed from the foamed paper laminate of the above embodiment. FIG. 1 is a perspective view showing the structure of a foamed paper container 10A obtained by performing a heat treatment after assembling and molding the container. As shown in FIG. 1, the foamed paper container 10A is composed of a container body member 10 made of a foamed paper laminate and a bottom plate member 12. In the container body member (foamed paper laminate) 10, the high Mp resin film forms the inner wall surface 10a of the container, and the printing layer on the low Mp resin film (foamed layer) forms the outer wall surface 10b of the container.
 図2は、図1に示した発泡紙製容器の容器胴体部材の参照符号I部分を拡大して示す模式的断面図である。容器胴体部材(発泡紙積層体)10は、容器の内壁面10a側(図1参照)から順に、高Mp樹脂フィルム20、紙基材30、発泡後の低Mp樹脂フィルム(発泡層)40、及び印刷層50を有し、印刷層50は下地層50aと印刷パターン50bとを有する。 FIG. 2 is a schematic cross-sectional view showing an enlarged reference numeral I portion of the container body member of the foam paper container shown in FIG. The container body member (foamed paper laminate) 10 includes a high Mp resin film 20, a paper base material 30, and a low Mp resin film (foamed layer) 40 after foaming, in order from the inner wall surface 10a side (see FIG. 1) of the container. And a print layer 50, and the print layer 50 has a base layer 50a and a print pattern 50b.
 発泡紙製容器の成形加工は、周知の技術を適用して実施することができる。例えば、最初に印刷層を形成した発泡紙積層体(加熱前の発泡紙積層体)を型に沿って所定の形状に打ち抜き容器胴体部材を得る。同様にして、底板材料を所定の形状に打ち抜いて底板部材を得る。次に、常用の容器製造装置を用いて、容器胴体部材と、底板部材とを容器の形状に組み立て成形する。容器製造装置による容器の組み立て成形は、容器胴体部材の上記高Mp樹脂フィルムが内壁面を形成し、上記低Mp樹脂フィルムが外壁面を形成し、さらに底板部材のラミネート面が内側となるようにして実施する。このように容器製造装置によって容器を組み立て成形した後、加熱処理を行うことによって、低Mp樹脂フィルムが発泡し、発泡層(断熱層)を形成し、断熱性を有する発泡紙容器を得ることができる。 Molding of foamed paper containers can be carried out by applying well-known technology. For example, a foamed paper laminate (foamed paper laminate before heating) on which a print layer is first formed is punched into a predetermined shape along a mold to obtain a container body member. Similarly, the bottom plate material is punched into a predetermined shape to obtain a bottom plate member. Next, the container body member and the bottom plate member are assembled and molded into the shape of the container by using a conventional container manufacturing apparatus. In the assembly and molding of the container by the container manufacturing apparatus, the high Mp resin film of the container body member forms the inner wall surface, the low Mp resin film forms the outer wall surface, and the laminated surface of the bottom plate member is on the inside. To carry out. By assembling and molding the container with the container manufacturing apparatus in this way and then performing heat treatment, the low Mp resin film can be foamed to form a foamed layer (heat insulating layer), and a foamed paper container having heat insulating properties can be obtained. can.
 一実施形態において、発泡紙製容器の胴部内壁面、及び胴部外壁面をそれぞれポリエチレンフィルムから構成する場合、紙基材の一方の面(容器の内壁面)は中密度又は高密度ポリエチレンフィルムでラミネートし、他方の面(容器の外壁面)は低密度ポリエチレンフィルムでラミネートすることが好ましい。紙基材にラミネートする各フィルムの厚さは、特に限定されない。しかし、容器胴部の外壁面を構成する低Mp樹脂フィルムの厚さは、フィルムを発泡させた場合に、発泡後のフィルムが断熱層として機能するのに十分な厚みとなるように適宜設定されることが好ましい。 In one embodiment, when the inner wall surface of the body and the outer wall surface of the body of the foamed paper container are each made of polyethylene film, one surface of the paper base material (inner wall surface of the container) is made of medium-density or high-density polyethylene film. It is preferable to laminate the other surface (outer wall surface of the container) with a low-density polyethylene film. The thickness of each film laminated on the paper substrate is not particularly limited. However, the thickness of the low Mp resin film constituting the outer wall surface of the container body is appropriately set so that the foamed film has a sufficient thickness to function as a heat insulating layer when the film is foamed. Is preferable.
 例えば、容器胴部の外壁面を低密度ポリエチレンフィルムで構成する場合、紙基材にラミネートするフィルムの厚さは40~150μmであってよい。一方、容器胴部の内壁面を中密度又は高密度ポリエチレンフィルムで構成する場合、紙基材にラミネートするフィルムの厚さは、特に限定されない。しかし、断熱性発泡紙製容器として使用した時に内容物の耐浸透性が確保されるように、フィルムの厚さを適宜設定することが好ましい。紙基材にラミネートするフィルムの厚さは、使用するフィルムの樹脂材料によって異なるため、樹脂材料の特性を考慮して、当業者が適切に設定することが望ましい。 For example, when the outer wall surface of the container body is made of a low-density polyethylene film, the thickness of the film laminated on the paper substrate may be 40 to 150 μm. On the other hand, when the inner wall surface of the container body is made of a medium-density or high-density polyethylene film, the thickness of the film laminated on the paper substrate is not particularly limited. However, it is preferable to appropriately set the thickness of the film so that the permeability resistance of the contents is ensured when used as a heat-insulating foamed paper container. Since the thickness of the film to be laminated on the paper substrate varies depending on the resin material of the film used, it is desirable to be appropriately set by those skilled in the art in consideration of the characteristics of the resin material.
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下に記載する「部」及び「%」は、特段の注釈の無い限り、「質量部」及び「質量%」を表す。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. The "parts" and "%" described below represent "parts by mass" and "% by mass" unless otherwise specified.
<1>バインダー樹脂
(1)ウレタン樹脂の原料(ひまし油ポリオール、及びその他の原料)
 以下のウレタン樹脂の合成で使用したひまし油ポリオールは、各種市販のポリオール、及び特開2005-320437で示される既知の方法に従い合成して得たポリオールである。以下に記載する原料において「バイオマス由来」と記載されていない原料は、バイオマス由来でない原料である。
<1> Binder resin (1) Raw material for urethane resin (castor oil polyol and other raw materials)
The castor oil polyols used in the synthesis of the following urethane resins are various commercially available polyols and polyols obtained by synthesizing according to a known method shown in JP-A-2005-320437. The raw materials not described as "biomass-derived" in the raw materials described below are raw materials not derived from biomass.
(ひまし油ポリオール1)
 伊藤製油製の「URIC  HF-2009」(重量平均分子量2,600のリシノレイン酸由来構造を主成分とするバイオマス由来ポリオール、官能基数2)をそのまま使用した。
(Castor oil polyol 1)
"URIC HF-2009" manufactured by Itoh Oil Chemicals (a biomass-derived polyol containing a ricinoleic acid-derived structure having a weight average molecular weight of 2,600 as a main component and having 2 functional groups) was used as it was.
(ひまし油ポリオール2)
 伊藤製油製の「URIC  H-57」(重量平均分子量1,700のリシノレイン酸由来構造を主成分とするバイオマス由来ポリオール、 官能基数3)をそのまま使用した。
(Castor oil polyol 2)
"URIC H-57" manufactured by Itoh Oil Chemicals (a biomass-derived polyol containing a ricinoleic acid-derived structure having a weight average molecular weight of 1,700 as a main component and having 3 functional groups) was used as it was.
(ひまし油ポリオール3)
 圧力容器に精製ひまし油100部、水酸化カリウム(KOH)を0.57g入れた後、減圧脱水により110℃まで昇温した。これにプロピレンオキサイド200部を反応圧力4kg/cmを維持しながら投入し、圧力効果が認められなくなるまで反応させた。この反応生成物にリン酸を0.91g加えて触媒を中和し、脱水及びろ過を行って水酸基価58mgKOH/gのポリオール(バイオマス由来のひまし油ポリオール3)を得た。GPC測定による重量平均分子量は3,400であった。
(Castor oil polyol 3)
After putting 100 parts of refined castor oil and 0.57 g of potassium hydroxide (KOH) in a pressure vessel, the temperature was raised to 110 ° C. by dehydration under reduced pressure. 200 parts of propylene oxide was added thereto while maintaining the reaction pressure of 4 kg / cm 2, and the reaction was carried out until the pressure effect was no longer observed. 0.91 g of phosphoric acid was added to this reaction product to neutralize the catalyst, and dehydration and filtration were carried out to obtain a polyol having a hydroxyl value of 58 mgKOH / g (biomass-derived castor oil polyol 3). The weight average molecular weight measured by GPC was 3,400.
(ひまし油ポリオール4)
 伊藤製油製の「URIC  H-73X」(重量平均分子量600の、リシノレイン酸由来構造を主成分とするバイオマス由来ポリオール、官能基数3)をそのまま使用した。
(Castor oil polyol 4)
"URIC H-73X" manufactured by Itoh Oil Chemicals (a biomass-derived polyol having a weight average molecular weight of 600 and having a ricinoleic acid-derived structure as a main component, having 3 functional groups) was used as it was.
(ひまし油ポリオール5)
 圧力容器に精製ひまし油100部、KOHを0.85g入れた後、減圧脱水により110℃まで昇温した。これにプロピレンオキサイド284部を反応圧力4kg/cmを維持しながら投入し、圧力効果が認められなくなるまで反応させた。この反応生成物にリン酸を1.36g加えて触媒を中和し、脱水及びろ過を行って水酸基価45mgKOH/gのポリオール(バイオマス由来のひまし油ポリオール5)を得た。GPC測定による重量平均分子量は5,000であった。
(Castor oil polyol 5)
After putting 100 parts of refined castor oil and 0.85 g of KOH in a pressure vessel, the temperature was raised to 110 ° C. by vacuum dehydration. 284 parts of propylene oxide was added thereto while maintaining the reaction pressure of 4 kg / cm 2, and the reaction was carried out until the pressure effect was no longer observed. 1.36 g of phosphoric acid was added to this reaction product to neutralize the catalyst, and dehydration and filtration were carried out to obtain a polyol having a hydroxyl value of 45 mgKOH / g (biomass-derived castor oil polyol 5). The weight average molecular weight measured by GPC was 5,000.
(MPD/AA)
 クラレ社製、3-メチル1,5-ペンタンジオールとアジピン酸とからなる重量平均分子量2,000のポリエステルポリオールを使用した。
(MPD / AA)
A polyester polyol having a weight average molecular weight of 2,000 composed of 3-methyl 1,5-pentanediol and adipic acid manufactured by Kuraray Co., Ltd. was used.
(MPD/SA)
 クラレ社製、3-メチル1,5-ペンタンジオールとセバシン酸(バイオマス由来)とからなる重量平均分子量2,000のポリエステルポリオールを使用した。
(MPD / SA)
A polyester polyol having a weight average molecular weight of 2,000 composed of 3-methyl 1,5-pentanediol and sebacic acid (derived from biomass) manufactured by Kuraray Co., Ltd. was used.
(2)バインダー樹脂(ウレタン樹脂)の合成例
(合成例1)
[ウレタン樹脂PU1]
 ひまし油ポリオール1を30部、3-メチル1,5-ペンタンジオールとセバシン酸(バイオマス由来)とからなる重量平均分子量2,000のポリエステルポリオール(以下「MPD/SA」)70部、1,3-プロパンジオール(バイオマス由来)2.0部、イソホロンジイソシアネート(以下「IPDI」)27.4部を窒素気流下にて80℃で5時間反応させ、末端イソシアネート基含有ウレタンプレポリマーの樹脂溶液を得た。
 次いでイソホロンジアミン (以下「IPDA」)6.2部、イミノビスプロピルアミン(以下「IBPA」)2.0部、N-(2-ヒドロキシエチル)エチレンジアミン(以下「AEA」)1.0部、酢酸エチル/2-プロパノール(以下「IPA」)=60/40(質量比)の混合溶剤323.4部を混合したものに、先に調製した末端イソシアネートウレタンプレポリマーの樹脂溶液を 40℃で徐々に添加し、次に80℃で1時間反応させ、重量平均分子量65,000のウレタン樹脂溶液PU1(固形分30%)を得た。
(2) Synthesis example of binder resin (urethane resin) (Synthesis example 1)
[Urethane resin PU1]
30 parts of castor oil polyol 1, 70 parts of polyester polyol (hereinafter "MPD / SA") having a weight average molecular weight of 2,000 consisting of 3-methyl 1,5-pentanediol and sebacic acid (derived from biomass), 1,3- 2.0 parts of propanediol (derived from biomass) and 27.4 parts of isophorone diisocyanate (hereinafter referred to as "IPDI") were reacted at 80 ° C. for 5 hours under a nitrogen stream to obtain a resin solution of a urethane prepolymer containing a terminal isocyanate group. ..
Next, 6.2 parts of isophoronediamine (hereinafter "IPDA"), 2.0 parts of iminobispropylamine (hereinafter "IBPA"), 1.0 part of N- (2-hydroxyethyl) ethylenediamine (hereinafter "AEA"), acetic acid. A resin solution of the terminal isocyanate urethane prepolymer prepared above was gradually added to a mixture of 323.4 parts of a mixed solvent of ethyl / 2-propanol (hereinafter “IPA”) = 60/40 (mass ratio) at 40 ° C. The mixture was added and then reacted at 80 ° C. for 1 hour to obtain a urethane resin solution PU1 (solid content 30%) having a weight average molecular weight of 65,000.
 なお、ウレタン樹脂の重量平均分子量は以下のようにして測定した。(重量平均分子量)
 前処理として、ウレタン樹脂の両末端のアミノ基をすべてα,α-ジメチル-3-イソプロペニルベンジルイソシアナートと反応させる。その後、前処理したウレタン樹脂について、カラムとしてShodex GPC LF-604(Shodex社製)を用い、RI検出器を装備したゲルパーミエーションクロマトグラフィ(GPC Shodex社製、GPC-104)で展開溶媒にテトラヒドロフラン(THF)を用いた時のポリスチレン換算分子量を得た。
The weight average molecular weight of the urethane resin was measured as follows. (Weight average molecular weight)
As a pretreatment, all the amino groups at both ends of the urethane resin are reacted with α, α-dimethyl-3-isopropenylbenzyl isocyanate. Then, for the pretreated urethane resin, Polystyrene GPC LF-604 (manufactured by Shodex) was used as a column, and gel permeation chromatography equipped with an RI detector (manufactured by GPC Shodex, GPC-104) was used as a developing solvent in tetrahydrofuran (GPC-104). The polystyrene-equivalent molecular weight when using THF) was obtained.
(合成例2~12)
[ウレタン樹脂PU2~PU12]
 表1に示す材料を用いた以外は合成例1と同様の手法により、ウレタン樹脂PU2~PU12を得た。合成についての詳細を表1に示す。
(Synthesis Examples 2 to 12)
[Urethane resin PU2 to PU12]
Urethane resins PU2 to PU12 were obtained by the same method as in Synthesis Example 1 except that the materials shown in Table 1 were used. Details of the synthesis are shown in Table 1.
(合成例13)
[ウレタン樹脂PU13]
 MPD/SA(バイオマス由来)100部、1,3-プロパンジオール(バイオマス由来)2.0部、IPDI25.5部を窒素気流下にて80℃で5時間反応させ、末端イソシアネートウレタンプレポリマーの樹脂溶液を得た。IPDA6.6部、酢酸エチル/IPA =60/40(質量比)の混合溶剤317.6部を混合したものに、得られた末端イソシアネートウレタンプレポリマーの樹脂溶液を40℃で徐々に添加し、次に80℃で1時間反応させ、ウレタン樹脂溶液PU13(固形分30%)を得た。ウレタン樹脂の重量平均分子量は、68,000であった。
(Synthesis Example 13)
[Urethane resin PU13]
100 parts of MPD / SA (derived from biomass), 2.0 parts of 1,3-propanediol (derived from biomass), and 25.5 parts of IPDI were reacted at 80 ° C. for 5 hours under a nitrogen stream to make a resin of a terminal isocyanate urethane prepolymer. A solution was obtained. A resin solution of the obtained terminal isocyanate urethane prepolymer was gradually added to a mixture of 6.6 parts of IPDA and 317.6 parts of a mixed solvent of ethyl acetate / IPA = 60/40 (mass ratio) at 40 ° C. Next, the reaction was carried out at 80 ° C. for 1 hour to obtain a urethane resin solution PU13 (solid content 30%). The weight average molecular weight of the urethane resin was 68,000.
(合成例14)
[ウレタン樹脂PU14]
 ポリオール成分としてMPD/SA(バイオマス由来)に代えてポリエーテルポリオールを100部使用したことを除き、全て合成例13と同様にして、ウレタン樹脂溶液PU14(固形分30%)を得た。ウレタン樹脂の重量平均分子量は、62,000であった。
(Synthesis Example 14)
[Urethane resin PU14]
A urethane resin solution PU14 (solid content 30%) was obtained in the same manner as in Synthesis Example 13, except that 100 parts of a polyether polyol was used instead of MPD / SA (derived from biomass) as the polyol component. The weight average molecular weight of the urethane resin was 62,000.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
(3)バインダー樹脂の伸び率
 前述の合成例で得た各々のウレタン樹脂、塩化ビニル/酢酸ビニル共重合体(塩酢ビ樹脂)、及びニトロセルロースを表2に示す比率で混合した後に塗布及び乾燥させ、塗膜試験サンプル1~22(厚さ0.30mm、幅5.0mm、長さ20.0mm)を作製した。各サンプルについて、インテスコ社製の小型引張り試験機を使用し、伸び率を測定した。測定は、引張り速度100mm/分、室温25℃の条件下でそれぞれ実施した。結果を表2に示す。
(3) Elongation rate of binder resin Each urethane resin, vinyl chloride / vinyl acetate copolymer (vinyl acetate resin), and nitrocellulose obtained in the above synthetic example are mixed at the ratios shown in Table 2 and then applied and applied. The mixture was dried to prepare coating test samples 1 to 22 (thickness 0.30 mm, width 5.0 mm, length 20.0 mm). For each sample, the elongation rate was measured using a small tensile tester manufactured by Intesco. The measurement was carried out under the conditions of a tensile speed of 100 mm / min and a room temperature of 25 ° C. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
<2>インキ組成物の製造例
(インキ例1)
[グラビアインキW1の作製]
 ウレタン樹脂溶液PU1(固形分30%)を30部、塩化ビニル-酢酸ビニル共重合樹脂(ソルバインTAO:日信化学工業社製 塩化ビニル/酢酸ビニル/ビニルアルコー
ル=91/2/7(質量比)の共重合樹脂、固形分30%酢酸エチル溶液))を5部、白顔料である酸化チタン(テイカ社製 チタニックスJR-805)30部、酢酸n-プロピル20.0部、IPA15部混合し、アイガーミルで30分間分散し、グラビアインキW1を得た。
<2> Production example of ink composition (ink example 1)
[Making gravure ink W1]
30 parts of urethane resin solution PU1 (solid content 30%), vinyl chloride-vinyl acetate copolymer resin (solvine TAO: Nissin Chemical Industry Co., Ltd. vinyl chloride / vinyl acetate / vinyl alcohol = 91/2/7 (mass ratio)) (Copolymer resin, solid content 30% ethyl acetate solution)), 30 parts of titanium oxide (Titanics JR-805 manufactured by Teika Co., Ltd.), 20.0 parts of n-propyl acetate, and 15 parts of IPA, which are white pigments, are mixed. , Dispersed in an Eiger mill for 30 minutes to obtain gravure ink W1.
(インキ例2~21、比較インキ例1)
[グラビアインキW2~W20及びBlue1、T1の作製]
 表3に記載された原料及び配合に変更した以外は、実施例1と同様の方法により、グラビアインキW2~W20、Blue1、T1をそれぞれ得た。表中の略称は以下を表す。また、表中、単位の 標記のない数値は、部を表し、空欄は配合していないことを表す。 
 ソルバインTA3:水酸基を有する塩化ビニル-酢酸ビニル共重合樹脂(日信化学工業社製 塩化ビニル/酢酸ビニル/ヒドロキシアルキルアクリレート=83/4/13(質量比))固形分30%酢酸エチル溶液
 ニトロセルロース(以下「NC」):ニトロセルロース1/8H(旭化成社製) 酢酸エチル30部/IPA40部に混合溶解させた、固形分30%ニトロセルロース溶液(バイオマス由来)
 C.I.ピグメントブルー15:3:リオノールブルーFG7330(トーヨーカラー社製)
(Ink Examples 2 to 21, Comparative Ink Example 1)
[Making gravure inks W2-W20 and Blue1 and T1]
Gravure inks W2 to W20, Blue1 and T1 were obtained by the same method as in Example 1 except that the raw materials and formulations shown in Table 3 were changed. The abbreviations in the table indicate the following. In the table, the numerical values without the unit notation indicate the part, and the blanks indicate that they are not mixed.
Solvine TA3: Vinyl chloride-vinyl acetate copolymer resin having a hydroxyl group (vinyl chloride / vinyl acetate / hydroxyalkyl acrylate = 83/4/13 (mass ratio) manufactured by Nissin Chemical Industry Co., Ltd.) Solid content 30% Ethyl acetate solution Nitrocellulose (Hereinafter "NC"): Nitrocellulose 1 / 8H (manufactured by Asahi Kasei Co., Ltd.) 30% solid content nitrocellulose solution (derived from biomass) mixed and dissolved in 30 parts of ethyl acetate / 40 parts of IPA.
C. I. Pigment Blue 15: 3: Lionol Blue FG7330 (manufactured by Toyo Color Co., Ltd.)
 なお、グラビアインキW1とグラビアインキW20とを40℃の条件下で一週間静置したところ、インキの安定性(層分離)等において、グラビアインキW1の方が良好であることが確認された。グラビアインキW1は、PU1(一高分子鎖中にひまし油ポリオール由来の構造単位とポリエステルポリオール由来の構造単位を有するウレタン樹脂)を用いたインキである。一方、グラビアインキ20は、PU8(ひまし油ポリオール由来の構造単位を有するウレタン樹脂)と、PU14(ポリエステルポリオール由来の構造単位を有するウレタン樹脂)とを併用したインキである。したがって、インキの安定性の観点では、ひまし油ポリオール由来の構造単位とポリエステルポリオール由来の構造単位とが高分子鎖中に併存するウレタン樹脂の方が好ましい形態となることが分かる。 When the gravure ink W1 and the gravure ink W20 were allowed to stand for one week under the condition of 40 ° C., it was confirmed that the gravure ink W1 was better in terms of ink stability (layer separation) and the like. The gravure ink W1 is an ink using PU1 (a urethane resin having a structural unit derived from castor oil polyol and a structural unit derived from polyester polyol in one polymer chain). On the other hand, the gravure ink 20 is an ink in which PU8 (urethane resin having a structural unit derived from castor oil polyol) and PU14 (urethane resin having a structural unit derived from polyester polyol) are used in combination. Therefore, from the viewpoint of ink stability, it can be seen that the urethane resin in which the structural unit derived from castor oil polyol and the structural unit derived from polyester polyol coexist in the polymer chain is preferable.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
<4>発泡紙積層体の製造例
(1)発泡紙材料の製造例
 発泡紙材料は、(工程1)紙基材の片面に、中密度ポリエチレン樹脂(M)を押出ラミネートして水蒸気遮断層を形成し、次いで、(工程2)紙基材の他面(非ラミネート面)に低密度ポリエチレン樹脂(L)を押出ラミネートしてすることによって、製造した。
<4> Production example of foamed paper laminate (1) Production example of foamed paper material The foamed paper material is (step 1) a water vapor blocking layer obtained by extruding and laminating a medium density polyethylene resin (M) on one side of a paper base material. Then, the low-density polyethylene resin (L) was extruded and laminated on the other surface (non-laminated surface) of the paper substrate (step 2).
  工程1及び工程2における各種条件は以下のとおりである。
(工程1)
 紙基材:水分量23kg/m、坪量300kg/m
 中密度ポリエチレン樹脂(M):東ソー社製「ペトロセンLW04-1」、MFR4.3g/10分、密度940kg/m
 押出温度(Tダイ出口温度):320℃
 引取速度(ラミネート速度):50m/分
 エアギャップ:130mm
 厚さ:40μm(ポリエチレン樹脂層の中央部の厚さ)
Various conditions in step 1 and step 2 are as follows.
(Step 1)
Paper substrate: Moisture content 23 kg / m 3 , Basis weight 300 kg / m 3
Medium density polyethylene resin (M): Tosoh's "Petrosen LW04-1", MFR 4.3 g / 10 minutes, density 940 kg / m 3
Extrusion temperature (T die outlet temperature): 320 ° C
Pick-up speed (lamination speed): 50 m / min Air gap: 130 mm
Thickness: 40 μm (thickness of the central part of the polyethylene resin layer)
(工程2)
 低密度ポリエチレン樹脂(L);後述
 押出温度(Tダイ出口温度):310℃
 引取速度(ラミネート速度):60m/分
 エアギャップ:130mm
 厚さ:50μm
(Step 2)
Low density polyethylene resin (L); Extrusion temperature (T die outlet temperature) described later: 310 ° C.
Pick-up speed (lamination speed): 60 m / min Air gap: 130 mm
Thickness: 50 μm
 なお、上記工程2で使用する低密度ポリエチレン樹脂(L)は発泡層形成層(B)となる。低密度ポリエチレン樹脂(L)として、実施例23及び24及び比較例2では低密度ポリエチレン樹脂(L2)及び(L3)を使用し、それ以外は低密度ポリエチレン樹脂(L1)を使用して、発泡紙材料を製造した。低密度ポリエチレン樹脂(L1)、(L2)及び(L3)の詳細は以下のとおりである。
 低密度ポリエチレン樹脂(L1):東ソー社製「ペトロセン07C03C」、密度918kg/m、MFR15g/10分
 低密度ポリエチレン樹脂(L2):日本ポリエチレン社製「ノバテックLDLC720」、密度922kg/m、MFR9g/10分
 低密度ポリエチレン樹脂(L3):ブラスケム社製「SBC818」、密度918kg/m、融点106℃、MFR8.1g/10分
The low-density polyethylene resin (L) used in the above step 2 is a foam layer forming layer (B 0 ). As the low-density polyethylene resin (L), low-density polyethylene resins (L2) and (L3) are used in Examples 23 and 24 and Comparative Example 2, and low-density polyethylene resin (L1) is used in other cases for foaming. Manufactured paper material. Details of the low-density polyethylene resins (L1), (L2) and (L3) are as follows.
Low-density polyethylene resin (L1): Toso Co., Ltd. "Petrosen 07C03C", density 918 kg / m 3 , MFR 15 g / 10 minutes Low-density polyethylene resin (L2): Nippon Polyethylene Co., Ltd. "Novatec LDLC720", density 922 kg / m 3 , MFR 9 g / 10 min Low density polyethylene resin (L3): "SBC818" manufactured by Brasschem, density 918 kg / m 3 , melting point 106 ° C, MFR 8.1 g / 10 min
(2)発泡紙材料への印刷層の形成(発泡前の発泡紙積層体)の製造例
 先に調製したグラビアインキを使用して、以下に記載するようにして発泡紙材料に印刷層を形成した。
(2) Production example of forming a print layer on a foam paper material (foam paper laminate before foaming) Using the gravure ink prepared above, a print layer is formed on the foam paper material as described below. did.
(実施例1)
 上記で得られたグラビアインキW1を、メチルエチルケトン(以下「MEK」):酢酸n-プロピル(以下「NPAC」):IPA=40:40:20(質量比)からなる混合溶剤により、粘度が16秒(25℃、ザーンカップNo.3)となるように希釈し、腐食30μmのグラビア印刷機により、発泡紙材料の低密度ポリエチレン樹脂(L1)上に印刷速度100m/分で行い、膜厚1.5μmの印刷層を形成した。なお、印刷層の膜厚は、発泡紙積層体の断面の走査型電子顕微鏡(SEM)の写真(倍率5000)から求めた。印刷層について任意の5箇所について測定し、これらの平均値を印刷層の膜厚とした。
(Example 1)
The gravure ink W1 obtained above has a viscosity of 16 seconds with a mixed solvent consisting of methyl ethyl ketone (hereinafter “MEK”): n-propyl acetate (hereinafter “NPAC”): IPA = 40: 40: 20 (mass ratio). Dilute to (25 ° C., Zahn cup No. 3), and use a gravure printing machine with a corrosion of 30 μm on a low-density polyethylene resin (L1) as a foam paper material at a printing speed of 100 m / min to achieve a film thickness of 1. A 5 μm print layer was formed. The thickness of the printed layer was determined from a scanning electron microscope (SEM) photograph (magnification of 5000) of the cross section of the foamed paper laminate. The print layer was measured at any five points, and the average value thereof was taken as the film thickness of the print layer.
(実施例2~25、比較例1~3)
 表4に記載するように、各印刷インキを使用したことを除き、実施例1と同様の方法で印刷を行い、それぞれ膜厚1.5μmの印刷層を形成した。但し、実施例22については重ね印刷を行ったため印刷層の膜厚は2.5μmであった。なお、実施例23においては、低密度ポリエチレン樹脂(L1)に代えて低密度ポリエチレン樹脂(L2)を使用し、実施例24においては、低密度ポリエチレン樹脂(L1)に代えて低密度ポリエチレン樹脂(L3)を使用した。
(Examples 2 to 25, Comparative Examples 1 to 3)
As shown in Table 4, printing was performed in the same manner as in Example 1 except that each printing ink was used, and a printing layer having a film thickness of 1.5 μm was formed. However, in Example 22, the film thickness of the print layer was 2.5 μm because the overprinting was performed. In Example 23, the low-density polyethylene resin (L2) was used instead of the low-density polyethylene resin (L1), and in Example 24, the low-density polyethylene resin (L1) was replaced with the low-density polyethylene resin (L1). L3) was used.
(3)発泡紙積層体の製造例
 上述のようにして製造した印刷層を有する発泡紙材料(発泡前の発泡紙積層体)について、以下の条件で加熱処理を行い、低密度ポリエチレン樹脂層(L)を発泡させて、発泡層を形成し、発泡紙積層体(発泡後積層体)を製造した。
 標準条件(A):120℃のオーブンで6分間加熱(実施例1~24、比較例1~3)
 条件(B):122℃のオーブンで6分間加熱(実施例25)
(3) Example of Production of Foam Paper Laminate A foam paper material (foam paper laminate before foaming) having a print layer manufactured as described above is heat-treated under the following conditions to obtain a low-density polyethylene resin layer (a low-density polyethylene resin layer). L) was foamed to form a foamed layer, and a foamed paper laminate (post-foam laminate) was produced.
Standard condition (A): Heating in an oven at 120 ° C. for 6 minutes (Examples 1 to 24, Comparative Examples 1 to 3)
Condition (B): Heating in an oven at 122 ° C. for 6 minutes (Example 25)
<5>発泡紙積層体の評価
 上述のようにして製造した実施例1~25及び比較例1~3の発泡紙積層体について、以下に記載の方法に従い、各種特性を評価した。それぞれの結果を表4に示す。
<5> Evaluation of Foam Paper Laminates Various characteristics of the foam paper laminates of Examples 1 to 25 and Comparative Examples 1 to 3 produced as described above were evaluated according to the methods described below. The results of each are shown in Table 4.
<発泡追随性>
 実施例1~25及び比較例1~3の発泡紙積層体の各表面について、加熱処理後(低Mpフィルム発泡後)のインキ印刷部と非印刷部との段差を指触し、インキ印刷部の凹み度合いを以下の基準に従って評価した。評価の数値が高いほど、発泡追随性に優れ、印刷面が平坦であることを意味する。
(評価基準)
 5:非印刷部との段差をほとんど感じない。
 4:非印刷部との段差をわずかに感じる。
 3:非印刷部との段差をかなり感じる。
 2:非印刷部との段差をかなり大きく感じる。
 1:非印刷部との段差を非常に大きく感じる。
<Foamability>
On each surface of the foamed paper laminates of Examples 1 to 25 and Comparative Examples 1 to 3, the step between the ink printed portion and the non-printed portion after the heat treatment (after foaming of the low Mp film) was touched to touch the ink printing portion. The degree of dent was evaluated according to the following criteria. The higher the evaluation value, the better the foam followability and the flatter the printed surface.
(Evaluation criteria)
5: Almost no step with the non-printed part is felt.
4: I feel a slight step with the non-printed part.
3: I feel a considerable difference in level with the non-printed part.
2: I feel that the step with the non-printed part is quite large.
1: I feel the step with the non-printed part is very large.
<発泡外観:火膨れ>
 実施例1~25及び比較例1~3の発泡紙積層体について、目視にて発泡紙積層体の印刷面を観察した。評価基準は以下の通りである。なお、表4に示した結果は、発泡紙積層体のサンプルを無造作に10個準備し、各サンプルを観察及び評価した結果における最頻値である。最頻値が複数存在する場合は、より低い評価となる値を採用した。
(評価基準)
 5:火脹れが全くない(火脹れが確認できない)。
 4:長径5mm未満の火脹れが、100cmあたり1個存在する。
 3:長径5mm未満の火脹れが、100cmあたり2個存在する。
 2:長径5mm未満の火脹れが、100cmあたり3~5個存在する。又は、長径5~20mmの火脹れが、100cmあたり1個存在する。
 1:長径5mm未満の火脹れが、100cmあたり6個存在する。又は、長径5~20mmの火脹れが、100cmあたり2個以上存在する。又は、長径20mmを超える火脹れが、100cmあたり1個以上存在する。
 なお、長径が異なる複数の火脹れが混在している場合は、より低い評価を採用する。具体的には、100cmあたり、長径5mm未満の火脹れが2個、及び長径5~20mmの火脹れが1個存在する場合は、評価は「2」となる。
<Appearance of foam: Fire swelling>
With respect to the foamed paper laminates of Examples 1 to 25 and Comparative Examples 1 to 3, the printed surface of the foamed paper laminate was visually observed. The evaluation criteria are as follows. The results shown in Table 4 are the most frequent values in the results of randomly preparing 10 samples of the foamed paper laminate and observing and evaluating each sample. When there are multiple modes, the value with the lower evaluation is adopted.
(Evaluation criteria)
5: No swelling (no swelling can be confirmed).
4: There is one swelling with a major axis of less than 5 mm per 100 cm 2.
3: There are two swellings with a major axis of less than 5 mm per 100 cm 2.
2: There are 3 to 5 swellings with a major axis of less than 5 mm per 100 cm 2. Alternatively, there is one swelling with a major axis of 5 to 20 mm per 100 cm 2.
1: There are 6 swellings with a major axis of less than 5 mm per 100 cm 2. Alternatively, there are two or more swellings with a major axis of 5 to 20 mm per 100 cm 2. Alternatively, there is one or more swellings with a major axis of more than 20 mm per 100 cm 2.
If multiple swells with different major axes are mixed, a lower evaluation is adopted. Specifically, if there are two swellings with a major axis of less than 5 mm and one swelling with a major axis of 5 to 20 mm per 100 cm 2, the evaluation is "2".
<発泡外観:ひび割れ>
 実施例1~25及び比較例1~3の発泡紙積層体について、火膨れの評価と同様に、目視にて発泡紙積層体の印刷面を観察した。評価基準は以下の通りである。なお、表4に示した結果は、発泡紙積層体のサンプルを無造作に10個準備し、各サンプルを観察及び評価した結果における最頻値である。最頻値が複数存在する場合は、より低い評価となる値を採用した。
(評価基準)
 5:ひび割れが全くない(ひび割れが確認できない)。
 4:長さ2mm未満のひび割れが、100cmあたり1本存在する。
 3:長さ2mm未満のひび割れが、100cmあたり2~4本存在する。
 2:長さ2mm未満のひび割れが、100cmあたり5~10本存在する。又は、長さ2~5mmのひび割れが、100cmあたり1本存在する。
 1:長さ2mm未満のひび割れが、100cmあたり11本以上存在する。又は、長さ2~5mmのひび割れが、100cmあたり2本以上存在する。又は、長さ5mmを超えるひび割れが、100cmあたり1本以上存在する。
 なお、長さの異なる複数のひび割れが混在している場合には、より低い評価を採用する。具体的には、100cmあたり、長さ1mmのひび割れが1本、及び長さ4mmのひび割れが1本存在する場合は、評価は「2」となる。
<Foam appearance: cracks>
With respect to the foamed paper laminates of Examples 1 to 25 and Comparative Examples 1 to 3, the printed surface of the foamed paper laminate was visually observed in the same manner as in the evaluation of fire swelling. The evaluation criteria are as follows. The results shown in Table 4 are the most frequent values in the results of randomly preparing 10 samples of the foamed paper laminate and observing and evaluating each sample. When there are multiple modes, the value with the lower evaluation is adopted.
(Evaluation criteria)
5: No cracks (no cracks can be confirmed).
4: There is one crack with a length of less than 2 mm per 100 cm 2.
3: There are 2 to 4 cracks with a length of less than 2 mm per 100 cm 2.
2: There are 5 to 10 cracks with a length of less than 2 mm per 100 cm 2. Alternatively, there is one crack with a length of 2 to 5 mm per 100 cm 2.
1: There are 11 or more cracks with a length of less than 2 mm per 100 cm 2. Alternatively, there are two or more cracks having a length of 2 to 5 mm per 100 cm 2. Alternatively, there is one or more cracks having a length of more than 5 mm per 100 cm 2.
If a plurality of cracks having different lengths are mixed, a lower evaluation is adopted. Specifically, if there is one crack having a length of 1 mm and one crack having a length of 4 mm per 100 cm 2, the evaluation is “2”.
<耐熱性> 
 発泡層を形成するための加熱処理中に印刷層の耐熱性を直接的に評価することが困難であるため、代替試験として、発泡紙積層体(発泡後)に再加熱を行って耐熱性を評価した。具体的には、先ず、実施例1~25及び比較例1~3の発泡紙積層体について、印刷層(塗膜)表面に対し印刷層と同じ大きさに切ったアルミ箔を重ね合わせた。次に、140℃に加熱したヒートシール試験機を用いて、上記アルミ箔の部分を2kg/cmの圧力で1秒間にわたって押圧した。次に、アルミ箔を剥離し、アルミ箔に付着したインキ面積を求め、印刷層を基準したインキ面積の割合を算出し、耐熱性について評価した。評価基準は以下のとおりである。
(評価基準)
 5:アルミ箔へのインキ付着が全くない(インキ付着が確認できない)。
 4:アルミ箔へのインキ付着が確認されるが、3%未満である。
 3:アルミ箔へのインキ付着が3%以上、10%未満である。
 2:アルミ箔へのインキ付着が10%以上、30%未満である。
 1:アルミ箔へのインキ付着が30%以上である。
<Heat resistance>
Since it is difficult to directly evaluate the heat resistance of the printed layer during the heat treatment for forming the foam layer, as an alternative test, the foam paper laminate (after foaming) is reheated to improve the heat resistance. evaluated. Specifically, first, with respect to the foam paper laminates of Examples 1 to 25 and Comparative Examples 1 to 3, an aluminum foil cut to the same size as the print layer was superposed on the surface of the print layer (coating film). Next, using a heat seal tester heated to 140 ° C., the aluminum foil portion was pressed at a pressure of 2 kg / cm 2 for 1 second. Next, the aluminum foil was peeled off, the ink area adhering to the aluminum foil was obtained, the ratio of the ink area based on the print layer was calculated, and the heat resistance was evaluated. The evaluation criteria are as follows.
(Evaluation criteria)
5: No ink adhesion to the aluminum foil (ink adhesion cannot be confirmed).
4: Ink adhesion to the aluminum foil is confirmed, but it is less than 3%.
3: Ink adhesion to the aluminum foil is 3% or more and less than 10%.
2: Ink adhesion to aluminum foil is 10% or more and less than 30%.
1: Ink adhesion to aluminum foil is 30% or more.
<耐エタノール性>
 実施例1~25及び比較例1~3の発泡紙積層体について、加熱処理によって発泡した低融点フィルム上の印刷層(塗膜)表面に対し、摩擦子に70%エタノール(エタノール:水=70:30)を含ませたカナキン(JIS L 0803)を荷重しながら1往復した。カナキンを往復する時、学振試験機(テスター産業社製)により、200gの荷重を加えた。その後、塗膜を目視で観察し、試験前の塗膜の全面積を基準として、塗膜(インキ)が剥がれた面積の割合を算出し、耐エタノール性について評価した。評価基準は以下のとおりである。
(評価基準)
 5:インキの剥がれが30%未満である。
 4:インキの剥がれが30%以上、40%未満である。
 3:インキの剥がれが40%以上、60%未満である。
 2:インキの剥がれが60%以上、70%未満である。
 1:インキの剥がれが70%以上である。
<Ethanol resistance>
For the foamed paper laminates of Examples 1 to 25 and Comparative Examples 1 to 3, 70% ethanol (ethanol: water = 70) was added to the friction element against the surface of the printed layer (coating film) on the low melting point film foamed by the heat treatment. : 30) was loaded and reciprocated once while loading the kanakin (JIS L 0803). When going back and forth between Kanakin, a load of 200 g was applied by a Gakushin tester (manufactured by Tester Sangyo Co., Ltd.). Then, the coating film was visually observed, the ratio of the area where the coating film (ink) was peeled off was calculated based on the total area of the coating film before the test, and the ethanol resistance was evaluated. The evaluation criteria are as follows.
(Evaluation criteria)
5: Ink peeling is less than 30%.
4: Ink peeling is 30% or more and less than 40%.
3: Ink peeling is 40% or more and less than 60%.
2: Ink peeling is 60% or more and less than 70%.
1: Ink peeling is 70% or more.
 表4には示していないが、その他の特性として、以下に記載する方法に従い、発泡紙積層体の発泡層の厚み及び発泡セル数について測定した。その結果、比較例3以外の発泡紙積層体については、いずれも発泡層の厚みが500μm以上であり、かつ、発泡セル数が1250個/1cm以上であり、実用において十分な断熱性が得られることが確認できた。一方、比較例3の発泡紙積層体については、発泡層の厚みは500μmを超えていたものの、発泡セル数が1000個/1cm未満であり、実用において十分な断熱性を得ることができなかった。 Although not shown in Table 4, as other characteristics, the thickness of the foam layer and the number of foam cells of the foam paper laminate were measured according to the method described below. As a result, for the foamed paper laminates other than Comparative Example 3, the thickness of the foamed layer is 500 μm or more, and the number of foamed cells is 1250 cells / 1 cm 2 or more, so that sufficient heat insulating properties are obtained in practical use. I was able to confirm that it was possible. On the other hand, the foam sheet laminate of Comparative Example 3, although the thickness of the foamed layer was greater than 500 [mu] m, a number of foamed cells is less than 1000/1 cm 2, not possible to obtain sufficient heat insulating property in a practical rice field.
(発泡セル数)
 発泡紙積層体の印刷層をメチルエチルケトン(MEK)で除去し、発泡熱可塑性樹脂層(発泡層)の表面を露出させた。次いで、光学顕微鏡(ニコン社製、AZ100M)を用いて発泡層の表面を観察し(倍率25倍)、縦横(X-Y)方向に一定の長さで区画される範囲内に存在する独立セルの数を求め、さらに1cmあたりの独立セル数として算出される値を得た。任意の5箇所について観察を行い、これらの平均値を発泡セル数とした。
(Number of foam cells)
The printed layer of the foamed paper laminate was removed with methyl ethyl ketone (MEK) to expose the surface of the foamed thermoplastic resin layer (foamed layer). Next, the surface of the foam layer was observed using an optical microscope (AZ100M manufactured by Nikon Corporation) (magnification 25 times), and an independent cell existing within a range partitioned by a certain length in the vertical and horizontal (XY) directions. The number of independent cells was obtained, and the value calculated as the number of independent cells per 1 cm 2 was obtained. Observation was performed at any 5 points, and the average value of these was taken as the number of foamed cells.
(発泡層の膜厚)
 発泡層の膜厚は、発泡紙積層体の断面を光学顕微鏡写真で観察し、紙基材の上面から、印刷層の下面までの高さを測定することによって決定した。また、発泡前の膜厚は、発泡層形成層の膜厚に対応する。そのため、発泡層形成層として形成した低密度ポリエチレン樹脂の膜厚を測定して得た値とした。
(Film thickness of foam layer)
The film thickness of the foam layer was determined by observing the cross section of the foam paper laminate with an optical micrograph and measuring the height from the upper surface of the paper substrate to the lower surface of the print layer. Further, the film thickness before foaming corresponds to the film thickness of the foamed layer forming layer. Therefore, the value obtained by measuring the film thickness of the low-density polyethylene resin formed as the foam layer forming layer was used.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 表4に示す結果から、本発明の実施形態(実施例)によれば、バインダー樹脂としてひまし油ポリオールに由来する構造単位を含むウレタン樹脂を使用することで、優れた耐熱性、発泡追随性、発泡外観、及び耐エタノール性が得られることが分かる。特に、ポリオール成分として、ひまし油ポリオールとポリエステルポリオールとを併用した場合には、耐熱性を容易に向上できることが分かる。これに対し、ひまし油ポリオールに由来する構造単位を含まないウレタン樹脂を使用した比較例では、所望とする特性を得ることができず、特に、耐熱性及び耐アルコール性について著しく低下する結果となった。
 以上のことから、本発明によれば、バイオマス樹脂を含む印刷層を有し、優れた耐熱性、発泡追随性、発泡外観、及び耐エタノール性が得られ、発泡紙製容器の部材として好適に使用できる発泡紙積層体を提供できることが分かる。
From the results shown in Table 4, according to the embodiment (Example) of the present invention, by using a urethane resin containing a structural unit derived from castor oil polyol as a binder resin, excellent heat resistance, foaming followability, and foaming are obtained. It can be seen that the appearance and ethanol resistance can be obtained. In particular, it can be seen that the heat resistance can be easily improved when the castor oil polyol and the polyester polyol are used in combination as the polyol component. On the other hand, in the comparative example using the urethane resin containing no structural unit derived from castor oil polyol, the desired properties could not be obtained, and in particular, the heat resistance and alcohol resistance were significantly reduced. ..
From the above, according to the present invention, the present invention has a printed layer containing a biomass resin, excellent heat resistance, foaming followability, foaming appearance, and ethanol resistance are obtained, and is suitable as a member of a foamed paper container. It can be seen that a usable foamed paper laminate can be provided.
(符号の説明)
 10 発泡紙積層体(容器胴体部材)
 10A 発泡紙製容器
 10a 容器の外壁面
 10b 容器の内壁面
 12 底板部材12
 20 高Mp樹脂フィルム(熱可塑性樹脂層(A))
 30 紙基材
 40 発泡後の低Mp樹脂フィルム(発泡熱可塑性樹脂層(B)、発泡層(B))
 50 印刷層
 50a 下地層
 50b 印刷パターン
(Explanation of code)
10 Foamed paper laminate (container body member)
10A Foamed paper container 10a Outer wall surface of container 10b Inner wall surface of container 12 Bottom plate member 12
20 High Mp resin film (thermoplastic resin layer (A))
30 Paper base material 40 Low Mp resin film after foaming (foamed thermoplastic resin layer (B), foamed layer (B))
50 print layer 50a base layer 50b print pattern

Claims (6)

  1.  原紙と、前記原紙の一方の面に設けられた熱可塑性樹脂層(A)と、前記原紙の他方の面に設けられた発泡熱可塑性樹脂層(B)とからなる発泡紙、及び前記発泡熱可塑性樹脂層(B)上に設けられた印刷層を具備した発泡紙積層体であって、
     前記印刷層が、少なくともバインダー樹脂を含み、
     前記バインダー樹脂は、ひまし油ポリオール由来の構造単位を有するウレタン樹脂を含む、発泡紙積層体。
    A foam paper composed of a base paper, a thermoplastic resin layer (A) provided on one side of the base paper, and a foamed thermoplastic resin layer (B) provided on the other side of the base paper, and the foaming heat. A foamed paper laminate provided with a printing layer provided on the thermoplastic resin layer (B).
    The printed layer contains at least a binder resin and contains
    The binder resin is a foamed paper laminate containing a urethane resin having a structural unit derived from castor oil polyol.
  2.  前記ウレタン樹脂が、二塩基酸とジオールとの縮合物であるポリエステルポリオール由来の構造単位をさらに有し、前記ひまし油ポリオール由来の構造単位(a1)と前記ポリエステルポリオール由来の構造単位(a2)との質量比(a1)/(a2)が、75/25~10/90である、請求項1に記載の発泡紙積層体。 The urethane resin further has a structural unit derived from a polyester polyol which is a condensate of a dibasic acid and a diol, and has a structural unit derived from the castor oil polyol (a1) and a structural unit derived from the polyester polyol (a2). The foamed paper laminate according to claim 1, wherein the mass ratio (a1) / (a2) is 75/25 to 10/90.
  3.  前記ウレタン樹脂の全質量を基準として、ポリエーテルポリオール由来の構造単位の含有量が8質量%以下である、請求項1又は2に記載の発泡紙積層体。 The foamed paper laminate according to claim 1 or 2, wherein the content of the structural unit derived from the polyether polyol is 8% by mass or less based on the total mass of the urethane resin.
  4.  前記ひまし油ポリオールの重量平均分子量が、1,000~5,000である、請求項1~3のいずれか1項に記載の発泡紙積層体。 The foamed paper laminate according to any one of claims 1 to 3, wherein the castor oil polyol has a weight average molecular weight of 1,000 to 5,000.
  5.  前記バインダー樹脂が、さらに塩化ビニル/酢酸ビニル共重合体を含み、前記バインダー樹脂の全質量を基準として、前記塩化ビニル/酢酸ビニル共重合体の含有量が5質量%以上、50質量以下である、請求項1~4のいずれか1項に記載の発泡紙積層体。  The binder resin further contains a vinyl chloride / vinyl acetate copolymer, and the content of the vinyl chloride / vinyl acetate copolymer is 5% by mass or more and 50% by mass or less based on the total mass of the binder resin. , The foamed paper laminate according to any one of claims 1 to 4. The
  6.  前記バインダー樹脂の伸び率が、400%~3,000%である、請求項1~5のいずれか1項に記載の発泡紙積層体。 The foamed paper laminate according to any one of claims 1 to 5, wherein the elongation rate of the binder resin is 400% to 3,000%.
PCT/JP2021/025927 2020-07-17 2021-07-09 Foam paper laminate WO2022014484A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180047509.XA CN115768625A (en) 2020-07-17 2021-07-09 Foam paper laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020123027A JP2022019277A (en) 2020-07-17 2020-07-17 Foam paper laminate
JP2020-123027 2020-07-17

Publications (1)

Publication Number Publication Date
WO2022014484A1 true WO2022014484A1 (en) 2022-01-20

Family

ID=79555396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025927 WO2022014484A1 (en) 2020-07-17 2021-07-09 Foam paper laminate

Country Status (3)

Country Link
JP (1) JP2022019277A (en)
CN (1) CN115768625A (en)
WO (1) WO2022014484A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119800A1 (en) * 2008-03-28 2009-10-01 日清食品ホールディングス株式会社 Ink composition for printing, paper container material using the ink composition, and heat insulating foamed paper container
JP2015231870A (en) * 2014-05-13 2015-12-24 凸版印刷株式会社 Lid material and packaging container using the same
JP2018058955A (en) * 2016-10-03 2018-04-12 Dicグラフィックス株式会社 Aqueous flexo ink for foam cup, and foam cup
JP2018109131A (en) * 2017-01-06 2018-07-12 東洋インキScホールディングス株式会社 Gravure ink, and printed matter and laminate comprising the same
JP2019214669A (en) * 2018-06-12 2019-12-19 サカタインクス株式会社 Printing ink composition for laminate
JP2020055575A (en) * 2018-09-28 2020-04-09 大日本印刷株式会社 Packaging material and packaging product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119800A1 (en) * 2008-03-28 2009-10-01 日清食品ホールディングス株式会社 Ink composition for printing, paper container material using the ink composition, and heat insulating foamed paper container
JP2015231870A (en) * 2014-05-13 2015-12-24 凸版印刷株式会社 Lid material and packaging container using the same
JP2018058955A (en) * 2016-10-03 2018-04-12 Dicグラフィックス株式会社 Aqueous flexo ink for foam cup, and foam cup
JP2018109131A (en) * 2017-01-06 2018-07-12 東洋インキScホールディングス株式会社 Gravure ink, and printed matter and laminate comprising the same
JP2019214669A (en) * 2018-06-12 2019-12-19 サカタインクス株式会社 Printing ink composition for laminate
JP2020055575A (en) * 2018-09-28 2020-04-09 大日本印刷株式会社 Packaging material and packaging product

Also Published As

Publication number Publication date
JP2022019277A (en) 2022-01-27
CN115768625A (en) 2023-03-07

Similar Documents

Publication Publication Date Title
JP2019112654A (en) Binder for printing ink, laminate ink composition for soft packaging, and printed matter
JP5937285B1 (en) Laminated ink composition for flexible packaging
WO2013099829A1 (en) Multilayer film for decorative molding, polyurethane resin, and method for producing decorative molded body
CN109476938B (en) Gravure ink for laminated body, printed matter, and laminated product
JP6932960B2 (en) Coat composition for printing and printed matter
JP7168027B2 (en) Printing ink binder solution and printing ink composition for packaging lamination
JP2019112583A (en) Ink set and decorative material
JP2021098295A (en) Packaging material, and recycled base material production method
WO2023032997A1 (en) Packaging material, recycled molding material, and methods for manufacturing same
JP2019011435A (en) Gravure ink and printed matter thereof and laminate
JP2019038897A (en) Liquid ink composition
WO2022014484A1 (en) Foam paper laminate
JP2021161299A (en) Aqueous gravure or flexographic ink, and use of the same
JP2019001932A (en) Liquid ink composition
JP2010270216A (en) Binder for printing ink
WO2020111226A1 (en) Adhesive agent, packaging material, and packaging container, and production method for recycled base material
JP7418220B2 (en) Foamed paper laminate and its manufacturing method, foamed paper container
JP2017177517A (en) Printed matter and laminate
JP2017039836A (en) Laminate ink composition for soft packaging
JP7277686B2 (en) Sulfur-based gas adsorption method and manufacturing method for sulfur-based gas adsorbent packaging material
WO2018110408A1 (en) Laminate ink composition for flexible packaging
JP7250989B1 (en) Gravure ink composition, gravure ink, and laminated laminate
EP4089152A1 (en) Clear ink, printing method, and inkjet printing apparatus
JP2002069353A (en) Printing ink and laminate
JP7296496B1 (en) Oxygen-absorbing gravure ink composition, oxygen-absorbing printed matter, laminate, method for producing oxygen-absorbing printed matter, method for producing laminate, packaging bag, packaging container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21841285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21841285

Country of ref document: EP

Kind code of ref document: A1