WO2022014278A1 - Management device, management method, and management program - Google Patents

Management device, management method, and management program Download PDF

Info

Publication number
WO2022014278A1
WO2022014278A1 PCT/JP2021/023648 JP2021023648W WO2022014278A1 WO 2022014278 A1 WO2022014278 A1 WO 2022014278A1 JP 2021023648 W JP2021023648 W JP 2021023648W WO 2022014278 A1 WO2022014278 A1 WO 2022014278A1
Authority
WO
WIPO (PCT)
Prior art keywords
animal
information
pressure
unit
atmospheric pressure
Prior art date
Application number
PCT/JP2021/023648
Other languages
French (fr)
Japanese (ja)
Inventor
泰徳 磯部
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2022536207A priority Critical patent/JPWO2022014278A1/ja
Priority to CN202180048893.5A priority patent/CN115802886A/en
Publication of WO2022014278A1 publication Critical patent/WO2022014278A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K29/00Other apparatus for animal husbandry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Mining
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/05Agriculture

Definitions

  • This disclosure relates to management equipment, management methods, and management programs.
  • a barometric pressure sensor or the like is attached to the livestock or the like, and the behavior of the livestock is specified by the difference from the reference pressure.
  • this disclosure provides a management device, a management method, and a management program capable of specifying the behavior with higher accuracy even if the reference atmospheric pressure changes depending on the position of the livestock.
  • an acquisition unit that acquires atmospheric pressure information within a predetermined range from the animal based on the position information in the animal to be managed, and an acquisition unit.
  • An atmospheric pressure estimation unit that estimates the reference atmospheric pressure at the position of the animal using the atmospheric pressure information, and
  • a posture estimation unit that estimates whether the animal is in an upright state or a prone state according to the differential pressure between the reference pressure and the pressure based on the output signal of the pressure sensor attached to the animal.
  • a management device is provided.
  • the acquisition unit acquires a plurality of barometric pressure information, position information, and altitude information from each of the plurality of reference stations arranged based on the range in which the animal moves.
  • the barometric pressure estimation unit may estimate the reference barometric pressure by using the position information and the altitude information of the animal and the plurality of barometric pressure information, the position information, and the altitude information.
  • the posture estimation unit (306b) may presume that the posture estimation unit (306b) is in a prone position when the differential pressure is equal to or less than a predetermined value.
  • the posture estimation unit may estimate whether the animal is in an upright position or a prone position when it is determined that the animal is not in a moving state based on the output information of the acceleration sensor attached to the animal.
  • the animal may be equipped with a receiving unit that acquires position information using satellite information, and the position information may be acquired based on an output signal of the receiving unit.
  • the reference station has a receiving unit that acquires position information using satellite information, and the position information of the reference station may be acquired based on the output signal of the receiving unit.
  • the acquisition unit also acquires temperature information within a predetermined range from the animal, and the acquisition unit also acquires temperature information within a predetermined range. Using the temperature information, the temperature at the position of the animal is estimated, and the temperature is estimated.
  • a temperature estimation unit that estimates the body surface temperature of the animal based on the temperature difference between the estimated temperature and the temperature based on the output signal of the temperature sensor attached to the animal may be further provided.
  • the temperature estimation unit may correct the body surface temperature based on the output signal of the illuminance sensor attached to the animal.
  • the display unit may be further provided with information indicating that the accuracy of the estimated value of the temperature estimation unit may be lowered.
  • the acquisition unit also acquires humidity information within a predetermined range from the animal, and the acquisition unit also acquires humidity information within a predetermined range.
  • the humidity at the position of the animal is estimated using the humidity information, and the humidity is estimated.
  • a sweating estimation unit that estimates the amount of sweating of the animal based on the humidity difference between the estimated humidity and the humidity based on the output signal of the humidity sensor attached to the animal may be further provided.
  • the display unit may be further provided with information indicating that the accuracy of the estimated value of the sweating estimation unit may be lowered.
  • the warm sweat estimation unit may stop the estimation when there is a predetermined amount of rainfall.
  • a management method is provided.
  • a posture estimation step of estimating whether the animal is in an upright state or a prone state according to the differential pressure between the reference pressure and the pressure based on the output signal of the pressure sensor attached to the animal. Is provided with a management program that causes the computer to execute.
  • the schematic diagram which shows one configuration example of the management system 1 in embodiment of this technique The block diagram which shows the structural example of the 1st information acquisition part.
  • the block diagram which shows the structural example of the 2nd information acquisition part A block diagram showing a configuration example of a management device.
  • a block diagram showing a detailed configuration example of the state estimation unit The figure which shows typically the positional relationship between the 1st information acquisition part attached to the target livestock, and a plurality of 2nd information acquisition part in the periphery.
  • the flowchart which shows the processing example of the 1st information acquisition part.
  • the flowchart which shows the processing example of the 2nd information acquisition part The flowchart which shows the processing example of the 2nd information acquisition part.
  • the flowchart which shows the processing example of the standing / prone estimation processing The flowchart which shows the detailed processing example of step S204 of FIG.
  • management device the management method, and the embodiment of the management program will be described with reference to the drawings.
  • the main components of the management device will be mainly described, but the management device may have components and functions not shown or described. The following description does not exclude components or functions not shown or described.
  • FIG. 1 is a schematic diagram showing a configuration example of a management system 1 according to an embodiment of the present technology.
  • the management system 1 includes a plurality of sensors 10, a plurality of reference atmospheric pressure sensors 20, and a management device 30.
  • the satellite 40 is further illustrated.
  • the sensor 10 is attached to the neck, abdomen, etc. of livestock.
  • the sensor 10 acquires information on the condition of the livestock.
  • the sensor 10 transmits, for example, a signal including information for identifying a livestock, information on the current position, information on atmospheric pressure, information on temperature, information on humidity, information on illuminance, and information on acceleration to, for example, the management device 30.
  • the reference atmospheric pressure sensor 20 acquires, for example, information on the environment in the range where livestock are grazing.
  • the reference pressure sensor 20 transmits a signal including information for identifying the reference pressure sensor 20, current position information, atmospheric pressure information, temperature information, humidity information, and illuminance information to the management device 30.
  • the reference barometric pressure sensors 20 are installed at appropriate intervals on the target pasture.
  • the accuracy of the reference air pressure sensor 20 increases as the installation density increases, but on the other hand, the cost of installation work and maintenance increases. Therefore, an appropriate number will be arranged depending on the scale of the grazing land. Since the placement density does not have to be constant, it is possible to densely place where the target animal is likely to be present and to sparsely place where it is not.
  • the reference atmospheric pressure sensor 20 corresponds to the reference station.
  • the management device 30 is a device that identifies and manages the behavior of livestock using signals transmitted from the sensor 10 and the reference atmospheric pressure sensor 20.
  • the management device 30 is, for example, a server.
  • Livestock include, but are not limited to, sheep, goats, cows such as dairy cows and beef cattle, buffaloes, yaks and the like.
  • the management device 30 may be included in a device (cloud server or the like) connected via a network.
  • the livestock according to this embodiment corresponds to animals.
  • the satellite 40 outputs a satellite signal for the sensor 10 and the reference atmospheric pressure sensor 20 to specify the current position.
  • FIG. 2 is a block diagram showing a configuration example of the sensor 10. As shown in FIG. 2, the sensor 10 includes a sensor unit 202, a GNSS receiving unit 204, a communication unit 206, and a control unit 208.
  • the sensor unit 202 measures the atmospheric pressure, acceleration, air temperature, humidity, and illuminance at the position where the sensor 10 is attached to the livestock. That is, the sensor unit 202 includes a pressure sensor 202a, an acceleration sensor 202b, a temperature sensor 202c, a humidity sensor 202d, and an illuminance sensor 202e.
  • the barometric pressure sensor 202a measures the barometric pressure at the height of the collar case, which is the mounting position, for example.
  • the acceleration sensor 202b is, for example, a three-axis acceleration sensor, and can measure gravity, movement, vibration, impact, and the like in a collar at a position where the sensor 10 is attached to a domestic animal.
  • the GNSS receiving unit 204 acquires information on the current position and time by, for example, GNSS (Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • the temperature sensor 202c can measure the temperature of the collar, which is the position where the sensor 10 is attached to the livestock, for example. In this way, the temperature sensor 202c can acquire data on the body surface temperature of livestock, for example.
  • the humidity sensor 202d can measure the humidity of a collar in which the sensor 10 is attached to livestock, for example. In this way, the humidity sensor 202d can acquire data on the body surface humidity of livestock, for example.
  • the illuminance sensor 202e can measure the illuminance of a collar in which the sensor 10 is attached to livestock, for example. In this way, the illuminance sensor 202e can acquire data regarding, for example, sunshine on livestock.
  • the communication unit 206 wirelessly communicates with the management device 30 by wireless communication such as LPWA (Low Power, Wide Area). As a result, the sensor 10 is capable of long-distance, low power consumption communication. Further, the communication unit 206 may directly communicate with the communication unit 208 (see FIG. 3) of the reference atmospheric pressure sensor 20. This makes it possible to determine, for example, how far the communicable reference barometric pressure sensor 20 in the vicinity is from RSSI (radio wave strength) by using wireless communication conforming to Bluetooth (registered trademark). In this case, the communication unit 206 also communicates with the management device 30 information regarding the radio wave intensity with the surrounding reference pressure sensor 20.
  • RSSI radio wave strength
  • the control unit 208 controls the sensor unit 202, the GNSS receiving unit 204, and the communication unit 206.
  • the control unit 208 includes a CPU (Central Processing Unit).
  • the control unit 208 controls the sensor unit 202, the GNSS receiving unit 204, and the communication unit 206, and outputs a signal including information acquired by the sensor unit 202 and the GNSS receiving unit 204 at predetermined time intervals, for example, at intervals of 3 seconds. , Control to communicate with the management device 30 via the communication unit 206.
  • control unit 208 calculates the moving speed in time series, for example, by integrating the output values of the acceleration sensor 202b. As a result, when the moving speed at a certain point in time is equal to or higher than a predetermined value, it is determined that the livestock to be managed has not stopped.
  • the control unit 208 transmits a signal including, for example, information indicating a moving state (stop or movement) of livestock, information indicating a moving speed, information regarding acceleration, and the like to the management device 30 via the communication unit 206.
  • FIG. 3 is a block diagram showing a configuration example of the reference atmospheric pressure sensor 20.
  • the reference atmospheric pressure sensor 20 has the same configuration as the sensor 10, and has a sensor unit 202, a GNSS receiving unit 204, a communication unit 206, and a control unit 208.
  • the sensor unit 202 differs from the sensor 10 in that it does not have the acceleration sensor 202b.
  • the reference atmospheric pressure sensor 20 may also be provided with the acceleration sensor 202b.
  • the acceleration sensor 202b is used to detect that the vehicle has moved from the installed position (for example, it has been tied to a tree but has fallen), and is transmitted to the management device 30 together with the sensor information. Therefore, it is possible to urge the installer to confirm the state of the reference pressure sensor 20.
  • the sensor installation condition information (height from the ground, shade / sun, etc.) according to the installation location is registered in the management standard atmospheric pressure sensor 20 in advance.
  • the reference atmospheric pressure sensor 20 transmits sensor installation condition information to the management device 30 in advance. In this way, the sensor 10 and the reference atmospheric pressure sensor 20 collect information including at least the atmospheric pressure value and the position information in the management device 30 by wireless communication by LPWA or the like.
  • FIG. 4 is a block diagram showing a configuration example of the management device 30.
  • the management device 30 includes a storage unit (database) 300, a data aggregation unit 302, a data collation unit 304, a state estimation unit 306, a data presentation unit 308, and a display unit 310. ..
  • the management device 30 includes a CPU.
  • the storage unit 300 can be realized by using, for example, an auxiliary storage device such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive).
  • the storage unit 300 stores various programs for executing this management operation.
  • the management device 30 constitutes each unit by, for example, executing a program stored in the storage unit 300.
  • the management device 30 stores map information in which each point of the pasture land is associated with the altitude.
  • the storage unit 300 also stores the installation condition information transmitted from the reference atmospheric pressure sensor 20 in association with the identification number of the reference atmospheric pressure sensor 20.
  • the data aggregation unit 302 stores information included in the communication signals transmitted from the sensor 10 and the reference atmospheric pressure sensor 20 in the storage unit 300 in chronological order. That is, the storage unit 300 stores identification information for each sensor 10, acquisition time, position, atmospheric pressure value, acceleration, temperature, humidity, and illuminance. Similarly, the storage unit 300 stores identification information for each reference pressure sensor 20, acquisition time, position, pressure value, acceleration, temperature, humidity, and illuminance.
  • the data collation unit 304 uses the position information and the time information of the target sensor 10 to extract data in the same time zone in the vicinity thereof. That is, the data collation unit 304 acquires information such as position, altitude, barometric pressure value, temperature, and humidity based on the transmission signal from the reference barometric pressure sensor 20 in the vicinity of the target sensor 10, for example, within a radius of 20 meters. ..
  • the data collation unit 304 according to the present embodiment corresponds to the acquisition unit.
  • the state estimation unit 306 compares the value of the data extracted by the data collation unit 304 with the data transmitted from the target sensor 10, and estimates the state (standing / lying down) of the target to which the sensor 10 is attached. Then, it is stored in the storage unit 300. The details of the state estimation unit 306 will be described later.
  • the data presentation unit 308 presents the estimation result in response to the request from the user to the display unit 310.
  • the display unit 310 is, for example, a monitor and displays data supplied from the data presentation unit 308.
  • the data presentation unit 308 according to this embodiment corresponds to the presentation unit.
  • FIG. 5 is a block diagram showing a detailed configuration example of the state estimation unit 306.
  • the state estimation unit 306 has a barometric pressure estimation unit 306a, a posture estimation unit 306b, a temperature estimation unit 306c, and a sweat estimation unit 306d.
  • the atmospheric pressure estimation unit 306a estimates the reference atmospheric pressure at the position of the target livestock by using the atmospheric pressure value of the reference atmospheric pressure sensor 20 in the peripheral portion of the livestock to which the sensor 10 is attached.
  • the atmospheric pressure that serves as a comparative control of the atmospheric pressure based on the output of the atmospheric pressure sensor 202a attached to the livestock is referred to as a reference atmospheric pressure.
  • FIG. 6A is a diagram schematically showing the positional relationship between the sensor 10 attached to the target livestock and the plurality of reference atmospheric pressure sensors 20 in the vicinity.
  • the barometric pressure estimation unit 306a via the data collation unit 304 indicates the position, altitude, barometric pressure value, temperature, and humidity of the reference barometric pressure sensor 20 around the livestock to which the sensor 10 is attached. And acquire information such as illuminance.
  • the reference pressure sensor 20 in the vicinity using, for example, GNSS, it is possible to obtain the altitude, the pressure value, the temperature, the humidity, the illuminance, and the like as the reference information close to the position where the livestock is. ..
  • FIG. 6B is a diagram showing an example of the relationship between the position, altitude, and atmospheric pressure value of the surrounding reference atmospheric pressure sensor 20.
  • the barometric pressure estimation unit 306a uses information on the position, altitude, and barometric pressure value of the surrounding reference barometric pressure sensor 20 and the position information of the livestock to which the sensor 10 is attached to refer to the position of the livestock. Estimate the barometric pressure.
  • the altitude at the position of the first reference pressure sensor 20a is 500 meters
  • the altitude at the position of the livestock is 550 meters
  • the altitude at the position of the second reference pressure sensor 20b is 600 meters. ..
  • the atmospheric pressure estimation unit 306a acquires the elevation information of the sensor 10 and the plurality of reference atmospheric pressure sensors 20a and 20b from the map information.
  • the barometric pressure estimation unit 306a may acquire the installation height and altitude of the reference barometric pressure sensors 20a and 20b from the installation condition information transmitted from the reference barometric pressure sensor 20 stored in the storage unit 300 (see FIG. 4). good.
  • the atmospheric pressure estimation unit 306a acquires the atmospheric pressure of the reference atmospheric pressure sensors 20a and 20b, and estimates the atmospheric pressure corresponding to the installation height of the reference atmospheric pressure sensors 20a and 20b of the sensor 10 by linear approximation. For example, since the atmospheric pressure at an altitude of 500 meters near the sensor 10 is 1024 hectopascals and the atmospheric pressure at an altitude of 600 meters is 1024 hectopascals, the atmospheric pressure estimation unit 306a is, for example, 1024- (600-550) ⁇ (600-500). ) X (1024-1000) estimates that the atmospheric pressure at the installation height at altitude 550 is 1012 hectopascals. When the reference atmospheric pressure sensors 20a and 20b have a large amount of information, the atmospheric pressure estimation unit 306a may estimate the atmospheric pressure of the sensor 10 by regression analysis or the like.
  • the posture estimation unit 306b uses the average value of the atmospheric pressure at the installation height in the place where the livestock with the sensor 10 is attached as the reference pressure. That is, the posture estimation unit 306b uses the average value of the atmospheric pressures at the points corresponding to the sensors 10 estimated by the atmospheric pressure estimation unit 306a in time series as the reference pressure. In this way, the reference pressure can be calculated with higher accuracy even in grazing land with a large difference in atmospheric pressure due to topographical and diurnal changes.
  • the differential pressure between this reference atmospheric pressure and the atmospheric pressure measured by the atmospheric pressure sensor 202a of the sensor 10 is defined as the relative atmospheric pressure.
  • the posture estimation unit 306b estimates whether the livestock to which the sensor 10 is attached is in the lying position or the standing position when the target livestock is estimated to be stopped.
  • the change in the height difference of the neck of livestock is about several tens of centimeters to 1 m
  • the relative atmospheric pressure is, for example, 10 hectopascals.
  • the posture estimation unit 306b estimates that the posture is lying down if it is 10 hectopascals lower than the reference atmospheric pressure, and that it is in the standing posture if it is not.
  • This predetermined value may be set according to the size of livestock and the altitude. In this way, by collating the atmospheric pressure values of a plurality of reference atmospheric pressure sensors 20 installed in a wide rangeland with position information, it is possible to detect minute changes in atmospheric pressure and determine the state of standing or lying down. It becomes.
  • the temperature estimation unit 306c performs an standing / prone estimation process by the posture estimation unit 306b before estimating the body surface temperature, and uses the result for body surface temperature estimation. For example, when the sensor 10 is attached to the abdomen or the like, it may come into contact with the ground when lying down, and may not be able to accurately measure the body surface temperature due to the influence of the ground temperature or the like. Therefore, the temperature estimation unit 306c is affected by the difference in standing / prone posture, and if the body surface temperature cannot be estimated correctly, the data presentation unit 308 (see FIG. 4) and the display unit 310 indicate to that effect. Notify the user via. Further, the temperature estimation unit 306c filters the results that cannot be estimated correctly, and displays the display form showing the data that cannot be estimated correctly via the data presentation unit 308 and the display unit 310.
  • the temperature estimation unit 306c uses the output signal of the temperature sensor 202c for body surface temperature estimation. For example, the temperature estimation unit 306c uses the output value of the illuminance sensor 202e of the sensor 10 to determine whether the temperature value is in the sun or in the shade. Then, the temperature estimation unit 306c filters and uses the temperature information of the reference atmospheric pressure sensor 20 in the vicinity where the conditions match, corrects the influence of the environmental temperature of the sensor 10, and estimates it as the body surface temperature. In this way, by comparing the temperature of the reference pressure sensor 20 with the temperature of the temperature sensor 202c attached to the animal, it is possible to estimate the body surface temperature of the livestock. In addition, it is known that the body surface temperature is useful for livestock estrus detection and health management, and since the influence of environmental temperature can be corrected and the livestock body surface temperature can be estimated with higher accuracy, livestock estrus detection. And health management can be performed more efficiently.
  • the sweating estimation unit 306d determines that the person is sweating if the humidity is higher than the measured humidity of the surrounding reference atmospheric pressure sensor 20, and estimates the amount of sweating from the difference between the values. Further, the sweating estimation unit 306d performs an standing / prone estimation process by the posture estimation unit 306b before estimating the sweating amount, and uses the result for the sweating amount estimation. For example, if the ground is wet after it rains, it may not be possible to estimate an accurate value in the prone position due to the influence of moisture such as a puddle on the ground. If the body surface humidity cannot be estimated correctly due to the influence of the difference in standing / prone posture, the user is notified via the data presentation unit 308 and the display unit 310. Further, the temperature estimation unit 306c filters the results that cannot be estimated correctly, and displays the display form showing the data that cannot be estimated correctly via the data presentation unit 308 and the display unit 310.
  • the sweat estimation unit 306d uses the output value of the humidity sensor 202d in the sweat amount estimation.
  • the sensor 10 refers to the past weather (rainfall) information in the vicinity based on the position information, and estimates whether or not the humidity near the ground is high. Then, when the sweating estimation unit 306d estimates that the humidity near the ground is high, the estimated sweating amount when lying down is estimated to have low reliability. Further, the sweating estimation unit 306d estimates that it is impossible to determine if there is current rainfall (it is impossible to determine whether it is the effect of rain or the effect of sweat). In this case, the sweat estimation unit 306d stops the estimation of the sweat amount.
  • FIG. 7 is a flowchart showing a processing example of the sensor 10. As shown in FIG. 7, the GNSS receiving unit 204 acquires position information and time information from the GNSS (step S100).
  • the sensor unit 202 measures the values of atmospheric pressure, temperature, and humidity (step S102).
  • the control unit 208 integrates the output values of the acceleration sensor 202b and acquires information indicating the moving state (stopped or moved) of the livestock (step S104).
  • the control unit 208 transmits a signal including information on the measurement time, the measurement position, the sensor value (atmospheric pressure, temperature, humidity, illuminance), and the moving state of the livestock via the communication unit 206 (cloud).
  • the sensor 10 may take the form of periodically transmitting such information, or may acquire and transmit information at a designated timing in response to a request from the user.
  • control unit 208 puts each unit into a sleep state until the next transmission, and repeats the process from step S100.
  • FIG. 8 is a flowchart showing a processing example of the reference atmospheric pressure sensor 20. As shown in FIG. 8, it differs from the processing example of the sensor 10 shown in FIG. 7 in that the processing of step S104 is not performed. Further, the control unit 208 transmits a signal including information on the measurement time, the measurement position, the sensor value (atmospheric pressure, temperature, humidity, illuminance), and the sensor installation condition to the cloud via the communication unit 206 (step S106a). In this case, it differs from the processing example of the sensor 10 shown in FIG. 7 in that information on the sensor installation conditions is transmitted.
  • FIG. 9 is a flowchart showing a processing example of the standing / prone estimation process.
  • the data collation unit 304 of the management device 30 uses the position information of the sensor 10 (target mounting sensor) to extract a nearby reference pressure sensor 20 (reference sensor) from the storage unit 300 (database). (Step S200).
  • the data collation unit 304 extracts the sensor value supplied from the extracted reference atmospheric pressure sensor 20 from the storage unit 300 (step S202).
  • the state estimation unit 306 uses the atmospheric pressure value of the reference atmospheric pressure sensor 20 (reference sensor) in the vicinity, the installation height of the reference atmospheric pressure sensor 20 from the ground, and the altitude information to position the sensor 10 (target mounting sensor). Atmospheric pressure is estimated. Then, the state estimation unit 306 compares the estimated atmospheric pressure value with the atmospheric pressure value of the sensor 10 and estimates whether the target livestock is in the standing state or the prone position (step S204).
  • the data presentation unit 308 displays the estimation result on the display unit 310 (step S206), and ends the process (step S206).
  • FIG. 10 is a flowchart showing a detailed processing example of step S204 of FIG.
  • the control unit 208 of the sensor 10 integrates the output values of the acceleration sensor 202b and calculates the moving speed in time series. Then, the sensor 10 transmits a signal including information regarding the movement speed and the behavior estimation based on the acceleration to the management device 30 (step S300).
  • the state estimation unit 306 of the management device 30 determines whether or not an action that is performed only when standing up, for example, walking, is performed by using the information regarding the behavior estimation based on the movement speed and the acceleration (step S302). ).
  • the state estimation unit 306 estimates that the livestock is in a standing state (step S304), and ends the process.
  • the barometric pressure estimation unit 306a of the state estimation unit 306 is used to provide information on the surrounding topography and a reference barometric pressure sensor in the vicinity.
  • the atmospheric pressure value of 20 reference sensor
  • the installation height of the reference pressure sensor 20 from the ground, and the altitude information the atmospheric pressure near the ground surface, which is the installation height, of the position of the sensor 10 (target mounting sensor) is estimated.
  • the barometric pressure estimation unit 306a may adjust the estimated value by referring to the weather information and the topographical information from the Internet as reference values at the time of estimation.
  • the attitude estimation unit 306b of the state estimation unit 306 compares the estimated atmospheric pressure value near the ground surface with the atmospheric pressure value of the sensor 10 (step S308), and determines whether or not the relative atmospheric pressure difference is equal to or greater than the threshold value (step). S310). When the relative atmospheric pressure difference is equal to or greater than the threshold value (Y in step S308), the processing from step S304 is performed.
  • the posture estimation unit 306b estimates that the target livestock is in a prone position (step S312), and ends the process.
  • FIG. 11 is a flowchart showing an example of body surface temperature estimation processing.
  • the temperature estimation unit 306c of the management device 30 estimates the air temperature at the position of the sensor 10 (target mounting sensor) using the temperature value of the reference pressure sensor 20 (reference sensor) in the vicinity. Then, the temperature estimation unit 306c compares the estimated air temperature with the temperature of the sensor 10 and estimates the body surface temperature of the target livestock (step S406). Further, using the output signal of the illuminance sensor 202e of the sensor 10, it is estimated whether or not the sensor 10 is in direct sunlight, and the body surface temperature is determined depending on whether the sensor 10 is in direct sunlight or not. The correction coefficient used for the correction of may be changed.
  • FIG. 12 is a flowchart showing an example of sweating estimation processing.
  • the sweat estimation unit 306d of the management device 30 estimates the humidity at the position of the sensor 10 (target mounting sensor) using the humidity value of the reference pressure sensor 20 (reference sensor) in the vicinity. Then, the temperature estimation unit 306c compares the estimated humidity with the humidity of the sensor 10 and estimates the amount of sweating of the target livestock (step S506). In this case, when the amount of sweating is large, the humidity becomes higher than the humidity estimated based on the surrounding reference atmospheric pressure sensor 20. Therefore, the sweating estimation unit 306d estimates the amount of sweating according to the relative humidity difference.
  • the data collation unit 304 acquires the atmospheric pressure information within a predetermined range from the livestock based on the position information in the livestock to be managed, and the atmospheric pressure estimation unit 306a determines from the livestock. It was decided to estimate the reference pressure at the position of livestock using the pressure information within the range. In this way, since the reference pressure is estimated from the livestock using the pressure information within a predetermined range based on the position information of the livestock, even if the livestock is grazing on a wide rangeland with a height difference, the reference at the position of the livestock. Atmospheric pressure can be estimated with higher accuracy, and deterioration of the detection accuracy of standing and lying down in livestock can be suppressed.
  • An acquisition unit that acquires atmospheric pressure information within a predetermined range from the animal based on the position information in the animal to be managed, and An atmospheric pressure estimation unit that estimates the reference atmospheric pressure at the position of the animal using the atmospheric pressure information, and A posture estimation unit that estimates whether the animal is in an upright state or a prone state according to the differential pressure between the reference pressure and the pressure based on the output signal of the pressure sensor attached to the animal.
  • a management device that acquires atmospheric pressure information within a predetermined range from the animal based on the position information in the animal to be managed, and An atmospheric pressure estimation unit that estimates the reference atmospheric pressure at the position of the animal using the atmospheric pressure information, and A posture estimation unit that estimates whether the animal is in an upright state or a prone state according to the differential pressure between the reference pressure and the pressure based on the output signal of the pressure sensor attached to the animal.
  • the acquisition unit acquires a plurality of barometric pressure information, position information, and altitude information from each of the plurality of reference stations arranged based on the range in which the animal moves.
  • the management device wherein the atmospheric pressure estimation unit estimates the reference pressure using the animal's position information and altitude information and the plurality of atmospheric pressure information, position information, and altitude information.
  • the posture estimation unit estimates whether the animal is in an upright position or a prone position when it is determined that the animal is not in a moving state based on the output information of the acceleration sensor attached to the animal.
  • the management device according to any one of (1) to (3).
  • the acquisition unit also acquires temperature information within a predetermined range from the animal. Using the temperature information, the temperature at the position of the animal is estimated, and the temperature is estimated.
  • the management device according to any one of 6).
  • a presenting unit which causes the display unit to present information indicating that the accuracy of the estimated value of the temperature estimation unit may be lowered when the prone position is estimated.
  • the acquisition unit also acquires humidity information within a predetermined range from the animal.
  • the humidity at the position of the animal is estimated using the humidity information, and the humidity is estimated.
  • (1) to (9) further include a sweating estimation unit that estimates the amount of sweating of the animal based on the humidity difference between the estimated humidity and the humidity based on the output signal of the humidity sensor attached to the animal. ) Is described in any of the management devices.
  • a presenting unit which causes the display unit to present information indicating that the accuracy of the estimated value of the sweating estimation unit may be lowered when the prone position is estimated.
  • a management program that lets your computer run.
  • Management system 10: Sensor, 20: Reference barometric pressure sensor, 30: Management device, 40: Satellite, 202a: Barometric pressure sensor, 202b: Acceleration sensor, 202c: Temperature sensor, 202d: Humidity sensor, 202e: Illuminance sensor, 304 : Data collation unit, 306: State estimation unit, 306a: Atmospheric pressure estimation unit, 306b: Attitude estimation unit, 306c: Temperature estimation unit, 306d: Sweating estimation unit, 308: Data presentation unit, 310: Display unit.

Abstract

[Problem] To provide an imaging device and an imaging method with which an action can be identified with high accuracy even if a reference atmospheric pressure changes due to the position of livestock. [Solution] A management device comprises: an acquisition unit that acquires atmospheric pressure information, within a prescribed range, from an animal to be managed, such acquisition based on position information of the animal; an atmospheric pressure estimation unit that uses the atmospheric pressure information to estimate a reference atmospheric pressure at the position of the animal; and a posture estimation unit that estimates whether the animal is in a standing state or a laying-down state according to a difference between the reference atmospheric pressure and an atmospheric pressure based on an output signal of an atmospheric pressure sensor attached to the animal.

Description

管理装置、管理方法、及び管理プログラムManagement equipment, management methods, and management programs
 本開示は、管理装置、管理方法、及び管理プログラムに関する。 This disclosure relates to management equipment, management methods, and management programs.
 酪農畜産において、ヒツジ、ヤギ、乳牛、肉用牛などの家畜の健康状態は、生産性や繁殖性に影響を与えることが一般に知られている。このため、家畜などに気圧センサなどを取り付け、基準気圧との差により家畜の行動を特定することが行われる。 In dairy farming and livestock, it is generally known that the health condition of livestock such as sheep, goats, dairy cows and beef cattle affects productivity and fertility. Therefore, a barometric pressure sensor or the like is attached to the livestock or the like, and the behavior of the livestock is specified by the difference from the reference pressure.
 ところが、広範囲な放牧地には高低差があり、放牧地内の家畜の位置により基準気圧が変わってしまう。このため、家畜などの行動を特定することが困難となってしまう恐れがある。 However, there is a difference in elevation in a wide range of grazing land, and the reference pressure changes depending on the position of livestock in the grazing land. For this reason, it may be difficult to identify the behavior of livestock and the like.
特開2019-062822号公報Japanese Unexamined Patent Publication No. 2019-626822
 そこで、本開示では、家畜の位置により基準気圧が変わってもより高精度に行動を特定することが可能な管理装置、管理方法、及び管理プログラムを提供するものである。 Therefore, this disclosure provides a management device, a management method, and a management program capable of specifying the behavior with higher accuracy even if the reference atmospheric pressure changes depending on the position of the livestock.
 上記の課題を解決するために、本開示によれば、 管理対象の動物における位置情報に基づき、前記動物から所定範囲内の気圧情報を取得する取得部と、
 前記気圧情報を用いて前記動物の位置における基準気圧を推定する気圧推定部と、
 前記基準気圧と、前記動物に取り付けられた気圧センサの出力信号に基づく気圧と、の差圧に応じて、前記動物が、起立状態であるか伏臥状態であるかを推定する姿勢推定部と、
 を備える、管理装置が提供される。
In order to solve the above-mentioned problems, according to the present disclosure, an acquisition unit that acquires atmospheric pressure information within a predetermined range from the animal based on the position information in the animal to be managed, and an acquisition unit.
An atmospheric pressure estimation unit that estimates the reference atmospheric pressure at the position of the animal using the atmospheric pressure information, and
A posture estimation unit that estimates whether the animal is in an upright state or a prone state according to the differential pressure between the reference pressure and the pressure based on the output signal of the pressure sensor attached to the animal.
A management device is provided.
 前記取得部は、前記動物が移動する範囲に基づき配置された複数の基準局のそれぞれから複数の気圧情報、位置情報、及び標高情報を取得し、
 気圧推定部は、前記動物の位置情報及び標高情報と、前記複数の気圧情報、位置情報、及び標高情報とを用いて、前記基準気圧を推定してもよい。
The acquisition unit acquires a plurality of barometric pressure information, position information, and altitude information from each of the plurality of reference stations arranged based on the range in which the animal moves.
The barometric pressure estimation unit may estimate the reference barometric pressure by using the position information and the altitude information of the animal and the plurality of barometric pressure information, the position information, and the altitude information.
 前記姿勢推定部(306b)は、前記差圧が所定値以下である場合に伏臥状態であると推定してもよい。 The posture estimation unit (306b) may presume that the posture estimation unit (306b) is in a prone position when the differential pressure is equal to or less than a predetermined value.
 前記姿勢推定部は、前記動物に装着された加速度センサの出力情報に基づき、前記動物が移動状態でないと判定される場合に、起立状態であるか伏臥状態であるかを推定してもよい。 The posture estimation unit may estimate whether the animal is in an upright position or a prone position when it is determined that the animal is not in a moving state based on the output information of the acceleration sensor attached to the animal.
 前記動物には、衛星情報を用いて位置情報を取得する受信部が装着され、前記位置情報は、前記受信部の出力信号に基づき取得されてもよい。 The animal may be equipped with a receiving unit that acquires position information using satellite information, and the position information may be acquired based on an output signal of the receiving unit.
 前記基準局は、衛星情報を用いて位置情報を取得する受信部を有し、前記基準局の位置情報は、前記受信部の出力信号に基づき取得されてもよい。 The reference station has a receiving unit that acquires position information using satellite information, and the position information of the reference station may be acquired based on the output signal of the receiving unit.
 前記取得部は、前記動物から所定範囲内の温度情報も取得しており、
 前記温度情報を用いて前記動物の位置における気温を推定し、
 前記推定した気温と、前記動物に取り付けられた温度センサの出力信号に基づく温度と、の温度差に基づき、前記動物の体表温度を推定する温度推定部を、更に備えてもよい。
The acquisition unit also acquires temperature information within a predetermined range from the animal, and the acquisition unit also acquires temperature information within a predetermined range.
Using the temperature information, the temperature at the position of the animal is estimated, and the temperature is estimated.
A temperature estimation unit that estimates the body surface temperature of the animal based on the temperature difference between the estimated temperature and the temperature based on the output signal of the temperature sensor attached to the animal may be further provided.
 前記温度推定部は、前記動物に取り付けられた照度センサの出力信号に基づき、前記体表温度を補正してもよい。 The temperature estimation unit may correct the body surface temperature based on the output signal of the illuminance sensor attached to the animal.
 前記伏臥状態であると推定される場合に、前記温度推定部の推定値の精度が低下している可能性があることを示す情報を表示部に提示させる提示部を、更に備えてもよい。 When it is estimated that the patient is in the prone position, the display unit may be further provided with information indicating that the accuracy of the estimated value of the temperature estimation unit may be lowered.
 前記取得部は、前記動物から所定範囲内の湿度情報も取得しており、
 前記湿度情報を用いて前記動物の位置における湿度を推定し、
 前記推定した湿度と、前記動物に取り付けられた湿度センサの出力信号に基づく湿度と、の湿度差に基づき、前記動物の発汗量を推定する発汗推定部を、更に備えてもよい。
The acquisition unit also acquires humidity information within a predetermined range from the animal, and the acquisition unit also acquires humidity information within a predetermined range.
The humidity at the position of the animal is estimated using the humidity information, and the humidity is estimated.
A sweating estimation unit that estimates the amount of sweating of the animal based on the humidity difference between the estimated humidity and the humidity based on the output signal of the humidity sensor attached to the animal may be further provided.
 前記伏臥状態であると推定される場合に、前記発汗推定部の推定値の精度が低下している可能性があることを示す情報を表示部に提示させる提示部を、更に備えてもよい。 In the case of being presumed to be in the prone position, the display unit may be further provided with information indicating that the accuracy of the estimated value of the sweating estimation unit may be lowered.
 前記温発汗推定部は、所定の降雨量がある場合に、推定を停止してもよい。 The warm sweat estimation unit may stop the estimation when there is a predetermined amount of rainfall.
 本開示によれば、管理対象の動物における位置情報に基づき、前記動物から所定範囲内の気圧情報を取得する取得工程と、
 前記気圧情報を用いて前記動物の位置における基準気圧を推定する気圧推定工程と、
 前記基準気圧と、前記動物に取り付けられた気圧センサの出力信号に基づく気圧と、の差圧に応じて、前記動物が、起立状態であるか伏臥状態であるかを推定する姿勢推定工程と、
 を備える、管理方法が提供される。
According to the present disclosure, an acquisition step of acquiring atmospheric pressure information within a predetermined range from the animal based on the position information in the animal to be managed, and the acquisition step.
A barometric pressure estimation step for estimating the reference barometric pressure at the position of the animal using the barometric pressure information, and
A posture estimation step of estimating whether the animal is in an upright state or a prone state according to the differential pressure between the reference pressure and the pressure based on the output signal of the pressure sensor attached to the animal.
A management method is provided.
 本開示によれば、管理対象の動物における位置情報に基づき、前記動物から所定範囲内の気圧情報を取得する取得工程と、
 前記気圧情報を用いて前記動物の位置における基準気圧を推定する気圧推定工程と、
 前記基準気圧と、前記動物に取り付けられた気圧センサの出力信号に基づく気圧と、の差圧に応じて、前記動物が、起立状態であるか伏臥状態であるかを推定する姿勢推定工程と、
 をコンピュータに実行させる管理プログラムが提供される。
According to the present disclosure, an acquisition step of acquiring atmospheric pressure information within a predetermined range from the animal based on the position information in the animal to be managed, and the acquisition step.
A barometric pressure estimation step for estimating the reference barometric pressure at the position of the animal using the barometric pressure information, and
A posture estimation step of estimating whether the animal is in an upright state or a prone state according to the differential pressure between the reference pressure and the pressure based on the output signal of the pressure sensor attached to the animal.
Is provided with a management program that causes the computer to execute.
本技術の実施の形態における管理システム1の一構成例を示す模式図。The schematic diagram which shows one configuration example of the management system 1 in embodiment of this technique. 第1情報取得部の構成例を示すブロック図。The block diagram which shows the structural example of the 1st information acquisition part. 第2情報取得部の構成例を示すブロック図。The block diagram which shows the structural example of the 2nd information acquisition part. 管理装置の構成例を示すブロック図。A block diagram showing a configuration example of a management device. 状態推定部の詳細な構成例を示すブロック図。A block diagram showing a detailed configuration example of the state estimation unit. 対象となる家畜に取り付けられた第1情報取得部と、周辺における複数の第2情報取得部の位置関係を模式的に示す図。The figure which shows typically the positional relationship between the 1st information acquisition part attached to the target livestock, and a plurality of 2nd information acquisition part in the periphery. 周辺の基準気圧センサ20の位置、標高、気圧値の関係例を示す図。The figure which shows the relationship example of the position, the altitude, and the atmospheric pressure value of the reference atmospheric pressure sensor 20 in the periphery. 第1情報取得部の処理例を示すフローチャート。The flowchart which shows the processing example of the 1st information acquisition part. 第2情報取得部の処理例を示すフローチャート。The flowchart which shows the processing example of the 2nd information acquisition part. 起立/伏臥推定処理の処理例を示すフローチャート。The flowchart which shows the processing example of the standing / prone estimation processing. 図9のステップS204の詳細処理例を示すフローチャート。The flowchart which shows the detailed processing example of step S204 of FIG. 体表面温度の推定処理例を示すフローチャート。The flowchart which shows the estimation processing example of a body surface temperature. 発汗推定処理例を示すフローチャート。The flowchart which shows the sweating estimation processing example.
 以下、図面を参照して、管理装置、管理方法、及び管理プログラムの実施形態について説明する。以下では、、管理装置の主要な構成部分を中心に説明するが、管理装置には、図示又は説明されていない構成部分や機能が存在しうる。以下の説明は、図示又は説明されていない構成部分や機能を除外するものではない。 Hereinafter, the management device, the management method, and the embodiment of the management program will be described with reference to the drawings. In the following, the main components of the management device will be mainly described, but the management device may have components and functions not shown or described. The following description does not exclude components or functions not shown or described.
(第1実施形態)
 図1は、本技術の実施の形態における管理システム1の一構成例を示す模式図である。この管理システム1は、複数のセンサ10と、複数の基準気圧センサ20と、管理装置30とを備える。図1では、更に衛星40が図示されている。
(First Embodiment)
FIG. 1 is a schematic diagram showing a configuration example of a management system 1 according to an embodiment of the present technology. The management system 1 includes a plurality of sensors 10, a plurality of reference atmospheric pressure sensors 20, and a management device 30. In FIG. 1, the satellite 40 is further illustrated.
 センサ10は、家畜の首部、腹部などに装着される。センサ10は、家畜の状態に関する情報を取得する。センサ10は、例えば家畜を識別する情報、現在位置の情報、気圧の情報、温度の情報、湿度の情報、照度の情報及び加速度情報を含む信号を、例えば管理装置30に送信する。 The sensor 10 is attached to the neck, abdomen, etc. of livestock. The sensor 10 acquires information on the condition of the livestock. The sensor 10 transmits, for example, a signal including information for identifying a livestock, information on the current position, information on atmospheric pressure, information on temperature, information on humidity, information on illuminance, and information on acceleration to, for example, the management device 30.
 基準気圧センサ20は、例えば家畜の放牧される範囲の環境に関する情報を取得する。基準気圧センサ20は、基準気圧センサ20を識別する情報、現在位置の情報、気圧の情報、温度の情報、湿度の情報、及び照度の情報を含む信号を管理装置30に送信する。基準気圧センサ20は、対象とする放牧地に適当な間隔で設置される。基準気圧センサ20は、設置密度を上げるほど精度が上がるが、一方で設置作業やメンテナンスのコストが増大する。このため、放牧地の規模などにより適切な数配置される。配置する密度は一定である必要はないので、対象動物が存在する可能が高い場所を密に、そうでない場所を疎にすることも可能である。なお、本実施形態に係る基準気圧センサ20が基準局に対応する。 The reference atmospheric pressure sensor 20 acquires, for example, information on the environment in the range where livestock are grazing. The reference pressure sensor 20 transmits a signal including information for identifying the reference pressure sensor 20, current position information, atmospheric pressure information, temperature information, humidity information, and illuminance information to the management device 30. The reference barometric pressure sensors 20 are installed at appropriate intervals on the target pasture. The accuracy of the reference air pressure sensor 20 increases as the installation density increases, but on the other hand, the cost of installation work and maintenance increases. Therefore, an appropriate number will be arranged depending on the scale of the grazing land. Since the placement density does not have to be constant, it is possible to densely place where the target animal is likely to be present and to sparsely place where it is not. The reference atmospheric pressure sensor 20 according to this embodiment corresponds to the reference station.
 管理装置30は、センサ10、及び基準気圧センサ20から送信された信号を用いて、家畜の行動を特定し、管理する装置である。管理装置30は、例えばサーバである。家畜は、例えばヒツジ、ヤギ、乳牛や肉用牛などの牛、水牛、ヤクなどであるが、これに限定されない。なお、管理装置30は、ネットワークを介して接続される装置(クラウドサーバ等)が有してもよい。また、本実施形態に係る家畜が動物に対応する。 The management device 30 is a device that identifies and manages the behavior of livestock using signals transmitted from the sensor 10 and the reference atmospheric pressure sensor 20. The management device 30 is, for example, a server. Livestock include, but are not limited to, sheep, goats, cows such as dairy cows and beef cattle, buffaloes, yaks and the like. The management device 30 may be included in a device (cloud server or the like) connected via a network. In addition, the livestock according to this embodiment corresponds to animals.
 衛星40は、センサ10及び基準気圧センサ20が現在位置を特定するための衛星信号を出力する。 The satellite 40 outputs a satellite signal for the sensor 10 and the reference atmospheric pressure sensor 20 to specify the current position.
 図2は、センサ10の構成例を示すブロック図である。図2に示すように、センサ10は、センサ部202と、GNSS受信部204と、通信部206と、制御部208と、を有する。 FIG. 2 is a block diagram showing a configuration example of the sensor 10. As shown in FIG. 2, the sensor 10 includes a sensor unit 202, a GNSS receiving unit 204, a communication unit 206, and a control unit 208.
 センサ部202は、センサ10を家畜に装着した位置の気圧と、加速度、気温、湿度及び照度を測定する。すなわち、センサ部202は、気圧センサ202aと、加速度センサ202bと、温度センサ202cと、湿度センサ202dと、照度センサ202eとを有する。気圧センサ202aは、例えば装着位置である首輪ケースの高さにおける気圧を計測する。 The sensor unit 202 measures the atmospheric pressure, acceleration, air temperature, humidity, and illuminance at the position where the sensor 10 is attached to the livestock. That is, the sensor unit 202 includes a pressure sensor 202a, an acceleration sensor 202b, a temperature sensor 202c, a humidity sensor 202d, and an illuminance sensor 202e. The barometric pressure sensor 202a measures the barometric pressure at the height of the collar case, which is the mounting position, for example.
 加速度センサ202bは、例えば3軸の加速度センサであり、センサ10を家畜に装着した位置である首輪における、重力、動き、振動、衝撃などを測定可能である。
 GNSS受信部204は、例えばGNSS(全球測位衛星システム:Global Navigation Satellite System)により現在位置及び時刻の情報を取得している。なお、本実施形態に係るGNSS受信部204が受信部に対応する。
The acceleration sensor 202b is, for example, a three-axis acceleration sensor, and can measure gravity, movement, vibration, impact, and the like in a collar at a position where the sensor 10 is attached to a domestic animal.
The GNSS receiving unit 204 acquires information on the current position and time by, for example, GNSS (Global Navigation Satellite System). The GNSS receiving unit 204 according to this embodiment corresponds to the receiving unit.
 温度センサ202cは、例えばセンサ10を家畜に装着した位置である首輪における温度を測定可能である。このように、温度センサ202cは、例えば家畜の体表面温度に関するデータを取得可能である。 The temperature sensor 202c can measure the temperature of the collar, which is the position where the sensor 10 is attached to the livestock, for example. In this way, the temperature sensor 202c can acquire data on the body surface temperature of livestock, for example.
 湿度センサ202dは、例えばセンサ10を家畜に装着した首輪における湿度を測定可能である。このように、湿度センサ202dは、例えば家畜の体表面湿度に関するデータを取得可能である。 The humidity sensor 202d can measure the humidity of a collar in which the sensor 10 is attached to livestock, for example. In this way, the humidity sensor 202d can acquire data on the body surface humidity of livestock, for example.
 照度センサ202eは、例えばセンサ10を家畜に装着した首輪における照度を測定可能である。このように、照度センサ202eは、例えば家畜への日照に関するデータを取得可能である。 The illuminance sensor 202e can measure the illuminance of a collar in which the sensor 10 is attached to livestock, for example. In this way, the illuminance sensor 202e can acquire data regarding, for example, sunshine on livestock.
 通信部206は、例えばLPWA(Low Power, Wide Area)などの無線通信により管理装置30と無線通信する。これにより、センサ10は、長距離、低消費電力の通信が可能である。また、通信部206は、基準気圧センサ20の通信部208(図3参照)と直接通信を行ってもよい。これにより、例えばBluetooth(登録商標)に準拠する無線通信を用いればRSSI(電波強度)から周辺の通信可能な基準気圧センサ20がどの程度の距離離れているのかを判断することも可能となる。この場合、通信部206は、周辺の基準気圧センサ20との間の電波強度に関する情報も管理装置30に通信する。 The communication unit 206 wirelessly communicates with the management device 30 by wireless communication such as LPWA (Low Power, Wide Area). As a result, the sensor 10 is capable of long-distance, low power consumption communication. Further, the communication unit 206 may directly communicate with the communication unit 208 (see FIG. 3) of the reference atmospheric pressure sensor 20. This makes it possible to determine, for example, how far the communicable reference barometric pressure sensor 20 in the vicinity is from RSSI (radio wave strength) by using wireless communication conforming to Bluetooth (registered trademark). In this case, the communication unit 206 also communicates with the management device 30 information regarding the radio wave intensity with the surrounding reference pressure sensor 20.
 制御部208は、センサ部202、GNSS受信部204、及び通信部206を制御する。例えば、制御部208は、CPU(Central Processing Unit)を含んで構成される。制御部208は、センサ部202、GNSS受信部204、及び通信部206を制御し、所定の時間間隔、例えば3秒間隔で、センサ部202、及びGNSS受信部204が取得した情報を含む信号を、通信部206を介して管理装置30に通信させる制御を行う。 The control unit 208 controls the sensor unit 202, the GNSS receiving unit 204, and the communication unit 206. For example, the control unit 208 includes a CPU (Central Processing Unit). The control unit 208 controls the sensor unit 202, the GNSS receiving unit 204, and the communication unit 206, and outputs a signal including information acquired by the sensor unit 202 and the GNSS receiving unit 204 at predetermined time intervals, for example, at intervals of 3 seconds. , Control to communicate with the management device 30 via the communication unit 206.
 また、制御部208は、例えば加速度センサ202bの出力値を積算することにとり、移動速度を時系列に演算する。これにより、ある時点での移動速度が所定値以上である場合に、管理対象となる家畜は、停止していないと判定する。制御部208は、通信部206を介して、例えば家畜の移動状態(停止又は移動)を示す情報、移動速度を示す情報、及び加速度に関する情報などを含む信号を、管理装置30に送信する。 Further, the control unit 208 calculates the moving speed in time series, for example, by integrating the output values of the acceleration sensor 202b. As a result, when the moving speed at a certain point in time is equal to or higher than a predetermined value, it is determined that the livestock to be managed has not stopped. The control unit 208 transmits a signal including, for example, information indicating a moving state (stop or movement) of livestock, information indicating a moving speed, information regarding acceleration, and the like to the management device 30 via the communication unit 206.
 図3は、基準気圧センサ20の構成例を示すブロック図である。図3に示すように、基準気圧センサ20は、センサ10と同等の構成であり、センサ部202と、GNSS受信部204と、通信部206と、制御部208と、を有する。センサ部202が、加速度センサ202bを有さない点で、センサ10と相違する。なお、基準気圧センサ20にも加速度センサ202bを備えてもよい。この場合には、加速度センサ202bを用いて、設置していた位置から移動した(例えば木に括り付けていたが落下してしまったなど)ことを検知し、センサ情報とともに管理装置30へ送信して、設置者に基準気圧センサ20の状態の確認を促すことも可能となる。 FIG. 3 is a block diagram showing a configuration example of the reference atmospheric pressure sensor 20. As shown in FIG. 3, the reference atmospheric pressure sensor 20 has the same configuration as the sensor 10, and has a sensor unit 202, a GNSS receiving unit 204, a communication unit 206, and a control unit 208. The sensor unit 202 differs from the sensor 10 in that it does not have the acceleration sensor 202b. The reference atmospheric pressure sensor 20 may also be provided with the acceleration sensor 202b. In this case, the acceleration sensor 202b is used to detect that the vehicle has moved from the installed position (for example, it has been tied to a tree but has fallen), and is transmitted to the management device 30 together with the sensor information. Therefore, it is possible to urge the installer to confirm the state of the reference pressure sensor 20.
 管理基準気圧センサ20には設置時にあらかじめ設置場所に合わせたセンサ設置条件情報(地上からの高さ、日陰/日向、など)を登録する。基準気圧センサ20は、センサ設置条件情報を予め管理装置30に送信する。このように、センサ10、及び基準気圧センサ20は、少なくとも気圧値と位置情報を含む情報をLPWAなどによる無線通信で管理装置30に集約する。 At the time of installation, the sensor installation condition information (height from the ground, shade / sun, etc.) according to the installation location is registered in the management standard atmospheric pressure sensor 20 in advance. The reference atmospheric pressure sensor 20 transmits sensor installation condition information to the management device 30 in advance. In this way, the sensor 10 and the reference atmospheric pressure sensor 20 collect information including at least the atmospheric pressure value and the position information in the management device 30 by wireless communication by LPWA or the like.
 図4は、管理装置30の構成例を示すブロック図である。図4に示すように、管理装置30は、記憶部(データベース)300と、データ集約部302と、データ照合部304と、状態推定部306と、データ提示部308と、表示部310とを有する。管理装置30は、CPUを含んで構成される。 FIG. 4 is a block diagram showing a configuration example of the management device 30. As shown in FIG. 4, the management device 30 includes a storage unit (database) 300, a data aggregation unit 302, a data collation unit 304, a state estimation unit 306, a data presentation unit 308, and a display unit 310. .. The management device 30 includes a CPU.
 記憶部300は、例えばHDD(Hard Disk Drive)やSSD(Solid State Drive)等の補助記憶装置等を用いて実現可能である。記憶部300は、この管理動作を実行するための各種のプログラムを記憶している。これにより、管理装置30は、例えば記憶部300に記憶されるプログラムを実行することにより、各部を構成する。また、管理装置30は、放牧地の各地点と標高とを関連づけた地図情報を記憶している。また、記憶部300は、基準気圧センサ20から送信された設置条件情報も、基準気圧センサ20の識別番号に関連づけて記憶している。 The storage unit 300 can be realized by using, for example, an auxiliary storage device such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive). The storage unit 300 stores various programs for executing this management operation. As a result, the management device 30 constitutes each unit by, for example, executing a program stored in the storage unit 300. Further, the management device 30 stores map information in which each point of the pasture land is associated with the altitude. Further, the storage unit 300 also stores the installation condition information transmitted from the reference atmospheric pressure sensor 20 in association with the identification number of the reference atmospheric pressure sensor 20.
 データ集約部302は、センサ10、及び基準気圧センサ20から送信される通信信号に含まれる情報を時系列に、記憶部300に記憶する。すなわち、記憶部300には、センサ10毎の識別情報、取得時刻、位置、気圧値、加速度、温度、湿度及び照度に関する情報が記憶される。同様に、記憶部300には、基準気圧センサ20毎の識別情報、取得時刻、位置、気圧値、加速度、温度、湿度及び照度に関する情報が記憶される。 The data aggregation unit 302 stores information included in the communication signals transmitted from the sensor 10 and the reference atmospheric pressure sensor 20 in the storage unit 300 in chronological order. That is, the storage unit 300 stores identification information for each sensor 10, acquisition time, position, atmospheric pressure value, acceleration, temperature, humidity, and illuminance. Similarly, the storage unit 300 stores identification information for each reference pressure sensor 20, acquisition time, position, pressure value, acceleration, temperature, humidity, and illuminance.
 データ照合部304は、対象となるセンサ10の位置情報、及び時刻情報を用いて、その近傍の同時間帯のデータを抽出する。すなわち、データ照合部304は、対象となるセンサ10の近傍、例えば半径20メートル内における基準気圧センサ20からの送信信号に基づく、位置、標高、気圧値、温度、及び湿度等の情報を取得する。なお、本実施形態に係るデータ照合部304が取得部に対応する。 The data collation unit 304 uses the position information and the time information of the target sensor 10 to extract data in the same time zone in the vicinity thereof. That is, the data collation unit 304 acquires information such as position, altitude, barometric pressure value, temperature, and humidity based on the transmission signal from the reference barometric pressure sensor 20 in the vicinity of the target sensor 10, for example, within a radius of 20 meters. .. The data collation unit 304 according to the present embodiment corresponds to the acquisition unit.
 状態推定部306は、データ照合部304により抽出されたデータの値と、対象となるセンサ10から送信されたデータとを比較し、センサ10が取り付けられた対象の状態(起立/伏臥)を推定し、記憶部300へ保存する。状態推定部306の詳細は、後述する。 The state estimation unit 306 compares the value of the data extracted by the data collation unit 304 with the data transmitted from the target sensor 10, and estimates the state (standing / lying down) of the target to which the sensor 10 is attached. Then, it is stored in the storage unit 300. The details of the state estimation unit 306 will be described later.
 データ提示部308は、ユーザからの要求に応じて推定した結果を表示部310に提示する。
 表示部310は、例えばモニタであり、データ提示部308から供給されるデータを表示する。なお、本実施形態に係るデータ提示部308が提示部に対応する。
The data presentation unit 308 presents the estimation result in response to the request from the user to the display unit 310.
The display unit 310 is, for example, a monitor and displays data supplied from the data presentation unit 308. The data presentation unit 308 according to this embodiment corresponds to the presentation unit.
 図5は、状態推定部306の詳細な構成例を示すブロック図である。図5に示すように、状態推定部306は、気圧推定部306aと、姿勢推定部306bと、温度推定部306cと、発汗推定部306dとを有する。 FIG. 5 is a block diagram showing a detailed configuration example of the state estimation unit 306. As shown in FIG. 5, the state estimation unit 306 has a barometric pressure estimation unit 306a, a posture estimation unit 306b, a temperature estimation unit 306c, and a sweat estimation unit 306d.
 気圧推定部306aは、センサ10が取り付けられた家畜の周辺部における基準気圧センサ20の気圧値を用いて、対象となる家畜の位置における基準気圧を推定する。なお、本実施形態では、家畜に取り付けられた気圧センサ202aの出力に基づく気圧の比較対照となる気圧を基準気圧と称する。 The atmospheric pressure estimation unit 306a estimates the reference atmospheric pressure at the position of the target livestock by using the atmospheric pressure value of the reference atmospheric pressure sensor 20 in the peripheral portion of the livestock to which the sensor 10 is attached. In this embodiment, the atmospheric pressure that serves as a comparative control of the atmospheric pressure based on the output of the atmospheric pressure sensor 202a attached to the livestock is referred to as a reference atmospheric pressure.
 図6Aは、対象となる家畜に取り付けられたセンサ10と、周辺における複数の基準気圧センサ20の位置関係を模式的に示す図である。図6Aに示すように、気圧推定部306aは、データ照合部304(図4参照)を介して、センサ10を取り付けた家畜の周辺における基準気圧センサ20の位置、標高、気圧値、温度、湿度及び照度等の情報を取得する。このように、例えばGNSSを使用して周辺の基準気圧センサ20を参照することにより、家畜の居る位置に近い基準情報として、標高、気圧値、温度、湿度及び照度等を得ることが可能となる。 FIG. 6A is a diagram schematically showing the positional relationship between the sensor 10 attached to the target livestock and the plurality of reference atmospheric pressure sensors 20 in the vicinity. As shown in FIG. 6A, the barometric pressure estimation unit 306a via the data collation unit 304 (see FIG. 4) indicates the position, altitude, barometric pressure value, temperature, and humidity of the reference barometric pressure sensor 20 around the livestock to which the sensor 10 is attached. And acquire information such as illuminance. In this way, by referring to the reference pressure sensor 20 in the vicinity using, for example, GNSS, it is possible to obtain the altitude, the pressure value, the temperature, the humidity, the illuminance, and the like as the reference information close to the position where the livestock is. ..
 図6Bは、周辺の基準気圧センサ20の位置、標高、気圧値の関係例を示す図である。図6Bに示すように、気圧推定部306aは、周辺の基準気圧センサ20の位置、標高、及び気圧値の情報と、センサ10が装着された家畜の位置情報を用いて、家畜の位置における基準気圧を推定する。例えば、図6Bでは、1番目の基準気圧センサ20aの位置における標高が500メートルであり、家畜の位置における標高が550メートルであり、2番目の基準気圧センサ20bの位置における標高が600メートルである。 FIG. 6B is a diagram showing an example of the relationship between the position, altitude, and atmospheric pressure value of the surrounding reference atmospheric pressure sensor 20. As shown in FIG. 6B, the barometric pressure estimation unit 306a uses information on the position, altitude, and barometric pressure value of the surrounding reference barometric pressure sensor 20 and the position information of the livestock to which the sensor 10 is attached to refer to the position of the livestock. Estimate the barometric pressure. For example, in FIG. 6B, the altitude at the position of the first reference pressure sensor 20a is 500 meters, the altitude at the position of the livestock is 550 meters, and the altitude at the position of the second reference pressure sensor 20b is 600 meters. ..
 気圧推定部306aは、図6Bに示すように地図情報により、センサ10、及び複数の基準気圧センサ20a、20bの標高情報を取得する。或いは、気圧推定部306aは、記憶部300(図4参照)に記憶される基準気圧センサ20から送信された設置条件情報により、基準気圧センサ20a、20bの設置高さ及び標高を取得してもよい。 As shown in FIG. 6B, the atmospheric pressure estimation unit 306a acquires the elevation information of the sensor 10 and the plurality of reference atmospheric pressure sensors 20a and 20b from the map information. Alternatively, the barometric pressure estimation unit 306a may acquire the installation height and altitude of the reference barometric pressure sensors 20a and 20b from the installation condition information transmitted from the reference barometric pressure sensor 20 stored in the storage unit 300 (see FIG. 4). good.
 そして、気圧推定部306aは、基準気圧センサ20a、20bの気圧を取得し、線形近似によりセンサ10の基準気圧センサ20a、20bの設置高さに対応する気圧を推定する。例えば、センサ10の近傍である標高500メートルの気圧が1024ヘクトパスカルであり、標高600メートルの気圧が1024ヘクトパスカルであるので、気圧推定部306aは、例えば1024-(600-550)÷(600-500)×(1024-1000)の線形演算により標高550における設置高さの気圧を1012ヘクトパスカルであると推定する。気圧推定部306aは、基準気圧センサ20a、20bの情報が多数ある場合には、回帰分析などによりセンサ10の気圧を推定してもよい。 Then, the atmospheric pressure estimation unit 306a acquires the atmospheric pressure of the reference atmospheric pressure sensors 20a and 20b, and estimates the atmospheric pressure corresponding to the installation height of the reference atmospheric pressure sensors 20a and 20b of the sensor 10 by linear approximation. For example, since the atmospheric pressure at an altitude of 500 meters near the sensor 10 is 1024 hectopascals and the atmospheric pressure at an altitude of 600 meters is 1024 hectopascals, the atmospheric pressure estimation unit 306a is, for example, 1024- (600-550) ÷ (600-500). ) X (1024-1000) estimates that the atmospheric pressure at the installation height at altitude 550 is 1012 hectopascals. When the reference atmospheric pressure sensors 20a and 20b have a large amount of information, the atmospheric pressure estimation unit 306a may estimate the atmospheric pressure of the sensor 10 by regression analysis or the like.
 姿勢推定部306bは、センサ10を取り付けた家畜がいる場所における設置高さの気圧の平均値を基準気圧とする。すなわち、姿勢推定部306bは、気圧推定部306aが時系列に推定したセンサ10に対応する地点の気圧の平均値を基準気圧とする。このように、地形・日変化による気圧変化が大きいな高低差のある放牧地においても、基準気圧をより高精度に演算可能となる。 The posture estimation unit 306b uses the average value of the atmospheric pressure at the installation height in the place where the livestock with the sensor 10 is attached as the reference pressure. That is, the posture estimation unit 306b uses the average value of the atmospheric pressures at the points corresponding to the sensors 10 estimated by the atmospheric pressure estimation unit 306a in time series as the reference pressure. In this way, the reference pressure can be calculated with higher accuracy even in grazing land with a large difference in atmospheric pressure due to topographical and diurnal changes.
 この基準気圧と、センサ10の気圧センサ202aによる計測気圧との差圧を相対気圧とする。この相対気圧が高いか、低いかによりセンサ10を取り付けた家畜が横臥姿勢であるか、立位姿勢であるかを推定する。なお、姿勢推定部306bは、対象となる家畜が停止中であると推定される場合に、センサ10を取り付けた家畜が横臥姿勢であるか、立位姿勢であるかを推定する。例えば、家畜の首元の高低差の変化は数十センチ~1m程度であり、相対気圧として例えば10ヘクトパスカルとなる。すなわち、姿勢推定部306bは、基準気圧よりも所定値である10ヘクトパスカル低ければ、横臥姿勢であると推定し、それ以外である場合を立位姿勢であると推定する。この所定値は、家畜の大きさや、標高に応じて設定してもよい。このように、広範な放牧地に設置した複数の基準気圧センサ20の気圧値を位置情報で照合することにより、気圧の微小な変化を検知して起立・伏臥の状態の判別を行うことが可能となる。 The differential pressure between this reference atmospheric pressure and the atmospheric pressure measured by the atmospheric pressure sensor 202a of the sensor 10 is defined as the relative atmospheric pressure. Depending on whether the relative air pressure is high or low, it is estimated whether the livestock to which the sensor 10 is attached is in the lying posture or the standing posture. The posture estimation unit 306b estimates whether the livestock to which the sensor 10 is attached is in the lying position or the standing position when the target livestock is estimated to be stopped. For example, the change in the height difference of the neck of livestock is about several tens of centimeters to 1 m, and the relative atmospheric pressure is, for example, 10 hectopascals. That is, the posture estimation unit 306b estimates that the posture is lying down if it is 10 hectopascals lower than the reference atmospheric pressure, and that it is in the standing posture if it is not. This predetermined value may be set according to the size of livestock and the altitude. In this way, by collating the atmospheric pressure values of a plurality of reference atmospheric pressure sensors 20 installed in a wide rangeland with position information, it is possible to detect minute changes in atmospheric pressure and determine the state of standing or lying down. It becomes.
 温度推定部306cは、体表面温度の推定の前に、姿勢推定部306bによる起立/伏臥推定処理を実施し、その結果を体表面温度推定に利用する。例えば、センサ10を腹部などに装着している場合、伏臥時に地面に接することがあり、地面温度などの影響を受け、正しく体表面温度を計測できない可能性がある。そこで、温度推定部306cは、起立/伏臥の姿勢の違いによる影響があり、体表面温度が正しく推定できていない場合には、その旨をデータ提示部308(図4参照)及び表示部310を介してユーザに通知する。また、温度推定部306cは、正しく推定できていない結果をフィルタリングし、正しく推定できていないデータを示す表示形態を、データ提示部308及び表示部310を介して表示させる。 The temperature estimation unit 306c performs an standing / prone estimation process by the posture estimation unit 306b before estimating the body surface temperature, and uses the result for body surface temperature estimation. For example, when the sensor 10 is attached to the abdomen or the like, it may come into contact with the ground when lying down, and may not be able to accurately measure the body surface temperature due to the influence of the ground temperature or the like. Therefore, the temperature estimation unit 306c is affected by the difference in standing / prone posture, and if the body surface temperature cannot be estimated correctly, the data presentation unit 308 (see FIG. 4) and the display unit 310 indicate to that effect. Notify the user via. Further, the temperature estimation unit 306c filters the results that cannot be estimated correctly, and displays the display form showing the data that cannot be estimated correctly via the data presentation unit 308 and the display unit 310.
 温度推定部306cは、体表面温度推定に温度センサ202cの出力信号を使用する。例えば、温度推定部306cは、センサ10の照度センサ202eの出力値を用いて、温度値が日向のものなのか、日陰のものなのかを判定する。そして、温度推定部306cは、条件が一致する近傍の基準気圧センサ20の温度情報をフィルタしリングして利用し、センサ10の環境温度の影響を補正し、体表面温度として推定する。このように、基準気圧センサ20における温度と動物に取り付けられている温度センサ202cにおける温度を比較することにより、家畜の体表面温度を推定することが可能となる。また、体表面温度は家畜の発情検知や健康管理に有用であることが知られており、環境温度の影響を補正し、家畜の体表面温度をより高精度に推定できるため、家畜の発情検知や健康管理をより効率的に行うことができる。 The temperature estimation unit 306c uses the output signal of the temperature sensor 202c for body surface temperature estimation. For example, the temperature estimation unit 306c uses the output value of the illuminance sensor 202e of the sensor 10 to determine whether the temperature value is in the sun or in the shade. Then, the temperature estimation unit 306c filters and uses the temperature information of the reference atmospheric pressure sensor 20 in the vicinity where the conditions match, corrects the influence of the environmental temperature of the sensor 10, and estimates it as the body surface temperature. In this way, by comparing the temperature of the reference pressure sensor 20 with the temperature of the temperature sensor 202c attached to the animal, it is possible to estimate the body surface temperature of the livestock. In addition, it is known that the body surface temperature is useful for livestock estrus detection and health management, and since the influence of environmental temperature can be corrected and the livestock body surface temperature can be estimated with higher accuracy, livestock estrus detection. And health management can be performed more efficiently.
 発汗推定部306dは、周囲の基準気圧センサ20の測定湿度と比べて湿度が高ければ汗をかいていると判断し、その値の差から発汗量を推定する。また、発汗推定部306dは、発汗量の推定の前に姿勢推定部306bによる起立/伏臥推定処理を実施し、その結果を発汗量推定に利用する。例えば、雨が降った後で地面が濡れている場合、伏臥状態では地面の水たまりなどの湿気の影響を受けて正確な値を推定することができない可能性がある。起立/伏臥の姿勢の違いによる影響があり体表面湿度が正しく推定できていない場合は、その旨を、データ提示部308及び表示部310を介してユーザに通知する。また、温度推定部306cは、正しく推定できていない結果をフィルタし、正しく推定できていないでデータを示す表示形態を、データ提示部308及び表示部310を介して表示させる。 The sweating estimation unit 306d determines that the person is sweating if the humidity is higher than the measured humidity of the surrounding reference atmospheric pressure sensor 20, and estimates the amount of sweating from the difference between the values. Further, the sweating estimation unit 306d performs an standing / prone estimation process by the posture estimation unit 306b before estimating the sweating amount, and uses the result for the sweating amount estimation. For example, if the ground is wet after it rains, it may not be possible to estimate an accurate value in the prone position due to the influence of moisture such as a puddle on the ground. If the body surface humidity cannot be estimated correctly due to the influence of the difference in standing / prone posture, the user is notified via the data presentation unit 308 and the display unit 310. Further, the temperature estimation unit 306c filters the results that cannot be estimated correctly, and displays the display form showing the data that cannot be estimated correctly via the data presentation unit 308 and the display unit 310.
 より詳細には、発汗推定部306dは、発汗量推定では湿度センサ202dの出力値を使用する。センサ10は、位置情報により、周辺のこれまでの天気(降雨)情報を参照し、地面付近の湿度が高いかどうかを推定する。そして、発汗推定部306dは、地面付近の湿度が高いと推定する場合には、伏臥時の発汗量推定値は信頼度が低いと推定する。また、発汗推定部306dは、現在降雨があれば判定不能(雨の影響か汗の影響かの判別が不可能)と推定する。この場合、発汗推定部306dは、発汗量の推定を停止する。このように、基準気圧センサ20における湿度と動物に取り付けられている湿度センサ202dにおける湿度を比較することにより、家畜の発汗状態を推定することが可能となる。また、発汗量が分かることで家畜がどの程度暑熱ストレスに晒されているかがわかるので、健康管理への活用が可能となる。これらから分かる様に、家畜の位置による環境変化を受ける場合、周囲の基準気圧センサ20の情報を用いて、環境変化を補正することにより、より高精度な家畜の管理が可能となる。 More specifically, the sweat estimation unit 306d uses the output value of the humidity sensor 202d in the sweat amount estimation. The sensor 10 refers to the past weather (rainfall) information in the vicinity based on the position information, and estimates whether or not the humidity near the ground is high. Then, when the sweating estimation unit 306d estimates that the humidity near the ground is high, the estimated sweating amount when lying down is estimated to have low reliability. Further, the sweating estimation unit 306d estimates that it is impossible to determine if there is current rainfall (it is impossible to determine whether it is the effect of rain or the effect of sweat). In this case, the sweat estimation unit 306d stops the estimation of the sweat amount. In this way, by comparing the humidity in the reference atmospheric pressure sensor 20 with the humidity in the humidity sensor 202d attached to the animal, it is possible to estimate the sweating state of the livestock. In addition, by knowing the amount of sweating, it is possible to know how much the livestock is exposed to heat stress, which can be utilized for health management. As can be seen from these, when the environment is changed due to the position of the livestock, the information of the surrounding reference pressure sensor 20 is used to correct the environmental change, so that more accurate management of the livestock becomes possible.
 図7は、センサ10の処理例を示すフローチャートである。図7に示すように、GNSS受信部204は、GNSSから位置情報と時刻情報を取得する(ステップS100)。 FIG. 7 is a flowchart showing a processing example of the sensor 10. As shown in FIG. 7, the GNSS receiving unit 204 acquires position information and time information from the GNSS (step S100).
 次に、センサ部202は、気圧、温度、及び湿度の値を測定する(ステップS102)。
 次に、制御部208は、加速度センサ202bの出力値を積算し、家畜の移動状態(停止又は移動)を示す情報を取得する(ステップS104)。
Next, the sensor unit 202 measures the values of atmospheric pressure, temperature, and humidity (step S102).
Next, the control unit 208 integrates the output values of the acceleration sensor 202b and acquires information indicating the moving state (stopped or moved) of the livestock (step S104).
 次に、制御部208は、通信部206を介して、測定時刻、測定位置、センサ値(気圧、温度、湿度、照度)、及び家畜の移動状態の情報を含む信号を管理装置30(クラウド)へ送信する(ステップS106)。センサ10は、定期的にこれらの情報を送信する形態を取ってもよいし、或いは、ユーザからのリクエストに応じて指定されたタイミングの情報を取得し、送信してもよい。 Next, the control unit 208 transmits a signal including information on the measurement time, the measurement position, the sensor value (atmospheric pressure, temperature, humidity, illuminance), and the moving state of the livestock via the communication unit 206 (cloud). (Step S106). The sensor 10 may take the form of periodically transmitting such information, or may acquire and transmit information at a designated timing in response to a request from the user.
 次に、制御部208は、次回送信まで、各部をスリープ状態にし、ステップS100からの処理を繰り返す。 Next, the control unit 208 puts each unit into a sleep state until the next transmission, and repeats the process from step S100.
 図8は、基準気圧センサ20の処理例を示すフローチャートである。図8に示すように、図7で示すセンサ10の処理例と比べて、ステップS104の処理を行わない点で相違する。また、制御部208は、通信部206を介して、測定時刻、測定位置、センサ値(気圧、温度、湿度、照度)、センサ設置条件の情報を含む信号をクラウドへ送信する(ステップS106a)。この場合、センサ設置条件の情報を送信する点において、図7で示すセンサ10の処理例と相違する。 FIG. 8 is a flowchart showing a processing example of the reference atmospheric pressure sensor 20. As shown in FIG. 8, it differs from the processing example of the sensor 10 shown in FIG. 7 in that the processing of step S104 is not performed. Further, the control unit 208 transmits a signal including information on the measurement time, the measurement position, the sensor value (atmospheric pressure, temperature, humidity, illuminance), and the sensor installation condition to the cloud via the communication unit 206 (step S106a). In this case, it differs from the processing example of the sensor 10 shown in FIG. 7 in that information on the sensor installation conditions is transmitted.
 図9は、起立/伏臥推定処理の処理例を示すフローチャートである。図9に示すように、管理装置30のデータ照合部304は、センサ10(対象取付センサー)の位置情報を用いて、近傍の基準気圧センサ20(基準センサー)を記憶部300(データベース)から抽出する(ステップS200)。 FIG. 9 is a flowchart showing a processing example of the standing / prone estimation process. As shown in FIG. 9, the data collation unit 304 of the management device 30 uses the position information of the sensor 10 (target mounting sensor) to extract a nearby reference pressure sensor 20 (reference sensor) from the storage unit 300 (database). (Step S200).
 次に、データ照合部304は、抽出された基準気圧センサ20から供給されたセンサ値を記憶部300から抽出する(ステップS202)。 Next, the data collation unit 304 extracts the sensor value supplied from the extracted reference atmospheric pressure sensor 20 from the storage unit 300 (step S202).
 次に、状態推定部306は、近傍の基準気圧センサ20(基準センサー)の気圧値、基準気圧センサ20の地面からの設置高さ、および標高情報を用いてセンサ10(対象取付センサー)の位置における、気圧を推定する。そして、状態推定部306は、推定した気圧値とセンサ10の気圧値を比較し、対象となる家畜が起立状態か伏臥状態かを推定する(ステップS204)。 Next, the state estimation unit 306 uses the atmospheric pressure value of the reference atmospheric pressure sensor 20 (reference sensor) in the vicinity, the installation height of the reference atmospheric pressure sensor 20 from the ground, and the altitude information to position the sensor 10 (target mounting sensor). Atmospheric pressure is estimated. Then, the state estimation unit 306 compares the estimated atmospheric pressure value with the atmospheric pressure value of the sensor 10 and estimates whether the target livestock is in the standing state or the prone position (step S204).
 次に、データ提示部308は、推定結果を表示部310に表示させ(ステップS206)、処理を終了する(ステップS206)。 Next, the data presentation unit 308 displays the estimation result on the display unit 310 (step S206), and ends the process (step S206).
 図10は、図9のステップS204の詳細処理例を示すフローチャートである。図10に示すように、センサ10の制御部208は、加速度センサ202bの出力値を積算し、移動速度を時系列に演算する。そして、センサ10は、移動速度、及び加速度に基づく行動推定に関する情報を含む信号を管理装置30に送信する(ステップS300)。 FIG. 10 is a flowchart showing a detailed processing example of step S204 of FIG. As shown in FIG. 10, the control unit 208 of the sensor 10 integrates the output values of the acceleration sensor 202b and calculates the moving speed in time series. Then, the sensor 10 transmits a signal including information regarding the movement speed and the behavior estimation based on the acceleration to the management device 30 (step S300).
 次に、管理装置30の状態推定部306は、移動速度、及び加速度に基づく行動推定に関する情報を用いて、起立時しか行わない行動、例えば歩行、を行っているか否かを判定する(ステップS302)。起立時しか行わない行動を行っていると判定する場合(ステップS302のY)、状態推定部306は、家畜は起立状態と推定し(ステップS304)、処理を終了する。 Next, the state estimation unit 306 of the management device 30 determines whether or not an action that is performed only when standing up, for example, walking, is performed by using the information regarding the behavior estimation based on the movement speed and the acceleration (step S302). ). When it is determined that the behavior that is performed only when standing up is performed (Y in step S302), the state estimation unit 306 estimates that the livestock is in a standing state (step S304), and ends the process.
 一方で、状態推定部306が起立時しか行わない行動を行っていないと判定する場合(ステップS302のN)、状態推定部306の気圧推定部306aは、周辺の地形情報、近傍の基準気圧センサ20(基準センサー)の気圧値、基準気圧センサ20の地面からの設置高さ、および標高情報を用いてセンサ10(対象取付センサー)の位置の、設置高さである地表付近の気圧を推定する(ステップS306)。なお、気圧推定部306aは、推定の際にインターネットからの天気情報や地形情報を参考値として参照し、推定値の調整を行ってもよい。 On the other hand, when it is determined that the state estimation unit 306 is not performing an action that is performed only when standing up (N in step S302), the barometric pressure estimation unit 306a of the state estimation unit 306 is used to provide information on the surrounding topography and a reference barometric pressure sensor in the vicinity. Using the atmospheric pressure value of 20 (reference sensor), the installation height of the reference pressure sensor 20 from the ground, and the altitude information, the atmospheric pressure near the ground surface, which is the installation height, of the position of the sensor 10 (target mounting sensor) is estimated. (Step S306). The barometric pressure estimation unit 306a may adjust the estimated value by referring to the weather information and the topographical information from the Internet as reference values at the time of estimation.
 次に、状態推定部306の姿勢推定部306bは、推定した地表付近の気圧値とセンサ10の気圧値とを比較し(ステップS308)、相対気圧差が閾値以上か否かを判定する(ステップS310)。相対気圧差が閾値以上である場合(ステップS308のY)、ステップS304からの処理を行う。 Next, the attitude estimation unit 306b of the state estimation unit 306 compares the estimated atmospheric pressure value near the ground surface with the atmospheric pressure value of the sensor 10 (step S308), and determines whether or not the relative atmospheric pressure difference is equal to or greater than the threshold value (step). S310). When the relative atmospheric pressure difference is equal to or greater than the threshold value (Y in step S308), the processing from step S304 is performed.
 一方で、相対気圧差が閾値未満である場合(ステップS308のN)、姿勢推定部306bは、対象とする家畜が伏臥状態と推定し(ステップS312)、処理を終了する。 On the other hand, when the relative atmospheric pressure difference is less than the threshold value (N in step S308), the posture estimation unit 306b estimates that the target livestock is in a prone position (step S312), and ends the process.
 図11は、体表面温度の推定処理例を示すフローチャートである。図11に示すように、管理装置30の温度推定部306cは、近傍の基準気圧センサ20(基準センサー)の温度値を用いてセンサ10(対象取付センサー)の位置における、気温を推定する。そして、温度推定部306cは、推定した気温とセンサ10の温度とを比較し、対象となる家畜の体表温度を推定する(ステップS406)。また、センサ10の照度センサ202eの出力信号を用いて、センサ10が直射日光下にあるか、否かを推定し、直射日光下に場合と、直射日光下にない場合とで、体表温度の補正に用いる補正係数を変更してもよい。 FIG. 11 is a flowchart showing an example of body surface temperature estimation processing. As shown in FIG. 11, the temperature estimation unit 306c of the management device 30 estimates the air temperature at the position of the sensor 10 (target mounting sensor) using the temperature value of the reference pressure sensor 20 (reference sensor) in the vicinity. Then, the temperature estimation unit 306c compares the estimated air temperature with the temperature of the sensor 10 and estimates the body surface temperature of the target livestock (step S406). Further, using the output signal of the illuminance sensor 202e of the sensor 10, it is estimated whether or not the sensor 10 is in direct sunlight, and the body surface temperature is determined depending on whether the sensor 10 is in direct sunlight or not. The correction coefficient used for the correction of may be changed.
 図12は、発汗推定処理例を示すフローチャートである。図12に示すように、管理装置30の発汗推定部306dは、近傍の基準気圧センサ20(基準センサー)の湿度値を用いてセンサ10(対象取付センサー)の位置における、湿度を推定する。そして、温度推定部306cは、推定した湿度とセンサ10の湿度を比較し、対象となる家畜の発汗量を推定する(ステップS506)。この場合、発汗量が多い場合、周辺の基準気圧センサ20に基づき推定した湿度よりも湿度が高くなる。このため、発汗推定部306dは、相対湿度差に応じて発汗量を推定する。 FIG. 12 is a flowchart showing an example of sweating estimation processing. As shown in FIG. 12, the sweat estimation unit 306d of the management device 30 estimates the humidity at the position of the sensor 10 (target mounting sensor) using the humidity value of the reference pressure sensor 20 (reference sensor) in the vicinity. Then, the temperature estimation unit 306c compares the estimated humidity with the humidity of the sensor 10 and estimates the amount of sweating of the target livestock (step S506). In this case, when the amount of sweating is large, the humidity becomes higher than the humidity estimated based on the surrounding reference atmospheric pressure sensor 20. Therefore, the sweating estimation unit 306d estimates the amount of sweating according to the relative humidity difference.
 以上説明したように、本実施形態によれば、データ照合部304が、管理対象の家畜における位置情報に基づき、家畜から所定範囲内の気圧情報を取得し、気圧推定部306aが、家畜から所定範囲内の気圧情報を用いて家畜の位置における基準気圧を推定することとした。このように、家畜の位置情報に基づき、家畜から所定範囲内の気圧情報を用いて基準気圧を推定するので、高低差がある広範囲な放牧地に家畜を放牧しても、家畜の位置における基準気圧をより高精度に推定可能となり、家畜における起立・伏臥の検出精度の低下を抑制できる。 As described above, according to the present embodiment, the data collation unit 304 acquires the atmospheric pressure information within a predetermined range from the livestock based on the position information in the livestock to be managed, and the atmospheric pressure estimation unit 306a determines from the livestock. It was decided to estimate the reference pressure at the position of livestock using the pressure information within the range. In this way, since the reference pressure is estimated from the livestock using the pressure information within a predetermined range based on the position information of the livestock, even if the livestock is grazing on a wide rangeland with a height difference, the reference at the position of the livestock. Atmospheric pressure can be estimated with higher accuracy, and deterioration of the detection accuracy of standing and lying down in livestock can be suppressed.
 なお、本技術は以下のような構成を取ることができる。 Note that this technology can take the following configurations.
 (1)管理対象の動物における位置情報に基づき、前記動物から所定範囲内の気圧情報を取得する取得部と、
 前記気圧情報を用いて前記動物の位置における基準気圧を推定する気圧推定部と、
 前記基準気圧と、前記動物に取り付けられた気圧センサの出力信号に基づく気圧と、の差圧に応じて、前記動物が、起立状態であるか伏臥状態であるかを推定する姿勢推定部と、
 を備える、管理装置。
(1) An acquisition unit that acquires atmospheric pressure information within a predetermined range from the animal based on the position information in the animal to be managed, and
An atmospheric pressure estimation unit that estimates the reference atmospheric pressure at the position of the animal using the atmospheric pressure information, and
A posture estimation unit that estimates whether the animal is in an upright state or a prone state according to the differential pressure between the reference pressure and the pressure based on the output signal of the pressure sensor attached to the animal.
A management device.
 (2)前記取得部は、前記動物が移動する範囲に基づき配置された複数の基準局のそれぞれから複数の気圧情報、位置情報、及び標高情報を取得し、
 気圧推定部は、前記動物の位置情報及び標高情報と、前記複数の気圧情報、位置情報、及び標高情報とを用いて、前記基準気圧を推定する、(1)に記載の管理装置。
(2) The acquisition unit acquires a plurality of barometric pressure information, position information, and altitude information from each of the plurality of reference stations arranged based on the range in which the animal moves.
The management device according to (1), wherein the atmospheric pressure estimation unit estimates the reference pressure using the animal's position information and altitude information and the plurality of atmospheric pressure information, position information, and altitude information.
 (3)前記姿勢推定部(306b)は、前記差圧が所定値以下である場合に伏臥状態であると推定する、(1)又は(2)に記載の管理装置。 (3) The management device according to (1) or (2), wherein the posture estimation unit (306b) estimates that the patient is in a prone position when the differential pressure is equal to or less than a predetermined value.
 (4)前記姿勢推定部は、前記動物に装着された加速度センサの出力情報に基づき、前記動物が移動状態でないと判定される場合に、起立状態であるか伏臥状態であるかを推定する、(1)乃至(3)のいずれかに記載の管理装置。 (4) The posture estimation unit estimates whether the animal is in an upright position or a prone position when it is determined that the animal is not in a moving state based on the output information of the acceleration sensor attached to the animal. The management device according to any one of (1) to (3).
 (5)前記動物には、衛星情報を用いて位置情報を取得する受信部が装着され、前記位置情報は、前記受信部の出力信号に基づき取得される、(1)乃至(4)のいずれかに記載の管理装置。 (5) Any of (1) to (4), wherein the animal is equipped with a receiving unit that acquires position information using satellite information, and the position information is acquired based on an output signal of the receiving unit. The management device described in Crab.
 (6)前記基準局は、衛星情報を用いて位置情報を取得する受信部を有し、前記基準局の位置情報は、前記受信部の出力信号に基づき取得される、(2)に記載の管理装置。 (6) The management device according to (2), wherein the reference station has a receiving unit that acquires position information using satellite information, and the position information of the reference station is acquired based on an output signal of the receiving unit. ..
 (7) 前記取得部は、前記動物から所定範囲内の温度情報も取得しており、
 前記温度情報を用いて前記動物の位置における気温を推定し、
 前記推定した気温と、前記動物に取り付けられた温度センサの出力信号に基づく温度と、の温度差に基づき、前記動物の体表温度を推定する温度推定部を、更に備える、(1)乃至(6)のいずれかに記載の管理装置。
(7) The acquisition unit also acquires temperature information within a predetermined range from the animal.
Using the temperature information, the temperature at the position of the animal is estimated, and the temperature is estimated.
(1) to (1) to (1) to (1) to further include a temperature estimation unit that estimates the body surface temperature of the animal based on the temperature difference between the estimated temperature and the temperature based on the output signal of the temperature sensor attached to the animal. The management device according to any one of 6).
 (8) 前記温度推定部は、前記動物に取り付けられた照度センサの出力信号に基づき、前記体表温度を補正する、(7)に記載の管理装置。 (8) The management device according to (7), wherein the temperature estimation unit corrects the body surface temperature based on the output signal of the illuminance sensor attached to the animal.
 (9)前記伏臥状態であると推定される場合に、前記温度推定部の推定値の精度が低下している可能性があることを示す情報を表示部に提示させる提示部を、更に備える、(7)又は(8)に記載の管理装置。 (9) Further, a presenting unit is provided which causes the display unit to present information indicating that the accuracy of the estimated value of the temperature estimation unit may be lowered when the prone position is estimated. The management device according to (7) or (8).
 (10)前記取得部は、前記動物から所定範囲内の湿度情報も取得しており、
 前記湿度情報を用いて前記動物の位置における湿度を推定し、
 前記推定した湿度と、前記動物に取り付けられた湿度センサの出力信号に基づく湿度と、の湿度差に基づき、前記動物の発汗量を推定する発汗推定部を、更に備える、(1)乃至(9)のいずれかに記載の管理装置。
(10) The acquisition unit also acquires humidity information within a predetermined range from the animal.
The humidity at the position of the animal is estimated using the humidity information, and the humidity is estimated.
(1) to (9) further include a sweating estimation unit that estimates the amount of sweating of the animal based on the humidity difference between the estimated humidity and the humidity based on the output signal of the humidity sensor attached to the animal. ) Is described in any of the management devices.
 (11)前記伏臥状態であると推定される場合に、前記発汗推定部の推定値の精度が低下している可能性があることを示す情報を表示部に提示させる提示部を、更に備える、(10)に記載の管理装置。 (11) Further, a presenting unit is provided which causes the display unit to present information indicating that the accuracy of the estimated value of the sweating estimation unit may be lowered when the prone position is estimated. The management device according to (10).
 (12)前記発汗推定部は、前記動物の位置情報に基づく天気情報を参照し、発汗量を推定する、(10)又は(11)に記載の管理装置。 (12) The management device according to (10) or (11), wherein the sweat estimation unit estimates the amount of sweat by referring to the weather information based on the position information of the animal.
 (13)前記温発汗推定部は、所定の降雨量がある場合に、推定を停止する、(10)乃至(12)のいずれかに記載の管理装置。 (13) The management device according to any one of (10) to (12), wherein the warm sweat estimation unit stops estimation when there is a predetermined amount of rainfall.
 (14)管理対象の動物における位置情報に基づき、前記動物から所定範囲内の気圧情報を取得する取得工程と、
 前記気圧情報を用いて前記動物の位置における基準気圧を推定する気圧推定工程と、
 前記基準気圧と、前記動物に取り付けられた気圧センサの出力信号に基づく気圧と、の差圧に応じて、前記動物が、起立状態であるか伏臥状態であるかを推定する姿勢推定工程と、
 を備える、管理方法。
(14) An acquisition step of acquiring atmospheric pressure information within a predetermined range from the animal based on the position information in the animal to be managed, and
A barometric pressure estimation step for estimating the reference barometric pressure at the position of the animal using the barometric pressure information, and
A posture estimation step of estimating whether the animal is in an upright state or a prone state according to the differential pressure between the reference pressure and the pressure based on the output signal of the pressure sensor attached to the animal.
A management method.
 (15) 管理対象の動物における位置情報に基づき、前記動物から所定範囲内の気圧情報を取得する取得工程と、
 前記気圧情報を用いて前記動物の位置における基準気圧を推定する気圧推定工程と、
 前記基準気圧と、前記動物に取り付けられた気圧センサの出力信号に基づく気圧と、の差圧に応じて、前記動物が、起立状態であるか伏臥状態であるかを推定する姿勢推定工程と、
 をコンピュータに実行させる管理プログラム。
(15) An acquisition step of acquiring atmospheric pressure information within a predetermined range from the animal based on the position information in the animal to be managed, and
A barometric pressure estimation step for estimating the reference barometric pressure at the position of the animal using the barometric pressure information, and
A posture estimation step of estimating whether the animal is in an upright state or a prone state according to the differential pressure between the reference pressure and the pressure based on the output signal of the pressure sensor attached to the animal.
A management program that lets your computer run.
 本開示の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本開示の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。 The aspects of the present disclosure are not limited to the individual embodiments described above, but also include various modifications that can be conceived by those skilled in the art, and the effects of the present disclosure are not limited to the above-mentioned contents. That is, various additions, changes and partial deletions are possible without departing from the conceptual idea and purpose of the present disclosure derived from the contents specified in the claims and their equivalents.
 1:管理システム、10:センサ、20:基準気圧センサ、30:管理装置、40:衛星、202a:気圧センサ、202b:加速度センサ、202c:温度センサ、202d:湿度センサ、202e:照度センサ、304:データ照合部、306:状態推定部、306a:気圧推定部、306b:姿勢推定部、306c:温度推定部、306d:発汗推定部、308:データ提示部、310:表示部。 1: Management system, 10: Sensor, 20: Reference barometric pressure sensor, 30: Management device, 40: Satellite, 202a: Barometric pressure sensor, 202b: Acceleration sensor, 202c: Temperature sensor, 202d: Humidity sensor, 202e: Illuminance sensor, 304 : Data collation unit, 306: State estimation unit, 306a: Atmospheric pressure estimation unit, 306b: Attitude estimation unit, 306c: Temperature estimation unit, 306d: Sweating estimation unit, 308: Data presentation unit, 310: Display unit.

Claims (15)

  1.  管理対象の動物における位置情報に基づき、前記動物から所定範囲内の気圧情報を取得する取得部と、
     前記気圧情報を用いて前記動物の位置における基準気圧を推定する気圧推定部と、
     前記基準気圧と、前記動物に取り付けられた気圧センサの出力信号に基づく気圧と、の差圧に応じて、前記動物が、起立状態であるか伏臥状態であるかを推定する姿勢推定部と、
     を備える、管理装置。
    An acquisition unit that acquires atmospheric pressure information within a predetermined range from the animal based on the position information in the animal to be managed, and
    An atmospheric pressure estimation unit that estimates the reference atmospheric pressure at the position of the animal using the atmospheric pressure information, and
    A posture estimation unit that estimates whether the animal is in an upright state or a prone state according to the difference pressure between the reference pressure and the pressure based on the output signal of the pressure sensor attached to the animal.
    A management device.
  2.  前記取得部は、前記動物が移動する範囲に基づき配置された複数の基準局のそれぞれから複数の気圧情報、位置情報、及び標高情報を取得し、
     気圧推定部は、前記動物の位置情報及び標高情報と、前記複数の気圧情報、位置情報、及び標高情報とを用いて、前記基準気圧を推定する、請求項1に記載の管理装置。
    The acquisition unit acquires a plurality of barometric pressure information, position information, and altitude information from each of the plurality of reference stations arranged based on the range in which the animal moves.
    The management device according to claim 1, wherein the atmospheric pressure estimation unit estimates the reference pressure using the animal's position information and altitude information and the plurality of atmospheric pressure information, position information, and altitude information.
  3.  前記姿勢推定部は、前記差圧が所定値以下である場合に伏臥状態であると推定する、請求項1に記載の管理装置。 The management device according to claim 1, wherein the posture estimation unit estimates that the patient is in a prone position when the differential pressure is equal to or less than a predetermined value.
  4.  前記姿勢推定部は、前記動物に装着された加速度センサの出力情報に基づき、前記動物が移動状態でないと判定される場合に、起立状態であるか伏臥状態であるかを推定する、請求項1に記載の管理装置。 The posture estimation unit estimates whether the animal is in an upright state or a prone state when it is determined that the animal is not in a moving state based on the output information of the acceleration sensor attached to the animal. The management device described in.
  5.  前記動物には、衛星情報を用いて位置情報を取得する受信部が装着され、前記位置情報は、前記受信部の出力信号に基づき取得される、請求項1に記載の管理装置。 The management device according to claim 1, wherein the animal is equipped with a receiving unit that acquires position information using satellite information, and the position information is acquired based on an output signal of the receiving unit.
  6.  前記基準局は、衛星情報を用いて位置情報を取得する受信部を有し、前記基準局の位置情報は、前記受信部の出力信号に基づき取得される、請求項2に記載の管理装置。 The management device according to claim 2, wherein the reference station has a receiving unit that acquires position information using satellite information, and the position information of the reference station is acquired based on an output signal of the receiving unit.
  7.  前記取得部は、前記動物から所定範囲内の温度情報も取得しており、
     前記温度情報を用いて前記動物の位置における気温を推定し、
     前記推定した気温と、前記動物に取り付けられた温度センサの出力信号に基づく温度と、の温度差に基づき、前記動物の体表温度を推定する温度推定部を、更に備える、請求項1に記載の管理装置。
    The acquisition unit also acquires temperature information within a predetermined range from the animal, and the acquisition unit also acquires temperature information within a predetermined range.
    Using the temperature information, the temperature at the position of the animal is estimated, and the temperature is estimated.
    The first aspect of the present invention further comprises a temperature estimation unit that estimates the body surface temperature of the animal based on the temperature difference between the estimated temperature and the temperature based on the output signal of the temperature sensor attached to the animal. Management device.
  8.  前記温度推定部は、前記動物に取り付けられた照度センサの出力信号に基づき、前記体表温度を補正する、請求項7に記載の管理装置。 The management device according to claim 7, wherein the temperature estimation unit corrects the body surface temperature based on the output signal of the illuminance sensor attached to the animal.
  9.  前記伏臥状態であると推定される場合に、前記温度推定部の推定値の精度が低下している可能性があることを示す情報を表示部に提示させる提示部を、更に備える、請求項7に記載の管理装置。 7. A claim 7 further comprises a presenting unit that causes the display unit to present information indicating that the accuracy of the estimated value of the temperature estimation unit may be lowered when the prone position is estimated. The management device described in.
  10.  前記取得部は、前記動物から所定範囲内の湿度情報も取得しており、
     前記湿度情報を用いて前記動物の位置における湿度を推定し、
     前記推定した湿度と、前記動物に取り付けられた湿度センサの出力信号に基づく湿度と、の湿度差に基づき、前記動物の発汗量を推定する発汗推定部を、更に備える、請求項1に記載の管理装置。
    The acquisition unit also acquires humidity information within a predetermined range from the animal, and the acquisition unit also acquires humidity information within a predetermined range.
    The humidity at the position of the animal is estimated using the humidity information, and the humidity is estimated.
    The first aspect of the present invention, further comprising a sweating estimation unit that estimates the amount of sweating of the animal based on the humidity difference between the estimated humidity and the humidity based on the output signal of the humidity sensor attached to the animal. Management device.
  11.  前記伏臥状態であると推定される場合に、前記発汗推定部の推定値の精度が低下している可能性があることを示す情報を表示部に提示させる提示部を、更に備える、請求項10に記載の管理装置。 10. The claim 10 further comprises a presenting unit that causes the display unit to present information indicating that the accuracy of the estimated value of the sweating estimation unit may be lowered when it is estimated to be in the prone position. The management device described in.
  12.  前記発汗推定部は、前記動物の位置情報に基づく天気情報を参照し、発汗量を推定する、請求項10に記載の管理装置。 The management device according to claim 10, wherein the sweating estimation unit refers to weather information based on the position information of the animal and estimates the amount of sweating.
  13.  前記発汗推定部は、所定の降雨量がある場合に、推定を停止する、請求項10に記載の管理装置。 The management device according to claim 10, wherein the sweat estimation unit stops estimation when there is a predetermined amount of rainfall.
  14.  管理対象の動物における位置情報に基づき、前記動物から所定範囲内の気圧情報を取得する取得工程と、
     前記気圧情報を用いて前記動物の位置における基準気圧を推定する気圧推定工程と、
     前記基準気圧と、前記動物に取り付けられた気圧センサの出力信号に基づく気圧と、の差圧に応じて、前記動物が、起立状態であるか伏臥状態であるかを推定する姿勢推定工程と、
     を備える、管理方法。
    An acquisition process for acquiring barometric pressure information within a predetermined range from the animal based on the position information in the animal to be managed, and
    A barometric pressure estimation step for estimating the reference barometric pressure at the position of the animal using the barometric pressure information, and
    A posture estimation step of estimating whether the animal is in an upright state or a prone state according to the differential pressure between the reference pressure and the pressure based on the output signal of the pressure sensor attached to the animal.
    A management method.
  15.  管理対象の動物における位置情報に基づき、前記動物から所定範囲内の気圧情報を取得する取得工程と、
     前記気圧情報を用いて前記動物の位置における基準気圧を推定する気圧推定工程と、
     前記基準気圧と、前記動物に取り付けられた気圧センサの出力信号に基づく気圧と、の差圧に応じて、前記動物が、起立状態であるか伏臥状態であるかを推定する姿勢推定工程と、
     をコンピュータに実行させる管理プログラム。
    An acquisition process for acquiring barometric pressure information within a predetermined range from the animal based on the position information in the animal to be managed, and
    A barometric pressure estimation step for estimating the reference barometric pressure at the position of the animal using the barometric pressure information, and
    A posture estimation step of estimating whether the animal is in an upright state or a prone state according to the differential pressure between the reference pressure and the pressure based on the output signal of the pressure sensor attached to the animal.
    A management program that lets your computer run.
PCT/JP2021/023648 2020-07-16 2021-06-22 Management device, management method, and management program WO2022014278A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022536207A JPWO2022014278A1 (en) 2020-07-16 2021-06-22
CN202180048893.5A CN115802886A (en) 2020-07-16 2021-06-22 Management device, management method, and management program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020122234 2020-07-16
JP2020-122234 2020-07-16

Publications (1)

Publication Number Publication Date
WO2022014278A1 true WO2022014278A1 (en) 2022-01-20

Family

ID=79555282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023648 WO2022014278A1 (en) 2020-07-16 2021-06-22 Management device, management method, and management program

Country Status (3)

Country Link
JP (1) JPWO2022014278A1 (en)
CN (1) CN115802886A (en)
WO (1) WO2022014278A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6409028B2 (en) * 2016-07-13 2018-10-17 デザミス株式会社 Cattle activity state management system
EP3388951A1 (en) * 2017-04-14 2018-10-17 Centre National d'Etudes Spatiales A device and method for more accurately characterizing the movements of a pedestrian
JP2019062822A (en) * 2017-10-02 2019-04-25 Nttテクノクロス株式会社 Behavior specification device, behavior specification method, and program
JP2019122368A (en) * 2018-01-12 2019-07-25 デザミス株式会社 Health state management system and management method for cattle and health state management program
JP2020048485A (en) * 2018-09-26 2020-04-02 株式会社トプコン Temperature measuring system and temperature measuring method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6409028B2 (en) * 2016-07-13 2018-10-17 デザミス株式会社 Cattle activity state management system
EP3388951A1 (en) * 2017-04-14 2018-10-17 Centre National d'Etudes Spatiales A device and method for more accurately characterizing the movements of a pedestrian
JP2019062822A (en) * 2017-10-02 2019-04-25 Nttテクノクロス株式会社 Behavior specification device, behavior specification method, and program
JP2019122368A (en) * 2018-01-12 2019-07-25 デザミス株式会社 Health state management system and management method for cattle and health state management program
JP2020048485A (en) * 2018-09-26 2020-04-02 株式会社トプコン Temperature measuring system and temperature measuring method

Also Published As

Publication number Publication date
JPWO2022014278A1 (en) 2022-01-20
CN115802886A (en) 2023-03-14

Similar Documents

Publication Publication Date Title
CA2996770C (en) Agricultural drone for use in livestock monitoring
JP6409028B2 (en) Cattle activity state management system
EP2943146B1 (en) Method and system for generating an oestrus attention signal for a cattle animal
US20170325426A1 (en) A Method and Device for Remote Monitoring of Animals
EP2461176A1 (en) Method and system for determining position.
CN104395696A (en) A method of estimating the position of a device and an apparatus implementing the same
CN103728644A (en) Positioning system and positioning method
WO2009135493A1 (en) Detection of moving objects
WO2018109725A1 (en) Process and device for the detection of estrus in a ruminant animal
WO2010108496A1 (en) System and method for detecting behaviour of animals
US20090066568A1 (en) Monitoring system
US20190271564A1 (en) Stride Length Calibration Method and System, and Related Device
JP5892235B2 (en) Step count correcting method, step count correcting apparatus, step count correcting program, originating information detecting method, and originating information notifying apparatus
WO2022014278A1 (en) Management device, management method, and management program
WO2019228417A1 (en) System and method for pedestrian navigation and positioning
JP6707653B2 (en) Mobile information detection terminal
KR101694675B1 (en) Underground structure field integrated management system
US11761782B2 (en) Self-position sharing system, vehicle, and terminal
US20220312730A1 (en) Service Animal Tracking Evaluation System Using Metrics
Harty Automating heat detection
Gebresenbet et al. Information monitoring system for surveillance of animal welfare during transport
JP6865191B2 (en) Information gathering system
WO2022075298A1 (en) Detection device, detection method, and program
JP2020177511A (en) Guard fence watch system
JP7247385B2 (en) Communication system, semiconductor device, electronic equipment and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536207

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842193

Country of ref document: EP

Kind code of ref document: A1