WO2022013994A1 - Multitone signal generation device and multitone signal generation method - Google Patents

Multitone signal generation device and multitone signal generation method Download PDF

Info

Publication number
WO2022013994A1
WO2022013994A1 PCT/JP2020/027597 JP2020027597W WO2022013994A1 WO 2022013994 A1 WO2022013994 A1 WO 2022013994A1 JP 2020027597 W JP2020027597 W JP 2020027597W WO 2022013994 A1 WO2022013994 A1 WO 2022013994A1
Authority
WO
WIPO (PCT)
Prior art keywords
multitone signal
multitone
signal
value
waveform data
Prior art date
Application number
PCT/JP2020/027597
Other languages
French (fr)
Japanese (ja)
Inventor
裕翔 榊
暢彦 安藤
英之 中溝
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020570206A priority Critical patent/JPWO2022013994A1/ja
Priority to PCT/JP2020/027597 priority patent/WO2022013994A1/en
Publication of WO2022013994A1 publication Critical patent/WO2022013994A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present disclosure relates to a multitone signal generation device and a multitone signal generation method.
  • a multitone signal has a high peak power to average power ratio (hereinafter referred to as "PAPR").
  • PAPR peak power to average power ratio
  • Non-Patent Document 1 discloses a technique for generating a multitone signal having a low crest factor. That is, Non-Patent Document 1 discloses a technique for generating a multitone signal having a low PAPR. In other words, Non-Patent Document 1 discloses a technique for reducing PAPR of a multitone signal.
  • a multitone signal with reduced PAPR may be referred to as a "low PAPR multitone signal”. That is, the low PAPR multitone signal has a lower PAPR than the PAPR in a normal multitone signal.
  • Non-Patent Document 1 (hereinafter referred to as "conventional technique") executes a convergence operation in generating a multitone signal having a low crest factor.
  • the initial value in the convergence operation includes a plurality of initial phases corresponding to the plurality of tone signals.
  • a Barker code is used as an initial value in the convergence operation.
  • the maximum value of the code length in the Barker code is 13. Therefore, when the number of tone signals included in the multitone signal (hereinafter referred to as “the number of tones”) is 13 or less, the Barker code can be used as the initial value in the convergence operation. On the other hand, when the number of tones is 14 or more, the Barker code cannot be used as the initial value in the convergence operation. In such a case, PBC (Polyphase Barker Code) is used as the initial value in the convergence operation. PBC is an extension of the Barker code.
  • Non-Patent Document 1 does not disclose a method for calculating an initial value in such a dedicated convergence operation. Therefore, in the prior art, there is a problem that it is difficult to generate a multitone signal having a low crest factor when the number of tones is 14 or more. In other words, in the prior art, there is a problem that it is difficult to generate a low PAPR multitone signal for an arbitrary number of tones.
  • the present disclosure has been made to solve the above-mentioned problems, and a multitone signal generation device and a multitone signal generation method capable of generating a low PAPR multitone signal for an arbitrary number of tones are provided.
  • the purpose is to provide.
  • the multitone signal generator includes an initial value calculation unit that calculates an initial value used for a convergence calculation for reducing PAPR of a multitone signal, and a PAPR by executing a convergence calculation using the initial value. It is provided with a waveform data generation unit that generates waveform data indicating the waveform of the multitone signal with reduced multitone signal, and a multitone signal output unit that outputs the multitone signal corresponding to the waveform data generated by the waveform data generation unit.
  • the initial value includes a plurality of initial phases corresponding to a plurality of tone signals included in the multitone signal, and the initial value calculation unit performs a plurality of initial values by performing an algebraic calculation using a predetermined mathematical formula. Each of the phases is calculated, and the formula includes an algebra corresponding to the number of tones of the multitone signal and an algebra corresponding to an integer that is prime to each other with respect to the number of tones.
  • the initial value calculation unit uses a step of calculating the initial value used for the convergence calculation for reducing the PAPR of the multitone signal, and the waveform data generation unit uses the initial value.
  • the step of generating waveform data showing the waveform of the multitone signal whose PAPR is reduced by executing the convergence operation that was performed, and the multitone signal output unit are the multitone corresponding to the waveform data generated by the waveform data generation unit.
  • the initial value includes a plurality of initial phases corresponding to a plurality of tone signals included in the multitone signal, and the initial value calculation unit performs algebraic calculation using a predetermined mathematical formula. Each of the plurality of initial phases is calculated by executing It includes algebra.
  • FIG. It is a block diagram which shows the main part of the multitone signal generation apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main part of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows the example of the multitone signal in a frequency domain. It is explanatory drawing which shows the example of the multitone signal in the time domain. It is explanatory drawing which shows the example of the error signal in the time domain. It is explanatory drawing which shows the example of the error signal in a frequency domain. It is explanatory drawing which shows the other example of a multitone signal in a frequency domain. It is explanatory drawing which shows the example of PAPR in a normal multitone signal.
  • FIG. 1 It is explanatory drawing which shows the example of PAPR in a low PAPR multitone signal. It is a block diagram which shows the hardware composition of the main part of the multitone signal generation apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the other hardware configuration of the main part of the multitone signal generation apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the other hardware configuration of the main part of the multitone signal generation apparatus which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the operation of the multitone signal generation apparatus which concerns on Embodiment 1. It is a flowchart which shows the operation of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the operation of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main part of the multitone signal generation apparatus which concerns on Embodiment 2.
  • FIG. It is a block diagram which shows the main part of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 2.
  • FIG. It is explanatory drawing which shows the other example of the error signal in a frequency domain. It is explanatory drawing which shows the other example of a multitone signal in a frequency domain. It is a flowchart which shows the operation of the multitone signal generation apparatus which concerns on Embodiment 2.
  • FIG. 1 It is explanatory drawing which shows the other example of a multitone signal in a frequency domain. It is a flowchart which shows the operation of the multitone signal generation apparatus which concerns on Embodiment 3. It is a flowchart which shows the operation of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 3. FIG. It is a flowchart which shows the operation of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 3.
  • FIG. It is explanatory drawing which shows the other example of the magnification in the 8th processing of each time about the amplitude of each tone signal. It is a block diagram which shows the main part of the multitone signal generation apparatus which concerns on Embodiment 4. FIG.
  • FIG. It is a block diagram which shows the main part of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 4.
  • FIG. It is a flowchart which shows the operation of the multitone signal generation apparatus which concerns on Embodiment 4. It is a flowchart which shows the operation of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 4. It is a flowchart which shows the operation of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 4.
  • FIG. 1 is a block diagram showing a main part of the multitone signal generation device according to the first embodiment.
  • FIG. 2 is a block diagram showing a main part of a waveform data generation unit in the multitone signal generation device according to the first embodiment.
  • the multitone signal generator according to the first embodiment will be described with reference to FIGS. 1 and 2.
  • the multitone signal generation device 100 includes an initial value calculation unit 1, a waveform data generation unit 2, and a multitone signal output unit 3.
  • the waveform data generation unit 2 includes a first processing unit 11, a second processing unit 12, a third processing unit 13, a fourth processing unit 14, and a fifth processing unit 15.
  • the multitone signal MS includes M tone signals TS 1 to TS M. That is, the number of tones of the multitone signal MS is M.
  • M is an integer of 2 or more.
  • the reference numeral “k” may be used for the index corresponding to each tone signal TS. That is, the index k can indicate an individual integer value out of M integer values (1 to M).
  • the initial value calculation unit 1 acquires a value indicating the number of tones M.
  • the initial value calculation unit 1 calculates the initial value used for the convergence calculation for reducing the PAPR of the multitone signal MS by using the acquired value.
  • Such initial values include M initial phases ⁇ 1 to ⁇ M corresponding to M tone signals TS 1 to TS M.
  • the initial value calculation unit 1 calculates each of the M initial phases ⁇ 1 to ⁇ M by executing algebraic calculation using the following equation (1_1). Alternatively, the initial value calculation unit 1 calculates each of the M initial phases ⁇ 1 to ⁇ M by executing algebraic calculation using the following equation (1_2). That is, the initial value calculation unit 1 calculates each initial phase ⁇ k by executing such algebraic calculation.
  • M in each of the equations (1_1) and (1_2) indicates an algebra corresponding to the number of tones M.
  • r in each of the equations (1_1) and (1_1) indicates an algebra corresponding to the integer r for the integer r which is relatively prime with respect to the tone number M.
  • k in each of the equations (1_1) and (1_2) indicates an algebra corresponding to the index k.
  • each of the equations (1_1) and (1_2) includes an algebra corresponding to the number of tones M, and also includes an algebra corresponding to the integer r. Further, each of the equations (1_1) and (1_2) includes an algebra corresponding to the index k.
  • the integer r is an even number.
  • the integer r is an odd number.
  • the waveform data generation unit 2 uses the initial value calculated by the initial value calculation unit 1 to execute a convergence operation for reducing the PAPR of the multitone signal MS. As a result, the waveform data generation unit 2 generates data (hereinafter referred to as “waveform data”) WD indicating the waveform of the multitone signal MS with reduced PAPR.
  • the convergence operation in the waveform data generation unit 2 repeatedly executes a plurality of processes.
  • the plurality of processes are a process executed by the first processing unit 11 (hereinafter referred to as “first processing”), a processing executed by the second processing unit 12 (hereinafter referred to as “second processing"), and a first.
  • first processing a process executed by the first processing unit 11
  • second processing a processing executed by the second processing unit 12
  • first. 3 A process executed by the processing unit 13 (hereinafter referred to as "third process”), a process executed by the fourth processing unit 14 (hereinafter referred to as “fourth process”), and executed by the fifth processing unit 15. It includes a process (hereinafter referred to as "fifth process").
  • the convergence operation in the waveform data generation unit 2 executes the first process, the second process, the third process, the fourth process, and the fifth process N times.
  • N is an integer of 2 or more.
  • the first process, the second process, the third process, the fourth process, and the fifth process will be described.
  • the first process uses the M amplitude A 1 ⁇ A M which correspond to the M tone signal TS 1 ⁇ TS M, and, using the M initial phase theta 1 ⁇ theta M, in the frequency domain It includes a process of setting the multitone signal MS_f. As a result, the frequency domain waveform (that is, the frequency spectrum) of the multitone signal MS is set. A Fourier transform is used to set such a frequency spectrum.
  • a predetermined value e.g. 1
  • the values calculated by the initial value calculation unit 1 are used in the first processing of the first of the N first processes.
  • the second process includes a process of converting the multitone signal MS_f set in the first process into the multitone signal MS_t in the time domain.
  • the frequency domain waveform that is, the frequency spectrum
  • the time domain waveform (more specifically, the power waveform) of the multitone signal MS.
  • An inverse Fourier transform is used for such a transformation.
  • FIG. 4 shows an example of the multitone signal MS_t in the time domain. More specifically, FIG. 4 shows an example of the multitone signal MS_t converted in the first second process of the N second processes.
  • S indicates a predetermined reference value.
  • the third process includes a process of calculating the difference value between the value of the multitone signal MS_t converted in the second process and the reference value S. Further, the third process includes a process of calculating the error signal ES_t in the time domain based on the difference value. As a result, the time domain waveform (more specifically, the power waveform) of the error signal ES is calculated.
  • FIG. 5 shows an example of the error signal ES_t in the time domain. More specifically, FIG. 5 shows an example of the error signal ES_t calculated in the first third process of the N third processes.
  • the fourth process includes a process of converting the error signal ES_t calculated in the third process into the error signal ES_f in the frequency domain.
  • the time domain waveform (more specifically, the power waveform) of the error signal ES is converted into the frequency domain waveform (that is, the frequency spectrum) of the error signal ES.
  • FIG. 6 shows an example of the error signal ES_f in the frequency domain. More specifically, FIG. 6 shows an example of the error signal ES_f converted in the first fourth process of the N fourth processes.
  • the error signal ES_f includes M error signals ES 1 to ES M corresponding to M tone signals TS 1 to TS M.
  • the M error signals ES 1 to ES M each have M amplitudes B 1 to BM.
  • the fifth process includes a process of updating each of the M initial phases ⁇ 1 to ⁇ M by the following equation (2). That is, the fifth process includes a process of updating each initial phase ⁇ k.
  • the value of the corresponding initial phase ⁇ k among the M initial phases ⁇ 1 to ⁇ M in the multitone signal MS_f set in the first process is used. Used.
  • the corresponding initial phases ⁇ k of the M initial phases ⁇ 1 to ⁇ M in the multitone signal MS_f shown in FIG. 3 The value is used.
  • the value of the corresponding phase ⁇ k among the M phases ⁇ 1 to ⁇ M in the error signal ES_f converted in the fourth process is used.
  • the values of the corresponding phases ⁇ k among the M phases ⁇ 1 to ⁇ M in the error signal ES_f shown in FIG. 6 are used. Be done.
  • the fifth process based on the difference value between the phase components (phi k) of the phase component (theta k) and error signal ES_f multitone signal MS_f ( ⁇ k - ⁇ k), the individual initial phase theta k It includes the process of updating. More specifically, the fifth process, the difference value between the corresponding phase component of the tone signal TS k ( ⁇ k) and corresponding error signal ES k phase components ( ⁇ k) ( ⁇ k - ⁇ k) Based on this, it includes a process of updating each initial phase ⁇ k.
  • the first process, the second process, the third process, the fourth process, and the fifth process are repeatedly executed.
  • the updated values in the previous fifth processing are used for each of the M initial phases ⁇ 1 to ⁇ M.
  • the updated values in the fifth process of the first time are used for each of the M initial phases ⁇ 1 to ⁇ M.
  • FIG. 7 shows an example of the multitone signal MS_f set in the first processing of the second time.
  • M 5.
  • ⁇ 1 to ⁇ 5 in FIG. 7 indicate the initial phases ⁇ 1 to ⁇ 5 before the update in the first fifth process. That is, ⁇ 1 to ⁇ 5 in FIG. 7 correspond to the values calculated by the initial value calculation unit 1.
  • the PAPR of the multitone signal MS is reduced. More specifically, the individual initial phases ⁇ k converge to a value such that the PAPR of the multitone signal MS is reduced. As a result, a low PAPR multitone signal is realized.
  • FIG. 8 shows an example of PAPR in the multitone signal MS_t corresponding to the initial phases ⁇ 1 to ⁇ M calculated by the initial value calculation unit 1.
  • FIG. 9 shows an example of PAPR in the multitone signal MS_t corresponding to the initial phases ⁇ 1 to ⁇ M after the update in the fifth process of the Nth time.
  • the PAPR of the multitone signal MS after the execution of the convergence operation is reduced as compared with the PAPR of the multitone signal MS before the execution of the convergence operation.
  • the waveform data generation unit 2 executes the same process as the first process by using the updated initial phases ⁇ 1 to ⁇ M in the fifth process of the Nth time.
  • the waveform data generation unit 2 executes the same processing as the second processing.
  • the time domain waveform of the multitone signal MS corresponding to the initial phases ⁇ 1 to ⁇ M after the update in the fifth process of the Nth time is generated.
  • the waveform data generation unit 2 generates data (that is, waveform data) WD indicating the time domain waveform.
  • the multitone signal output unit 3 acquires the waveform data WD generated by the waveform data generation unit 2.
  • the multitone signal output unit 3 outputs the multitone signal MS corresponding to the acquired waveform data WD. As a result, a low PAPR multitone signal is output.
  • the waveform data WD generated by the waveform data generation unit 2 is digital data.
  • the multitone signal MS output by the multitone signal output unit 3 is an analog signal. That is, the multitone signal output unit 3 receives the input of digital data and outputs the analog signal corresponding to the input digital data.
  • the main part of the multitone signal generation device 100 is configured.
  • the functions of the initial value calculation unit 1 may be collectively referred to as "initial value calculation function".
  • the reference numeral of "F1" may be used for the initial value calculation function.
  • the functions of the waveform data generation unit 2 may be collectively referred to as a "waveform data generation function”.
  • the reference numeral of "F2” may be used for the waveform data generation function.
  • the functions of the multitone signal output unit 3 may be collectively referred to as “multitone signal output function”.
  • the reference numeral of "F3" may be used for the multitone signal output function.
  • the multitone signal generator 100 includes a processor 21, a memory 22, and a digital-to-analog conversion circuit (hereinafter referred to as “DAC”) 23.
  • the memory 22 stores programs corresponding to a plurality of functions (including an initial value calculation function and a waveform data generation function) F1 and F2.
  • the processor 21 reads and executes the program stored in the memory 22. As a result, a plurality of functions F1 and F2 are realized. Further, the multitone signal output function F3 is realized by the DAC23.
  • the multitone signal generation device 100 includes a processing circuit 24 and a DAC 23.
  • the processing circuit 24 executes processing corresponding to a plurality of functions F1 and F2. As a result, a plurality of functions F1 and F2 are realized. Further, the multitone signal output function F3 is realized by the DAC23.
  • the multitone signal generator 100 includes a processor 21, a memory 22, a processing circuit 24, and a DAC 23.
  • a program corresponding to a part of the plurality of functions F1 and F2 is stored in the memory 22.
  • the processor 21 reads and executes the program stored in the memory 22. As a result, some of these functions are realized.
  • the processing circuit 24 executes processing corresponding to the remaining functions of the plurality of functions F1 and F2. As a result, such residual functions are realized.
  • the multitone signal output function F3 is realized by the DAC23.
  • the processor 21 is composed of one or more processors.
  • a CPU Central Processing Unit
  • a GPU Graphics Processing Unit
  • a microprocessor a microprocessor
  • a microprocessor a microprocessor
  • a DSP Digital Signal Processor
  • the memory 22 is composed of one or more non-volatile memories.
  • the memory 22 is composed of one or more non-volatile memories and one or more volatile memories. That is, the memory 22 is composed of one or more memories.
  • the individual memory uses, for example, a semiconductor memory, a magnetic disk, an optical disk, a magneto-optical disk, a magnetic tape, or a magnetic drum. More specifically, each volatile memory uses, for example, a RAM (Random Access Memory).
  • the individual non-volatile memories include, for example, a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Primory) drive, a hard disk drive A compact disc, a DVD (Digital Versaille Disc), a Blu-ray disc, or a mini disc is used.
  • the processing circuit 24 is composed of one or more digital circuits. Alternatively, the processing circuit 24 is composed of one or more digital circuits and one or more analog circuits. That is, the processing circuit 24 is composed of one or more processing circuits.
  • the individual processing circuits are, for example, ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), FPGA (Field Programmable Gate Array), System LSI (Sy), and System (Sy). Is.
  • the processor 21 when the processor 21 is composed of a plurality of processors, the correspondence between the plurality of functions F1 and F2 and the plurality of processors is arbitrary. That is, each of the plurality of processors may read and execute a program corresponding to one or more corresponding functions among the plurality of functions F1 and F2. Alternatively, the processor 21 may include a dedicated processor corresponding to each of the plurality of functions F1 and F2.
  • each of the plurality of memories may store a program corresponding to one or more corresponding functions among the plurality of functions F1 and F2.
  • the memory 22 may include a dedicated memory corresponding to each of the plurality of functions F1 and F2.
  • the processing circuit 24 when the processing circuit 24 is composed of a plurality of processing circuits, the correspondence between the plurality of functions F1 and F2 and the plurality of processing circuits is arbitrary. That is, each of the plurality of processing circuits may execute the processing corresponding to one or more corresponding functions among the plurality of functions F1 and F2. Alternatively, the processing circuit 24 may include a dedicated processing circuit corresponding to each of the plurality of functions F1 and F2.
  • the initial value calculation unit 1 calculates each of the M initial phases ⁇ 1 to ⁇ M by executing an algebraic calculation using the equation (1_1) or the equation (1_2). That is, the initial value calculation unit 1 calculates each initial phase ⁇ k (step ST1).
  • the waveform data generation unit 2 executes a convergence operation for reducing the PAPR of the multitone signal MS by using the initial phases ⁇ 1 to ⁇ M calculated by the initial value calculation unit 1.
  • the waveform data generation unit 2 generates the waveform data WD corresponding to the multitone signal MS with reduced PAPR (step ST2). That is, the waveform data generation unit 2 generates the waveform data WD corresponding to the low PAPR multitone signal.
  • the multitone signal output unit 3 outputs the multitone signal MS corresponding to the waveform data WD generated by the waveform data generation unit 2 (step ST3). As a result, a low PAPR multitone signal is output.
  • step ST2 the operation of the waveform data generation unit 2 will be described with reference to the flowchart shown in FIG. That is, the process executed in step ST2 will be described.
  • the waveform data generation unit 2 executes the convergence operation.
  • the convergence operation in the waveform data generation unit 2 executes the first process, the second process, the third process, the fourth process, and the fifth process N times (step ST11).
  • the first processing unit 11 executes the first processing (step ST21). That is, the first processing unit 11 sets the multitone signal MS_f in the frequency domain using the initial phases ⁇ 1 to ⁇ M calculated by the initial value calculation unit 1. At this time, each of the M amplitude A 1 ⁇ A M, a predetermined value (e.g. 1) are used.
  • the second processing unit 12 executes the second processing (step ST22).
  • the multitone signal MS_f set in step ST11 is converted into the multitone signal MS_t in the time domain.
  • the third processing unit 13 executes the third processing (step ST23).
  • the error signal ES_t in the time domain is calculated.
  • the error signal ES_t is based on the difference value between the value of the multitone signal MS_t converted in step ST22 and the reference value S.
  • the fourth processing unit 14 executes the fourth processing (step ST24).
  • the error signal ES_t calculated in step ST23 is converted into the error signal ES_f in the frequency domain.
  • the fifth processing unit 15 executes the fifth processing (step ST25). That is, the fifth processing unit 15 updates each initial phase ⁇ k according to the equation (2). As a result, each of the M initial phases ⁇ 1 to ⁇ M is updated.
  • the waveform data generation unit 2 When these processes are executed N times, the convergence operation ends.
  • the waveform data generation unit 2 generates waveform data WD (step ST12).
  • the generated waveform data WD shows the time domain waveform of the multitone signal MS corresponding to the initial phases ⁇ 1 to ⁇ M after the update in the fifth process (step ST25) of the Nth time.
  • each initial phase ⁇ k is calculated by algebraic calculation.
  • the mathematical formula that is, the formula (1_1) or the formula (1_2) used in the algebraic calculation includes an algebra corresponding to the tone number M. This makes it possible to easily calculate the individual initial phase ⁇ k regardless of the number of tones M. Further, by using the calculated initial phase ⁇ k in the convergence calculation, a low PAPR multitone signal can be generated regardless of the number of tones M. That is, a low PAPR multitone signal can be generated for an arbitrary number of tones M.
  • the mathematical formula used for the algebraic calculation in the initial value calculation unit 1 includes the algebra corresponding to the integer r.
  • a value different from PBC can be used for the initial phases ⁇ 1 to ⁇ M
  • a value different from the Newman phase can be used for the initial phases ⁇ 1 to ⁇ M. That is, it is possible to use a ⁇ k different values in the following references 1 to the individual initial phase theta k.
  • the convergence operation in the waveform data generation unit 2 executes the first process, the second process, the third process, the fourth process, and the fifth process N times.
  • the waveform data generation unit 2 may execute the convergence operation once.
  • the waveform data generation unit 2 may execute the convergence operation L times.
  • L is an integer of 2 or more.
  • the waveform data generation unit 2 executes the convergence operation L times
  • the first process, the second process, the third process, the fourth process, and the fifth process are executed N ⁇ L times.
  • the updated initial phases ⁇ 1 to ⁇ M in the Nth fifth process of the previous convergence operation are used.
  • the waveform data generation unit 2 generates the waveform data WD when the Lth convergence calculation is completed.
  • the generated waveform data WD shows the time domain waveform of the multitone signal MS corresponding to the updated initial phases ⁇ 1 to ⁇ M in the Nth fifth process in the Lth convergence operation. ..
  • the multitone signal generation device 100 uses the initial value calculation unit 1 for calculating the initial value used for the convergence calculation for reducing the PAPR of the multitone signal MS, and the initial value.
  • the waveform data generation unit 2 that generates the waveform data WD showing the waveform of the multitone signal MS whose PAPR is reduced by executing the convergence calculation used, and the waveform data WD generated by the waveform data generation unit 2.
  • a multi-tone signal output unit 3 that outputs a multi-tone signal MS is provided, and the initial value is M initial phases ⁇ 1 to corresponding to M tone signals TS 1 to TS M included in the multi-tone signal MS.
  • the initial value calculation unit 1 calculates each of the M initial phases ⁇ 1 to ⁇ M by executing an algebraic calculation using a predetermined mathematical formula, and the mathematical formula is a multitone signal. Includes an algebra corresponding to the MS tone number M. This makes it possible to easily calculate the individual initial phase ⁇ k. Further, a low PAPR multitone signal can be generated for an arbitrary number of tones M.
  • the mathematical formula includes an algebra corresponding to an integer r that is relatively prime with respect to the number of tones M.
  • each initial phase ⁇ k can be calculated using the equation (1_1).
  • the convergence operation repeatedly executes a plurality of processes, and the plurality of processes include a process of updating each of the M initial phases ⁇ 1 to ⁇ M.
  • the convergence operation in the waveform data generation unit 2 can be realized based on the flowchart shown in FIG. That is, the reduction of PAPR in the multitone signal MS can be realized by the convergence of the values of the individual initial phases ⁇ k.
  • the convergence operation executes the first process, the second process, the third process, the fourth process, and the fifth process N times, and the first process performs M initial phases ⁇ 1 to ⁇ M.
  • the second process includes the process of converting the multitone signal MS_f in the frequency domain into the multitone signal MS_t in the time domain
  • the third process includes the process of converting the multitone signal MS_f in the frequency domain into the time domain.
  • the fourth process is the error signal ES_t in the time domain in the frequency domain.
  • the fifth process includes a process of converting to the error signal ES_f, and the fifth process is a difference value ( ⁇ k ) between the phase component ( ⁇ k ) of the multitone signal MS_f in the frequency domain and the phase component ( ⁇ k ) of the error signal ES_f in the frequency domain. It includes a process of updating each of the M initial phases ⁇ 1 to ⁇ M based on ⁇ k). As a result, the convergence operation in the waveform data generation unit 2 can be realized based on the flowchart shown in FIG.
  • the initial value calculation unit 1 calculates the initial value used for the convergence calculation for reducing the PAPR of the multitone signal MS, and the waveform data generation.
  • the step ST3 for outputting the multitone signal MS corresponding to the waveform data WD generated by the unit 2 is provided, and the initial value corresponds to the M tone signals TS 1 to TS M included in the multitone signal MS.
  • initial value calculating section 1 is for computing the each of the M initial phase theta 1 ⁇ theta M by performing the algebraic calculation using a predetermined formula Yes, the formula includes an algebra corresponding to the tone number M of the multitone signal MS. This makes it possible to easily calculate the individual initial phase ⁇ k. Further, a low PAPR multitone signal can be generated for an arbitrary number of tones M.
  • FIG. 15 is a block diagram showing a main part of the multitone signal generation device according to the second embodiment.
  • FIG. 16 is a block diagram showing a main part of a waveform data generation unit in the multitone signal generation device according to the second embodiment.
  • the multitone signal generation apparatus according to the second embodiment will be described with reference to FIGS. 15 and 16.
  • FIG. 15 the same blocks as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. Further, in FIG. 16, the same blocks as those shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
  • the multitone signal generation device 100a includes an initial value calculation unit 1, a waveform data generation unit 2a, and a multitone signal output unit 3.
  • the waveform data generation unit 2a includes a first processing unit 11, a second processing unit 12, a third processing unit 13, a fourth processing unit 14, and a fifth processing unit 15a.
  • the waveform data generation unit 2a includes the sixth processing unit 16 and the seventh processing unit 17.
  • the convergence operation in the waveform data generation unit 2a includes a first process, a second process, a third process, a fourth process, and a fifth process.
  • the convergence operation in the waveform data generation unit 2a is a process executed by the sixth processing unit 16 (hereinafter referred to as “sixth processing”) and a processing executed by the seventh processing unit 17 (hereinafter referred to as “the sixth processing”). 7 processing ”) is included.
  • the convergence operation in the waveform data generation unit 2a will be described focusing on a portion different from the convergence operation in the waveform data generation unit 2.
  • the sixth processing unit 16 executes the sixth process when the fourth process of each of the N fourth processes is executed.
  • the sixth process includes a process of generating a pseudo-random number x. Further, the sixth process includes a process of comparing the generated pseudo-random number x with a predetermined threshold value ⁇ .
  • the pseudo-random number x is generated based on a uniform distribution or a standard normal distribution, for example, within the range of the closed interval [0,1].
  • the threshold value ⁇ is preferably set to a value within the range of 0.5 or more and less than 1. Further, it is more preferable that the threshold value ⁇ is set to a value within the range of 0.9 or more and less than 1. The reason for this will be described later.
  • the fifth processing unit 15a executes the same fifth processing as the fifth processing executed by the fifth processing unit 15. That is, the fifth processing unit 15a updates each of the M initial phases ⁇ 1 to ⁇ M by the equation (2) described in the first embodiment.
  • the seventh processing unit 17 executes the seventh processing when the generated pseudo-random number x has a value equal to or higher than the threshold value ⁇ .
  • the seventh process includes a process of updating each of the M initial phases ⁇ 1 to ⁇ M by the following equation (3).
  • is a predetermined constant. ⁇ is set to a non-zero value and is set to a non-one value ( ⁇ ⁇ 0, ⁇ ⁇ 1). That is, the seventh process, the difference value between the phase component of the multi-tone signal MS_f ( ⁇ k) and error signal ES_f phase components (phi k) is constant multiple values ( ⁇ k) ( ⁇ k - ⁇ k) It includes a process of updating each initial phase ⁇ k based on.
  • the seventh process the corresponding tone signal TS k phase components (theta k) and a phase component (phi k) is a constant multiplied by the value of the corresponding error signal ES k ( ⁇ k) It includes a process of updating each initial phase ⁇ k based on the difference value ( ⁇ k ⁇ ⁇ ⁇ k).
  • the convergence operation in the waveform data generation unit 2a repeatedly executes a plurality of processes. More specifically, in the convergence operation in the waveform data generation unit 2a, the first process, the second process, the third process, the fourth process and the sixth process are executed N times, and the fifth process or the seventh process is performed. It is selectively executed N times. In other words, the convergence operation in the waveform data generation unit 2a executes the first process, the second process, the third process, the fourth process, the sixth process, the fifth process, or the seventh process N times. In the first processing of each of the second and subsequent times, the updated values in the previous fifth processing or seventh processing are used for each of the M initial phases ⁇ 1 to ⁇ M. Further, the waveform data WD shows the time domain waveform of the multitone signal MS corresponding to the initial phases ⁇ 1 to ⁇ M after the update in the fifth process or the seventh process of the Nth time.
  • the threshold value ⁇ may be a value preset by the user. Further, a value preset by the user may be used for the constant ⁇ . In this case, the waveform data generation unit 2a may acquire the set threshold value ⁇ and also acquire the set constant ⁇ (see FIG. 15).
  • FIG. 17 shows an example of the error signal ES_f corresponding to the constant-multiplied phase ( ⁇ k).
  • M 5.
  • FIG. 18 shows an example of the multitone signal MS_f corresponding to the updated initial phases ⁇ 1 to ⁇ M in the seventh process.
  • M 5.
  • ⁇ 1 to ⁇ 5 in FIG. 18 indicate the initial phases ⁇ 1 to ⁇ 5 before the update in the seventh process. That is, ⁇ 1 to ⁇ 5 in FIG. 18 correspond to the values calculated by the initial value calculation unit 1.
  • the main part of the multitone signal generation device 100a is configured.
  • waveform data generation unit 2a the functions of the waveform data generation unit 2a may be collectively referred to as "waveform data generation function". Further, the reference numeral of "F2a" may be used for the waveform data generation function.
  • the hardware configuration of the main part of the multitone signal generation device 100a is the same as that described with reference to FIGS. 10 to 12 in the first embodiment. Therefore, detailed description thereof will be omitted.
  • the multitone signal generation device 100a has a plurality of functions (including an initial value calculation function and a waveform data generation function) F1 and F2a, and also has a multitone signal output function F3. ..
  • Each of the plurality of functions F1 and F2a may be realized by the processor 21 and the memory 22, or may be realized by the processing circuit 24. Further, the multitone signal output function F3 may be realized by the DAC23.
  • the processor 21 may include a dedicated processor corresponding to each of the plurality of functions F1 and F2a.
  • the memory 22 may include a dedicated memory corresponding to each of the plurality of functions F1 and F2a.
  • the processing circuit 24 may include a dedicated processing circuit corresponding to each of the plurality of functions F1 and F2a.
  • step ST1 the process of step ST1 is executed.
  • the waveform data generation unit 2a executes a convergence operation for reducing the PAPR of the multitone signal MS by using the initial phases ⁇ 1 to ⁇ M calculated by the initial value calculation unit 1. As a result, the waveform data generation unit 2a generates the waveform data WD corresponding to the multitone signal MS with reduced PAPR (step ST2a).
  • step ST3 the process of step ST3 is executed.
  • step ST2a the operation of the waveform data generation unit 2a will be described with reference to the flowchart shown in FIG. That is, the process executed in step ST2a will be described.
  • FIG. 20 the same steps as those shown in FIG. 14 are designated by the same reference numerals and the description thereof will be omitted.
  • the waveform data generation unit 2a executes the convergence operation.
  • the convergence operation in the waveform data generation unit 2a executes the first process, the second process, the third process, the fourth process, the sixth process, the fifth process, or the seventh process N times (step ST11a).
  • the first processing unit 11 executes the first processing (step ST21).
  • the second processing unit 12 executes the second processing (step ST22).
  • the third processing unit 13 executes the third processing (step ST23).
  • the fourth processing unit 14 executes the fourth processing (step ST24).
  • the sixth processing unit 16 executes the sixth processing (steps ST26_1 and ST26_2). As a result, a pseudo-random number x is generated (step ST26_1). Further, the generated pseudo-random number x is compared with the threshold value ⁇ (step ST26_2).
  • the fifth processing unit 15a executes the fifth processing (step ST25a). That is, the fifth processing unit 15a updates each initial phase ⁇ k according to the equation (2). As a result, each of the M initial phases ⁇ 1 to ⁇ M is updated.
  • step ST26_2 “NO”) the seventh processing unit 17 executes the seventh processing (step ST27). That is, the seventh processing unit 17 updates each initial phase ⁇ k by the equation (3). As a result, each of the M initial phases ⁇ 1 to ⁇ M is updated.
  • the waveform data generation unit 2a generates the waveform data WD (step ST12).
  • the generated waveform data WD is the time domain waveform of the multitone signal MS corresponding to the updated initial phases ⁇ 1 to ⁇ M in the fifth process or the seventh process (step ST25a or step ST27) of the Nth time. It shows.
  • the individual initial phase ⁇ k is updated N times by the convergence operation, and the update method in the N times update is constant. That is, each of the N updates is due to the fifth process. Therefore, when the values of the individual initial phases ⁇ k converge, the converged values may become the values corresponding to the local solution. In other words, the convergence operation can fall into a local solution.
  • the update method in each update of the N times is changed with a probability corresponding to the threshold value ⁇ . That is, the update method can change from the fifth process to the seventh process with a probability corresponding to the threshold value ⁇ .
  • the update method can change from the fifth process to the seventh process with a probability corresponding to the threshold value ⁇ .
  • the threshold value ⁇ is set to a small value (for example, a value less than 0.5)
  • the probability that the seventh process is executed is higher than the probability that the fifth process is executed in each update. It gets higher. In other words, in each update, the probability that the fifth process is executed is lower than the probability that the seventh process is executed. This reduces the effect of avoiding the occurrence of local solutions. Therefore, as described above, it is preferable that the threshold value ⁇ is set to a value within the range of, for example, 0.5 or more and less than 1.
  • the threshold value ⁇ is set to a value within the range of, for example, 0.9 or more and less than 1.
  • the waveform data generation unit 2a may execute the convergence operation shown in FIG. 20 L times.
  • the waveform data generation unit 2a executes the convergence operation L times
  • the first process, the second process, the third process, the fourth process, and the sixth process are executed N ⁇ L times, and the fifth process or the fifth process is performed. 7
  • the process is selectively executed N ⁇ L times.
  • the initial phase after the update in the Nth fifth process or the seventh process in the previous convergence operation ⁇ 1 to ⁇ M. Is used.
  • the waveform data generation unit 2a generates the waveform data WD when the Lth convergence calculation is completed.
  • the generated waveform data WD is the time domain waveform of the multitone signal MS corresponding to the updated initial phases ⁇ 1 to ⁇ M in the Nth fifth process or the seventh process in the Lth convergence operation. It shows.
  • the convergence operation repeatedly executes a plurality of processes, and the plurality of processes include a process of generating a pseudo-random number x.
  • the plurality of processes include a process of updating each of the M initial phases ⁇ 1 to ⁇ M by different update methods according to the pseudo-random number x.
  • the convergence operation executes the first process, the second process, the third process, the fourth process, the sixth process, the fifth process, or the seventh process N times, and the first process is M pieces.
  • the process of setting the multitone signal MS_f in the frequency domain using the initial phases ⁇ 1 to ⁇ M is included, and the second process includes the process of converting the multitone signal MS_f in the frequency domain into the multitone signal MS_t in the time domain.
  • the third process includes a process of calculating the error signal ES_t in the time domain by calculating the difference value between the value of the multitone signal MS_t in the time domain and the predetermined reference value S, and the fourth process is the process of calculating the error signal ES_t in the time domain.
  • the sixth process includes a process of converting the error signal ES_t in the frequency domain into an error signal ES_f in the frequency domain, the sixth process includes a process of generating a pseudo random number x, and a process of comparing the pseudo random number x with a predetermined threshold value ⁇ , and the fifth process includes a process of comparing the pseudo random number x with a predetermined threshold value ⁇ .
  • the pseudo random number x is a value less than the threshold value ⁇
  • the difference value ( ⁇ k ⁇ ) between the phase component ( ⁇ k ) of the multitone signal MS_f in the frequency domain and the phase component ( ⁇ k ) of the error signal ES_f in the frequency domain is a value less than the threshold value ⁇ .
  • the seventh process includes the process of updating each of the M initial phases ⁇ 1 to ⁇ M based on ⁇ k ), and the seventh process is the multitone signal MS in the frequency domain when the pseudo random number x is a value equal to or greater than the threshold ⁇ .
  • phase component (theta k) and the difference value ( ⁇ k - ⁇ k) M-number of initial phase theta 1 based on the phase component of the error signal ES_f in the frequency domain (phi k) is a constant multiple values ( ⁇ k) It includes a process of updating each of ⁇ ⁇ M. Thereby, the convergence operation in the waveform data generation unit 2a can be realized based on the flowchart shown in FIG.
  • FIG. 21 is a block diagram showing a main part of the multitone signal generation device according to the third embodiment.
  • FIG. 22 is a block diagram showing a main part of a waveform data generation unit in the multitone signal generation device according to the third embodiment.
  • the multitone signal generation device according to the third embodiment will be described with reference to FIGS. 21 and 22.
  • FIG. 21 the same blocks as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. Further, in FIG. 22, the same blocks as those shown in FIG. 2 are designated by the same reference numerals and the description thereof will be omitted.
  • the multitone signal generation device 100b includes an initial value calculation unit 1, a waveform data generation unit 2b, and a multitone signal output unit 3.
  • the waveform data generation unit 2b includes a first processing unit 11, a second processing unit 12, a third processing unit 13, a fourth processing unit 14, and a fifth processing unit 15.
  • the waveform data generation unit 2b includes the eighth processing unit 18.
  • the convergence operation in the waveform data generation unit 2b includes a first process, a second process, a third process, a fourth process, and a fifth process.
  • the convergence operation in the waveform data generation unit 2b includes a process executed by the eighth process unit 18 (hereinafter referred to as “eighth process”).
  • the convergence operation in the waveform data generation unit 2b will be described focusing on a portion different from the convergence operation in the waveform data generation unit 2.
  • the sign of "i" may be used for the index corresponding to each of the N times of processing in the convergence operation. That is, the index i can indicate an individual integer value out of N integer values (1 to N).
  • N ⁇ M values (hereinafter referred to as “magnification values”) corresponding to N ⁇ M magnifications (1 + ⁇ 1,1 ) to (1 + ⁇ N, M ) ⁇ 1,1 to ⁇ N, M is used.
  • the individual magnification values ⁇ i and k correspond to the kth tone signal TS k of the M tone signals TS 1 to TS M, and the i-th of the N times eighth processing. It corresponds to the eighth process of the times. That is, each magnification value gamma i, k is intended to correspond to any one of the tone signal TS k of the M tone signal TS 1 ⁇ TS M, and the eighth process N times It corresponds to any one of the eighth processes.
  • magnification values ⁇ i, k of each of the N ⁇ M magnification values ⁇ 1,1 to ⁇ N, M are set to different values.
  • the values ⁇ i and k may be set to the same value.
  • the individual magnification values ⁇ i and k are set to non--1 values ( ⁇ i, k ⁇ -1). This is because the corresponding magnification (1 + ⁇ i, k ) is set to a non-zero value for each magnification value ⁇ i, k.
  • the eighth processing unit 18 has a data table showing N ⁇ M magnification values ⁇ 1,1 to ⁇ N, M. Alternatively, when the eighth processing unit 18 executes the eighth processing each time, the eighth processing unit 18 generates M pseudo-random numbers corresponding to the M tone signals TS 1 to TS M, and corresponds to the generated pseudo-random numbers. It is used for the magnification values ⁇ i and k.
  • each of the M amplitude A 1 ⁇ A M a predetermined value (e.g. 1) are used. Therefore, in the multi-tone signal MS_f set by the 1st first process, an individual amplitude A k is 1 (see FIG. 3).
  • the eighth processing unit 18 executes the eighth processing when the first processing of each time is executed. Eighth processing each time using the corresponding magnification value gamma i, k of the N ⁇ M pieces of magnification values gamma 1, 1 ⁇ gamma N, M, and each of the M amplitude A 1 ⁇ A M It includes the process of updating. That is, the eighth process each time is intended to include processing for updating the individual amplitudes A k according to the following equation (4).
  • an eighth process each time are those which comprise a process for generating a multi-tone signal MS_f corresponding to the amplitude A 1 ⁇ A M which is the update. That is, the eighth process each time, for a corresponding first processing multitone signal MS_f set by, is intended to include the processing of the individual amplitude A k to (1 + ⁇ i, k) times. Thus, for multi-tone signal MS_f set by the corresponding first process, the individual amplitude A k is (1 + ⁇ i, k) multiplied multitone signal MS_f is generated.
  • FIG. 23 shows an example of individual magnifications (1 + ⁇ i, k) in each eighth process.
  • FIG. 24 shows an example of the multitone signal MS_f generated in the first eighth process of the N eighth processes.
  • M 5.
  • a 1 to A 5 in FIG. 24 indicate the amplitudes A 1 to A 5 before the update in the first eighth process. That is, A 1 to A 5 in FIG. 24 correspond to 1.
  • each time, the second process is executed.
  • the multitone signal MS_f generated in the corresponding eighth process is converted into a multitone signal MS_t in the time domain.
  • the third process, the fourth process, and the fifth process are sequentially executed.
  • each initial phase ⁇ k is updated.
  • the next first process is executed using the initial phases ⁇ 1 to ⁇ M after the update.
  • each of the M amplitude A 1 ⁇ A M the updated value in the eighth process of the previous time is used.
  • a predetermined value for example, 1 is used for each amplitude Ak, and the value calculated by the initial value calculation unit 1 is individually used. Used for the initial phase ⁇ k of.
  • the updated value in the previous eighth processing is used for each amplitude Ak , and the previous fifth processing. The updated value in is used for each initial phase ⁇ k.
  • FIG. 25 shows an example of the multitone signal MS_f set in the first processing of the second time.
  • M 5.
  • a 1 to A 5 in FIG. 25 indicate the amplitudes A 1 to A 5 before the update in the first eighth process. That is, A 1 to A 5 in FIG. 25 correspond to 1.
  • ⁇ 1 to ⁇ 5 in FIG. 25 indicate the initial phases ⁇ 1 to ⁇ 5 before the update in the first fifth process. That is, ⁇ 1 to ⁇ 5 in FIG. 25 correspond to the values calculated by the initial value calculation unit 1.
  • the convergence operation in the waveform data generation unit 2b repeatedly executes a plurality of processes. More specifically, the convergence operation in the waveform data generation unit 2b executes the first process, the eighth process, the second process, the third process, the fourth process, and the fifth process N times.
  • the main part of the multitone signal generation device 100b is configured.
  • waveform data generation unit 2b may be collectively referred to as "waveform data generation function". Further, the reference numeral of "F2b" may be used for the waveform data generation function.
  • the hardware configuration of the main part of the multitone signal generation device 100b is the same as that described with reference to FIGS. 10 to 12 in the first embodiment. Therefore, detailed description thereof will be omitted.
  • the multitone signal generation device 100b has a plurality of functions (including an initial value calculation function and a waveform data generation function) F1 and F2b, and also has a multitone signal output function F3. ..
  • Each of the plurality of functions F1 and F2b may be realized by the processor 21 and the memory 22, or may be realized by the processing circuit 24. Further, the multitone signal output function F3 may be realized by the DAC23.
  • the processor 21 may include a dedicated processor corresponding to each of the plurality of functions F1 and F2b.
  • the memory 22 may include a dedicated memory corresponding to each of the plurality of functions F1 and F2b.
  • the processing circuit 24 may include a dedicated processing circuit corresponding to each of the plurality of functions F1 and F2b.
  • step ST1 the process of step ST1 is executed.
  • the waveform data generation unit 2b executes a convergence operation for reducing the PAPR of the multitone signal MS by using the initial phases ⁇ 1 to ⁇ M calculated by the initial value calculation unit 1. As a result, the waveform data generation unit 2b generates the waveform data WD corresponding to the multitone signal MS with reduced PAPR (step ST2b).
  • step ST3 the process of step ST3 is executed.
  • step ST2b the operation of the waveform data generation unit 2b will be described with reference to the flowchart shown in FIG. 27. That is, the process executed in step ST2b will be described.
  • FIG. 27 the same steps as those shown in FIG. 14 are designated by the same reference numerals and the description thereof will be omitted.
  • the waveform data generation unit 2b executes the convergence operation.
  • the convergence operation in the waveform data generation unit 2b executes the first process, the eighth process, the second process, the third process, the fourth process, and the fifth process N times (step ST11b).
  • the first processing unit 11 executes the first processing (step ST21).
  • the eighth processing unit 18 executes the eighth processing (step ST28).
  • the individual amplitudes Ak are updated by the equation (4).
  • the multi-tone signal MS_f corresponding to the amplitude A 1 ⁇ A M which is the update is generated. That is, the individual amplitudes Ak are multiplied by (1 + ⁇ i, k).
  • the second processing unit 12 executes the second processing for the multitone signal MS_f generated in step ST28 (step ST22).
  • the third processing unit 13 executes the third processing (step ST23).
  • the fourth processing unit 14 executes the fourth processing (step ST24).
  • the fifth processing unit 15 executes the fifth processing (step ST25).
  • waveform data generation unit 2b When these processes are executed N times, the convergence operation ends.
  • the waveform data generation unit 2b generates waveform data WD (step ST12).
  • Waveform data WD which the generated is a multi-tone signal MS corresponding to the amplitude A 1 ⁇ A M updated in the eighth process of the N times (step ST28), the N times of the fifth process (step It shows the time domain waveform of the multitone signal MS corresponding to the initial phase ⁇ 1 to ⁇ M after the update in ST25).
  • the convergence operation in the waveform data generation unit 2b includes a process of updating the individual amplitude Ak (that is, the eighth process) in addition to the process of updating the individual initial phase ⁇ k (that is, the fifth process). It includes.
  • the waveform data generation unit 2b may execute the convergence operation shown in FIG. 27 L times.
  • the sign of "j" may be used for the index corresponding to each of the L times of convergence operations. That is, the index j can indicate an individual integer value out of L integer values (1 to L).
  • the waveform data generation unit 2b executes the convergence operation L times
  • the first process, the eighth process, the second process, the third process, the fourth process, and the fifth process are executed N ⁇ L times.
  • the amplitude A 1 ⁇ A M updated in the eighth process of the N times is used in the preceding convergence calculation
  • the initial phases ⁇ 1 to ⁇ M after the update in the Nth fifth process in the previous convergence operation are used.
  • the waveform data generation unit 2b generates the waveform data WD when the Lth convergence operation is completed.
  • the generated waveform data WD is a multi-tone signal MS corresponding to the amplitude A 1 ⁇ A M updated in the eighth process of the N times in the convergence calculation of the L times, the L-time convergence calculation
  • the time domain waveform of the multitone signal MS corresponding to the initial phase ⁇ 1 to ⁇ M after the update in the fifth process of the Nth time is shown.
  • the eighth processing unit 18 has L ⁇ N ⁇ M magnification values ⁇ 1 corresponding to L ⁇ N ⁇ M magnifications (1 + ⁇ 1,1,1 ) to (1 + ⁇ L, N, M). , 1, 1 to ⁇ L, N, M may be used.
  • the individual magnification values ⁇ j, i, and k correspond to the kth tone signal TS k of the M tone signals TS 1 to TS M, and are among the N eighth processes. It corresponds to the eighth process of the i-th time, and corresponds to the j-th convergence operation of the L times of convergence operations.
  • the individual magnification values ⁇ j, i, and k correspond to any one of the M tone signals TS 1 to TS M, and the Nth time signal TS k. It corresponds to any one of the eighth processes, and corresponds to any one of the L times of convergence operations.
  • the 8th processing unit 18 has L ⁇ N ⁇ M magnification values ⁇ 1,1,1 to ⁇ corresponding magnification values ⁇ j among L, N, and M. , i, with k, updating each of the M amplitude a 1 ⁇ a M. That is, the eighth processing unit 18 updates the individual amplitudes A k according to the following equation (5).
  • the eighth processing unit 18 each time at each time of the convergence calculation, the eighth processing unit 18 generates a multi-tone signal MS_f corresponding to the amplitude A 1 ⁇ A M which is the update. That is, the eighth processing unit 18, the multi-tone signal MS_f set by the corresponding first process, the individual amplitude A k (1 + ⁇ j, i, k) is doubled. Thus, for the corresponding multi-tone signal set by the first process of MS_f, individual amplitude A k is (1 + ⁇ j, i, k) multiplied multitone signal MS_f is generated.
  • FIG. 28 shows an example of individual magnifications (1 + ⁇ j, i, k ) in the eighth process of each time in each convergence operation.
  • the individual magnification values ⁇ j, i, k are preferably set to non-unique values ( ⁇ j, i, k ⁇ 1).
  • the convergence operation repeatedly executes a plurality of processes, and the plurality of processes are performed by M tone signals TS 1 to TS.
  • M amplitude a 1 ⁇ a M which correspond to M, comprises the process of updating each of a plurality of amplitude a 1 ⁇ a M, a plurality of process, updates the respective plurality of initial phase theta k Includes processing to do.
  • the convergence operation executes the first process, the eighth process, the second process, the third process, the fourth process, and the fifth process N times, and the first process is the M tone signal TS 1
  • the eighth process includes a process of setting the multitone signal MS_f in the frequency domain using M amplitudes A 1 to AM corresponding to ⁇ TS M and M initial phases ⁇ 1 to ⁇ M, and the eighth process is N ⁇ .
  • the corresponding magnification values ⁇ i, k or L ⁇ N ⁇ M magnification values ⁇ 1,1,1 to ⁇ L, N, M corresponding magnification value gamma j wherein i, the process of updating each of the M amplitude a 1 ⁇ a M with k, the second process, a multi-tone multi-tone signal MS_f in the frequency domain in the time domain
  • the third process includes the process of converting to the signal MS_t, and the third process includes the process of calculating the error signal ES_t in the time domain by calculating the difference value between the value of the multitone signal MS_t in the time domain and the predetermined reference value S.
  • the fourth process includes the process of converting the error signal ES_t in the time domain into the error signal ES_f in the frequency domain, and the fifth process includes the phase component ( ⁇ k ) of the multitone signal MS_f in the frequency domain and the error in the frequency domain. including a process of updating each of the M initial phase theta 1 ⁇ theta M based on the difference value between the phase component of the signal ES_f ( ⁇ k) ( ⁇ k - ⁇ k).
  • the convergence operation in the waveform data generation unit 2b can be realized based on the flowchart shown in FIG. 27.
  • each of the N ⁇ M magnification values ⁇ 1,1 to ⁇ N, M or each of the L ⁇ N ⁇ M magnification values ⁇ 1,1,1 to ⁇ L, N, M is M. It corresponds to the tone signal TS k of any one of the tone signals TS 1 to TS M , and corresponds to any one of the 8th processes of N times. be. Thus, the eighth process N times, it is possible to occupy different magnification according to the individual amplitude A k to the 8 per treatment.
  • the waveform data generation unit 2b executes the convergence operation L times, and each of the magnification values ⁇ 1,1,1 to ⁇ L, N, M of L ⁇ N ⁇ M converges L times. It corresponds to any one of the operations, the convergence operation.
  • convergence calculation can be made different magnification according to the individual amplitude A k for each convergence calculation.
  • FIG. 29 is a block diagram showing a main part of the multitone signal generation device according to the fourth embodiment.
  • FIG. 30 is a block diagram showing a main part of a waveform data generation unit in the multitone signal generation device according to the fourth embodiment.
  • the multitone signal generation device according to the fourth embodiment will be described with reference to FIGS. 29 and 30.
  • FIG. 29 the same blocks as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.
  • FIG. 30 the same blocks as those shown in FIG. 16 are designated by the same reference numerals and the description thereof will be omitted.
  • FIG. 30 the same blocks as those shown in FIG. 22 are designated by the same reference numerals and the description thereof will be omitted.
  • the multitone signal generation device 100c includes an initial value calculation unit 1, a waveform data generation unit 2c, and a multitone signal output unit 3.
  • the waveform data generation unit 2c includes a first processing unit 11, a second processing unit 12, a third processing unit 13, a fourth processing unit 14, and a fifth processing unit 15a.
  • the waveform data generation unit 2c includes the sixth processing unit 16 and the seventh processing unit 17. Further, the waveform data generation unit 2c includes the eighth processing unit 18.
  • the waveform data generation unit 2c is formed by combining the waveform data generation unit 2a and the waveform data generation unit 2b.
  • the convergence operation in the waveform data generation unit 2c repeatedly executes a plurality of processes. More specifically, in the convergence operation in the waveform data generation unit 2c, the first process, the eighth process, the second process, the third process, the fourth process, and the sixth process are executed N times, and the fifth process or the fifth process is performed.
  • the seventh process is selectively executed N times. In other words, the convergence operation in the waveform data generation unit 2c executes the first process, the eighth process, the second process, the third process, the fourth process, the sixth process, and the fifth process or the seventh process N times. It is a thing.
  • the main part of the multitone signal generation device 100c is configured.
  • waveform data generation unit 2c may be collectively referred to as "waveform data generation function". Further, the reference numeral of "F2c" may be used for the waveform data generation function.
  • the hardware configuration of the main part of the multitone signal generation device 100c is the same as that described with reference to FIGS. 10 to 12 in the first embodiment. Therefore, detailed description thereof will be omitted.
  • the multitone signal generation device 100c has a plurality of functions (including an initial value calculation function and a waveform data generation function) F1 and F2c, and also has a multitone signal output function F3. ..
  • Each of the plurality of functions F1 and F2c may be realized by the processor 21 and the memory 22, or may be realized by the processing circuit 24. Further, the multitone signal output function F3 may be realized by the DAC23.
  • the processor 21 may include a dedicated processor corresponding to each of the plurality of functions F1 and F2c.
  • the memory 22 may include a dedicated memory corresponding to each of the plurality of functions F1 and F2c.
  • the processing circuit 24 may include a dedicated processing circuit corresponding to each of the plurality of functions F1 and F2c.
  • step ST1 the process of step ST1 is executed.
  • the waveform data generation unit 2c executes a convergence operation for reducing the PAPR of the multitone signal MS by using the initial phases ⁇ 1 to ⁇ M calculated by the initial value calculation unit 1. As a result, the waveform data generation unit 2c generates the waveform data WD corresponding to the multitone signal MS with reduced PAPR (step ST2c).
  • step ST3 the process of step ST3 is executed.
  • step ST2c the operation of the waveform data generation unit 2c will be described with reference to the flowchart shown in FIG. That is, the process executed in step ST2c will be described.
  • FIG. 32 the same steps as those shown in FIG. 20 are designated by the same reference numerals and the description thereof will be omitted. Further, in FIG. 32, the same steps as those shown in FIG. 27 are designated by the same reference numerals and the description thereof will be omitted.
  • the waveform data generation unit 2c executes the convergence operation.
  • the convergence operation in the waveform data generation unit 2c executes the first process, the eighth process, the second process, the third process, the fourth process, the sixth process, the fifth process, or the seventh process N times (. Step ST11c).
  • the first processing unit 11 executes the first processing (step ST21).
  • the eighth processing unit 18 executes the eighth processing (step ST28).
  • the second processing unit 12 executes the second processing (step ST22).
  • the third processing unit 13 executes the third processing (step ST23).
  • the fourth processing unit 14 executes the fourth processing (step ST24).
  • the sixth processing unit 16 executes the sixth processing (steps ST26_1 and ST26_2).
  • the pseudo-random number x is a value less than the threshold value ⁇ (step ST26_2 “YES”)
  • the fifth processing unit 15a executes the fifth processing (step ST25a).
  • the seventh processing unit 17 executes the seventh processing (step ST27).
  • waveform data generation unit 2 When these processes are executed N times, the convergence operation ends.
  • the waveform data generation unit 2 generates waveform data WD (step ST12).
  • Waveform data WD which the generated is a multi-tone signal MS corresponding to the amplitude A 1 ⁇ A M updated in the eighth process of the N times (step ST28), the fifth processing or the N-th time It shows the time domain waveform of the multitone signal MS corresponding to the initial phase ⁇ 1 to ⁇ M after the update in 7 processing (step ST25a or step ST27).
  • multitone signal generation device 100c various modifications similar to those described in the first embodiment can be adopted. Further, as the multitone signal generation device 100c, various modifications similar to those described in the second embodiment can be adopted. Further, as the multitone signal generation device 100c, various modifications similar to those described in the third embodiment can be adopted.
  • the convergence operation repeatedly executes a plurality of processes, and the plurality of processes are performed by M tone signals TS 1 to TS.
  • M amplitude a 1 ⁇ a M which correspond to M, comprises the process of updating each of the M amplitude a 1 ⁇ a M
  • a plurality of processing may include processing for generating a pseudo-random number x, a plurality
  • the processing includes a process of updating each of the M initial phases ⁇ 1 to ⁇ M by different update methods according to the pseudo-random number x.
  • the convergence operation executes the first process, the eighth process, the second process, the third process, the fourth process, the sixth process and the fifth process or the seventh process N times
  • the first process is includes a process of setting a multi-tone signal MS_f in the frequency domain using the M amplitude a 1 ⁇ a M and M number of initial phase theta 1 ⁇ theta M corresponding to the M tone signal TS 1 ⁇ TS M
  • the corresponding magnification values ⁇ i, k or L ⁇ N ⁇ M magnification values ⁇ 1,1,1 among N ⁇ M magnification values ⁇ 1,1 to ⁇ N, M are performed.
  • the third process includes a process of converting the signal MS_f into a multitone signal MS_t in the time domain, and the third process is an error in the time domain by calculating the difference value between the value of the multitone signal MS_t in the time domain and the predetermined reference value S.
  • the fourth process includes a process of calculating the signal ES_t, the fourth process includes a process of converting the error signal ES_t in the time domain into the error signal ES_f in the frequency domain, and the sixth process includes a process of generating a pseudo random number x and a pseudo random number x.
  • the fifth process includes the phase component ( ⁇ k ) of the multitone signal MS_f in the frequency domain and the error signal in the frequency domain when the pseudo random number x is a value less than the threshold ⁇ .
  • a pseudo-random number x is the threshold If it is ⁇ or more values, the difference value between the multi-tone signal MS_f phase components (theta k) the value phase component of the error signal ES_f in the frequency domain (phi k) is a constant multiple ( ⁇ k) in the frequency domain It includes a process of updating each of the M initial phases ⁇ 1 to ⁇ M based on ( ⁇ k ⁇ ⁇ ⁇ k). As a result, the convergence operation in the waveform data generation unit 2c can be realized based on the flowchart shown in FIG.
  • each of the N ⁇ M magnification values ⁇ 1,1 to ⁇ N, M or each of the L ⁇ N ⁇ M magnification values ⁇ 1,1,1 to ⁇ L, N, M is M. It corresponds to the tone signal TS k of any one of the tone signals TS 1 to TS M , and corresponds to any one of the 8th processes of N times. be. Thus, the eighth process N times, it is possible to occupy different magnification according to the individual amplitude A k to the 8 per treatment.
  • the waveform data generation unit 2c executes the convergence operation L times, and each of the magnification values ⁇ 1,1,1 to ⁇ L, N, M of L ⁇ N ⁇ M converges L times. It corresponds to any one of the operations, the convergence operation.
  • convergence calculation can be made different magnification according to the individual amplitude A k for each convergence calculation.
  • the multitone signal generation device and the multitone signal generation method according to the present disclosure can be used, for example, for measuring frequency characteristics at the RF front end of a wireless communication device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electrophonic Musical Instruments (AREA)

Abstract

This multitone signal generation device (100) comprises an initial value calculation unit (1) that calculates an initial value used in a convergence computation for reducing the PAPR of a multitone signal (MS), a waveform data generation unit (2) that generates waveform data (WD) indicating the waveform of the multitone signal (MS) in which the PAPR is reduced by executing the convergence computation using the initial value, and a multitone signal output unit (3) that outputs the multitone signal (MS) in accordance with the waveform data (WD) generated by the waveform data generation unit (2). In the present invention: the initial value includes M initial phases (θ1 to θM) corresponding to M tone signals (TS1 to TSM) included in the multitone signal (MS); the initial value calculation unit (1) calculates each of the M initial phases (θ1 to θM) by executing an algebraic calculation using a prescribed numerical expression; and said numerical expression includes a variable corresponding to the tone number (M) of the multitone signal (MS) and a variable corresponding to an integer (r) that is a mutual prime of the tone number (M).

Description

マルチトーン信号生成装置及びマルチトーン信号生成方法Multitone signal generator and multitone signal generation method
 本開示は、マルチトーン信号生成装置及びマルチトーン信号生成方法に関する。 The present disclosure relates to a multitone signal generation device and a multitone signal generation method.
 従来、マルチトーン信号を用いて、無線通信装置のRF(Radio Frequency)フロントエンドにおける周波数特性(振幅特性及び位相特性を含む。以下同じ。)を測定する技術が開発されている。また、かかる測定の結果に応じたデジタル信号処理を実行することにより、RFフロントエンドにおける周波数特性を補正する技術が開発されている(例えば、特許文献1参照。)。 Conventionally, a technique for measuring frequency characteristics (including amplitude characteristics and phase characteristics; the same applies hereinafter) at the RF (Radio Frequency) front end of a wireless communication device has been developed using a multitone signal. Further, a technique for correcting the frequency characteristic in the RF front end by executing digital signal processing according to the result of such measurement has been developed (see, for example, Patent Document 1).
 通常、マルチトーン信号は、高いピーク電力対平均電力比(以下「PAPR」という。)を有するものである。高いPAPRを有するマルチトーン信号を用いることにより、RFフロントエンドの非線形素子にてスプリアスが発生する。RFフロントエンドの内部にてスプリアスが発生することにより、RFフロントエンドにおける周波数特性を正確に測定することが困難となる。このため、低いPAPRを有するマルチトーン信号を用いるのが好適である。換言すれば、マルチトーン信号のPAPRを低減するのが好適である。 Normally, a multitone signal has a high peak power to average power ratio (hereinafter referred to as "PAPR"). By using a multitone signal with high PAPR, spurious is generated in the non-linear element of the RF front end. The generation of spurious inside the RF front end makes it difficult to accurately measure the frequency characteristics of the RF front end. Therefore, it is preferable to use a multitone signal having a low PAPR. In other words, it is preferable to reduce the PAPR of the multitone signal.
 これに対して、非特許文献1には、低いクレストファクタを有するマルチトーン信号を生成する技術が開示されている。すなわち、非特許文献1には、低いPAPRを有するマルチトーン信号を生成する技術が開示されている。換言すれば、非特許文献1には、マルチトーン信号のPAPRを低減する技術が開示されている。 On the other hand, Non-Patent Document 1 discloses a technique for generating a multitone signal having a low crest factor. That is, Non-Patent Document 1 discloses a technique for generating a multitone signal having a low PAPR. In other words, Non-Patent Document 1 discloses a technique for reducing PAPR of a multitone signal.
 以下、PAPRが低減されたマルチトーン信号を「低PAPRマルチトーン信号」ということがある。すなわち、低PAPRマルチトーン信号は、通常のマルチトーン信号におけるPAPRに比して低いPAPRを有するものである。 Hereinafter, a multitone signal with reduced PAPR may be referred to as a "low PAPR multitone signal". That is, the low PAPR multitone signal has a lower PAPR than the PAPR in a normal multitone signal.
国際公開第2009/022697号International Publication No. 2009/022697
 非特許文献1に記載された技術(以下「従来技術」という。)は、低いクレストファクタを有するマルチトーン信号を生成するにあたり、収束演算を実行するものである。マルチトーン信号が複数個のトーン信号を含むものであるところ、収束演算における初期値は、複数個のトーン信号に対応する複数個の初期位相を含むものである。従来技術は、収束演算における初期値にバーカー符号(Barker Code)を用いるものである。 The technique described in Non-Patent Document 1 (hereinafter referred to as "conventional technique") executes a convergence operation in generating a multitone signal having a low crest factor. Where the multitone signal includes a plurality of tone signals, the initial value in the convergence operation includes a plurality of initial phases corresponding to the plurality of tone signals. In the prior art, a Barker code is used as an initial value in the convergence operation.
 ここで、バーカー符号における符号長の最大値は、13である。このため、マルチトーン信号に含まれるトーン信号の個数(以下「トーン数」という。)が13以下である場合、収束演算における初期値にバーカー符号を用いることができる。他方、トーン数が14以上である場合、収束演算における初期値にバーカー符号を用いることができない。このような場合、収束演算における初期値にPBC(Polyphase Barker Code)が用いられる。PBCは、バーカー符号を拡張してなるものである。 Here, the maximum value of the code length in the Barker code is 13. Therefore, when the number of tone signals included in the multitone signal (hereinafter referred to as “the number of tones”) is 13 or less, the Barker code can be used as the initial value in the convergence operation. On the other hand, when the number of tones is 14 or more, the Barker code cannot be used as the initial value in the convergence operation. In such a case, PBC (Polyphase Barker Code) is used as the initial value in the convergence operation. PBC is an extension of the Barker code.
 しかしながら、収束演算における初期値にPBCを用いる場合、PBCを算出するための専用の収束演算が別途要求される。そして、かかる専用の収束演算における初期値を計算することが別途要求される。非特許文献1には、かかる専用の収束演算における初期値を計算する方法が開示されていない。このため、従来技術においては、トーン数が14以上である場合、低いクレストファクタを有するマルチトーン信号を生成することが困難であるという問題があった。換言すれば、従来技術においては、任意のトーン数に対して低PAPRマルチトーン信号を生成することが困難であるという問題があった。 However, when PBC is used as the initial value in the convergence operation, a dedicated convergence operation for calculating the PBC is separately required. Then, it is separately required to calculate the initial value in the dedicated convergence operation. Non-Patent Document 1 does not disclose a method for calculating an initial value in such a dedicated convergence operation. Therefore, in the prior art, there is a problem that it is difficult to generate a multitone signal having a low crest factor when the number of tones is 14 or more. In other words, in the prior art, there is a problem that it is difficult to generate a low PAPR multitone signal for an arbitrary number of tones.
 本開示は、上記のような課題を解決するためになされたものであり、任意のトーン数に対して低PAPRマルチトーン信号を生成することができるマルチトーン信号生成装置及びマルチトーン信号生成方法を提供することを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and a multitone signal generation device and a multitone signal generation method capable of generating a low PAPR multitone signal for an arbitrary number of tones are provided. The purpose is to provide.
 本開示に係るマルチトーン信号生成装置は、マルチトーン信号のPAPRを低減するための収束演算に用いられる初期値を計算する初期値計算部と、初期値を用いた収束演算を実行することによりPAPRが低減されたマルチトーン信号の波形を示す波形データを生成する波形データ生成部と、波形データ生成部により生成された波形データに対応するマルチトーン信号を出力するマルチトーン信号出力部と、を備え、初期値は、マルチトーン信号に含まれる複数個のトーン信号に対応する複数個の初期位相を含み、初期値計算部は、所定の数式を用いた代数計算を実行することにより複数個の初期位相の各々を計算するものであり、数式は、マルチトーン信号のトーン数に対応する代数を含み、かつ、トーン数に対して互いに素である整数に対応する代数を含むものである。 The multitone signal generator according to the present disclosure includes an initial value calculation unit that calculates an initial value used for a convergence calculation for reducing PAPR of a multitone signal, and a PAPR by executing a convergence calculation using the initial value. It is provided with a waveform data generation unit that generates waveform data indicating the waveform of the multitone signal with reduced multitone signal, and a multitone signal output unit that outputs the multitone signal corresponding to the waveform data generated by the waveform data generation unit. , The initial value includes a plurality of initial phases corresponding to a plurality of tone signals included in the multitone signal, and the initial value calculation unit performs a plurality of initial values by performing an algebraic calculation using a predetermined mathematical formula. Each of the phases is calculated, and the formula includes an algebra corresponding to the number of tones of the multitone signal and an algebra corresponding to an integer that is prime to each other with respect to the number of tones.
 本開示に係るマルチトーン信号生成方法は、初期値計算部が、マルチトーン信号のPAPRを低減するための収束演算に用いられる初期値を計算するステップと、波形データ生成部が、初期値を用いた収束演算を実行することによりPAPRが低減されたマルチトーン信号の波形を示す波形データを生成するステップと、マルチトーン信号出力部が、波形データ生成部により生成された波形データに対応するマルチトーン信号を出力するステップと、を備え、初期値は、マルチトーン信号に含まれる複数個のトーン信号に対応する複数個の初期位相を含み、初期値計算部は、所定の数式を用いた代数計算を実行することにより複数個の初期位相の各々を計算するものであり、数式は、マルチトーン信号のトーン数に対応する代数を含み、かつ、トーン数に対して互いに素である整数に対応する代数を含むものである。 In the multitone signal generation method according to the present disclosure, the initial value calculation unit uses a step of calculating the initial value used for the convergence calculation for reducing the PAPR of the multitone signal, and the waveform data generation unit uses the initial value. The step of generating waveform data showing the waveform of the multitone signal whose PAPR is reduced by executing the convergence operation that was performed, and the multitone signal output unit are the multitone corresponding to the waveform data generated by the waveform data generation unit. The initial value includes a plurality of initial phases corresponding to a plurality of tone signals included in the multitone signal, and the initial value calculation unit performs algebraic calculation using a predetermined mathematical formula. Each of the plurality of initial phases is calculated by executing It includes algebra.
 本開示によれば、上記のように構成したので、任意のトーン数に対して低PAPRマルチトーン信号を生成することができる。 According to the present disclosure, since it is configured as described above, it is possible to generate a low PAPR multitone signal for an arbitrary number of tones.
実施の形態1に係るマルチトーン信号生成装置の要部を示すブロック図である。It is a block diagram which shows the main part of the multitone signal generation apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係るマルチトーン信号生成装置における波形データ生成部の要部を示すブロック図である。It is a block diagram which shows the main part of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 1. FIG. 周波数領域におけるマルチトーン信号の例を示す説明図である。It is explanatory drawing which shows the example of the multitone signal in a frequency domain. 時間領域におけるマルチトーン信号の例を示す説明図である。It is explanatory drawing which shows the example of the multitone signal in the time domain. 時間領域におけるエラー信号の例を示す説明図である。It is explanatory drawing which shows the example of the error signal in the time domain. 周波数領域におけるエラー信号の例を示す説明図である。It is explanatory drawing which shows the example of the error signal in a frequency domain. 周波数領域におけるマルチトーン信号の他の例を示す説明図である。It is explanatory drawing which shows the other example of a multitone signal in a frequency domain. 通常のマルチトーン信号におけるPAPRの例を示す説明図である。It is explanatory drawing which shows the example of PAPR in a normal multitone signal. 低PAPRマルチトーン信号におけるPAPRの例を示す説明図である。It is explanatory drawing which shows the example of PAPR in a low PAPR multitone signal. 実施の形態1に係るマルチトーン信号生成装置の要部のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware composition of the main part of the multitone signal generation apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係るマルチトーン信号生成装置の要部の他のハードウェア構成を示すブロック図である。It is a block diagram which shows the other hardware configuration of the main part of the multitone signal generation apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係るマルチトーン信号生成装置の要部の他のハードウェア構成を示すブロック図である。It is a block diagram which shows the other hardware configuration of the main part of the multitone signal generation apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係るマルチトーン信号生成装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the multitone signal generation apparatus which concerns on Embodiment 1. 実施の形態1に係るマルチトーン信号生成装置における波形データ生成部の動作を示すフローチャートである。It is a flowchart which shows the operation of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係るマルチトーン信号生成装置における波形データ生成部の動作を示すフローチャートである。It is a flowchart which shows the operation of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係るマルチトーン信号生成装置の要部を示すブロック図である。It is a block diagram which shows the main part of the multitone signal generation apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係るマルチトーン信号生成装置における波形データ生成部の要部を示すブロック図である。It is a block diagram which shows the main part of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 2. FIG. 周波数領域におけるエラー信号の他の例を示す説明図である。It is explanatory drawing which shows the other example of the error signal in a frequency domain. 周波数領域におけるマルチトーン信号の他の例を示す説明図である。It is explanatory drawing which shows the other example of a multitone signal in a frequency domain. 実施の形態2に係るマルチトーン信号生成装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the multitone signal generation apparatus which concerns on Embodiment 2. 実施の形態2に係るマルチトーン信号生成装置における波形データ生成部の動作を示すフローチャートである。It is a flowchart which shows the operation of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 2. 実施の形態2に係るマルチトーン信号生成装置における波形データ生成部の動作を示すフローチャートである。It is a flowchart which shows the operation of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 2. 実施の形態3に係るマルチトーン信号生成装置の要部を示すブロック図である。It is a block diagram which shows the main part of the multitone signal generation apparatus which concerns on Embodiment 3. FIG. 実施の形態3に係るマルチトーン信号生成装置における波形データ生成部の要部を示すブロック図である。It is a block diagram which shows the main part of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 3. FIG. 個々のトーン信号の振幅について、各回の第8処理における倍率の例を示す説明図である。It is explanatory drawing which shows the example of the magnification in the 8th processing of each time about the amplitude of each tone signal. 周波数領域におけるマルチトーン信号の他の例を示す説明図である。It is explanatory drawing which shows the other example of a multitone signal in a frequency domain. 周波数領域におけるマルチトーン信号の他の例を示す説明図である。It is explanatory drawing which shows the other example of a multitone signal in a frequency domain. 実施の形態3に係るマルチトーン信号生成装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the multitone signal generation apparatus which concerns on Embodiment 3. 実施の形態3に係るマルチトーン信号生成装置における波形データ生成部の動作を示すフローチャートである。It is a flowchart which shows the operation of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 3. FIG. 実施の形態3に係るマルチトーン信号生成装置における波形データ生成部の動作を示すフローチャートである。It is a flowchart which shows the operation of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 3. FIG. 個々のトーン信号の振幅について、各回の第8処理における倍率の他の例を示す説明図である。It is explanatory drawing which shows the other example of the magnification in the 8th processing of each time about the amplitude of each tone signal. 実施の形態4に係るマルチトーン信号生成装置の要部を示すブロック図である。It is a block diagram which shows the main part of the multitone signal generation apparatus which concerns on Embodiment 4. FIG. 実施の形態4に係るマルチトーン信号生成装置における波形データ生成部の要部を示すブロック図である。It is a block diagram which shows the main part of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 4. FIG. 実施の形態4に係るマルチトーン信号生成装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the multitone signal generation apparatus which concerns on Embodiment 4. 実施の形態4に係るマルチトーン信号生成装置における波形データ生成部の動作を示すフローチャートである。It is a flowchart which shows the operation of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 4. 実施の形態4に係るマルチトーン信号生成装置における波形データ生成部の動作を示すフローチャートである。It is a flowchart which shows the operation of the waveform data generation part in the multitone signal generation apparatus which concerns on Embodiment 4.
 以下、この開示をより詳細に説明するために、この開示を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain this disclosure in more detail, a mode for carrying out this disclosure will be described in accordance with the attached drawings.
実施の形態1.
 図1は、実施の形態1に係るマルチトーン信号生成装置の要部を示すブロック図である。図2は、実施の形態1に係るマルチトーン信号生成装置における波形データ生成部の要部を示すブロック図である。図1及び図2を参照して、実施の形態1に係るマルチトーン信号生成装置について説明する。
Embodiment 1.
FIG. 1 is a block diagram showing a main part of the multitone signal generation device according to the first embodiment. FIG. 2 is a block diagram showing a main part of a waveform data generation unit in the multitone signal generation device according to the first embodiment. The multitone signal generator according to the first embodiment will be described with reference to FIGS. 1 and 2.
 図1に示す如く、マルチトーン信号生成装置100は、初期値計算部1、波形データ生成部2及びマルチトーン信号出力部3を含むものである。図2に示す如く、波形データ生成部2は、第1処理部11、第2処理部12、第3処理部13、第4処理部14及び第5処理部15を含むものである。 As shown in FIG. 1, the multitone signal generation device 100 includes an initial value calculation unit 1, a waveform data generation unit 2, and a multitone signal output unit 3. As shown in FIG. 2, the waveform data generation unit 2 includes a first processing unit 11, a second processing unit 12, a third processing unit 13, a fourth processing unit 14, and a fifth processing unit 15.
 マルチトーン信号MSは、M個のトーン信号TS~TSを含むものである。すなわち、マルチトーン信号MSのトーン数は、Mである。ここで、Mは、2以上の整数である。以下、個々のトーン信号TSに対応するインデックスに「k」の符号を用いることがある。すなわち、インデックスkは、M個の整数値(1~M)のうちの個々の整数値を示し得るものである。 The multitone signal MS includes M tone signals TS 1 to TS M. That is, the number of tones of the multitone signal MS is M. Here, M is an integer of 2 or more. Hereinafter, the reference numeral “k” may be used for the index corresponding to each tone signal TS. That is, the index k can indicate an individual integer value out of M integer values (1 to M).
 初期値計算部1は、トーン数Mを示す値を取得するものである。初期値計算部1は、当該取得された値を用いて、マルチトーン信号MSのPAPRを低減するための収束演算に用いられる初期値を計算するものである。かかる初期値は、M個のトーン信号TS~TSに対応するM個の初期位相θ~θを含むものである。 The initial value calculation unit 1 acquires a value indicating the number of tones M. The initial value calculation unit 1 calculates the initial value used for the convergence calculation for reducing the PAPR of the multitone signal MS by using the acquired value. Such initial values include M initial phases θ 1 to θ M corresponding to M tone signals TS 1 to TS M.
 より具体的には、初期値計算部1は、以下の式(1_1)を用いた代数計算を実行することにより、M個の初期位相θ~θの各々を計算するものである。または、初期値計算部1は、以下の式(1_2)を用いた代数計算を実行することにより、M個の初期位相θ~θの各々を計算するものである。すなわち、初期値計算部1は、かかる代数計算を実行することにより、個々の初期位相θを計算するものである。 More specifically, the initial value calculation unit 1 calculates each of the M initial phases θ 1 to θ M by executing algebraic calculation using the following equation (1_1). Alternatively, the initial value calculation unit 1 calculates each of the M initial phases θ 1 to θ M by executing algebraic calculation using the following equation (1_2). That is, the initial value calculation unit 1 calculates each initial phase θ k by executing such algebraic calculation.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
 式(1_1)及び式(1_2)の各々におけるMは、トーン数Mに対応する代数を示している。また、式(1_1)及び式(1_2)の各々におけるrは、トーン数Mに対して互いに素である整数rについて、整数rに対応する代数を示している。また、式(1_1)及び式(1_2)の各々におけるkは、インデックスkに対応する代数を示している。 M in each of the equations (1_1) and (1_2) indicates an algebra corresponding to the number of tones M. Further, r in each of the equations (1_1) and (1_1) indicates an algebra corresponding to the integer r for the integer r which is relatively prime with respect to the tone number M. Further, k in each of the equations (1_1) and (1_2) indicates an algebra corresponding to the index k.
 すなわち、式(1_1)及び式(1_2)の各々は、トーン数Mに対応する代数を含むものであり、かつ、整数rに対応する代数を含むものである。また、式(1_1)及び式(1_2)の各々は、インデックスkに対応する代数を含むものである。 That is, each of the equations (1_1) and (1_2) includes an algebra corresponding to the number of tones M, and also includes an algebra corresponding to the integer r. Further, each of the equations (1_1) and (1_2) includes an algebra corresponding to the index k.
 なお、トーン数Mが奇数である場合、整数rは、偶数となる。他方、トーン数Mが偶数である場合、整数rは、奇数となる。 If the number of tones M is an odd number, the integer r is an even number. On the other hand, when the number of tones M is an even number, the integer r is an odd number.
 波形データ生成部2は、初期値計算部1により計算された初期値を用いて、マルチトーン信号MSのPAPRを低減するための収束演算を実行するものである。これにより、波形データ生成部2は、PAPRが低減されたマルチトーン信号MSの波形を示すデータ(以下「波形データ」という。)WDを生成するものである。 The waveform data generation unit 2 uses the initial value calculated by the initial value calculation unit 1 to execute a convergence operation for reducing the PAPR of the multitone signal MS. As a result, the waveform data generation unit 2 generates data (hereinafter referred to as “waveform data”) WD indicating the waveform of the multitone signal MS with reduced PAPR.
 ここで、波形データ生成部2における収束演算は、複数個の処理を繰り返し実行するものである。当該複数個の処理は、第1処理部11により実行される処理(以下「第1処理」という。)、第2処理部12により実行される処理(以下「第2処理」という。)、第3処理部13により実行される処理(以下「第3処理」という。)、第4処理部14により実行される処理(以下「第4処理」という。)及び第5処理部15により実行される処理(以下「第5処理」という。)を含むものである。 Here, the convergence operation in the waveform data generation unit 2 repeatedly executes a plurality of processes. The plurality of processes are a process executed by the first processing unit 11 (hereinafter referred to as "first processing"), a processing executed by the second processing unit 12 (hereinafter referred to as "second processing"), and a first. 3 A process executed by the processing unit 13 (hereinafter referred to as "third process"), a process executed by the fourth processing unit 14 (hereinafter referred to as "fourth process"), and executed by the fifth processing unit 15. It includes a process (hereinafter referred to as "fifth process").
 より具体的には、波形データ生成部2における収束演算は、第1処理、第2処理、第3処理、第4処理及び第5処理をN回実行するものである。ここで、Nは、2以上の整数である。以下、第1処理、第2処理、第3処理、第4処理及び第5処理について説明する。 More specifically, the convergence operation in the waveform data generation unit 2 executes the first process, the second process, the third process, the fourth process, and the fifth process N times. Here, N is an integer of 2 or more. Hereinafter, the first process, the second process, the third process, the fourth process, and the fifth process will be described.
 第1処理は、M個のトーン信号TS~TSに対応するM個の振幅A~Aを用いて、かつ、M個の初期位相θ~θを用いて、周波数領域におけるマルチトーン信号MS_fを設定する処理を含むものである。これにより、マルチトーン信号MSの周波数領域波形(すなわち周波数スペクトル)が設定される。かかる周波数スペクトルの設定には、フーリエ変換が用いられる。N回の第1処理のうちの各回の第1処理において、M個の振幅A~Aの各々には、所定値(例えば1)が用いられる。他方、N回の第1処理のうちの第1回の第1処理において、M個の初期位相θ~θの各々には、初期値計算部1により計算された値が用いられる。 The first process uses the M amplitude A 1 ~ A M which correspond to the M tone signal TS 1 ~ TS M, and, using the M initial phase theta 1 ~ theta M, in the frequency domain It includes a process of setting the multitone signal MS_f. As a result, the frequency domain waveform (that is, the frequency spectrum) of the multitone signal MS is set. A Fourier transform is used to set such a frequency spectrum. In the first processing each time of the first process N times, each of the M amplitude A 1 ~ A M, a predetermined value (e.g. 1) are used. On the other hand, in each of the M initial phases θ 1 to θ M, the values calculated by the initial value calculation unit 1 are used in the first processing of the first of the N first processes.
 図3は、周波数領域におけるマルチトーン信号MS_fの例を示している。より具体的には、図3は、N回の第1処理のうちの第1回の第1処理にて設定されたマルチトーン信号MS_fの例を示している。図3に示す例においては、M=5である。 FIG. 3 shows an example of a multitone signal MS_f in the frequency domain. More specifically, FIG. 3 shows an example of the multitone signal MS_f set in the first first process of the N first processes. In the example shown in FIG. 3, M = 5.
 第2処理は、第1処理にて設定されたマルチトーン信号MS_fを時間領域におけるマルチトーン信号MS_tに変換する処理を含むものである。これにより、マルチトーン信号MSの周波数領域波形(すなわち周波数スペクトル)がマルチトーン信号MSの時間領域波形(より具体的には電力波形)に変換される。かかる変換には、逆フーリエ変換が用いられる。 The second process includes a process of converting the multitone signal MS_f set in the first process into the multitone signal MS_t in the time domain. As a result, the frequency domain waveform (that is, the frequency spectrum) of the multitone signal MS is converted into the time domain waveform (more specifically, the power waveform) of the multitone signal MS. An inverse Fourier transform is used for such a transformation.
 図4は、時間領域におけるマルチトーン信号MS_tの例を示している。より具体的には、図4は、N回の第2処理のうちの第1回の第2処理にて変換されたマルチトーン信号MS_tの例を示している。図中、Sは、所定の基準値を示している。 FIG. 4 shows an example of the multitone signal MS_t in the time domain. More specifically, FIG. 4 shows an example of the multitone signal MS_t converted in the first second process of the N second processes. In the figure, S indicates a predetermined reference value.
 第3処理は、第2処理にて変換されたマルチトーン信号MS_tの値と基準値Sとの差分値を算出する処理を含むものである。また、第3処理は、かかる差分値に基づき、時間領域におけるエラー信号ES_tを算出する処理を含むものである。これにより、エラー信号ESの時間領域波形(より具体的には電力波形)が算出される。 The third process includes a process of calculating the difference value between the value of the multitone signal MS_t converted in the second process and the reference value S. Further, the third process includes a process of calculating the error signal ES_t in the time domain based on the difference value. As a result, the time domain waveform (more specifically, the power waveform) of the error signal ES is calculated.
 図5は、時間領域におけるエラー信号ES_tの例を示している。より具体的には、図5は、N回の第3処理のうちの第1回の第3処理にて算出されたエラー信号ES_tの例を示している。 FIG. 5 shows an example of the error signal ES_t in the time domain. More specifically, FIG. 5 shows an example of the error signal ES_t calculated in the first third process of the N third processes.
 第4処理は、第3処理にて算出されたエラー信号ES_tを周波数領域におけるエラー信号ES_fに変換する処理を含むものである。これにより、エラー信号ESの時間領域波形(より具体的には電力波形)がエラー信号ESの周波数領域波形(すなわち周波数スペクトル)に変換される。 The fourth process includes a process of converting the error signal ES_t calculated in the third process into the error signal ES_f in the frequency domain. As a result, the time domain waveform (more specifically, the power waveform) of the error signal ES is converted into the frequency domain waveform (that is, the frequency spectrum) of the error signal ES.
 図6は、周波数領域におけるエラー信号ES_fの例を示している。より具体的には、図6は、N回の第4処理のうちの第1回の第4処理にて変換されたエラー信号ES_fの例を示している。図6に示す如く、エラー信号ES_fは、M個のトーン信号TS~TSに対応するM個のエラー信号ES~ESを含むものである。M個のエラー信号ES~ESは、M個の振幅B~Bをそれぞれ有するものである。M個のエラー信号ES~ESは、M個の位相φ~φをそれぞれ有するものである。図6に示す例においては、M=5である。 FIG. 6 shows an example of the error signal ES_f in the frequency domain. More specifically, FIG. 6 shows an example of the error signal ES_f converted in the first fourth process of the N fourth processes. As shown in FIG. 6, the error signal ES_f includes M error signals ES 1 to ES M corresponding to M tone signals TS 1 to TS M. The M error signals ES 1 to ES M each have M amplitudes B 1 to BM. The M error signals ES 1 to ES M each have M phases φ 1 to φ M. In the example shown in FIG. 6, M = 5.
 第5処理は、以下の式(2)により、M個の初期位相θ~θの各々を更新する処理を含むものである。すなわち、第5処理は、個々の初期位相θを更新する処理を含むものである。 The fifth process includes a process of updating each of the M initial phases θ 1 to θ M by the following equation (2). That is, the fifth process includes a process of updating each initial phase θ k.
 θ←θ-φ  (2) θ k ← θ k- φ k (2)
 ここで、式(2)の右辺におけるθには、第1処理にて設定されたマルチトーン信号MS_fにおけるM個の初期位相θ~θのうちの対応する初期位相θの値が用いられる。例えば、N回の第5処理のうちの第1回の第5処理においては、図3に示すマルチトーン信号MS_fにおけるM個の初期位相θ~θのうちの対応する初期位相θの値が用いられる。 Here, in θ k on the right side of the equation (2), the value of the corresponding initial phase θ k among the M initial phases θ 1 to θ M in the multitone signal MS_f set in the first process is used. Used. For example, in the first fifth process of the N fifth processes, the corresponding initial phases θ k of the M initial phases θ 1 to θ M in the multitone signal MS_f shown in FIG. 3 The value is used.
 他方、式(2)の右辺におけるφには、第4処理にて変換されたエラー信号ES_fにおけるM個の位相φ~φのうちの対応する位相φの値が用いられる。例えば、N回の第5処理のうちの第1回の第5処理においては、図6に示すエラー信号ES_fにおけるM個の位相φ~φのうちの対応する位相φの値が用いられる。 On the other hand, for φ k on the right side of the equation (2), the value of the corresponding phase φ k among the M phases φ 1 to φ M in the error signal ES_f converted in the fourth process is used. For example, in the first fifth process of the N fifth processes, the values of the corresponding phases φ k among the M phases φ 1 to φ M in the error signal ES_f shown in FIG. 6 are used. Be done.
 すなわち、第5処理は、マルチトーン信号MS_fの位相成分(θ)とエラー信号ES_fの位相成分(φ)との差分値(θ-φ)に基づき、個々の初期位相θを更新する処理を含むものである。より具体的には、第5処理は、対応するトーン信号TSの位相成分(θ)と対応するエラー信号ESの位相成分(φ)との差分値(θ-φ)に基づき、個々の初期位相θを更新する処理を含むものである。 That is, the fifth process, based on the difference value between the phase components (phi k) of the phase component (theta k) and error signal ES_f multitone signal MS_f (θ k k), the individual initial phase theta k It includes the process of updating. More specifically, the fifth process, the difference value between the corresponding phase component of the tone signal TS k k) and corresponding error signal ES k phase components (φ k) (θ k -φ k) Based on this, it includes a process of updating each initial phase θ k.
 以下同様にして、第1処理、第2処理、第3処理、第4処理及び第5処理が繰り返し実行される。ただし、第2回以降の各回の第1処理において、M個の初期位相θ~θの各々には、前回の第5処理における更新後の値が用いられる。例えば、第2回の第1処理において、M個の初期位相θ~θの各々には、第1回の第5処理における更新後の値が用いられる。 Hereinafter, in the same manner, the first process, the second process, the third process, the fourth process, and the fifth process are repeatedly executed. However, in the first processing of each of the second and subsequent times, the updated values in the previous fifth processing are used for each of the M initial phases θ 1 to θ M. For example, in the first process of the second time, the updated values in the fifth process of the first time are used for each of the M initial phases θ 1 to θ M.
 図7は、第2回の第1処理にて設定されたマルチトーン信号MS_fの例を示している。図7に示す例においては、M=5である。ただし、図7におけるθ~θは、第1回の第5処理における更新前の初期位相θ~θを示している。すなわち、図7におけるθ~θは、初期値計算部1により計算された値に対応するものである。 FIG. 7 shows an example of the multitone signal MS_f set in the first processing of the second time. In the example shown in FIG. 7, M = 5. However, θ 1 to θ 5 in FIG. 7 indicate the initial phases θ 1 to θ 5 before the update in the first fifth process. That is, θ 1 to θ 5 in FIG. 7 correspond to the values calculated by the initial value calculation unit 1.
 かかる収束演算が実行されることにより、マルチトーン信号MSのPAPRが低減される。より具体的には、マルチトーン信号MSのPAPRが低減されるような値に個々の初期位相θが収束する。これにより、低PAPRマルチトーン信号が実現される。 By executing such a convergence operation, the PAPR of the multitone signal MS is reduced. More specifically, the individual initial phases θ k converge to a value such that the PAPR of the multitone signal MS is reduced. As a result, a low PAPR multitone signal is realized.
 図8は、初期値計算部1により計算された初期位相θ~θに対応するマルチトーン信号MS_tにおけるPAPRの例を示している。これに対して、図9は、第N回の第5処理における更新後の初期位相θ~θに対応するマルチトーン信号MS_tにおけるPAPRの例を示している。図8及び図9に示す如く、収束演算の実行後におけるマルチトーン信号MSのPAPRは、収束演算の実行前におけるマルチトーン信号MSのPAPRに比して低減されている。 FIG. 8 shows an example of PAPR in the multitone signal MS_t corresponding to the initial phases θ 1 to θ M calculated by the initial value calculation unit 1. On the other hand, FIG. 9 shows an example of PAPR in the multitone signal MS_t corresponding to the initial phases θ 1 to θ M after the update in the fifth process of the Nth time. As shown in FIGS. 8 and 9, the PAPR of the multitone signal MS after the execution of the convergence operation is reduced as compared with the PAPR of the multitone signal MS before the execution of the convergence operation.
 かかる収束演算が終了したとき、波形データ生成部2は、第N回の第5処理における更新後の初期位相θ~θを用いて、第1処理と同様の処理を実行する。次いで、波形データ生成部2は、第2処理と同様の処理を実行する。これにより、第N回の第5処理における更新後の初期位相θ~θに対応するマルチトーン信号MSの時間領域波形が生成される。波形データ生成部2は、かかる時間領域波形を示すデータ(すなわち波形データ)WDを生成する。 When the convergence calculation is completed, the waveform data generation unit 2 executes the same process as the first process by using the updated initial phases θ 1 to θ M in the fifth process of the Nth time. Next, the waveform data generation unit 2 executes the same processing as the second processing. As a result, the time domain waveform of the multitone signal MS corresponding to the initial phases θ 1 to θ M after the update in the fifth process of the Nth time is generated. The waveform data generation unit 2 generates data (that is, waveform data) WD indicating the time domain waveform.
 マルチトーン信号出力部3は、波形データ生成部2により生成された波形データWDを取得するものである。マルチトーン信号出力部3は、当該取得された波形データWDに対応するマルチトーン信号MSを出力するものである。これにより、低PAPRマルチトーン信号が出力される。 The multitone signal output unit 3 acquires the waveform data WD generated by the waveform data generation unit 2. The multitone signal output unit 3 outputs the multitone signal MS corresponding to the acquired waveform data WD. As a result, a low PAPR multitone signal is output.
 ここで、波形データ生成部2により生成された波形データWDは、デジタルデータである。他方、マルチトーン信号出力部3により出力されるマルチトーン信号MSは、アナログ信号である。すなわち、マルチトーン信号出力部3は、デジタルデータの入力を受け付けて、当該入力されたデジタルデータに対応するアナログ信号を出力するものである。 Here, the waveform data WD generated by the waveform data generation unit 2 is digital data. On the other hand, the multitone signal MS output by the multitone signal output unit 3 is an analog signal. That is, the multitone signal output unit 3 receives the input of digital data and outputs the analog signal corresponding to the input digital data.
 このようにして、マルチトーン信号生成装置100の要部が構成されている。 In this way, the main part of the multitone signal generation device 100 is configured.
 以下、初期値計算部1が有する機能を総称して「初期値計算機能」ということがある。また、かかる初期値計算機能に「F1」の符号を用いることがある。また、波形データ生成部2が有する機能を総称して「波形データ生成機能」ということがある。また、かかる波形データ生成機能に「F2」の符号を用いることがある。また、マルチトーン信号出力部3が有する機能を総称して「マルチトーン信号出力機能」ということがある。また、かかるマルチトーン信号出力機能に「F3」の符号を用いることがある。 Hereinafter, the functions of the initial value calculation unit 1 may be collectively referred to as "initial value calculation function". Further, the reference numeral of "F1" may be used for the initial value calculation function. Further, the functions of the waveform data generation unit 2 may be collectively referred to as a "waveform data generation function". Further, the reference numeral of "F2" may be used for the waveform data generation function. Further, the functions of the multitone signal output unit 3 may be collectively referred to as "multitone signal output function". Further, the reference numeral of "F3" may be used for the multitone signal output function.
 次に、図10~図12を参照して、マルチトーン信号生成装置100の要部のハードウェア構成について説明する。 Next, the hardware configuration of the main part of the multitone signal generator 100 will be described with reference to FIGS. 10 to 12.
 図10に示す如く、マルチトーン信号生成装置100は、プロセッサ21、メモリ22及びデジタル-アナログ変換回路(以下「DAC」という。)23を有するものである。メモリ22には、複数個の機能(初期値計算機能及び波形データ生成機能を含む。)F1,F2に対応するプログラムが記憶されている。プロセッサ21は、メモリ22に記憶されているプログラムを読み出して実行する。これにより、複数個の機能F1,F2が実現される。また、マルチトーン信号出力機能F3は、DAC23により実現される。 As shown in FIG. 10, the multitone signal generator 100 includes a processor 21, a memory 22, and a digital-to-analog conversion circuit (hereinafter referred to as “DAC”) 23. The memory 22 stores programs corresponding to a plurality of functions (including an initial value calculation function and a waveform data generation function) F1 and F2. The processor 21 reads and executes the program stored in the memory 22. As a result, a plurality of functions F1 and F2 are realized. Further, the multitone signal output function F3 is realized by the DAC23.
 または、図11に示す如く、マルチトーン信号生成装置100は、処理回路24及びDAC23を有するものである。処理回路24は、複数個の機能F1,F2に対応する処理を実行する。これにより、複数個の機能F1,F2が実現される。また、マルチトーン信号出力機能F3は、DAC23により実現される。 Alternatively, as shown in FIG. 11, the multitone signal generation device 100 includes a processing circuit 24 and a DAC 23. The processing circuit 24 executes processing corresponding to a plurality of functions F1 and F2. As a result, a plurality of functions F1 and F2 are realized. Further, the multitone signal output function F3 is realized by the DAC23.
 または、図12に示す如く、マルチトーン信号生成装置100は、プロセッサ21、メモリ22、処理回路24及びDAC23を有するものである。メモリ22には、複数個の機能F1,F2のうちの一部の機能に対応するプログラムが記憶されている。プロセッサ21は、メモリ22に記憶されているプログラムを読み出して実行する。これにより、かかる一部の機能が実現される。また、処理回路24は、複数個の機能F1,F2のうちの残余の機能に対応する処理を実行する。これにより、かかる残余の機能が実現される。また、マルチトーン信号出力機能F3は、DAC23により実現される。 Alternatively, as shown in FIG. 12, the multitone signal generator 100 includes a processor 21, a memory 22, a processing circuit 24, and a DAC 23. A program corresponding to a part of the plurality of functions F1 and F2 is stored in the memory 22. The processor 21 reads and executes the program stored in the memory 22. As a result, some of these functions are realized. Further, the processing circuit 24 executes processing corresponding to the remaining functions of the plurality of functions F1 and F2. As a result, such residual functions are realized. Further, the multitone signal output function F3 is realized by the DAC23.
 プロセッサ21は、1個以上のプロセッサにより構成されている。個々のプロセッサは、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)を用いたものである。 The processor 21 is composed of one or more processors. As the individual processor, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microprocessor, or a DSP (Digital Signal Processor) is used.
 メモリ22は、1個以上の不揮発性メモリにより構成されている。または、メモリ22は、1個以上の不揮発性メモリ及び1個以上の揮発性メモリにより構成されている。すなわち、メモリ22は、1個以上のメモリにより構成されている。個々のメモリは、例えば、半導体メモリ、磁気ディスク、光ディスク、光磁気ディスク、磁気テープ又は磁気ドラムを用いたものである。より具体的には、個々の揮発性メモリは、例えば、RAM(Random Access Memory)を用いたものである。また、個々の不揮発性メモリは、例えば、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、ソリッドステートドライブ、ハードディスクドライブ、フレキシブルディスク、コンパクトディスク、DVD(Digital Versatile Disc)、ブルーレイディスク又はミニディスクを用いたものである。 The memory 22 is composed of one or more non-volatile memories. Alternatively, the memory 22 is composed of one or more non-volatile memories and one or more volatile memories. That is, the memory 22 is composed of one or more memories. The individual memory uses, for example, a semiconductor memory, a magnetic disk, an optical disk, a magneto-optical disk, a magnetic tape, or a magnetic drum. More specifically, each volatile memory uses, for example, a RAM (Random Access Memory). The individual non-volatile memories include, for example, a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Primory) drive, a hard disk drive A compact disc, a DVD (Digital Versaille Disc), a Blu-ray disc, or a mini disc is used.
 処理回路24は、1個以上のデジタル回路により構成されている。または、処理回路24は、1個以上のデジタル回路及び1個以上のアナログ回路により構成されている。すなわち、処理回路24は、1個以上の処理回路により構成されている。個々の処理回路は、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)、SoC(System on a Chip)又はシステムLSI(Large Scale Integration)を用いたものである。 The processing circuit 24 is composed of one or more digital circuits. Alternatively, the processing circuit 24 is composed of one or more digital circuits and one or more analog circuits. That is, the processing circuit 24 is composed of one or more processing circuits. The individual processing circuits are, for example, ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), FPGA (Field Programmable Gate Array), System LSI (Sy), and System (Sy). Is.
 ここで、プロセッサ21が複数個のプロセッサにより構成されているとき、複数個の機能F1,F2と複数個のプロセッサとの対応関係は任意である。すなわち、複数個のプロセッサの各々は、複数個の機能F1,F2のうちの対応する1個以上の機能に対応するプログラムを読み出して実行するものであっても良い。または、プロセッサ21は、複数個の機能F1,F2の各々に対応する専用のプロセッサを含むものであっても良い。 Here, when the processor 21 is composed of a plurality of processors, the correspondence between the plurality of functions F1 and F2 and the plurality of processors is arbitrary. That is, each of the plurality of processors may read and execute a program corresponding to one or more corresponding functions among the plurality of functions F1 and F2. Alternatively, the processor 21 may include a dedicated processor corresponding to each of the plurality of functions F1 and F2.
 また、メモリ22が複数個のメモリにより構成されているとき、複数個の機能F1,F2と複数個のメモリとの対応関係は任意である。すなわち、複数個のメモリの各々は、複数個の機能F1,F2のうちの対応する1個以上の機能に対応するプログラムを記憶するものであっても良い。または、メモリ22は、複数個の機能F1,F2の各々に対応する専用のメモリを含むものであっても良い。 Further, when the memory 22 is composed of a plurality of memories, the correspondence between the plurality of functions F1 and F2 and the plurality of memories is arbitrary. That is, each of the plurality of memories may store a program corresponding to one or more corresponding functions among the plurality of functions F1 and F2. Alternatively, the memory 22 may include a dedicated memory corresponding to each of the plurality of functions F1 and F2.
 また、処理回路24が複数個の処理回路により構成されているとき、複数個の機能F1,F2と複数個の処理回路との対応関係は任意である。すなわち、複数個の処理回路の各々は、複数個の機能F1,F2のうちの対応する1個以上の機能に対応する処理を実行するものであっても良い。または、処理回路24は、複数個の機能F1,F2の各々に対応する専用の処理回路を含むものであっても良い。 Further, when the processing circuit 24 is composed of a plurality of processing circuits, the correspondence between the plurality of functions F1 and F2 and the plurality of processing circuits is arbitrary. That is, each of the plurality of processing circuits may execute the processing corresponding to one or more corresponding functions among the plurality of functions F1 and F2. Alternatively, the processing circuit 24 may include a dedicated processing circuit corresponding to each of the plurality of functions F1 and F2.
 次に、図13に示すフローチャートを参照して、マルチトーン信号生成装置100の動作について説明する。 Next, the operation of the multitone signal generation device 100 will be described with reference to the flowchart shown in FIG.
 まず、初期値計算部1は、式(1_1)又は式(1_2)を用いた代数計算を実行することにより、M個の初期位相θ~θの各々を計算する。すなわち、初期値計算部1は、個々の初期位相θを計算する(ステップST1)。 First, the initial value calculation unit 1 calculates each of the M initial phases θ 1 to θ M by executing an algebraic calculation using the equation (1_1) or the equation (1_2). That is, the initial value calculation unit 1 calculates each initial phase θ k (step ST1).
 次いで、波形データ生成部2は、初期値計算部1により計算された初期位相θ~θを用いて、マルチトーン信号MSのPAPRを低減するための収束演算を実行する。これにより、波形データ生成部2は、PAPRが低減されたマルチトーン信号MSに対応する波形データWDを生成する(ステップST2)。すなわち、波形データ生成部2は、低PAPRマルチトーン信号に対応する波形データWDを生成する。 Next, the waveform data generation unit 2 executes a convergence operation for reducing the PAPR of the multitone signal MS by using the initial phases θ 1 to θ M calculated by the initial value calculation unit 1. As a result, the waveform data generation unit 2 generates the waveform data WD corresponding to the multitone signal MS with reduced PAPR (step ST2). That is, the waveform data generation unit 2 generates the waveform data WD corresponding to the low PAPR multitone signal.
 次いで、マルチトーン信号出力部3は、波形データ生成部2により生成された波形データWDに対応するマルチトーン信号MSを出力する(ステップST3)。これにより、低PAPRマルチトーン信号が出力される。 Next, the multitone signal output unit 3 outputs the multitone signal MS corresponding to the waveform data WD generated by the waveform data generation unit 2 (step ST3). As a result, a low PAPR multitone signal is output.
 次に、図14に示すフローチャートを参照して、波形データ生成部2の動作について説明する。すなわち、ステップST2にて実行される処理について説明する。 Next, the operation of the waveform data generation unit 2 will be described with reference to the flowchart shown in FIG. That is, the process executed in step ST2 will be described.
 上記のとおり、波形データ生成部2は、収束演算を実行するものである。波形データ生成部2における収束演算は、第1処理、第2処理、第3処理、第4処理及び第5処理をN回実行するものである(ステップST11)。 As described above, the waveform data generation unit 2 executes the convergence operation. The convergence operation in the waveform data generation unit 2 executes the first process, the second process, the third process, the fourth process, and the fifth process N times (step ST11).
 まず、第1処理部11が第1処理を実行する(ステップST21)。すなわち、第1処理部11は、初期値計算部1により計算された初期位相θ~θを用いて、周波数領域におけるマルチトーン信号MS_fを設定する。このとき、M個の振幅A~Aの各々には、所定値(例えば1)が用いられる。 First, the first processing unit 11 executes the first processing (step ST21). That is, the first processing unit 11 sets the multitone signal MS_f in the frequency domain using the initial phases θ 1 to θ M calculated by the initial value calculation unit 1. At this time, each of the M amplitude A 1 ~ A M, a predetermined value (e.g. 1) are used.
 次いで、第2処理部12が第2処理を実行する(ステップST22)。これにより、ステップST11にて設定されたマルチトーン信号MS_fが時間領域におけるマルチトーン信号MS_tに変換される。 Next, the second processing unit 12 executes the second processing (step ST22). As a result, the multitone signal MS_f set in step ST11 is converted into the multitone signal MS_t in the time domain.
 次いで、第3処理部13が第3処理を実行する(ステップST23)。これにより、時間領域におけるエラー信号ES_tが算出される。エラー信号ES_tは、ステップST22にて変換されたるマルチトーン信号MS_tの値と基準値Sとの差分値に基づくものである。 Next, the third processing unit 13 executes the third processing (step ST23). As a result, the error signal ES_t in the time domain is calculated. The error signal ES_t is based on the difference value between the value of the multitone signal MS_t converted in step ST22 and the reference value S.
 次いで、第4処理部14が第4処理を実行する(ステップST24)。これにより、ステップST23にて算出されたエラー信号ES_tが周波数領域におけるエラー信号ES_fに変換される。 Next, the fourth processing unit 14 executes the fourth processing (step ST24). As a result, the error signal ES_t calculated in step ST23 is converted into the error signal ES_f in the frequency domain.
 次いで、第5処理部15が第5処理を実行する(ステップST25)。すなわち、第5処理部15は、式(2)により個々の初期位相θを更新する。これにより、M個の初期位相θ~θの各々が更新される。 Next, the fifth processing unit 15 executes the fifth processing (step ST25). That is, the fifth processing unit 15 updates each initial phase θ k according to the equation (2). As a result, each of the M initial phases θ 1 to θ M is updated.
 これらの処理がN回実行されたとき、収束演算が終了する。次いで、波形データ生成部2は、波形データWDを生成する(ステップST12)。当該生成された波形データWDは、第N回の第5処理(ステップST25)における更新後の初期位相θ~θに対応するマルチトーン信号MSの時間領域波形を示すものである。 When these processes are executed N times, the convergence operation ends. Next, the waveform data generation unit 2 generates waveform data WD (step ST12). The generated waveform data WD shows the time domain waveform of the multitone signal MS corresponding to the initial phases θ 1 to θ M after the update in the fifth process (step ST25) of the Nth time.
 次に、マルチトーン信号生成装置100を用いることによる効果について説明する。 Next, the effect of using the multitone signal generation device 100 will be described.
 第一に、マルチトーン信号生成装置100においては、代数計算により個々の初期位相θが計算される。また、かかる代数計算に用いられる数式(すなわち式(1_1)又は式(1_2))は、トーン数Mに対応する代数を含むものである。これにより、トーン数Mにかかわらず、個々の初期位相θを簡単に計算することができる。また、当該計算された初期位相θを収束演算に用いることにより、トーン数Mにかかわらず、低PAPRマルチトーン信号を生成することができる。すなわち、任意のトーン数Mに対して低PAPRマルチトーン信号を生成することができる。 First, in the multitone signal generation device 100, each initial phase θ k is calculated by algebraic calculation. Further, the mathematical formula (that is, the formula (1_1) or the formula (1_2)) used in the algebraic calculation includes an algebra corresponding to the tone number M. This makes it possible to easily calculate the individual initial phase θ k regardless of the number of tones M. Further, by using the calculated initial phase θ k in the convergence calculation, a low PAPR multitone signal can be generated regardless of the number of tones M. That is, a low PAPR multitone signal can be generated for an arbitrary number of tones M.
 第二に、初期値計算部1における代数計算に用いられる数式は、整数rに対応する代数を含むものである。これにより、PBCと異なる値を初期位相θ~θに用いることができるのはもちろんのこと、ニューマン位相と異なる値を初期位相θ~θに用いることができる。すなわち、以下の参考文献1におけるδkと異なる値を個々の初期位相θに用いることができる。 Secondly, the mathematical formula used for the algebraic calculation in the initial value calculation unit 1 includes the algebra corresponding to the integer r. As a result, not only a value different from PBC can be used for the initial phases θ 1 to θ M , but also a value different from the Newman phase can be used for the initial phases θ 1 to θ M. That is, it is possible to use a δk different values in the following references 1 to the individual initial phase theta k.
[参考文献1]
特開2000-254118号公報
[Reference 1]
Japanese Unexamined Patent Publication No. 2000-254118
 次に、マルチトーン信号生成装置100の変形例について説明する。 Next, a modification of the multitone signal generation device 100 will be described.
 上記のとおり、波形データ生成部2における収束演算は、第1処理、第2処理、第3処理、第4処理及び第5処理をN回実行するものである。波形データ生成部2は、かかる収束演算を1回実行するものであっても良い。または、波形データ生成部2は、かかる収束演算をL回実行するものであっても良い。ここで、Lは、2以上の整数である。 As described above, the convergence operation in the waveform data generation unit 2 executes the first process, the second process, the third process, the fourth process, and the fifth process N times. The waveform data generation unit 2 may execute the convergence operation once. Alternatively, the waveform data generation unit 2 may execute the convergence operation L times. Here, L is an integer of 2 or more.
 波形データ生成部2が収束演算をL回実行することにより、第1処理、第2処理、第3処理、第4処理及び第5処理がN×L回実行される。この場合、第2回以降の各回の収束演算における第1回の第1処理においては、前回の収束演算における第N回の第5処理における更新後の初期位相θ~θが用いられる。また、波形データ生成部2は、第L回の収束演算が終了したとき、波形データWDを生成する。当該生成された波形データWDは、第L回の収束演算における第N回の第5処理における更新後の初期位相θ~θに対応するマルチトーン信号MSの時間領域波形を示すものである。 When the waveform data generation unit 2 executes the convergence operation L times, the first process, the second process, the third process, the fourth process, and the fifth process are executed N × L times. In this case, in the first first process of each of the second and subsequent convergence operations, the updated initial phases θ 1 to θ M in the Nth fifth process of the previous convergence operation are used. Further, the waveform data generation unit 2 generates the waveform data WD when the Lth convergence calculation is completed. The generated waveform data WD shows the time domain waveform of the multitone signal MS corresponding to the updated initial phases θ 1 to θ M in the Nth fifth process in the Lth convergence operation. ..
 以上のように、実施の形態1に係るマルチトーン信号生成装置100は、マルチトーン信号MSのPAPRを低減するための収束演算に用いられる初期値を計算する初期値計算部1と、初期値を用いた収束演算を実行することによりPAPRが低減されたマルチトーン信号MSの波形を示す波形データWDを生成する波形データ生成部2と、波形データ生成部2により生成された波形データWDに対応するマルチトーン信号MSを出力するマルチトーン信号出力部3と、を備え、初期値は、マルチトーン信号MSに含まれるM個のトーン信号TS~TSに対応するM個の初期位相θ~θを含み、初期値計算部1は、所定の数式を用いた代数計算を実行することによりM個の初期位相θ~θの各々を計算するものであり、数式は、マルチトーン信号MSのトーン数Mに対応する代数を含む。これにより、個々の初期位相θを簡単に計算することができる。また、任意のトーン数Mに対して低PAPRマルチトーン信号を生成することができる。 As described above, the multitone signal generation device 100 according to the first embodiment uses the initial value calculation unit 1 for calculating the initial value used for the convergence calculation for reducing the PAPR of the multitone signal MS, and the initial value. Corresponds to the waveform data generation unit 2 that generates the waveform data WD showing the waveform of the multitone signal MS whose PAPR is reduced by executing the convergence calculation used, and the waveform data WD generated by the waveform data generation unit 2. A multi-tone signal output unit 3 that outputs a multi-tone signal MS is provided, and the initial value is M initial phases θ 1 to corresponding to M tone signals TS 1 to TS M included in the multi-tone signal MS. Including θ M , the initial value calculation unit 1 calculates each of the M initial phases θ 1 to θ M by executing an algebraic calculation using a predetermined mathematical formula, and the mathematical formula is a multitone signal. Includes an algebra corresponding to the MS tone number M. This makes it possible to easily calculate the individual initial phase θ k. Further, a low PAPR multitone signal can be generated for an arbitrary number of tones M.
 また、数式は、トーン数Mに対して互いに素である整数rに対応する代数を含む。これにより、PBCと異なる値を初期位相θ~θに用いることができるのはもちろんのこと、ニューマン位相と異なる値を初期位相θ~θに用いることができる。 Further, the mathematical formula includes an algebra corresponding to an integer r that is relatively prime with respect to the number of tones M. As a result, not only a value different from PBC can be used for the initial phases θ 1 to θ M , but also a value different from the Newman phase can be used for the initial phases θ 1 to θ M.
 また、数式は、θ=(2π/M)*{(k-1)/2}*rである。これにより、式(1_1)を用いて個々の初期位相θを計算することができる。 Further, the formula is a θ k = (2π / M) * {(k-1) 2/2} * r. Thereby, each initial phase θ k can be calculated using the equation (1_1).
 また、数式は、θ=(2π/M)*{k(k-1)/2}*rである。これにより、式(1_2)を用いて個々の初期位相θを計算することができる。 The mathematical formula is θ k = (2π / M) * {k (k-1) / 2} * r. Thereby, each initial phase θ k can be calculated using the equation (1_2).
 また、収束演算は、複数個の処理を繰り返し実行するものであり、複数個の処理は、M個の初期位相θ~θの各々を更新する処理を含む。これにより、例えば、図14に示すフローチャートに基づき、波形データ生成部2における収束演算を実現することができる。すなわち、個々の初期位相θの値の収束により、マルチトーン信号MSにおけるPAPRの低減を実現することができる。 Further, the convergence operation repeatedly executes a plurality of processes, and the plurality of processes include a process of updating each of the M initial phases θ 1 to θ M. Thereby, for example, the convergence operation in the waveform data generation unit 2 can be realized based on the flowchart shown in FIG. That is, the reduction of PAPR in the multitone signal MS can be realized by the convergence of the values of the individual initial phases θ k.
 また、収束演算は、第1処理、第2処理、第3処理、第4処理及び第5処理をN回実行するものであり、第1処理は、M個の初期位相θ~θを用いて周波数領域におけるマルチトーン信号MS_fを設定する処理を含み、第2処理は、周波数領域におけるマルチトーン信号MS_fを時間領域におけるマルチトーン信号MS_tに変換する処理を含み、第3処理は、時間領域におけるマルチトーン信号MS_tの値と所定の基準値Sとの差分値を算出することにより時間領域におけるエラー信号ES_tを算出する処理を含み、第4処理は、時間領域におけるエラー信号ES_tを周波数領域におけるエラー信号ES_fに変換する処理を含み、第5処理は、周波数領域におけるマルチトーン信号MS_fの位相成分(θ)と周波数領域におけるエラー信号ES_fの位相成分(φ)との差分値(θ-φ)に基づきM個の初期位相θ~θの各々を更新する処理を含む。これにより、図14に示すフローチャートに基づき、波形データ生成部2における収束演算を実現することができる。 Further, the convergence operation executes the first process, the second process, the third process, the fourth process, and the fifth process N times, and the first process performs M initial phases θ 1 to θ M. The second process includes the process of converting the multitone signal MS_f in the frequency domain into the multitone signal MS_t in the time domain, and the third process includes the process of converting the multitone signal MS_f in the frequency domain into the time domain. Including the process of calculating the error signal ES_t in the time domain by calculating the difference value between the value of the multitone signal MS_t and the predetermined reference value S in the fourth process, the fourth process is the error signal ES_t in the time domain in the frequency domain. The fifth process includes a process of converting to the error signal ES_f, and the fifth process is a difference value (θ k ) between the phase component (θ k ) of the multitone signal MS_f in the frequency domain and the phase component (φ k ) of the error signal ES_f in the frequency domain. It includes a process of updating each of the M initial phases θ 1 to θ M based on −φ k). As a result, the convergence operation in the waveform data generation unit 2 can be realized based on the flowchart shown in FIG.
 また、実施の形態1に係るマルチトーン信号生成方法は、初期値計算部1が、マルチトーン信号MSのPAPRを低減するための収束演算に用いられる初期値を計算するステップST1と、波形データ生成部2が、初期値を用いた収束演算を実行することによりPAPRが低減されたマルチトーン信号MSの波形を示す波形データWDを生成するステップST2と、マルチトーン信号出力部3が、波形データ生成部2により生成された波形データWDに対応するマルチトーン信号MSを出力するステップST3と、を備え、初期値は、マルチトーン信号MSに含まれるM個のトーン信号TS~TSに対応するM個の初期位相θ~θを含み、初期値計算部1は、所定の数式を用いた代数計算を実行することによりM個の初期位相θ~θの各々を計算するものであり、数式は、マルチトーン信号MSのトーン数Mに対応する代数を含む。これにより、個々の初期位相θを簡単に計算することができる。また、任意のトーン数Mに対して低PAPRマルチトーン信号を生成することができる。 Further, in the multitone signal generation method according to the first embodiment, the initial value calculation unit 1 calculates the initial value used for the convergence calculation for reducing the PAPR of the multitone signal MS, and the waveform data generation. The step ST2 in which the unit 2 generates the waveform data WD showing the waveform of the multitone signal MS whose PAPR is reduced by executing the convergence operation using the initial value, and the multitone signal output unit 3 generate the waveform data. The step ST3 for outputting the multitone signal MS corresponding to the waveform data WD generated by the unit 2 is provided, and the initial value corresponds to the M tone signals TS 1 to TS M included in the multitone signal MS. includes M initial phase theta 1 ~ theta M, initial value calculating section 1 is for computing the each of the M initial phase theta 1 ~ theta M by performing the algebraic calculation using a predetermined formula Yes, the formula includes an algebra corresponding to the tone number M of the multitone signal MS. This makes it possible to easily calculate the individual initial phase θ k. Further, a low PAPR multitone signal can be generated for an arbitrary number of tones M.
実施の形態2.
 図15は、実施の形態2に係るマルチトーン信号生成装置の要部を示すブロック図である。図16は、実施の形態2に係るマルチトーン信号生成装置における波形データ生成部の要部を示すブロック図である。図15及び図16を参照して、実施の形態2に係るマルチトーン信号生成装置について説明する。
Embodiment 2.
FIG. 15 is a block diagram showing a main part of the multitone signal generation device according to the second embodiment. FIG. 16 is a block diagram showing a main part of a waveform data generation unit in the multitone signal generation device according to the second embodiment. The multitone signal generation apparatus according to the second embodiment will be described with reference to FIGS. 15 and 16.
 なお、図15において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。また、図16において、図2に示すブロックと同様のブロックには同一符号を付して説明を省略する。 In FIG. 15, the same blocks as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. Further, in FIG. 16, the same blocks as those shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
 図15に示す如く、マルチトーン信号生成装置100aは、初期値計算部1、波形データ生成部2a及びマルチトーン信号出力部3を含むものである。図16に示す如く、波形データ生成部2aは、第1処理部11、第2処理部12、第3処理部13、第4処理部14及び第5処理部15aを含むものである。これに加えて、波形データ生成部2aは、第6処理部16及び第7処理部17を含むものである。 As shown in FIG. 15, the multitone signal generation device 100a includes an initial value calculation unit 1, a waveform data generation unit 2a, and a multitone signal output unit 3. As shown in FIG. 16, the waveform data generation unit 2a includes a first processing unit 11, a second processing unit 12, a third processing unit 13, a fourth processing unit 14, and a fifth processing unit 15a. In addition to this, the waveform data generation unit 2a includes the sixth processing unit 16 and the seventh processing unit 17.
 すなわち、波形データ生成部2aにおける収束演算は、第1処理、第2処理、第3処理、第4処理及び第5処理を含むものである。これに加えて、波形データ生成部2aにおける収束演算は、第6処理部16により実行される処理(以下「第6処理」という。)及び第7処理部17により実行される処理(以下「第7処理」という。)を含むものである。以下、波形データ生成部2aにおける収束演算について、波形データ生成部2における収束演算と異なる部分を中心に説明する。 That is, the convergence operation in the waveform data generation unit 2a includes a first process, a second process, a third process, a fourth process, and a fifth process. In addition to this, the convergence operation in the waveform data generation unit 2a is a process executed by the sixth processing unit 16 (hereinafter referred to as “sixth processing”) and a processing executed by the seventh processing unit 17 (hereinafter referred to as “the sixth processing”). 7 processing ") is included. Hereinafter, the convergence operation in the waveform data generation unit 2a will be described focusing on a portion different from the convergence operation in the waveform data generation unit 2.
 第6処理部16は、N回の第4処理のうちの各回の第4処理が実行されたとき、第6処理を実行する。第6処理は、疑似乱数xを生成する処理を含むものである。また、第6処理は、当該生成された疑似乱数xを所定の閾値αと比較する処理を含むものである。 The sixth processing unit 16 executes the sixth process when the fourth process of each of the N fourth processes is executed. The sixth process includes a process of generating a pseudo-random number x. Further, the sixth process includes a process of comparing the generated pseudo-random number x with a predetermined threshold value α.
 疑似乱数xは、例えば、閉区間[0,1]の範囲内にて、一様分布又は標準正規分布に基づき生成される。この場合、閾値αは、0.5以上かつ1未満の範囲内の値に設定されるのが好適である。また、閾値αは、0.9以上かつ1未満の範囲内の値に設定されるのが更に好適である。この理由については後述する。 The pseudo-random number x is generated based on a uniform distribution or a standard normal distribution, for example, within the range of the closed interval [0,1]. In this case, the threshold value α is preferably set to a value within the range of 0.5 or more and less than 1. Further, it is more preferable that the threshold value α is set to a value within the range of 0.9 or more and less than 1. The reason for this will be described later.
 第5処理部15aは、上記生成された疑似乱数xが閾値α未満の値であるとき、第5処理部15により実行される第5処理と同様の第5処理を実行する。すなわち、第5処理部15aは、実施の形態1にて説明した式(2)により、M個の初期位相θ~θの各々を更新する。 When the generated pseudo-random number x is a value less than the threshold value α, the fifth processing unit 15a executes the same fifth processing as the fifth processing executed by the fifth processing unit 15. That is, the fifth processing unit 15a updates each of the M initial phases θ 1 to θ M by the equation (2) described in the first embodiment.
 第7処理部17は、上記生成された疑似乱数xが閾値α以上の値であるとき、第7処理を実行するものである。第7処理は、以下の式(3)により、M個の初期位相θ~θの各々を更新する処理を含むものである。 The seventh processing unit 17 executes the seventh processing when the generated pseudo-random number x has a value equal to or higher than the threshold value α. The seventh process includes a process of updating each of the M initial phases θ 1 to θ M by the following equation (3).
 θ←θ-βφ  (3) θ k ← θ k- βφ k (3)
 ここで、βは、所定の定数である。βは、非0値に設定されており、かつ、非1値に設定されている(β≠0,β≠1)。すなわち、第7処理は、マルチトーン信号MS_fの位相成分(θ)とエラー信号ES_fの位相成分(φ)が定数倍された値(βφ)との差分値(θ-βφ)に基づき、個々の初期位相θを更新する処理を含むものである。より具体的には、第7処理は、対応するトーン信号TSの位相成分(θ)と対応するエラー信号ESの位相成分(φ)が定数倍された値(βφ)との差分値(θ-βφ)に基づき、個々の初期位相θを更新する処理を含むものである。 Here, β is a predetermined constant. β is set to a non-zero value and is set to a non-one value (β ≠ 0, β ≠ 1). That is, the seventh process, the difference value between the phase component of the multi-tone signal MS_f (θ k) and error signal ES_f phase components (phi k) is constant multiple values (βφ k) (θ k -βφ k) It includes a process of updating each initial phase θ k based on. More specifically, the seventh process, the corresponding tone signal TS k phase components (theta k) and a phase component (phi k) is a constant multiplied by the value of the corresponding error signal ES k (βφ k) It includes a process of updating each initial phase θ k based on the difference value (θ k − β φ k).
 このように、波形データ生成部2aにおける収束演算は、複数個の処理を繰り返し実行するものである。より具体的には、波形データ生成部2aにおける収束演算は、第1処理、第2処理、第3処理、第4処理及び第6処理をN回実行するとともに、第5処理又は第7処理を選択的にN回実行するものである。換言すれば、波形データ生成部2aにおける収束演算は、第1処理、第2処理、第3処理、第4処理、第6処理及び第5処理又は第7処理をN回実行するものである。第2回以降の各回の第1処理において、M個の初期位相θ~θの各々には、前回の第5処理又は第7処理における更新後の値が用いられる。また、波形データWDは、第N回の第5処理又は第7処理における更新後の初期位相θ~θに対応するマルチトーン信号MSの時間領域波形を示すものである。 As described above, the convergence operation in the waveform data generation unit 2a repeatedly executes a plurality of processes. More specifically, in the convergence operation in the waveform data generation unit 2a, the first process, the second process, the third process, the fourth process and the sixth process are executed N times, and the fifth process or the seventh process is performed. It is selectively executed N times. In other words, the convergence operation in the waveform data generation unit 2a executes the first process, the second process, the third process, the fourth process, the sixth process, the fifth process, or the seventh process N times. In the first processing of each of the second and subsequent times, the updated values in the previous fifth processing or seventh processing are used for each of the M initial phases θ 1 to θ M. Further, the waveform data WD shows the time domain waveform of the multitone signal MS corresponding to the initial phases θ 1 to θ M after the update in the fifth process or the seventh process of the Nth time.
 なお、閾値αには、ユーザにより事前に設定された値が用いられるものであっても良い。また、定数βには、ユーザにより事前に設定された値が用いられるものであっても良い。この場合、波形データ生成部2aは、当該設定された閾値αを取得するとともに、当該設定された定数βを取得するものであっても良い(図15参照)。 Note that the threshold value α may be a value preset by the user. Further, a value preset by the user may be used for the constant β. In this case, the waveform data generation unit 2a may acquire the set threshold value α and also acquire the set constant β (see FIG. 15).
 図17は、定数倍された位相(βφ)に対応するエラー信号ES_fの例を示している。図17に示す例においては、M=5である。 FIG. 17 shows an example of the error signal ES_f corresponding to the constant-multiplied phase (βφ k). In the example shown in FIG. 17, M = 5.
 図18は、第7処理における更新後の初期位相θ~θに対応するマルチトーン信号MS_fの例を示している。図18に示す例においては、M=5である。ただし、図18におけるθ~θは、第7処理における更新前の初期位相θ~θを示している。すなわち、図18におけるθ~θは、初期値計算部1により計算された値に対応するものである。 FIG. 18 shows an example of the multitone signal MS_f corresponding to the updated initial phases θ 1 to θ M in the seventh process. In the example shown in FIG. 18, M = 5. However, θ 1 to θ 5 in FIG. 18 indicate the initial phases θ 1 to θ 5 before the update in the seventh process. That is, θ 1 to θ 5 in FIG. 18 correspond to the values calculated by the initial value calculation unit 1.
 このようにして、マルチトーン信号生成装置100aの要部が構成されている。 In this way, the main part of the multitone signal generation device 100a is configured.
 以下、波形データ生成部2aが有する機能を総称して「波形データ生成機能」ということがある。また、かかる波形データ生成機能に「F2a」の符号を用いることがある。 Hereinafter, the functions of the waveform data generation unit 2a may be collectively referred to as "waveform data generation function". Further, the reference numeral of "F2a" may be used for the waveform data generation function.
 マルチトーン信号生成装置100aの要部のハードウェア構成は、実施の形態1にて図10~図12を参照して説明したものと同様である。このため、詳細な説明は省略する。 The hardware configuration of the main part of the multitone signal generation device 100a is the same as that described with reference to FIGS. 10 to 12 in the first embodiment. Therefore, detailed description thereof will be omitted.
 すなわち、マルチトーン信号生成装置100aは、複数個の機能(初期値計算機能及び波形データ生成機能を含む。)F1,F2aを有するものであり、かつ、マルチトーン信号出力機能F3を有するものである。複数個の機能F1,F2aの各々は、プロセッサ21及びメモリ22により実現されるものであっても良く、又は処理回路24により実現されるものであっても良い。また、マルチトーン信号出力機能F3は、DAC23により実現されるものであっても良い。 That is, the multitone signal generation device 100a has a plurality of functions (including an initial value calculation function and a waveform data generation function) F1 and F2a, and also has a multitone signal output function F3. .. Each of the plurality of functions F1 and F2a may be realized by the processor 21 and the memory 22, or may be realized by the processing circuit 24. Further, the multitone signal output function F3 may be realized by the DAC23.
 ここで、プロセッサ21は、複数個の機能F1,F2aの各々に対応する専用のプロセッサを含むものであっても良い。また、メモリ22は、複数個の機能F1,F2aの各々に対応する専用のメモリを含むものであっても良い。また、処理回路24は、複数個の機能F1,F2aの各々に対応する専用の処理回路を含むものであっても良い。 Here, the processor 21 may include a dedicated processor corresponding to each of the plurality of functions F1 and F2a. Further, the memory 22 may include a dedicated memory corresponding to each of the plurality of functions F1 and F2a. Further, the processing circuit 24 may include a dedicated processing circuit corresponding to each of the plurality of functions F1 and F2a.
 次に、図19に示すフローチャートを参照して、マルチトーン信号生成装置100aの動作について説明する。なお、図19において、図13に示すステップと同様のステップには同一符号を付して説明を省略する。 Next, the operation of the multitone signal generation device 100a will be described with reference to the flowchart shown in FIG. In FIG. 19, the same steps as those shown in FIG. 13 are designated by the same reference numerals and the description thereof will be omitted.
 まず、ステップST1の処理が実行される。 First, the process of step ST1 is executed.
 次いで、波形データ生成部2aは、初期値計算部1により計算された初期位相θ~θを用いて、マルチトーン信号MSのPAPRを低減するための収束演算を実行する。これにより、波形データ生成部2aは、PAPRが低減されたマルチトーン信号MSに対応する波形データWDを生成する(ステップST2a)。 Next, the waveform data generation unit 2a executes a convergence operation for reducing the PAPR of the multitone signal MS by using the initial phases θ 1 to θ M calculated by the initial value calculation unit 1. As a result, the waveform data generation unit 2a generates the waveform data WD corresponding to the multitone signal MS with reduced PAPR (step ST2a).
 次いで、ステップST3の処理が実行される。 Next, the process of step ST3 is executed.
 次に、図20に示すフローチャートを参照して、波形データ生成部2aの動作について説明する。すなわち、ステップST2aにて実行される処理について説明する。なお、図20において、図14に示すステップと同様のステップには同一符号を付して説明を省略する。 Next, the operation of the waveform data generation unit 2a will be described with reference to the flowchart shown in FIG. That is, the process executed in step ST2a will be described. In FIG. 20, the same steps as those shown in FIG. 14 are designated by the same reference numerals and the description thereof will be omitted.
 上記のとおり、波形データ生成部2aは、収束演算を実行するものである。波形データ生成部2aにおける収束演算は、第1処理、第2処理、第3処理、第4処理、第6処理及び第5処理又は第7処理をN回実行するものである(ステップST11a)。 As described above, the waveform data generation unit 2a executes the convergence operation. The convergence operation in the waveform data generation unit 2a executes the first process, the second process, the third process, the fourth process, the sixth process, the fifth process, or the seventh process N times (step ST11a).
 まず、第1処理部11が第1処理を実行する(ステップST21)。次いで、第2処理部12が第2処理を実行する(ステップST22)。次いで、第3処理部13が第3処理を実行する(ステップST23)。次いで、第4処理部14が第4処理を実行する(ステップST24)。 First, the first processing unit 11 executes the first processing (step ST21). Next, the second processing unit 12 executes the second processing (step ST22). Next, the third processing unit 13 executes the third processing (step ST23). Next, the fourth processing unit 14 executes the fourth processing (step ST24).
 次いで、第6処理部16が第6処理を実行する(ステップST26_1,ST26_2)。これにより、疑似乱数xが生成される(ステップST26_1)。また、当該生成された疑似乱数xが閾値αと比較される(ステップST26_2)。 Next, the sixth processing unit 16 executes the sixth processing (steps ST26_1 and ST26_2). As a result, a pseudo-random number x is generated (step ST26_1). Further, the generated pseudo-random number x is compared with the threshold value α (step ST26_2).
 疑似乱数xが閾値α未満の値である場合(ステップST26_2“YES”)、第5処理部15aが第5処理を実行する(ステップST25a)。すなわち、第5処理部15aは、式(2)により個々の初期位相θを更新する。これにより、M個の初期位相θ~θの各々が更新される。 When the pseudo-random number x is a value less than the threshold value α (step ST26_2 “YES”), the fifth processing unit 15a executes the fifth processing (step ST25a). That is, the fifth processing unit 15a updates each initial phase θ k according to the equation (2). As a result, each of the M initial phases θ 1 to θ M is updated.
 他方、疑似乱数xが閾値α以上の値である場合(ステップST26_2“NO”)、第7処理部17が第7処理を実行する(ステップST27)。すなわち、第7処理部17は、式(3)により個々の初期位相θを更新する。これにより、M個の初期位相θ~θの各々が更新される。 On the other hand, when the pseudo-random number x is a value equal to or higher than the threshold value α (step ST26_2 “NO”), the seventh processing unit 17 executes the seventh processing (step ST27). That is, the seventh processing unit 17 updates each initial phase θ k by the equation (3). As a result, each of the M initial phases θ 1 to θ M is updated.
 これらの処理がN回実行されたとき、収束演算が終了する。次いで、波形データ生成部2aは、波形データWDを生成する(ステップST12)。当該生成された波形データWDは、第N回の第5処理又は第7処理(ステップST25a又はステップST27)における更新後の初期位相θ~θに対応するマルチトーン信号MSの時間領域波形を示すものである。 When these processes are executed N times, the convergence operation ends. Next, the waveform data generation unit 2a generates the waveform data WD (step ST12). The generated waveform data WD is the time domain waveform of the multitone signal MS corresponding to the updated initial phases θ 1 to θ M in the fifth process or the seventh process (step ST25a or step ST27) of the Nth time. It shows.
 次に、マルチトーン信号生成装置100aを用いることによる効果について説明する。 Next, the effect of using the multitone signal generation device 100a will be described.
 マルチトーン信号生成装置100においては、収束演算により個々の初期位相θがN回更新されるものであるところ、かかるN回の更新における更新方法が一定である。すなわち、かかるN回の更新のうちの各回の更新が第5処理によるものである。このため、個々の初期位相θの値が収束したとき、当該収束した値が局所解に対応する値となる可能性がある。換言すれば、収束演算が局所解に陥る可能性がある。 In the multitone signal generation device 100, the individual initial phase θ k is updated N times by the convergence operation, and the update method in the N times update is constant. That is, each of the N updates is due to the fifth process. Therefore, when the values of the individual initial phases θ k converge, the converged values may become the values corresponding to the local solution. In other words, the convergence operation can fall into a local solution.
 これに対して、マルチトーン信号生成装置100aにおいては、閾値αに応じた確率にて、かかるN回の更新のうちの各回の更新における更新方法が変化する。すなわち、閾値αに応じた確率にて、かかる更新方法が第5処理から第7処理に変化し得るものである。これにより、個々の初期位相θの値が収束したとき、当該収束した値が局所解に対応する値となるのを回避することができる。換言すれば、かかる局所解の発生を回避することができる。 On the other hand, in the multitone signal generation device 100a, the update method in each update of the N times is changed with a probability corresponding to the threshold value α. That is, the update method can change from the fifth process to the seventh process with a probability corresponding to the threshold value α. As a result, when the values of the individual initial phases θ k converge, it is possible to prevent the converged values from becoming the values corresponding to the local solution. In other words, it is possible to avoid the occurrence of such a local solution.
 ここで、閾値αが小さい値(例えば0.5未満の値)に設定されている場合、各回の更新において、第5処理が実行される確率に比して第7処理が実行される確率が高くなる。換言すれば、各回の更新において、第7処理が実行される確率に比して第5処理が実行される確率が低くなる。これにより、局所解の発生を回避する効果が低下する。このため、上記のとおり、閾値αは、例えば、0.5以上かつ1未満の範囲内の値に設定されるのが好適である。 Here, when the threshold value α is set to a small value (for example, a value less than 0.5), the probability that the seventh process is executed is higher than the probability that the fifth process is executed in each update. It gets higher. In other words, in each update, the probability that the fifth process is executed is lower than the probability that the seventh process is executed. This reduces the effect of avoiding the occurrence of local solutions. Therefore, as described above, it is preferable that the threshold value α is set to a value within the range of, for example, 0.5 or more and less than 1.
 そして、各回の更新にて第7処理が実行される確率を10%以下にすることにより、局所解の発生を回避する効果を向上することができる。これは、経験則によるものである。このため、上記のとおり、閾値αは、例えば、0.9以上かつ1未満の範囲内の値に設定されるのが更に好適である。 Then, by reducing the probability that the seventh process is executed at each update to 10% or less, the effect of avoiding the occurrence of a local solution can be improved. This is a rule of thumb. Therefore, as described above, it is more preferable that the threshold value α is set to a value within the range of, for example, 0.9 or more and less than 1.
 次に、マルチトーン信号生成装置100aの変形例について説明する。 Next, a modified example of the multitone signal generation device 100a will be described.
 マルチトーン信号生成装置100aは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。例えば、波形データ生成部2aは、図20に示す収束演算をL回実行するものであっても良い。 As the multitone signal generation device 100a, various modifications similar to those described in the first embodiment can be adopted. For example, the waveform data generation unit 2a may execute the convergence operation shown in FIG. 20 L times.
 波形データ生成部2aが収束演算をL回実行することにより、第1処理、第2処理、第3処理、第4処理及び第6処理がN×L回実行されるとともに、第5処理又は第7処理が選択的にN×L回実行される。この場合、第2回以降の各回の収束演算における第1回の第1処理においては、前回の収束演算における第N回の第5処理又は第7処理における更新後の初期位相θ~θが用いられる。また、波形データ生成部2aは、第L回の収束演算が終了したとき、波形データWDを生成する。当該生成された波形データWDは、第L回の収束演算における第N回の第5処理又は第7処理における更新後の初期位相θ~θに対応するマルチトーン信号MSの時間領域波形を示すものである。 When the waveform data generation unit 2a executes the convergence operation L times, the first process, the second process, the third process, the fourth process, and the sixth process are executed N × L times, and the fifth process or the fifth process is performed. 7 The process is selectively executed N × L times. In this case, in the first first process of each of the second and subsequent convergence operations, the initial phase after the update in the Nth fifth process or the seventh process in the previous convergence operation θ 1 to θ M. Is used. Further, the waveform data generation unit 2a generates the waveform data WD when the Lth convergence calculation is completed. The generated waveform data WD is the time domain waveform of the multitone signal MS corresponding to the updated initial phases θ 1 to θ M in the Nth fifth process or the seventh process in the Lth convergence operation. It shows.
 以上のように、実施の形態2に係るマルチトーン信号生成装置100aにおいて、収束演算は、複数個の処理を繰り返し実行するものであり、複数個の処理は、疑似乱数xを生成する処理を含み、複数個の処理は、疑似乱数xに応じて異なる更新方法によりM個の初期位相θ~θの各々を更新する処理を含む。これにより、収束演算における局所解の発生を回避することができる。換言すれば、個々の初期位相θの値が収束したとき、当該収束した値を大局解に対応する値にすることができる。この結果、マルチトーン信号MSのPAPRを更に低減することができる。 As described above, in the multitone signal generation device 100a according to the second embodiment, the convergence operation repeatedly executes a plurality of processes, and the plurality of processes include a process of generating a pseudo-random number x. The plurality of processes include a process of updating each of the M initial phases θ 1 to θ M by different update methods according to the pseudo-random number x. This makes it possible to avoid the occurrence of a local solution in the convergence operation. In other words, when the values of the individual initial phases θ k converge, the converged values can be set to the values corresponding to the global solution. As a result, the PAPR of the multitone signal MS can be further reduced.
 また、収束演算は、第1処理、第2処理、第3処理、第4処理、第6処理及び第5処理又は第7処理をN回実行するものであり、第1処理は、M個の初期位相θ~θを用いて周波数領域におけるマルチトーン信号MS_fを設定する処理を含み、第2処理は、周波数領域におけるマルチトーン信号MS_fを時間領域におけるマルチトーン信号MS_tに変換する処理を含み、第3処理は、時間領域におけるマルチトーン信号MS_tの値と所定の基準値Sとの差分値を算出することにより時間領域におけるエラー信号ES_tを算出する処理を含み、第4処理は、時間領域におけるエラー信号ES_tを周波数領域におけるエラー信号ES_fに変換する処理を含み、第6処理は、疑似乱数xを生成する処理及び疑似乱数xを所定の閾値αと比較する処理を含み、第5処理は、疑似乱数xが閾値α未満の値である場合、周波数領域におけるマルチトーン信号MS_fの位相成分(θ)と周波数領域におけるエラー信号ES_fの位相成分(φ)との差分値(θ-φ)に基づきM個の初期位相θ~θの各々を更新する処理を含み、第7処理は、疑似乱数xが閾値α以上の値である場合、周波数領域におけるマルチトーン信号MSの位相成分(θ)と周波数領域におけるエラー信号ES_fの位相成分(φ)が定数倍された値(βφ)との差分値(θ-βφ)に基づきM個の初期位相θ~θの各々を更新する処理を含む。これにより、図20に示すフローチャートに基づき、波形データ生成部2aにおける収束演算を実現することができる。 Further, the convergence operation executes the first process, the second process, the third process, the fourth process, the sixth process, the fifth process, or the seventh process N times, and the first process is M pieces. The process of setting the multitone signal MS_f in the frequency domain using the initial phases θ 1 to θ M is included, and the second process includes the process of converting the multitone signal MS_f in the frequency domain into the multitone signal MS_t in the time domain. The third process includes a process of calculating the error signal ES_t in the time domain by calculating the difference value between the value of the multitone signal MS_t in the time domain and the predetermined reference value S, and the fourth process is the process of calculating the error signal ES_t in the time domain. The sixth process includes a process of converting the error signal ES_t in the frequency domain into an error signal ES_f in the frequency domain, the sixth process includes a process of generating a pseudo random number x, and a process of comparing the pseudo random number x with a predetermined threshold value α, and the fifth process includes a process of comparing the pseudo random number x with a predetermined threshold value α. When the pseudo random number x is a value less than the threshold value α, the difference value (θ k) between the phase component (θ k ) of the multitone signal MS_f in the frequency domain and the phase component (φ k ) of the error signal ES_f in the frequency domain. The seventh process includes the process of updating each of the M initial phases θ 1 to θ M based on φ k ), and the seventh process is the multitone signal MS in the frequency domain when the pseudo random number x is a value equal to or greater than the threshold α. phase component (theta k) and the difference value (θ k -βφ k) M-number of initial phase theta 1 based on the phase component of the error signal ES_f in the frequency domain (phi k) is a constant multiple values (βφ k) It includes a process of updating each of ~ θ M. Thereby, the convergence operation in the waveform data generation unit 2a can be realized based on the flowchart shown in FIG.
実施の形態3.
 図21は、実施の形態3に係るマルチトーン信号生成装置の要部を示すブロック図である。図22は、実施の形態3に係るマルチトーン信号生成装置における波形データ生成部の要部を示すブロック図である。図21及び図22を参照して、実施の形態3に係るマルチトーン信号生成装置について説明する。
Embodiment 3.
FIG. 21 is a block diagram showing a main part of the multitone signal generation device according to the third embodiment. FIG. 22 is a block diagram showing a main part of a waveform data generation unit in the multitone signal generation device according to the third embodiment. The multitone signal generation device according to the third embodiment will be described with reference to FIGS. 21 and 22.
 なお、図21において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。また、図22において、図2に示すブロックと同様のブロックには同一符号を付して説明を省略する。 In FIG. 21, the same blocks as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. Further, in FIG. 22, the same blocks as those shown in FIG. 2 are designated by the same reference numerals and the description thereof will be omitted.
 図21に示す如く、マルチトーン信号生成装置100bは、初期値計算部1、波形データ生成部2b及びマルチトーン信号出力部3を含むものである。図22に示す如く、波形データ生成部2bは、第1処理部11、第2処理部12、第3処理部13、第4処理部14及び第5処理部15を含むものである。これに加えて、波形データ生成部2bは、第8処理部18を含むものである。 As shown in FIG. 21, the multitone signal generation device 100b includes an initial value calculation unit 1, a waveform data generation unit 2b, and a multitone signal output unit 3. As shown in FIG. 22, the waveform data generation unit 2b includes a first processing unit 11, a second processing unit 12, a third processing unit 13, a fourth processing unit 14, and a fifth processing unit 15. In addition to this, the waveform data generation unit 2b includes the eighth processing unit 18.
 すなわち、波形データ生成部2bにおける収束演算は、第1処理、第2処理、第3処理、第4処理及び第5処理を含むものである。これに加えて、波形データ生成部2bにおける収束演算は、第8処理部18により実行される処理(以下「第8処理」という。)を含むものである。以下、波形データ生成部2bにおける収束演算について、波形データ生成部2における収束演算と異なる部分を中心に説明する。 That is, the convergence operation in the waveform data generation unit 2b includes a first process, a second process, a third process, a fourth process, and a fifth process. In addition to this, the convergence operation in the waveform data generation unit 2b includes a process executed by the eighth process unit 18 (hereinafter referred to as “eighth process”). Hereinafter, the convergence operation in the waveform data generation unit 2b will be described focusing on a portion different from the convergence operation in the waveform data generation unit 2.
 以下、収束演算におけるN回の処理のうちの各回の処理に対応するインデックスに「i」の符号を用いることがある。すなわち、インデックスiは、N個の整数値(1~N)のうちの個々の整数値を示し得るものである。 Hereinafter, the sign of "i" may be used for the index corresponding to each of the N times of processing in the convergence operation. That is, the index i can indicate an individual integer value out of N integer values (1 to N).
 第8処理は、N×M個の倍率(1+γ1,1)~(1+γN,M)に対応するN×M個の値(以下「倍率値」という。)γ1,1~γN,Mを用いるものである。個々の倍率値γi,kは、M個のトーン信号TS~TSのうちの第kのトーン信号TSに対応するものであり、かつ、N回の第8処理のうちの第i回の第8処理に対応するものである。すなわち、個々の倍率値γi,kは、M個のトーン信号TS~TSのうちのいずれか1個のトーン信号TSに対応するものであり、かつ、N回の第8処理のうちのいずれか1回の第8処理に対応するものである。 In the eighth process, N × M values (hereinafter referred to as “magnification values”) corresponding to N × M magnifications (1 + γ 1,1 ) to (1 + γ N, M ) γ 1,1 to γ N, M is used. The individual magnification values γ i and k correspond to the kth tone signal TS k of the M tone signals TS 1 to TS M, and the i-th of the N times eighth processing. It corresponds to the eighth process of the times. That is, each magnification value gamma i, k is intended to correspond to any one of the tone signal TS k of the M tone signal TS 1 ~ TS M, and the eighth process N times It corresponds to any one of the eighth processes.
 ここで、N×M個の倍率値γ1,1~γN,Mのうちの各2個の倍率値γi,kは、互いに異なる値に設定されるのが好適である。ただし、N×M個の倍率値γ1,1~γN,Mのうちの一部の倍率値γi,kについて、かかる一部の倍率値γi,kのうちの各2個の倍率値γi,kが互いに同一の値に設定されるものであっても良い。なお、個々の倍率値γi,kは、非-1値に設定されている(γi,k≠-1)。これは、個々の倍率値γi,kについて、対応する倍率(1+γi,k)を非0値にするためである。 Here, it is preferable that the magnification values γ i, k of each of the N × M magnification values γ 1,1 to γ N, M are set to different values. However, N × M pieces of the part of the magnification value gamma i, k of the magnification value γ 1,1 ~ γ N, M, the two magnifications of such part of the magnification value gamma i, k The values γ i and k may be set to the same value. The individual magnification values γ i and k are set to non--1 values (γ i, k ≠ -1). This is because the corresponding magnification (1 + γ i, k ) is set to a non-zero value for each magnification value γ i, k.
 第8処理部18は、N×M個の倍率値γ1,1~γN,Mを示すデータテーブルを有するものである。または、第8処理部18は、各回の第8処理を実行するとき、M個のトーン信号TS~TSに対応するM個の疑似乱数を生成して、当該生成された疑似乱数を対応する倍率値γi,kに用いるものである。 The eighth processing unit 18 has a data table showing N × M magnification values γ 1,1 to γ N, M. Alternatively, when the eighth processing unit 18 executes the eighth processing each time, the eighth processing unit 18 generates M pseudo-random numbers corresponding to the M tone signals TS 1 to TS M, and corresponds to the generated pseudo-random numbers. It is used for the magnification values γ i and k.
 N回の第1処理のうちの第1回の第1処理において、M個の振幅A~Aの各々には、所定値(例えば1)が用いられる。このため、第1回の第1処理にて設定されたマルチトーン信号MS_fにおいては、個々の振幅Aが1である(図3参照)。 In the first time the first process of the first processing N times, each of the M amplitude A 1 ~ A M, a predetermined value (e.g. 1) are used. Therefore, in the multi-tone signal MS_f set by the 1st first process, an individual amplitude A k is 1 (see FIG. 3).
 第8処理部18は、各回の第1処理が実行されたとき、第8処理を実行する。各回の第8処理は、N×M個の倍率値γ1,1~γN,Mのうちの対応する倍率値γi,kを用いて、M個の振幅A~Aの各々を更新する処理を含むものである。すなわち、各回の第8処理は、以下の式(4)により個々の振幅Aを更新する処理を含むものである。 The eighth processing unit 18 executes the eighth processing when the first processing of each time is executed. Eighth processing each time using the corresponding magnification value gamma i, k of the N × M pieces of magnification values gamma 1, 1 ~ gamma N, M, and each of the M amplitude A 1 ~ A M It includes the process of updating. That is, the eighth process each time is intended to include processing for updating the individual amplitudes A k according to the following equation (4).
 A←(1+γi,k)A  (4) Ak ← (1 + γ i, k ) Ak (4)
 また、各回の第8処理は、当該更新された振幅A~Aに対応するマルチトーン信号MS_fを生成する処理を含むものである。すなわち、各回の第8処理は、対応する第1処理にて設定されたマルチトーン信号MS_fについて、個々の振幅Aを(1+γi,k)倍にする処理を含むものである。これにより、対応する第1処理にて設定されたマルチトーン信号MS_fに対して、個々の振幅Aが(1+γi,k)倍されたマルチトーン信号MS_fが生成される。 Further, an eighth process each time are those which comprise a process for generating a multi-tone signal MS_f corresponding to the amplitude A 1 ~ A M which is the update. That is, the eighth process each time, for a corresponding first processing multitone signal MS_f set by, is intended to include the processing of the individual amplitude A k to (1 + γ i, k) times. Thus, for multi-tone signal MS_f set by the corresponding first process, the individual amplitude A k is (1 + γ i, k) multiplied multitone signal MS_f is generated.
 図23は、各回の第8処理における個々の倍率(1+γi,k)の例を示している。図23に示す例においては、N=3であり、かつ、M=5である。 FIG. 23 shows an example of individual magnifications (1 + γ i, k) in each eighth process. In the example shown in FIG. 23, N = 3 and M = 5.
 図24は、N回の第8処理のうちの第1回の第8処理にて生成されたマルチトーン信号MS_fの例を示している。図24に示す例においては、M=5である。ただし、図24におけるA~Aは、第1回の第8処理における更新前の振幅A~Aを示している。すなわち、図24におけるA~Aは、1に対応するものである。 FIG. 24 shows an example of the multitone signal MS_f generated in the first eighth process of the N eighth processes. In the example shown in FIG. 24, M = 5. However, A 1 to A 5 in FIG. 24 indicate the amplitudes A 1 to A 5 before the update in the first eighth process. That is, A 1 to A 5 in FIG. 24 correspond to 1.
 各回の第8処理に次いで、第2処理が実行される。各回の第2処理においては、対応する第8処理にて生成されたマルチトーン信号MS_fが時間領域におけるマルチトーン信号MS_tに変換される。次いで、第3処理、第4処理及び第5処理が順次実行される。第5処理が実行されることにより、個々の初期位相θが更新される。次いで、かかる更新後の初期位相θ~θを用いて、次回の第1処理が実行される。ただし、第2回以降の各回の第1処理において、M個の振幅A~Aの各々には、前回の第8処理における更新後の値が用いられる。 Following the eighth process each time, the second process is executed. In each second process, the multitone signal MS_f generated in the corresponding eighth process is converted into a multitone signal MS_t in the time domain. Then, the third process, the fourth process, and the fifth process are sequentially executed. By executing the fifth process, each initial phase θ k is updated. Then, the next first process is executed using the initial phases θ 1 to θ M after the update. However, in the first process each time after the second time, each of the M amplitude A 1 ~ A M, the updated value in the eighth process of the previous time is used.
 すなわち、N回の第1処理のうちの第1回の第1処理においては、所定値(例えば1)が個々の振幅Aに用いられるとともに、初期値計算部1により計算された値が個々の初期位相θに用いられる。他方、N回の第1処理のうちの第2回以降の各回の第1処理においては、前回の第8処理における更新後の値が個々の振幅Aに用いられるとともに、前回の第5処理における更新後の値が個々の初期位相θに用いられる。 That is, in the first process of the first of the N times of the first process, a predetermined value (for example, 1) is used for each amplitude Ak, and the value calculated by the initial value calculation unit 1 is individually used. Used for the initial phase θ k of. On the other hand, in the first processing of each of the second and subsequent times of the first processing of N times, the updated value in the previous eighth processing is used for each amplitude Ak , and the previous fifth processing. The updated value in is used for each initial phase θ k.
 図25は、第2回の第1処理にて設定されたマルチトーン信号MS_fの例を示している。図25に示す例においては、M=5である。ただし、図25におけるA~Aは、第1回の第8処理における更新前の振幅A~Aを示している。すなわち、図25におけるA~Aは、1に対応するものである。また、図25におけるθ~θは、第1回の第5処理における更新前の初期位相θ~θを示している。すなわち、図25におけるθ~θは、初期値計算部1により計算された値に対応するものである。 FIG. 25 shows an example of the multitone signal MS_f set in the first processing of the second time. In the example shown in FIG. 25, M = 5. However, A 1 to A 5 in FIG. 25 indicate the amplitudes A 1 to A 5 before the update in the first eighth process. That is, A 1 to A 5 in FIG. 25 correspond to 1. Further, θ 1 to θ 5 in FIG. 25 indicate the initial phases θ 1 to θ 5 before the update in the first fifth process. That is, θ 1 to θ 5 in FIG. 25 correspond to the values calculated by the initial value calculation unit 1.
 このように、波形データ生成部2bおける収束演算は、複数個の処理を繰り返し実行するものである。より具体的には、波形データ生成部2bおける収束演算は、第1処理、第8処理、第2処理、第3処理、第4処理及び第5処理をN回実行するものである。 As described above, the convergence operation in the waveform data generation unit 2b repeatedly executes a plurality of processes. More specifically, the convergence operation in the waveform data generation unit 2b executes the first process, the eighth process, the second process, the third process, the fourth process, and the fifth process N times.
 このようにして、マルチトーン信号生成装置100bの要部が構成されている。 In this way, the main part of the multitone signal generation device 100b is configured.
 以下、波形データ生成部2bが有する機能を総称して「波形データ生成機能」ということがある。また、かかる波形データ生成機能に「F2b」の符号を用いることがある。 Hereinafter, the functions of the waveform data generation unit 2b may be collectively referred to as "waveform data generation function". Further, the reference numeral of "F2b" may be used for the waveform data generation function.
 マルチトーン信号生成装置100bの要部のハードウェア構成は、実施の形態1にて図10~図12を参照して説明したものと同様である。このため、詳細な説明は省略する。 The hardware configuration of the main part of the multitone signal generation device 100b is the same as that described with reference to FIGS. 10 to 12 in the first embodiment. Therefore, detailed description thereof will be omitted.
 すなわち、マルチトーン信号生成装置100bは、複数個の機能(初期値計算機能及び波形データ生成機能を含む。)F1,F2bを有するものであり、かつ、マルチトーン信号出力機能F3を有するものである。複数個の機能F1,F2bの各々は、プロセッサ21及びメモリ22により実現されるものであっても良く、又は処理回路24により実現されるものであっても良い。また、マルチトーン信号出力機能F3は、DAC23により実現されるものであっても良い。 That is, the multitone signal generation device 100b has a plurality of functions (including an initial value calculation function and a waveform data generation function) F1 and F2b, and also has a multitone signal output function F3. .. Each of the plurality of functions F1 and F2b may be realized by the processor 21 and the memory 22, or may be realized by the processing circuit 24. Further, the multitone signal output function F3 may be realized by the DAC23.
 ここで、プロセッサ21は、複数個の機能F1,F2bの各々に対応する専用のプロセッサを含むものであっても良い。また、メモリ22は、複数個の機能F1,F2bの各々に対応する専用のメモリを含むものであっても良い。また、処理回路24は、複数個の機能F1,F2bの各々に対応する専用の処理回路を含むものであっても良い。 Here, the processor 21 may include a dedicated processor corresponding to each of the plurality of functions F1 and F2b. Further, the memory 22 may include a dedicated memory corresponding to each of the plurality of functions F1 and F2b. Further, the processing circuit 24 may include a dedicated processing circuit corresponding to each of the plurality of functions F1 and F2b.
 次に、図26に示すフローチャートを参照して、マルチトーン信号生成装置100bの動作について説明する。なお、図26において、図13に示すステップと同様のステップには同一符号を付して説明を省略する。 Next, the operation of the multitone signal generation device 100b will be described with reference to the flowchart shown in FIG. In FIG. 26, the same steps as those shown in FIG. 13 are designated by the same reference numerals and the description thereof will be omitted.
 まず、ステップST1の処理が実行される。 First, the process of step ST1 is executed.
 次いで、波形データ生成部2bは、初期値計算部1により計算された初期位相θ~θを用いて、マルチトーン信号MSのPAPRを低減するための収束演算を実行する。これにより、波形データ生成部2bは、PAPRが低減されたマルチトーン信号MSに対応する波形データWDを生成する(ステップST2b)。 Next, the waveform data generation unit 2b executes a convergence operation for reducing the PAPR of the multitone signal MS by using the initial phases θ 1 to θ M calculated by the initial value calculation unit 1. As a result, the waveform data generation unit 2b generates the waveform data WD corresponding to the multitone signal MS with reduced PAPR (step ST2b).
 次いで、ステップST3の処理が実行される。 Next, the process of step ST3 is executed.
 次に、図27に示すフローチャートを参照して、波形データ生成部2bの動作について説明する。すなわち、ステップST2bにて実行される処理について説明する。なお、図27において、図14に示すステップと同様のステップには同一符号を付して説明を省略する。 Next, the operation of the waveform data generation unit 2b will be described with reference to the flowchart shown in FIG. 27. That is, the process executed in step ST2b will be described. In FIG. 27, the same steps as those shown in FIG. 14 are designated by the same reference numerals and the description thereof will be omitted.
 上記のとおり、波形データ生成部2bは、収束演算を実行するものである。波形データ生成部2bにおける収束演算は、第1処理、第8処理、第2処理、第3処理、第4処理及び第5処理をN回実行するものである(ステップST11b)。 As described above, the waveform data generation unit 2b executes the convergence operation. The convergence operation in the waveform data generation unit 2b executes the first process, the eighth process, the second process, the third process, the fourth process, and the fifth process N times (step ST11b).
 まず、第1処理部11が第1処理を実行する(ステップST21)。次いで、第8処理部18が第8処理を実行する(ステップST28)。これにより、式(4)により個々の振幅Aが更新される。また、当該更新された振幅A~Aに対応するマルチトーン信号MS_fが生成される。すなわち、個々の振幅Aが(1+γi,k)倍される。 First, the first processing unit 11 executes the first processing (step ST21). Next, the eighth processing unit 18 executes the eighth processing (step ST28). As a result, the individual amplitudes Ak are updated by the equation (4). The multi-tone signal MS_f corresponding to the amplitude A 1 ~ A M which is the update is generated. That is, the individual amplitudes Ak are multiplied by (1 + γ i, k).
 次いで、ステップST28にて生成されたマルチトーン信号MS_fについて、第2処理部12が第2処理を実行する(ステップST22)。次いで、第3処理部13が第3処理を実行する(ステップST23)。次いで、第4処理部14が第4処理を実行する(ステップST24)。次いで、第5処理部15が第5処理を実行する(ステップST25)。 Next, the second processing unit 12 executes the second processing for the multitone signal MS_f generated in step ST28 (step ST22). Next, the third processing unit 13 executes the third processing (step ST23). Next, the fourth processing unit 14 executes the fourth processing (step ST24). Next, the fifth processing unit 15 executes the fifth processing (step ST25).
 これらの処理がN回実行されたとき、収束演算が終了する。次いで、波形データ生成部2bは、波形データWDを生成する(ステップST12)。当該生成された波形データWDは、第N回の第8処理(ステップST28)における更新後の振幅A~Aに対応するマルチトーン信号MSであって、第N回の第5処理(ステップST25)における更新後の初期位相θ~θに対応するマルチトーン信号MSの時間領域波形を示すものである。 When these processes are executed N times, the convergence operation ends. Next, the waveform data generation unit 2b generates waveform data WD (step ST12). Waveform data WD which the generated is a multi-tone signal MS corresponding to the amplitude A 1 ~ A M updated in the eighth process of the N times (step ST28), the N times of the fifth process (step It shows the time domain waveform of the multitone signal MS corresponding to the initial phase θ 1 to θ M after the update in ST25).
 次に、マルチトーン信号生成装置100bを用いることによる効果について説明する。 Next, the effect of using the multitone signal generation device 100b will be described.
 上記のとおり、波形データ生成部2bにおける収束演算は、個々の初期位相θを更新する処理(すなわち第5処理)に加えて、個々の振幅Aを更新する処理(すなわち第8処理)を含むものである。収束演算における更新の対象となるパラメータの種類を増やすことにより、PAPRを低減する効果の向上を図ることができる。 As described above, the convergence operation in the waveform data generation unit 2b includes a process of updating the individual amplitude Ak (that is, the eighth process) in addition to the process of updating the individual initial phase θ k (that is, the fifth process). It includes. By increasing the types of parameters to be updated in the convergence operation, the effect of reducing PAPR can be improved.
 次に、マルチトーン信号生成装置100bの変形例について説明する。 Next, a modification of the multitone signal generation device 100b will be described.
 マルチトーン信号生成装置100bは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。例えば、波形データ生成部2bは、図27に示す収束演算をL回実行するものであっても良い。以下、L回の収束演算のうちの各回の収束演算に対応するインデックスに「j」の符号を用いることがある。すなわち、インデックスjは、L個の整数値(1~L)のうちの個々の整数値を示し得るものである。 As the multitone signal generation device 100b, various modifications similar to those described in the first embodiment can be adopted. For example, the waveform data generation unit 2b may execute the convergence operation shown in FIG. 27 L times. Hereinafter, the sign of "j" may be used for the index corresponding to each of the L times of convergence operations. That is, the index j can indicate an individual integer value out of L integer values (1 to L).
 波形データ生成部2bが収束演算をL回実行することにより、第1処理、第8処理、第2処理、第3処理、第4処理及び第5処理がN×L回実行される。この場合、第2回以降の各回の収束演算における第1回の第1処理においては、前回の収束演算における第N回の第8処理における更新後の振幅A~Aが用いられるとともに、前回の収束演算における第N回の第5処理における更新後の初期位相θ~θが用いられる。また、波形データ生成部2bは、第L回の収束演算が終了したとき、波形データWDを生成する。当該生成された波形データWDは、第L回の収束演算における第N回の第8処理における更新後の振幅A~Aに対応するマルチトーン信号MSであって、第L回の収束演算における第N回の第5処理における更新後の初期位相θ~θに対応するマルチトーン信号MSの時間領域波形を示すものである。 When the waveform data generation unit 2b executes the convergence operation L times, the first process, the eighth process, the second process, the third process, the fourth process, and the fifth process are executed N × L times. In this case, in the first time first process in each round of convergence calculation after the 2nd, the amplitude A 1 ~ A M updated in the eighth process of the N times is used in the preceding convergence calculation, The initial phases θ 1 to θ M after the update in the Nth fifth process in the previous convergence operation are used. Further, the waveform data generation unit 2b generates the waveform data WD when the Lth convergence operation is completed. The generated waveform data WD is a multi-tone signal MS corresponding to the amplitude A 1 ~ A M updated in the eighth process of the N times in the convergence calculation of the L times, the L-time convergence calculation The time domain waveform of the multitone signal MS corresponding to the initial phase θ 1 to θ M after the update in the fifth process of the Nth time is shown.
 ここで、個々の倍率値γi,kには、収束演算毎に異なる値が用いられるものであっても良い。換言すれば、第8処理部18は、L×N×M個の倍率(1+γ1,1,1)~(1+γL,N,M)に対応するL×N×M個の倍率値γ1,1,1~γL,N,Mを用いるものであっても良い。個々の倍率値γj,i,kは、M個のトーン信号TS~TSのうちの第kのトーン信号TSに対応するものであり、かつ、N回の第8処理のうちの第i回の第8処理に対応するものでり、かつ、L回の収束演算のうちの第j回の収束演算に対応するものである。すなわち、個々の倍率値γj,i,kは、M個のトーン信号TS~TSのうちのいずれか1個のトーン信号TSに対応するものであり、かつ、N回の第8処理のうちのいずれか1回の第8処理に対応するものであり、かつ、L回の収束演算のうちのいずれか1回の収束演算に対応するものである。 Here, different values may be used for the individual magnification values γ i and k for each convergence operation. In other words, the eighth processing unit 18 has L × N × M magnification values γ 1 corresponding to L × N × M magnifications (1 + γ 1,1,1 ) to (1 + γ L, N, M). , 1, 1 to γ L, N, M may be used. The individual magnification values γ j, i, and k correspond to the kth tone signal TS k of the M tone signals TS 1 to TS M, and are among the N eighth processes. It corresponds to the eighth process of the i-th time, and corresponds to the j-th convergence operation of the L times of convergence operations. That is, the individual magnification values γ j, i, and k correspond to any one of the M tone signals TS 1 to TS M, and the Nth time signal TS k. It corresponds to any one of the eighth processes, and corresponds to any one of the L times of convergence operations.
 各回の収束演算における各回の第8処理において、第8処理部18は、L×N×M個の倍率値γ1,1,1~γL,N,Mのうちの対応する倍率値γj,i,kを用いて、M個の振幅A~Aの各々を更新する。すなわち、第8処理部18は、以下の式(5)により個々の振幅Aを更新する。 In the 8th processing of each time in each convergence operation, the 8th processing unit 18 has L × N × M magnification values γ 1,1,1 to γ corresponding magnification values γ j among L, N, and M. , i, with k, updating each of the M amplitude a 1 ~ a M. That is, the eighth processing unit 18 updates the individual amplitudes A k according to the following equation (5).
 A←(1+γj,i,k)A  (5) Ak ← (1 + γ j, i, k ) Ak (5)
 また、各回の収束演算における各回の第8処理において、第8処理部18は、当該更新された振幅A~Aに対応するマルチトーン信号MS_fを生成する。すなわち、第8処理部18は、対応する第1処理にて設定されたマルチトーン信号MS_fについて、個々の振幅Aを(1+γj,i,k)倍にする。これにより、対応する第1処理にて設定されたマルチトーン信号MS_fに対して、個々の振幅Aが(1+γj,i,k)倍されたマルチトーン信号MS_fが生成される。 Further, in the eighth process each time at each time of the convergence calculation, the eighth processing unit 18 generates a multi-tone signal MS_f corresponding to the amplitude A 1 ~ A M which is the update. That is, the eighth processing unit 18, the multi-tone signal MS_f set by the corresponding first process, the individual amplitude A k (1 + γ j, i, k) is doubled. Thus, for the corresponding multi-tone signal set by the first process of MS_f, individual amplitude A k is (1 + γ j, i, k) multiplied multitone signal MS_f is generated.
 図28は、各回の収束演算における各回の第8処理における個々の倍率(1+γj,i,k)の例を示している。図28に示す例においては、L=3であり、かつ、N=3であり、かつ、M=5である。 FIG. 28 shows an example of individual magnifications (1 + γ j, i, k ) in the eighth process of each time in each convergence operation. In the example shown in FIG. 28, L = 3, N = 3, and M = 5.
 次に、マルチトーン信号生成装置100bの他の変形例について説明する。 Next, another modification of the multitone signal generator 100b will be described.
 第8処理部18は、各回の第8処理において、式(4)により個々の振幅Aを更新するのに代えて、以下の式(6)により個々の振幅Aを更新するものであっても良い。すなわち、第8処理部18は、各回の第8処理において、個々の振幅Aを(1-γi,k)倍にするものであっても良い。この場合、個々の倍率値γi,kは、非1値に設定されるのが好適である(γi,k≠1)。 Eighth processing unit 18, in the eighth processing each time, instead of updating the individual amplitudes A k by equation (4), be one that updates the individual amplitudes A k according to the following equation (6) May be. That is, the eighth processing unit 18 may multiply each amplitude Ak by (1-γ i, k) in each eighth processing. In this case, it is preferable that the individual magnification values γ i, k are set to non- unique values (γ i, k ≠ 1).
 A←(1-γi,k)A  (6) Ak ← (1-γ i, k ) Ak (6)
 または、第8処理部18は、各回の収束演算における各回の第8処理において、式(5)により個々の振幅Aを更新するのに代えて、以下の式(7)により個々の振幅Aを更新するものであっても良い。すなわち、第8処理部18は、各回の収束演算における各回の第8処理において、個々の振幅Aを(1-γj,i,k)倍にするものであっても良い。この場合、個々の倍率値γj,i,kは、非1値に設定されるのが好適である(γj,i,k≠1)。 Or, the eighth processing unit 18, in the eighth process each time at each time of the convergence calculation, instead of the equation (5) to update individual amplitude A k, each according to the following equation (7) the amplitude A It may be the one that updates k. That is, the eighth processing unit 18 may multiply the individual amplitude Ak by (1-γ j, i, k) in each eighth processing in each convergence operation. In this case, the individual magnification values γ j, i, k are preferably set to non-unique values (γ j, i, k ≠ 1).
 A←(1-γj,i,k)A  (7) Ak ← (1-γ j, i, k ) Ak (7)
 以上のように、実施の形態3に係るマルチトーン信号生成装置100bにおいて、収束演算は、複数個の処理を繰り返し実行するものであり、複数個の処理は、M個のトーン信号TS~TSに対応するM個の振幅A~Aについて、複数個の振幅A~Aの各々を更新する処理を含み、複数個の処理は、複数個の初期位相θの各々を更新する処理を含む。これにより、収束演算における更新の対象となるパラメータの種類を増やすことができる。この結果、PAPRを低減する効果の向上を図ることができる。 As described above, in the multitone signal generation device 100b according to the third embodiment, the convergence operation repeatedly executes a plurality of processes, and the plurality of processes are performed by M tone signals TS 1 to TS. for M amplitude a 1 ~ a M which correspond to M, comprises the process of updating each of a plurality of amplitude a 1 ~ a M, a plurality of process, updates the respective plurality of initial phase theta k Includes processing to do. This makes it possible to increase the types of parameters to be updated in the convergence operation. As a result, the effect of reducing PAPR can be improved.
 また、収束演算は、第1処理、第8処理、第2処理、第3処理、第4処理及び第5処理をN回実行するものであり、第1処理は、M個のトーン信号TS~TSに対応するM個の振幅A~A及びM個の初期位相θ~θを用いて周波数領域におけるマルチトーン信号MS_fを設定する処理を含み、第8処理は、N×M個の倍率値γ1,1~γN,Mのうちの対応する倍率値γi,k又はL×N×M個の倍率値γ1,1,1~γL,N,Mのうちの対応する倍率値γj,i,kを用いてM個の振幅A~Aの各々を更新する処理を含み、第2処理は、周波数領域におけるマルチトーン信号MS_fを時間領域におけるマルチトーン信号MS_tに変換する処理を含み、第3処理は、時間領域におけるマルチトーン信号MS_tの値と所定の基準値Sとの差分値を算出することにより時間領域におけるエラー信号ES_tを算出する処理を含み、第4処理は、時間領域におけるエラー信号ES_tを周波数領域におけるエラー信号ES_fに変換する処理を含み、第5処理は、周波数領域におけるマルチトーン信号MS_fの位相成分(θ)と周波数領域におけるエラー信号ES_fの位相成分(φ)との差分値(θ-φ)に基づきM個の初期位相θ~θの各々を更新する処理を含む。これにより、図27に示すフローチャートに基づき、波形データ生成部2bにおける収束演算を実現することができる。 Further, the convergence operation executes the first process, the eighth process, the second process, the third process, the fourth process, and the fifth process N times, and the first process is the M tone signal TS 1 The eighth process includes a process of setting the multitone signal MS_f in the frequency domain using M amplitudes A 1 to AM corresponding to ~ TS M and M initial phases θ 1 to θ M, and the eighth process is N ×. Of the M magnification values γ 1,1 to γ N, M , the corresponding magnification values γ i, k or L × N × M magnification values γ 1,1,1 to γ L, N, M corresponding magnification value gamma j, wherein i, the process of updating each of the M amplitude a 1 ~ a M with k, the second process, a multi-tone multi-tone signal MS_f in the frequency domain in the time domain The third process includes the process of converting to the signal MS_t, and the third process includes the process of calculating the error signal ES_t in the time domain by calculating the difference value between the value of the multitone signal MS_t in the time domain and the predetermined reference value S. The fourth process includes the process of converting the error signal ES_t in the time domain into the error signal ES_f in the frequency domain, and the fifth process includes the phase component (θ k ) of the multitone signal MS_f in the frequency domain and the error in the frequency domain. including a process of updating each of the M initial phase theta 1 ~ theta M based on the difference value between the phase component of the signal ES_f (φ k) (θ k -φ k). Thereby, the convergence operation in the waveform data generation unit 2b can be realized based on the flowchart shown in FIG. 27.
 また、N×M個の倍率値γ1,1~γN,Mの各々又はL×N×M個の倍率値γ1,1,1~γL,N,Mの各々は、M個のトーン信号TS~TSのうちのいずれか1個のトーン信号TSに対応するものであり、かつ、N回の第8処理のうちのいずれか1回の第8処理に対応するものである。これにより、N回の第8処理について、個々の振幅Aに係る倍率を第8処理毎に異ならしめることができる。 Further, each of the N × M magnification values γ 1,1 to γ N, M or each of the L × N × M magnification values γ 1,1,1 to γ L, N, M is M. It corresponds to the tone signal TS k of any one of the tone signals TS 1 to TS M , and corresponds to any one of the 8th processes of N times. be. Thus, the eighth process N times, it is possible to occupy different magnification according to the individual amplitude A k to the 8 per treatment.
 また、波形データ生成部2bは、収束演算をL回実行するものであり、L×N×M個の倍率値γ1,1,1~γL,N,Mの各々は、L回の収束演算のうちのいずれか1回の収束演算に対応するものである。これにより、L回の収束演算について、個々の振幅Aに係る倍率を収束演算毎に異ならしめることができる。 Further, the waveform data generation unit 2b executes the convergence operation L times, and each of the magnification values γ 1,1,1 to γ L, N, M of L × N × M converges L times. It corresponds to any one of the operations, the convergence operation. Thus, for L times convergence calculation can be made different magnification according to the individual amplitude A k for each convergence calculation.
実施の形態4.
 図29は、実施の形態4に係るマルチトーン信号生成装置の要部を示すブロック図である。図30は、実施の形態4に係るマルチトーン信号生成装置における波形データ生成部の要部を示すブロック図である。図29及び図30を参照して、実施の形態4に係るマルチトーン信号生成装置について説明する。
Embodiment 4.
FIG. 29 is a block diagram showing a main part of the multitone signal generation device according to the fourth embodiment. FIG. 30 is a block diagram showing a main part of a waveform data generation unit in the multitone signal generation device according to the fourth embodiment. The multitone signal generation device according to the fourth embodiment will be described with reference to FIGS. 29 and 30.
 なお、図29において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。また、図30において、図16に示すブロックと同様のブロックには同一符号を付して説明を省略する。また、図30において、図22に示すブロックと同様のブロックには同一符号を付して説明を省略する。 In FIG. 29, the same blocks as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. Further, in FIG. 30, the same blocks as those shown in FIG. 16 are designated by the same reference numerals and the description thereof will be omitted. Further, in FIG. 30, the same blocks as those shown in FIG. 22 are designated by the same reference numerals and the description thereof will be omitted.
 図29に示す如く、マルチトーン信号生成装置100cは、初期値計算部1、波形データ生成部2c及びマルチトーン信号出力部3を含むものである。図30に示す如く、波形データ生成部2cは、第1処理部11、第2処理部12、第3処理部13、第4処理部14及び第5処理部15aを含むものである。これに加えて、波形データ生成部2cは、第6処理部16及び第7処理部17を含むものである。さらに、波形データ生成部2cは、第8処理部18を含むものである。 As shown in FIG. 29, the multitone signal generation device 100c includes an initial value calculation unit 1, a waveform data generation unit 2c, and a multitone signal output unit 3. As shown in FIG. 30, the waveform data generation unit 2c includes a first processing unit 11, a second processing unit 12, a third processing unit 13, a fourth processing unit 14, and a fifth processing unit 15a. In addition to this, the waveform data generation unit 2c includes the sixth processing unit 16 and the seventh processing unit 17. Further, the waveform data generation unit 2c includes the eighth processing unit 18.
 すなわち、波形データ生成部2cは、波形データ生成部2a及び波形データ生成部2bを組み合わせてなるものである。波形データ生成部2cにおける収束演算は、複数個の処理を繰り返し実行するものである。より具体的には、波形データ生成部2cにおける収束演算は、第1処理、第8処理、第2処理、第3処理、第4処理及び第6処理をN回実行するとともに、第5処理又は第7処理を選択的にN回実行するものである。換言すれば、波形データ生成部2cにおける収束演算は、第1処理、第8処理、第2処理、第3処理、第4処理、第6処理及び第5処理又は第7処理をN回実行するものである。 That is, the waveform data generation unit 2c is formed by combining the waveform data generation unit 2a and the waveform data generation unit 2b. The convergence operation in the waveform data generation unit 2c repeatedly executes a plurality of processes. More specifically, in the convergence operation in the waveform data generation unit 2c, the first process, the eighth process, the second process, the third process, the fourth process, and the sixth process are executed N times, and the fifth process or the fifth process is performed. The seventh process is selectively executed N times. In other words, the convergence operation in the waveform data generation unit 2c executes the first process, the eighth process, the second process, the third process, the fourth process, the sixth process, and the fifth process or the seventh process N times. It is a thing.
 このようにして、マルチトーン信号生成装置100cの要部が構成されている。 In this way, the main part of the multitone signal generation device 100c is configured.
 以下、波形データ生成部2cが有する機能を総称して「波形データ生成機能」ということがある。また、かかる波形データ生成機能に「F2c」の符号を用いることがある。 Hereinafter, the functions of the waveform data generation unit 2c may be collectively referred to as "waveform data generation function". Further, the reference numeral of "F2c" may be used for the waveform data generation function.
 マルチトーン信号生成装置100cの要部のハードウェア構成は、実施の形態1にて図10~図12を参照して説明したものと同様である。このため、詳細な説明は省略する。 The hardware configuration of the main part of the multitone signal generation device 100c is the same as that described with reference to FIGS. 10 to 12 in the first embodiment. Therefore, detailed description thereof will be omitted.
 すなわち、マルチトーン信号生成装置100cは、複数個の機能(初期値計算機能及び波形データ生成機能を含む。)F1,F2cを有するものであり、かつ、マルチトーン信号出力機能F3を有するものである。複数個の機能F1,F2cの各々は、プロセッサ21及びメモリ22により実現されるものであっても良く、又は処理回路24により実現されるものであっても良い。また、マルチトーン信号出力機能F3は、DAC23により実現されるものであっても良い。 That is, the multitone signal generation device 100c has a plurality of functions (including an initial value calculation function and a waveform data generation function) F1 and F2c, and also has a multitone signal output function F3. .. Each of the plurality of functions F1 and F2c may be realized by the processor 21 and the memory 22, or may be realized by the processing circuit 24. Further, the multitone signal output function F3 may be realized by the DAC23.
 ここで、プロセッサ21は、複数個の機能F1,F2cの各々に対応する専用のプロセッサを含むものであっても良い。また、メモリ22は、複数個の機能F1,F2cの各々に対応する専用のメモリを含むものであっても良い。また、処理回路24は、複数個の機能F1,F2cの各々に対応する専用の処理回路を含むものであっても良い。 Here, the processor 21 may include a dedicated processor corresponding to each of the plurality of functions F1 and F2c. Further, the memory 22 may include a dedicated memory corresponding to each of the plurality of functions F1 and F2c. Further, the processing circuit 24 may include a dedicated processing circuit corresponding to each of the plurality of functions F1 and F2c.
 次に、図31に示すフローチャートを参照して、マルチトーン信号生成装置100cの動作について説明する。なお、図31において、図13に示すステップと同様のステップには同一符号を付して説明を省略する。 Next, the operation of the multitone signal generation device 100c will be described with reference to the flowchart shown in FIG. In FIG. 31, the same steps as those shown in FIG. 13 are designated by the same reference numerals and the description thereof will be omitted.
 まず、ステップST1の処理が実行される。 First, the process of step ST1 is executed.
 次いで、波形データ生成部2cは、初期値計算部1により計算された初期位相θ~θを用いて、マルチトーン信号MSのPAPRを低減するための収束演算を実行する。これにより、波形データ生成部2cは、PAPRが低減されたマルチトーン信号MSに対応する波形データWDを生成する(ステップST2c)。 Next, the waveform data generation unit 2c executes a convergence operation for reducing the PAPR of the multitone signal MS by using the initial phases θ 1 to θ M calculated by the initial value calculation unit 1. As a result, the waveform data generation unit 2c generates the waveform data WD corresponding to the multitone signal MS with reduced PAPR (step ST2c).
 次いで、ステップST3の処理が実行される。 Next, the process of step ST3 is executed.
 次に、図32に示すフローチャートを参照して、波形データ生成部2cの動作について説明する。すなわち、ステップST2cにて実行される処理について説明する。なお、図32において、図20に示すステップと同様のステップには同一符号を付して説明を省略する。また、図32において、図27に示すステップと同様のステップには同一符号を付して説明を省略する。 Next, the operation of the waveform data generation unit 2c will be described with reference to the flowchart shown in FIG. That is, the process executed in step ST2c will be described. In FIG. 32, the same steps as those shown in FIG. 20 are designated by the same reference numerals and the description thereof will be omitted. Further, in FIG. 32, the same steps as those shown in FIG. 27 are designated by the same reference numerals and the description thereof will be omitted.
 上記のとおり、波形データ生成部2cは、収束演算を実行するものである。波形データ生成部2cにおける収束演算は、第1処理、第8処理、第2処理、第3処理、第4処理、第6処理及び第5処理又は第7処理をN回実行するものである(ステップST11c)。 As described above, the waveform data generation unit 2c executes the convergence operation. The convergence operation in the waveform data generation unit 2c executes the first process, the eighth process, the second process, the third process, the fourth process, the sixth process, the fifth process, or the seventh process N times (. Step ST11c).
 まず、第1処理部11が第1処理を実行する(ステップST21)。次いで、第8処理部18が第8処理を実行する(ステップST28)。次いで、第2処理部12が第2処理を実行する(ステップST22)。次いで、第3処理部13が第3処理を実行する(ステップST23)。次いで、第4処理部14が第4処理を実行する(ステップST24)。次いで、第6処理部16が第6処理を実行する(ステップST26_1,ST26_2)。疑似乱数xが閾値α未満の値である場合(ステップST26_2“YES”)、第5処理部15aが第5処理を実行する(ステップST25a)。他方、疑似乱数xが閾値α以上の値である場合(ステップST26_2“NO”)、第7処理部17が第7処理を実行する(ステップST27)。 First, the first processing unit 11 executes the first processing (step ST21). Next, the eighth processing unit 18 executes the eighth processing (step ST28). Next, the second processing unit 12 executes the second processing (step ST22). Next, the third processing unit 13 executes the third processing (step ST23). Next, the fourth processing unit 14 executes the fourth processing (step ST24). Next, the sixth processing unit 16 executes the sixth processing (steps ST26_1 and ST26_2). When the pseudo-random number x is a value less than the threshold value α (step ST26_2 “YES”), the fifth processing unit 15a executes the fifth processing (step ST25a). On the other hand, when the pseudo-random number x is a value equal to or higher than the threshold value α (step ST26_2 “NO”), the seventh processing unit 17 executes the seventh processing (step ST27).
 これらの処理がN回実行されたとき、収束演算が終了する。次いで、波形データ生成部2は、波形データWDを生成する(ステップST12)。当該生成された波形データWDは、第N回の第8処理(ステップST28)における更新後の振幅A~Aに対応するマルチトーン信号MSであって、第N回の第5処理又は第7処理(ステップST25a又はステップST27)における更新後の初期位相θ~θに対応するマルチトーン信号MSの時間領域波形を示すものである。 When these processes are executed N times, the convergence operation ends. Next, the waveform data generation unit 2 generates waveform data WD (step ST12). Waveform data WD which the generated is a multi-tone signal MS corresponding to the amplitude A 1 ~ A M updated in the eighth process of the N times (step ST28), the fifth processing or the N-th time It shows the time domain waveform of the multitone signal MS corresponding to the initial phase θ 1 to θ M after the update in 7 processing (step ST25a or step ST27).
 なお、マルチトーン信号生成装置100cは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。また、マルチトーン信号生成装置100cは、実施の形態2にて説明したものと同様の種々の変形例を採用することができる。また、マルチトーン信号生成装置100cは、実施の形態3にて説明したものと同様の種々の変形例を採用することができる。 As the multitone signal generation device 100c, various modifications similar to those described in the first embodiment can be adopted. Further, as the multitone signal generation device 100c, various modifications similar to those described in the second embodiment can be adopted. Further, as the multitone signal generation device 100c, various modifications similar to those described in the third embodiment can be adopted.
 以上のように、実施の形態4に係るマルチトーン信号生成装置100cにおいて、収束演算は、複数個の処理を繰り返し実行するものであり、複数個の処理は、M個のトーン信号TS~TSに対応するM個の振幅A~Aについて、M個の振幅A~Aの各々を更新する処理を含み、複数個の処理は、疑似乱数xを生成する処理を含み、複数個の処理は、疑似乱数xに応じて異なる更新方法によりM個の初期位相θ~θの各々を更新する処理を含む。これにより、マルチトーン信号MSのPAPRを更に低減することができる。また、PAPRを低減する効果の向上を図ることができる。 As described above, in the multitone signal generation device 100c according to the fourth embodiment, the convergence operation repeatedly executes a plurality of processes, and the plurality of processes are performed by M tone signals TS 1 to TS. for M amplitude a 1 ~ a M which correspond to M, comprises the process of updating each of the M amplitude a 1 ~ a M, a plurality of processing may include processing for generating a pseudo-random number x, a plurality The processing includes a process of updating each of the M initial phases θ 1 to θ M by different update methods according to the pseudo-random number x. Thereby, the PAPR of the multitone signal MS can be further reduced. In addition, the effect of reducing PAPR can be improved.
 また、収束演算は、第1処理、第8処理、第2処理、第3処理、第4処理、第6処理及び第5処理又は第7処理をN回実行するものであり、第1処理は、M個のトーン信号TS~TSに対応するM個の振幅A~A及びM個の初期位相θ~θを用いて周波数領域におけるマルチトーン信号MS_fを設定する処理を含み、第8処理は、N×M個の倍率値γ1,1~γN,Mのうちの対応する倍率値γi,k又はL×N×M個の倍率値γ1,1,1~γL,N,Mのうちの対応する倍率値γj,i,kを用いてM個の振幅A~Aの各々を更新する処理を含み、第2処理は、周波数領域におけるマルチトーン信号MS_fを時間領域におけるマルチトーン信号MS_tに変換する処理を含み、第3処理は、時間領域におけるマルチトーン信号MS_tの値と所定の基準値Sとの差分値を算出することにより時間領域におけるエラー信号ES_tを算出する処理を含み、第4処理は、時間領域におけるエラー信号ES_tを周波数領域におけるエラー信号ES_fに変換する処理を含み、第6処理は、疑似乱数xを生成する処理及び疑似乱数xを所定の閾値αと比較する処理を含み、第5処理は、疑似乱数xが閾値α未満の値である場合、周波数領域におけるマルチトーン信号MS_fの位相成分(θ)と周波数領域におけるエラー信号ES_fの位相成分(φ)との差分値(θ-φ)に基づきM個の初期位相θ~θの各々を更新する処理を含み、第7処理は、疑似乱数xが閾値α以上の値である場合、周波数領域におけるマルチトーン信号MS_fの位相成分(θ)と周波数領域におけるエラー信号ES_fの位相成分(φ)が定数倍された値(βφ)との差分値(θ-βφ)に基づきM個の初期位相θ~θの各々を更新する処理を含む。これにより、図32に示すフローチャートに基づき、波形データ生成部2cにおける収束演算を実現することができる。 Further, the convergence operation executes the first process, the eighth process, the second process, the third process, the fourth process, the sixth process and the fifth process or the seventh process N times, and the first process is includes a process of setting a multi-tone signal MS_f in the frequency domain using the M amplitude a 1 ~ a M and M number of initial phase theta 1 ~ theta M corresponding to the M tone signal TS 1 ~ TS M In the eighth process, the corresponding magnification values γ i, k or L × N × M magnification values γ 1,1,1 among N × M magnification values γ 1,1 to γ N, M are performed. includes a processing for updating each of the M amplitude a 1 ~ a M using gamma L, N, corresponding magnification value gamma j of M, i, the k, the second process, the multi-tone in the frequency domain The third process includes a process of converting the signal MS_f into a multitone signal MS_t in the time domain, and the third process is an error in the time domain by calculating the difference value between the value of the multitone signal MS_t in the time domain and the predetermined reference value S. The fourth process includes a process of calculating the signal ES_t, the fourth process includes a process of converting the error signal ES_t in the time domain into the error signal ES_f in the frequency domain, and the sixth process includes a process of generating a pseudo random number x and a pseudo random number x. The fifth process includes the phase component (θ k ) of the multitone signal MS_f in the frequency domain and the error signal in the frequency domain when the pseudo random number x is a value less than the threshold α. includes a processing for updating each of the M initial phase theta 1 ~ theta M based on the difference value (θ k k) with ES_f phase components (phi k), seventh process, a pseudo-random number x is the threshold If it is α or more values, the difference value between the multi-tone signal MS_f phase components (theta k) the value phase component of the error signal ES_f in the frequency domain (phi k) is a constant multiple (βφ k) in the frequency domain It includes a process of updating each of the M initial phases θ 1 to θ M based on (θ k − β φ k). As a result, the convergence operation in the waveform data generation unit 2c can be realized based on the flowchart shown in FIG.
 また、N×M個の倍率値γ1,1~γN,Mの各々又はL×N×M個の倍率値γ1,1,1~γL,N,Mの各々は、M個のトーン信号TS~TSのうちのいずれか1個のトーン信号TSに対応するものであり、かつ、N回の第8処理のうちのいずれか1回の第8処理に対応するものである。これにより、N回の第8処理について、個々の振幅Aに係る倍率を第8処理毎に異ならしめることができる。 Further, each of the N × M magnification values γ 1,1 to γ N, M or each of the L × N × M magnification values γ 1,1,1 to γ L, N, M is M. It corresponds to the tone signal TS k of any one of the tone signals TS 1 to TS M , and corresponds to any one of the 8th processes of N times. be. Thus, the eighth process N times, it is possible to occupy different magnification according to the individual amplitude A k to the 8 per treatment.
 また、波形データ生成部2cは、収束演算をL回実行するものであり、L×N×M個の倍率値γ1,1,1~γL,N,Mの各々は、L回の収束演算のうちのいずれか1回の収束演算に対応するものである。これにより、L回の収束演算について、個々の振幅Aに係る倍率を収束演算毎に異ならしめることができる。 Further, the waveform data generation unit 2c executes the convergence operation L times, and each of the magnification values γ 1,1,1 to γ L, N, M of L × N × M converges L times. It corresponds to any one of the operations, the convergence operation. Thus, for L times convergence calculation can be made different magnification according to the individual amplitude A k for each convergence calculation.
 なお、本願開示はその開示の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 It should be noted that, within the scope of the disclosure of the present application, it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component in each embodiment. ..
 本開示に係るマルチトーン信号生成装置及びマルチトーン信号生成方法は、例えば、無線通信装置のRFフロントエンドにおける周波数特性の測定に用いることができる。 The multitone signal generation device and the multitone signal generation method according to the present disclosure can be used, for example, for measuring frequency characteristics at the RF front end of a wireless communication device.
 1 初期値計算部、2,2a,2b,2c 波形データ生成部、3 マルチトーン信号出力部、11 第1処理部、12 第2処理部、13 第3処理部、14 第4処理部、15,15a 第5処理部、16 第6処理部、17 第7処理部、18 第8処理部、21 プロセッサ、22 メモリ、23 デジタル-アナログ変換回路(DAC)、24 処理回路、100,100a,100b,100c マルチトーン信号生成装置。 1 Initial value calculation unit, 2, 2a, 2b, 2c Waveform data generation unit, 3 Multitone signal output unit, 11 1st processing unit, 12 2nd processing unit, 13 3rd processing unit, 14 4th processing unit, 15 , 15a 5th processing unit, 16 6th processing unit, 17 7th processing unit, 18 8th processing unit, 21 processor, 22 memory, 23 digital-to-analog conversion circuit (DAC), 24 processing circuit, 100, 100a, 100b , 100c Multitone signal generator.

Claims (17)

  1.  マルチトーン信号のPAPRを低減するための収束演算に用いられる初期値を計算する初期値計算部と、
     前記初期値を用いた前記収束演算を実行することにより前記PAPRが低減された前記マルチトーン信号の波形を示す波形データを生成する波形データ生成部と、
     前記波形データ生成部により生成された前記波形データに対応する前記マルチトーン信号を出力するマルチトーン信号出力部と、を備え、
     前記初期値は、前記マルチトーン信号に含まれる複数個のトーン信号に対応する複数個の初期位相θを含み、
     前記初期値計算部は、所定の数式を用いた代数計算を実行することにより前記複数個の初期位相θの各々を計算するものであり、
     前記数式は、前記マルチトーン信号のトーン数Mに対応する代数を含み、かつ、前記トーン数Mに対して互いに素である整数rに対応する代数を含む
     ことを特徴とするマルチトーン信号生成装置。
    An initial value calculation unit that calculates the initial value used for the convergence calculation to reduce the PAPR of the multitone signal,
    A waveform data generation unit that generates waveform data indicating the waveform of the multitone signal in which the PAPR is reduced by executing the convergence operation using the initial value.
    A multi-tone signal output unit that outputs the multi-tone signal corresponding to the waveform data generated by the waveform data generation unit is provided.
    The initial value includes a plurality of initial phases θ k corresponding to the plurality of tone signals included in the multitone signal.
    The initial value calculation unit calculates each of the plurality of initial phases θ k by executing algebraic calculation using a predetermined mathematical formula.
    The mathematical expression includes an algebra corresponding to the tone number M of the multitone signal, and includes an algebra corresponding to an integer r that is relatively prime to the tone number M. ..
  2.  前記数式は、θ=(2π/M)*{(k-1)/2}*rであることを特徴とする請求項1記載のマルチトーン信号生成装置。 The equation, θ k = (2π / M ) * {(k-1) 2/2} * multitone signal generator according to claim 1, characterized in that the r.
  3.  前記数式は、θ=(2π/M)*{k(k-1)/2}*rであることを特徴とする請求項1記載のマルチトーン信号生成装置。 The multitone signal generation device according to claim 1, wherein the mathematical formula is θ k = (2π / M) * {k (k-1) / 2} * r.
  4.  前記収束演算は、複数個の処理を繰り返し実行するものであり、
     前記複数個の処理は、前記複数個の初期位相θの各々を更新する処理を含む
     ことを特徴とする請求項1から請求項3のうちのいずれか1項記載のマルチトーン信号生成装置。
    The convergence operation repeatedly executes a plurality of processes.
    The multitone signal generation device according to any one of claims 1 to 3, wherein the plurality of processes include a process of updating each of the plurality of initial phases θ k.
  5.  前記収束演算は、第1処理、第2処理、第3処理、第4処理及び第5処理を複数回実行するものであり、
     前記第1処理は、前記複数個の初期位相θを用いて周波数領域における前記マルチトーン信号を設定する処理を含み、
     前記第2処理は、前記周波数領域における前記マルチトーン信号を時間領域における前記マルチトーン信号に変換する処理を含み、
     前記第3処理は、前記時間領域における前記マルチトーン信号の値と所定の基準値との差分値を算出することにより前記時間領域におけるエラー信号を算出する処理を含み、
     前記第4処理は、前記時間領域における前記エラー信号を前記周波数領域における前記エラー信号に変換する処理を含み、
     前記第5処理は、前記周波数領域における前記マルチトーン信号の位相成分と前記周波数領域における前記エラー信号の位相成分との差分値に基づき前記複数個の初期位相θの各々を更新する処理を含む
     ことを特徴とする請求項1から請求項3のうちのいずれか1項記載のマルチトーン信号生成装置。
    The convergence operation executes the first process, the second process, the third process, the fourth process, and the fifth process a plurality of times.
    The first process includes a process of setting the multitone signal in the frequency domain using the plurality of initial phases θ k.
    The second process includes a process of converting the multitone signal in the frequency domain into the multitone signal in the time domain.
    The third process includes a process of calculating an error signal in the time domain by calculating a difference value between the value of the multitone signal in the time domain and a predetermined reference value.
    The fourth process includes a process of converting the error signal in the time domain into the error signal in the frequency domain.
    The fifth process includes a process of updating each of the plurality of initial phases θ k based on the difference value between the phase component of the multitone signal in the frequency domain and the phase component of the error signal in the frequency domain. The multitone signal generation device according to any one of claims 1 to 3, wherein the multitone signal generation device is characterized.
  6.  前記トーン数Mが奇数である場合、前記整数rが偶数であり、
     前記トーン数Mが偶数である場合、前記整数rが奇数である
     ことを特徴とする請求項1から請求項3のうちのいずれか1項記載のマルチトーン信号生成装置。
    When the number of tones M is an odd number, the integer r is an even number, and the integer r is an even number.
    The multitone signal generator according to any one of claims 1 to 3, wherein when the number of tones M is an even number, the integer r is an odd number.
  7.  前記収束演算は、複数個の処理を繰り返し実行するものであり、
     前記複数個の処理は、疑似乱数を生成する処理を含み、
     前記複数個の処理は、前記疑似乱数に応じて異なる更新方法により前記複数個の初期位相θの各々を更新する処理を含む
     ことを特徴とする請求項1から請求項3のうちのいずれか1項記載のマルチトーン信号生成装置。
    The convergence operation repeatedly executes a plurality of processes.
    The plurality of processes include a process of generating a pseudo-random number.
    Any one of claims 1 to 3, wherein the plurality of processes include a process of updating each of the plurality of initial phases θ k by different update methods according to the pseudo-random number. The multitone signal generator according to claim 1.
  8.  前記収束演算は、第1処理、第2処理、第3処理、第4処理、第6処理及び第5処理又は第7処理を複数回実行するものであり、
     前記第1処理は、前記複数個の初期位相θを用いて周波数領域における前記マルチトーン信号を設定する処理を含み、
     前記第2処理は、前記周波数領域における前記マルチトーン信号を時間領域における前記マルチトーン信号に変換する処理を含み、
     前記第3処理は、前記時間領域における前記マルチトーン信号の値と所定の基準値との差分値を算出することにより前記時間領域におけるエラー信号を算出する処理を含み、
     前記第4処理は、前記時間領域における前記エラー信号を前記周波数領域における前記エラー信号に変換する処理を含み、
     前記第6処理は、疑似乱数を生成する処理及び前記疑似乱数を所定の閾値と比較する処理を含み、
     前記第5処理は、前記疑似乱数が前記閾値未満の値である場合、前記周波数領域における前記マルチトーン信号の位相成分と前記周波数領域における前記エラー信号の位相成分との差分値に基づき前記複数個の初期位相θの各々を更新する処理を含み、
     前記第7処理は、前記疑似乱数が前記閾値以上の値である場合、前記周波数領域における前記マルチトーン信号の位相成分と前記周波数領域における前記エラー信号の位相成分が定数倍された値との差分値に基づき前記複数個の初期位相θの各々を更新する処理を含む
     ことを特徴とする請求項1から請求項3のうちのいずれか1項記載のマルチトーン信号生成装置。
    The convergence operation executes the first process, the second process, the third process, the fourth process, the sixth process, the fifth process, or the seventh process a plurality of times.
    The first process includes a process of setting the multitone signal in the frequency domain using the plurality of initial phases θ k.
    The second process includes a process of converting the multitone signal in the frequency domain into the multitone signal in the time domain.
    The third process includes a process of calculating an error signal in the time domain by calculating a difference value between the value of the multitone signal in the time domain and a predetermined reference value.
    The fourth process includes a process of converting the error signal in the time domain into the error signal in the frequency domain.
    The sixth process includes a process of generating a pseudo-random number and a process of comparing the pseudo-random number with a predetermined threshold value.
    When the pseudo-random number is less than the threshold value, the fifth process is performed on the basis of the difference value between the phase component of the multitone signal in the frequency domain and the phase component of the error signal in the frequency domain. Including the process of updating each of the initial phases θ k of
    In the seventh process, when the pseudo-random number is a value equal to or higher than the threshold value, the difference between the phase component of the multitone signal in the frequency domain and the value obtained by multiplying the phase component of the error signal in the frequency domain by a constant. The multitone signal generation device according to any one of claims 1 to 3, further comprising a process of updating each of the plurality of initial phases θ k based on a value.
  9.  前記収束演算は、複数個の処理を繰り返し実行するものであり、
     前記複数個の処理は、前記複数個のトーン信号に対応する複数個の振幅について、前記複数個の振幅の各々を更新する処理を含み、
     前記複数個の処理は、前記複数個の初期位相θの各々を更新する処理を含む
     ことを特徴とする請求項1から請求項3のうちのいずれか1項記載のマルチトーン信号生成装置。
    The convergence operation repeatedly executes a plurality of processes.
    The plurality of processes include a process of updating each of the plurality of amplitudes with respect to the plurality of amplitudes corresponding to the plurality of tone signals.
    The multitone signal generation device according to any one of claims 1 to 3, wherein the plurality of processes include a process of updating each of the plurality of initial phases θ k.
  10.  前記収束演算は、第1処理、第8処理、第2処理、第3処理、第4処理及び第5処理を複数回実行するものであり、
     前記第1処理は、前記複数個のトーン信号に対応する複数個の振幅及び前記複数個の初期位相θを用いて周波数領域における前記マルチトーン信号を設定する処理を含み、
     前記第8処理は、複数個の倍率値のうちの対応する倍率値を用いて前記複数個の振幅の各々を更新する処理を含み、
     前記第2処理は、前記周波数領域における前記マルチトーン信号を時間領域における前記マルチトーン信号に変換する処理を含み、
     前記第3処理は、前記時間領域における前記マルチトーン信号の値と所定の基準値との差分値を算出することにより前記時間領域におけるエラー信号を算出する処理を含み、
     前記第4処理は、前記時間領域における前記エラー信号を前記周波数領域における前記エラー信号に変換する処理を含み、
     前記第5処理は、前記周波数領域における前記マルチトーン信号の位相成分と前記周波数領域における前記エラー信号の位相成分との差分値に基づき前記複数個の初期位相θの各々を更新する処理を含む
     ことを特徴とする請求項1から請求項3のうちのいずれか1項記載のマルチトーン信号生成装置。
    The convergence operation executes the first process, the eighth process, the second process, the third process, the fourth process, and the fifth process a plurality of times.
    The first process includes a process of setting the multitone signal in the frequency domain using a plurality of amplitudes corresponding to the plurality of tone signals and the plurality of initial phases θ k.
    The eighth process includes a process of updating each of the plurality of amplitudes using the corresponding magnification value among the plurality of magnification values.
    The second process includes a process of converting the multitone signal in the frequency domain into the multitone signal in the time domain.
    The third process includes a process of calculating an error signal in the time domain by calculating a difference value between the value of the multitone signal in the time domain and a predetermined reference value.
    The fourth process includes a process of converting the error signal in the time domain into the error signal in the frequency domain.
    The fifth process includes a process of updating each of the plurality of initial phases θ k based on the difference value between the phase component of the multitone signal in the frequency domain and the phase component of the error signal in the frequency domain. The multitone signal generation device according to any one of claims 1 to 3, wherein the multitone signal generation device is characterized.
  11.  前記複数個の倍率値の各々は、前記複数個のトーン信号のうちのいずれか1個のトーン信号に対応するものであり、かつ、複数回の前記第8処理のうちのいずれか1回の前記第8処理に対応するものであることを特徴とする請求項10記載のマルチトーン信号生成装置。 Each of the plurality of magnification values corresponds to any one of the plurality of tone signals, and any one of the plurality of times of the eighth process. The multitone signal generation device according to claim 10, wherein the multitone signal generation device corresponds to the eighth process.
  12.  前記波形データ生成部は、前記収束演算を複数回実行するものであり、
     前記複数個の倍率値の各々は、複数回の前記収束演算のうちのいずれか1回の前記収束演算に対応するものである
     ことを特徴とする請求項11記載のマルチトーン信号生成装置。
    The waveform data generation unit executes the convergence operation a plurality of times.
    The multitone signal generation device according to claim 11, wherein each of the plurality of magnification values corresponds to one of the plurality of convergence operations.
  13.  前記収束演算は、複数個の処理を繰り返し実行するものであり、
     前記複数個の処理は、前記複数個のトーン信号に対応する複数個の振幅について、前記複数個の振幅の各々を更新する処理を含み、
     前記複数個の処理は、疑似乱数を生成する処理を含み、
     前記複数個の処理は、前記疑似乱数に応じて異なる更新方法により前記複数個の初期位相θの各々を更新する処理を含む
     ことを特徴とする請求項1から請求項3のうちのいずれか1項記載のマルチトーン信号生成装置。
    The convergence operation repeatedly executes a plurality of processes.
    The plurality of processes include a process of updating each of the plurality of amplitudes with respect to the plurality of amplitudes corresponding to the plurality of tone signals.
    The plurality of processes include a process of generating a pseudo-random number.
    Any one of claims 1 to 3, wherein the plurality of processes include a process of updating each of the plurality of initial phases θ k by different update methods according to the pseudo-random number. The multitone signal generator according to claim 1.
  14.  前記収束演算は、第1処理、第8処理、第2処理、第3処理、第4処理、第6処理及び第5処理又は第7処理を複数回実行するものであり、
     前記第1処理は、前記複数個のトーン信号に対応する複数個の振幅及び前記複数個の初期位相θを用いて周波数領域における前記マルチトーン信号を設定する処理を含み、
     前記第8処理は、複数個の倍率値のうちの対応する倍率値を用いて前記複数個の振幅の各々を更新する処理を含み、
     前記第2処理は、前記周波数領域における前記マルチトーン信号を時間領域における前記マルチトーン信号に変換する処理を含み、
     前記第3処理は、前記時間領域における前記マルチトーン信号の値と所定の基準値との差分値を算出することにより前記時間領域におけるエラー信号を算出する処理を含み、
     前記第4処理は、前記時間領域における前記エラー信号を前記周波数領域における前記エラー信号に変換する処理を含み、
     前記第6処理は、疑似乱数を生成する処理及び前記疑似乱数を所定の閾値と比較する処理を含み、
     前記第5処理は、前記疑似乱数が前記閾値未満の値である場合、前記周波数領域における前記マルチトーン信号の位相成分と前記周波数領域における前記エラー信号の位相成分との差分値に基づき前記複数個の初期位相θの各々を更新する処理を含み、
     前記第7処理は、前記疑似乱数が前記閾値以上の値である場合、前記周波数領域における前記マルチトーン信号の位相成分と前記周波数領域における前記エラー信号の位相成分が定数倍された値との差分値に基づき前記複数個の初期位相θの各々を更新する処理を含む
     ことを特徴とする請求項1から請求項3のうちのいずれか1項記載のマルチトーン信号生成装置。
    The convergence operation executes the first process, the eighth process, the second process, the third process, the fourth process, the sixth process, the fifth process, or the seventh process a plurality of times.
    The first process includes a process of setting the multitone signal in the frequency domain using a plurality of amplitudes corresponding to the plurality of tone signals and the plurality of initial phases θ k.
    The eighth process includes a process of updating each of the plurality of amplitudes using the corresponding magnification value among the plurality of magnification values.
    The second process includes a process of converting the multitone signal in the frequency domain into the multitone signal in the time domain.
    The third process includes a process of calculating an error signal in the time domain by calculating a difference value between the value of the multitone signal in the time domain and a predetermined reference value.
    The fourth process includes a process of converting the error signal in the time domain into the error signal in the frequency domain.
    The sixth process includes a process of generating a pseudo-random number and a process of comparing the pseudo-random number with a predetermined threshold value.
    When the pseudo-random number is less than the threshold value, the fifth process is performed on the basis of the difference value between the phase component of the multitone signal in the frequency domain and the phase component of the error signal in the frequency domain. Including the process of updating each of the initial phases θ k of
    In the seventh process, when the pseudo-random number is a value equal to or higher than the threshold value, the difference between the phase component of the multitone signal in the frequency domain and the value obtained by multiplying the phase component of the error signal in the frequency domain by a constant. The multitone signal generation device according to any one of claims 1 to 3, further comprising a process of updating each of the plurality of initial phases θ k based on a value.
  15.  前記複数個の倍率値の各々は、前記複数個のトーン信号のうちのいずれか1個のトーン信号に対応するものであり、かつ、複数回の前記第8処理のうちのいずれか1回の前記第8処理に対応するものであることを特徴とする請求項14記載のマルチトーン信号生成装置。 Each of the plurality of magnification values corresponds to any one of the plurality of tone signals, and any one of the plurality of times of the eighth process. The multitone signal generation device according to claim 14, wherein the multi-tone signal generation device corresponds to the eighth process.
  16.  前記波形データ生成部は、前記収束演算を複数回実行するものであり、
     前記複数個の倍率値の各々は、複数回の前記収束演算のうちのいずれか1回の前記収束演算に対応するものである
     ことを特徴とする請求項15記載のマルチトーン信号生成装置。
    The waveform data generation unit executes the convergence operation a plurality of times.
    The multitone signal generation device according to claim 15, wherein each of the plurality of magnification values corresponds to one of the plurality of convergence operations.
  17.  初期値計算部が、マルチトーン信号のPAPRを低減するための収束演算に用いられる初期値を計算するステップと、
     波形データ生成部が、前記初期値を用いた前記収束演算を実行することにより前記PAPRが低減された前記マルチトーン信号の波形を示す波形データを生成するステップと、
     マルチトーン信号出力部が、前記波形データ生成部により生成された前記波形データに対応する前記マルチトーン信号を出力するステップと、を備え、
     前記初期値は、前記マルチトーン信号に含まれる複数個のトーン信号に対応する複数個の初期位相θを含み、
     前記初期値計算部は、所定の数式を用いた代数計算を実行することにより前記複数個の初期位相θの各々を計算するものであり、
     前記数式は、前記マルチトーン信号のトーン数Mに対応する代数を含み、かつ、前記トーン数Mに対して互いに素である整数rに対応する代数を含む
     ことを特徴とするマルチトーン信号生成方法。
    The step in which the initial value calculation unit calculates the initial value used in the convergence calculation for reducing the PAPR of the multitone signal, and
    A step in which the waveform data generation unit generates waveform data indicating the waveform of the multitone signal in which the PAPR is reduced by executing the convergence operation using the initial value.
    The multitone signal output unit comprises a step of outputting the multitone signal corresponding to the waveform data generated by the waveform data generation unit.
    The initial value includes a plurality of initial phases θ k corresponding to the plurality of tone signals included in the multitone signal.
    The initial value calculation unit calculates each of the plurality of initial phases θ k by executing algebraic calculation using a predetermined mathematical formula.
    The mathematical expression includes an algebra corresponding to the tone number M of the multitone signal, and includes an algebra corresponding to an integer r that is relatively prime to the tone number M. ..
PCT/JP2020/027597 2020-07-16 2020-07-16 Multitone signal generation device and multitone signal generation method WO2022013994A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020570206A JPWO2022013994A1 (en) 2020-07-16 2020-07-16
PCT/JP2020/027597 WO2022013994A1 (en) 2020-07-16 2020-07-16 Multitone signal generation device and multitone signal generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/027597 WO2022013994A1 (en) 2020-07-16 2020-07-16 Multitone signal generation device and multitone signal generation method

Publications (1)

Publication Number Publication Date
WO2022013994A1 true WO2022013994A1 (en) 2022-01-20

Family

ID=79554545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027597 WO2022013994A1 (en) 2020-07-16 2020-07-16 Multitone signal generation device and multitone signal generation method

Country Status (2)

Country Link
JP (1) JPWO2022013994A1 (en)
WO (1) WO2022013994A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024030069A1 (en) * 2022-08-01 2024-02-08 华为技术有限公司 Multi-tone signal sending method and apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063199A (en) * 2000-06-21 2002-02-28 Canon Inc Indexing method and indexing device
JP2005020505A (en) * 2003-06-27 2005-01-20 Hitachi Kokusai Electric Inc Transmitter
US20060247898A1 (en) * 2005-04-20 2006-11-02 Samsung Electronics Co., Ltd. Apparatus and method for reducing peak-to-average power ratio in a broadband wireless communication system
JP2013162282A (en) * 2012-02-03 2013-08-19 Hitachi Kokusai Electric Inc Peak reduction apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063199A (en) * 2000-06-21 2002-02-28 Canon Inc Indexing method and indexing device
JP2005020505A (en) * 2003-06-27 2005-01-20 Hitachi Kokusai Electric Inc Transmitter
US20060247898A1 (en) * 2005-04-20 2006-11-02 Samsung Electronics Co., Ltd. Apparatus and method for reducing peak-to-average power ratio in a broadband wireless communication system
JP2013162282A (en) * 2012-02-03 2013-08-19 Hitachi Kokusai Electric Inc Peak reduction apparatus

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
F ENG, Z. H. ET AL.: "Performance-enhanced direct detection optical OFDM transmission with CAZAC equalization", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 27, no. 14, July 2015 (2015-07-01), pages 1507 - 1510, XP011585610, DOI: 10.1109/LPT.2015.2426954 *
FRIESE, M.: "Multitone signals with low crest factor", IEEE TRANSACTIONS ON COMMUNICATIONS, vol. 45, no. 10, October 1997 (1997-10-01), pages 1338 - 1344, XP011009032 *
NIKOOKAR, H. ET AL.: "Random phase updating algorithm for OFDM transmission with low PAPR", IEEE TRANSACTIONS ON BROADCASTING, vol. 48, June 2002 (2002-06-01), pages 123 - 128, XP011070257 *
OUDERAA, E. ET AL.: "Peak factor minimization using a time-frequency domain swapping algorithm", IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, vol. 37, no. 1, March 1988 (1988-03-01), pages 145 - 147, XP000198620, DOI: 10.1109/19.2684 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024030069A1 (en) * 2022-08-01 2024-02-08 华为技术有限公司 Multi-tone signal sending method and apparatus

Also Published As

Publication number Publication date
JPWO2022013994A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
CN109697048B (en) Generating randomness in a neural network
US10534576B2 (en) Optimization apparatus and control method thereof
US6819279B2 (en) Method and apparatus for the recovery of signals acquired by an interleaved system of digitizers with mismatching frequency response characteristics
WO2022013994A1 (en) Multitone signal generation device and multitone signal generation method
Payne An improved technique for transfer function synthesis from frequency response data
Liu et al. Improved blind timing skew estimation based on spectrum sparsity and ApFFT in time-interleaved ADCs
JP2005174077A (en) Function operation method and circuit
CN113168310B (en) Hardware module for converting numbers
CN114966373A (en) Method and system for testing parameters of analog-to-digital conversion chip of integrated circuit
Moorer A note on the implementation of audio processing by short-term fourier transform
Carini et al. Orthogonal LIP nonlinear filters
De Micheli et al. The expansion in Gegenbauer polynomials: A simple method for the fast computation of the Gegenbauer coefficients
Shibasaki et al. Analysis and design of multi-tone signal generation algorithms for reducing crest factor
Matusiak et al. Noniterative method for frequency estimation based on interpolated DFT with low-order harmonics elimination
Kostoglou et al. Development of computational tools for noise studies in the LHC
JP3728756B2 (en) Device for correcting delay time of discrete Fourier transform value
Cristaldi et al. Iterative method for the definition of frequency-domain Volterra models
Shu et al. Positivity of Toeplitz operators on harmonic Bergman space
Timoshenkova et al. On the possibility of the forecast correction for inaccurate observations based on data assimilation
Tan et al. Design of Computer-Optimised Signals for Linear System Identification
US11231908B2 (en) Random number generation device and random number generation method
Napoli et al. A complete system to generate electrical noise with arbitrary power spectral density
Ting An output response analyzer circuit for ADC built-in self-test
US20210326404A1 (en) Fourier transform device and fourier transform method
JP6662413B2 (en) Signal processing device, signal processing method, and signal processing program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020570206

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944892

Country of ref document: EP

Kind code of ref document: A1