WO2022013948A1 - Trajectory calculation device, trajectory calculation method, and trajectory calculation system - Google Patents

Trajectory calculation device, trajectory calculation method, and trajectory calculation system Download PDF

Info

Publication number
WO2022013948A1
WO2022013948A1 PCT/JP2020/027399 JP2020027399W WO2022013948A1 WO 2022013948 A1 WO2022013948 A1 WO 2022013948A1 JP 2020027399 W JP2020027399 W JP 2020027399W WO 2022013948 A1 WO2022013948 A1 WO 2022013948A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
angle
light
orbit
calculation unit
Prior art date
Application number
PCT/JP2020/027399
Other languages
French (fr)
Japanese (ja)
Inventor
貴雄 遠藤
俊行 安藤
隆 高根澤
多伸 福田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022536022A priority Critical patent/JP7134382B2/en
Priority to PCT/JP2020/027399 priority patent/WO2022013948A1/en
Publication of WO2022013948A1 publication Critical patent/WO2022013948A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00

Definitions

  • the present disclosure relates to an orbit calculation device, an orbit calculation method, and an orbit calculation system for calculating the orbit of a flying object.
  • the electromagnetic wave is transmitted toward the flying object, while the transmitting / receiving antenna that receives the electromagnetic wave reflected by the flying object and the electromagnetic wave transmitted / received by the transmitting / receiving antenna are used.
  • an orbit calculation system (hereinafter referred to as "conventional orbit calculation system") including a signal processing unit for calculating the orbit of a flying object.
  • the conventional orbit calculation system since the electromagnetic wave reciprocates between the transmitting / receiving antenna and the flying object, the propagation distance of the electromagnetic wave is twice the distance between the transmitting / receiving antenna and the flying object.
  • the orbit arithmetic unit since the flying object transmits the electromagnetic wave, the propagation distance of the electromagnetic wave in the orbit arithmetic unit is half of the propagation distance of the electromagnetic wave in the conventional orbit calculation system.
  • the conventional orbit calculation system In the conventional orbit calculation system, the power of the electromagnetic wave transmitted and received by the transmission / reception antenna becomes weaker in inverse proportion to the square of the propagation distance of the electromagnetic wave. Therefore, the conventional orbit calculation system has a problem that the orbit of the flying object may not be calculated depending on the distance between the transmitting / receiving antenna and the flying object.
  • the propagation distance of the electromagnetic wave in the orbit calculation device disclosed in Patent Document 1 is shorter than the propagation distance of the electromagnetic wave in the conventional orbit calculation system. Therefore, even for a distant flying object whose orbit cannot be calculated by the conventional orbit calculation system, the orbit calculation device disclosed in Patent Document 1 may be able to calculate the orbit. However, in the orbit calculation device, if the flying object does not have a transmitter for transmitting electromagnetic waves, the electromagnetic waves cannot be transmitted.
  • the orbit cannot be calculated for the flying object without a transmitter. Therefore, if the orbit arithmetic unit is applied to a conventional orbit calculation system, the orbit of a flying object without a transmitter cannot be calculated. That is, the orbit arithmetic unit cannot be applied to an orbit calculation system that needs to calculate an orbit even for a flying object that does not have a transmitter.
  • This disclosure is made to solve the above-mentioned problems, and may be able to calculate the orbit of a distant projectile that cannot be calculated by the conventional orbit calculation system.
  • Orbit calculation device, orbit calculation method, and orbit calculation. The purpose is to get the system.
  • the orbit calculation device includes the direction directions of the first light collector that collects the light reflected by the projectile after being emitted from the illumination light source at the first time and the second time. , The first time and the second time as the first angle when the light is viewed from the first condensing device from the respective reflection positions of the light with respect to the flying object at the first time and the second time. The direction of direction at the first time and the second time of the first angle calculation unit that calculates each first angle in the above and the second light collector that collects the light reflected by the flying object.
  • a second angle calculation unit that calculates each second angle at time, a first angle calculated by the first angle calculation unit, and a second angle calculated by the second angle calculation unit. It is provided with an orbit calculation unit that calculates the orbit of the flying object from the position of the first light condensing device and the position of the second light condensing device at the first time and the second time.
  • FIG. 6 is a hardware configuration diagram of a computer when the trajectory calculation device 13 is realized by software, firmware, or the like. It is a concrete block diagram which shows the trajectory calculation system which concerns on Embodiment 1. It is a flowchart which shows the trajectory calculation method which is the processing procedure of the trajectory calculation apparatus 13 shown in FIG.
  • FIG. It is explanatory drawing which shows the calculation accuracy of the orbit in the orbit calculation system which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows an example of the positional relationship of the illumination light source 1, the flying object 2, the 1st optical angle measuring station 3 and the 2nd optical angle measuring station 4 in the orbit calculation system which concerns on Embodiment 2.
  • FIG. It is explanatory drawing which shows the calculation accuracy of an angle and the calculation accuracy of a distance in the trajectory calculation system which concerns on Embodiment 2.
  • FIG. It is explanatory drawing which shows an example of the positional relationship of the flying object 2, the 1st optical angle measuring station 3 and the 2nd optical angle measuring station 4 in the orbit calculation system which concerns on Embodiment 3.
  • FIG. 1 is an explanatory diagram showing an example of the positional relationship between the illumination light source 1, the flying object 2, the first optical angle measuring station 3 and the second optical measuring station 4 in the orbit calculation system according to the first embodiment. ..
  • the illumination light source 1 is a star such as the sun that emits light. However, the illumination light source 1 may be any light source that emits light, and is not limited to a star.
  • the projectile 2 is a moving body that orbits the earth and reflects the light emitted from the illumination light source 1.
  • the first optical angle measuring station 3 is a fixed station fixed on the ground of the earth. In the orbit calculation system shown in FIG. 1, the first optical angle measuring station 3 is a fixed station. However, this is only an example, and the first optical measuring station 3 may be a portable station whose position changes.
  • the first optical angle measuring station 3 includes at least the first condensing device 11, the first angle calculating unit 21, and the orbit calculating unit 23 shown in FIG. 2.
  • the specific components mounted on the first optical angle measuring station 3 are shown in FIG.
  • the second optical angle measuring station 4 is a fixed station or a portable station.
  • the second optical angle measuring station 4 is equipped with at least the second light collecting device 12 and the second angle calculating unit 22 shown in FIG.
  • the specific components mounted on the second optical angle measuring station 4 are shown in FIG.
  • the reference signal source 5 uses the reference signal used by the first optical measuring station 3 and the second optical measuring station 4 for time synchronization as the first optical measuring station 3 and the second optical measuring station 4. Send to each of.
  • FIG. 2 is a configuration diagram showing an orbit calculation system according to the first embodiment.
  • the orbit calculation system shown in FIG. 2 includes a first light condensing device 11, a second light condensing device 12, and an orbit calculation device 13.
  • FIG. 3 is a hardware configuration diagram showing the hardware of the trajectory calculation device 13 according to the first embodiment.
  • the first condensing device 11 is realized by, for example, one or more telescopes among a refraction type telescope that utilizes refraction of light and a reflection type telescope that utilizes reflection of light.
  • the first condensing device 11 condenses the light emitted by the illumination light source 1 and then reflected by the projectile 2.
  • the second condensing device 12 is realized by, for example, one or more telescopes among a refraction type telescope and a reflection type telescope.
  • the second condensing device 12 condenses the light emitted by the illumination light source 1 and then reflected by the projectile 2.
  • the orbit calculation device 13 includes a first angle calculation unit 21, a second angle calculation unit 22, and an orbit calculation unit 23.
  • the first angle calculation unit 21 is realized by, for example, the first angle calculation circuit 31 shown in FIG.
  • the first angle includes an azimuth angle Az A seen from the first light collecting device 11 and an elevation angle Elv A seen from the first light collecting device 11. ..
  • the azimuth angle at a first time t 1 is, Az A1
  • the azimuth angle at a second time t 2 is, Az A2
  • elevation angle at a first time t 1 is, Elv A1
  • the elevation angle at 2 is Elv A2 .
  • the first angle calculation unit 21 outputs each of the azimuth angles Az A1 and Az A2 and the elevation angles Elv A1 and Elv A2 to the orbit calculation unit 23 as the calculated first angle.
  • the second angle calculation unit 22 is realized by, for example, the second angle calculation circuit 32 shown in FIG.
  • the second angle calculation unit 22 each of the directivity direction in the first time t 1 and second time t 2 of the second condenser 12, a first time t 1 and the light with respect to the projectile 2 From each reflection position at the second time t2, a second angle, which is the angle at which the projectile 2 is viewed from the second light collecting device 12, is calculated.
  • the second angle includes an azimuth angle Az B as seen from the second light collector 12 and an elevation angle Elv B as seen from the second light collector 12. ..
  • the azimuth angle at a first time t 1 is, Az B1
  • the azimuth angle at a second time t 2 is, Az B2
  • elevation angle at a first time t 1 is, Elv B1
  • the elevation angle at 2 is Elv B2 .
  • the second angle calculation unit 22 outputs each of the azimuth angles Az B1 and Az B2 and the elevation angles Elv B1 and Elv B2 to the orbit calculation unit 23 as the calculated second angle.
  • the orbit calculation unit 23 is realized by, for example, the orbit calculation circuit 33 shown in FIG.
  • the orbit calculation unit 23 is calculated by the first angle at the first time t 1 and the second time t 2 calculated by the first angle calculation unit 21, and by the second angle calculation unit 22.
  • the second angles at the first time t 1 and the second time t 2 are acquired.
  • the trajectory of the projectile 2 is calculated from the position of.
  • each of the first angle calculation unit 21, the second angle calculation unit 22, and the trajectory calculation unit 23, which are the components of the trajectory calculation device 13, is realized by dedicated hardware as shown in FIG. I'm assuming something. That is, it is assumed that the trajectory calculation device 13 is realized by the first angle calculation circuit 31, the second angle calculation circuit 32, and the trajectory calculation circuit 33.
  • Each of the first angle calculation circuit 31, the second angle calculation circuit 32, and the trajectory calculation circuit 33 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application Specific Integrated Circuit). ), FPGA (Field-Programmable Gate Array), or a combination thereof.
  • the components of the trajectory calculation device 13 are not limited to those realized by dedicated hardware, but the trajectory calculation device 13 is realized by software, firmware, or a combination of software and firmware. It is also good.
  • the software or firmware is stored as a program in the memory of the computer.
  • a computer means hardware for executing a program, and corresponds to, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, a computing device, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). do.
  • FIG. 4 is a hardware configuration diagram of a computer when the trajectory calculation device 13 is realized by software, firmware, or the like.
  • a program for causing a computer to execute each processing procedure in the first angle calculation unit 21, the second angle calculation unit 22, and the trajectory calculation unit 23 is provided. It is stored in the memory 41. Then, the processor 42 of the computer executes the program stored in the memory 41.
  • FIG. 3 shows an example in which each of the components of the trajectory calculation device 13 is realized by dedicated hardware
  • FIG. 4 shows an example in which the trajectory calculation device 13 is realized by software, firmware, or the like. ..
  • FIG. 5 is a specific configuration diagram showing the trajectory calculation system according to the first embodiment.
  • the first optical angle measuring station 3 has a first light collecting device 11, a light shielding device 51, a position detection unit 52, an angle calculation unit 53, a time calibration unit 54, a counter 55, and a control. It includes a device 56, a pointing device 57, a communication unit 58, a recording device 59, and an orbit calculation unit 60.
  • the second optical angle measuring station 4 has a second light collecting device 12, a light shielding device 71, a position detection unit 72, an angle calculation unit 73, a time calibration unit 74, a counter 75, and a control. It includes a device 76, a directional device 77, and a communication unit 78.
  • the shading device 51 is realized by, for example, a mechanical shutter or an electronic shutter.
  • the shading device 51 is arranged in an optical path between the first light collecting device 11 and the position detection unit 52.
  • the light-shielding device 51 controls the opening and closing of the shutter according to the exposure time controlled by the control device 56. By controlling the opening and closing of the shutter, the light-shielding device 51 alternately blocks the light collected by the first light-collecting device 11 and transmits the light.
  • the first angle calculation unit 21 shown in FIG. 5 is the same angle calculation unit as the first angle calculation unit 21 shown in FIG.
  • the first angle calculation unit 21 shown in FIG. 5 includes a position detection unit 52 and an angle calculation unit 53.
  • the position detection unit 52 is realized by, for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Sensor) image sensor.
  • the position detection unit 52 acquires the image pickup command output from the control device 56 at the first time t 1 and the second time t 2 , the position detection unit 52 detects the light transmitted through the light shielding device 51 by detecting the light transmitted through the light shielding device 51. An image of the light intensity showing the projectile 2 is captured.
  • the position detection unit 52 captures a light intensity image in which the projectile 2 is reflected by detecting the light transmitted through the light shielding device 51 at the first time t 1, and the second time t. By detecting the light transmitted through the shading device 51 at the time of 2, the light intensity image in which the projectile 2 is reflected is captured.
  • the position detection unit 52 outputs each of the light intensity image at the first time t 1 and the light intensity image at the second time t 2 to the angle calculation unit 53.
  • the position detection unit 52 is provided inside the first angle calculation unit 21. However, this is only an example, and the position detection unit 52 may be provided outside the first angle calculation unit 21.
  • the position detection unit 52 is realized by a CCD image sensor or a CMOS image sensor.
  • the position detection unit 52 is simply a sensor that detects the presence or absence of light, and is realized by a sensor that detects light when the projectile 2 enters the field of view. You may.
  • the field of view of the sensor that simply detects the presence or absence of light is narrower than the field of view of the CCD image sensor. Therefore, when the position detection unit 52 is realized by a sensor that simply detects the presence or absence of light, the directing direction of the first light collecting device 11 is finely controlled as compared with the case where the position detection unit 52 is realized by a CCD image sensor. There is a need.
  • the position detection unit 52 When the position detection unit 52 is realized by a CCD image sensor or a CMOS image sensor, even if the directing direction of the first light collecting device 11 deviates from the center position of the light intensity image, the flying object If 2 is included in the light intensity image, the flying object 2 can be detected. Therefore, when the position detection unit 52 is realized by a CCD image sensor or a CMOS image sensor, the orientation of the first light collecting device 11 is higher than that realized by a sensor that simply detects the presence or absence of light. The direction can be easily controlled.
  • the position detection unit 52 grasps whether the moving direction of the flying object 2 is the vertical direction of the visual field, the horizontal direction of the visual field, or the like. can do. In addition, it is possible to grasp the presence or absence of leaked light from a star or another flying object.
  • Angle calculation unit 53 the controller 56 obtains the orientation of the first focusing device 11 at a first time t 1, from the position detection unit 52, obtains the light intensity image at a first time t 1 do.
  • the angle calculation unit 53 detects the position of the light in the light intensity image at the first time t 1 as the reflection position of the light with respect to the projectile 2 at the first time t 1.
  • the angle calculation unit 53 calculates the first angle at the first time t 1 from the directing direction of the first light collecting device 11 at the first time t 1 and the reflection position at the first time t 1 . do.
  • the angle calculation unit 53 the controller 56 obtains the first orientation of the condenser 11 at the second time t 2, from the position detection unit 52, the light intensity image at a second time t 2 To get.
  • the angle calculation unit 53 detects the position of the light in the light intensity image at the second time t 2 as the reflection position of the light with respect to the projectile 2 at the second time t 2.
  • the angle calculation unit 53 calculates the first angle at the second time t 2 from the directing direction of the first light collecting device 11 at the second time t 2 and the reflection position at the second time t 2 . do.
  • the time calibration unit 54 includes, for example, a GPS (Global Positioning System) receiver, a receiving antenna, and a clock.
  • the receiving antenna of the time calibration unit 54 receives the reference signal transmitted from the reference signal source 5.
  • the GPS receiver of the time calibration unit 54 repeatedly receives the GPS signal transmitted from the GPS satellite.
  • the time calibration unit 54 acquires the position of the first light collecting device 11 and the current time from the GPS signal received by the GPS receiver.
  • the position information included in the GPS signal indicates the position of the first optical angle measuring station 3 equipped with the time calibration unit 54. Since the first condensing device 11 is mounted on the first optical angle measuring station 3, the time calibration unit 54 sets the position of the first optical measuring station 3 to the first condensing. It is acquired as the position of the device 11.
  • the time calibration unit 54 calibrates the time of the internal clock using the acquired current time, and outputs the time after calibration to the counter 55.
  • the time calibration unit 54 calibrates the time of the internal clock and outputs the time after calibration to the counter 55.
  • the time calibration unit 54 may output the current time acquired from the GPS signal to the counter 55 as the time after calibration.
  • the time calibration unit 54 acquires the current time from the radio wave received by the GPS receiver.
  • the time calibration unit 54 may acquire the current time from a standard radio wave represented by a radio clock or the like, or a network device represented by NTP (Network Time Protocol).
  • NTP Network Time Protocol
  • the time calibration unit 54 outputs the position of the first light collecting device 11 to the control device 56. Further, the time calibration unit 54 acquires the position of the first light collecting device 11 at the first time t 1 and the position of the first light collecting device 11 at the second time t 2 from the control device 56. Then, the position of the first light collecting device 11 at the first time t 1 and the position of the first light collecting device 11 at the second time t 2 are output to the recording device 59.
  • the counter 55 acquires the time after calibration by the time calibration unit 54 and measures the elapsed time from a certain typical time.
  • a typical time is, for example, the calculation start time of the orbit of the projectile 2.
  • the counter 55 outputs the measured elapsed time to the control device 56.
  • the control device 56 is realized by, for example, a semiconductor integrated circuit on which a CPU is mounted, or a program board such as an FPGA.
  • the control device 56 grasps each of the first time t 1 and the second time t 2 as the observation time of the projectile 2 according to the elapsed time output from the counter 55. Further, the control device 56 acquires the past orbit information of the flying object 2 from the orbit database 80 via the communication unit 58, and obtains the approximate past orbit information of the flying object 2 at the first time t1 from the past orbit information. The position and the approximate position of the projectile 2 at the second time t2 are grasped.
  • Controller 56 among the position of the first condenser 11 output from the time correcting unit 54, the position of the first focusing device 11 at a first time t 1, at a second time t 2
  • the position of the first light collector 11 is specified. Controller 56, the position of the first focusing device 11 at a first time t 1, and a rough position of the projectile 2 in the first time t 1, the projectile with respect to the first condenser 11 calculating the relative position at a first time t 1 of 2.
  • the control device 56 the position of the first condenser 11 at the second time t 2, the from the approximate position of the projectile 2 in the second time t 2, the relative first condenser 11 calculating the relative position at a second time t 2 of the projectile 2.
  • Controller 56 from the relative position at a first time t 1, the direction in which the first condenser 11 sees the projectile 2 at the first time t 1, i.e., first at a first time t 1 The direction of direction of the light collecting device 11 of 1 is grasped. Further, the control device 56, from the relative position at the second time t 2, the direction in which the first condenser 11 sees the projectile 2 at the second time t 2, i.e., the second time t 2 The direction of direction of the first light collector 11 in the above is grasped.
  • Controller 56 the orientation of the first focusing device 11 at a first time t 1 and outputs to each of the directing device 57 and the angle calculation unit 53, a first condenser at a second time t 2
  • the pointing direction of 11 is output to each of the pointing device 57 and the angle calculation unit 53.
  • the control device 56 controls the light-shielding device 51 so as to open the shutter for a predetermined exposure time at the first time t 1 and the second time t 2.
  • the control device 56 outputs an image pickup command to the position detection unit 52 at the first time t 1 and the second time t 2.
  • the directional device 57 is realized by a rotary stage and a motor having one or more rotation axes.
  • An altazimuth mount, an equatorial mount, or the like can be considered as a rotation stage having one or more rotation axes.
  • a first condensing device 11 is mounted on the rotating stage of the directional device 57. Directing device 57, the orientation direction of the first condenser 11 at a first time t 1 is consistent with the orientation of the first focusing device 11 at a first time t 1 the controller 56 is outputted By driving the motor, the rotary stage is rotated.
  • the orientation direction of the first condenser 11 at a second time t 2 is consistent with the orientation of the first focusing device 11 at a second time t 2 the controller 56 is outputted By driving the motor, the rotary stage is rotated.
  • the communication unit 58 acquires the past orbit information of the flying object 2 from the orbit database 80, and outputs the orbit information to the control device 56.
  • the communication unit 58 is transmitted from the second communication unit 78 of the optical angle measuring station 4, receives the respective second angle and the second angle at a second time t 2 at a first time t 1 .
  • the communication unit 58 receives transmitted from the second communication unit 78 of the optical angle measuring station 4, the first respective positions at the time t 1 and second time t 2 of the second condenser 12 ..
  • the communication unit 58 to record each of the second angle and the second angle at a second time t 2 at a first time t 1 to the recording device 59, a first time of the second condenser 12 Have the recording device 59 record each position at t 1 and the second time t 2.
  • the orbit calculation unit 23 shown in FIG. 5 is the same orbit calculation unit as the orbit calculation unit 23 shown in FIG.
  • the orbit calculation unit 23 shown in FIG. 5 includes a recording device 59 and an orbit calculation unit 60.
  • the recording device 59 is realized by a recording medium such as a RAM (Random Access Memory) or a hard disk.
  • Recording apparatus 59, each of the positions at a first time t 1 and second time t 2 of the first condenser 11, a first time t 1 and the second of the second condenser 12 recording the respective positions at the time t 2.
  • Trajectory calculation unit 60 from the recording device 59, respectively and each of the first angle at a first time t 1 and second time t 2, at a first time t 1 and second time t 2 the Get the angle of 2.
  • the orbit calculation unit 60 is from the recording device 59 to the respective positions of the first light collecting device 11 at the first time t 1 and the second time t 2 and the first of the second light collecting device 12. The respective positions at the time t 1 and the second time t 2 of the first time t 1 and the second time t 2 are acquired.
  • Trajectory calculation unit 60 a first condenser respective position at time t 1 and second time t 2 the first 11, a first time t 1 and the second second condenser 12 time from the respective positions at time t 2, the time of the first time t 1, a first condenser 11 and the inter-device distance is a distance between the second condenser 12, the second The distance between devices at t 2 is calculated.
  • Trajectory calculation unit 60 each of the inter-device distances at a first time t 1 and second time t 2, the respectively first angle at a first time t 1 and second time t 2, the first from the first time t 1 and second time t 2 and each of the second angle, the respective positions at a first time t 1 and second time t 2 of the first condenser 11, the The first distance from the light collecting device 11 of 1 to the projectile 2 is calculated. That is, the orbit calculation unit 60 calculates the first distances at the first time t 1 and the second time t 2.
  • Trajectory calculation unit 60 each of the inter-device distances at a first time t 1 and second time t 2, the respectively first angle at a first time t 1 and second time t 2, the first from the first time t 1 and second time t 2 and each of the second angle, the respective positions at a first time t 1 and second time t 2 of the second condenser 12, the The second distance from the light collector 12 of 2 to the projectile 2 is calculated. That is, the orbit calculation unit 60 calculates the second distances at the first time t 1 and the second time t 2.
  • Trajectory calculation unit 60 and the respective second angle and each of the first angle at a first time t 1 and second time t 2, the at a first time t 1 and second time t 2, the from each of the first distance at a first time t 1 and second time t 2, the a respective second distance at a first time t 1 and second time t 2, the position of the projectile 2 And each of the speeds are calculated. That is, the orbit calculation unit 60 calculates the respective positions of the flying object 2 at the first time t 1 and the second time t 2.
  • trajectory calculation unit 60 and each of the first angle at a first time t 1 and second time t 2, each of the second angle at a first time t 1 and second time t 2
  • the projectile 2 calculates a first position and velocity at time t 1 of the.
  • the velocity is obtained as the difference between the positions of the projectile 2 at the time from time t 1 to time t 2.
  • the orbit calculation unit 60 determines the flying object from the respective positions of the flying object 2 at the first time t 1 and the second time t 2 , or the position and the speed of the first time t 1 of the flying object 2. Calculate the orbit of 2.
  • the recording device 59 is provided inside the trajectory calculation unit 23. However, this is only an example, and the recording device 59 may be provided outside the trajectory calculation unit 23.
  • the shading device 71 is realized by, for example, a mechanical shutter or an electronic shutter.
  • the shading device 71 is arranged in an optical path between the second light collecting device 12 and the position detection unit 72.
  • the light-shielding device 71 controls the opening and closing of the shutter according to the exposure time controlled by the control device 76. By controlling the opening and closing of the shutter, the light-shielding device 71 alternately blocks the light collected by the second light-collecting device 12 and transmits the light.
  • the second angle calculation unit 22 shown in FIG. 5 is the same angle calculation unit as the second angle calculation unit 22 shown in FIG.
  • the second angle calculation unit 22 shown in FIG. 5 includes a position detection unit 72 and an angle calculation unit 73.
  • the position detection unit 72 is realized by, for example, a CCD image sensor or a CMOS image sensor.
  • the position detection unit 72 acquires the image pickup command output from the control device 76 at the first time t 1 and the second time t 2 , the position detection unit 72 detects the light transmitted through the light shielding device 71 by detecting the light transmitted through the light shielding device 71. An image of the light intensity showing the projectile 2 is captured.
  • the position detection unit 72 captures a light intensity image in which the projectile 2 is reflected by detecting the light transmitted through the light shielding device 71 at the first time t 1, and the second time t. By detecting the light transmitted through the shading device 71 at the time of 2, the light intensity image in which the projectile 2 is reflected is captured.
  • the position detection unit 72 outputs each of the light intensity image at the first time t 1 and the light intensity image at the second time t 2 to the angle calculation unit 73.
  • Angle calculation unit 73 the controller 76 obtains the orientation of the second condenser 12 at a first time t 1, the position detection unit 72, obtains the light intensity image at a first time t 1 do.
  • the angle calculation unit 73 detects the position of the light in the light intensity image at the first time t 1 as the reflection position of the light with respect to the projectile 2 at the first time t 1.
  • the angle calculation unit 73 calculates the second angle at the first time t 1 from the directing direction of the second light collecting device 12 at the first time t 1 and the reflection position at the first time t 1 . do.
  • the angle calculation unit 73 acquires the pointing direction of the second light collecting device 12 at the second time t 2 from the control device 76, and the position detection unit 72 obtains the light intensity image at the second time t 2. To get.
  • the angle calculation unit 73 detects the position of the light in the light intensity image at the second time t 2 as the reflection position of the light with respect to the projectile 2 at the second time t 2.
  • the angle calculation unit 73 calculates the second angle at the second time t 2 from the directing direction of the second light collecting device 12 at the second time t 2 and the reflection position at the second time t 2 . do.
  • the angle calculation unit 73 outputs each of the second angle at the first time t 1 and the second angle at the second time t 2 to the communication unit 78.
  • the position detection unit 72 is provided inside the second angle calculation unit 22. However, this is only an example, and the position detection unit 72 may be provided outside the second angle calculation unit 22.
  • the time calibration unit 74 includes, for example, a GPS receiver, a receiving antenna, and a clock.
  • the receiving antenna of the time calibration unit 74 receives the reference signal transmitted from the reference signal source 5.
  • the GPS receiver of the time calibration unit 74 repeatedly receives the GPS signal transmitted from the GPS satellite.
  • the time calibration unit 74 acquires the position of the second light collecting device 12 and the current time from the GPS signal received by the GPS receiver.
  • the position information included in the GPS signal indicates the position of the second optical angle measuring station 4 equipped with the time calibration unit 74. Since the second light collecting device 12 is mounted on the second light measuring station 4, the time calibration unit 74 sets the position of the second light measuring station 4 to the second light collecting station 4. It is acquired as the position of the device 12.
  • the time calibration unit 74 calibrates the time of the internal clock using the acquired current time.
  • the time calibration unit 74 calibrates the time of the internal clock and outputs the time after calibration to the counter 75.
  • the time calibration unit 74 may output the current time acquired from the GPS signal to the counter 75 as the time after calibration.
  • the time calibration unit 74 acquires the current time from the radio wave received by the GPS receiver.
  • the time calibration unit 74 may acquire the current time from a standard radio wave represented by a radio clock or the like, or for time synchronization of a network device represented by NTP.
  • the current time may be obtained by using the protocol of.
  • the time calibration unit 74 calibrates the time of the internal clock with subsecond accuracy. do.
  • the time calibration unit 74 outputs the position of the second light collecting device 12 to the control device 76. Further, the time calibration unit 74 acquires the position of the second light collecting device 12 at the first time t 1 and the position of the second light collecting device 12 at the second time t 2 from the control device 76. Then, the position of the second light collecting device 12 at the first time t 1 and the position of the second light collecting device 12 at the second time t 2 are output to the communication unit 78.
  • the counter 75 acquires the time after calibration by the time calibration unit 74 and measures the elapsed time from a certain typical time.
  • the counter 75 outputs the measured elapsed time to the control device 76.
  • the control device 76 is realized by, for example, a semiconductor integrated circuit on which a CPU is mounted, or a program board such as an FPGA.
  • the control device 76 grasps each of the first time t 1 and the second time t 2 as the observation time of the projectile 2 according to the elapsed time output from the counter 75. Further, the control device 76 acquires the past orbit information of the flying object 2 from the orbit database 80 via the communication unit 78, and from the past orbit information, the control device 76 approximates the flying object 2 at the first time t1. The position and the approximate position of the projectile 2 at the second time t2 are grasped.
  • Controller 76 among the position of the second condenser 12 output from the time correcting unit 74, and the position of the second condenser 12 at a first time t 1, at a second time t 2
  • the position of the second light collector 12 is specified.
  • control device 76 the position of the second condenser 12 at the second time t 2, the from the approximate position of the projectile 2 in the second time t 2, the relative second condenser 12 calculating the relative position at a second time t 2 of the projectile 2.
  • Control device 76 from the relative position at a first time t 1, the direction in which the second condenser 12 sees the projectile 2 at the first time t 1, i.e., first at a first time t 1 Grasp the directing direction of the light collecting device 12 of 2. Further, the control device 76, from the relative position at the second time t 2, the direction in which the second condenser 12 when the second time t 2 to see the flying body 2, i.e., the second time t 2 The direction of direction of the second light collecting device 12 in the above is grasped.
  • Controller 76 the orientation of the second condenser 12 at a first time t 1 and outputs to each of the directing device 77 and the angle calculation unit 73, the second condensing device at a second time t 2
  • the direction of the 12 is output to the pointing device 77 and the angle calculation unit 73, respectively.
  • the control device 76 controls the light-shielding device 71 so that the shutter is opened for a predetermined exposure time at the first time t 1 and the second time t 2.
  • the control device 76 outputs an image pickup command to the position detection unit 72 at the first time t 1 and the second time t 2.
  • the directional device 77 is realized by a rotary stage and a motor having one or more rotation axes.
  • a second condensing device 12 is mounted on the rotating stage of the directional device 77.
  • Directing device 77, the directivity direction of the second condenser 12 at a first time t 1 is consistent with the orientation of the second condenser 12 at a first time t 1 the controller 76 is output By driving the motor, the rotary stage is rotated.
  • Directing device 77, the directivity direction of the second condenser 12 at a second time t 2 is consistent with the orientation of the second condenser 12 at a second time t 2 the controller 76 is output By driving the motor, the rotary stage is rotated.
  • the communication unit 78 acquires the past orbit information of the flying object 2 from the orbit database 80, and outputs the orbit information to the control device 76.
  • the communication unit 78 is outputted from the angle calculating unit 73, and transmits the respective second angle and the second angle at a second time t 2 at a first time t 1 to the communication unit 58.
  • the communication unit 78 is output from the time correcting unit 74, and transmits to the second first time point t 1 and the second communication unit 58 to respective positions at the time t 2 of the condenser 12.
  • the orbital database 80 is realized by, for example, a RAM or a recording medium such as a hard disk.
  • the orbit database 80 stores past orbit information in the projectile 2.
  • the trajectory database 80 is provided outside the trajectory calculation system. However, this is only an example, and the trajectory database 80 may be provided inside the trajectory calculation system. Further, the orbital database 80 may be connected to a network (not shown), and the orbital database 80 may be connected to the orbital calculation system via the network.
  • FIG. 6 is a flowchart showing a trajectory calculation method which is a processing procedure of the trajectory calculation device 13 shown in FIG.
  • the reference signal source 5 uses the reference signal used by the first optical measuring station 3 and the second optical measuring station 4 for time synchronization as the first optical measuring station 3 and the second optical measuring station 3.
  • the receiving antenna of the time calibration unit 54 in the first optical angle measuring station 3 receives the reference signal transmitted from the reference signal source 5.
  • the GPS receiver of the time calibration unit 54 repeatedly receives the GPS signal transmitted from the GPS satellite.
  • the time calibration unit 54 acquires the position of the first light collecting device 11 and the current time from the GPS signal received by the GPS receiver.
  • the time calibration unit 54 calibrates the time of the internal clock using the acquired current time.
  • the time calibration unit 54 outputs the position of the first light collecting device 11 to the control device 56.
  • the GPS receiver of the time calibration unit 74 When the receiving antenna receives the reference signal, the GPS receiver of the time calibration unit 74 repeatedly receives the GPS signal transmitted from the GPS satellite.
  • the time calibration unit 74 acquires the position of the second light collecting device 12 and the current time from the GPS signal received by the GPS receiver.
  • the time calibration unit 74 calibrates the time of the internal clock using the acquired current time.
  • the time calibration unit 74 outputs the position of the second light collecting device 12 to the control device 76.
  • the time calibration unit 54 of the first optical angle measuring station 3 calibrates the time of the internal clock
  • the time calibration unit 74 of the second optical measuring station 4 calibrates the time of the internal clock. The time is synchronized between the angle measuring station 3 and the second optical angle measuring station 4.
  • time synchronization is limited by the accuracy of the shutter opening / closing time of the shading devices 51 and 71. Since the shutter opening / closing time is about millisecond, time synchronization may be performed with an accuracy of about microsecond.
  • the time used by the internal clocks of the time calibration units 54 and 74 is, for example, Coordinated Universal Time.
  • the counter 55 of the first optical angle measuring station 3 acquires the time after calibration by the time calibration unit 54 and measures the elapsed time t from a certain representative time.
  • a typical time is, for example, the calculation start time of the orbit of the projectile 2.
  • the counter 55 outputs the measured elapsed time t to the control device 56.
  • the counter 75 of the second optical angle measuring station 4 acquires the time after calibration by the time calibration unit 74 and measures the elapsed time t from a certain representative time.
  • the counter 75 outputs the measured elapsed time t to the control device 76.
  • the communication unit 58 of the first optical angle measuring station 3 acquires the past orbit information of the flying object 2 from the orbit database 80, and outputs the orbit information to the control device 56.
  • the communication unit 78 of the second optical angle measuring station 4 acquires the past orbit information of the flying object 2 from the orbit database 80, and outputs the orbit information to the control device 76.
  • the control device 56 of the first optical angle measuring station 3 acquires the elapsed time t output from the counter 55.
  • the control device 56 grasps each of the first time t 1 and the second time t 2 as the observation time of the flying object 2 according to the elapsed time t. Further, the control unit 56 acquires orbit information output from the communication unit 58, from the track information, and approximate location of the projectile 2 in the first time t 1, the projectile at the second time t 2 2 Grasp the approximate position.
  • Controller 56 among the position of the first condenser 11 output from the time correcting unit 54, the position of the first focusing device 11 at a first time t 1, at a second time t 2 The position of the first light collector 11 is specified. Controller 56, the position of the first focusing device 11 at a first time t 1, and a rough position of the projectile 2 in the first time t 1, the projectile with respect to the first condenser 11 calculating the relative position at a first time t 1 of 2. Since the process of calculating the relative position of the projectile 2 with respect to the first condensing device 11 is a known technique, detailed description thereof will be omitted.
  • control device 56 the position of the first condenser 11 at the second time t 2, the from the approximate position of the projectile 2 in the second time t 2, the relative first condenser 11 calculating the relative position at a second time t 2 of the projectile 2.
  • Controller 56 from the relative position at a first time t 1, the direction in which the first condenser 11 sees the projectile 2 at the first time t 1, i.e., first at a first time t 1 The direction of direction of the light collecting device 11 of 1 is grasped. Further, the control device 56, from the relative position at the second time t 2, the direction in which the first condenser 11 sees the projectile 2 at the second time t 2, i.e., the second time t 2 The direction of direction of the first light collector 11 in the above is grasped.
  • Controller 56 the orientation of the first focusing device 11 at a first time t 1 and outputs to each of the directing device 57 and the angle calculation unit 53, a first condenser at a second time t 2
  • the pointing direction of 11 is output to each of the pointing device 57 and the angle calculation unit 53.
  • the control device 56 controls the light-shielding device 51 so as to open the shutter for a predetermined exposure time at the first time t 1 and the second time t 2.
  • the control device 56 outputs an image pickup command to the position detection unit 52 at the first time t 1 and the second time t 2.
  • the control device 56 outputs the position of the first light collecting device 11 at the first time t 1 and the position of the first light collecting device 11 at the second time t 2 to the time calibration unit 54.
  • Directing device 57 of the first optical angle measuring station 3 the orientation direction of the first condenser 11 at a first time t 1 is, controller 56 first time t 1 in the first output
  • the rotary stage is rotated by driving the motor so as to coincide with the directing direction of the light collecting device 11.
  • Directing device 57, the orientation direction of the first condenser 11 at a second time t 2 is consistent with the orientation of the first focusing device 11 at a second time t 2 the controller 56 is outputted By driving the motor, the rotary stage is rotated. Since the first condensing device 11 has a function of projecting an object surface onto an image plane and has a reference optical axis, the directing device 57 controls the optical axis of the first condensing device 11.
  • the directing direction of the first condensing device 11 is controlled by adjusting to the directing direction output from the device 56.
  • the orientation of the control of the first condenser 11 by directing device 57 it takes a certain amount of time, the control device 56, before the observation time is a first time t 1, a first time the orientation of the first focusing device 11 outputs to the directing device 57 in the t 1.
  • the control device 56 outputs the pointing direction of the first condensing device 11 at the second time t 2 to the pointing device 57 before the observation time reaches the second time t 2.
  • the control device 56 directs the directing direction of the first condensing device 11 to the directing device 57 so that the projectile 2 is within the field of view of the first condensing device 11. I'm instructing.
  • the control device 56 uses the narrower of the field of view of the first light collecting device 11 and the field of view of the position detection unit 52.
  • the directing device 57 is instructed to direct the directing direction of the first condensing device 11 so that the projectile 2 is within the range of the field of view of.
  • the relative positions of the first optical measuring station 3 and the flying object 2 do not change.
  • the control device 56 once instructs the directing device 57 in the direction of the first condensing device 11 so that the projectile 2 is within the field of view of the first condensing device 11. Then, after that, the directing direction of the first light collecting device 11 may be fixed. Strictly speaking, the relative position changes slightly due to the difference in the orbital inclination angle, but if the observation time is about several seconds, there is no problem even if the directing direction of the first condensing device 11 is fixed. ..
  • the first light collecting device 11 of the first optical angle measuring station 3 collects the light emitted from the illumination light source 1 and then reflected by the projectile 2.
  • the first light-shielding device 51 of the optical angle measuring station 3 when the first time t 1 and second time t 2, the by the controller 56, a predetermined exposure time, are controlled to open the shutters ..
  • a predetermined exposure time by opening the shutter of the shading device 51, is condensed light by the first condenser apparatus 11 through the shading device 51, the light It reaches the position detection unit 52.
  • the predetermined exposure time by opening the shutter of the shading device 51, light condensed by the first condensing device 11 is transmitted through the shading device 51, the The light reaches the position detection unit 52.
  • Position detection unit 52 of the first optical angle measuring station 3 when the first time t 1, when acquiring the imaging command output from the controller 56, the detection processing of the light transmitted through the shading device 51 Start and take a light intensity image showing the projectile 2.
  • Position detector 52 the light intensity image captured, as a light intensity image at a first time t 1, and outputs the angle calculation unit 53.
  • the position detection unit 52 when the second time t 2, the acquiring the imaging command output from the control unit 56 starts the detection process of light transmitted through the shading device 51, the projectile 2 Take an image of the reflected light intensity.
  • Angle calculating portion 53 of the first optical angle measuring station 3, the controller 56 obtains the orientation of the first focusing device 11 at a first time t 1, from the position detection unit 52, a first for obtaining an optical intensity image at time t 1.
  • the angle calculation unit 53 detects the position of the light in the light intensity image at the first time t 1 as the reflection position of the light with respect to the projectile 2 at the first time t 1.
  • the angle calculation unit 53 calculates the first angle at the first time t 1 from the directing direction of the first light collecting device 11 at the first time t 1 and the reflection position at the first time t 1 . (Step ST1 in FIG. 6).
  • Angle calculation unit 53 a first removal process of blackout flow noise contained in the light intensity image at time t 1 of, removal processing of the background light noise included in the light intensity image, or included in the light intensity image It is also possible to carry out attenuation processing of the peripheral light amount and the like, and calculate the first angle from the light intensity image after these processings.
  • the first angle calculation process by the angle calculation unit 53 will be specifically described.
  • the angle calculation unit 53 obtains the viewing angle of the light intensity image on the assumption that the directing direction of the first light collecting device 11 is the center of the field of view of the position detecting unit 52.
  • the viewing angle per pixel can be obtained from the size of one pixel included in the light intensity image and the focal length of the first condensing device 11.
  • the size of one pixel and the focal length of the first light collecting device 11 are already values in the angle calculation unit 53.
  • the viewing angle of the light intensity image is obtained by multiplying the viewing angle per pixel by the number of pixels from the pixel at the center of the light intensity image to the pixel at the center of the field of view of the light intensity image.
  • the angle calculation unit 53 can obtain the direction of the position detection unit 52 and the apparent size of the projectile 2 from the center of the field of view of the light intensity image and the viewing angle of the light intensity image. If the direction of the position detection unit 52 and the apparent size of the projectile 2 are obtained, the angle calculation unit 53 determines the positions of the coordinates on the light intensity image and the celestial sphere coordinates indicating the position of the illumination light source 1 in space. You can ask for a relationship.
  • the coordinate system of celestial sphere coordinates may be an equator coordinate system based on the celestial equator, a horizontal coordinate system based on the horizon seen by the observer, or a galaxy coordinate system based on the galaxy surface. good.
  • the position on the light intensity image can be represented by the position of the celestial sphere coordinates, right ascension, declination, or an angle such as an azimuth angle and an elevation angle.
  • the angle calculation unit 53 determines that the point image, which is a group of pixels in which pixels having a pixel value equal to or larger than a threshold value among a plurality of pixels included in the light intensity image, represents the projectile 2. Then, the position of the center of gravity of the point image is calculated.
  • the threshold value is a value larger than 0 and smaller than the maximum value of the pixel value, and is stored in the internal memory of the angle calculation unit 53, for example.
  • the angle calculation unit 53 calculates the position of the center of gravity of the point image in order to obtain the position of the point image having a spread as the position of light reflection with respect to the projectile 2.
  • the position on the light intensity image can be represented by an angle such as an azimuth angle and an elevation angle. Therefore, the angle calculation unit 53 expresses the position of the center of gravity of the calculated point image by an angle. Find the angle of 1.
  • the first angle is the angle at which the flying object 2 is viewed from the first condensing device 11, the azimuth angle Az A when the flying object 2 is viewed from the first condensing device 11, and the first condensing device. It includes the elevation angle Elv A , which is the view of the projectile 2 from 11.
  • Angle calculation unit 53, a first angle at a first time t 1, the azimuth angle Az A1 at a first time t 1, and the elevation angle Elv A1 at a first time t 1 to the recording device 59 Have them record.
  • Angle calculation unit 53 the controller 56 obtains the orientation of the first focusing device 11 at the second time t 2, from the position detection unit 52, obtains the light intensity image at a second time t 2 do.
  • the angle calculation unit 53 detects the position of the light in the light intensity image at the second time t 2 as the reflection position of the light with respect to the projectile 2 at the second time t 2.
  • the angle calculation unit 53 calculates the first angle at the second time t 2 from the directing direction of the first light collecting device 11 at the second time t 2 and the reflection position at the second time t 2 . (Step ST2 in FIG. 6).
  • Angle calculation unit 53 the removal process of the blackout flow noise contained in the light intensity image at a second time t 2, the process of removing the background light noise included in the light intensity image, or included in the light intensity image It is also possible to carry out attenuation processing of the peripheral light amount and the like, and calculate the first angle from the light intensity image after these processings. Since the calculation process of the first angle at the second time t 2 is the same as the calculation process of the first angle at the first time t 1, detailed description thereof will be omitted. Angle calculation unit 53, a first angle at the second time t 2, the azimuth angle Az A2 at the second time t 2, the elevation angle Elv A2 at a second time t 2 to the recording device 59 Have them record.
  • Time correcting unit 54 output from the controller 56, the position of the first focusing device 11 at a first time t 1, and the position of the first focusing device 11 at a second time t 2 get.
  • time correcting unit 54, the recording position of the first focusing device 11 at a first time t 1, and the position of the first focusing device 11 at a second time t 2 to the recording device 59 I'm letting you. If the first optical angle measuring station 3 is a fixed station, the position of the first light collecting device 11 does not change, so that the position of the first light collecting device 11 at any time is recorded in the recording device 59. Just let me do it.
  • the control device 76 of the second optical angle measuring station 4 acquires the elapsed time t output from the counter 75.
  • the control device 76 grasps each of the first time t 1 and the second time t 2 as the observation time of the flying object 2 according to the elapsed time t. Further, the control unit 76 acquires orbit information output from the communication unit 78, from the track information, and approximate location of the projectile 2 in the first time t 1, the projectile at the second time t 2 2 Grasp the approximate position.
  • Controller 76 among the position of the second condenser 12 output from the time correcting unit 74, and the position of the second condenser 12 at a first time t 1, at a second time t 2
  • the position of the second light collector 12 is specified.
  • control device 76 the position of the second condenser 12 at the second time t 2, the from the approximate position of the projectile 2 in the second time t 2, the relative second condenser 12 calculating the relative position at a second time t 2 of the projectile 2.
  • Control device 76 from the relative position at a first time t 1, the direction in which the second condenser 12 sees the projectile 2 at the first time t 1, i.e., first at a first time t 1 Grasp the directing direction of the light collecting device 12 of 2. Further, the control device 76, from the relative position at the second time t 2, the direction in which the second condenser 12 when the second time t 2 to see the flying body 2, i.e., the second time t 2 The direction of direction of the second light collecting device 12 in the above is grasped.
  • Controller 76 the orientation of the second condenser 12 at a first time t 1 and outputs to each of the directing device 77 and the angle calculation unit 73, the second condensing device at a second time t 2
  • the direction of the 12 is output to the pointing device 77 and the angle calculation unit 73, respectively.
  • the control device 76 controls the light-shielding device 71 so that the shutter is opened for a predetermined exposure time at the first time t 1 and the second time t 2.
  • the control device 76 outputs an image pickup command to the position detection unit 72 at the first time t 1 and the second time t 2.
  • the control device 76 outputs the position of the second light collecting device 12 at the first time t 1 and the position of the second light collecting device 12 at the second time t 2 to the time calibration unit 74.
  • Directing device 77 of the second optical angle measuring station 4 the directivity direction of the second condenser 12 at a first time t 1 is the control unit 76 is a first time t 1 in the second output
  • the rotary stage is rotated by driving the motor so as to match the direction of the light collector 12.
  • Directing device 77, the directivity direction of the second condenser 12 at a second time t 2 is consistent with the orientation of the second condenser 12 at a second time t 2 the controller 76 is output By driving the motor, the rotary stage is rotated.
  • the directing device 77 controls the optical axis of the second condensing device 12.
  • the directing direction of the second light collecting device 12 is controlled by adjusting to the directing direction output from the device 76.
  • the control of the orientation of the second condenser 12 by directing device 77 it takes a certain amount of time, the control device 76, before the observation time is a first time t 1, a first time the orientation of the second condenser 12 and outputs to the directing device 77 in the t 1.
  • the control device 76 outputs the pointing direction of the second condensing device 12 at the second time t 2 to the pointing device 77 before the observation time reaches the second time t 2.
  • the control device 76 directs the directing direction of the second condensing device 12 to the directing device 77 so that the projectile 2 is within the field of view of the second condensing device 12. I'm instructing.
  • the control device 76 is the narrower of the field of view of the second light collecting device 12 and the field of view of the position detection unit 72.
  • the directing device 77 is instructed to direct the direction of the second condensing device 12 so that the projectile 2 is within the range of the field of view of.
  • the relative positions of the second optical measuring station 4 and the flying object 2 do not change. If the relative position does not change, the control device 76 once instructs the directing device 77 in the direction of the second condensing device 12 so that the projectile 2 is within the field of view of the second condensing device 12. Then, after that, the directing direction of the second light collecting device 12 may be fixed. Strictly speaking, the relative position changes slightly due to the difference in the orbital inclination angle, but if the observation time is about several seconds, there is no problem even if the direction of the second light collector 12 is fixed. ..
  • the second light collecting device 12 of the second optical measuring station 4 collects the light emitted from the illumination light source 1 and then reflected by the projectile 2.
  • the shading device 71 of the second optical measuring station 4 is controlled by the control device 76 to open the shutter for a predetermined exposure time at the first time t 1 and the second time t 2. ..
  • a predetermined exposure time by opening the shutter of the shading device 71, is condensed light by the second focusing device 12 through the shading device 71, the light It reaches the position detection unit 72.
  • the predetermined exposure time by opening the shutter of the shading device 71, is condensed light passes through the shading device 71 by the second condenser 12, the The light reaches the position detection unit 72.
  • Position detector 72 of the second optical angle measuring station 4 when the first time t 1, when acquiring the imaging command output from the controller 76, the detection processing of the light transmitted through the shading device 71 Start and take a light intensity image showing the projectile 2.
  • Position detector 72 the light intensity image captured, as a light intensity image at a first time t 1, and outputs the angle calculation unit 73.
  • the position detection unit 72 when the second time t 2, the acquiring the imaging command outputted from the control unit 76 starts the detection process of light transmitted through the shading device 71, the projectile 2 Take an image of the reflected light intensity.
  • Angle calculating portion 73 of the second optical angle measuring station 4 the controller 76 obtains the orientation of the second condenser 12 at a first time t 1, the position detector 72, a first for obtaining an optical intensity image at time t 1.
  • the angle calculation unit 73 detects the position of the light in the light intensity image at the first time t 1 as the reflection position of the light with respect to the projectile 2 at the first time t 1.
  • the angle calculation unit 73 calculates the second angle at the first time t 1 from the directing direction of the second light collecting device 12 at the first time t 1 and the reflection position at the first time t 1 . (Step ST3 in FIG. 6).
  • a second angle may be calculated from the light intensity images after these treatments by performing attenuation processing of the peripheral light amount and the like. Since the second angle calculation process by the angle calculation unit 73 is the same as the first angle calculation process by the angle calculation unit 53, detailed description thereof will be omitted.
  • the angle calculation unit 73 acquires the pointing direction of the second light collecting device 12 at the second time t 2 from the control device 76, and acquires the light intensity image at the second time t 2 from the position detection unit 72. do.
  • the angle calculation unit 73 detects the position of the light in the light intensity image at the second time t 2 as the reflection position of the light with respect to the projectile 2 at the second time t 2.
  • the angle calculation unit 73 determines the second angle at the second time t 2 from the directing direction of the second light collecting device 12 at the second time t 2 and the reflection position at the second time t 2 . Calculate (step ST4 in FIG. 6).
  • a second angle may be calculated from the light intensity images after these treatments by performing attenuation processing of the peripheral light amount and the like.
  • Time correcting unit 74 output from the controller 76, and the position of the second condenser 12 at a first time t 1, and the position of the second condenser 12 at a second time t 2 get.
  • the time calibration unit 74 outputs the position of the second light collecting device 12 at the first time t 1 and the position of the second light collecting device 12 at the second time t 2 to the communication unit 78.
  • the communication unit 78 has a second angle at the first time t 1, a second angle at the second time t 2 , a position of the second light collector 12 at the first time t 1, and a second time. transmitting the respective positions of the second focusing device 12 at t 2 to the communication unit 58.
  • the communication unit 58 from the communication unit 78, has a second angle at the first time t 1, a second angle at the second time t 2 , and a position of the second light collector 12 at the first time t 1. and receiving the respective positions of the second condenser 12 at the second time t 2.
  • the communication unit 58 has a second angle at the first time t 1, a second angle at the second time t 2 , a position of the second light collector 12 at the first time t 1, and a second time.
  • the respective positions of the second condenser 12 is recorded in the recording device 59 in the t 2.
  • the communication unit 58 causes the recording device 59 to record the position of the second light collecting device 12 at the first time t 1 and the position of the second light collecting device 12 at the second time t 2. ing. If the second optical measuring station 4 is a fixed station, the position of the second light collecting device 12 does not change, so that the recording device 59 records the position of the second light collecting device 12 at any time. Just do it.
  • Trajectory calculation unit 60 from the recording device 59, respectively and each of the first angle at a first time t 1 and second time t 2, at a first time t 1 and second time t 2 the Get the angle of 2. From the recording device 59, the orbit calculation unit 60 determines the position of the first light collecting device 11 at the first time t 1 and the position of the first light collecting device 11 at the second time t 2 . The position of the second light collecting device 12 at the time t 1 and the position of the second light collecting device 12 at the second time t 2 are acquired.
  • FIG. 12 is an explanatory diagram showing the accuracy of orbit calculation in the orbit calculation system according to the first embodiment.
  • the first condenser apparatus 11 and the projectile 2 the second condenser 12 is disposed in each of the vertices in the triangle.
  • the distance from each of the optical devices 12 to the projectile 2 can be calculated geometrically.
  • the orbit calculation unit 60 has a distance L AB1 between devices, a first angle (Az A1 , Elv A1 ), a second angle (Az B1 , Elv B1 ), and a position (x) of the first condensing device 11. since A1, y A1, z A1) and, using the cosine theorem, as the distance to the projectile 2 from the first condenser 11, calculates a first distance Renge A1 at a first time t 1. Further, the orbit calculation unit 60 has a distance L AB1 between devices, a first angle (Az A1 , Elv A1 ), a second angle (Az B1 , Elv B1 ), and a position of the second light collector 12. since the (x B1, y B1, z B1), using the cosine theorem, as the distance to the projectile 2 from the second condenser 12, calculates a second distance Renge B1 at a first time t 1 do.
  • Trajectory calculation unit 60 the position of the first focusing device 11 at a second time t 2 (x A2, y A2 , z A2), the position of the second condenser 12 at a second time t 2 since (x B2, y B2, z B2) and, at the second time t 2, the calculated first condenser 11 inter-device distance L AB2 between the second condenser 12.
  • the orbit calculation unit 60 includes the inter-device distance L AB2 , the first angle (Az A2 , Elv A2 ), the second angle (Az B2 , Elv B2 ), and the position (x) of the first condensing device 11.
  • the orbit calculation unit 60 has a distance between the devices L AB2 , a first angle (Az A2 , Elv A2 ), a second angle (Az B2 , Elv B2 ), and a position of the second light collecting device 12. since the (x B2, y B2, z B2), by using the cosine theorem, as the distance to the projectile 2 from the second condenser 12, calculates a second distance Renge B2 at a second time t 2 do.
  • Trajectory calculation unit 60 includes a first angle at a first time t 1 (Az A1, Elv A1 ), the position of the first focusing device 11 at a first time t 1 (x A1, y A1 , z and A1), the first distance Renge A1 Metropolitan at a first time t 1, the position of the projectile 2 in the first time t 1 (x 1 ', y 1', z 1 ') is calculated.
  • the trajectory calculating section 23 includes a second angle at a first time t 1 (Az B1, Elv B1 ), the position of the second condenser 12 at a first time t 1 (x B1, y B1 calculates a z B1), the second distance Renge B1 Metropolitan at a first time t 1, the position of the projectile 2 in the first time t 1 (x 1 ", y 1", the z 1 ”) ..
  • the position (x 1 ', y 1 ', z 1 ') and the position (x 1 ", y 1 ", z 1 ") of the orbit calculation unit 60 are different, for example, the following equation (1) As shown in, as the position (x 1 , y 1 , z 1 ) of the projectile 2 at the first time t 1, the position (x 1 ', y 1 ', z 1 ') and the position (x 1 ', Calculate the average value with y 1 ", z 1").
  • Trajectory calculation unit 60 includes a first angle at a second time t 2 (Az A2, Elv A2 ), the position of the first focusing device 11 at a second time t 2 (x A2, y A2 , z and A2), the first distance Renge A2 Metropolitan at the second time t 2, the position of the projectile 2 at the second time t 2 (x 2 ', y 2', z 2 ') is calculated.
  • the trajectory calculating section 23 includes a second angle at a second time t 2 (Az B2, Elv B2 ), the position of the second condenser 12 at a second time t 2 (x B2, y B2 calculates a z B2), the second distance Renge B2 Metropolitan at the second time t 2, the position of the projectile 2 at the second time t 2 (x 2 ", y 2", the z 2 ”) ..
  • the position (x 2 ', y 2 ', z 2 ') and the position (x 2 ", y 2 ", z 2 ") of the orbit calculation unit 60 are different, for example, the following equation (2) As shown in, as the position (x 2 , y 2 , z 2 ) of the projectile 2 at the second time t 2, the position (x 2 ', y 2 ', z 2 ') and the position (x 2 ', Calculate the average value with y 2 ", z 2").
  • the orbit calculation unit 60 determines the position of the projectile 2 at the first time t 1 (x 1 , y 1 , z 1 ) and the position of the projectile 2 at the second time t 2 (x 2 , y 2 , z). 2 ) and is calculated. Alternatively, the orbit calculation unit 60 calculates the position and velocity of the projectile 2 at the first time t1. Therefore, the position of the projectile 2 at the first time t 1 (x 1 , y 1 , z 1 ) and the position of the projectile 2 at the second time t 2 (x 2 , y 2 , z 2 ), or.
  • the trajectory of the projectile 2 can be calculated. ..
  • the orbit represents the time change of the position of the projectile and the trajectory, and assuming that the projectile 2 is moving mainly according to the gravity of the earth, the motion is Kepler motion.
  • the locus can be approximated by a quadratic curve.
  • Quadratic curve is eccentricity, long radius, defined by track 6 elements represented by the orbit inclination angle, etc., the parameters of the track 6 elements, the position at time t 1, t 2 with a projectile (x 1, y It is determined from 1 , z 1 ), (x 2 , y 2 , z 2 ), and the orbit is obtained.
  • the orbit of a moving object near the earth changes from moment to moment, and the six elements of the orbit are insufficient to represent the orbit, so the position (x 1 , y 1 , z 1 ) and velocity ( v x 1 , vy 1 , Sequentially finding vz 1 ) may be regarded as finding the orbit.
  • the orbit calculation unit 60 determines the position of the projectile 2 at the first time t 1 (x 1 , y 1 , z 1 ) and the position of the projectile 2 at the second time t 2 (x 2 , y 2 , z). 2 ) Or, the orbit of the projectile 2 is calculated from the position (x 1 , y 1 , z 1 ) and the velocity ( v x 1 , v y 1 , vz 1 ) of the projectile 2 at the first time t 1. (Step ST5 in FIG. 6).
  • the angle calculation unit 53 of the first optical angle measuring station 3 can calculate the first angle from the directing direction of the first light collecting device 11 and the light intensity image, but the first light collecting device It is not possible to calculate the distance from the first condensing device 11 to the projectile 2 with high accuracy only by the information of the directing direction of 11 and the light intensity image.
  • the angle calculation unit 73 of the second optical angle measuring station 4 can calculate the second angle from the directing direction of the second condensing device 12 and the light intensity image, but the second condensing device It is not possible to calculate the distance from the second condensing device 12 to the projectile 2 with high accuracy only by the information of the directing direction of 12 and the light intensity image.
  • FIG. 7 is an explanatory diagram showing the accuracy of distance calculation by the angle calculation unit 53 of the first optical angle measuring station 3.
  • the shaded ellipse region shows the distance calculation accuracy and the angle calculation accuracy, respectively. Since the shaded elliptical region has an elliptical shape that is long in the range direction, it indicates that the calculation accuracy of the distance is poor.
  • FIG. 8 is an explanatory diagram showing the calculation accuracy of each angle and the calculation accuracy of each distance at the three observation times t 0 , t 1 , and t 2.
  • the angle calculation unit 53 the first angle at observation time t 0 (Az A0, Elv A0 ), observation time can be calculated respective first angle in t 1 (Az A1, Elv A1 ) and a first angle at observation time t 2 (Az A2, Elv A2 ).
  • the orbit of the projectile 2 becomes a quadratic curve due to the Kepler motion.
  • the distance to the projectile 2 can be estimated from the first angle of each of the observation times t 0 , t 1 , and t 2 and the time when the projectile 2 moves at each point. Therefore, the orbit of the projectile 2 is uniquely determined. Actually, it may contain an error because it is affected by the gravity anomaly of the earth or radiation pressure, but in principle, if there are three observations of the projectile 2, the projectile 2 The orbit can be calculated.
  • the angle measuring station installed on the ground emits radio waves, and the angle measuring station receives the radio waves reflected by the flying object 2, thereby calculating the distance from the angle measuring station to the flying object 2.
  • the distance from the angle measuring station to the projectile 2 is calculated. The distance is calculated from the time difference from the time or the phase difference between the phase of the emitted radio wave and the phase of the received radio wave. Therefore, the angle measuring station can calculate the angle (Az, Elv) of the projectile 2 with respect to the angle measuring station in addition to the distance.
  • FIG. 9 the angle measuring station installed on the ground emits radio waves, and the angle measuring station receives the radio waves reflected by the flying object 2, thereby calculating the distance from the angle measuring station to the flying object 2.
  • the shaded ellipse region shows the distance calculation accuracy and the angle calculation accuracy, respectively. Since the shaded ellipse region shown in FIG. 9 has a shorter length in the range direction than the shaded ellipse region shown in FIG. 7, the calculation accuracy of the distance in the angle measuring station shown in FIG. 9 is the calculation of the distance in FIG. It is higher than the accuracy. However, since the wavelength (cm) of the radio wave is longer than the wavelength (micron) of visible light, for example, the angle calculation accuracy in the angle measuring station shown in FIG. 9 is worse than the angle calculation accuracy in FIG. There is.
  • FIG. 10 is an explanatory diagram showing the calculation accuracy of each angle and the calculation accuracy of each distance at the two observation times t 1 and t 2. From the respective distances and angles at the two observation times t 1 and t 2, the position of the projectile 2 at the observation time t 1 (x 1 , y 1 , z 1 ) and the position of the projectile 2 at the observation time t 2. (X 2 , y 2 , z 2 ) can be obtained.
  • the speed of the projectile 2 from the position of the projectile 2 at the observation time t 1 (x 1, y 1 , z 1) at the observation time t 1 (vx 1, vy 1 , vz 1) is obtained. Therefore, if both the distance and the angle can be calculated at the two observation times t 1 and t 2, the orbit of the projectile 2 can be calculated.
  • FIG. 11 is an explanatory diagram showing the accuracy of angle calculation and the accuracy of distance calculation in the trajectory calculation system according to the first embodiment.
  • the first optical angle measuring station 3 and the second optical measuring station 4 which are two optical measuring stations having different installation positions, fly at the same time.
  • the angle with respect to the body 2 is calculated. Therefore, the first condensing device 11 in the first optical angle measuring station 3, the second condensing device 12 in the second optical measuring station 4, and the projectile 2 have their respective vertices in the triangle.
  • the triangular cosine theorem can be applied as if it were placed in.
  • the distance from each of the first condensing device 11 and the second condensing device 12 to the projectile 2 can be calculated geometrically. Since the triangular cosine theorem cannot be applied unless the first optical measuring station 3 and the second optical measuring station 4 calculate the angle with respect to the same projectile 2 at the same time, FIG. 7 As shown by the shaded elliptical region of, the calculation accuracy of the distance deteriorates.
  • the diamond-shaped region including the projectile 2 shows the accuracy of calculating the distance and the accuracy of calculating the angle, respectively.
  • the diamond-shaped region has a shorter length in the range direction than the shaded elliptical region shown in FIG.
  • the distance calculation accuracy in the trajectory calculation system shown in FIG. 5 is higher than that shown in FIG. 7. From the above, the reason why the time is synchronized between the first optical measuring station 3 and the second optical measuring station 4 is to improve the accuracy of distance calculation. This is also to enable the orbit of the projectile 2 to be calculated even if the observation time is two.
  • the first time as the first angle when the light collector 2 is viewed from the first condensing device 11 from the direction and the respective reflection positions of the light with respect to the projectile 2 at the first time and the second time.
  • the first time and the second of the first angle calculation unit 21 that calculates the respective first angles at the second time and the second light collector 12 that collects the light reflected by the projectile 2.
  • a second angle calculation unit 22 that calculates each second angle at the first time and a second time, a first angle calculated by the first angle calculation unit 21, and a second angle. From the second angle calculated by the angle calculation unit 22 of the above, and the position of the first light collector 11 and the position of the second light collector 12 at the first time and the second time, the flying object.
  • the orbit calculation device 13 is configured to include the orbit calculation unit 23 for calculating the orbit of 2. Therefore, it may be possible to calculate the orbit of the distant projectile 2 which cannot be calculated by the conventional orbit calculation system.
  • the orbit calculation system shown in FIG. 5 includes a first optical angle measuring station 3 and a second optical measuring station 4 as two optical measuring stations.
  • the first optical measuring station 3 can collect the light reflected by the projectile 2
  • the second optical measuring station 4 is reflected by the flying object 2. It may cause a situation where light cannot be focused. In such a situation, the orbit calculation system shown in FIG. 5 cannot calculate the orbit of the projectile 2.
  • a third optical angle measuring station is provided in addition to the first optical measuring station 3 and the second optical measuring station 4. You may.
  • the configuration of the third optical angle measuring station is the same as the configuration of the second optical measuring station 4, and the installation position of the third optical measuring station is the first optical measuring station 3 and the second optical measuring station. It is different from each installation position in the optical angle measuring station 4.
  • Embodiment 2 an orbit calculation system in which the first optical angle measuring station 3 is a fixed station and the second optical angle measuring station 4 is a portable station will be described.
  • FIG. 13 is an explanatory diagram showing an example of the positional relationship between the illumination light source 1, the projectile 2, the first optical angle measuring station 3 and the second optical measuring station 4 in the orbit calculation system according to the second embodiment. ..
  • the first optical angle measuring station 3 is a fixed station
  • the second optical angle measuring station 4 is a portable station.
  • FIG. 14 is an explanatory diagram showing the accuracy of angle calculation and the accuracy of distance calculation in the trajectory calculation system according to the second embodiment.
  • the same principle as that of the orbit calculation system shown in FIG. 5 can be used.
  • the trajectory of the projectile 2 can be calculated.
  • the position of the sun which is the illumination light source 1, or the position of the second optical angle measuring station 4, which is a portable station
  • the first optical measuring station 3 and the second optical measuring station 3 are changed. 4 may be an observation condition in which light from the same projectile 2 cannot be received at the same time. For example, when the second optical measuring station 4 is located on the back side of the earth when viewed from the first optical measuring station 3, the first optical measuring station 3 and the second optical measuring station 3 are measured.
  • the corner station 4 cannot receive the light from the same projectile 2 at the same time.
  • the orbit calculation system shown in FIG. 13 can be shown in FIG. Similar to the trajectory calculation system shown, the trajectory of the projectile 2 can be calculated.
  • the communication unit 78 of the second optical angle measuring station 4 determines the second angle and the position of the second condensing device 12. , Is transmitted to the communication unit 58 of the first optical angle measuring station 3.
  • the communication unit 78 since the second optical measuring station 4 is moving in orbit, for example, the communication unit 78 may be used depending on the positional relationship between the first optical measuring station 3 and the second optical measuring station 4. , The second angle and the position of the second light collecting device 12 may not be directly transmitted to the communication unit 58 of the first optical measuring station 3. In such a case, the communication unit 78 of the second optical angle measuring station 4 transmits the second angle and the position of the second light collecting device 12 to the ground station 6 shown in FIGS.
  • the ground station 6 may transfer the second angle and the position of the second light collecting device 12 to the communication unit 58 of the first optical measuring station 3.
  • the ground station 6 is a ground station that operates the second optical angle measuring station 4, and controls, for example, the posture and position of the second optical measuring station 4.
  • Embodiment 3 an orbit calculation system in which the first optical angle measuring station 3 is provided with the ranging device 91 and the second optical angle measuring station 4 is provided with the retroreflective unit 81 will be described.
  • FIG. 15 is an explanatory diagram showing an example of the positional relationship between the flying object 2, the first optical angle measuring station 3, and the second optical angle measuring station 4 in the orbit calculation system according to the third embodiment.
  • the second optical angle measuring station 4 includes a retroreflective unit 81.
  • the retroreflective unit 81 is realized by an optical member having a function of emitting light in the incident direction. As the optical member, a corner cube reflector or the like can be considered in addition to a member in which beads are spread.
  • the retroreflective unit 81 retroreflects the light radiated from the ranging device 91 of the first optical angle measuring station 3.
  • FIG. 16 is a specific configuration diagram showing the trajectory calculation system according to the third embodiment.
  • the distance measuring device 91 is mounted on the first optical angle measuring station 3.
  • the distance measuring device 91 includes a light collecting device 92, an optical transmitting unit 93, an optical receiving unit 94, a distance calculation unit 95, and a directing device 96.
  • the distance measuring device 91 receives the light reflected by the retroreflective unit 81 after radiating the light toward the retroreflective unit 81, and from the emitted light and the received light, the first optical angle measuring station 3 And the second optical measuring station 4 are calculated.
  • the condensing device 92 is realized by, for example, one or more telescopes among a refraction type telescope and a reflection type telescope.
  • the light collecting device 92 radiates the laser light output from the light transmitting unit 93 toward the retroreflective unit 81, and collects the laser light reflected by the retroreflective unit 81.
  • the optical transmission unit 93 is realized by, for example, a laser light source, an optical amplifier, and an optical modulator.
  • the light transmitting unit 93 outputs the laser light to the condensing device 92, so that the laser light is radiated from the condensing device 92 toward the retroreflective unit 81.
  • the optical receiver 94 is realized by, for example, a semiconductor optical receiver. As the semiconductor optical receiver, a photodiode, a quadrant photodiode, or the like can be considered.
  • the light receiving unit 94 receives the laser light collected by the condensing device 92.
  • the distance calculation unit 95 is based on the time difference between the time when the radio wave is radiated from the optical transmission unit 93 and the time when the radio wave is received by the optical reception unit 94, or the phase of the radio wave output from the optical transmission unit 93 and the optical reception unit 94. From the phase difference with the phase of the received radio wave, the distance between the devices, which is the distance between the first optical measuring station 3 and the second optical measuring station 4, is calculated. That is, the distance calculation unit 95, the inter-device distance L AB1 at a first time t 1 is calculated and the inter-device distance L AB2 at the second time t 2, the a unit distance L AB1 and apparatus distance L AB2 Is output to the orbit calculation unit 61 of the orbit calculation unit 23.
  • the directional device 96 is realized by a rotary stage and a motor having one or more rotation axes.
  • An altazimuth mount, an equatorial mount, or the like can be considered as a rotation stage having one or more rotation axes.
  • a condensing device 92 is mounted on the rotating stage of the directional device 96. Directing device 96, so that the directivity direction of the light collection device 92 when the first time t 1 coincides with the orientation direction of the condenser 92 when the first time t 1 the controller 56 is outputted In addition, the rotary stage is rotated by driving the motor.
  • Directing device 96 so that the directivity direction of the light collection device 92 when the second time t 2 coincides with the orientation direction of the condenser 92 when the second time t 2 the controller 56 is outputted
  • the rotary stage is rotated by driving the motor.
  • the orbit calculation unit 23 includes a recording device 59 and an orbit calculation unit 61.
  • the orbit calculation unit 61 from the distance calculation unit 95, indicates the direction directions of the light collector 92 at the first time t 1 and the second time t 2 , and the first time t 1 and the second time t 2.
  • the distances L AB1 and L AB2 between the devices in the above are acquired.
  • Trajectory calculation unit 61 from the recording apparatus 59 acquires the first position at time t 1 and second time t 2 of the first focusing device 11.
  • the orbit calculation unit 61 has the direction directions of the light collector 92 at the first time t 1 and the second time t 2 , and the first time t 1 and the second time of the first light collector 11.
  • the first time t of the second light collector 12 is used. and it calculates the respective positions in the first and second time t 2.
  • the orbit calculation unit 61 has a first angle and a first time t at the first time t 1 and the second time t 2 from the recording device 59. obtaining a respective second angle in the first and second time t 2. Similar to the orbit calculation unit 60 shown in FIG. 5, the orbit calculation unit 61 has a first angle, a second angle, and the first condensing device 11 and the second condensing device 12. from the respective positions, as the distance to the projectile 2 from the first condenser 11, to calculate a respective first distance at a first time t 1 and second time t 2. Similar to the orbit calculation unit 60 shown in FIG.
  • the orbit calculation unit 61 is a flying object from the second light collector 12 from each first angle, each second angle, and each position. as the distance to 2, and calculates the respective second distance at a first time t 1 and second time t 2.
  • Trajectory calculation unit 61 like the trajectory calculation unit 60 shown in FIG. 5, first, respectively at a first time t 1 and second time t 2 the angle a, the first time t 1 and the second a respective second angle at time t 2, the respective a first distance at a first time t 1 and second time t 2, the respective at a first time t 1 and second time t 2 From the second distance, each of the position and speed of the projectile 2 is calculated.
  • the orbit calculation unit 61 calculates the respective positions of the projectile 2 at the first time t 1 and the second time t 2 , or the position and velocity of the projectile 2 at the first time t 1. .. Similar to the orbit calculation unit 60 shown in FIG. 5, the orbit calculation unit 61 is located at each position of the projectile 2 at the first time t 1 and the second time t 2 , or the first time of the projectile 2. The orbit of the projectile 2 is calculated from the position and velocity of t 1.
  • the orbit calculation unit 60 uses the first light collector 11 and the second light collector 12 from their respective positions in the first light collector 11 and the second light collector 12.
  • the distances L AB1 and L AB2 between the devices with 12 are calculated.
  • the trajectory calculation system shown in FIG. 16, the distance measuring device 91, as the distance between the distance L AB1, L AB2 between the first condenser 11 and the second condenser 12, a first optical angle measuring station 3 It differs from the orbit calculation system shown in FIG. 5 in that the distance between the light and the second optical measuring station 4 is calculated.
  • the accuracy of distance calculation by the distance measuring device 91 is higher than the accuracy of distance calculation by the trajectory calculation system shown in FIG.
  • the accuracy of distance calculation by the trajectory calculation system shown in FIG. 5 is the length in the range direction in the diamond-shaped region shown in FIG.
  • the distance measuring device 91 may not be able to calculate the inter-device distances LA AB1 and LA AB2. In the orbit calculation system shown in FIG.
  • the second optical measuring station 4 since the second optical measuring station 4 includes the retroreflecting unit 81, the attenuation of the laser beam intensity due to the reflection of the second optical measuring station 4 is suppressed. ing. Therefore, in the orbit calculation system shown in FIG. 16, the distance that can be calculated is longer than that in the second optical measuring station 4 that does not have the retroreflection unit 81.
  • the control device 56 outputs the pointing direction of the condensing device 92 at the first time t1 to the directional device 96, and outputs the directional direction of the condensing device 92 at the second time t 2 to the directional device 96.
  • the control device 56 outputs a laser beam radiation command to each of the light transmission unit 93 and the distance calculation unit 95 at the first time t 1 and the second time t 2.
  • the orbit information of the second optical measuring station 4 is recorded in the internal memory of the control device 56. Controller 56, based on the orbital information to identify the orientation of the condenser 92 at a first time t 1, to identify the orientation of the condenser 92 at the second time t 2.
  • Directing device 96 so that the directivity direction of the light collection device 92 when the first time t 1 coincides with the orientation direction of the condenser 92 when the first time t 1 the controller 56 is outputted
  • the rotary stage is rotated by driving the motor.
  • Directing device 96 so that the directivity direction of the light collection device 92 when the second time t 2 coincides with the orientation direction of the condenser 92 when the second time t 2 the controller 56 is outputted
  • the rotary stage is rotated by driving the motor.
  • the control device 56 Since it takes a certain amount of time to control the directivity direction of the condensing device 92 by the directivity device 96, the control device 56 sets the observation time at the first time t 1 before the observation time reaches the first time t 1 .
  • the directivity direction of the light collector 92 is output to the directivity device 96. Further, the control device 56 outputs the directivity direction of the condensing device 92 at the second time t 2 to the directivity device 96 before the observation time reaches the second time t 2.
  • the optical transmission unit 93 When the optical transmission unit 93 receives a laser light emission command from the control device 56 at the first time t 1 and the second time t 2 , the light transmission unit 93 outputs the laser light to the condensing device 92 by outputting the laser light to the condensing device 92.
  • Laser light is radiated from the light collector 92 toward the retroreflecting unit 81.
  • the light collecting device 92 radiates the laser light output from the light transmitting unit 93 toward the retroreflecting unit 81.
  • the first time t 1 the laser light emitted from the light collector 92 is reflected by the retroreflective portion 81 attached to the second optical angle measuring station 4.
  • the laser light reflected by the retroreflective unit 81 is collected by the condensing device 92.
  • the light receiving unit 94 receives the laser light focused by the condensing device 92, and outputs the received signal of the laser light to the distance calculation unit 95.
  • the distance calculation unit 95 is based on the time difference between the time when the radio wave is radiated from the optical transmission unit 93 and the time when the radio wave is received by the optical reception unit 94, or the phase of the radio wave output from the optical transmission unit 93 and the optical reception unit 94.
  • the distance between the first optical measuring station 3 and the second optical measuring station 4 is calculated from the phase difference with the phase of the received radio wave. That is, the distance calculation unit 95, from the first time t 1 is the time when the emission command is output from the controller 56, based on the time until receiving the reception signal of the laser beam from the optical receiving unit 94, the first calculating the inter-device distance L AB1 at time t 1 of the.
  • the distance calculation unit 95, second from the time t 2 is the time at which the emission command is output from the controller 56, based on the time until receiving the reception signal of the laser beam from the optical receiving unit 94, the second calculating the inter-device distance L AB2 at time t 2 of the.
  • Distance calculation unit 95, the pointing direction of the condenser 92 at a first time t 1, the pointing direction of the condenser 92 at the second time t 2, the inter-device distance L AB1 at a first time t 1 and the Each of the inter-device distances LAB2 at time t2 of 2 is output to the orbit calculation unit 61 of the orbit calculation unit 23.
  • the orbit calculation unit 61 from the distance calculation unit 95, indicates the direction directions of the light collector 92 at the first time t 1 and the second time t 2 , and the first time t 1 and the second time t 2.
  • the distances L AB1 and L AB2 between the devices in the above are acquired.
  • Trajectory calculation unit 61 from the recording apparatus 59 acquires the first respective positions at the time t 1 and second time t 2 of the first focusing device 11.
  • Trajectory calculation unit 61 the orientation of the condenser 92 at a first time t 1, the position of the first focusing device 11 at a first time t 1, the inter-device distances at a first time t 1 by using the L AB1, it calculates the position of the second condenser 12 at a first time t 1.
  • the orbit calculation unit 61 has a first angle at the first time t 1 and a second time t 2 , respectively, and the first time t 1 and the second time t 1. obtaining a respective second angle at time t 2. Similar to the orbit calculation unit 60 shown in FIG. 5, the orbit calculation unit 61 has a first angle, a second angle, a position in the first condensing device 11, and a second angle. from the respective positions of the light collection device 12, as the distance to the projectile 2 from the first condenser 11, to calculate a respective first distance at a first time t 1 and second time t 2 .. Similar to the orbit calculation unit 60 shown in FIG.
  • the orbit calculation unit 61 has a first angle, a second angle, a position in the first condensing device 11, and a second angle. from the respective positions of the light collection device 12, as the distance to the projectile 2 from the second condenser 12, to calculate the respective second distance at a first time t 1 and second time t 2 ..
  • Trajectory calculation unit 61 like the trajectory calculation unit 60 shown in FIG. 5, first, respectively at a first time t 1 and second time t 2 the angle a, the first time t 1 and the second a respective second angle at time t 2, the respective a first distance at a first time t 1 and second time t 2, the respective at a first time t 1 and second time t 2 From the second distance, each of the position and speed of the projectile 2 is calculated. That is, the orbit calculation unit 61 calculates the respective positions of the projectile 2 at the first time t 1 and the second time t 2 , or the position and velocity of the projectile 2 at the first time t 1. .. Similar to the orbit calculation unit 60 shown in FIG. 5, the orbit calculation unit 61 is located at each position of the projectile 2 at the first time t 1 and the second time t 2 , or the first time of the projectile 2. from the position and velocity of the t 1, to calculate the trajectory of the projectile 2.
  • the second optical angle measuring station 4 includes a retroreflecting unit 81 that retroreflects light, and the first optical angle measuring station 3 radiates light toward the retroreflecting unit 81. After that, the light reflected by the retroreflection unit 81 is received, and the distance between the first optical angle measuring station 3 and the second optical measuring station 4 is calculated from the emitted light and the received light.
  • the orbit calculation system shown in FIG. 16 is provided so that the orbit calculation unit 23 calculates the position of the second condensing device 12 by using the distance calculated by the distance measuring device 91. Configured. Therefore, the orbit calculation system shown in FIG. 16 may be able to calculate the orbit of the distant projectile 2 which cannot be calculated by the conventional orbit calculation system, similar to the orbit calculation system shown in FIG. Further, the trajectory calculation system shown in FIG. 16 has improved accuracy of calculating the trajectory of the projectile 2 as compared with the trajectory calculation system shown in FIG.
  • Embodiment 4 the orbit calculation system in which the second optical angle measuring station 4 is arranged in an orbit having an altitude different from that of the orbit of the projectile 2 will be described.
  • FIG. 17 is an explanatory diagram showing an example of the positional relationship between the flying object 2, the first optical angle measuring station 3, and the second optical angle measuring station 4 in the orbit calculation system according to the fourth embodiment.
  • 101 shows a trajectory of the second optical angle measuring station 4
  • h 1 represents the height of the track 101
  • 102 shows the orbit of the flying object 2
  • h 2 shows the altitude of the orbit 102
  • 103 shows a trajectory of the second optical angle measuring station 4
  • h 3 shows a high degree of track 103.
  • the second optical angle measuring station 4 may be arranged in an orbit 101 having an altitude lower than the orbit 102 of the projectile 2, and may be arranged in an orbit 103 having an altitude higher than the orbit 102 of the projectile 2.
  • the orbit of the second optical measuring station 4 may be switched from the orbit 101 to the orbit 103, while the orbit 103 may be switched to the orbit 101.
  • the orbit around the earth is determined by the gravity and altitude of the earth.
  • v 1 is the speed of the second optical measuring station 4 moving in the orbit 101 at the altitude h 1
  • v 3 is the speed of the second optical measuring station 4 moving in the orbit 103 at the altitude h 3.
  • v 2 is the velocity of the projectile 2.
  • r E is the radius of the earth
  • G is the gravitational constant
  • M is the mass of the earth.
  • Second optical angle measuring station 4 speed v i (i 1, 3), as is apparent from equation (3), as the altitude h i is high, slower. Therefore, when the second optical measuring station 4 is arranged in the orbit 101 having an altitude higher than the orbit 102 of the flying object 2, the second optical measuring station 4 becomes the flying object 2 with the passage of time. You may be overtaken. On the other hand, when the second optical measuring station 4 is arranged in the orbit 101 whose altitude is lower than the orbit 102 of the flying object 2, the second optical measuring station 4 sets the flying object 2 with the passage of time. You may overtake.
  • the temporal change in the geometrical arrangement of the first optical measuring station 3, the second optical measuring station 4, and the projectile 2 is the altitude of the orbit where the second optical measuring station 4 is arranged. Depends on.
  • the orbit calculation system has, for example, a second optical angle measuring station 4 arranged in an orbit 101 having an altitude lower than the orbit 102 of the projectile 2, and an altitude higher than the orbit 102 of the projectile 2. May include both with a second optical measuring station 4 located in a high orbit 101. If the orbit calculation system includes two second optical measuring stations 4, the geometric arrangement related to the second optical measuring station 4 arranged in the orbit 101 and the arrangement in the orbit 103 are arranged. The orbit 102 of the projectile 2 can be calculated based on any of the geometrical arrangements related to the second optical angle measuring station 4.
  • any combination of the embodiments can be freely combined, any component of the embodiment can be modified, or any component can be omitted in each embodiment.
  • This disclosure is suitable for an orbit calculation device, an orbit calculation method, and an orbit calculation system for calculating the orbit of a flying object.

Abstract

A trajectory calculation device comprising a first angle calculation unit for using the pointing directions at a first time and a second time of a first light condensing device for condensing light emitted from an illumination light source and reflected by a flying object and the light reflection positions from the flying object at the first time and second time to calculate first angles of the flying object as viewed from the first light condensing device at the first time and second time, a second angle calculation unit for using the pointing directions at the first time and second time of a second light condensing device for condensing light reflected by the flying object and the light reflection positions from the flying object at the first time and second time to calculate second angles of the flying object as viewed from the second light condensing device at the first time and second time, and a trajectory calculation unit for using the calculated first angles, the calculated second angles, and the positions of the first light condensing device and second light condensing device at the first time and second time to calculate the trajectory of the flying object.

Description

軌道算出装置、軌道算出方法及び軌道算出システムOrbit calculation device, orbit calculation method and orbit calculation system
 本開示は、飛翔体の軌道を算出する軌道算出装置、軌道算出方法及び軌道算出システムに関するものである。 The present disclosure relates to an orbit calculation device, an orbit calculation method, and an orbit calculation system for calculating the orbit of a flying object.
 飛翔体の軌道を算出する軌道算出システムの中には、電磁波を飛翔体に向けて送信する一方、飛翔体によって反射された電磁波を受信する送受信アンテナと、送受信アンテナにより送受信された電磁波に基づいて、飛翔体の軌道を算出する信号処理部とを備える軌道算出システム(以下「従来の軌道算出システム」という)がある。
 従来の軌道算出システムでは、送受信アンテナと飛翔体との間を電磁波が往復するため、電磁波の伝搬距離は、送受信アンテナと飛翔体との間の距離の2倍である。
In the orbit calculation system that calculates the orbit of the flying object, the electromagnetic wave is transmitted toward the flying object, while the transmitting / receiving antenna that receives the electromagnetic wave reflected by the flying object and the electromagnetic wave transmitted / received by the transmitting / receiving antenna are used. , There is an orbit calculation system (hereinafter referred to as "conventional orbit calculation system") including a signal processing unit for calculating the orbit of a flying object.
In the conventional orbit calculation system, since the electromagnetic wave reciprocates between the transmitting / receiving antenna and the flying object, the propagation distance of the electromagnetic wave is twice the distance between the transmitting / receiving antenna and the flying object.
 ところで、飛翔体である宇宙機から送信された電磁波を受信する複数の受信装置を備え、複数の受信装置により受信された複数の電磁波の位相差の時間変化率に用いて、宇宙機の軌道を算出する軌道演算装置がある(例えば、特許文献1を参照)。当該軌道演算装置では、飛翔体が電磁波を送信するようにしているため、当該軌道演算装置における電磁波の伝搬距離は、従来の軌道算出システムにおける電磁波の伝搬距離の半分である。 By the way, it is equipped with a plurality of receiving devices that receive electromagnetic waves transmitted from a spacecraft that is a flying object, and is used for the time change rate of the phase difference of a plurality of electromagnetic waves received by the plurality of receiving devices to determine the orbit of the spacecraft. There is an orbit calculation device for calculating (see, for example, Patent Document 1). In the orbit arithmetic unit, since the flying object transmits the electromagnetic wave, the propagation distance of the electromagnetic wave in the orbit arithmetic unit is half of the propagation distance of the electromagnetic wave in the conventional orbit calculation system.
特開2007-256004号公報JP-A-2007-256004
 従来の軌道算出システムでは、送受信アンテナにより送受信される電磁波のパワーが、電磁波の伝搬距離の2乗に反比例して弱くなる。このため、従来の軌道算出システムでは、送受信アンテナと飛翔体との間の距離によっては、飛翔体の軌道を算出できないことがあるという課題があった。
 特許文献1に開示されている軌道演算装置における電磁波の伝搬距離は、従来の軌道算出システムにおける電磁波の伝搬距離よりも短い。このため、従来の軌道算出システムでは軌道を算出できない遠方の飛翔体についても、特許文献1に開示されている軌道演算装置では、軌道を算出できることがある。しかし、当該軌道演算装置では、飛翔体が、電磁波を送信する送信機を備えていなければ、電磁波を送信できないため、送信機を備えていない飛翔体については、軌道を算出することができない。したがって、当該軌道演算装置を従来の軌道算出システムに適用すると、送信機を備えていない飛翔体の軌道を算出できなくなる。つまり、送信機を備えていない飛翔体についても軌道を算出する必要がある軌道算出システムには、当該軌道演算装置を適用することができない。
In the conventional orbit calculation system, the power of the electromagnetic wave transmitted and received by the transmission / reception antenna becomes weaker in inverse proportion to the square of the propagation distance of the electromagnetic wave. Therefore, the conventional orbit calculation system has a problem that the orbit of the flying object may not be calculated depending on the distance between the transmitting / receiving antenna and the flying object.
The propagation distance of the electromagnetic wave in the orbit calculation device disclosed in Patent Document 1 is shorter than the propagation distance of the electromagnetic wave in the conventional orbit calculation system. Therefore, even for a distant flying object whose orbit cannot be calculated by the conventional orbit calculation system, the orbit calculation device disclosed in Patent Document 1 may be able to calculate the orbit. However, in the orbit calculation device, if the flying object does not have a transmitter for transmitting electromagnetic waves, the electromagnetic waves cannot be transmitted. Therefore, the orbit cannot be calculated for the flying object without a transmitter. Therefore, if the orbit arithmetic unit is applied to a conventional orbit calculation system, the orbit of a flying object without a transmitter cannot be calculated. That is, the orbit arithmetic unit cannot be applied to an orbit calculation system that needs to calculate an orbit even for a flying object that does not have a transmitter.
 本開示は、上記のような課題を解決するためになされたもので、従来の軌道算出システムでは軌道を算出できない遠方の飛翔体の軌道を算出できることがある軌道算出装置、軌道算出方法及び軌道算出システムを得ることを目的とする。 This disclosure is made to solve the above-mentioned problems, and may be able to calculate the orbit of a distant projectile that cannot be calculated by the conventional orbit calculation system. Orbit calculation device, orbit calculation method, and orbit calculation. The purpose is to get the system.
 本開示に係る軌道算出装置は、照明光源から放射されたのち、飛翔体によって反射された光を集光する第1の集光装置の第1の時刻及び第2の時刻におけるそれぞれの指向方向と、飛翔体に対する光の第1の時刻及び第2の時刻におけるそれぞれの反射位置とから、第1の集光装置から飛翔体を見た第1の角度として、第1の時刻及び第2の時刻におけるそれぞれの第1の角度を算出する第1の角度算出部と、飛翔体によって反射された光を集光する第2の集光装置の第1の時刻及び第2の時刻におけるそれぞれの指向方向と、飛翔体に対する光の第1の時刻及び第2の時刻におけるそれぞれの反射位置とから、第2の集光装置から飛翔体を見た第2の角度として、第1の時刻及び第2の時刻におけるそれぞれの第2の角度を算出する第2の角度算出部と、第1の角度算出部により算出された第1の角度と、第2の角度算出部により算出された第2の角度と、第1の時刻及び第2の時刻における、第1の集光装置の位置及び第2の集光装置の位置とから、飛翔体の軌道を算出する軌道算出部とを備えるものである。 The orbit calculation device according to the present disclosure includes the direction directions of the first light collector that collects the light reflected by the projectile after being emitted from the illumination light source at the first time and the second time. , The first time and the second time as the first angle when the light is viewed from the first condensing device from the respective reflection positions of the light with respect to the flying object at the first time and the second time. The direction of direction at the first time and the second time of the first angle calculation unit that calculates each first angle in the above and the second light collector that collects the light reflected by the flying object. And, from the respective reflection positions of the light with respect to the flying object at the first time and the second time, the first time and the second time are set as the second angle when the flying object is viewed from the second condensing device. A second angle calculation unit that calculates each second angle at time, a first angle calculated by the first angle calculation unit, and a second angle calculated by the second angle calculation unit. It is provided with an orbit calculation unit that calculates the orbit of the flying object from the position of the first light condensing device and the position of the second light condensing device at the first time and the second time.
 本開示によれば、従来の軌道算出システムでは軌道を算出できない遠方の飛翔体の軌道を算出できることがある。 According to the present disclosure, it may be possible to calculate the orbit of a distant projectile that cannot be calculated by the conventional orbit calculation system.
実施の形態1に係る軌道算出システムにおける照明光源1、飛翔体2、第1の光測角局3及び第2の光測角局4の位置関係の一例を示す説明図である。It is explanatory drawing which shows an example of the positional relationship of the illumination light source 1, the flying object 2, the 1st optical angle measuring station 3 and the 2nd optical angle measuring station 4 in the orbit calculation system which concerns on Embodiment 1. FIG. 実施の形態1に係る軌道算出システムを示す構成図である。It is a block diagram which shows the trajectory calculation system which concerns on Embodiment 1. 実施の形態1に係る軌道算出装置13のハードウェアを示すハードウェア構成図である。It is a hardware block diagram which shows the hardware of the trajectory calculation apparatus 13 which concerns on Embodiment 1. FIG. 軌道算出装置13が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。6 is a hardware configuration diagram of a computer when the trajectory calculation device 13 is realized by software, firmware, or the like. 実施の形態1に係る軌道算出システムを示す具体的な構成図である。It is a concrete block diagram which shows the trajectory calculation system which concerns on Embodiment 1. 図2に示す軌道算出装置13の処理手順である軌道算出方法を示すフローチャートである。It is a flowchart which shows the trajectory calculation method which is the processing procedure of the trajectory calculation apparatus 13 shown in FIG. 第1の光測角局3の角度計算部53による距離の算出精度を示す説明図である。It is explanatory drawing which shows the calculation accuracy of the distance by the angle calculation unit 53 of the 1st optical angle measuring station 3. 3つの観測時刻t,t,tにおけるそれぞれの角度の算出精度及びそれぞれの距離の算出精度を示す説明図である。It is explanatory drawing which shows the calculation accuracy of each angle and the calculation accuracy of each distance at three observation time t 0 , t 1 , t 2. 地上に設置されている測角局が電波を放射し、測角局が飛翔体2によって反射された電波を受信することによって、測角局から飛翔体2までの距離を算出する場合の測定精度を示す説明図である。Measurement accuracy when the angle measuring station installed on the ground emits radio waves and the angle measuring station receives the radio waves reflected by the flying object 2 to calculate the distance from the angle measuring station to the flying object 2. It is explanatory drawing which shows. 2つの観測時刻t,tにおけるそれぞれの角度の算出精度及びそれぞれの距離の算出精度を示す説明図である。It is explanatory drawing which shows the calculation accuracy of each angle and the calculation accuracy of each distance at two observation times t 1 and t 2. 実施の形態1に係る軌道算出システムにおける角度の算出精度及び距離の算出精度を示す説明図である。It is explanatory drawing which shows the calculation accuracy of an angle and the calculation accuracy of a distance in the trajectory calculation system which concerns on Embodiment 1. FIG. 実施の形態1に係る軌道算出システムにおける軌道の算出精度を示す説明図である。It is explanatory drawing which shows the calculation accuracy of the orbit in the orbit calculation system which concerns on Embodiment 1. FIG. 実施の形態2に係る軌道算出システムにおける照明光源1、飛翔体2、第1の光測角局3及び第2の光測角局4の位置関係の一例を示す説明図である。It is explanatory drawing which shows an example of the positional relationship of the illumination light source 1, the flying object 2, the 1st optical angle measuring station 3 and the 2nd optical angle measuring station 4 in the orbit calculation system which concerns on Embodiment 2. FIG. 実施の形態2に係る軌道算出システムにおける角度の算出精度及び距離の算出精度を示す説明図である。It is explanatory drawing which shows the calculation accuracy of an angle and the calculation accuracy of a distance in the trajectory calculation system which concerns on Embodiment 2. FIG. 実施の形態3に係る軌道算出システムにおける飛翔体2、第1の光測角局3及び第2の光測角局4の位置関係の一例を示す説明図である。It is explanatory drawing which shows an example of the positional relationship of the flying object 2, the 1st optical angle measuring station 3 and the 2nd optical angle measuring station 4 in the orbit calculation system which concerns on Embodiment 3. FIG. 実施の形態3に係る軌道算出システムを示す具体的な構成図である。It is a concrete block diagram which shows the trajectory calculation system which concerns on Embodiment 3. 実施の形態4に係る軌道算出システムにおける飛翔体2、第1の光測角局3及び第2の光測角局4の位置関係の一例を示す説明図である。It is explanatory drawing which shows an example of the positional relationship of the flying object 2, the 1st optical angle measuring station 3 and the 2nd optical angle measuring station 4 in the orbit calculation system which concerns on Embodiment 4. FIG.
 以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present disclosure in more detail, a mode for carrying out the present disclosure will be described in accordance with the attached drawings.
実施の形態1.
 図1は、実施の形態1に係る軌道算出システムにおける照明光源1、飛翔体2、第1の光測角局3及び第2の光測角局4の位置関係の一例を示す説明図である。
 照明光源1は、光を放射する太陽等の恒星である。ただし、照明光源1は、光を放射する光源であればよく、恒星に限るものではない。
 飛翔体2は、地球を周回する移動体であり、照明光源1から放射された光を反射させる。
Embodiment 1.
FIG. 1 is an explanatory diagram showing an example of the positional relationship between the illumination light source 1, the flying object 2, the first optical angle measuring station 3 and the second optical measuring station 4 in the orbit calculation system according to the first embodiment. ..
The illumination light source 1 is a star such as the sun that emits light. However, the illumination light source 1 may be any light source that emits light, and is not limited to a star.
The projectile 2 is a moving body that orbits the earth and reflects the light emitted from the illumination light source 1.
 第1の光測角局3は、地球の地上に固定されている固定局である。図1に示す軌道算出システムでは、第1の光測角局3が、固定局である。しかし、これは一例に過ぎず、第1の光測角局3が、位置が変化する可搬局であってもよい。
 第1の光測角局3は、少なくとも、図2に示す第1の集光装置11、第1の角度算出部21及び軌道算出部23を搭載している。第1の光測角局3が搭載している具体的な構成要素は、図5に示している。
 第2の光測角局4は、固定局、又は、可搬局である。
 第2の光測角局4は、少なくとも、図2に示す第2の集光装置12及び第2の角度算出部22を搭載している。第2の光測角局4が搭載している具体的な構成要素は、図5に示している。
 基準信号源5は、第1の光測角局3と第2の光測角局4とが時刻の同期に用いる基準信号を第1の光測角局3及び第2の光測角局4のそれぞれに送信する。
The first optical angle measuring station 3 is a fixed station fixed on the ground of the earth. In the orbit calculation system shown in FIG. 1, the first optical angle measuring station 3 is a fixed station. However, this is only an example, and the first optical measuring station 3 may be a portable station whose position changes.
The first optical angle measuring station 3 includes at least the first condensing device 11, the first angle calculating unit 21, and the orbit calculating unit 23 shown in FIG. 2. The specific components mounted on the first optical angle measuring station 3 are shown in FIG.
The second optical angle measuring station 4 is a fixed station or a portable station.
The second optical angle measuring station 4 is equipped with at least the second light collecting device 12 and the second angle calculating unit 22 shown in FIG. The specific components mounted on the second optical angle measuring station 4 are shown in FIG.
The reference signal source 5 uses the reference signal used by the first optical measuring station 3 and the second optical measuring station 4 for time synchronization as the first optical measuring station 3 and the second optical measuring station 4. Send to each of.
 図2は、実施の形態1に係る軌道算出システムを示す構成図である。
 図2に示す軌道算出システムは、第1の集光装置11、第2の集光装置12及び軌道算出装置13を備えている。
 図3は、実施の形態1に係る軌道算出装置13のハードウェアを示すハードウェア構成図である。
 第1の集光装置11は、例えば、光の屈折を利用する屈折型の望遠鏡及び光の反射を利用する反射型の望遠鏡のうち、1つ以上の望遠鏡によって実現される。
 第1の集光装置11は、照明光源1から放射されたのち、飛翔体2によって反射された光を集光する。
 第2の集光装置12は、例えば、屈折型の望遠鏡及び反射型の望遠鏡のうち、1つ以上の望遠鏡によって実現される。
 第2の集光装置12は、照明光源1から放射されたのち、飛翔体2によって反射された光を集光する。
FIG. 2 is a configuration diagram showing an orbit calculation system according to the first embodiment.
The orbit calculation system shown in FIG. 2 includes a first light condensing device 11, a second light condensing device 12, and an orbit calculation device 13.
FIG. 3 is a hardware configuration diagram showing the hardware of the trajectory calculation device 13 according to the first embodiment.
The first condensing device 11 is realized by, for example, one or more telescopes among a refraction type telescope that utilizes refraction of light and a reflection type telescope that utilizes reflection of light.
The first condensing device 11 condenses the light emitted by the illumination light source 1 and then reflected by the projectile 2.
The second condensing device 12 is realized by, for example, one or more telescopes among a refraction type telescope and a reflection type telescope.
The second condensing device 12 condenses the light emitted by the illumination light source 1 and then reflected by the projectile 2.
 軌道算出装置13は、第1の角度算出部21、第2の角度算出部22及び軌道算出部23を備えている。
 第1の角度算出部21は、例えば、図3に示す第1の角度算出回路31によって実現される。
 第1の角度算出部21は、第1の集光装置11の第1の時刻t及び第2の時刻tにおけるそれぞれの指向方向と、飛翔体2に対する光の第1の時刻t及び前記第2の時刻tにおけるそれぞれの反射位置とから、第1の集光装置11から飛翔体2を見た角度である第1の角度を算出する。第1の角度は、第1の集光装置11から飛翔体2を見たアジマス角Azと、第1の集光装置11から飛翔体2を見たエレベーション角Elvとを含んでいる。なお、第1の時刻tにおけるアジマス角は、AzA1、第2の時刻tにおけるアジマス角は、AzA2、第1の時刻tにおけるエレベーション角は、ElvA1、第2の時刻tにおけるエレベーション角は、ElvA2である。
 第1の角度算出部21は、算出した第1の角度として、アジマス角AzA1、AzA2及びエレベーション角ElvA1、ElvA2のそれぞれを軌道算出部23に出力する。
The orbit calculation device 13 includes a first angle calculation unit 21, a second angle calculation unit 22, and an orbit calculation unit 23.
The first angle calculation unit 21 is realized by, for example, the first angle calculation circuit 31 shown in FIG.
The first angle calculation unit 21, each of the directivity direction in the first time t 1 and second time t 2 of the first condenser 11, a first time t 1 and the light with respect to the projectile 2 from the respective reflection positions in the second time t 2, the calculating the first angle is an angle viewed projectile 2 from the first condenser 11. The first angle includes an azimuth angle Az A seen from the first light collecting device 11 and an elevation angle Elv A seen from the first light collecting device 11. .. Incidentally, the azimuth angle at a first time t 1 is, Az A1, the azimuth angle at a second time t 2 is, Az A2, elevation angle at a first time t 1 is, Elv A1, the second time t The elevation angle at 2 is Elv A2 .
The first angle calculation unit 21 outputs each of the azimuth angles Az A1 and Az A2 and the elevation angles Elv A1 and Elv A2 to the orbit calculation unit 23 as the calculated first angle.
 第2の角度算出部22は、例えば、図3に示す第2の角度算出回路32によって実現される。
 第2の角度算出部22は、第2の集光装置12の第1の時刻t及び第2の時刻tにおけるそれぞれの指向方向と、飛翔体2に対する光の第1の時刻t及び前記第2の時刻tにおけるそれぞれの反射位置とから、第2の集光装置12から飛翔体2を見た角度である第2の角度を算出する。第2の角度は、第2の集光装置12から飛翔体2を見たアジマス角Azと、第2の集光装置12から飛翔体2を見たエレベーション角Elvとを含んでいる。なお、第1の時刻tにおけるアジマス角は、AzB1、第2の時刻tにおけるアジマス角は、AzB2、第1の時刻tにおけるエレベーション角は、ElvB1、第2の時刻tにおけるエレベーション角は、ElvB2である。
 第2の角度算出部22は、算出した第2の角度として、アジマス角AzB1、AzB2及びエレベーション角ElvB1、ElvB2のそれぞれを軌道算出部23に出力する。
The second angle calculation unit 22 is realized by, for example, the second angle calculation circuit 32 shown in FIG.
The second angle calculation unit 22, each of the directivity direction in the first time t 1 and second time t 2 of the second condenser 12, a first time t 1 and the light with respect to the projectile 2 From each reflection position at the second time t2, a second angle, which is the angle at which the projectile 2 is viewed from the second light collecting device 12, is calculated. The second angle includes an azimuth angle Az B as seen from the second light collector 12 and an elevation angle Elv B as seen from the second light collector 12. .. Incidentally, the azimuth angle at a first time t 1 is, Az B1, the azimuth angle at a second time t 2 is, Az B2, elevation angle at a first time t 1 is, Elv B1, the second time t The elevation angle at 2 is Elv B2 .
The second angle calculation unit 22 outputs each of the azimuth angles Az B1 and Az B2 and the elevation angles Elv B1 and Elv B2 to the orbit calculation unit 23 as the calculated second angle.
 軌道算出部23は、例えば、図3に示す軌道算出回路33によって実現される。
 軌道算出部23は、第1の角度算出部21により算出された、第1の時刻t及び第2の時刻tにおけるそれぞれの第1の角度と、第2の角度算出部22により算出された、第1の時刻t及び第2の時刻tにおけるそれぞれの第2の角度とを取得する。
 軌道算出部23は、第1の時刻t及び第2の時刻tにおけるそれぞれの第1の角度と、第1の時刻t及び第2の時刻tにおけるそれぞれの第2の角度と、第1の集光装置11の第1の時刻t及び第2の時刻tにおけるそれぞれの位置と、第2の集光装置12の第1の時刻t及び第2の時刻tにおけるそれぞれの位置とから、飛翔体2の軌道を算出する。
The orbit calculation unit 23 is realized by, for example, the orbit calculation circuit 33 shown in FIG.
The orbit calculation unit 23 is calculated by the first angle at the first time t 1 and the second time t 2 calculated by the first angle calculation unit 21, and by the second angle calculation unit 22. In addition, the second angles at the first time t 1 and the second time t 2 are acquired.
Trajectory calculation unit 23, and the respective second angle and each of the first angle at a first time t 1 and second time t 2, the at a first time t 1 and second time t 2, the The positions of the first light collector 11 at the first time t 1 and the second time t 2, and the positions of the second light collector 12 at the first time t 1 and the second time t 2 , respectively. The trajectory of the projectile 2 is calculated from the position of.
 図2では、軌道算出装置13の構成要素である第1の角度算出部21、第2の角度算出部22及び軌道算出部23のそれぞれが、図3に示すような専用のハードウェアによって実現されるものを想定している。即ち、軌道算出装置13が、第1の角度算出回路31、第2の角度算出回路32及び軌道算出回路33によって実現されるものを想定している。
 第1の角度算出回路31、第2の角度算出回路32及び軌道算出回路33のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
In FIG. 2, each of the first angle calculation unit 21, the second angle calculation unit 22, and the trajectory calculation unit 23, which are the components of the trajectory calculation device 13, is realized by dedicated hardware as shown in FIG. I'm assuming something. That is, it is assumed that the trajectory calculation device 13 is realized by the first angle calculation circuit 31, the second angle calculation circuit 32, and the trajectory calculation circuit 33.
Each of the first angle calculation circuit 31, the second angle calculation circuit 32, and the trajectory calculation circuit 33 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application Specific Integrated Circuit). ), FPGA (Field-Programmable Gate Array), or a combination thereof.
 軌道算出装置13の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、軌道算出装置13が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
The components of the trajectory calculation device 13 are not limited to those realized by dedicated hardware, but the trajectory calculation device 13 is realized by software, firmware, or a combination of software and firmware. It is also good.
The software or firmware is stored as a program in the memory of the computer. A computer means hardware for executing a program, and corresponds to, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, a computing device, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). do.
 図4は、軌道算出装置13が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。
 軌道算出装置13が、ソフトウェア又はファームウェア等によって実現される場合、第1の角度算出部21、第2の角度算出部22及び軌道算出部23におけるそれぞれの処理手順をコンピュータに実行させるためのプログラムがメモリ41に格納される。そして、コンピュータのプロセッサ42がメモリ41に格納されているプログラムを実行する。
 また、図3では、軌道算出装置13の構成要素のそれぞれが専用のハードウェアによって実現される例を示し、図4では、軌道算出装置13がソフトウェア又はファームウェア等によって実現される例を示している。しかし、これは一例に過ぎず、軌道算出装置13における一部の構成要素が専用のハードウェアによって実現され、残りの構成要素がソフトウェア又はファームウェア等によって実現されるものであってもよい。
FIG. 4 is a hardware configuration diagram of a computer when the trajectory calculation device 13 is realized by software, firmware, or the like.
When the trajectory calculation device 13 is realized by software, firmware, or the like, a program for causing a computer to execute each processing procedure in the first angle calculation unit 21, the second angle calculation unit 22, and the trajectory calculation unit 23 is provided. It is stored in the memory 41. Then, the processor 42 of the computer executes the program stored in the memory 41.
Further, FIG. 3 shows an example in which each of the components of the trajectory calculation device 13 is realized by dedicated hardware, and FIG. 4 shows an example in which the trajectory calculation device 13 is realized by software, firmware, or the like. .. However, this is only an example, and some components in the trajectory calculation device 13 may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
 図5は、実施の形態1に係る軌道算出システムを示す具体的な構成図である。
 図5に示す軌道算出システムでは、第1の光測角局3が、第1の集光装置11、遮光装置51、位置検出部52、角度計算部53、時刻校正部54、カウンター55、制御装置56、指向装置57、通信部58、記録装置59及び軌道計算部60を備えている。
 図5に示す軌道算出システムでは、第2の光測角局4が、第2の集光装置12、遮光装置71、位置検出部72、角度計算部73、時刻校正部74、カウンター75、制御装置76、指向装置77及び通信部78を備えている。
FIG. 5 is a specific configuration diagram showing the trajectory calculation system according to the first embodiment.
In the trajectory calculation system shown in FIG. 5, the first optical angle measuring station 3 has a first light collecting device 11, a light shielding device 51, a position detection unit 52, an angle calculation unit 53, a time calibration unit 54, a counter 55, and a control. It includes a device 56, a pointing device 57, a communication unit 58, a recording device 59, and an orbit calculation unit 60.
In the trajectory calculation system shown in FIG. 5, the second optical angle measuring station 4 has a second light collecting device 12, a light shielding device 71, a position detection unit 72, an angle calculation unit 73, a time calibration unit 74, a counter 75, and a control. It includes a device 76, a directional device 77, and a communication unit 78.
 遮光装置51は、例えば、機械的なシャッター、又は、電子的なシャッターによって実現される。
 遮光装置51は、第1の集光装置11と位置検出部52との間の光路に配置されている。
 遮光装置51は、制御装置56によって制御される露光時間に合わせて、シャッターの開閉が制御される。遮光装置51は、シャッターの開閉が制御されることによって、第1の集光装置11により集光された光の遮断と光の透過とを交互に行う。
The shading device 51 is realized by, for example, a mechanical shutter or an electronic shutter.
The shading device 51 is arranged in an optical path between the first light collecting device 11 and the position detection unit 52.
The light-shielding device 51 controls the opening and closing of the shutter according to the exposure time controlled by the control device 56. By controlling the opening and closing of the shutter, the light-shielding device 51 alternately blocks the light collected by the first light-collecting device 11 and transmits the light.
 図5に示す第1の角度算出部21は、図2に示す第1の角度算出部21と同じ角度算出部である。
 図5に示す第1の角度算出部21は、位置検出部52及び角度計算部53を備えている。
 位置検出部52は、例えば、CCD(Charge Coupled Device)イメージセンサ、又は、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサによって実現される。
 位置検出部52は、第1の時刻t及び第2の時刻tのときに、制御装置56から出力された撮像指令を取得すると、遮光装置51を透過してきた光を検出することによって、飛翔体2が映っている光強度画像を撮像する。
 即ち、位置検出部52は、第1の時刻tのときに遮光装置51を透過してきた光を検出することによって、飛翔体2が映っている光強度画像を撮像し、第2の時刻tのときに遮光装置51を透過してきた光を検出することによって、飛翔体2が映っている光強度画像を撮像する。
 位置検出部52は、第1の時刻tにおける光強度画像及び第2の時刻tにおける光強度画像のそれぞれを角度計算部53に出力する。
 図5に示す軌道算出システムでは、位置検出部52が、第1の角度算出部21の内部に設けられている。しかし、これは一例に過ぎず、位置検出部52が、第1の角度算出部21の外部に設けられていてもよい。
The first angle calculation unit 21 shown in FIG. 5 is the same angle calculation unit as the first angle calculation unit 21 shown in FIG.
The first angle calculation unit 21 shown in FIG. 5 includes a position detection unit 52 and an angle calculation unit 53.
The position detection unit 52 is realized by, for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Sensor) image sensor.
When the position detection unit 52 acquires the image pickup command output from the control device 56 at the first time t 1 and the second time t 2 , the position detection unit 52 detects the light transmitted through the light shielding device 51 by detecting the light transmitted through the light shielding device 51. An image of the light intensity showing the projectile 2 is captured.
That is, the position detection unit 52 captures a light intensity image in which the projectile 2 is reflected by detecting the light transmitted through the light shielding device 51 at the first time t 1, and the second time t. By detecting the light transmitted through the shading device 51 at the time of 2, the light intensity image in which the projectile 2 is reflected is captured.
The position detection unit 52 outputs each of the light intensity image at the first time t 1 and the light intensity image at the second time t 2 to the angle calculation unit 53.
In the trajectory calculation system shown in FIG. 5, the position detection unit 52 is provided inside the first angle calculation unit 21. However, this is only an example, and the position detection unit 52 may be provided outside the first angle calculation unit 21.
 図5に示す軌道算出システムでは、位置検出部52が、CCDイメージセンサ、又は、CMOSイメージセンサによって実現されている。しかし、これは一例に過ぎず、位置検出部52が、単に光の有無を検出するセンサであって、飛翔体2が視野内に入ると、光を検出するセンサによって実現されているものであってもよい。ただし、単に光の有無を検出するセンサの視野は、CCDイメージセンサの視野よりも狭い。このため、位置検出部52が、単に光の有無を検出するセンサによって実現される場合、CCDイメージセンサによって実現される場合よりも、第1の集光装置11の指向方向が、きめ細かく制御される必要がある。
 なお、位置検出部52が、CCDイメージセンサ、又は、CMOSイメージセンサによって実現されている場合、第1の集光装置11の指向方向が、光強度画像の中心位置からずれていても、飛翔体2が光強度画像内に入っていれば、飛翔体2を検出することができる。このため、位置検出部52が、CCDイメージセンサ、又は、CMOSイメージセンサによって実現されている場合、単に光の有無を検出するセンサによって実現される場合よりも、第1の集光装置11の指向方向の制御が容易になる。また、位置検出部52が、CCDイメージセンサ、又は、CMOSイメージセンサによって実現されている場合、飛翔体2の移動方向が、視野の上下方向であるのか、視野の左右方向であるのか等を把握することができる。また、恒星又は他の飛翔体からの漏れ込み光の有無等も把握することができる。
In the trajectory calculation system shown in FIG. 5, the position detection unit 52 is realized by a CCD image sensor or a CMOS image sensor. However, this is only an example, and the position detection unit 52 is simply a sensor that detects the presence or absence of light, and is realized by a sensor that detects light when the projectile 2 enters the field of view. You may. However, the field of view of the sensor that simply detects the presence or absence of light is narrower than the field of view of the CCD image sensor. Therefore, when the position detection unit 52 is realized by a sensor that simply detects the presence or absence of light, the directing direction of the first light collecting device 11 is finely controlled as compared with the case where the position detection unit 52 is realized by a CCD image sensor. There is a need.
When the position detection unit 52 is realized by a CCD image sensor or a CMOS image sensor, even if the directing direction of the first light collecting device 11 deviates from the center position of the light intensity image, the flying object If 2 is included in the light intensity image, the flying object 2 can be detected. Therefore, when the position detection unit 52 is realized by a CCD image sensor or a CMOS image sensor, the orientation of the first light collecting device 11 is higher than that realized by a sensor that simply detects the presence or absence of light. The direction can be easily controlled. Further, when the position detection unit 52 is realized by a CCD image sensor or a CMOS image sensor, it grasps whether the moving direction of the flying object 2 is the vertical direction of the visual field, the horizontal direction of the visual field, or the like. can do. In addition, it is possible to grasp the presence or absence of leaked light from a star or another flying object.
 角度計算部53は、制御装置56から、第1の時刻tにおける第1の集光装置11の指向方向を取得し、位置検出部52から、第1の時刻tにおける光強度画像を取得する。
 角度計算部53は、飛翔体2に対する光の第1の時刻tの反射位置として、第1の時刻tにおける光強度画像内での光の位置を検出する。
 角度計算部53は、第1の時刻tにおける第1の集光装置11の指向方向と、第1の時刻tの反射位置とから、第1の時刻tにおける第1の角度を算出する。
 また、角度計算部53は、制御装置56から、第2の時刻tにおける第1の集光装置11の指向方向を取得し、位置検出部52から、第2の時刻tにおける光強度画像を取得する。
 角度計算部53は、飛翔体2に対する光の第2の時刻tの反射位置として、第2の時刻tにおける光強度画像内での光の位置を検出する。
 角度計算部53は、第2の時刻tにおける第1の集光装置11の指向方向と、第2の時刻tの反射位置とから、第2の時刻tにおける第1の角度を算出する。
Angle calculation unit 53, the controller 56 obtains the orientation of the first focusing device 11 at a first time t 1, from the position detection unit 52, obtains the light intensity image at a first time t 1 do.
The angle calculation unit 53 detects the position of the light in the light intensity image at the first time t 1 as the reflection position of the light with respect to the projectile 2 at the first time t 1.
The angle calculation unit 53 calculates the first angle at the first time t 1 from the directing direction of the first light collecting device 11 at the first time t 1 and the reflection position at the first time t 1 . do.
The angle calculation unit 53, the controller 56 obtains the first orientation of the condenser 11 at the second time t 2, from the position detection unit 52, the light intensity image at a second time t 2 To get.
The angle calculation unit 53 detects the position of the light in the light intensity image at the second time t 2 as the reflection position of the light with respect to the projectile 2 at the second time t 2.
The angle calculation unit 53 calculates the first angle at the second time t 2 from the directing direction of the first light collecting device 11 at the second time t 2 and the reflection position at the second time t 2 . do.
 時刻校正部54は、例えば、GPS(Global Positioning System)受信機、受信アンテナ及び時計を備えている。
 時刻校正部54の受信アンテナは、基準信号源5から送信された基準信号を受信する。
 時刻校正部54のGPS受信機は、受信アンテナが基準信号を受信すると、GPS衛星から送信されたGPS信号を繰り返し受信する。
 時刻校正部54は、GPS受信機によって受信されたGPS信号から、第1の集光装置11の位置及び現在の時刻を取得する。GPS信号に含まれている位置情報は、時刻校正部54を搭載している第1の光測角局3の位置を示している。第1の集光装置11は、第1の光測角局3に搭載されているものであるため、時刻校正部54は、第1の光測角局3の位置を、第1の集光装置11の位置として取得している。
 時刻校正部54は、取得した現在の時刻を用いて、内部時計の時刻を校正し、校正後の時刻をカウンター55に出力する。
 図5に示す軌道算出システムでは、時刻校正部54が、内部時計の時刻を校正し、校正後の時刻をカウンター55に出力している。しかし、これは一例に過ぎず、時刻校正部54が、校正後の時刻として、GPS信号から取得した現在の時刻をカウンター55に出力するようにしてもよい。
 図5に示す軌道算出システムでは、時刻校正部54が、GPS受信機によって受信された電波から現在の時刻を取得している。しかし、これは一例に過ぎず、時刻校正部54が、電波時計等に代表される標準電波から現在の時刻を取得するようにしてもよいし、NTP(Network Time Protocol)に代表されるネットワーク機器の時刻同期のためのプロトコルを利用して、現在の時刻を取得するようにしてもよい。
 例えば、太陽は、日周運動によって、一秒間で15秒角(=15/3600度)ほど動くため、位置の決定に秒角の精度が必要な場合、時刻校正部54は、内部時計の時刻をサブ秒の精度で校正する。
 時刻校正部54は、第1の集光装置11の位置を制御装置56に出力する。
 また、時刻校正部54は、制御装置56から、第1の時刻tにおける第1の集光装置11の位置と、第2の時刻tにおける第1の集光装置11の位置とを取得し、第1の時刻tにおける第1の集光装置11の位置と、第2の時刻tにおける第1の集光装置11の位置とを記録装置59に出力する。
The time calibration unit 54 includes, for example, a GPS (Global Positioning System) receiver, a receiving antenna, and a clock.
The receiving antenna of the time calibration unit 54 receives the reference signal transmitted from the reference signal source 5.
When the receiving antenna receives the reference signal, the GPS receiver of the time calibration unit 54 repeatedly receives the GPS signal transmitted from the GPS satellite.
The time calibration unit 54 acquires the position of the first light collecting device 11 and the current time from the GPS signal received by the GPS receiver. The position information included in the GPS signal indicates the position of the first optical angle measuring station 3 equipped with the time calibration unit 54. Since the first condensing device 11 is mounted on the first optical angle measuring station 3, the time calibration unit 54 sets the position of the first optical measuring station 3 to the first condensing. It is acquired as the position of the device 11.
The time calibration unit 54 calibrates the time of the internal clock using the acquired current time, and outputs the time after calibration to the counter 55.
In the trajectory calculation system shown in FIG. 5, the time calibration unit 54 calibrates the time of the internal clock and outputs the time after calibration to the counter 55. However, this is only an example, and the time calibration unit 54 may output the current time acquired from the GPS signal to the counter 55 as the time after calibration.
In the trajectory calculation system shown in FIG. 5, the time calibration unit 54 acquires the current time from the radio wave received by the GPS receiver. However, this is only an example, and the time calibration unit 54 may acquire the current time from a standard radio wave represented by a radio clock or the like, or a network device represented by NTP (Network Time Protocol). The current time may be acquired by using the protocol for time synchronization of.
For example, the sun moves about 15 arcseconds (= 15/3600 degrees) per second due to diurnal motion, so if accuracy of the arc arc is required to determine the position, the time calibration unit 54 may use the time of the internal clock. Is calibrated with a sub-second accuracy.
The time calibration unit 54 outputs the position of the first light collecting device 11 to the control device 56.
Further, the time calibration unit 54 acquires the position of the first light collecting device 11 at the first time t 1 and the position of the first light collecting device 11 at the second time t 2 from the control device 56. Then, the position of the first light collecting device 11 at the first time t 1 and the position of the first light collecting device 11 at the second time t 2 are output to the recording device 59.
 カウンター55は、時刻校正部54による校正後の時刻を取得し、ある代表的な時刻からの経過時間を計測する。ある代表的な時刻としては、例えば、飛翔体2の軌道の算出開始時刻である。
 カウンター55は、計測した経過時間を制御装置56に出力する。
The counter 55 acquires the time after calibration by the time calibration unit 54 and measures the elapsed time from a certain typical time. A typical time is, for example, the calculation start time of the orbit of the projectile 2.
The counter 55 outputs the measured elapsed time to the control device 56.
 制御装置56は、例えば、CPUを実装している半導体集積回路、あるいは、FPGAのようなプログラム基板によって実現される。
 制御装置56は、カウンター55から出力された経過時間に従って、飛翔体2の観測時刻として、第1の時刻t及び第2の時刻tのそれぞれを把握する。
 また、制御装置56は、軌道データベース80から、通信部58を介して、飛翔体2における過去の軌道情報を取得し、過去の軌道情報から、第1の時刻tにおける飛翔体2のおおよその位置と、第2の時刻tにおける飛翔体2のおおよその位置とを把握する。
The control device 56 is realized by, for example, a semiconductor integrated circuit on which a CPU is mounted, or a program board such as an FPGA.
The control device 56 grasps each of the first time t 1 and the second time t 2 as the observation time of the projectile 2 according to the elapsed time output from the counter 55.
Further, the control device 56 acquires the past orbit information of the flying object 2 from the orbit database 80 via the communication unit 58, and obtains the approximate past orbit information of the flying object 2 at the first time t1 from the past orbit information. The position and the approximate position of the projectile 2 at the second time t2 are grasped.
 制御装置56は、時刻校正部54から出力された第1の集光装置11の位置のうち、第1の時刻tにおける第1の集光装置11の位置と、第2の時刻tにおける第1の集光装置11の位置とを特定する。
 制御装置56は、第1の時刻tにおける第1の集光装置11の位置と、第1の時刻tにおける飛翔体2のおおよその位置とから、第1の集光装置11に対する飛翔体2の第1の時刻tにおける相対位置を算出する。
 また、制御装置56は、第2の時刻tにおける第1の集光装置11の位置と、第2の時刻tにおける飛翔体2のおおよその位置とから、第1の集光装置11に対する飛翔体2の第2の時刻tにおける相対位置を算出する。
Controller 56, among the position of the first condenser 11 output from the time correcting unit 54, the position of the first focusing device 11 at a first time t 1, at a second time t 2 The position of the first light collector 11 is specified.
Controller 56, the position of the first focusing device 11 at a first time t 1, and a rough position of the projectile 2 in the first time t 1, the projectile with respect to the first condenser 11 calculating the relative position at a first time t 1 of 2.
Further, the control device 56, the position of the first condenser 11 at the second time t 2, the from the approximate position of the projectile 2 in the second time t 2, the relative first condenser 11 calculating the relative position at a second time t 2 of the projectile 2.
 制御装置56は、第1の時刻tにおける相対位置から、第1の時刻tのときに第1の集光装置11が飛翔体2を見る方向、即ち、第1の時刻tにおける第1の集光装置11の指向方向を把握する。
 また、制御装置56は、第2の時刻tにおける相対位置から、第2の時刻tのときに第1の集光装置11が飛翔体2を見る方向、即ち、第2の時刻tにおける第1の集光装置11の指向方向を把握する。
Controller 56, from the relative position at a first time t 1, the direction in which the first condenser 11 sees the projectile 2 at the first time t 1, i.e., first at a first time t 1 The direction of direction of the light collecting device 11 of 1 is grasped.
Further, the control device 56, from the relative position at the second time t 2, the direction in which the first condenser 11 sees the projectile 2 at the second time t 2, i.e., the second time t 2 The direction of direction of the first light collector 11 in the above is grasped.
 制御装置56は、第1の時刻tにおける第1の集光装置11の指向方向を指向装置57及び角度計算部53のそれぞれに出力し、第2の時刻tにおける第1の集光装置11の指向方向を指向装置57及び角度計算部53のそれぞれに出力する。
 制御装置56は、第1の時刻t及び第2の時刻tのときに、所定の露光時間だけ、シャッターを開くように、遮光装置51を制御する。
 制御装置56は、第1の時刻t及び第2の時刻tのときに、撮像指令を位置検出部52に出力する。
Controller 56, the orientation of the first focusing device 11 at a first time t 1 and outputs to each of the directing device 57 and the angle calculation unit 53, a first condenser at a second time t 2 The pointing direction of 11 is output to each of the pointing device 57 and the angle calculation unit 53.
The control device 56 controls the light-shielding device 51 so as to open the shutter for a predetermined exposure time at the first time t 1 and the second time t 2.
The control device 56 outputs an image pickup command to the position detection unit 52 at the first time t 1 and the second time t 2.
 指向装置57は、一軸以上の回転軸を有する回転ステージ及びモータによって実現される。一軸以上の回転軸を有する回転ステージとしては、経緯台、又は、赤道儀等が考えられる。
 指向装置57の回転ステージには、第1の集光装置11が実装されている。
 指向装置57は、第1の時刻tにおける第1の集光装置11の指向方向が、制御装置56が出力された第1の時刻tにおける第1の集光装置11の指向方向と一致するように、モータを駆動することによって、回転ステージを回転させる。
 指向装置57は、第2の時刻tにおける第1の集光装置11の指向方向が、制御装置56が出力された第2の時刻tにおける第1の集光装置11の指向方向と一致するように、モータを駆動することによって、回転ステージを回転させる。
The directional device 57 is realized by a rotary stage and a motor having one or more rotation axes. An altazimuth mount, an equatorial mount, or the like can be considered as a rotation stage having one or more rotation axes.
A first condensing device 11 is mounted on the rotating stage of the directional device 57.
Directing device 57, the orientation direction of the first condenser 11 at a first time t 1 is consistent with the orientation of the first focusing device 11 at a first time t 1 the controller 56 is outputted By driving the motor, the rotary stage is rotated.
Directing device 57, the orientation direction of the first condenser 11 at a second time t 2 is consistent with the orientation of the first focusing device 11 at a second time t 2 the controller 56 is outputted By driving the motor, the rotary stage is rotated.
 通信部58は、軌道データベース80から、飛翔体2における過去の軌道情報を取得し、軌道情報を制御装置56に出力する。
 通信部58は、第2の光測角局4の通信部78から送信された、第1の時刻tにおける第2の角度及び第2の時刻tにおける第2の角度のそれぞれを受信する。
 通信部58は、第2の光測角局4の通信部78から送信された、第2の集光装置12の第1の時刻t及び第2の時刻tにおけるそれぞれの位置を受信する。
 通信部58は、第1の時刻tにおける第2の角度及び第2の時刻tにおける第2の角度のそれぞれを記録装置59に記録させ、第2の集光装置12の第1の時刻t及び第2の時刻tにおけるそれぞれの位置を記録装置59に記録させる。
The communication unit 58 acquires the past orbit information of the flying object 2 from the orbit database 80, and outputs the orbit information to the control device 56.
The communication unit 58 is transmitted from the second communication unit 78 of the optical angle measuring station 4, receives the respective second angle and the second angle at a second time t 2 at a first time t 1 ..
The communication unit 58 receives transmitted from the second communication unit 78 of the optical angle measuring station 4, the first respective positions at the time t 1 and second time t 2 of the second condenser 12 ..
The communication unit 58 to record each of the second angle and the second angle at a second time t 2 at a first time t 1 to the recording device 59, a first time of the second condenser 12 Have the recording device 59 record each position at t 1 and the second time t 2.
 図5に示す軌道算出部23は、図2に示す軌道算出部23と同じ軌道算出部である。
 図5に示す軌道算出部23は、記録装置59及び軌道計算部60を備えている。
 記録装置59は、RAM(Random Access Memory)、又は、ハードディスク等の記録媒体によって実現される。
 記録装置59は、第1の時刻tにおける第1の角度及び第2の時刻tにおける第1の角度のそれぞれを記録し、第1の時刻tにおける第2の角度及び第2の時刻tにおける第2の角度のそれぞれを記録する。
 記録装置59は、第1の集光装置11の第1の時刻t及び第2の時刻tにおけるそれぞれの位置と、第2の集光装置12の第1の時刻t及び第2の時刻tにおけるそれぞれの位置とを記録する。
The orbit calculation unit 23 shown in FIG. 5 is the same orbit calculation unit as the orbit calculation unit 23 shown in FIG.
The orbit calculation unit 23 shown in FIG. 5 includes a recording device 59 and an orbit calculation unit 60.
The recording device 59 is realized by a recording medium such as a RAM (Random Access Memory) or a hard disk.
Recording apparatus 59, each of the first angle and the first angle at a second time t 2 at a first time t 1 is recorded, a second angle and a second time at a first time t 1 Record each of the second angles at t 2.
Recording apparatus 59, each of the positions at a first time t 1 and second time t 2 of the first condenser 11, a first time t 1 and the second of the second condenser 12 recording the respective positions at the time t 2.
 軌道計算部60は、記録装置59から、第1の時刻t及び第2の時刻tにおけるそれぞれの第1の角度と、第1の時刻t及び第2の時刻tにおけるそれぞれの第2の角度とを取得する。
 また、軌道計算部60は、記録装置59から、第1の集光装置11の第1の時刻t及び第2の時刻tにおけるそれぞれの位置と、第2の集光装置12の第1の時刻t及び第2の時刻tにおけるそれぞれの位置とを取得する。
 軌道計算部60は、第1の集光装置11の第1の時刻t及び第2の時刻tにおけるそれぞれの位置と、第2の集光装置12の第1の時刻t及び第2の時刻tにおけるそれぞれの位置とから、第1の時刻tのときの、第1の集光装置11と第2の集光装置12との距離である装置間距離と、第2の時刻tのときの装置間距離とを算出する。
 軌道計算部60は、第1の時刻t及び第2の時刻tにおけるそれぞれの装置間距離と、第1の時刻t及び第2の時刻tにおけるそれぞれの第1の角度と、第1の時刻t及び第2の時刻tにおけるそれぞれの第2の角度と、第1の集光装置11の第1の時刻t及び第2の時刻tにおけるそれぞれの位置とから、第1の集光装置11から飛翔体2までの第1の距離を算出する。即ち、軌道計算部60は、第1の時刻t及び第2の時刻tにおけるそれぞれの第1の距離を算出する。
 軌道計算部60は、第1の時刻t及び第2の時刻tにおけるそれぞれの装置間距離と、第1の時刻t及び第2の時刻tにおけるそれぞれの第1の角度と、第1の時刻t及び第2の時刻tにおけるそれぞれの第2の角度と、第2の集光装置12の第1の時刻t及び第2の時刻tにおけるそれぞれの位置とから、第2の集光装置12から飛翔体2までの第2の距離を算出する。即ち、軌道計算部60は、第1の時刻t及び第2の時刻tにおけるそれぞれの第2の距離を算出する。
 軌道計算部60は、第1の時刻t及び第2の時刻tにおけるそれぞれの第1の角度と、第1の時刻t及び第2の時刻tにおけるそれぞれの第2の角度と、第1の時刻t及び第2の時刻tにおけるそれぞれの第1の距離と、第1の時刻t及び第2の時刻tにおけるそれぞれの第2の距離とから、飛翔体2の位置及び速度のそれぞれを算出する。即ち、軌道計算部60は、飛翔体2の第1の時刻t及び第2の時刻tにおけるそれぞれの位置を算出する。あるいは、軌道計算部60は、第1の時刻t及び第2の時刻tにおけるそれぞれの第1の角度と、第1の時刻t及び第2の時刻tにおけるそれぞれの第2の角度と、第1の時刻t及び第2の時刻tにおけるそれぞれの第1の距離と、第1の時刻t及び第2の時刻tにおけるそれぞれの第2の距離とから、飛翔体2の第1の時刻tの位置と速度とを算出する。なお、速度は、時刻tから時刻tの時間における飛翔体2の位置の差分として求められる。
 軌道計算部60は、飛翔体2の第1の時刻t及び第2の時刻tにおけるそれぞれの位置、あるいは、飛翔体2の第1の時刻tの位置と、速度とから、飛翔体2の軌道を算出する。
 図5に示す軌道算出システムでは、記録装置59が、軌道算出部23の内部に設けられている。しかし、これは一例に過ぎず、記録装置59が、軌道算出部23の外部に設けられていてもよい。
Trajectory calculation unit 60 from the recording device 59, respectively and each of the first angle at a first time t 1 and second time t 2, at a first time t 1 and second time t 2 the Get the angle of 2.
In addition, the orbit calculation unit 60 is from the recording device 59 to the respective positions of the first light collecting device 11 at the first time t 1 and the second time t 2 and the first of the second light collecting device 12. The respective positions at the time t 1 and the second time t 2 of the first time t 1 and the second time t 2 are acquired.
Trajectory calculation unit 60, a first condenser respective position at time t 1 and second time t 2 the first 11, a first time t 1 and the second second condenser 12 time from the respective positions at time t 2, the time of the first time t 1, a first condenser 11 and the inter-device distance is a distance between the second condenser 12, the second The distance between devices at t 2 is calculated.
Trajectory calculation unit 60, each of the inter-device distances at a first time t 1 and second time t 2, the respectively first angle at a first time t 1 and second time t 2, the first from the first time t 1 and second time t 2 and each of the second angle, the respective positions at a first time t 1 and second time t 2 of the first condenser 11, the The first distance from the light collecting device 11 of 1 to the projectile 2 is calculated. That is, the orbit calculation unit 60 calculates the first distances at the first time t 1 and the second time t 2.
Trajectory calculation unit 60, each of the inter-device distances at a first time t 1 and second time t 2, the respectively first angle at a first time t 1 and second time t 2, the first from the first time t 1 and second time t 2 and each of the second angle, the respective positions at a first time t 1 and second time t 2 of the second condenser 12, the The second distance from the light collector 12 of 2 to the projectile 2 is calculated. That is, the orbit calculation unit 60 calculates the second distances at the first time t 1 and the second time t 2.
Trajectory calculation unit 60, and the respective second angle and each of the first angle at a first time t 1 and second time t 2, the at a first time t 1 and second time t 2, the from each of the first distance at a first time t 1 and second time t 2, the a respective second distance at a first time t 1 and second time t 2, the position of the projectile 2 And each of the speeds are calculated. That is, the orbit calculation unit 60 calculates the respective positions of the flying object 2 at the first time t 1 and the second time t 2. Alternatively, trajectory calculation unit 60, and each of the first angle at a first time t 1 and second time t 2, each of the second angle at a first time t 1 and second time t 2 When, from each of the first distance at a first time t 1 and second time t 2, the a respective second distance at a first time t 1 and second time t 2, the projectile 2 calculating a first position and velocity at time t 1 of the. The velocity is obtained as the difference between the positions of the projectile 2 at the time from time t 1 to time t 2.
The orbit calculation unit 60 determines the flying object from the respective positions of the flying object 2 at the first time t 1 and the second time t 2 , or the position and the speed of the first time t 1 of the flying object 2. Calculate the orbit of 2.
In the trajectory calculation system shown in FIG. 5, the recording device 59 is provided inside the trajectory calculation unit 23. However, this is only an example, and the recording device 59 may be provided outside the trajectory calculation unit 23.
 遮光装置71は、例えば、機械的なシャッター、又は、電子的なシャッターによって実現される。
 遮光装置71は、第2の集光装置12と位置検出部72との間の光路に配置されている。
 遮光装置71は、制御装置76によって制御される露光時間に合わせて、シャッターの開閉が制御される。遮光装置71は、シャッターの開閉が制御されることによって、第2の集光装置12により集光された光の遮断と光の透過とを交互に行う。
The shading device 71 is realized by, for example, a mechanical shutter or an electronic shutter.
The shading device 71 is arranged in an optical path between the second light collecting device 12 and the position detection unit 72.
The light-shielding device 71 controls the opening and closing of the shutter according to the exposure time controlled by the control device 76. By controlling the opening and closing of the shutter, the light-shielding device 71 alternately blocks the light collected by the second light-collecting device 12 and transmits the light.
 図5に示す第2の角度算出部22は、図2に示す第2の角度算出部22と同じ角度算出部である。
 図5に示す第2の角度算出部22は、位置検出部72及び角度計算部73を備えている。
 位置検出部72は、例えば、CCDイメージセンサ、又は、CMOSイメージセンサによって実現される。
 位置検出部72は、第1の時刻t及び第2の時刻tのときに、制御装置76から出力された撮像指令を取得すると、遮光装置71を透過してきた光を検出することによって、飛翔体2が映っている光強度画像を撮像する。
 即ち、位置検出部72は、第1の時刻tのときに遮光装置71を透過してきた光を検出することによって、飛翔体2が映っている光強度画像を撮像し、第2の時刻tのときに遮光装置71を透過してきた光を検出することによって、飛翔体2が映っている光強度画像を撮像する。
 位置検出部72は、第1の時刻tにおける光強度画像及び第2の時刻tにおける光強度画像のそれぞれを角度計算部73に出力する。
The second angle calculation unit 22 shown in FIG. 5 is the same angle calculation unit as the second angle calculation unit 22 shown in FIG.
The second angle calculation unit 22 shown in FIG. 5 includes a position detection unit 72 and an angle calculation unit 73.
The position detection unit 72 is realized by, for example, a CCD image sensor or a CMOS image sensor.
When the position detection unit 72 acquires the image pickup command output from the control device 76 at the first time t 1 and the second time t 2 , the position detection unit 72 detects the light transmitted through the light shielding device 71 by detecting the light transmitted through the light shielding device 71. An image of the light intensity showing the projectile 2 is captured.
That is, the position detection unit 72 captures a light intensity image in which the projectile 2 is reflected by detecting the light transmitted through the light shielding device 71 at the first time t 1, and the second time t. By detecting the light transmitted through the shading device 71 at the time of 2, the light intensity image in which the projectile 2 is reflected is captured.
The position detection unit 72 outputs each of the light intensity image at the first time t 1 and the light intensity image at the second time t 2 to the angle calculation unit 73.
 角度計算部73は、制御装置76から、第1の時刻tにおける第2の集光装置12の指向方向を取得し、位置検出部72から、第1の時刻tにおける光強度画像を取得する。
 角度計算部73は、飛翔体2に対する光の第1の時刻tの反射位置として、第1の時刻tにおける光強度画像内での光の位置を検出する。
 角度計算部73は、第1の時刻tにおける第2の集光装置12の指向方向と、第1の時刻tの反射位置とから、第1の時刻tにおける第2の角度を算出する。
 また、角度計算部73は、制御装置76から、第2の時刻tにおける第2の集光装置12の指向方向を取得し、位置検出部72から、第2の時刻tにおける光強度画像を取得する。
 角度計算部73は、飛翔体2に対する光の第2の時刻tの反射位置として、第2の時刻tにおける光強度画像内での光の位置を検出する。
 角度計算部73は、第2の時刻tにおける第2の集光装置12の指向方向と、第2の時刻tの反射位置とから、第2の時刻tにおける第2の角度を算出する。
 角度計算部73は、第1の時刻tにおける第2の角度及び第2の時刻tにおける第2の角度のそれぞれを通信部78に出力する。
 図5に示す軌道算出システムでは、位置検出部72が、第2の角度算出部22の内部に設けられている。しかし、これは一例に過ぎず、位置検出部72が、第2の角度算出部22の外部に設けられていてもよい。
Angle calculation unit 73, the controller 76 obtains the orientation of the second condenser 12 at a first time t 1, the position detection unit 72, obtains the light intensity image at a first time t 1 do.
The angle calculation unit 73 detects the position of the light in the light intensity image at the first time t 1 as the reflection position of the light with respect to the projectile 2 at the first time t 1.
The angle calculation unit 73 calculates the second angle at the first time t 1 from the directing direction of the second light collecting device 12 at the first time t 1 and the reflection position at the first time t 1 . do.
Further, the angle calculation unit 73 acquires the pointing direction of the second light collecting device 12 at the second time t 2 from the control device 76, and the position detection unit 72 obtains the light intensity image at the second time t 2. To get.
The angle calculation unit 73 detects the position of the light in the light intensity image at the second time t 2 as the reflection position of the light with respect to the projectile 2 at the second time t 2.
The angle calculation unit 73 calculates the second angle at the second time t 2 from the directing direction of the second light collecting device 12 at the second time t 2 and the reflection position at the second time t 2 . do.
The angle calculation unit 73 outputs each of the second angle at the first time t 1 and the second angle at the second time t 2 to the communication unit 78.
In the trajectory calculation system shown in FIG. 5, the position detection unit 72 is provided inside the second angle calculation unit 22. However, this is only an example, and the position detection unit 72 may be provided outside the second angle calculation unit 22.
 時刻校正部74は、例えば、GPS受信機、受信アンテナ及び時計を備えている。
 時刻校正部74の受信アンテナは、基準信号源5から送信された基準信号を受信する。
 時刻校正部74のGPS受信機は、受信アンテナが基準信号を受信すると、GPS衛星から送信されたGPS信号を繰り返し受信する。
 時刻校正部74は、GPS受信機によって受信されたGPS信号から、第2の集光装置12の位置及び現在の時刻を取得する。GPS信号に含まれている位置情報は、時刻校正部74を搭載している第2の光測角局4の位置を示している。第2の集光装置12は、第2の光測角局4に搭載されているものであるため、時刻校正部74は、第2の光測角局4の位置を、第2の集光装置12の位置として取得している。
 時刻校正部74は、取得した現在の時刻を用いて、内部時計の時刻を校正する。
 図5に示す軌道算出システムでは、時刻校正部74が、内部時計の時刻を校正し、校正後の時刻をカウンター75に出力している。しかし、これは一例に過ぎず、時刻校正部74が、校正後の時刻として、GPS信号から取得した現在の時刻をカウンター75に出力するようにしてもよい。
 図5に示す軌道算出システムでは、時刻校正部74が、GPS受信機によって受信された電波から現在の時刻を取得している。しかし、これは一例に過ぎず、時刻校正部74が、電波時計等に代表される標準電波から現在の時刻を取得するようにしてもよいし、NTPに代表されるネットワーク機器の時刻同期のためのプロトコルを利用して、現在の時刻を取得するようにしてもよい。
 例えば、太陽は、日周運動によって、一秒間で15秒角ほど動くため、位置の決定に秒角の精度が必要な場合、時刻校正部74は、内部時計の時刻をサブ秒の精度で校正する。
 時刻校正部74は、第2の集光装置12の位置を制御装置76に出力する。
 また、時刻校正部74は、制御装置76から、第1の時刻tにおける第2の集光装置12の位置と、第2の時刻tにおける第2の集光装置12の位置とを取得し、第1の時刻tにおける第2の集光装置12の位置と、第2の時刻tにおける第2の集光装置12の位置とを通信部78に出力する。
The time calibration unit 74 includes, for example, a GPS receiver, a receiving antenna, and a clock.
The receiving antenna of the time calibration unit 74 receives the reference signal transmitted from the reference signal source 5.
When the receiving antenna receives the reference signal, the GPS receiver of the time calibration unit 74 repeatedly receives the GPS signal transmitted from the GPS satellite.
The time calibration unit 74 acquires the position of the second light collecting device 12 and the current time from the GPS signal received by the GPS receiver. The position information included in the GPS signal indicates the position of the second optical angle measuring station 4 equipped with the time calibration unit 74. Since the second light collecting device 12 is mounted on the second light measuring station 4, the time calibration unit 74 sets the position of the second light measuring station 4 to the second light collecting station 4. It is acquired as the position of the device 12.
The time calibration unit 74 calibrates the time of the internal clock using the acquired current time.
In the trajectory calculation system shown in FIG. 5, the time calibration unit 74 calibrates the time of the internal clock and outputs the time after calibration to the counter 75. However, this is only an example, and the time calibration unit 74 may output the current time acquired from the GPS signal to the counter 75 as the time after calibration.
In the trajectory calculation system shown in FIG. 5, the time calibration unit 74 acquires the current time from the radio wave received by the GPS receiver. However, this is only an example, and the time calibration unit 74 may acquire the current time from a standard radio wave represented by a radio clock or the like, or for time synchronization of a network device represented by NTP. The current time may be obtained by using the protocol of.
For example, the sun moves about 15 arcseconds per second due to diurnal motion, so if accuracy of arcseconds is required to determine the position, the time calibration unit 74 calibrates the time of the internal clock with subsecond accuracy. do.
The time calibration unit 74 outputs the position of the second light collecting device 12 to the control device 76.
Further, the time calibration unit 74 acquires the position of the second light collecting device 12 at the first time t 1 and the position of the second light collecting device 12 at the second time t 2 from the control device 76. Then, the position of the second light collecting device 12 at the first time t 1 and the position of the second light collecting device 12 at the second time t 2 are output to the communication unit 78.
 カウンター75は、時刻校正部74による校正後の時刻を取得し、ある代表的な時刻からの経過時間を計測する。
 カウンター75は、計測した経過時間を制御装置76に出力する。
The counter 75 acquires the time after calibration by the time calibration unit 74 and measures the elapsed time from a certain typical time.
The counter 75 outputs the measured elapsed time to the control device 76.
 制御装置76は、例えば、CPUを実装している半導体集積回路、あるいは、FPGAのようなプログラム基板によって実現される。
 制御装置76は、カウンター75から出力された経過時間に従って、飛翔体2の観測時刻として、第1の時刻t及び第2の時刻tのそれぞれを把握する。
 また、制御装置76は、軌道データベース80から、通信部78を介して、飛翔体2における過去の軌道情報を取得し、過去の軌道情報から、第1の時刻tにおける飛翔体2のおおよその位置と、第2の時刻tにおける飛翔体2のおおよその位置とを把握する。
The control device 76 is realized by, for example, a semiconductor integrated circuit on which a CPU is mounted, or a program board such as an FPGA.
The control device 76 grasps each of the first time t 1 and the second time t 2 as the observation time of the projectile 2 according to the elapsed time output from the counter 75.
Further, the control device 76 acquires the past orbit information of the flying object 2 from the orbit database 80 via the communication unit 78, and from the past orbit information, the control device 76 approximates the flying object 2 at the first time t1. The position and the approximate position of the projectile 2 at the second time t2 are grasped.
 制御装置76は、時刻校正部74から出力された第2の集光装置12の位置のうち、第1の時刻tにおける第2の集光装置12の位置と、第2の時刻tにおける第2の集光装置12の位置とを特定する。
 制御装置76は、第1の時刻tにおける第2の集光装置12の位置と、第1の時刻tにおける飛翔体2のおおよその位置とから、第2の集光装置12に対する飛翔体2の第1の時刻tにおける相対位置を算出する。
 また、制御装置76は、第2の時刻tにおける第2の集光装置12の位置と、第2の時刻tにおける飛翔体2のおおよその位置とから、第2の集光装置12に対する飛翔体2の第2の時刻tにおける相対位置を算出する。
Controller 76, among the position of the second condenser 12 output from the time correcting unit 74, and the position of the second condenser 12 at a first time t 1, at a second time t 2 The position of the second light collector 12 is specified.
Control device 76, a position of the second condenser 12 at a first time t 1, and a rough position of the projectile 2 in the first time t 1, the projectile with respect to the second condenser 12 calculating the relative position at a first time t 1 of 2.
Further, the control device 76, the position of the second condenser 12 at the second time t 2, the from the approximate position of the projectile 2 in the second time t 2, the relative second condenser 12 calculating the relative position at a second time t 2 of the projectile 2.
 制御装置76は、第1の時刻tにおける相対位置から、第1の時刻tのときに第2の集光装置12が飛翔体2を見る方向、即ち、第1の時刻tにおける第2の集光装置12の指向方向を把握する。
 また、制御装置76は、第2の時刻tにおける相対位置から、第2の時刻tのときに第2の集光装置12が飛翔体2を見る方向、即ち、第2の時刻tにおける第2の集光装置12の指向方向を把握する。
Control device 76, from the relative position at a first time t 1, the direction in which the second condenser 12 sees the projectile 2 at the first time t 1, i.e., first at a first time t 1 Grasp the directing direction of the light collecting device 12 of 2.
Further, the control device 76, from the relative position at the second time t 2, the direction in which the second condenser 12 when the second time t 2 to see the flying body 2, i.e., the second time t 2 The direction of direction of the second light collecting device 12 in the above is grasped.
 制御装置76は、第1の時刻tにおける第2の集光装置12の指向方向を指向装置77及び角度計算部73のそれぞれに出力し、第2の時刻tにおける第2の集光装置12の指向方向を指向装置77及び角度計算部73のそれぞれに出力する。
 制御装置76は、第1の時刻t及び第2の時刻tのときに、所定の露光時間だけ、シャッターを開くように、遮光装置71を制御する。
 制御装置76は、第1の時刻t及び第2の時刻tのときに、撮像指令を位置検出部72に出力する。
Controller 76, the orientation of the second condenser 12 at a first time t 1 and outputs to each of the directing device 77 and the angle calculation unit 73, the second condensing device at a second time t 2 The direction of the 12 is output to the pointing device 77 and the angle calculation unit 73, respectively.
The control device 76 controls the light-shielding device 71 so that the shutter is opened for a predetermined exposure time at the first time t 1 and the second time t 2.
The control device 76 outputs an image pickup command to the position detection unit 72 at the first time t 1 and the second time t 2.
 指向装置77は、一軸以上の回転軸を有する回転ステージ及びモータによって実現される。
 指向装置77の回転ステージには、第2の集光装置12が実装されている。
 指向装置77は、第1の時刻tにおける第2の集光装置12の指向方向が、制御装置76が出力された第1の時刻tにおける第2の集光装置12の指向方向と一致するように、モータを駆動することによって、回転ステージを回転させる。
 指向装置77は、第2の時刻tにおける第2の集光装置12の指向方向が、制御装置76が出力された第2の時刻tにおける第2の集光装置12の指向方向と一致するように、モータを駆動することによって、回転ステージを回転させる。
The directional device 77 is realized by a rotary stage and a motor having one or more rotation axes.
A second condensing device 12 is mounted on the rotating stage of the directional device 77.
Directing device 77, the directivity direction of the second condenser 12 at a first time t 1 is consistent with the orientation of the second condenser 12 at a first time t 1 the controller 76 is output By driving the motor, the rotary stage is rotated.
Directing device 77, the directivity direction of the second condenser 12 at a second time t 2 is consistent with the orientation of the second condenser 12 at a second time t 2 the controller 76 is output By driving the motor, the rotary stage is rotated.
 通信部78は、軌道データベース80から、飛翔体2における過去の軌道情報を取得し、軌道情報を制御装置76に出力する。
 通信部78は、角度計算部73から出力された、第1の時刻tにおける第2の角度及び第2の時刻tにおける第2の角度のそれぞれを通信部58に送信する。
 通信部78は、時刻校正部74から出力された、第2の集光装置12の第1の時刻t及び第2の時刻tにおけるそれぞれの位置を通信部58に送信する。
The communication unit 78 acquires the past orbit information of the flying object 2 from the orbit database 80, and outputs the orbit information to the control device 76.
The communication unit 78 is outputted from the angle calculating unit 73, and transmits the respective second angle and the second angle at a second time t 2 at a first time t 1 to the communication unit 58.
The communication unit 78 is output from the time correcting unit 74, and transmits to the second first time point t 1 and the second communication unit 58 to respective positions at the time t 2 of the condenser 12.
 軌道データベース80は、例えば、RAM、又は、ハードディスク等の記録媒体によって実現される。
 軌道データベース80は、飛翔体2における過去の軌道情報を記憶している。
 図5に示す軌道算出システムでは、軌道データベース80が、軌道算出システムの外部に設けられている。しかし、これは一例に過ぎず、軌道データベース80が、軌道算出システムの内部に設けられていてもよい。
 また、軌道データベース80が、図示せぬネットワークと接続されており、軌道データベース80が、当該ネットワークを介して、軌道算出システムと接続されていてもよい。
The orbital database 80 is realized by, for example, a RAM or a recording medium such as a hard disk.
The orbit database 80 stores past orbit information in the projectile 2.
In the trajectory calculation system shown in FIG. 5, the trajectory database 80 is provided outside the trajectory calculation system. However, this is only an example, and the trajectory database 80 may be provided inside the trajectory calculation system.
Further, the orbital database 80 may be connected to a network (not shown), and the orbital database 80 may be connected to the orbital calculation system via the network.
 次に、図5に示す軌道算出システムの動作について説明する。
 図6は、図2に示す軌道算出装置13の処理手順である軌道算出方法を示すフローチャートである。
 まず、基準信号源5は、第1の光測角局3と第2の光測角局4とが時刻の同期に用いる基準信号を第1の光測角局3及び第2の光測角局4のそれぞれに送信する。
 第1の光測角局3における時刻校正部54の受信アンテナは、基準信号源5から送信された基準信号を受信する。
 時刻校正部54のGPS受信機は、受信アンテナが基準信号を受信すると、GPS衛星から送信されたGPS信号を繰り返し受信する。
 時刻校正部54は、GPS受信機によって受信されたGPS信号から、第1の集光装置11の位置及び現在の時刻を取得する。
 時刻校正部54は、取得した現在の時刻を用いて、内部時計の時刻を校正する。
 時刻校正部54は、第1の集光装置11の位置を制御装置56に出力する。
Next, the operation of the trajectory calculation system shown in FIG. 5 will be described.
FIG. 6 is a flowchart showing a trajectory calculation method which is a processing procedure of the trajectory calculation device 13 shown in FIG.
First, the reference signal source 5 uses the reference signal used by the first optical measuring station 3 and the second optical measuring station 4 for time synchronization as the first optical measuring station 3 and the second optical measuring station 3. Send to each of the stations 4.
The receiving antenna of the time calibration unit 54 in the first optical angle measuring station 3 receives the reference signal transmitted from the reference signal source 5.
When the receiving antenna receives the reference signal, the GPS receiver of the time calibration unit 54 repeatedly receives the GPS signal transmitted from the GPS satellite.
The time calibration unit 54 acquires the position of the first light collecting device 11 and the current time from the GPS signal received by the GPS receiver.
The time calibration unit 54 calibrates the time of the internal clock using the acquired current time.
The time calibration unit 54 outputs the position of the first light collecting device 11 to the control device 56.
 時刻校正部74のGPS受信機は、受信アンテナが基準信号を受信すると、GPS衛星から送信されたGPS信号を繰り返し受信する。
 時刻校正部74は、GPS受信機によって受信されたGPS信号から、第2の集光装置12の位置及び現在の時刻を取得する。
 時刻校正部74は、取得した現在の時刻を用いて、内部時計の時刻を校正する。
 時刻校正部74は、第2の集光装置12の位置を制御装置76に出力する。
 第1の光測角局3の時刻校正部54が内部時計の時刻を校正し、第2の光測角局4の時刻校正部74が内部時計の時刻を校正することによって、第1の光測角局3と第2の光測角局4とにおける時刻の同期が図られる。
 時刻同期の精度は、遮光装置51,71におけるシャッターの開閉時間の精度で制限される。シャッターの開閉時間は、ミリ秒程度であるため、マイクロ秒程度の精度で時刻同期が行わればよい。なお、時刻校正部54,74の内部時計が用いる時刻としては、例えば、協定世界時(coordinated universal time)である。
When the receiving antenna receives the reference signal, the GPS receiver of the time calibration unit 74 repeatedly receives the GPS signal transmitted from the GPS satellite.
The time calibration unit 74 acquires the position of the second light collecting device 12 and the current time from the GPS signal received by the GPS receiver.
The time calibration unit 74 calibrates the time of the internal clock using the acquired current time.
The time calibration unit 74 outputs the position of the second light collecting device 12 to the control device 76.
The time calibration unit 54 of the first optical angle measuring station 3 calibrates the time of the internal clock, and the time calibration unit 74 of the second optical measuring station 4 calibrates the time of the internal clock. The time is synchronized between the angle measuring station 3 and the second optical angle measuring station 4.
The accuracy of time synchronization is limited by the accuracy of the shutter opening / closing time of the shading devices 51 and 71. Since the shutter opening / closing time is about millisecond, time synchronization may be performed with an accuracy of about microsecond. The time used by the internal clocks of the time calibration units 54 and 74 is, for example, Coordinated Universal Time.
 第1の光測角局3のカウンター55は、時刻校正部54による校正後の時刻を取得し、ある代表的な時刻からの経過時間tを計測する。ある代表的な時刻としては、例えば、飛翔体2の軌道の算出開始時刻である。
 カウンター55は、計測した経過時間tを制御装置56に出力する。
 第2の光測角局4のカウンター75は、時刻校正部74による校正後の時刻を取得し、ある代表的な時刻からの経過時間tを計測する。
 カウンター75は、計測した経過時間tを制御装置76に出力する。
 第1の光測角局3の通信部58は、軌道データベース80から、飛翔体2における過去の軌道情報を取得し、軌道情報を制御装置56に出力する。
 第2の光測角局4の通信部78は、軌道データベース80から、飛翔体2における過去の軌道情報を取得し、軌道情報を制御装置76に出力する。
The counter 55 of the first optical angle measuring station 3 acquires the time after calibration by the time calibration unit 54 and measures the elapsed time t from a certain representative time. A typical time is, for example, the calculation start time of the orbit of the projectile 2.
The counter 55 outputs the measured elapsed time t to the control device 56.
The counter 75 of the second optical angle measuring station 4 acquires the time after calibration by the time calibration unit 74 and measures the elapsed time t from a certain representative time.
The counter 75 outputs the measured elapsed time t to the control device 76.
The communication unit 58 of the first optical angle measuring station 3 acquires the past orbit information of the flying object 2 from the orbit database 80, and outputs the orbit information to the control device 56.
The communication unit 78 of the second optical angle measuring station 4 acquires the past orbit information of the flying object 2 from the orbit database 80, and outputs the orbit information to the control device 76.
 第1の光測角局3の制御装置56は、カウンター55から出力された経過時間tを取得する。
 制御装置56は、経過時間tに従って、飛翔体2の観測時刻として、第1の時刻t及び第2の時刻tのそれぞれを把握する。
 また、制御装置56は、通信部58から出力された軌道情報を取得し、軌道情報から、第1の時刻tにおける飛翔体2のおおよその位置と、第2の時刻tにおける飛翔体2のおおよその位置とを把握する。
The control device 56 of the first optical angle measuring station 3 acquires the elapsed time t output from the counter 55.
The control device 56 grasps each of the first time t 1 and the second time t 2 as the observation time of the flying object 2 according to the elapsed time t.
Further, the control unit 56 acquires orbit information output from the communication unit 58, from the track information, and approximate location of the projectile 2 in the first time t 1, the projectile at the second time t 2 2 Grasp the approximate position.
 制御装置56は、時刻校正部54から出力された第1の集光装置11の位置のうち、第1の時刻tにおける第1の集光装置11の位置と、第2の時刻tにおける第1の集光装置11の位置とを特定する。
 制御装置56は、第1の時刻tにおける第1の集光装置11の位置と、第1の時刻tにおける飛翔体2のおおよその位置とから、第1の集光装置11に対する飛翔体2の第1の時刻tにおける相対位置を算出する。第1の集光装置11に対する飛翔体2の相対位置の算出処理自体は、公知の技術であるため詳細な説明を省略する。
 また、制御装置56は、第2の時刻tにおける第1の集光装置11の位置と、第2の時刻tにおける飛翔体2のおおよその位置とから、第1の集光装置11に対する飛翔体2の第2の時刻tにおける相対位置を算出する。
Controller 56, among the position of the first condenser 11 output from the time correcting unit 54, the position of the first focusing device 11 at a first time t 1, at a second time t 2 The position of the first light collector 11 is specified.
Controller 56, the position of the first focusing device 11 at a first time t 1, and a rough position of the projectile 2 in the first time t 1, the projectile with respect to the first condenser 11 calculating the relative position at a first time t 1 of 2. Since the process of calculating the relative position of the projectile 2 with respect to the first condensing device 11 is a known technique, detailed description thereof will be omitted.
Further, the control device 56, the position of the first condenser 11 at the second time t 2, the from the approximate position of the projectile 2 in the second time t 2, the relative first condenser 11 calculating the relative position at a second time t 2 of the projectile 2.
 制御装置56は、第1の時刻tにおける相対位置から、第1の時刻tのときに第1の集光装置11が飛翔体2を見る方向、即ち、第1の時刻tにおける第1の集光装置11の指向方向を把握する。
 また、制御装置56は、第2の時刻tにおける相対位置から、第2の時刻tのときに第1の集光装置11が飛翔体2を見る方向、即ち、第2の時刻tにおける第1の集光装置11の指向方向を把握する。
Controller 56, from the relative position at a first time t 1, the direction in which the first condenser 11 sees the projectile 2 at the first time t 1, i.e., first at a first time t 1 The direction of direction of the light collecting device 11 of 1 is grasped.
Further, the control device 56, from the relative position at the second time t 2, the direction in which the first condenser 11 sees the projectile 2 at the second time t 2, i.e., the second time t 2 The direction of direction of the first light collector 11 in the above is grasped.
 制御装置56は、第1の時刻tにおける第1の集光装置11の指向方向を指向装置57及び角度計算部53のそれぞれに出力し、第2の時刻tにおける第1の集光装置11の指向方向を指向装置57及び角度計算部53のそれぞれに出力する。
 制御装置56は、第1の時刻t及び第2の時刻tのときに、所定の露光時間だけ、シャッターを開くように、遮光装置51を制御する。
 制御装置56は、第1の時刻t及び第2の時刻tのときに、撮像指令を位置検出部52に出力する。
 制御装置56は、第1の時刻tにおける第1の集光装置11の位置と、第2の時刻tにおける第1の集光装置11の位置とを時刻校正部54に出力する。
Controller 56, the orientation of the first focusing device 11 at a first time t 1 and outputs to each of the directing device 57 and the angle calculation unit 53, a first condenser at a second time t 2 The pointing direction of 11 is output to each of the pointing device 57 and the angle calculation unit 53.
The control device 56 controls the light-shielding device 51 so as to open the shutter for a predetermined exposure time at the first time t 1 and the second time t 2.
The control device 56 outputs an image pickup command to the position detection unit 52 at the first time t 1 and the second time t 2.
The control device 56 outputs the position of the first light collecting device 11 at the first time t 1 and the position of the first light collecting device 11 at the second time t 2 to the time calibration unit 54.
 第1の光測角局3の指向装置57は、第1の時刻tにおける第1の集光装置11の指向方向が、制御装置56が出力された第1の時刻tにおける第1の集光装置11の指向方向と一致するように、モータを駆動することによって、回転ステージを回転させる。
 指向装置57は、第2の時刻tにおける第1の集光装置11の指向方向が、制御装置56が出力された第2の時刻tにおける第1の集光装置11の指向方向と一致するように、モータを駆動することによって、回転ステージを回転させる。
 第1の集光装置11は、物体面を像面に射影する機能を有し、基準となる光軸を備えているので、指向装置57は、第1の集光装置11の光軸を制御装置56から出力された指向方向に合わせることによって、第1の集光装置11の指向方向を制御する。
 なお、指向装置57による第1の集光装置11の指向方向の制御は、ある程度の時間を要するため、制御装置56は、観測時刻が第1の時刻tになる前に、第1の時刻tにおける第1の集光装置11の指向方向を指向装置57に出力する。また、制御装置56は、観測時刻が第2の時刻tになる前に、第2の時刻tにおける第1の集光装置11の指向方向を指向装置57に出力する。
Directing device 57 of the first optical angle measuring station 3, the orientation direction of the first condenser 11 at a first time t 1 is, controller 56 first time t 1 in the first output The rotary stage is rotated by driving the motor so as to coincide with the directing direction of the light collecting device 11.
Directing device 57, the orientation direction of the first condenser 11 at a second time t 2 is consistent with the orientation of the first focusing device 11 at a second time t 2 the controller 56 is outputted By driving the motor, the rotary stage is rotated.
Since the first condensing device 11 has a function of projecting an object surface onto an image plane and has a reference optical axis, the directing device 57 controls the optical axis of the first condensing device 11. The directing direction of the first condensing device 11 is controlled by adjusting to the directing direction output from the device 56.
Incidentally, the orientation of the control of the first condenser 11 by directing device 57, it takes a certain amount of time, the control device 56, before the observation time is a first time t 1, a first time the orientation of the first focusing device 11 outputs to the directing device 57 in the t 1. Further, the control device 56 outputs the pointing direction of the first condensing device 11 at the second time t 2 to the pointing device 57 before the observation time reaches the second time t 2.
 図5に示す軌道算出システムでは、制御装置56が、飛翔体2が第1の集光装置11の視野の範囲内に入るように、第1の集光装置11の指向方向を指向装置57に指示している。第1の集光装置11の視野と、位置検出部52の視野とが異なる場合には、制御装置56は、第1の集光装置11の視野及び位置検出部52の視野のうち、狭い方の視野の範囲内に飛翔体2が入るように、第1の集光装置11の指向方向を指向装置57に指示する。
 なお、飛翔体2が静止衛星であり、第1の光測角局3が固定局であれば、第1の光測角局3と飛翔体2との相対位置が変化しない。相対位置が変化しない場合、制御装置56は、飛翔体2が第1の集光装置11の視野の範囲内に入るように、第1の集光装置11の指向方向を指向装置57に一度指示すれば、以後、第1の集光装置11の指向方向を固定にしてもよい。厳密には、軌道傾斜角の違い等があるため、僅かに相対位置が変化するが、観測時間が、数秒程度であれば、第1の集光装置11の指向方向を固定にしても問題ない。
In the trajectory calculation system shown in FIG. 5, the control device 56 directs the directing direction of the first condensing device 11 to the directing device 57 so that the projectile 2 is within the field of view of the first condensing device 11. I'm instructing. When the field of view of the first light collecting device 11 and the field of view of the position detection unit 52 are different, the control device 56 uses the narrower of the field of view of the first light collecting device 11 and the field of view of the position detection unit 52. The directing device 57 is instructed to direct the directing direction of the first condensing device 11 so that the projectile 2 is within the range of the field of view of.
If the flying object 2 is a geostationary satellite and the first optical measuring station 3 is a fixed station, the relative positions of the first optical measuring station 3 and the flying object 2 do not change. When the relative position does not change, the control device 56 once instructs the directing device 57 in the direction of the first condensing device 11 so that the projectile 2 is within the field of view of the first condensing device 11. Then, after that, the directing direction of the first light collecting device 11 may be fixed. Strictly speaking, the relative position changes slightly due to the difference in the orbital inclination angle, but if the observation time is about several seconds, there is no problem even if the directing direction of the first condensing device 11 is fixed. ..
 第1の光測角局3の第1の集光装置11は、照明光源1から放射されたのち、飛翔体2によって反射された光を集光する。
 第1の光測角局3の遮光装置51は、第1の時刻t及び第2の時刻tのときに、制御装置56によって、所定の露光時間だけ、シャッターを開くように制御される。
 第1の時刻tのときに、所定の露光時間だけ、遮光装置51のシャッターが開くことによって、第1の集光装置11により集光された光が遮光装置51を透過し、当該光が位置検出部52に到達する。
 また、第2の時刻tのときに、所定の露光時間だけ、遮光装置51のシャッターが開くことによって、第1の集光装置11により集光された光が遮光装置51を透過し、当該光が位置検出部52に到達する。
The first light collecting device 11 of the first optical angle measuring station 3 collects the light emitted from the illumination light source 1 and then reflected by the projectile 2.
The first light-shielding device 51 of the optical angle measuring station 3, when the first time t 1 and second time t 2, the by the controller 56, a predetermined exposure time, are controlled to open the shutters ..
When the first time t 1, a predetermined exposure time, by opening the shutter of the shading device 51, is condensed light by the first condenser apparatus 11 through the shading device 51, the light It reaches the position detection unit 52.
Further, when the second time t 2, the predetermined exposure time, by opening the shutter of the shading device 51, light condensed by the first condensing device 11 is transmitted through the shading device 51, the The light reaches the position detection unit 52.
 第1の光測角局3の位置検出部52は、第1の時刻tのときに、制御装置56から出力された撮像指令を取得すると、遮光装置51を透過してきた光の検出処理を開始し、飛翔体2が映っている光強度画像を撮像する。
 位置検出部52は、撮像した光強度画像を、第1の時刻tにおける光強度画像として、角度計算部53に出力する。
 また、位置検出部52は、第2の時刻tのときに、制御装置56から出力された撮像指令を取得すると、遮光装置51を透過してきた光の検出処理を開始し、飛翔体2が映っている光強度画像を撮像する。
 位置検出部52は、撮像した光強度画像を、第2の時刻tにおける光強度画像として、角度計算部53に出力する。
Position detection unit 52 of the first optical angle measuring station 3, when the first time t 1, when acquiring the imaging command output from the controller 56, the detection processing of the light transmitted through the shading device 51 Start and take a light intensity image showing the projectile 2.
Position detector 52, the light intensity image captured, as a light intensity image at a first time t 1, and outputs the angle calculation unit 53.
The position detection unit 52, when the second time t 2, the acquiring the imaging command output from the control unit 56 starts the detection process of light transmitted through the shading device 51, the projectile 2 Take an image of the reflected light intensity.
Position detector 52, the light intensity image captured, as a light intensity image at a second time t 2, the output to the angle calculation unit 53.
 第1の光測角局3の角度計算部53は、制御装置56から、第1の時刻tにおける第1の集光装置11の指向方向を取得し、位置検出部52から、第1の時刻tにおける光強度画像を取得する。
 角度計算部53は、飛翔体2に対する光の第1の時刻tの反射位置として、第1の時刻tにおける光強度画像内での光の位置を検出する。
 角度計算部53は、第1の時刻tにおける第1の集光装置11の指向方向と、第1の時刻tの反射位置とから、第1の時刻tにおける第1の角度を算出する(図6のステップST1)。
 角度計算部53は、第1の時刻tにおける光強度画像に含まれている暗転流ノイズの除去処理、光強度画像に含まれている背景光ノイズの除去処理、あるいは、光強度画像に含まれている周辺光量の減衰処理等を実施し、これらの処理後の光強度画像から、第1の角度を算出するようにしてもよい。
 以下、角度計算部53による第1の角度の算出処理を具体的に説明する。
Angle calculating portion 53 of the first optical angle measuring station 3, the controller 56 obtains the orientation of the first focusing device 11 at a first time t 1, from the position detection unit 52, a first for obtaining an optical intensity image at time t 1.
The angle calculation unit 53 detects the position of the light in the light intensity image at the first time t 1 as the reflection position of the light with respect to the projectile 2 at the first time t 1.
The angle calculation unit 53 calculates the first angle at the first time t 1 from the directing direction of the first light collecting device 11 at the first time t 1 and the reflection position at the first time t 1 . (Step ST1 in FIG. 6).
Angle calculation unit 53, a first removal process of blackout flow noise contained in the light intensity image at time t 1 of, removal processing of the background light noise included in the light intensity image, or included in the light intensity image It is also possible to carry out attenuation processing of the peripheral light amount and the like, and calculate the first angle from the light intensity image after these processings.
Hereinafter, the first angle calculation process by the angle calculation unit 53 will be specifically described.
 角度計算部53は、第1の集光装置11の指向方向が位置検出部52の視野中心であると仮定して、光強度画像の視野角を求める。光強度画像に含まれている1つの画素の大きさと第1の集光装置11の焦点距離から、1画素当りの視野角が求められる。1つの画素の大きさ及び第1の集光装置11の焦点距離のそれぞれは、角度計算部53において、既値である。
 光強度画像の視野角は、光強度画像の中心の画素から光強度画像の視野中心の画素に至るまでの画素数を、1画素当りの視野角に乗算することによって求まる。
 角度計算部53は、光強度画像の視野中心及び光強度画像の視野角から、位置検出部52の指向方向と飛翔体2の見かけの大きさとを求めることができる。位置検出部52の指向方向と飛翔体2の見かけの大きさとが求まれば、角度計算部53は、光強度画像上の座標と、宇宙空間における照明光源1の位置を示す天球座標との位置関係を求めることができる。
 天球座標の座標系は、天の赤道を基準とする赤道座標系、観測者から見た地平線を基準とする地平座標系、又は、銀河面を基準とする銀河座標系等のいずれであってもよい。光強度画像上の位置は、天球座標の位置、赤経、赤緯、あるいは、アジマス角及びエレベーション角等の角度によって表すことができる。
The angle calculation unit 53 obtains the viewing angle of the light intensity image on the assumption that the directing direction of the first light collecting device 11 is the center of the field of view of the position detecting unit 52. The viewing angle per pixel can be obtained from the size of one pixel included in the light intensity image and the focal length of the first condensing device 11. The size of one pixel and the focal length of the first light collecting device 11 are already values in the angle calculation unit 53.
The viewing angle of the light intensity image is obtained by multiplying the viewing angle per pixel by the number of pixels from the pixel at the center of the light intensity image to the pixel at the center of the field of view of the light intensity image.
The angle calculation unit 53 can obtain the direction of the position detection unit 52 and the apparent size of the projectile 2 from the center of the field of view of the light intensity image and the viewing angle of the light intensity image. If the direction of the position detection unit 52 and the apparent size of the projectile 2 are obtained, the angle calculation unit 53 determines the positions of the coordinates on the light intensity image and the celestial sphere coordinates indicating the position of the illumination light source 1 in space. You can ask for a relationship.
The coordinate system of celestial sphere coordinates may be an equator coordinate system based on the celestial equator, a horizontal coordinate system based on the horizon seen by the observer, or a galaxy coordinate system based on the galaxy surface. good. The position on the light intensity image can be represented by the position of the celestial sphere coordinates, right ascension, declination, or an angle such as an azimuth angle and an elevation angle.
 角度計算部53は、光強度画像に含まれている複数の画素の中で、画素値が閾値以上の画素が集まっている画素群である点像が、飛翔体2を表しているものと判断し、点像の重心位置を算出する。閾値は、0より大きく、画素値の最大値よりも小さい値であり、例えば、角度計算部53の内部メモリに格納されている。
 第1の集光装置11の大きさが有限である場合、点像は、回折限界以上の広がりを有している。実際には、大気の揺らぎによる広がり、又は、シーイングの影響を受けるため、飛翔体2が小さい場合に写る点像は、更に広がる。
 角度計算部53は、広がりがある点像の位置を、飛翔体2に対する光の反射位置として求めるため、点像の重心位置を算出している。
 光強度画像上の位置は、上述したように、アジマス角及びエレベーション角等の角度によって表すことができるため、角度計算部53は、算出した点像の重心位置を角度で表すことによって、第1の角度を求める。
 第1の角度は、第1の集光装置11から飛翔体2を見た角度であり、第1の集光装置11から飛翔体2を見たアジマス角Azと、第1の集光装置11から飛翔体2を見たエレベーション角Elvとを含んでいる。
 角度計算部53は、第1の時刻tにおける第1の角度として、第1の時刻tにおけるアジマス角AzA1と、第1の時刻tにおけるエレベーション角ElvA1とを記録装置59に記録させる。
The angle calculation unit 53 determines that the point image, which is a group of pixels in which pixels having a pixel value equal to or larger than a threshold value among a plurality of pixels included in the light intensity image, represents the projectile 2. Then, the position of the center of gravity of the point image is calculated. The threshold value is a value larger than 0 and smaller than the maximum value of the pixel value, and is stored in the internal memory of the angle calculation unit 53, for example.
When the size of the first light collector 11 is finite, the point image has a spread beyond the diffraction limit. In reality, the point image captured when the projectile 2 is small is further expanded because it is affected by the fluctuation of the atmosphere or seeing.
The angle calculation unit 53 calculates the position of the center of gravity of the point image in order to obtain the position of the point image having a spread as the position of light reflection with respect to the projectile 2.
As described above, the position on the light intensity image can be represented by an angle such as an azimuth angle and an elevation angle. Therefore, the angle calculation unit 53 expresses the position of the center of gravity of the calculated point image by an angle. Find the angle of 1.
The first angle is the angle at which the flying object 2 is viewed from the first condensing device 11, the azimuth angle Az A when the flying object 2 is viewed from the first condensing device 11, and the first condensing device. It includes the elevation angle Elv A , which is the view of the projectile 2 from 11.
Angle calculation unit 53, a first angle at a first time t 1, the azimuth angle Az A1 at a first time t 1, and the elevation angle Elv A1 at a first time t 1 to the recording device 59 Have them record.
 角度計算部53は、制御装置56から、第2の時刻tにおける第1の集光装置11の指向方向を取得し、位置検出部52から、第2の時刻tにおける光強度画像を取得する。
 角度計算部53は、飛翔体2に対する光の第2の時刻tの反射位置として、第2の時刻tにおける光強度画像内での光の位置を検出する。
 角度計算部53は、第2の時刻tにおける第1の集光装置11の指向方向と、第2の時刻tの反射位置とから、第2の時刻tにおける第1の角度を算出する(図6のステップST2)。
 角度計算部53は、第2の時刻tにおける光強度画像に含まれている暗転流ノイズの除去処理、光強度画像に含まれている背景光ノイズの除去処理、あるいは、光強度画像に含まれている周辺光量の減衰処理等を実施し、これらの処理後の光強度画像から、第1の角度を算出するようにしてもよい。
 第2の時刻tにおける第1の角度の算出処理は、第1の時刻tにおける第1の角度の算出処理と同様であるため詳細な説明を省略する。
 角度計算部53は、第2の時刻tにおける第1の角度として、第2の時刻tにおけるアジマス角AzA2と、第2の時刻tにおけるエレベーション角ElvA2とを記録装置59に記録させる。
Angle calculation unit 53, the controller 56 obtains the orientation of the first focusing device 11 at the second time t 2, from the position detection unit 52, obtains the light intensity image at a second time t 2 do.
The angle calculation unit 53 detects the position of the light in the light intensity image at the second time t 2 as the reflection position of the light with respect to the projectile 2 at the second time t 2.
The angle calculation unit 53 calculates the first angle at the second time t 2 from the directing direction of the first light collecting device 11 at the second time t 2 and the reflection position at the second time t 2 . (Step ST2 in FIG. 6).
Angle calculation unit 53, the removal process of the blackout flow noise contained in the light intensity image at a second time t 2, the process of removing the background light noise included in the light intensity image, or included in the light intensity image It is also possible to carry out attenuation processing of the peripheral light amount and the like, and calculate the first angle from the light intensity image after these processings.
Since the calculation process of the first angle at the second time t 2 is the same as the calculation process of the first angle at the first time t 1, detailed description thereof will be omitted.
Angle calculation unit 53, a first angle at the second time t 2, the azimuth angle Az A2 at the second time t 2, the elevation angle Elv A2 at a second time t 2 to the recording device 59 Have them record.
 時刻校正部54は、制御装置56から出力された、第1の時刻tにおける第1の集光装置11の位置と、第2の時刻tにおける第1の集光装置11の位置とを取得する。
 時刻校正部54は、第1の時刻tにおける第1の集光装置11の位置と、第2の時刻tにおける第1の集光装置11の位置とを記録装置59に記録させる。
 ここでは、時刻校正部54が、第1の時刻tにおける第1の集光装置11の位置と、第2の時刻tにおける第1の集光装置11の位置とを記録装置59に記録させている。第1の光測角局3が、固定局であれば、第1の集光装置11の位置が変化しないため、いずれかの時刻の第1の集光装置11の位置を記録装置59に記録させればよい。
Time correcting unit 54, output from the controller 56, the position of the first focusing device 11 at a first time t 1, and the position of the first focusing device 11 at a second time t 2 get.
Time correcting unit 54, the position of the first focusing device 11 at a first time t 1, and records the position of the first focusing device 11 at a second time t 2 to the recording device 59.
Here, time correcting unit 54, the recording position of the first focusing device 11 at a first time t 1, and the position of the first focusing device 11 at a second time t 2 to the recording device 59 I'm letting you. If the first optical angle measuring station 3 is a fixed station, the position of the first light collecting device 11 does not change, so that the position of the first light collecting device 11 at any time is recorded in the recording device 59. Just let me do it.
 第2の光測角局4の制御装置76は、カウンター75から出力された経過時間tを取得する。
 制御装置76は、経過時間tに従って、飛翔体2の観測時刻として、第1の時刻t及び第2の時刻tのそれぞれを把握する。
 また、制御装置76は、通信部78から出力された軌道情報を取得し、軌道情報から、第1の時刻tにおける飛翔体2のおおよその位置と、第2の時刻tにおける飛翔体2のおおよその位置とを把握する。
The control device 76 of the second optical angle measuring station 4 acquires the elapsed time t output from the counter 75.
The control device 76 grasps each of the first time t 1 and the second time t 2 as the observation time of the flying object 2 according to the elapsed time t.
Further, the control unit 76 acquires orbit information output from the communication unit 78, from the track information, and approximate location of the projectile 2 in the first time t 1, the projectile at the second time t 2 2 Grasp the approximate position.
 制御装置76は、時刻校正部74から出力された第2の集光装置12の位置のうち、第1の時刻tにおける第2の集光装置12の位置と、第2の時刻tにおける第2の集光装置12の位置とを特定する。
 制御装置76は、第1の時刻tにおける第2の集光装置12の位置と、第1の時刻tにおける飛翔体2のおおよその位置とから、第2の集光装置12に対する飛翔体2の第1の時刻tにおける相対位置を算出する。
 また、制御装置76は、第2の時刻tにおける第2の集光装置12の位置と、第2の時刻tにおける飛翔体2のおおよその位置とから、第2の集光装置12に対する飛翔体2の第2の時刻tにおける相対位置を算出する。
Controller 76, among the position of the second condenser 12 output from the time correcting unit 74, and the position of the second condenser 12 at a first time t 1, at a second time t 2 The position of the second light collector 12 is specified.
Control device 76, a position of the second condenser 12 at a first time t 1, and a rough position of the projectile 2 in the first time t 1, the projectile with respect to the second condenser 12 calculating the relative position at a first time t 1 of 2.
Further, the control device 76, the position of the second condenser 12 at the second time t 2, the from the approximate position of the projectile 2 in the second time t 2, the relative second condenser 12 calculating the relative position at a second time t 2 of the projectile 2.
 制御装置76は、第1の時刻tにおける相対位置から、第1の時刻tのときに第2の集光装置12が飛翔体2を見る方向、即ち、第1の時刻tにおける第2の集光装置12の指向方向を把握する。
 また、制御装置76は、第2の時刻tにおける相対位置から、第2の時刻tのときに第2の集光装置12が飛翔体2を見る方向、即ち、第2の時刻tにおける第2の集光装置12の指向方向を把握する。
Control device 76, from the relative position at a first time t 1, the direction in which the second condenser 12 sees the projectile 2 at the first time t 1, i.e., first at a first time t 1 Grasp the directing direction of the light collecting device 12 of 2.
Further, the control device 76, from the relative position at the second time t 2, the direction in which the second condenser 12 when the second time t 2 to see the flying body 2, i.e., the second time t 2 The direction of direction of the second light collecting device 12 in the above is grasped.
 制御装置76は、第1の時刻tにおける第2の集光装置12の指向方向を指向装置77及び角度計算部73のそれぞれに出力し、第2の時刻tにおける第2の集光装置12の指向方向を指向装置77及び角度計算部73のそれぞれに出力する。
 制御装置76は、第1の時刻t及び第2の時刻tのときに、所定の露光時間だけ、シャッターを開くように、遮光装置71を制御する。
 制御装置76は、第1の時刻t及び第2の時刻tのときに、撮像指令を位置検出部72に出力する。
 制御装置76は、第1の時刻tにおける第2の集光装置12の位置と、第2の時刻tにおける第2の集光装置12の位置とを時刻校正部74に出力する。
Controller 76, the orientation of the second condenser 12 at a first time t 1 and outputs to each of the directing device 77 and the angle calculation unit 73, the second condensing device at a second time t 2 The direction of the 12 is output to the pointing device 77 and the angle calculation unit 73, respectively.
The control device 76 controls the light-shielding device 71 so that the shutter is opened for a predetermined exposure time at the first time t 1 and the second time t 2.
The control device 76 outputs an image pickup command to the position detection unit 72 at the first time t 1 and the second time t 2.
The control device 76 outputs the position of the second light collecting device 12 at the first time t 1 and the position of the second light collecting device 12 at the second time t 2 to the time calibration unit 74.
 第2の光測角局4の指向装置77は、第1の時刻tにおける第2の集光装置12の指向方向が、制御装置76が出力された第1の時刻tにおける第2の集光装置12の指向方向と一致するように、モータを駆動することによって、回転ステージを回転させる。
 指向装置77は、第2の時刻tにおける第2の集光装置12の指向方向が、制御装置76が出力された第2の時刻tにおける第2の集光装置12の指向方向と一致するように、モータを駆動することによって、回転ステージを回転させる。
 第2の集光装置12は、物体面を像面に射影する機能を有し、基準となる光軸を備えているので、指向装置77は、第2の集光装置12の光軸を制御装置76から出力された指向方向に合わせることによって、第2の集光装置12の指向方向を制御する。
 なお、指向装置77による第2の集光装置12の指向方向の制御は、ある程度の時間を要するため、制御装置76は、観測時刻が第1の時刻tになる前に、第1の時刻tにおける第2の集光装置12の指向方向を指向装置77に出力する。また、制御装置76は、観測時刻が第2の時刻tになる前に、第2の時刻tにおける第2の集光装置12の指向方向を指向装置77に出力する。
Directing device 77 of the second optical angle measuring station 4, the directivity direction of the second condenser 12 at a first time t 1 is the control unit 76 is a first time t 1 in the second output The rotary stage is rotated by driving the motor so as to match the direction of the light collector 12.
Directing device 77, the directivity direction of the second condenser 12 at a second time t 2 is consistent with the orientation of the second condenser 12 at a second time t 2 the controller 76 is output By driving the motor, the rotary stage is rotated.
Since the second condensing device 12 has a function of projecting an object surface onto the image plane and has a reference optical axis, the directing device 77 controls the optical axis of the second condensing device 12. The directing direction of the second light collecting device 12 is controlled by adjusting to the directing direction output from the device 76.
Incidentally, the control of the orientation of the second condenser 12 by directing device 77, it takes a certain amount of time, the control device 76, before the observation time is a first time t 1, a first time the orientation of the second condenser 12 and outputs to the directing device 77 in the t 1. Further, the control device 76 outputs the pointing direction of the second condensing device 12 at the second time t 2 to the pointing device 77 before the observation time reaches the second time t 2.
 図5に示す軌道算出システムでは、制御装置76が、飛翔体2が第2の集光装置12の視野の範囲内に入るように、第2の集光装置12の指向方向を指向装置77に指示している。第2の集光装置12の視野と、位置検出部72の視野とが異なる場合には、制御装置76は、第2の集光装置12の視野及び位置検出部72の視野のうち、狭い方の視野の範囲内に飛翔体2が入るように、第2の集光装置12の指向方向を指向装置77に指示する。
 なお、飛翔体2が静止衛星であり、第2の光測角局4が固定局であれば、第2の光測角局4と飛翔体2との相対位置が変化しない。相対位置が変化しない場合、制御装置76は、飛翔体2が第2の集光装置12の視野の範囲内に入るように、第2の集光装置12の指向方向を指向装置77に一度指示すれば、以後、第2の集光装置12の指向方向を固定にしてもよい。厳密には、軌道傾斜角の違い等があるため、僅かに相対位置が変化するが、観測時間が、数秒程度であれば、第2の集光装置12の指向方向を固定にしても問題ない。
In the orbit calculation system shown in FIG. 5, the control device 76 directs the directing direction of the second condensing device 12 to the directing device 77 so that the projectile 2 is within the field of view of the second condensing device 12. I'm instructing. When the field of view of the second light collecting device 12 and the field of view of the position detection unit 72 are different, the control device 76 is the narrower of the field of view of the second light collecting device 12 and the field of view of the position detection unit 72. The directing device 77 is instructed to direct the direction of the second condensing device 12 so that the projectile 2 is within the range of the field of view of.
If the flying object 2 is a geostationary satellite and the second optical measuring station 4 is a fixed station, the relative positions of the second optical measuring station 4 and the flying object 2 do not change. If the relative position does not change, the control device 76 once instructs the directing device 77 in the direction of the second condensing device 12 so that the projectile 2 is within the field of view of the second condensing device 12. Then, after that, the directing direction of the second light collecting device 12 may be fixed. Strictly speaking, the relative position changes slightly due to the difference in the orbital inclination angle, but if the observation time is about several seconds, there is no problem even if the direction of the second light collector 12 is fixed. ..
 第2の光測角局4の第2の集光装置12は、照明光源1から放射されたのち、飛翔体2によって反射された光を集光する。
 第2の光測角局4の遮光装置71は、第1の時刻t及び第2の時刻tのときに、制御装置76によって、所定の露光時間だけ、シャッターを開くように制御される。
 第1の時刻tのときに、所定の露光時間だけ、遮光装置71のシャッターが開くことによって、第2の集光装置12により集光された光が遮光装置71を透過し、当該光が位置検出部72に到達する。
 また、第2の時刻tのときに、所定の露光時間だけ、遮光装置71のシャッターが開くことによって、第2の集光装置12により集光された光が遮光装置71を透過し、当該光が位置検出部72に到達する。
The second light collecting device 12 of the second optical measuring station 4 collects the light emitted from the illumination light source 1 and then reflected by the projectile 2.
The shading device 71 of the second optical measuring station 4 is controlled by the control device 76 to open the shutter for a predetermined exposure time at the first time t 1 and the second time t 2. ..
When the first time t 1, a predetermined exposure time, by opening the shutter of the shading device 71, is condensed light by the second focusing device 12 through the shading device 71, the light It reaches the position detection unit 72.
Further, when the second time t 2, the predetermined exposure time, by opening the shutter of the shading device 71, is condensed light passes through the shading device 71 by the second condenser 12, the The light reaches the position detection unit 72.
 第2の光測角局4の位置検出部72は、第1の時刻tのときに、制御装置76から出力された撮像指令を取得すると、遮光装置71を透過してきた光の検出処理を開始し、飛翔体2が映っている光強度画像を撮像する。
 位置検出部72は、撮像した光強度画像を、第1の時刻tにおける光強度画像として、角度計算部73に出力する。
 また、位置検出部72は、第2の時刻tのときに、制御装置76から出力された撮像指令を取得すると、遮光装置71を透過してきた光の検出処理を開始し、飛翔体2が映っている光強度画像を撮像する。
 位置検出部72は、撮像した光強度画像を、第2の時刻tにおける光強度画像として、角度計算部73に出力する。
Position detector 72 of the second optical angle measuring station 4, when the first time t 1, when acquiring the imaging command output from the controller 76, the detection processing of the light transmitted through the shading device 71 Start and take a light intensity image showing the projectile 2.
Position detector 72, the light intensity image captured, as a light intensity image at a first time t 1, and outputs the angle calculation unit 73.
The position detection unit 72, when the second time t 2, the acquiring the imaging command outputted from the control unit 76 starts the detection process of light transmitted through the shading device 71, the projectile 2 Take an image of the reflected light intensity.
Position detector 72, the light intensity image captured, as a light intensity image at a second time t 2, the output to the angle calculation unit 73.
 第2の光測角局4の角度計算部73は、制御装置76から、第1の時刻tにおける第2の集光装置12の指向方向を取得し、位置検出部72から、第1の時刻tにおける光強度画像を取得する。
 角度計算部73は、飛翔体2に対する光の第1の時刻tの反射位置として、第1の時刻tにおける光強度画像内での光の位置を検出する。
 角度計算部73は、第1の時刻tにおける第2の集光装置12の指向方向と、第1の時刻tの反射位置とから、第1の時刻tにおける第2の角度を算出する(図6のステップST3)。
 角度計算部73は、第1の時刻tにおける光強度画像に含まれている暗転流ノイズの除去処理、光強度画像に含まれている背景光ノイズの除去処理、あるいは、光強度画像に含まれている周辺光量の減衰処理等を実施し、これらの処理後の光強度画像から、第2の角度を算出するようにしてもよい。
 角度計算部73による第2の角度の算出処理は、角度計算部53による第1の角度の算出処理と同様であるため詳細な説明を省略する。
 角度計算部73は、第1の時刻tにおける第2の角度として、第1の時刻tにおけるアジマス角AzB1と、第1の時刻tにおけるエレベーション角ElvB1とを通信部78に出力する。
Angle calculating portion 73 of the second optical angle measuring station 4, the controller 76 obtains the orientation of the second condenser 12 at a first time t 1, the position detector 72, a first for obtaining an optical intensity image at time t 1.
The angle calculation unit 73 detects the position of the light in the light intensity image at the first time t 1 as the reflection position of the light with respect to the projectile 2 at the first time t 1.
The angle calculation unit 73 calculates the second angle at the first time t 1 from the directing direction of the second light collecting device 12 at the first time t 1 and the reflection position at the first time t 1 . (Step ST3 in FIG. 6).
Angle calculation unit 73, a first removal process of blackout flow noise contained in the light intensity image at time t 1 of, removal processing of the background light noise included in the light intensity image, or included in the light intensity image A second angle may be calculated from the light intensity images after these treatments by performing attenuation processing of the peripheral light amount and the like.
Since the second angle calculation process by the angle calculation unit 73 is the same as the first angle calculation process by the angle calculation unit 53, detailed description thereof will be omitted.
Angle calculation unit 73, a second angle at a first time t 1, the azimuth angle Az B1 at a first time t 1, the communication unit 78 and the elevation angle Elv B1 at a first time t 1 Output.
 角度計算部73は、制御装置76から、第2の時刻tにおける第2の集光装置12の指向方向を取得し、位置検出部72から、第2の時刻tにおける光強度画像を取得する。
 角度計算部73は、飛翔体2に対する光の第2の時刻tの反射位置として、第2の時刻tにおける光強度画像内での光の位置を検出する。
 角度計算部73は、第2の時刻tにおける第2の集光装置12の指向方向と、第2の時刻tの反射位置ととから、第2の時刻tにおける第2の角度を算出する(図6のステップST4)。
 角度計算部73は、第2の時刻tにおける光強度画像に含まれている暗転流ノイズの除去処理、光強度画像に含まれている背景光ノイズの除去処理、あるいは、光強度画像に含まれている周辺光量の減衰処理等を実施し、これらの処理後の光強度画像から、第2の角度を算出するようにしてもよい。
 角度計算部73は、第2の時刻tにおける第2の角度として、第2の時刻tにおけるアジマス角AzB2と、第2の時刻tにおけるエレベーション角ElvB2とを通信部78に出力する。
The angle calculation unit 73 acquires the pointing direction of the second light collecting device 12 at the second time t 2 from the control device 76, and acquires the light intensity image at the second time t 2 from the position detection unit 72. do.
The angle calculation unit 73 detects the position of the light in the light intensity image at the second time t 2 as the reflection position of the light with respect to the projectile 2 at the second time t 2.
The angle calculation unit 73 determines the second angle at the second time t 2 from the directing direction of the second light collecting device 12 at the second time t 2 and the reflection position at the second time t 2 . Calculate (step ST4 in FIG. 6).
Angle calculation unit 73, the removal process of the blackout flow noise contained in the light intensity image at a second time t 2, the process of removing the background light noise included in the light intensity image, or included in the light intensity image A second angle may be calculated from the light intensity images after these treatments by performing attenuation processing of the peripheral light amount and the like.
Angle calculation unit 73, a second angle at the second time t 2, the azimuth angle Az B2 at the second time t 2, the communication unit 78 and the elevation angle Elv B2 at a second time t 2 Output.
 時刻校正部74は、制御装置76から出力された、第1の時刻tにおける第2の集光装置12の位置と、第2の時刻tにおける第2の集光装置12の位置とを取得する。
 時刻校正部74は、第1の時刻tにおける第2の集光装置12の位置と、第2の時刻tにおける第2の集光装置12の位置とを通信部78に出力する。
Time correcting unit 74, output from the controller 76, and the position of the second condenser 12 at a first time t 1, and the position of the second condenser 12 at a second time t 2 get.
The time calibration unit 74 outputs the position of the second light collecting device 12 at the first time t 1 and the position of the second light collecting device 12 at the second time t 2 to the communication unit 78.
 通信部78は、第1の時刻tにおける第2の角度、第2の時刻tにおける第2の角度、第1の時刻tにおける第2の集光装置12の位置及び第2の時刻tにおける第2の集光装置12の位置のそれぞれを通信部58に送信する。
 通信部58は、通信部78から、第1の時刻tにおける第2の角度、第2の時刻tにおける第2の角度、第1の時刻tにおける第2の集光装置12の位置及び第2の時刻tにおける第2の集光装置12の位置のそれぞれを受信する。
 通信部58は、第1の時刻tにおける第2の角度、第2の時刻tにおける第2の角度、第1の時刻tにおける第2の集光装置12の位置及び第2の時刻tにおける第2の集光装置12の位置のそれぞれを記録装置59に記録させる。
 ここでは、通信部58が、第1の時刻tにおける第2の集光装置12の位置と、第2の時刻tにおける第2の集光装置12の位置とを記録装置59に記録させている。第2の光測角局4が固定局であれば、第2の集光装置12の位置が変化しないため、いずれかの時刻の第2の集光装置12の位置を記録装置59に記録させればよい。
The communication unit 78 has a second angle at the first time t 1, a second angle at the second time t 2 , a position of the second light collector 12 at the first time t 1, and a second time. transmitting the respective positions of the second focusing device 12 at t 2 to the communication unit 58.
The communication unit 58, from the communication unit 78, has a second angle at the first time t 1, a second angle at the second time t 2 , and a position of the second light collector 12 at the first time t 1. and receiving the respective positions of the second condenser 12 at the second time t 2.
The communication unit 58 has a second angle at the first time t 1, a second angle at the second time t 2 , a position of the second light collector 12 at the first time t 1, and a second time. the respective positions of the second condenser 12 is recorded in the recording device 59 in the t 2.
Here, the communication unit 58 causes the recording device 59 to record the position of the second light collecting device 12 at the first time t 1 and the position of the second light collecting device 12 at the second time t 2. ing. If the second optical measuring station 4 is a fixed station, the position of the second light collecting device 12 does not change, so that the recording device 59 records the position of the second light collecting device 12 at any time. Just do it.
 軌道計算部60は、記録装置59から、第1の時刻t及び第2の時刻tにおけるそれぞれの第1の角度と、第1の時刻t及び第2の時刻tにおけるそれぞれの第2の角度とを取得する。
 軌道計算部60は、記録装置59から、第1の時刻tにおける第1の集光装置11の位置と、第2の時刻tにおける第1の集光装置11の位置と、第1の時刻tにおける第2の集光装置12の位置と、第2の時刻tにおける第2の集光装置12の位置とを取得する。
Trajectory calculation unit 60 from the recording device 59, respectively and each of the first angle at a first time t 1 and second time t 2, at a first time t 1 and second time t 2 the Get the angle of 2.
From the recording device 59, the orbit calculation unit 60 determines the position of the first light collecting device 11 at the first time t 1 and the position of the first light collecting device 11 at the second time t 2 . The position of the second light collecting device 12 at the time t 1 and the position of the second light collecting device 12 at the second time t 2 are acquired.
 軌道計算部60は、第1の時刻tにおける第1の集光装置11の位置(xA1、yA1、zA1)と、第1の時刻tにおける第2の集光装置12の位置(xB1、yB1、zB1)とから、図12に示すように、第1の時刻tにおける、第1の集光装置11と第2の集光装置12との装置間距離LAB1を算出する。
 図12は、実施の形態1に係る軌道算出システムにおける軌道の算出精度を示す説明図である。
 第1の時刻tにおいて、第1の集光装置11と第2の集光装置12と飛翔体2とは、三角形におけるそれぞれの頂点に配置されている。したがって、装置間距離LAB1と、第1の角度(AzA1、ElvA1)と、第2の角度(AzB1、ElvB1)と、第1の集光装置11の位置(xA1、yA1、zA1)又は第2の集光装置12の位置(xB1、yB1、zB1)とが分かれば、三角形の余弦定理を用いることで、第1の集光装置11及び第2の集光装置12のそれぞれから飛翔体2までの距離を幾何学的に算出することができる。
 軌道計算部60は、装置間距離LAB1と、第1の角度(AzA1、ElvA1)と、第2の角度(AzB1、ElvB1)と、第1の集光装置11の位置(xA1、yA1、zA1)とから、余弦定理を用いて、第1の集光装置11から飛翔体2までの距離として、第1の時刻tにおける第1の距離RengeA1を算出する。
 また、軌道計算部60は、装置間距離LAB1と、第1の角度(AzA1、ElvA1)と、第2の角度(AzB1、ElvB1)と、第2の集光装置12の位置(xB1、yB1、zB1)とから、余弦定理を用いて、第2の集光装置12から飛翔体2までの距離として、第1の時刻tにおける第2の距離RengeB1を算出する。
Trajectory calculation unit 60, the position of the first focusing device 11 at a first time t 1 (x A1, y A1 , z A1), the position of the second condenser 12 at a first time t 1 since (x B1, y B1, z B1) and, as shown in FIG. 12, at a first time t 1, between the devices between the first condenser 11 and the second condenser apparatus 12 a distance L AB1 Is calculated.
FIG. 12 is an explanatory diagram showing the accuracy of orbit calculation in the orbit calculation system according to the first embodiment.
In a first time t 1, the first condenser apparatus 11 and the projectile 2 the second condenser 12 is disposed in each of the vertices in the triangle. Therefore, the distance between the devices L AB1 , the first angle (Az A1 , Elv A1 ), the second angle (Az B1 , Elv B1 ), and the position of the first light collector 11 (x A1 , y A1). , Z A1 ) or the position of the second light collector 12 (x B1 , y B1 , z B1 ), by using the triangular cosine theorem, the first light collector 11 and the second collection. The distance from each of the optical devices 12 to the projectile 2 can be calculated geometrically.
The orbit calculation unit 60 has a distance L AB1 between devices, a first angle (Az A1 , Elv A1 ), a second angle (Az B1 , Elv B1 ), and a position (x) of the first condensing device 11. since A1, y A1, z A1) and, using the cosine theorem, as the distance to the projectile 2 from the first condenser 11, calculates a first distance Renge A1 at a first time t 1.
Further, the orbit calculation unit 60 has a distance L AB1 between devices, a first angle (Az A1 , Elv A1 ), a second angle (Az B1 , Elv B1 ), and a position of the second light collector 12. since the (x B1, y B1, z B1), using the cosine theorem, as the distance to the projectile 2 from the second condenser 12, calculates a second distance Renge B1 at a first time t 1 do.
 軌道計算部60は、第2の時刻tにおける第1の集光装置11の位置(xA2、yA2、zA2)と、第2の時刻tにおける第2の集光装置12の位置(xB2、yB2、zB2)とから、第2の時刻tにおける、第1の集光装置11と第2の集光装置12との装置間距離LAB2を算出する。
 第1の光測角局3及び第2の光測角局4のそれぞれが固定局である場合、第2の時刻tにおける装置間距離LAB2は、第1の時刻tにおける装置間距離LAB1と同じであるため、第2の時刻tにおける装置間距離LAB2の算出を省略することができる。
 軌道計算部60は、装置間距離LAB2と、第1の角度(AzA2、ElvA2)と、第2の角度(AzB2、ElvB2)と、第1の集光装置11の位置(xA2、yA2、zA2)とから、余弦定理を用いて、第1の集光装置11から飛翔体2までの距離として、第2の時刻tにおける第1の距離RengeA2を算出する。
 また、軌道計算部60は、装置間距離LAB2と、第1の角度(AzA2、ElvA2)と、第2の角度(AzB2、ElvB2)と、第2の集光装置12の位置(xB2、yB2、zB2)とから、余弦定理を用いて、第2の集光装置12から飛翔体2までの距離として、第2の時刻tにおける第2の距離RengeB2を算出する。
Trajectory calculation unit 60, the position of the first focusing device 11 at a second time t 2 (x A2, y A2 , z A2), the position of the second condenser 12 at a second time t 2 since (x B2, y B2, z B2) and, at the second time t 2, the calculated first condenser 11 inter-device distance L AB2 between the second condenser 12.
If each of the first optical angle measuring station 3 and the second optical angle measuring station 4 is a fixed station, the inter-device distance L AB2 at the second time t 2, the inter-device distances at a first time t 1 is the same as L AB1, it may be omitted for calculating the inter-device distance L AB2 at the second time t 2.
The orbit calculation unit 60 includes the inter-device distance L AB2 , the first angle (Az A2 , Elv A2 ), the second angle (Az B2 , Elv B2 ), and the position (x) of the first condensing device 11. since A2, y A2, z A2) and, using the cosine theorem, as the distance to the projectile 2 from the first condenser 11, calculates a first distance Renge A2 at the second time t 2.
Further, the orbit calculation unit 60 has a distance between the devices L AB2 , a first angle (Az A2 , Elv A2 ), a second angle (Az B2 , Elv B2 ), and a position of the second light collecting device 12. since the (x B2, y B2, z B2), by using the cosine theorem, as the distance to the projectile 2 from the second condenser 12, calculates a second distance Renge B2 at a second time t 2 do.
 軌道計算部60は、第1の時刻tにおける第1の角度(AzA1、ElvA1)と、第1の時刻tにおける第1の集光装置11の位置(xA1、yA1、zA1)と、第1の時刻tにおける第1の距離RengeA1とから、第1の時刻tにおける飛翔体2の位置(x’、y’、z’)を算出する。
 また、軌道算出部23は、第1の時刻tにおける第2の角度(AzB1、ElvB1)と、第1の時刻tにおける第2の集光装置12の位置(xB1、yB1、zB1)と、第1の時刻tにおける第2の距離RengeB1とから、第1の時刻tにおける飛翔体2の位置(x”、y”、z”)を算出する。
 軌道計算部60は、位置(x’、y’、z’)と位置(x”、y”、z”)とが異なっていれば、例えば、以下の式(1)に示すように、第1の時刻tにおける飛翔体2の位置(x、y、z)として、位置(x’、y’、z’)と位置(x”、y”、z”)との平均値を算出する。
=(x’+x”)/2
=(y’+y”)/2
=(z’+z”)/2             (1)
 軌道計算部60は、位置(x’、y’、z’)と位置(x”、y”、z”)とが同じであれば、位置(x’、y’、z’)、又は、位置(x”、y”、z”)を、第1の時刻tにおける飛翔体2の位置(x、y、z)とする。
Trajectory calculation unit 60 includes a first angle at a first time t 1 (Az A1, Elv A1 ), the position of the first focusing device 11 at a first time t 1 (x A1, y A1 , z and A1), the first distance Renge A1 Metropolitan at a first time t 1, the position of the projectile 2 in the first time t 1 (x 1 ', y 1', z 1 ') is calculated.
Further, the trajectory calculating section 23 includes a second angle at a first time t 1 (Az B1, Elv B1 ), the position of the second condenser 12 at a first time t 1 (x B1, y B1 calculates a z B1), the second distance Renge B1 Metropolitan at a first time t 1, the position of the projectile 2 in the first time t 1 (x 1 ", y 1", the z 1 ") ..
If the position (x 1 ', y 1 ', z 1 ') and the position (x 1 ", y 1 ", z 1 ") of the orbit calculation unit 60 are different, for example, the following equation (1) As shown in, as the position (x 1 , y 1 , z 1 ) of the projectile 2 at the first time t 1, the position (x 1 ', y 1 ', z 1 ') and the position (x 1 ', Calculate the average value with y 1 ", z 1").
x 1 = (x 1 '+ x 1 ") / 2
y 1 = (y 1 '+ y 1 ") / 2
z 1 = (z 1 '+ z 1 ") / 2 (1)
If the position (x 1 ', y 1 ', z 1 ') and the position (x 1 ", y 1 ", z 1 ") are the same, the orbit calculation unit 60 will perform the position (x 1 ', y 1". ', Z 1 '), or the position (x 1 ", y 1 ", z 1 ") is defined as the position (x 1 , y 1 , z 1 ) of the projectile 2 at the first time t 1.
 軌道計算部60は、第2の時刻tにおける第1の角度(AzA2、ElvA2)と、第2の時刻tにおける第1の集光装置11の位置(xA2、yA2、zA2)と、第2の時刻tにおける第1の距離RengeA2とから、第2の時刻tにおける飛翔体2の位置(x’、y’、z’)を算出する。
 また、軌道算出部23は、第2の時刻tにおける第2の角度(AzB2、ElvB2)と、第2の時刻tにおける第2の集光装置12の位置(xB2、yB2、zB2)と、第2の時刻tにおける第2の距離RengeB2とから、第2の時刻tにおける飛翔体2の位置(x”、y”、z”)を算出する。
 軌道計算部60は、位置(x’、y’、z’)と位置(x”、y”、z”)とが異なっていれば、例えば、以下の式(2)に示すように、第2の時刻tにおける飛翔体2の位置(x、y、z)として、位置(x’、y’、z’)と位置(x”、y”、z”)との平均値を算出する。
=(x’+x”)/2
=(y’+y”)/2
=(z’+z”)/2             (2)
 軌道計算部60は、位置(x’、y’、z’)と位置(x”、y”、z”)とが同じであれば、位置(x’、y’、z’)、又は、位置(x”、y”、z”)を、第2の時刻tにおける飛翔体2の位置(x、y、z)とする。
Trajectory calculation unit 60 includes a first angle at a second time t 2 (Az A2, Elv A2 ), the position of the first focusing device 11 at a second time t 2 (x A2, y A2 , z and A2), the first distance Renge A2 Metropolitan at the second time t 2, the position of the projectile 2 at the second time t 2 (x 2 ', y 2', z 2 ') is calculated.
Further, the trajectory calculating section 23 includes a second angle at a second time t 2 (Az B2, Elv B2 ), the position of the second condenser 12 at a second time t 2 (x B2, y B2 calculates a z B2), the second distance Renge B2 Metropolitan at the second time t 2, the position of the projectile 2 at the second time t 2 (x 2 ", y 2", the z 2 ") ..
If the position (x 2 ', y 2 ', z 2 ') and the position (x 2 ", y 2 ", z 2 ") of the orbit calculation unit 60 are different, for example, the following equation (2) As shown in, as the position (x 2 , y 2 , z 2 ) of the projectile 2 at the second time t 2, the position (x 2 ', y 2 ', z 2 ') and the position (x 2 ', Calculate the average value with y 2 ", z 2").
x 2 = (x 2 '+ x 2 ") / 2
y 2 = (y 2 '+ y 2 ") / 2
z 2 = (z 2 '+ z 2 ") / 2 (2)
If the position (x 2 ', y 2 ', z 2 ') and the position (x 2 ", y 2 ", z 2 ") are the same, the orbit calculation unit 60 will perform the position (x 2 ', y 2". ', Z 2 '), or the position (x 2 ", y 2 ", z 2 ") is the position (x 2 , y 2 , z 2 ) of the projectile 2 at the second time t 2.
 軌道計算部60は、第1の時刻tにおける飛翔体2の位置(x、y、z)と、第2の時刻tにおける飛翔体2の位置(x、y、z)とを算出する。あるいは、軌道計算部60は、第1の時刻tにおける飛翔体2の位置及び速度のそれぞれを算出する。
 したがって、第1の時刻tにおける飛翔体2の位置(x、y、z)と第2の時刻tにおける飛翔体2の位置(x、y、z)、あるいは、第1の時刻tにおける飛翔体2の位置(x、y、z)と速度(vx、vy、vz)とが分かれば、飛翔体2の軌道を算出することができる。なお、軌道とは、飛翔体の位置の時間変化と、軌跡とを表すものであり、飛翔体2が、主に地球の重力に従って運動していると仮定すると、その運動はケプラー運動となるため、軌跡は二次曲線で近似できる。二次曲線は、離心率、長半径、軌道傾斜角等に代表される軌道6要素で定められ、軌道6要素のパラメータが、飛翔体のある時刻t1、における位置(x、y、z)、(x、y、z)から定まり、軌道が求められる。ただし、地球近傍の移動体は、軌道が時々刻々と変わり、軌道6要素では軌跡を表すのに不十分なため、位置(x、y、z)と速度(vx、vy、vz)とを逐次求めることが、軌道を求めることとみなしてもよい。
 軌道計算部60は、第1の時刻tにおける飛翔体2の位置(x、y、z)と、第2の時刻tにおける飛翔体2の位置(x、y、z)、あるいは、第1の時刻tにおける飛翔体2の位置(x、y、z)と速度(vx、vy、vz)とから、飛翔体2の軌道を算出する(図6のステップST5)。
The orbit calculation unit 60 determines the position of the projectile 2 at the first time t 1 (x 1 , y 1 , z 1 ) and the position of the projectile 2 at the second time t 2 (x 2 , y 2 , z). 2 ) and is calculated. Alternatively, the orbit calculation unit 60 calculates the position and velocity of the projectile 2 at the first time t1.
Therefore, the position of the projectile 2 at the first time t 1 (x 1 , y 1 , z 1 ) and the position of the projectile 2 at the second time t 2 (x 2 , y 2 , z 2 ), or. If the position (x 1 , y 1 , z 1 ) and velocity ( v x 1 , vy 1 , vz 1 ) of the projectile 2 at the first time t 1 are known, the trajectory of the projectile 2 can be calculated. .. The orbit represents the time change of the position of the projectile and the trajectory, and assuming that the projectile 2 is moving mainly according to the gravity of the earth, the motion is Kepler motion. , The locus can be approximated by a quadratic curve. Quadratic curve is eccentricity, long radius, defined by track 6 elements represented by the orbit inclination angle, etc., the parameters of the track 6 elements, the position at time t 1, t 2 with a projectile (x 1, y It is determined from 1 , z 1 ), (x 2 , y 2 , z 2 ), and the orbit is obtained. However, the orbit of a moving object near the earth changes from moment to moment, and the six elements of the orbit are insufficient to represent the orbit, so the position (x 1 , y 1 , z 1 ) and velocity ( v x 1 , vy 1 , Sequentially finding vz 1 ) may be regarded as finding the orbit.
The orbit calculation unit 60 determines the position of the projectile 2 at the first time t 1 (x 1 , y 1 , z 1 ) and the position of the projectile 2 at the second time t 2 (x 2 , y 2 , z). 2 ) Or, the orbit of the projectile 2 is calculated from the position (x 1 , y 1 , z 1 ) and the velocity ( v x 1 , v y 1 , vz 1 ) of the projectile 2 at the first time t 1. (Step ST5 in FIG. 6).
 以下、図5に示す軌道算出システムでは、第1の光測角局3と第2の光測角局4とにおける時刻の同期が図られている理由について説明する。
 第1の光測角局3の角度計算部53は、第1の集光装置11の指向方向と光強度画像とから、第1の角度を算出することができるが、第1の集光装置11の指向方向と光強度画像との情報のみでは、第1の集光装置11から飛翔体2までの距離を高精度に算出することができない。
 第2の光測角局4の角度計算部73は、第2の集光装置12の指向方向と光強度画像とから、第2の角度を算出することができるが、第2の集光装置12の指向方向と光強度画像との情報のみでは、第2の集光装置12から飛翔体2までの距離を高精度に算出することができない。
 図7は、第1の光測角局3の角度計算部53による距離の算出精度を示す説明図である。
 図7において、網掛け楕円領域は、距離の算出精度及び角度の算出精度のそれぞれを示している。網掛け楕円領域は、レンジ方向に長い楕円形状であるため、距離の算出精度が悪いことを表している。
Hereinafter, in the orbit calculation system shown in FIG. 5, the reason why the time is synchronized between the first optical angle measuring station 3 and the second optical angle measuring station 4 will be described.
The angle calculation unit 53 of the first optical angle measuring station 3 can calculate the first angle from the directing direction of the first light collecting device 11 and the light intensity image, but the first light collecting device It is not possible to calculate the distance from the first condensing device 11 to the projectile 2 with high accuracy only by the information of the directing direction of 11 and the light intensity image.
The angle calculation unit 73 of the second optical angle measuring station 4 can calculate the second angle from the directing direction of the second condensing device 12 and the light intensity image, but the second condensing device It is not possible to calculate the distance from the second condensing device 12 to the projectile 2 with high accuracy only by the information of the directing direction of 12 and the light intensity image.
FIG. 7 is an explanatory diagram showing the accuracy of distance calculation by the angle calculation unit 53 of the first optical angle measuring station 3.
In FIG. 7, the shaded ellipse region shows the distance calculation accuracy and the angle calculation accuracy, respectively. Since the shaded elliptical region has an elliptical shape that is long in the range direction, it indicates that the calculation accuracy of the distance is poor.
 図7に示すように、第1の集光装置11から飛翔体2までの距離を高精度に算出できない場合でも、図8に示すように、3つの観測時刻t,t,tにおいて、角度計算部53が、第1の角度をそれぞれ算出すれば、飛翔体2の軌道を算出することができる。
 図8は、3つの観測時刻t,t,tにおけるそれぞれの角度の算出精度及びそれぞれの距離の算出精度を示す説明図である。
 第1の光測角局3に対して、飛翔体2が相対的に移動しているので、角度計算部53は、観測時刻tにおける第1の角度(AzA0、ElvA0)、観測時刻tにおける第1の角度(AzA1、ElvA1)及び観測時刻tにおける第1の角度(AzA2、ElvA2)のそれぞれを算出することができる。
 飛翔体2は、主に地球の重力に従って運動していると仮定すると、飛翔体2の軌道は、ケプラー運動によって二次曲線になるため、飛翔体2の3回の観測があれば、飛翔体2までの距離が分からなくても、観測時刻t、t、tのそれぞれの第1の角度と、飛翔体2が各点を移動する時間から、飛翔体2までの距離を推定できるので、飛翔体2の軌道が一意に定まる。実際には、地球の重力異常、又は、放射圧等の影響を受けるため、誤差を含む可能性があるが、原理的には、飛翔体2の3回の観測があれば、飛翔体2の軌道を求めることができる。
As shown in FIG. 7, even when the distance from the first condensing device 11 to the projectile 2 cannot be calculated with high accuracy, as shown in FIG. 8, at three observation times t 0 , t 1 , and t 2 . If the angle calculation unit 53 calculates the first angle, the trajectory of the projectile 2 can be calculated.
FIG. 8 is an explanatory diagram showing the calculation accuracy of each angle and the calculation accuracy of each distance at the three observation times t 0 , t 1 , and t 2.
With respect to the first optical angle measuring station 3, since the flying body 2 is relatively moved, the angle calculation unit 53, the first angle at observation time t 0 (Az A0, Elv A0 ), observation time can be calculated respective first angle in t 1 (Az A1, Elv A1 ) and a first angle at observation time t 2 (Az A2, Elv A2 ).
Assuming that the projectile 2 is moving mainly according to the gravity of the earth, the orbit of the projectile 2 becomes a quadratic curve due to the Kepler motion. Even if the distance to 2 is not known, the distance to the projectile 2 can be estimated from the first angle of each of the observation times t 0 , t 1 , and t 2 and the time when the projectile 2 moves at each point. Therefore, the orbit of the projectile 2 is uniquely determined. Actually, it may contain an error because it is affected by the gravity anomaly of the earth or radiation pressure, but in principle, if there are three observations of the projectile 2, the projectile 2 The orbit can be calculated.
 図9は、地上に設置されている測角局が電波を放射し、測角局が飛翔体2によって反射された電波を受信することによって、測角局から飛翔体2までの距離を算出する場合の測定精度を示す説明図である。
 測角局が電波を放射し、測角局が飛翔体2によって反射された電波を受信することによって、測角局から飛翔体2までの距離を算出する場合、電波の放射時刻と電波の受信時刻との時刻差、あるいは、放射した電波の位相と受信した電波の位相との位相差から、距離が算出される。このため、測角局は、距離の他に、測角局に対する飛翔体2の角度(Az、Elv)を算出することが可能である。
 図9において、網掛け楕円領域は、距離の算出精度及び角度の算出精度のそれぞれを示している。
 図9に示す網掛け楕円領域は、図7に示す網掛け楕円領域よりも、レンジ方向の長さが短いため、図9に示す測角局における距離の算出精度は、図7における距離の算出精度よりも高くなっている。しかし、電波の波長(cm)は、例えば、可視光の波長(ミクロン)よりも長いため、図9に示す測角局における角度の算出精度は、図7における角度の算出精度よりも劣化している。
In FIG. 9, the angle measuring station installed on the ground emits radio waves, and the angle measuring station receives the radio waves reflected by the flying object 2, thereby calculating the distance from the angle measuring station to the flying object 2. It is explanatory drawing which shows the measurement accuracy of a case.
When the angle measuring station emits radio waves and the angle measuring station receives the radio waves reflected by the projectile 2, the distance from the angle measuring station to the projectile 2 is calculated. The distance is calculated from the time difference from the time or the phase difference between the phase of the emitted radio wave and the phase of the received radio wave. Therefore, the angle measuring station can calculate the angle (Az, Elv) of the projectile 2 with respect to the angle measuring station in addition to the distance.
In FIG. 9, the shaded ellipse region shows the distance calculation accuracy and the angle calculation accuracy, respectively.
Since the shaded ellipse region shown in FIG. 9 has a shorter length in the range direction than the shaded ellipse region shown in FIG. 7, the calculation accuracy of the distance in the angle measuring station shown in FIG. 9 is the calculation of the distance in FIG. It is higher than the accuracy. However, since the wavelength (cm) of the radio wave is longer than the wavelength (micron) of visible light, for example, the angle calculation accuracy in the angle measuring station shown in FIG. 9 is worse than the angle calculation accuracy in FIG. There is.
 距離と角度の双方が求まる場合、図10に示すように、2つの観測時刻t,tにおいて、距離と角度の双方が算出すれば、飛翔体2の軌道を算出することができる。
 図10は、2つの観測時刻t,tにおけるそれぞれの角度の算出精度及びそれぞれの距離の算出精度を示す説明図である。
 2つの観測時刻t,tにおけるそれぞれの距離と角度とから、観測時刻tにおける飛翔体2の位置(x、y、z)と、観測時刻tにおける飛翔体2の位置(x、y、z)とが求まる。
 あるいは、観測時刻tにおける飛翔体2の位置(x、y、z)から観測時刻tにおける飛翔体2の速度(vx、vy、vz)が求まる。したがって、2つの観測時刻t,tにおいて、距離と角度の双方を算出できれば、飛翔体2の軌道を算出することができる。
When both the distance and the angle can be obtained, as shown in FIG. 10, if both the distance and the angle are calculated at the two observation times t 1 and t 2, the trajectory of the projectile 2 can be calculated.
FIG. 10 is an explanatory diagram showing the calculation accuracy of each angle and the calculation accuracy of each distance at the two observation times t 1 and t 2.
From the respective distances and angles at the two observation times t 1 and t 2, the position of the projectile 2 at the observation time t 1 (x 1 , y 1 , z 1 ) and the position of the projectile 2 at the observation time t 2. (X 2 , y 2 , z 2 ) can be obtained.
Alternatively, the speed of the projectile 2 from the position of the projectile 2 at the observation time t 1 (x 1, y 1 , z 1) at the observation time t 1 (vx 1, vy 1 , vz 1) is obtained. Therefore, if both the distance and the angle can be calculated at the two observation times t 1 and t 2, the orbit of the projectile 2 can be calculated.
 図11は、実施の形態1に係る軌道算出システムにおける角度の算出精度及び距離の算出精度を示す説明図である。
 実施の形態1に係る軌道算出システムでは、互いの設置位置が異なる2つの光測角局である、第1の光測角局3及び第2の光測角局4が、同時刻に同じ飛翔体2に対する角度を算出している。
 このため、第1の光測角局3における第1の集光装置11と、第2の光測角局4における第2の集光装置12と、飛翔体2とが、三角形におけるそれぞれの頂点に配置されているものとして、三角形の余弦定理を適用することができる。三角形の余弦定理を用いることで、第1の集光装置11及び第2の集光装置12のそれぞれから飛翔体2までの距離を幾何学的に算出することができる。
 第1の光測角局3及び第2の光測角局4が、同時刻に同じ飛翔体2に対する角度を算出するものでなければ、三角形の余弦定理を適用することができないため、図7の網掛け楕円領域が示すように、距離の算出精度が悪くなる。
 図11において、飛翔体2を含む菱形の領域は、距離の算出精度及び角度の算出精度のそれぞれを示している。菱形の領域は、図7に示す網掛け楕円領域よりも、レンジ方向の長さが短い。このため、図5に示す軌道算出システムにおける距離の算出精度が、図7に示すものよりも向上していることが分かる。
 以上より、第1の光測角局3と第2の光測角局4とにおける時刻の同期が図られている理由は、距離の算出精度を高めるためである。また、観測時刻が2つであっても、飛翔体2の軌道を算出できるようにするためである。
FIG. 11 is an explanatory diagram showing the accuracy of angle calculation and the accuracy of distance calculation in the trajectory calculation system according to the first embodiment.
In the orbit calculation system according to the first embodiment, the first optical angle measuring station 3 and the second optical measuring station 4, which are two optical measuring stations having different installation positions, fly at the same time. The angle with respect to the body 2 is calculated.
Therefore, the first condensing device 11 in the first optical angle measuring station 3, the second condensing device 12 in the second optical measuring station 4, and the projectile 2 have their respective vertices in the triangle. The triangular cosine theorem can be applied as if it were placed in. By using the triangular cosine theorem, the distance from each of the first condensing device 11 and the second condensing device 12 to the projectile 2 can be calculated geometrically.
Since the triangular cosine theorem cannot be applied unless the first optical measuring station 3 and the second optical measuring station 4 calculate the angle with respect to the same projectile 2 at the same time, FIG. 7 As shown by the shaded elliptical region of, the calculation accuracy of the distance deteriorates.
In FIG. 11, the diamond-shaped region including the projectile 2 shows the accuracy of calculating the distance and the accuracy of calculating the angle, respectively. The diamond-shaped region has a shorter length in the range direction than the shaded elliptical region shown in FIG. Therefore, it can be seen that the distance calculation accuracy in the trajectory calculation system shown in FIG. 5 is higher than that shown in FIG. 7.
From the above, the reason why the time is synchronized between the first optical measuring station 3 and the second optical measuring station 4 is to improve the accuracy of distance calculation. This is also to enable the orbit of the projectile 2 to be calculated even if the observation time is two.
 以上の実施の形態1では、照明光源1から放射されたのち、飛翔体2によって反射された光を集光する第1の集光装置11の第1の時刻及び第2の時刻におけるそれぞれの指向方向と、飛翔体2に対する光の第1の時刻及び第2の時刻におけるそれぞれの反射位置とから、第1の集光装置11から飛翔体2を見た第1の角度として、第1の時刻及び第2の時刻におけるそれぞれの第1の角度を算出する第1の角度算出部21と、飛翔体2によって反射された光を集光する第2の集光装置12の第1の時刻及び第2の時刻におけるそれぞれの指向方向と、飛翔体2に対する光の第1の時刻及び第2の時刻におけるそれぞれの反射位置とから、第2の集光装置12から飛翔体2を見た第2の角度として、第1の時刻及び第2の時刻におけるそれぞれの第2の角度を算出する第2の角度算出部22と、第1の角度算出部21により算出された第1の角度と、第2の角度算出部22により算出された第2の角度と、第1の時刻及び第2の時刻における、第1の集光装置11の位置及び第2の集光装置12の位置とから、飛翔体2の軌道を算出する軌道算出部23とを備えるように、軌道算出装置13を構成した。したがって、従来の軌道算出システムでは軌道を算出できない遠方の飛翔体2の軌道を算出できることがある。 In the above embodiment 1, the directing at the first time and the second time of the first condensing device 11 that condenses the light emitted by the illumination light source 1 and then reflected by the projectile 2. The first time as the first angle when the light collector 2 is viewed from the first condensing device 11 from the direction and the respective reflection positions of the light with respect to the projectile 2 at the first time and the second time. The first time and the second of the first angle calculation unit 21 that calculates the respective first angles at the second time and the second light collector 12 that collects the light reflected by the projectile 2. A second view of the flying object 2 from the second condensing device 12 from the respective pointing directions at the time of 2 and the respective reflection positions of the light with respect to the flying object 2 at the first time and the second time. As angles, a second angle calculation unit 22 that calculates each second angle at the first time and a second time, a first angle calculated by the first angle calculation unit 21, and a second angle. From the second angle calculated by the angle calculation unit 22 of the above, and the position of the first light collector 11 and the position of the second light collector 12 at the first time and the second time, the flying object. The orbit calculation device 13 is configured to include the orbit calculation unit 23 for calculating the orbit of 2. Therefore, it may be possible to calculate the orbit of the distant projectile 2 which cannot be calculated by the conventional orbit calculation system.
 図5に示す軌道算出システムは、2つの光測角局として、第1の光測角局3及び第2の光測角局4を備えている。しかし、天候によっては、例えば、第1の光測角局3が、飛翔体2によって反射された光を集光できても、第2の光測角局4が、飛翔体2によって反射された光を集光できない状況を生じることがある。このような状況では、図5に示す軌道算出システムが、飛翔体2の軌道を算出することができない。このような状況でも、飛翔体2の軌道を算出できるようにするため、第1の光測角局3及び第2の光測角局4とは別に第3の光測角局を備えるようにしてもよい。第3の光測角局の構成は、第2の光測角局4の構成と同様であり、第3の光測角局の設置位置は、第1の光測角局3及び第2の光測角局4におけるそれぞれの設置位置と異なる。 The orbit calculation system shown in FIG. 5 includes a first optical angle measuring station 3 and a second optical measuring station 4 as two optical measuring stations. However, depending on the weather, for example, even if the first optical measuring station 3 can collect the light reflected by the projectile 2, the second optical measuring station 4 is reflected by the flying object 2. It may cause a situation where light cannot be focused. In such a situation, the orbit calculation system shown in FIG. 5 cannot calculate the orbit of the projectile 2. Even in such a situation, in order to be able to calculate the orbit of the projectile 2, a third optical angle measuring station is provided in addition to the first optical measuring station 3 and the second optical measuring station 4. You may. The configuration of the third optical angle measuring station is the same as the configuration of the second optical measuring station 4, and the installation position of the third optical measuring station is the first optical measuring station 3 and the second optical measuring station. It is different from each installation position in the optical angle measuring station 4.
実施の形態2.
 実施の形態2では、第1の光測角局3が固定局であり、第2の光測角局4が可搬局である軌道算出システムについて説明する。
Embodiment 2.
In the second embodiment, an orbit calculation system in which the first optical angle measuring station 3 is a fixed station and the second optical angle measuring station 4 is a portable station will be described.
 図13は、実施の形態2に係る軌道算出システムにおける照明光源1、飛翔体2、第1の光測角局3及び第2の光測角局4の位置関係の一例を示す説明図である。
 図13に示す軌道算出システムでは、第1の光測角局3が固定局であり、第2の光測角局4が可搬局である。
 図14は、実施の形態2に係る軌道算出システムにおける角度の算出精度及び距離の算出精度を示す説明図である。
FIG. 13 is an explanatory diagram showing an example of the positional relationship between the illumination light source 1, the projectile 2, the first optical angle measuring station 3 and the second optical measuring station 4 in the orbit calculation system according to the second embodiment. ..
In the orbit calculation system shown in FIG. 13, the first optical angle measuring station 3 is a fixed station, and the second optical angle measuring station 4 is a portable station.
FIG. 14 is an explanatory diagram showing the accuracy of angle calculation and the accuracy of distance calculation in the trajectory calculation system according to the second embodiment.
 図13に示す軌道算出システムでも、第1の光測角局3の位置と第2の光測角局4の位置とが異なっていれば、図5に示す軌道算出システムと同様の原理で、飛翔体2の軌道を算出することができる。
 ただし、照明光源1である太陽の位置、又は、可搬局である第2の光測角局4の位置が変化することによって、第1の光測角局3及び第2の光測角局4が、同時刻に同じ飛翔体2からの光を受信できない観測条件になることがある。例えば、第2の光測角局4が、第1の光測角局3から見て、地球の裏側に位置しているような場合、第1の光測角局3及び第2の光測角局4が、同時刻に同じ飛翔体2からの光を受信できない。
 第1の光測角局3及び第2の光測角局4が、同時刻に同じ飛翔体2からの光を受信できる観測条件であれば、図13に示す軌道算出システムでも、図5に示す軌道算出システムと同様に、飛翔体2の軌道を算出することができる。
Even in the orbit calculation system shown in FIG. 13, if the position of the first optical angle measuring station 3 and the position of the second optical measuring station 4 are different, the same principle as that of the orbit calculation system shown in FIG. 5 can be used. The trajectory of the projectile 2 can be calculated.
However, when the position of the sun, which is the illumination light source 1, or the position of the second optical angle measuring station 4, which is a portable station, changes, the first optical measuring station 3 and the second optical measuring station 3 are changed. 4 may be an observation condition in which light from the same projectile 2 cannot be received at the same time. For example, when the second optical measuring station 4 is located on the back side of the earth when viewed from the first optical measuring station 3, the first optical measuring station 3 and the second optical measuring station 3 are measured. The corner station 4 cannot receive the light from the same projectile 2 at the same time.
As long as the first optical angle measuring station 3 and the second optical measuring station 4 can receive the light from the same projectile 2 at the same time, the orbit calculation system shown in FIG. 13 can be shown in FIG. Similar to the trajectory calculation system shown, the trajectory of the projectile 2 can be calculated.
 図13に示す軌道算出システムでも、図5に示す軌道算出システムと同様に、第2の光測角局4の通信部78が、第2の角度と第2の集光装置12の位置とを、第1の光測角局3の通信部58に送信している。
 しかし、第2の光測角局4は、例えば軌道上を移動しているため、第1の光測角局3と第2の光測角局4との位置関係によっては、通信部78が、第2の角度と第2の集光装置12の位置とを、第1の光測角局3の通信部58に直接送信できない場合がある。
 このような場合、第2の光測角局4の通信部78が、第2の角度と第2の集光装置12の位置とを、図13及び図14に示す地上局6に送信し、地上局6が、第2の角度と第2の集光装置12の位置とを第1の光測角局3の通信部58に転送するようにしてもよい。
 地上局6は、第2の光測角局4を運用している地上局であり、例えば、第2の光測角局4の姿勢及び位置等を制御するものである。
In the orbit calculation system shown in FIG. 13, similarly to the orbit calculation system shown in FIG. 5, the communication unit 78 of the second optical angle measuring station 4 determines the second angle and the position of the second condensing device 12. , Is transmitted to the communication unit 58 of the first optical angle measuring station 3.
However, since the second optical measuring station 4 is moving in orbit, for example, the communication unit 78 may be used depending on the positional relationship between the first optical measuring station 3 and the second optical measuring station 4. , The second angle and the position of the second light collecting device 12 may not be directly transmitted to the communication unit 58 of the first optical measuring station 3.
In such a case, the communication unit 78 of the second optical angle measuring station 4 transmits the second angle and the position of the second light collecting device 12 to the ground station 6 shown in FIGS. 13 and 14. The ground station 6 may transfer the second angle and the position of the second light collecting device 12 to the communication unit 58 of the first optical measuring station 3.
The ground station 6 is a ground station that operates the second optical angle measuring station 4, and controls, for example, the posture and position of the second optical measuring station 4.
実施の形態3.
 実施の形態3では、第1の光測角局3が測距装置91を備え、第2の光測角局4が再帰反射部81を備えている軌道算出システムについて説明する。
Embodiment 3.
In the third embodiment, an orbit calculation system in which the first optical angle measuring station 3 is provided with the ranging device 91 and the second optical angle measuring station 4 is provided with the retroreflective unit 81 will be described.
 図15は、実施の形態3に係る軌道算出システムにおける飛翔体2、第1の光測角局3及び第2の光測角局4の位置関係の一例を示す説明図である。
 第2の光測角局4は、再帰反射部81を備えている。
 再帰反射部81は、光を入射方向に射出する機能を有する光学部材によって実現される。当該光学部材としては、ビーズが敷き詰められているもののほか、コーナーキューブリフレクタ等が考えられる。
 再帰反射部81は、第1の光測角局3の測距装置91から放射された光を再帰反射させる。
FIG. 15 is an explanatory diagram showing an example of the positional relationship between the flying object 2, the first optical angle measuring station 3, and the second optical angle measuring station 4 in the orbit calculation system according to the third embodiment.
The second optical angle measuring station 4 includes a retroreflective unit 81.
The retroreflective unit 81 is realized by an optical member having a function of emitting light in the incident direction. As the optical member, a corner cube reflector or the like can be considered in addition to a member in which beads are spread.
The retroreflective unit 81 retroreflects the light radiated from the ranging device 91 of the first optical angle measuring station 3.
 図16は、実施の形態3に係る軌道算出システムを示す具体的な構成図である。図16において、図5と同一符号は同一又は相当部分を示すので説明を省略する。
 測距装置91は、第1の光測角局3に搭載されている。
 測距装置91は、集光装置92、光送信部93、光受信部94、距離計算部95及び指向装置96を備えている。
 測距装置91は、光を再帰反射部81に向けて放射したのち、再帰反射部81によって反射された光を受信し、放射した光と受信した光とから、第1の光測角局3と第2の光測角局4との距離を算出する。
FIG. 16 is a specific configuration diagram showing the trajectory calculation system according to the third embodiment. In FIG. 16, the same reference numerals as those in FIG. 5 indicate the same or corresponding parts, and thus the description thereof will be omitted.
The distance measuring device 91 is mounted on the first optical angle measuring station 3.
The distance measuring device 91 includes a light collecting device 92, an optical transmitting unit 93, an optical receiving unit 94, a distance calculation unit 95, and a directing device 96.
The distance measuring device 91 receives the light reflected by the retroreflective unit 81 after radiating the light toward the retroreflective unit 81, and from the emitted light and the received light, the first optical angle measuring station 3 And the second optical measuring station 4 are calculated.
 集光装置92は、例えば、屈折型の望遠鏡及び反射型の望遠鏡のうち、1つ以上の望遠鏡によって実現される。
 集光装置92は、光送信部93から出力されたレーザ光を再帰反射部81に向けて放射し、再帰反射部81によって反射されたレーザ光を集光する。
 光送信部93は、例えば、レーザ光源、光アンプ及び光変調器によって実現される。
 光送信部93は、レーザ光を集光装置92に出力することによって、集光装置92からレーザ光を再帰反射部81に向けて放射させる。
 光受信部94は、例えば、半導体光受信器によって実現される。半導体光受信器としては、フォトダイオード、又は、四分割フォトダイオード等が考えられる。
 光受信部94は、集光装置92により集光されたレーザ光を受信する。
The condensing device 92 is realized by, for example, one or more telescopes among a refraction type telescope and a reflection type telescope.
The light collecting device 92 radiates the laser light output from the light transmitting unit 93 toward the retroreflective unit 81, and collects the laser light reflected by the retroreflective unit 81.
The optical transmission unit 93 is realized by, for example, a laser light source, an optical amplifier, and an optical modulator.
The light transmitting unit 93 outputs the laser light to the condensing device 92, so that the laser light is radiated from the condensing device 92 toward the retroreflective unit 81.
The optical receiver 94 is realized by, for example, a semiconductor optical receiver. As the semiconductor optical receiver, a photodiode, a quadrant photodiode, or the like can be considered.
The light receiving unit 94 receives the laser light collected by the condensing device 92.
 距離計算部95は、光送信部93からの電波の放射時刻と光受信部94による電波の受信時刻との時刻差、あるいは、光送信部93から出力された電波の位相と光受信部94により受信された電波の位相との位相差から、第1の光測角局3と第2の光測角局4との距離である装置間距離を算出する。
 即ち、距離計算部95は、第1の時刻tにおける装置間距離LAB1と第2の時刻tにおける装置間距離LAB2とを算出し、装置間距離LAB1と装置間距離LAB2とを軌道算出部23の軌道計算部61に出力する。
The distance calculation unit 95 is based on the time difference between the time when the radio wave is radiated from the optical transmission unit 93 and the time when the radio wave is received by the optical reception unit 94, or the phase of the radio wave output from the optical transmission unit 93 and the optical reception unit 94. From the phase difference with the phase of the received radio wave, the distance between the devices, which is the distance between the first optical measuring station 3 and the second optical measuring station 4, is calculated.
That is, the distance calculation unit 95, the inter-device distance L AB1 at a first time t 1 is calculated and the inter-device distance L AB2 at the second time t 2, the a unit distance L AB1 and apparatus distance L AB2 Is output to the orbit calculation unit 61 of the orbit calculation unit 23.
 指向装置96は、一軸以上の回転軸を有する回転ステージ及びモータによって実現される。一軸以上の回転軸を有する回転ステージとしては、経緯台、又は、赤道儀等が考えられる。
 指向装置96の回転ステージには、集光装置92が実装されている。
 指向装置96は、第1の時刻tのときの集光装置92の指向方向が、制御装置56が出力された第1の時刻tのときの集光装置92の指向方向と一致するように、モータを駆動することによって、回転ステージを回転させる。
 指向装置96は、第2の時刻tのときの集光装置92の指向方向が、制御装置56が出力された第2の時刻tのときの集光装置92の指向方向と一致するように、モータを駆動することによって、回転ステージを回転させる。
The directional device 96 is realized by a rotary stage and a motor having one or more rotation axes. An altazimuth mount, an equatorial mount, or the like can be considered as a rotation stage having one or more rotation axes.
A condensing device 92 is mounted on the rotating stage of the directional device 96.
Directing device 96, so that the directivity direction of the light collection device 92 when the first time t 1 coincides with the orientation direction of the condenser 92 when the first time t 1 the controller 56 is outputted In addition, the rotary stage is rotated by driving the motor.
Directing device 96, so that the directivity direction of the light collection device 92 when the second time t 2 coincides with the orientation direction of the condenser 92 when the second time t 2 the controller 56 is outputted In addition, the rotary stage is rotated by driving the motor.
 軌道算出部23は、記録装置59及び軌道計算部61を備えている。
 軌道計算部61は、距離計算部95から、集光装置92の第1の時刻t及び第2の時刻tにおけるそれぞれの指向方向と、第1の時刻t及び第2の時刻tにおけるそれぞれの装置間距離LAB1,LAB2とを取得する。
 軌道計算部61は、記録装置59から、第1の集光装置11の第1の時刻t及び第2の時刻tにおける位置を取得する。
 軌道計算部61は、集光装置92の第1の時刻t及び第2の時刻tにおけるそれぞれの指向方向と、第1の集光装置11の第1の時刻t及び第2の時刻tにおけるそれぞれの位置と、第1の時刻t及び第2の時刻tにおけるそれぞれの装置間距離LAB1,LAB2とを用いて、第2の集光装置12の第1の時刻t及び第2の時刻tにおけるそれぞれの位置を算出する。
The orbit calculation unit 23 includes a recording device 59 and an orbit calculation unit 61.
The orbit calculation unit 61, from the distance calculation unit 95, indicates the direction directions of the light collector 92 at the first time t 1 and the second time t 2 , and the first time t 1 and the second time t 2. The distances L AB1 and L AB2 between the devices in the above are acquired.
Trajectory calculation unit 61 from the recording apparatus 59 acquires the first position at time t 1 and second time t 2 of the first focusing device 11.
The orbit calculation unit 61 has the direction directions of the light collector 92 at the first time t 1 and the second time t 2 , and the first time t 1 and the second time of the first light collector 11. Using the respective positions at t 2 and the distances between the devices LA AB1 and LA AB2 at the first time t 1 and the second time t 2 , the first time t of the second light collector 12 is used. and it calculates the respective positions in the first and second time t 2.
 軌道計算部61は、図5に示す軌道計算部60と同様に、記録装置59から、第1の時刻t及び第2の時刻tにおけるそれぞれの第1の角度と、第1の時刻t及び第2の時刻tにおけるそれぞれの第2の角度とを取得する。
 軌道計算部61は、図5に示す軌道計算部60と同様に、それぞれの第1の角度と、それぞれの第2の角度と、第1の集光装置11及び第2の集光装置12におけるそれぞれの位置とから、第1の集光装置11から飛翔体2までの距離として、第1の時刻t及び第2の時刻tにおけるそれぞれの第1の距離を算出する。
 軌道計算部61は、図5に示す軌道計算部60と同様に、それぞれの第1の角度と、それぞれの第2の角度と、それぞれの位置とから、第2の集光装置12から飛翔体2までの距離として、第1の時刻t及び第2の時刻tにおけるそれぞれの第2の距離を算出する。
 軌道計算部61は、図5に示す軌道計算部60と同様に、第1の時刻t及び第2の時刻tにおけるそれぞれの第1の角度と、第1の時刻t及び第2の時刻tにおけるそれぞれの第2の角度と、第1の時刻t及び第2の時刻tにおけるそれぞれの第1の距離と、第1の時刻t及び第2の時刻tにおけるそれぞれの第2の距離とから、飛翔体2の位置及び速度のそれぞれを算出する。即ち、軌道計算部61は、飛翔体2の第1の時刻t及び第2の時刻tにおけるそれぞれの位置、あるいは、第1の時刻tの飛翔体2の位置と速度とを算出する。
 軌道計算部61は、図5に示す軌道計算部60と同様に、飛翔体2の第1の時刻t及び第2の時刻tにおけるそれぞれの位置、あるいは、飛翔体2の第1の時刻tの位置と速度とから、飛翔体2の軌道を算出する。
Similar to the orbit calculation unit 60 shown in FIG. 5, the orbit calculation unit 61 has a first angle and a first time t at the first time t 1 and the second time t 2 from the recording device 59. obtaining a respective second angle in the first and second time t 2.
Similar to the orbit calculation unit 60 shown in FIG. 5, the orbit calculation unit 61 has a first angle, a second angle, and the first condensing device 11 and the second condensing device 12. from the respective positions, as the distance to the projectile 2 from the first condenser 11, to calculate a respective first distance at a first time t 1 and second time t 2.
Similar to the orbit calculation unit 60 shown in FIG. 5, the orbit calculation unit 61 is a flying object from the second light collector 12 from each first angle, each second angle, and each position. as the distance to 2, and calculates the respective second distance at a first time t 1 and second time t 2.
Trajectory calculation unit 61, like the trajectory calculation unit 60 shown in FIG. 5, first, respectively at a first time t 1 and second time t 2 the angle a, the first time t 1 and the second a respective second angle at time t 2, the respective a first distance at a first time t 1 and second time t 2, the respective at a first time t 1 and second time t 2 From the second distance, each of the position and speed of the projectile 2 is calculated. That is, the orbit calculation unit 61 calculates the respective positions of the projectile 2 at the first time t 1 and the second time t 2 , or the position and velocity of the projectile 2 at the first time t 1. ..
Similar to the orbit calculation unit 60 shown in FIG. 5, the orbit calculation unit 61 is located at each position of the projectile 2 at the first time t 1 and the second time t 2 , or the first time of the projectile 2. The orbit of the projectile 2 is calculated from the position and velocity of t 1.
 次に、図16に示す軌道算出システムの動作について説明する。
 図5に示す軌道算出システムでは、軌道計算部60が、第1の集光装置11及び第2の集光装置12におけるそれぞれの位置から、第1の集光装置11と第2の集光装置12との装置間距離LAB1,LAB2を算出している。
 図16に示す軌道算出システムでは、測距装置91が、第1の集光装置11と第2の集光装置12との距離間距離LAB1,LAB2として、第1の光測角局3と第2の光測角局4との距離を算出している点で、図5に示す軌道算出システムと相違している。
 測距装置91による距離の算出精度は、図5に示す軌道算出システムによる距離の算出精度よりも高い。図5に示す軌道算出システムによる距離の算出精度は、図11に示す菱形の領域におけるレンジ方向の長さである。
 ただし、レーザ光の強度は、レーザ光の伝搬距離の2乗に反比例して弱くなるため、第1の光測角局3と第2の光測角局4との距離が長い場合には、測距装置91が、装置間距離LAB1,LAB2を算出できない場合がある。図16に示す軌道算出システムでは、第2の光測角局4が、再帰反射部81を備えているため、第2の光測角局4の反射による、レーザ光の強度の減衰が抑えられている。よって、図16に示す軌道算出システムでは、第2の光測角局4が再帰反射部81を備えていないものよりは、算出が可能な距離が延びている。
Next, the operation of the trajectory calculation system shown in FIG. 16 will be described.
In the orbit calculation system shown in FIG. 5, the orbit calculation unit 60 uses the first light collector 11 and the second light collector 12 from their respective positions in the first light collector 11 and the second light collector 12. The distances L AB1 and L AB2 between the devices with 12 are calculated.
The trajectory calculation system shown in FIG. 16, the distance measuring device 91, as the distance between the distance L AB1, L AB2 between the first condenser 11 and the second condenser 12, a first optical angle measuring station 3 It differs from the orbit calculation system shown in FIG. 5 in that the distance between the light and the second optical measuring station 4 is calculated.
The accuracy of distance calculation by the distance measuring device 91 is higher than the accuracy of distance calculation by the trajectory calculation system shown in FIG. The accuracy of distance calculation by the trajectory calculation system shown in FIG. 5 is the length in the range direction in the diamond-shaped region shown in FIG.
However, since the intensity of the laser beam becomes weaker in inverse proportion to the square of the propagation distance of the laser beam, when the distance between the first optical angle measuring station 3 and the second optical measuring station 4 is long, the intensity of the laser light becomes weaker. The distance measuring device 91 may not be able to calculate the inter-device distances LA AB1 and LA AB2. In the orbit calculation system shown in FIG. 16, since the second optical measuring station 4 includes the retroreflecting unit 81, the attenuation of the laser beam intensity due to the reflection of the second optical measuring station 4 is suppressed. ing. Therefore, in the orbit calculation system shown in FIG. 16, the distance that can be calculated is longer than that in the second optical measuring station 4 that does not have the retroreflection unit 81.
 制御装置56は、第1の時刻tにおける集光装置92の指向方向を指向装置96に出力し、第2の時刻tにおける集光装置92の指向方向を指向装置96に出力する。
 制御装置56は、第1の時刻t及び第2の時刻tのときに、レーザ光の放射指令を光送信部93及び距離計算部95のそれぞれに出力する。
 例えば、制御装置56の内部メモリには、第2の光測角局4の軌道情報が記録されている。制御装置56は、軌道情報に基づいて、第1の時刻tにおける集光装置92の指向方向を特定し、第2の時刻tにおける集光装置92の指向方向を特定する。
The control device 56 outputs the pointing direction of the condensing device 92 at the first time t1 to the directional device 96, and outputs the directional direction of the condensing device 92 at the second time t 2 to the directional device 96.
The control device 56 outputs a laser beam radiation command to each of the light transmission unit 93 and the distance calculation unit 95 at the first time t 1 and the second time t 2.
For example, the orbit information of the second optical measuring station 4 is recorded in the internal memory of the control device 56. Controller 56, based on the orbital information to identify the orientation of the condenser 92 at a first time t 1, to identify the orientation of the condenser 92 at the second time t 2.
 指向装置96は、第1の時刻tのときの集光装置92の指向方向が、制御装置56が出力された第1の時刻tのときの集光装置92の指向方向と一致するように、モータを駆動することによって、回転ステージを回転させる。
 指向装置96は、第2の時刻tのときの集光装置92の指向方向が、制御装置56が出力された第2の時刻tのときの集光装置92の指向方向と一致するように、モータを駆動することによって、回転ステージを回転させる。
 なお、指向装置96による集光装置92の指向方向の制御は、ある程度の時間を要するため、制御装置56は、観測時刻が第1の時刻tになる前に、第1の時刻tにおける集光装置92の指向方向を指向装置96に出力する。また、制御装置56は、観測時刻が第2の時刻tになる前に、第2の時刻tにおける集光装置92の指向方向を指向装置96に出力する。
Directing device 96, so that the directivity direction of the light collection device 92 when the first time t 1 coincides with the orientation direction of the condenser 92 when the first time t 1 the controller 56 is outputted In addition, the rotary stage is rotated by driving the motor.
Directing device 96, so that the directivity direction of the light collection device 92 when the second time t 2 coincides with the orientation direction of the condenser 92 when the second time t 2 the controller 56 is outputted In addition, the rotary stage is rotated by driving the motor.
Since it takes a certain amount of time to control the directivity direction of the condensing device 92 by the directivity device 96, the control device 56 sets the observation time at the first time t 1 before the observation time reaches the first time t 1 . The directivity direction of the light collector 92 is output to the directivity device 96. Further, the control device 56 outputs the directivity direction of the condensing device 92 at the second time t 2 to the directivity device 96 before the observation time reaches the second time t 2.
 光送信部93は、第1の時刻t及び第2の時刻tのときに、制御装置56から、レーザ光の放射指令を受けると、レーザ光を集光装置92に出力することによって、集光装置92からレーザ光を再帰反射部81に向けて放射させる。
 集光装置92は、光送信部93から出力されたレーザ光を再帰反射部81に向けて放射する。
 第1の時刻tのときに、集光装置92から放射されたレーザ光は、第2の光測角局4に取り付けられている再帰反射部81によって反射される。
 再帰反射部81によって反射されたレーザ光は、集光装置92によって集光される。
 光受信部94は、集光装置92により集光されたレーザ光を受信し、レーザ光の受信信号を距離計算部95に出力する。
When the optical transmission unit 93 receives a laser light emission command from the control device 56 at the first time t 1 and the second time t 2 , the light transmission unit 93 outputs the laser light to the condensing device 92 by outputting the laser light to the condensing device 92. Laser light is radiated from the light collector 92 toward the retroreflecting unit 81.
The light collecting device 92 radiates the laser light output from the light transmitting unit 93 toward the retroreflecting unit 81.
When the first time t 1, the laser light emitted from the light collector 92 is reflected by the retroreflective portion 81 attached to the second optical angle measuring station 4.
The laser light reflected by the retroreflective unit 81 is collected by the condensing device 92.
The light receiving unit 94 receives the laser light focused by the condensing device 92, and outputs the received signal of the laser light to the distance calculation unit 95.
 距離計算部95は、光送信部93からの電波の放射時刻と光受信部94による電波の受信時刻との時刻差、あるいは、光送信部93から出力された電波の位相と光受信部94により受信された電波の位相との位相差から、第1の光測角局3と第2の光測角局4との距離を算出する。
 即ち、距離計算部95は、制御装置56から放射指令が出力された時刻である第1の時刻tから、光受信部94よりレーザ光の受信信号を受けるまでの時間に基づいて、第1の時刻tにおける装置間距離LAB1を算出する。
 また、距離計算部95は、制御装置56から放射指令が出力された時刻である第2の時刻tから、光受信部94よりレーザ光の受信信号を受けるまでの時間に基づいて、第2の時刻tにおける装置間距離LAB2を算出する。
 距離計算部95は、第1の時刻tにおける集光装置92の指向方向、第2の時刻tにおける集光装置92の指向方向、第1の時刻tにおける装置間距離LAB1及び第2の時刻tにおける装置間距離LAB2のそれぞれを軌道算出部23の軌道計算部61に出力する。
The distance calculation unit 95 is based on the time difference between the time when the radio wave is radiated from the optical transmission unit 93 and the time when the radio wave is received by the optical reception unit 94, or the phase of the radio wave output from the optical transmission unit 93 and the optical reception unit 94. The distance between the first optical measuring station 3 and the second optical measuring station 4 is calculated from the phase difference with the phase of the received radio wave.
That is, the distance calculation unit 95, from the first time t 1 is the time when the emission command is output from the controller 56, based on the time until receiving the reception signal of the laser beam from the optical receiving unit 94, the first calculating the inter-device distance L AB1 at time t 1 of the.
The distance calculation unit 95, second from the time t 2 is the time at which the emission command is output from the controller 56, based on the time until receiving the reception signal of the laser beam from the optical receiving unit 94, the second calculating the inter-device distance L AB2 at time t 2 of the.
Distance calculation unit 95, the pointing direction of the condenser 92 at a first time t 1, the pointing direction of the condenser 92 at the second time t 2, the inter-device distance L AB1 at a first time t 1 and the Each of the inter-device distances LAB2 at time t2 of 2 is output to the orbit calculation unit 61 of the orbit calculation unit 23.
 軌道計算部61は、距離計算部95から、集光装置92の第1の時刻t及び第2の時刻tにおけるそれぞれの指向方向と、第1の時刻t及び第2の時刻tにおけるそれぞれの装置間距離LAB1,LAB2とを取得する。
 軌道計算部61は、記録装置59から、第1の集光装置11の第1の時刻t及び第2の時刻tにおけるそれぞれの位置を取得する。
 軌道計算部61は、第1の時刻tにおける集光装置92の指向方向と、第1の時刻tにおける第1の集光装置11の位置と、第1の時刻tにおける装置間距離LAB1とを用いて、第1の時刻tにおける第2の集光装置12の位置を算出する。
 軌道計算部61は、第2の時刻tにおける集光装置92の指向方向と、第2の時刻tにおける第1の集光装置11の位置と、第2の時刻tにおける装置間距離LAB2とを用いて、第2の時刻tにおける第2の集光装置12の位置を算出する。
The orbit calculation unit 61, from the distance calculation unit 95, indicates the direction directions of the light collector 92 at the first time t 1 and the second time t 2 , and the first time t 1 and the second time t 2. The distances L AB1 and L AB2 between the devices in the above are acquired.
Trajectory calculation unit 61 from the recording apparatus 59 acquires the first respective positions at the time t 1 and second time t 2 of the first focusing device 11.
Trajectory calculation unit 61, the orientation of the condenser 92 at a first time t 1, the position of the first focusing device 11 at a first time t 1, the inter-device distances at a first time t 1 by using the L AB1, it calculates the position of the second condenser 12 at a first time t 1.
Trajectory calculation unit 61, the orientation of the condenser 92 at the second time t 2, the position of the first focusing device 11 at the second time t 2, the inter-device distance at a second time t 2 by using the L AB2, it calculates the position of the second condenser 12 at the second time t 2.
 軌道計算部61は、図5に示す軌道計算部60と同様に、第1の時刻t及び第2の時刻tにおけるそれぞれの第1の角度と、第1の時刻t及び第2の時刻tにおけるそれぞれの第2の角度とを取得する。
 軌道計算部61は、図5に示す軌道計算部60と同様に、それぞれの第1の角度と、それぞれの第2の角度と、第1の集光装置11におけるそれぞれの位置と、第2の集光装置12におけるそれぞれの位置とから、第1の集光装置11から飛翔体2までの距離として、第1の時刻t及び第2の時刻tにおけるそれぞれの第1の距離を算出する。
 軌道計算部61は、図5に示す軌道計算部60と同様に、それぞれの第1の角度と、それぞれの第2の角度と、第1の集光装置11におけるそれぞれの位置と、第2の集光装置12におけるそれぞれの位置とから、第2の集光装置12から飛翔体2までの距離として、第1の時刻t及び第2の時刻tにおけるそれぞれの第2の距離を算出する。
Similar to the orbit calculation unit 60 shown in FIG. 5, the orbit calculation unit 61 has a first angle at the first time t 1 and a second time t 2 , respectively, and the first time t 1 and the second time t 1. obtaining a respective second angle at time t 2.
Similar to the orbit calculation unit 60 shown in FIG. 5, the orbit calculation unit 61 has a first angle, a second angle, a position in the first condensing device 11, and a second angle. from the respective positions of the light collection device 12, as the distance to the projectile 2 from the first condenser 11, to calculate a respective first distance at a first time t 1 and second time t 2 ..
Similar to the orbit calculation unit 60 shown in FIG. 5, the orbit calculation unit 61 has a first angle, a second angle, a position in the first condensing device 11, and a second angle. from the respective positions of the light collection device 12, as the distance to the projectile 2 from the second condenser 12, to calculate the respective second distance at a first time t 1 and second time t 2 ..
 軌道計算部61は、図5に示す軌道計算部60と同様に、第1の時刻t及び第2の時刻tにおけるそれぞれの第1の角度と、第1の時刻t及び第2の時刻tにおけるそれぞれの第2の角度と、第1の時刻t及び第2の時刻tにおけるそれぞれの第1の距離と、第1の時刻t及び第2の時刻tにおけるそれぞれの第2の距離とから、飛翔体2の位置及び速度のそれぞれを算出する。即ち、軌道計算部61は、飛翔体2の第1の時刻t及び第2の時刻tにおけるそれぞれの位置、あるいは、第1の時刻tの飛翔体2の位置と速度とを算出する。
 軌道計算部61は、図5に示す軌道計算部60と同様に、飛翔体2の第1の時刻t及び第2の時刻tにおけるそれぞれの位置、あるいは、飛翔体2の第1の時刻tの位置と速度とから、飛翔体2の軌道を算出する。
Trajectory calculation unit 61, like the trajectory calculation unit 60 shown in FIG. 5, first, respectively at a first time t 1 and second time t 2 the angle a, the first time t 1 and the second a respective second angle at time t 2, the respective a first distance at a first time t 1 and second time t 2, the respective at a first time t 1 and second time t 2 From the second distance, each of the position and speed of the projectile 2 is calculated. That is, the orbit calculation unit 61 calculates the respective positions of the projectile 2 at the first time t 1 and the second time t 2 , or the position and velocity of the projectile 2 at the first time t 1. ..
Similar to the orbit calculation unit 60 shown in FIG. 5, the orbit calculation unit 61 is located at each position of the projectile 2 at the first time t 1 and the second time t 2 , or the first time of the projectile 2. from the position and velocity of the t 1, to calculate the trajectory of the projectile 2.
 以上の実施の形態3では、第2の光測角局4が、光を再帰反射させる再帰反射部81を備え、第1の光測角局3が、光を再帰反射部81に向けて放射したのち、再帰反射部81によって反射された光を受信し、放射した光と受信した光とから、第1の光測角局3と第2の光測角局4との距離を算出する測距装置91を備えており、軌道算出部23が、測距装置91により算出された距離を用いて、第2の集光装置12の位置を算出するように、図16に示す軌道算出システムを構成した。したがって、図16に示す軌道算出システムは、図5に示す軌道算出システムと同様に、従来の軌道算出システムでは軌道を算出できない遠方の飛翔体2の軌道を算出できることがある。また、図16に示す軌道算出システムは、図5に示す軌道算出システムよりも、飛翔体2の軌道の算出精度が向上する。 In the above embodiment 3, the second optical angle measuring station 4 includes a retroreflecting unit 81 that retroreflects light, and the first optical angle measuring station 3 radiates light toward the retroreflecting unit 81. After that, the light reflected by the retroreflection unit 81 is received, and the distance between the first optical angle measuring station 3 and the second optical measuring station 4 is calculated from the emitted light and the received light. The orbit calculation system shown in FIG. 16 is provided so that the orbit calculation unit 23 calculates the position of the second condensing device 12 by using the distance calculated by the distance measuring device 91. Configured. Therefore, the orbit calculation system shown in FIG. 16 may be able to calculate the orbit of the distant projectile 2 which cannot be calculated by the conventional orbit calculation system, similar to the orbit calculation system shown in FIG. Further, the trajectory calculation system shown in FIG. 16 has improved accuracy of calculating the trajectory of the projectile 2 as compared with the trajectory calculation system shown in FIG.
実施の形態4.
 実施の形態4では、第2の光測角局4が、飛翔体2の軌道と高度が異なる軌道に配置されている軌道算出システムについて説明する。
Embodiment 4.
In the fourth embodiment, the orbit calculation system in which the second optical angle measuring station 4 is arranged in an orbit having an altitude different from that of the orbit of the projectile 2 will be described.
 図17は、実施の形態4に係る軌道算出システムにおける飛翔体2、第1の光測角局3及び第2の光測角局4の位置関係の一例を示す説明図である。
 図17において、101は、第2の光測角局4の軌道を示しており、hは、軌道101の高度を示している。
 102は、飛翔体2の軌道を示しており、hは、軌道102の高度を示している。
 103は、第2の光測角局4の軌道を示しており、hは、軌道103の高度を示している。
 第2の光測角局4は、飛翔体2の軌道102よりも高度が低い軌道101に配置されることがあり、また、飛翔体2の軌道102よりも高度が高い軌道103に配置されることがある。
 また、第2の光測角局4の軌道が、軌道101から軌道103に切り替わる一方、軌道103から軌道101に切り替わることがある。
FIG. 17 is an explanatory diagram showing an example of the positional relationship between the flying object 2, the first optical angle measuring station 3, and the second optical angle measuring station 4 in the orbit calculation system according to the fourth embodiment.
17, 101 shows a trajectory of the second optical angle measuring station 4, h 1 represents the height of the track 101.
102 shows the orbit of the flying object 2, and h 2 shows the altitude of the orbit 102.
103 shows a trajectory of the second optical angle measuring station 4, h 3 shows a high degree of track 103.
The second optical angle measuring station 4 may be arranged in an orbit 101 having an altitude lower than the orbit 102 of the projectile 2, and may be arranged in an orbit 103 having an altitude higher than the orbit 102 of the projectile 2. Sometimes.
Further, the orbit of the second optical measuring station 4 may be switched from the orbit 101 to the orbit 103, while the orbit 103 may be switched to the orbit 101.
 地球を周回する軌道は、地球の重力と高度とにより決まる。当該軌道を移動する第2の光測角局4の速度v(i=1,3)は、以下の式(3)のように表される。vは、高度hの軌道101を移動する第2の光測角局4の速度、vは、高度hの軌道103を移動する第2の光測角局4の速度である。vは、飛翔体2の速度である。

Figure JPOXMLDOC01-appb-I000001
 式(3)において、rは、地球の半径、Gは、万有引力定数、Mは、地球の質量である。
The orbit around the earth is determined by the gravity and altitude of the earth. Speed of the second optical angle measuring station 4 which moves the trajectory v i (i = 1, 3) is expressed by the following equation (3). v 1 is the speed of the second optical measuring station 4 moving in the orbit 101 at the altitude h 1 , and v 3 is the speed of the second optical measuring station 4 moving in the orbit 103 at the altitude h 3. v 2 is the velocity of the projectile 2.

Figure JPOXMLDOC01-appb-I000001
In equation (3), r E is the radius of the earth, G is the gravitational constant, and M is the mass of the earth.
 第2の光測角局4の速度v(i=1,3)は、式(3)から明らかなように、高度hが高いほど、遅くなる。
 したがって、第2の光測角局4が飛翔体2の軌道102よりも高度が高い軌道101に配置される場合、時間の経過に伴って、第2の光測角局4が飛翔体2に追い越されることがある。一方、第2の光測角局4が飛翔体2の軌道102よりも高度が低い軌道101に配置される場合、時間の経過に伴って、第2の光測角局4が飛翔体2を追い越すことがある。
 第1の光測角局3と第2の光測角局4と飛翔体2との幾何学的な配置の時間的な変化は、第2の光測角局4が配置される軌道の高度によって異なる。
Second optical angle measuring station 4 speed v i (i = 1, 3), as is apparent from equation (3), as the altitude h i is high, slower.
Therefore, when the second optical measuring station 4 is arranged in the orbit 101 having an altitude higher than the orbit 102 of the flying object 2, the second optical measuring station 4 becomes the flying object 2 with the passage of time. You may be overtaken. On the other hand, when the second optical measuring station 4 is arranged in the orbit 101 whose altitude is lower than the orbit 102 of the flying object 2, the second optical measuring station 4 sets the flying object 2 with the passage of time. You may overtake.
The temporal change in the geometrical arrangement of the first optical measuring station 3, the second optical measuring station 4, and the projectile 2 is the altitude of the orbit where the second optical measuring station 4 is arranged. Depends on.
 実施の形態4に係る軌道算出システムは、例えば、飛翔体2の軌道102よりも高度が低い軌道101に配置されている第2の光測角局4と、飛翔体2の軌道102よりも高度が高い軌道101に配置されている第2の光測角局4との双方を備えていてもよい。
 軌道算出システムが、2つの第2の光測角局4を備えていれば、軌道101に配置されている第2の光測角局4に係る幾何学的な配置と、軌道103に配置されている第2の光測角局4に係る幾何学的な配置とのうち、いずれかの幾何学的な配置に基づいて、飛翔体2の軌道102を算出することができる。一方の幾何学的な配置では、第1の光測角局3及び第2の光測角局4が、同時刻に同じ飛翔体2からの光を受信できない観測条件でにあっても、他方の幾何学的な配置では、第1の光測角局3及び第2の光測角局4が、同時刻に同じ飛翔体2からの光を受信できる観測条件の可能性がある。よって、実施の形態4に係る軌道算出システムでは、飛翔体2の軌道を算出できない時間を短縮することができる。
The orbit calculation system according to the fourth embodiment has, for example, a second optical angle measuring station 4 arranged in an orbit 101 having an altitude lower than the orbit 102 of the projectile 2, and an altitude higher than the orbit 102 of the projectile 2. May include both with a second optical measuring station 4 located in a high orbit 101.
If the orbit calculation system includes two second optical measuring stations 4, the geometric arrangement related to the second optical measuring station 4 arranged in the orbit 101 and the arrangement in the orbit 103 are arranged. The orbit 102 of the projectile 2 can be calculated based on any of the geometrical arrangements related to the second optical angle measuring station 4. In one geometric arrangement, even if the first optical measuring station 3 and the second optical measuring station 4 are under observation conditions that the light from the same projectile 2 cannot be received at the same time, the other. In the geometric arrangement of, there is a possibility of observation conditions that the first optical measuring station 3 and the second optical measuring station 4 can receive the light from the same projectile 2 at the same time. Therefore, in the orbit calculation system according to the fourth embodiment, it is possible to shorten the time during which the orbit of the projectile 2 cannot be calculated.
 なお、本開示は、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present disclosure, any combination of the embodiments can be freely combined, any component of the embodiment can be modified, or any component can be omitted in each embodiment.
 本開示は、飛翔体の軌道を算出する軌道算出装置、軌道算出方法及び軌道算出システムに適している。 This disclosure is suitable for an orbit calculation device, an orbit calculation method, and an orbit calculation system for calculating the orbit of a flying object.
 1 照明光源、2 飛翔体、3 第1の光測角局、4 第2の光測角局、5 基準信号源、6 地上局、11 第1の集光装置、12 第2の集光装置、13 軌道算出装置、21 第1の角度算出部、22 第2の角度算出部、23 軌道算出部、31 第1の角度算出回路、32 第2の角度算出回路、33 軌道算出回路、41 メモリ、42 プロセッサ、51 遮光装置、52 位置検出部、53 角度計算部、54 時刻校正部、55 カウンター、56 制御装置、57 指向装置、58 通信部、59 記録装置、60 軌道計算部、61 軌道計算部、71 遮光装置、72 位置検出部、73 角度計算部、74 時刻校正部、75 カウンター、76 制御装置、77 指向装置、78 通信部、80 軌道データベース、81 再帰反射部、91 測距装置、92 集光装置、93 光送信部、94 光受信部、95 距離計算部、96 指向装置、101,102,103 軌道。 1 Illumination light source, 2 Flying object, 3 1st light measuring station, 4 2nd light measuring station, 5 Reference signal source, 6 Ground station, 11 1st light collecting device, 12 2nd light collecting device , 13 orbit calculation device, 21 first angle calculation unit, 22 second angle calculation unit, 23 orbit calculation unit, 31 first angle calculation circuit, 32 second angle calculation circuit, 33 orbit calculation circuit, 41 memory , 42 processor, 51 shading device, 52 position detection unit, 53 angle calculation unit, 54 time calibration unit, 55 counter, 56 control device, 57 pointing device, 58 communication unit, 59 recording device, 60 orbit calculation unit, 61 orbit calculation Unit, 71 shading device, 72 position detection unit, 73 angle calculation unit, 74 time calibration unit, 75 counter, 76 control device, 77 directional device, 78 communication unit, 80 orbit database, 81 retroreflection unit, 91 distance measuring device, 92 condensing device, 93 optical transmitter, 94 optical receiver, 95 distance calculation unit, 96 directional device, 101, 102, 103 orbits.

Claims (12)

  1.  照明光源から放射されたのち、飛翔体によって反射された光を集光する第1の集光装置の第1の時刻及び第2の時刻におけるそれぞれの指向方向と、前記飛翔体に対する光の前記第1の時刻及び前記第2の時刻におけるそれぞれの反射位置とから、前記第1の集光装置から前記飛翔体を見た第1の角度として、前記第1の時刻及び前記第2の時刻におけるそれぞれの第1の角度を算出する第1の角度算出部と、
     前記飛翔体によって反射された光を集光する第2の集光装置の前記第1の時刻及び前記第2の時刻におけるそれぞれの指向方向と、前記飛翔体に対する光の前記第1の時刻及び前記第2の時刻におけるそれぞれの反射位置とから、前記第2の集光装置から前記飛翔体を見た第2の角度として、前記第1の時刻及び前記第2の時刻におけるそれぞれの第2の角度を算出する第2の角度算出部と、
     前記第1の角度算出部により算出された第1の角度と、前記第2の角度算出部により算出された第2の角度と、前記第1の時刻及び前記第2の時刻における、前記第1の集光装置の位置及び前記第2の集光装置の位置とから、前記飛翔体の軌道を算出する軌道算出部と
     を備えた軌道算出装置。
    The direction of each of the first time and the second time of the first condensing device that condenses the light reflected by the projectile after being emitted from the illumination light source, and the first of the light to the projectile. From the time of 1 and the respective reflection positions at the time of the second, the first angle of the flying object seen from the first condensing device is the first time and the second time, respectively. The first angle calculation unit that calculates the first angle of
    The direction of each of the first time and the second time of the second light collecting device that collects the light reflected by the flying object, the first time of the light with respect to the flying object, and the above. From the respective reflection positions at the second time, as the second angle when the flying object is viewed from the second condensing device, the second angle at the first time and the second angle at the second time. The second angle calculation unit that calculates
    The first angle calculated by the first angle calculation unit, the second angle calculated by the second angle calculation unit, and the first time at the first time and the second time. An orbit calculation device including an orbit calculation unit that calculates the orbit of the flying object from the position of the light condensing device and the position of the second light condensing device.
  2.  前記第1の角度算出部は、
     前記飛翔体に対する光の前記第1の時刻の反射位置として、前記第1の時刻のときに前記第1の集光装置により集光された光を撮像した画像内での当該光の位置を検出し、
     前記飛翔体に対する光の前記第2の時刻の反射位置として、前記第2の時刻のときに前記第1の集光装置により集光された光を撮像した画像内での当該光の位置を検出し、
     前記第1の時刻における前記第1の集光装置の指向方向と、前記第1の時刻の反射位置とから、前記第1の時刻における前記第1の角度を算出し、
     前記第2の時刻における前記第1の集光装置の指向方向と、前記第2の時刻の反射位置とから、前記第2の時刻における前記第1の角度を算出することを特徴とする請求項1記載の軌道算出装置。
    The first angle calculation unit is
    As the reflection position of the light with respect to the flying object at the first time, the position of the light in the image obtained by capturing the light collected by the first condensing device at the first time is detected. death,
    As the reflection position of the light with respect to the flying object at the second time, the position of the light in the image obtained by capturing the light collected by the first condensing device at the second time is detected. death,
    The first angle at the first time is calculated from the directivity direction of the first light collector at the first time and the reflection position at the first time.
    The claim is characterized in that the first angle at the second time is calculated from the directing direction of the first light collecting device at the second time and the reflection position at the second time. 1. The orbit calculation device according to 1.
  3.  前記第2の角度算出部は、
     前記飛翔体に対する光の前記第1の時刻の反射位置として、前記第1の時刻のときに前記第2の集光装置により集光された光を撮像した画像内での当該光の位置を検出し、
     前記飛翔体に対する光の前記第2の時刻の反射位置として、前記第2の時刻のときに前記第2の集光装置により集光された光を撮像した画像内での当該光の位置を検出し、
     前記第1の時刻における前記第2の集光装置の指向方向と、前記第1の時刻の反射位置とから、前記第1の時刻における前記第2の角度を算出し、
     前記第2の時刻における前記第2の集光装置の指向方向と、前記第2の時刻の反射位置とから、前記第2の時刻における前記第2の角度を算出することを特徴とする請求項1記載の軌道算出装置。
    The second angle calculation unit is
    As the reflection position of the light with respect to the flying object at the first time, the position of the light in the image obtained by capturing the light collected by the second condensing device at the first time is detected. death,
    As the reflection position of the light with respect to the flying object at the second time, the position of the light in the image obtained by capturing the light collected by the second condensing device at the second time is detected. death,
    The second angle at the first time is calculated from the directivity direction of the second light collector at the first time and the reflection position at the first time.
    The claim is characterized in that the second angle at the second time is calculated from the directing direction of the second light collecting device at the second time and the reflection position at the second time. 1. The orbit calculation device according to 1.
  4.  前記軌道算出部は、
     前記第1の集光装置の前記第1の時刻及び前記第2の時刻におけるそれぞれの位置と、前記第2の集光装置の前記第1の時刻及び前記第2の時刻におけるそれぞれの位置とから、前記第1の時刻のときの、前記第1の集光装置と前記第2の集光装置との距離である装置間距離と、前記第2の時刻のときの前記装置間距離とを算出し、
     前記第1の時刻及び前記第2の時刻におけるそれぞれの装置間距離と、前記第1の時刻及び前記第2の時刻におけるそれぞれの第1の角度と、前記第1の時刻及び前記第2の時刻におけるそれぞれの第2の角度と、前記第1の集光装置の前記第1の時刻及び前記第2の時刻におけるそれぞれの位置とから、前記第1の集光装置から前記飛翔体までの第1の距離として、前記第1の時刻及び前記第2の時刻におけるそれぞれの第1の距離を算出し、
     前記第1の時刻及び前記第2の時刻におけるそれぞれの装置間距離と、前記第1の時刻及び前記第2の時刻におけるそれぞれの第1の角度と、前記第1の時刻及び前記第2の時刻におけるそれぞれの第2の角度と、前記第2の集光装置の前記第1の時刻及び前記第2の時刻におけるそれぞれの位置とから、前記第2の集光装置から前記飛翔体までの第2の距離として、前記第1の時刻及び前記第2の時刻におけるそれぞれの第2の距離を算出し、
     前記第1の時刻及び前記第2の時刻におけるそれぞれの第1の角度と、前記第1の時刻及び前記第2の時刻におけるそれぞれの第2の角度と、前記第1の時刻及び前記第2の時刻におけるそれぞれの第1の距離と、前記第1の時刻及び前記第2の時刻におけるそれぞれの第2の距離とから、前記飛翔体の前記第1の時刻及び前記第2の時刻におけるそれぞれの位置を算出し、
     前記飛翔体の前記第1の時刻及び前記第2の時刻におけるそれぞれの位置から、前記飛翔体の軌道を算出することを特徴とする請求項1記載の軌道算出装置。
    The orbit calculation unit
    From the respective positions of the first light collector at the first time and the second time, and from the respective positions of the second light collector at the first time and the second time. The distance between the devices, which is the distance between the first light collecting device and the second light collecting device at the first time, and the distance between the devices at the second time are calculated. death,
    The distance between the devices at the first time and the second time, the first angle at the first time and the second time, the first time and the second time. The first from the first condensing device to the projectile from the respective second angles in the above and the respective positions of the first condensing device at the first time and the second time. As the distance of, the first distances at the first time and the second time are calculated.
    The distance between the devices at the first time and the second time, the first angle at the first time and the second time, the first time and the second time. From the respective second angle in the above and the respective positions of the second light collector at the first time and the second time, the second light collector to the projectile. As the distance of, the second distances at the first time and the second time are calculated.
    The first angle at the first time and the second time, the second angle at the first time and the second time, the first time and the second time. From the respective first distances at the time and the respective second distances at the first time and the second time, the respective positions of the projectile at the first time and the second time. Is calculated,
    The orbit calculation device according to claim 1, wherein the orbit of the flying object is calculated from the respective positions of the flying object at the first time and the second time.
  5.  第1の角度算出部が、照明光源から放射されたのち、飛翔体によって反射された光を集光する第1の集光装置の第1の時刻及び第2の時刻におけるそれぞれの指向方向と、前記飛翔体に対する光の前記第1の時刻及び前記第2の時刻におけるそれぞれの反射位置とから、前記第1の集光装置から前記飛翔体を見た第1の角度として、前記第1の時刻及び前記第2の時刻におけるそれぞれの第1の角度を算出し、
     第2の角度算出部が、前記飛翔体によって反射された光を集光する第2の集光装置の前記第1の時刻及び前記第2の時刻におけるそれぞれの指向方向と、前記飛翔体に対する光の前記第1の時刻及び前記第2の時刻におけるそれぞれの反射位置とから、前記第2の集光装置から前記飛翔体を見た第2の角度として、前記第1の時刻及び前記第2の時刻におけるそれぞれの第2の角度を算出し、
     軌道算出部が、前記第1の角度算出部により算出された第1の角度と、前記第2の角度算出部により算出された第2の角度と、前記第1の時刻及び前記第2の時刻における、前記第1の集光装置の位置及び前記第2の集光装置の位置とから、前記飛翔体の軌道を算出する
     軌道算出方法。
    The first angle calculation unit collects the light reflected by the projectile after being radiated from the illumination light source. The first time as the first angle when the flying object is viewed from the first light collecting device from the respective reflection positions of the light with respect to the flying object at the first time and the second time. And each first angle at the second time is calculated.
    The second angle calculation unit collects the light reflected by the flying object, the respective directing directions at the first time and the second time of the second condensing device, and the light with respect to the flying object. From the first time and the reflection position at the second time, the first time and the second time are used as the second angle when the flying object is viewed from the second light collecting device. Calculate each second angle at time and
    The orbit calculation unit has a first angle calculated by the first angle calculation unit, a second angle calculated by the second angle calculation unit, the first time, and the second time. A method for calculating an orbit in which the orbit of the flying object is calculated from the position of the first condensing device and the position of the second condensing device.
  6.  照明光源から放射されたのち、飛翔体によって反射された光を集光する第1の集光装置と、
     前記第1の集光装置の第1の時刻及び第2の時刻におけるそれぞれの指向方向と、前記飛翔体に対する光の前記第1の時刻及び前記第2の時刻におけるそれぞれの反射位置とから、前記第1の集光装置から前記飛翔体を見た第1の角度として、前記第1の時刻及び前記第2の時刻におけるそれぞれの第1の角度を算出する第1の角度算出部と、
     前記照明光源から放射されたのち、前記飛翔体によって反射された光を集光する第2の集光装置と、
     前記第2の集光装置の前記第1の時刻及び前記第2の時刻におけるそれぞれの指向方向と、前記飛翔体に対する光の前記第1の時刻及び前記第2の時刻におけるそれぞれの反射位置とから、前記第2の集光装置から前記飛翔体を見た第2の角度として、前記第1の時刻及び前記第2の時刻におけるそれぞれの第2の角度を算出する第2の角度算出部と、
     前記第1の角度算出部により算出された第1の角度と、前記第2の角度算出部により算出された第2の角度と、前記第1の時刻及び前記第2の時刻における、前記第1の集光装置の位置及び前記第2の集光装置の位置とから、前記飛翔体の軌道を算出する軌道算出部と
     を備えた軌道算出システム。
    A first condensing device that condenses the light that is radiated from the illumination light source and then reflected by the projectile,
    From the respective pointing directions of the first light collector at the first time and the second time, and the reflection positions of the light with respect to the flying object at the first time and the second time, the said As a first angle when the flying object is viewed from the first condensing device, a first angle calculation unit for calculating the first angle at the first time and the second time, respectively.
    A second condensing device that condenses the light that is radiated from the illumination light source and then reflected by the projectile,
    From the respective pointing directions of the second light collector at the first time and the second time, and the reflection positions of the light with respect to the flying object at the first time and the second time. As a second angle when the flying object is viewed from the second condensing device, a second angle calculation unit for calculating the second angles at the first time and the second time, respectively.
    The first angle calculated by the first angle calculation unit, the second angle calculated by the second angle calculation unit, and the first time at the first time and the second time. An orbit calculation system including an orbit calculation unit that calculates the orbit of the flying object from the position of the light collector and the position of the second light collector.
  7.  前記第1の集光装置、前記第1の角度算出部及び前記軌道算出部が、第1の光測角局に搭載され、
     前記第2の集光装置及び前記第2の角度算出部が、第2の光測角局に搭載されていることを特徴とする請求項6記載の軌道算出システム。
    The first condensing device, the first angle calculation unit, and the orbit calculation unit are mounted on the first optical angle measuring station.
    The orbital calculation system according to claim 6, wherein the second light collector and the second angle calculation unit are mounted on a second optical angle measuring station.
  8.  前記第1の光測角局は、位置が固定されている固定局であり、
     前記第2の光測角局は、位置が変化する可搬局であることを特徴とする請求項7記載の軌道算出システム。
    The first optical angle measuring station is a fixed station whose position is fixed.
    The orbit calculation system according to claim 7, wherein the second optical angle measuring station is a portable station whose position changes.
  9.  前記第2の光測角局は、前記第1の時刻及び前記第2の時刻におけるそれぞれの第2の角度と、前記第2の集光装置の前記第1の時刻及び前記第2の時刻におけるそれぞれの位置とを、前記第1の光測角局に送信することを特徴とする請求項7記載の軌道算出システム。 The second optical measuring station has a second angle at the first time and the second time, and at the first time and the second time of the second condensing device. The orbit calculation system according to claim 7, wherein each position is transmitted to the first optical angle measuring station.
  10.  前記第2の光測角局は、前記第1の時刻及び前記第2の時刻におけるそれぞれの第2の角度と、前記第2の集光装置の前記第1の時刻及び前記第2の時刻におけるそれぞれの位置とを、地上局を介して、前記第1の光測角局に送信することを特徴とする請求項8記載の軌道算出システム。 The second optical measuring station has a second angle at the first time and the second time, and at the first time and the second time of the second condensing device. The orbit calculation system according to claim 8, wherein each position is transmitted to the first optical angle measuring station via a ground station.
  11.  前記第2の光測角局は、光を再帰反射させる再帰反射部を備え、
     前記第1の光測角局は、光を前記再帰反射部に向けて放射したのち、前記再帰反射部によって反射された光を受信し、放射した光と受信した光とから、前記第1の光測角局と前記第2の光測角局との距離を算出する測距装置を備えており、
     前記軌道算出部は、前記測距装置により算出された距離を用いて、前記第2の集光装置の位置を算出することを特徴とする請求項8記載の軌道算出システム。
    The second optical measuring station includes a retroreflective unit that retroreflects light.
    The first optical angle measuring station emits light toward the retroreflective unit, then receives the light reflected by the retroreflective unit, and the emitted light and the received light are used to obtain the first light. It is equipped with a distance measuring device that calculates the distance between the optical angle measuring station and the second optical angle measuring station.
    The orbit calculation system according to claim 8, wherein the orbit calculation unit calculates the position of the second condensing device by using the distance calculated by the distance measuring device.
  12.  前記第2の光測角局が、前記飛翔体の軌道と高度が異なる軌道に配置されていることを特徴とする請求項8記載の軌道算出システム。 The orbit calculation system according to claim 8, wherein the second optical angle measuring station is arranged in an orbit having an altitude different from that of the orbit of the flying object.
PCT/JP2020/027399 2020-07-14 2020-07-14 Trajectory calculation device, trajectory calculation method, and trajectory calculation system WO2022013948A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022536022A JP7134382B2 (en) 2020-07-14 2020-07-14 Trajectory calculation system
PCT/JP2020/027399 WO2022013948A1 (en) 2020-07-14 2020-07-14 Trajectory calculation device, trajectory calculation method, and trajectory calculation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/027399 WO2022013948A1 (en) 2020-07-14 2020-07-14 Trajectory calculation device, trajectory calculation method, and trajectory calculation system

Publications (1)

Publication Number Publication Date
WO2022013948A1 true WO2022013948A1 (en) 2022-01-20

Family

ID=79555118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027399 WO2022013948A1 (en) 2020-07-14 2020-07-14 Trajectory calculation device, trajectory calculation method, and trajectory calculation system

Country Status (2)

Country Link
JP (1) JP7134382B2 (en)
WO (1) WO2022013948A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622458A (en) * 1982-11-30 1986-11-11 Messerschmitt-Boelkow-Blohm Gmbh Trajectory acquisition and monitoring system
US5812247A (en) * 1995-12-23 1998-09-22 Stn Atlas Electronik Gmbh Arrangement for optically tracking moving objects and for measuring their trajectories
US20130265200A1 (en) * 2012-04-05 2013-10-10 Raytheon Company Position Determination Using Local Time Difference
US20160041266A1 (en) * 2014-08-11 2016-02-11 Gerard Dirk Smits Three-dimensional triangulation and time-of-flight based tracking systems and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622458A (en) * 1982-11-30 1986-11-11 Messerschmitt-Boelkow-Blohm Gmbh Trajectory acquisition and monitoring system
US5812247A (en) * 1995-12-23 1998-09-22 Stn Atlas Electronik Gmbh Arrangement for optically tracking moving objects and for measuring their trajectories
US20130265200A1 (en) * 2012-04-05 2013-10-10 Raytheon Company Position Determination Using Local Time Difference
US20160041266A1 (en) * 2014-08-11 2016-02-11 Gerard Dirk Smits Three-dimensional triangulation and time-of-flight based tracking systems and methods

Also Published As

Publication number Publication date
JPWO2022013948A1 (en) 2022-01-20
JP7134382B2 (en) 2022-09-09

Similar Documents

Publication Publication Date Title
US20140293266A1 (en) Local Alignment and Positioning Device and Method
TWI764322B (en) Laser scanning system atteched on moving object, laser scanning method for laser scanner atteched on moving object, and laser scanning program
JP6546658B2 (en) Satellite signal receiving apparatus, satellite signal receiving method and program
US9759605B2 (en) Low-orbit satellite-borne image-spectrum associated detection method and payload
JP2783522B2 (en) Satellite focal plane array imager
US7417717B2 (en) System and method for improving lidar data fidelity using pixel-aligned lidar/electro-optic data
US20100164807A1 (en) System and method for estimating state of carrier
JP2009188980A (en) Stereo camera having 360 degree field of view
US9823116B2 (en) Geometric calibration of a remote sensor
CN108469618B (en) Surveying device and rotating body for a rotating unit of a surveying device
US20130038717A1 (en) Image Based Position Determination
CN111226154B (en) Autofocus camera and system
JP6632468B2 (en) Moving object detecting device, observation system and moving object detecting method
WO2022013948A1 (en) Trajectory calculation device, trajectory calculation method, and trajectory calculation system
Kumar et al. Identifying reflected gps signals and improving position estimation using 3d map simultaneously built with laser range scanner
WO2023013160A1 (en) Distance estimation device, antena device, power feeding system, power feeding device, and power feeding method
Miller A 3D color terrain modeling system for small autonomous helicopters
US8830484B2 (en) Device and method for object detection and location
Schmidt et al. 3D sensor development to support EDL (entry, descent, and landing) for autonomous missions to Mars
JP7038940B1 (en) Shape and attitude estimation device, shape and attitude estimation method and shape and attitude estimation system
JP6906732B1 (en) Mobile imaging system, operation plan setting device and mobile imaging method
CN109716161A (en) Sphere shape light for detection of obstacles
US20240031670A1 (en) System and method to reduce an amount of sunlight and an amount of specular reflection in drone sensing
WO2023013171A1 (en) Distance estimation device, antena device, power feeding system, power feeding apparatus, and power feeding method
JP7409935B2 (en) Satellite transmission information correction device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536022

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945046

Country of ref document: EP

Kind code of ref document: A1