WO2022013243A1 - Soft chemistry method for synthesising micronic silica particles - Google Patents

Soft chemistry method for synthesising micronic silica particles Download PDF

Info

Publication number
WO2022013243A1
WO2022013243A1 PCT/EP2021/069508 EP2021069508W WO2022013243A1 WO 2022013243 A1 WO2022013243 A1 WO 2022013243A1 EP 2021069508 W EP2021069508 W EP 2021069508W WO 2022013243 A1 WO2022013243 A1 WO 2022013243A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
equal
particles
chosen
active ingredient
Prior art date
Application number
PCT/EP2021/069508
Other languages
French (fr)
Inventor
Karine Fabio
Franck CHUZEL
Marlene SAUVAT
Carole DUBAYLE
Original Assignee
Lifescientis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lifescientis filed Critical Lifescientis
Publication of WO2022013243A1 publication Critical patent/WO2022013243A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • C11D3/502Protected perfumes
    • C11D3/505Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay

Definitions

  • the present invention relates to the field of synthesis by soft chemistry and more particularly to the preparation of micron particles, in particular silica particles.
  • Microencapsulation is a technology allowing the immobilization of an active ingredient in a microparticle having a size of 1 pm to 1000 pm.
  • the active ingredient is finely dispersed in a continuous matrix (sphere) or coated with a layer of material (capsule or core/shell).
  • Microencapsulation is used to stabilize an active ingredient, protect it from chemical or physical phenomena of oxidation, humidity, heat, UV radiation and control its release over time or under various external stimuli (heat, friction, pH). Microencapsulation can bring high added value and new functionalities to encapsulated ingredients and thus finds many industrial applications, particularly in the pharmaceutical (human and veterinary), agri-food, cosmetics (human and veterinary), phytosanitary, perfumes and aromas.
  • microencapsulation processes are available and based on mechanical, chemical or physico-chemical methods such as atomization (spray-drying, spray-coating), extrusion, fluidized bed, supercritical fluids, microgels of alginate, coacervation, interfacial polymerization and sol-gel chemistry.
  • sol-gel silica microparticles are generally obtained by hydrolysis and condensation of a silica precursor in the presence of an organic solvent in an alkaline medium such as concentrated ammonia or in a strong acid medium, hydrophobic solvents or petro-based surfactants.
  • an organic solvent such as concentrated ammonia or in a strong acid medium, hydrophobic solvents or petro-based surfactants.
  • document US 2012/104639 discloses a process for the synthesis of silica particles from an emulsion obtained by surfactants and a conventional sol-gel condensation requiring an increase in the pH with a strong base.
  • So-called soft chemistry is increasingly sought after to develop synthetic processes that are more ecological and that integrate more harmoniously into natural processes.
  • An object of the present invention is therefore to provide a process for the synthesis of silica particles of controlled micron size, which can advantageously allow the carrying of active ingredients, which is more ecological and less energy-consuming than the conventional processes of the state of the art. technical.
  • a process for the synthesis of micron silica particles comprising the following steps: a) preparation of silica nuclei by hydrolysis of at least one silica precursor in water in a catalytic medium acid, preferably the amount of acid is chosen so as to be less than or equal to 0.1 equivalent of acid relative to the silica precursor, more preferably between 0.1 and 0.003, more preferably equal to 0.005 eq of acid, preferably the acid is chosen from a weak or strong carboxylic acid, for example formic acid or acetic acid or hydrochloric acid, then b) formation of a matrix phase by mixing at least one condensation agent chosen from at least one branched or linear basic polycationic polymer, advantageously chosen from at least one from among polyethyleneimines, polyamino acids, polyallylamines, derivatives of propylene imines, polylysines, polysaccharide derivatives with galactomannans, fructo-oligosaccharides and olig
  • the process according to the invention allows the synthesis of particles under mild chemical conditions with in particular a synthesis in water and a condensation at a moderate alkaline pH.
  • the present method of synthesis is inexpensive, efficient, gentle and rapid.
  • the process implemented is biomimetic and respects soft chemistry conditions.
  • the method does not include any organic solvent.
  • the method does not include petroleum-based surfactants. Yields range from good to excellent (min 30%, average 50% up to 90%).
  • Figures 1A and 1B are representative images by scanning microscopy (fig 1 A) and optical microscopy (fig. 1B) of silica microcapsules obtained in example 1.
  • Figures 2A and 2B are representative images by optical microscopy of silica microcapsules containing a linalool/citral mixture obtained in Example 2.
  • FIG. 3 is a representative image by optical microscopy of microparties of silica containing linalool obtained in Example 3.
  • Figure 4 is a representative image by optical microscopy of silica microcapsules containing a perfumed composition obtained in Example 4.
  • Figure 5 is a representative image by scanning electron microscopy of silica microcapsules containing a perfumed composition obtained in Example 5.
  • Figures 6A and 6B are representative scanning electron microscopy images of silica microparticles obtained in Example 6.
  • Figures 7A and 7B are representative transmission (7A) and scanning (7B) electron microscopy images of submicron and micron silica particles obtained in Example 7.
  • Figure 8 is a representative thermogram of hybrid silica particles obtained in example 7 and reference control.
  • Figure 9 is a representative scanning electron microscopy image of silica particles obtained in Example 8.
  • Figure 10 is a representative image by optical microscopy of hybrid silica microparticles containing a perfumed composition obtained in Example 9.
  • Figure 11 is a representative image by optical microscopy of hybrid silica microcapsules containing a perfumed composition obtained in Example 10.
  • Figure 12 is a representative image by optical microscopy of hybrid silica microparticles containing linalool obtained in example 11.
  • Figure 13 is a representative image by optical microscopy of hybrid silica microparticles containing citral obtained in example 12.
  • Figure 14 is a representative image by optical microscopy of hybrid silica particles containing a perfumed composition obtained in Example 13.
  • the figure is a representative image by optical microscopy of silica particles containing a perfumed composition obtained in example 14.
  • steps a) to c) are carried out at room temperature, more precisely between 15 and 30°C or even from 5°C to 45°C.
  • the silica precursor or a precursor mixture is chosen from at least one of tetraethyl orthosilicate (TEOS), tetramethyl orthosilicate (TMOS), (3-Aminopropyl)triethoxysilane (APTES), sodium metasilicate, calcium silicate, trimethoxymethylsilane (MTMOS), triethoxymethylsilane (MTEOS), triethoxysilane, trimethoxysilane, triethoxy(ethyl)silane (ETEOS), trimethoxy(ethyl)silane, isobutyl(trimethoxy)silane, propyl(trimethoxy)silane, sodium orthosilicate.
  • TEOS tetraethyl orthosilicate
  • TMOS tetramethyl orthosilicate
  • APTES (3-Aminopropyl)triethoxysilane
  • sodium metasilicate calcium silicate
  • the condensing agent is chosen from polyethylene imines, polyamino acids, polyallylamines, derivatives of propylene imines, polylysines, polysaccharide derivatives with galactomannans, fructo-oligosaccharides and oligofructoses or a mixture thereof.
  • the condensing agent is chosen from guar gum or inulin or a mixture thereof.
  • the condensing agent is chosen from guar gum modified with basic amine groups or inulin modified with basic amine groups or a mixture thereof.
  • the condensation agent is added in step b) to be in an amount less than or equal to 100g/L in the matrix phase, preferably less than or equal to 50g/L, preferably less than or equal to 20g/L .
  • the at least one silica precursor is added in step a) in an amount less than or equal to 6000 mM, preferably less than or equal to 5000 mM, preferably less than or equal to 4500 mM.
  • the at least one silica precursor is present in step c) in an amount less than or equal to 1000 mM, preferably less than or equal to 500 mM.
  • the monovalent, divalent or trivalent anion is added in a concentration less than or equal to 300 mM.
  • the monovalent, divalent or trivalent anion is chosen from at least one of a phosphate salt, a tartrate salt and a citrate salt, a sulphate salt, or a nitrate salt.
  • the silica particles are spherical.
  • the method comprises the addition of an active ingredient in step a).
  • the method comprises the addition of an active ingredient in step b).
  • the active ingredient is chosen for example from a perfuming active ingredient or a perfuming composition or a cosmetic active ingredient, such as for example a sunscreen, a phytosanitary active ingredient, an essential oil, an oily phase or else the active ingredient is silica.
  • the method comprises a step of pre-emulsifying the active ingredient in water preceding the addition of the active ingredient in step a) or b).
  • the nuclei obtained in step a) are added to the mixture of step b).
  • the mixture from step b) is added to the nuclei obtained in step a).
  • the method comprises, after step c), a step d) of separating the particles and optionally a step e) of washing the isolated particles and optionally a step f) of drying the particles.
  • the method comprises a step câ€Č) of functionalizing silica particles obtained in step c) by adding a silica precursor, step câ€Č) being simultaneous or successive to step c) and advantageously prior to step d) of separation.
  • step d) of separation is carried out by centrifugation or filtration by tangential route.
  • step e) of purification to eliminate organic residues is carried out by washing, chemical extraction or calcination.
  • the method comprises, after step c), a step f) of drying carried out by atomization.
  • micron means a particle size between 1 ⁇ m and 1000 ⁇ m more precisely between 1 ⁇ m and 450 ⁇ m.
  • the silica produced by the present process is in the form of particles of micron size.
  • micron is meant that the particles have their largest dimension less than or equal to 1000 ⁇ m, more precisely between 1 ⁇ m to 1000 ⁇ m, more preferably between 1 ⁇ m and 450 ⁇ m.
  • the silica particles are advantageously spherical in shape, which represents an advantage for their innocuousness.
  • the present invention relates to a process for the synthesis of micron silica particles under mild chemical conditions.
  • the method implements a bio-inspired synthesis.
  • the particles obtained are advantageously biocompatible and/or biodegradable.
  • the particles obtained by the process according to the invention are particularly suitable for cosmetic, human or veterinary pharmaceutical, phytosanitary, food-processing or perfumery applications.
  • the silica particles obtained according to one of the embodiments have a positive surface charge. This represents an advantage in particular in terms of passive targeting of surfaces, cells and/or tissues/epithelium which have a residual negative surface charge.
  • the positive surface charge is particularly advantageous for deposition on hair fibers for cosmetic applications or on textile fibers for detergent and laundry care applications.
  • the method advantageously comprises 3 steps.
  • step a), step b) and step c) are carried out in an aqueous medium.
  • the method comprises a step a) of preparing the silica nuclei.
  • step a) is a hydrolysis of at least one silica precursor.
  • Step a) is carried out in an aqueous medium and advantageously in an acid-catalyzed aqueous medium.
  • the at least one silica precursor is chosen from precursors:
  • R group of the alkoxy, hydrogen, linear or branched alkyl type or an alkene, which may have a functional group of the amine, carboxyl, thiol, hydroxyl or epoxy type.
  • the at least one silica precursor is advantageously chosen from at least one of tetraethyl orthosilicate (TEOS), tetramethyl orthosilicate (TMOS), (3-Aminopropyl)triethoxysilane (APTES), sodium metasilicate, calcium silicate, trimethoxymethylsilane (MTMOS), triethoxymethylsilane (MTEOS), triethoxysilane, trimethoxysilane, triethoxy(ethyl)silane (ETEOS), trimethoxy(ethyl)silane (ETMOS), isobutyl(trimethoxy)silane, propyl(trimethoxy)silane, sodium orthosilicate.
  • TEOS tetraethyl orthosilicate
  • TMOS tetramethyl orthosilicate
  • APTES 3-Aminopropyl)triethoxysilane
  • sodium metasilicate calcium silicate
  • the silica precursor is an extract of biogenic silica such as, for example, from residues of rice or diatoms, sodium silicate or a natural source of ortho silicic acid.
  • the amount of silica precursor added during step a) is less than or equal to 6000 mM, preferably less than or equal to 5000 mM, more preferably less than 4500 mM.
  • the amount of silica precursor during step c) is lower or equal to 1000 mM, more preferably less than 500 mM.
  • the amount of acid added is advantageously less than or equal to 0.1 acid equivalent. More specifically, the amount of acid is between 0.003 and 0.1 acid equivalent. As a preferred example, the amount of acid is equal to 0.005 acid equivalent.
  • the amounts of acid are given in acid equivalent with respect to the silica precursor.
  • the acid is chosen from a weak carboxylic acid or a strong acid.
  • the acid is chosen from formic acid, acetic acid or hydrochloric acid.
  • the pH of the aqueous medium in which the nuclei are prepared is at pH less than or equal to 5, preferably less than or equal to 4, preferably less than or equal to 3.
  • the pH is less than or equal to 3 with a concentration of minimal acid so as to place it in an acid-catalyzed medium making it possible to ensure mild chemical conditions for the process.
  • the nuclei are formed of a maximum of a few tens of atoms, for example, a silica nuclei has a size of the order of a few nm in diameter and preferably less than 20 nm
  • the concentration of silica precursor and of acid allow the formation of nuclei capable of stabilizing an emulsion comprising microdroplets of at least one water-insoluble active ingredient and of advantageously obtaining microparticles.
  • the method comprises a step b) of forming a matrix phase.
  • the matrix phase is understood as the phase intended to allow the formation of silica.
  • the matrix is formed by mixing at least one condensing agent and at least one monovalent, divalent, or trivalent anion or a mixture of monovalent, divalent, or trivalent anions.
  • the condensation agent is advantageously a branched or linear basic polycationic polymer. This represents an advantage compared to the more traditional use of a strong ammonia-type base.
  • the choice of a basic polycationic polymer eliminates the need to adjust the pH by adding a strong ammonia-type base to control the condensation. This makes it possible to have a more ecological process of soft chemistry type.
  • the method does not include a step intended solely for adjusting the pH.
  • the polymer is chosen to have a weight less than or equal to 800 KDa.
  • said polymer comprises polyamino acids, in particular basic ones, such as polyarginines, polylysines and polyhistidines, but also polyallylamines, polyethylene imines (PEI), polypropylene imines, derivatives of polysaccharides of galactomannan type, fructo-oligosaccharides, of oligofructoses or mixtures thereof.
  • polyamino acids in particular basic ones, such as polyarginines, polylysines and polyhistidines, but also polyallylamines, polyethylene imines (PEI), polypropylene imines, derivatives of polysaccharides of galactomannan type, fructo-oligosaccharides, of oligofructoses or mixtures thereof.
  • the condensation agent can result from the chemical modification of one of the polymers mentioned above in order to modulate its physico-chemical properties.
  • the condensation agent is more precisely a polymer rich in primary, secondary or tertiary amine functions, that is to say comprising a number of amine residues greater than or equal to 4.
  • PEI polyethylene imines
  • C2H5N repetitive unit ethylene imine type
  • a polymer can be diethylenetriamine or any of its higher homologs.
  • the condensation agent can also be a branched PEI of the following formula: H(NHCH 2 CH2)nNH 2 )n with a molecular weight of between 10,000 and 750,000, in particular between 25,000 and 750,000, or a mixture of PEI such as, for example, mixtures of PEI at 10kDa and 25kDa.
  • the condensing agent is a - a polyamine dendrimer of generation greater than 1 containing [-CH 2 CH 2 N(CH 2 CH 2 CH 2 NH 2 ) 2 ] 2 type units , by way of example DAB-Am-4, Polypropyleneimine tetramine dendrimer, generation 1.
  • Guar gum In the case of derivatives of galactomannan polysaccharides, guar gum, modified or not, is preferred. Guar gum can be modified with a synthetic or non-synthetic basic amine group, for example a quaternary ammonium group.
  • inulin is preferred.
  • Inulin can be modified with a synthetic or non-synthetic basic amine group, for example a quaternary ammonium group.
  • the condensing agent is a mixture of PEI and guar and/or inulin.
  • the condensing agent is added during step b) to reach a final mass concentration in step b) less than or equal to 100 g/L, more precisely less than or equal to 50 g/L, preferably less than or equal at 20g/L.
  • the method according to the invention makes it possible to use a small quantity of condensation agent and therefore to obtain a basic condensation pH closest to physiological conditions, preferably of the order of a pH of 9, more preferably of order of 8.
  • the condensation agent is advantageously selected to have chemical groups favorable to the formation of non-covalent interactions such as, for example, electrostatic bonds and/or hydrogen bonds. In this way, the condensing agent assists in a controlled manner the polymerization of the silica monomers.
  • the condensation agent is advantageously a bio-inspired or natural or bio-sourced polymer.
  • the condensation agent is advantageously recycled at the end of the process according to the invention. Recycling of the condensation agent is carried out by methods known to those skilled in the art such as filtration techniques on exclusion gel and/or ion exchange resins, ultrafiltration on membranes of nominal molecular weight appropriate limits. Recycling the condensation agent is an undeniable advantage.
  • the condensation agent such as in particular PEI or modified or unmodified guar gum, acts both as a catalyst accelerating the condensation reaction and as a matrix which controls the reaction and the formation of the particles for the enlargement of the nuclei from nucleation points provided by the polymer-anion association such as phosphate.
  • the at least one monovalent, divalent, trivalent anion is an anionic salt.
  • the monovalent, divalent, trivalent anion is chosen from at least one of a phosphate salt, a citrate salt, or a tartrate salt, a sulfate salt, or a nitrate salt.
  • the phosphate salt is chosen from sodium phosphate, magnesium phosphate, potassium phosphate, calcium phosphate.
  • the citrate salt is chosen from sodium citrate, potassium citrate, calcium citrate, magnesium citrate.
  • the tartrate salt is chosen from sodium tartrate, potassium tartrate, calcium tartrate, sodium and potassium tartrate, choline tartrate, ammonium tartrate.
  • the monovalent, bivalent or trivalent anion is added during step b) to reach a final concentration less than or equal to 300 mM, more precisely 200 mM, for example 130 mM.
  • a final concentration less than or equal to 300 mM, more precisely 200 mM, for example 130 mM.
  • the addition of at least one anion or a mixture of anions according to this concentration selection makes it possible to obtain the effect of the anion while limiting the impact on the pH of the condensation medium.
  • the at least one anion, or mixture of anions, monovalent, divalent or trivalent is added to the condensation agent in particular to ensure interactions electrostatics with the condensing agent and allow the formation of the matrix, in particular to control the formation of spherical particles.
  • the matrix phase obtained in step b) is added to the nuclei obtained in step a).
  • the hydrolysis phase is added in a single portion to the matrix phase. According to one possibility, the addition is done with a controlled flow or without control directly at once.
  • the method comprises a step c) of condensation in a basic medium.
  • the condensation step ensures the condensation of the silica nuclei (allowing the silica particles to grow in size) obtained in step a) in a controlled manner thanks to the matrix obtained in step b).
  • the condensation step allows the nuclei obtained in step a) to grow in size to obtain particles.
  • Step c) advantageously comprises mixing the silica nuclei and the matrix, preferably with stirring.
  • step c) of condensation is carried out at basic pH, said to be moderate, that is to say less than or equal to 10.
  • pH less than or equal to 9 even more preferably less than or equal to 8 and greater at 7.
  • the synthesis process is carried out at ambient temperature.
  • the various steps a), b) and c) are carried out at ambient temperature, which advantageously does not require any heating or cooling.
  • at least steps a), b) and c) of the synthesis process are carried out without heating or cooling. These arrangements ensure a process which consumes little energy and which allows synthesis under so-called mild conditions.
  • the ambient temperature preferably means between 18°C and 30°C, or even from 5°C to 45°C, more preferably between 20°C and 25°C.
  • the process according to the invention ensuring the synthesis of micron particles of silica advantageously comprises a stage c'), subsequent to or simultaneous with stage c) of condensation, comprising a stage of functionalization of the particles.
  • step câ€Č) is subsequent to step c)
  • step câ€Č) is successive, preferably without step intermediate.
  • the functionalization step makes it possible to modify the surface of the silica particles to lead to a targeted surface functionalization and to attribute new properties to the particles.
  • the functionalization step advantageously comprising the addition of a silica precursor.
  • the silica precursor is chosen from at least one of TEOS (tetraethyl orthosilicate), TMOS (tetramethyl orthosilicate), MTMOS (methyltrimethoxysilane), MTEOS (methyltriethoxysilane), ETEOS (ethyltriethoxysilane), ETMOS (ethyltrimethoxysilane) , APTES ((3-Aminopropyl)triethoxysilane), sodium orthosilicate or sodium metasilicate.
  • TEOS tetraethyl orthosilicate
  • TMOS tetramethyl orthosilicate
  • MTMOS methyltrimethoxysilane
  • MTEOS methyltriethoxysilane
  • ETEOS ethyltriethoxysilane
  • ETMOS ethyltrimethoxysilane
  • APTES ((3-Aminopropyl)triethoxysilane)
  • the method of the invention ensuring the synthesis of micron particles of silica advantageously comprises a step d), subsequent to step c) of condensation, preferably subsequent to step câ€Č) if present, comprising a particle separation step.
  • the separation step makes it possible to dissociate the microparties from any non-condensed nuclei, matrix phase and/or residual active ingredients.
  • the particle separation step can be carried out, for example, by centrifugation or tangential cross-flow filtration.
  • the method according to the invention ensuring the synthesis of micrometric particles of silica comprises a step e), subsequent to step c), preferably subsequent to step câ€Č) if present, and optionally to the separation step d) which allows purification of the silica microparticles by washing or chemical extraction.
  • the purification step is intended to allow the removal of organic residues from the process.
  • any organic residues are not harmful and do not impact the properties of the particles, therefore they do not do not necessarily have to be removed from the micro-parties and can bring new properties to the particles such as deposition.
  • cationic polymers do not have to be removed from microparticles to promote deposition on charged surfaces.
  • the purification step can be carried out by cycles of washing and/or centrifugation or calcination.
  • the method according to the invention ensuring the synthesis of micrometric particles of silica comprises a step of drying the microparties had the f) after step c) of condensation preferably after step c ') if present, and optionally steps d) of separation and e) of purification.
  • the drying step makes it possible to obtain microparticles in the dry form, which can be a advantage in terms of storage, for example.
  • the drying step can be carried out by atomization or spray drying.
  • this step of drying by atomization or spray-drying can lead to a step of mechanical shaping of the microparticles of silica and of active agents.
  • the method makes it possible to produce particles having a capsular or matrix morphology.
  • capsular is meant that the microparticle comprises at least one hollow vesicle.
  • the microparticle is a hollow vesicle or according to another possibility, the microparticle is a hollow vesicle itself containing hollow vesicles.
  • matrix is meant that the microparticle is a solid sphere.
  • the method is advantageously configured to encapsulate an active ingredient in the microparticles.
  • the active is also called active substance.
  • the asset can be of various nature depending on the application.
  • the active ingredient comprises at least one active molecule or a mixture of active molecules.
  • the active ingredient is chosen, for example, from a perfuming active ingredient or a perfuming composition, or a cosmetic active ingredient, such as for example a sunscreen, a phytosanitary active ingredient, an essential oil or an oily phase, or else the active ingredient is silica.
  • the method according to the invention is advantageously configured to encapsulate the active ingredient either in a micro-capsule, the active ingredient is in the core of the capsule, or in a microsphere, the active ingredient is dispersed in the encapsulation material.
  • the active ingredient comprises at least one perfuming substance.
  • the active ingredient is a perfume or a perfuming composition.
  • the active comprises at least one water-insoluble substance.
  • the active ingredient is an oily phase or an essential oil.
  • the active comprises at least one water-soluble substance.
  • the active is a polar molecule.
  • the active ingredient is silica, allowing the microparticles formed to carry silica.
  • the method according to the invention advantageously comprises a step of adding an active ingredient.
  • the step of adding an active ingredient is advantageously carried out before step c) of condensation.
  • the method does not include the addition of a surfactant, also called surfactant in English, to stabilize the active ingredient.
  • a surfactant also called surfactant in English
  • the step of adding an active ingredient comprises adding the active ingredient to the hydrolysis phase.
  • the active ingredient is added to the nuclei obtained in step a).
  • the asset is advantageously added to the nuclei obtained in step a) before mixing with the matrix phase obtained in step b).
  • the active ingredient is added at the end of step a), when the nuclei are formed so as to limit the disturbances on the formation of the nuclei during step a). This process advantageously leads to the production of particles of capsular morphology.
  • the step of adding an asset comprises adding the asset to the matrix phase.
  • the active ingredient is added to the mixture of the condensing agent and the monovalent, divalent or trivalent anion or the mixture of monovalent, divalent or trivalent anions.
  • the addition of the active is carried out after mixing the condensation agent and the anion, or the mixture of anions, monovalent, divalent or trivalent. This process advantageously leads to the production of microparticles of capsular or matrix morphology in the form of a microsphere.
  • the active ingredient is stabilized by the silica nuclei obtained in step a) by controlled acid conditions and reaction conditions. Then, the controlled condensation of the silica nuclei with the condensation agent makes it possible to condense the silica nuclei without destabilizing the active ingredient, present for example in the form of droplets and without adding surfactant.
  • the step of adding an active ingredient comprises a pre-homogenization step in water before adding the active ingredient to the hydrolysis phase or to the matrix phase.
  • the pre-homogenization step in water is also called pre-emulsion.
  • This pre-homogenization or pre-emulsion step includes mixing the active ingredient in water so as to form and stabilize droplets of active ingredients. Preferably, this step does not include the addition of a surfactant.
  • the mixing of the active ingredient in the water is done with stirring.
  • the active-water mixture is stirred for a minimum of 30 seconds and up to 5 minutes.
  • the mixture is stirred at a minimum speed of 2000 rpm and up to 10000 rpm.
  • the mixture has a mass concentration of active ingredients in water of the order of 10% by weight.
  • it is the active ingredient pre-homogenized or pre-emulsified in water which is added to the matrix phase or to the hydrolysis phase.
  • the step of adding an active ingredient is carried out during the drying step, in particular by atomization. Drying the particles in the presence of an active promotes stabilization and adsorption.
  • Example 1 embodiment for the formation of silica microcapsules
  • 2.7 g of MTMOS are hydrolyzed in 1.1 g of water in an acid catalytic medium (pHÂŁ2, HCl) for 10 minutes at room temperature with stirring (300 rpm).
  • the mixture is then added at a flow rate of 1mL/min to a mixture containing 10.4mL of sodium phosphate buffer (pH7, 500mM), 0.4g of polyethylene imine (25KDa) in 25.5g of water.
  • the medium is stirred at 250 rpm at room temperature for 45 minutes.
  • the microcapsules are isolated by centrifugation (1000g) and purified by washing with water (2 times).
  • microparties were obtained with a yield of 50% and an average diameter of 24.5 pm +/- 11 pm (standard deviation, s) measured from observations by scanning electron microscopy (SEM) and reprocessed by the ImageJ software.
  • SEM scanning electron microscopy
  • ImageJ ImageJ software.
  • the capsule-like spherical morphology of the microparticles is confirmed by optical and electron microscopy ( Figures 1A & B).
  • Example 2 embodiment for the formation of silica microcapsules in the presence of a linalool/citral mixture
  • 2.7 g of MTMOS are hydrolyzed in 1.1 g of water in an acid catalytic medium (pHÂŁ2, HCl) containing 0.5 g of a linalool/citral mixture (1/1) for 10 minutes at room temperature with stirring (300 rpm).
  • the mixture is then added at a flow rate of 1mL/min to a mixture containing 10.4mL of sodium phosphate buffer (pH7, 500mM), 0.4g of polyethylene imine (25KDa) in 25.0g of water.
  • the medium is stirred (at 2000 rpm) at room temperature for 45 minutes.
  • the microcapsules are isolated by centrifugation (1000g) and purified by washing with water (twice at 1000g).
  • Example 3 embodiment for the formation of silica microparticles in the presence of linalool
  • 2.7 g of MTMOS are hydrolyzed in 1.1 g of water in an acid catalytic medium (pHÂŁ2, HCl) containing 0.5 g of linalool for 10 minutes at room temperature with stirring (300 rpm).
  • a mixture containing 10.4mL of sodium phosphate buffer (pH7, 500mM), 0.4g of polyethylene imine (25KDa) in 25.0g of water is then added at a flow rate of 1mL/min to the hydrolyzed precursor.
  • the medium is stirred (at 250 rpm) at ambient temperature for 45 minutes.
  • the microcapsules are isolated by centrifugation (1000g) and purified by washing with water (twice at 1000g). The microparticles were obtained with a yield of 69%.
  • the average diameter of the particles is 39.9 ⁇ m +/- 21 ⁇ m (o) measured from observations by optical microscopy and reprocessed by the ImageJ software ( Figure 3).
  • the theoretical encapsulation rate of linalool is approximately 23% by weight. After extraction of the compounds in ethyl acetate, the degree of encapsulation is 19.6% by GC-MS analyses, which means that the encapsulation yield is at least 85.4%.
  • Example 4 embodiment for the formation of silica microcapsules in the presence of a perfumed composition
  • MTMOS 9.2 g of MTMOS are hydrolyzed in 3.7 g of water in an acid catalytic medium (pHÂŁ2, HCl) containing 6.3 g of a perfumed composition containing at least 30% DPG for 10 minutes at room temperature with stirring (300 rpm). The mixture is then added at a flow rate of 3.5ml_/min to a mixture containing 39.1mL of sodium phosphate buffer (pH7, 500mM), 1.7g of polyethylene imine (25KDa) in 89.5g of water. The medium is stirred at 250 rpm at room temperature for 45 minutes. The microcapsules are isolated by centrifugation (1000g) and purified by washing with water (2 times).
  • the mean diameter of the microcapsules is 141.8 pm +/- 132 pm (o, 24 pm min diameter, 639 pm max diameter) measured from observations by optical microscopy and reprocessed by the ImageJ software. ( Figure 4).
  • the theoretical encapsulation rate of the perfumed composition is approximately 50% by weight.
  • the encapsulation rate was evaluated by thermogravimetric analysis from the dry residue (powder dried for at least 2 hours at 70°C in a convection oven). The mass loss measured between 25° and 250° C. is 48%. This means that the encapsulation rate is at least 48%.
  • Example 5 embodiment for the formation of silica microcapsules in the presence of a perfumed composition
  • MTEOS 3.4 g of MTEOS are hydrolyzed in 1.2 g of water in an acid catalytic medium (pHÂŁ2, HCl) containing 0.85 g of a perfumed composition containing at least 30% of DPG for 30 minutes at room temperature with stirring (600 rpm).
  • the mixture is then added with a flow rate of 1 ml_/min to a mixture containing 10.4 ml of sodium phosphate buffer (pH7, 500 mM), 0.4 g of polyethylene imine (25 KDa) in 23.5 g of water.
  • the medium is stirred at 3000 rpm at room temperature for 45 minutes.
  • the microcapsules are isolated by centrifugation (1000g) and purified by washing with water (twice).
  • the average diameter of the microcapsules is 35.1 ⁇ m +/- 21.0 ⁇ m (o) measured from observations by optical microscopy and reprocessed by the ImageJ software.
  • the Spherical microcapsule-like morphology is observed by scanning microscopy ( Figure 5).
  • Example 6 embodiment for the formation of microparties of hybrid silica
  • MTMOS hydrolyzed in 2.0 g of water in an acid catalytic medium (pH ⁇ 3, HCl) for 15 minutes at room temperature with stirring (300 rpm).
  • microparticles are isolated by centrifugation (15000g) and purified by washing with water (3 times). The microparticles were obtained with a minimum yield of 40%.
  • the mean particle diameter is 5.3 ⁇ 2.5 pm measured from observations by scanning electron microscopy (SEM) and reprocessed by ImageJ software ( Figure 6).
  • the size distribution d50 equal to 16.7 ⁇ m was measured by laser granulometry (Master sizer S 2000 Malvern).
  • the particles have a matrix spherical morphology observed by SEM (Figure 6A).
  • the presence of residual polymer favorable to surface deposition is observed by SEM (FIG. 6B).
  • the zeta potential was determined at +11.7 mV.
  • Example 7 embodiment for the formation of hybrid silica particles (submicron and micron)
  • a solution containing 2.6 g of hydrolyzed MTMOS in 4.5 g of water in an acid catalytic medium (pH ⁇ 3, HCl) for 10 minutes at room temperature with stirring (300 rpm) is added to a mixture containing 0.3 g of modified guar gum (N - Hance3215TM Ashland - Guar hydroxypropyltrimonium chloride), 10.1 g of sodium tartrate buffer (pH 6.2, 500 mM), 0.09g of citrate buffer (pH 4.5, 0.78M), 0.05g with sodium hydroxide ( 6.25M).
  • the medium is stirred (at 250 rpm) at room temperature for 45 minutes.
  • the particles are isolated by centrifugation (15000g) and purified by washing with water (3 times).
  • the particles were obtained with a yield of 50%.
  • the mean diameter of the particles is 0.75 ⁇ m ⁇ 0.20 ⁇ m measured from observations by transmission electron microscopy and reprocessed by the ImageJ software (FIG. 7A).
  • the particles have a matrix spherical morphology observed by SEM ( Figure 7B).
  • the presence of residual polymer favorable to surface deposition is observed by SEM (FIG. 7B).
  • a thermogravimetric analysis carried out from 25 to 800°C with a 10°C/min ramp made it possible to measure a quantity of residual polymer contained in the solid dry of at least 4.6% by measuring the loss of mass between 220°C and 300°C ( Figure 8).
  • Example 8 embodiment for the formation of micro particles of hybrid silica
  • MTMOS hydrolyzed in 2.0 g of water in an acid catalytic medium (pH ⁇ 3, HCl) for 10 minutes at room temperature with stirring (300 rpm).
  • the mixture is added drop by drop with a flow rate of 2 mL/min to a solution containing 0.3 g non-cationic modified guar gum (N-Hance HP40TM Ashland), 20.3 g of a sodium tartrate buffer (pH 6.2, 500 mM), 0.08g citrate buffer (pH 4.5, 0.78M), 0.1g with sodium hydroxide (6.25M).
  • the medium is stirred (at 250 rpm) at room temperature for 45 minutes.
  • microcapsules are isolated by centrifugation (15000g) and purified by washing with water (3 times).
  • the average diameter of the microparticles is 3.7 ⁇ 1.7 pm measured from observations by scanning electron microscopy and reprocessed by the ImageJ software ( Figure 9).
  • the microparties were obtained with a minimum yield of 40%.
  • the size distribution d50 equal to 23.6 ⁇ m was measured by laser granulometry (Master sizer S 2000 Malvern).
  • the particles have a matrix spherical morphology (Figure 9).
  • the presence of residual polymer favorable to surface deposition is observed by SEM ( Figure 9).
  • Example 9 embodiment for the formation of microparties of hybrid silica in the presence of a perfumed composition
  • MTMOS hydrolyzed in 1.4 g of water in an acid catalytic medium (pH ⁇ 3, HCl) containing 0.84 g of a perfumed composition containing at least 30% DPG for 10 minutes at room temperature with stirring (300 rpm).
  • the mixture is added drop by drop with a flow rate of 1 ml_/min to a solution containing 0.3 g of cationic modified guar gum (N-Hance3215TM Ashland - Guar hydroxypropyltrimonium chloride), 10.4 g of a sodium tartrate buffer (pH 6.2, 500 mM), 0.1g citrate buffer (pH 4.5, 0.78M), 0.1g with sodium hydroxide (6.25M).
  • the medium is stirred (at 250 rpm) at ambient temperature for 45 minutes.
  • the microparticles are isolated by centrifugation (15000g) and purified by washing with water (3 times). The particles are obtained with a minimum yield of 50%.
  • the diameter of the microparticles is between 2.5 ⁇ m and 55 ⁇ m.
  • the average diameter of the microparticles is 19.4 pm ⁇ 12.8 pm (o) measured from observations by optical microscopy and reprocessed by the ImageJ software ( Figure 10).
  • Example 10 embodiment for the formation of hybrid silica microcapsules in the presence of a perfumed composition 2.7 g of MTMOS are hydrolyzed in 1.1 g of water in an acid catalytic medium (pHÂŁ2, HCl) containing 0.84 g of a perfumed composition containing at least 30% of DPG for 10 minutes at room temperature with stirring (300 rpm).
  • an acid catalytic medium pHÂŁ2, HCl
  • the mixture is then added at a flow rate of 1 ml_/min to a mixture containing 0.3 g guar gum (N-HanceHP40TM Ashland), 10.4 g of a sodium phosphate buffer (pH 7, 500 mM), 0.1 g of buffer citrate (pH 4, 0.78M) and 0.4g of polyethylene imine (25KDa) in 24.4g of water.
  • the medium is stirred (at 250 rpm) at room temperature for 45 minutes.
  • the microcapsules are isolated by centrifugation (1000g) and purified by washing with water (3 times). The particles are obtained with a minimum yield of 50%.
  • the average diameter of the microparticles is 22.8 ⁇ m ⁇ 13 ⁇ m (o) measured from observations by optical microscopy and reprocessed by the ImageJ software (FIG. 11).
  • Example 11 embodiment for the formation of microparties of hybrid silica in the presence of linalool
  • MTMOS hydrolyzed in 2.0 g of water in an acid catalytic medium (pH ⁇ 3, HCl) for 10 minutes at room temperature with stirring (300 rpm).
  • N-Hance3215TM Ashland - Guar hydroxylpropyl trimonium chloride 20.3 g sodium tartrate buffer (pH 6.2, 500 mM)
  • 0.1 g citrate buffer pH 4.5, 0.78 M
  • 0.98g of natural linalool is added dropwise with a flow rate of
  • the medium is stirred (at 250 rpm) at ambient temperature for 45 minutes.
  • the microparties are isolated by centrifugation (15000g) and purified by washing with water (3 times).
  • the microparticles were obtained with a yield of 67%.
  • the diameter of the microparticles is between 8 ⁇ m and 80 ⁇ m.
  • the average diameter of the microparticles is 56.6 pm ⁇ 17.4 pm (o) measured from observations by optical microscopy and reprocessed by the ImageJ software ( Figure 12).
  • the theoretical encapsulation rate of linalool is approximately 20.3% by weight. After extraction of the compounds in ethyl acetate, the encapsulation rate is 17.0% by GC-MS analyses, which means that the encapsulation yield is at least 83.6%.
  • Example 12 embodiment for the formation of microparties of hybrid silica in the presence of citral
  • MTMOS hydrolyzed in 2.0 g of water in an acid catalytic medium (pH ⁇ 3, HCl) for 10 minutes at room temperature with stirring (300 rpm).
  • the medium is stirred (at 250 rpm) at ambient temperature for 45 minutes.
  • the microparties are isolated by centrifugation (15000 g) and purified by washing with water (3 times). The microparties were obtained with a yield of 79%.
  • the diameter of the microparties is between 10 ⁇ m and 70 ⁇ m.
  • the average diameter of the microparticles is 39.5 ⁇ m ⁇ 8.0 ⁇ m (o) measured from observations by optical microscopy and reprocessed by the ImageJ software ( Figure 13).
  • the theoretical encapsulation rate of linalool is approximately 20.9% by weight.
  • the degree of encapsulation is 15.9% by GC-MS analyses, which means that the encapsulation yield is at least 76.34%.
  • Example 13 embodiment for the formation of hybrid silica microparticles in the presence of a perfumed composition
  • MTMOS hydrolyzed in 1.4 g of water in an acid catalytic medium (pH ⁇ 3, HCl) containing 0.84 g of a perfumed composition containing at least 30% DPG for 10 minutes at room temperature with stirring (300 rpm).
  • a solution containing 11.1 g of cationic modified inulin (QuatinTM1280, Cosun), 10.4 g of a phosphate buffer (pH 7, 500 mM) and 0.55 g with sodium hydroxide (6.25 M) is added drop by drop. drop with a flow rate of 1mL/min to the hydrolyzed precursor.
  • the medium is stirred (at 250 rpm) at ambient temperature for 45 minutes.
  • microparticles are isolated by centrifugation (1500g) and purified by washing with water (3 times). The particles were obtained with a yield of 46%.
  • the diameter of the microparticles is between 10 ⁇ m and 160 ⁇ m, the average diameter is 15.5 ⁇ m ⁇ 7.6 ⁇ m (o) measured from observations by optical microscopy and reprocessed by the ImageJ software ( Figure 14A).
  • the matrix spherical morphology is checked by scanning electron microscopy (FIG. 14B).
  • Example 14 embodiment for the formation of silica microcapsules in the presence of a perfumed composition
  • 2.7 g of MTMOS are hydrolyzed in 1.1 g of water in an acid catalytic medium (pHÂŁ2, HCl) for 10 minutes at room temperature with stirring (300 rpm).
  • the mixture is then added at a flow rate of 1ml_/min to a mixture containing 10.4mL of sodium phosphate buffer (pH7, 500mM), 0.4g of polyethylene imine (25KDa) in 23.9g of water and 1.7g of a composition scented containing at least 70% DPG.
  • the medium is stirred at 250 rpm at room temperature for 45 minutes.
  • the microcapsules are isolated by centrifugation (1000g) and purified by washing with water (twice).
  • the average diameter of the microcapsules is 16.7 pm +/- 6.0 pm (o) measured from observations by optical microscopy and reprocessed by ImageJ software.
  • the microcapsule-like spherical morphology is observed by optical microscopy ( Figure 15).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)
  • Cosmetics (AREA)

Abstract

The invention relates to a method for the synthesis of micronic silica particles, comprising the following steps: a) preparing silica nuclei by hydrolysis of at least one silica precursor in water in an acidic catalytic medium, the acid content preferably being chosen so as to be less than or equal to an acid equivalent of 0.1, b) forming a matrix phase by mixing at least one condensing agent chosen from at least one basic branched or linear polycationic polymer, and at least one monovalent, divalent or trivalent anion, c) condensing, in a basic medium, the silica nuclei obtained in step a) by stirring to mix the silica nuclei obtained in step a) and the matrix phase obtained in step b) at an alkaline pH of less than or equal to 10. The present invention relates to the field of synthesis and more specifically to the preparation of micronic silica particles, in particular silica particles.

Description

Procédé de synthÚse par chimie douce de particules de silice microniques Synthesis process by mild chemistry of micron silica particles
DOMAINE TECHNIQUE TECHNICAL AREA
La présente invention concerne le domaine de la synthÚse par chimie douce et plus particuliÚrement pour la préparation de particules microniques, notamment de particules de silice. The present invention relates to the field of synthesis by soft chemistry and more particularly to the preparation of micron particles, in particular silica particles.
ETAT DE LA TECHNIQUE STATE OF THE ART
La microencapsulation est une technologie permettant l’immobilisation d’un ingrĂ©dient actif dans une microparticule prĂ©sentant une taille de 1 pm Ă  1000 pm. L’ingrĂ©dient actif est finement dispersĂ© dans une matrice continue (sphĂšre) ou enrobĂ© d’une couche de matĂ©riau (capsule ou cƓur/Ă©corce). Microencapsulation is a technology allowing the immobilization of an active ingredient in a microparticle having a size of 1 pm to 1000 pm. The active ingredient is finely dispersed in a continuous matrix (sphere) or coated with a layer of material (capsule or core/shell).
La microencapsulation est utilisĂ©e pour stabiliser un actif, le protĂ©ger de phĂ©nomĂšnes chimiques ou physiques d’oxydation, humiditĂ©, chaleur, rayonnements UV et contrĂŽler sa libĂ©ration dans le temps ou sous divers stimuli extĂ©rieurs (chaleur, frottement, pH). La microencapsulation peut apporter une forte valeur ajoutĂ©e et de nouvelles fonctionnalitĂ©s aux ingrĂ©dients encapsulĂ©s et trouve ainsi de nombreuses applications industrielles notamment dans l’industrie pharmaceutique (humaine et vĂ©tĂ©rinaire), agroalimentaire, cosmĂ©tique (humaine et vĂ©tĂ©rinaire), phytosanitaire, des parfums et des arĂŽmes. Microencapsulation is used to stabilize an active ingredient, protect it from chemical or physical phenomena of oxidation, humidity, heat, UV radiation and control its release over time or under various external stimuli (heat, friction, pH). Microencapsulation can bring high added value and new functionalities to encapsulated ingredients and thus finds many industrial applications, particularly in the pharmaceutical (human and veterinary), agri-food, cosmetics (human and veterinary), phytosanitary, perfumes and aromas.
De nombreux procĂ©dĂ©s de microencapsulation sont disponibles et basĂ©s sur des mĂ©thodes mĂ©caniques, chimiques ou physico-chimiques tels que l’atomisation (spray- drying, spray-coating), l’extrusion, le lit fluidisĂ©, les fluides supercritiques, les microgels d’alginate, la coacervation, la polymĂ©risation interfaciale et la chimie sol-gel. Many microencapsulation processes are available and based on mechanical, chemical or physico-chemical methods such as atomization (spray-drying, spray-coating), extrusion, fluidized bed, supercritical fluids, microgels of alginate, coacervation, interfacial polymerization and sol-gel chemistry.
Les nombreux avantages de la microencapsulation dans des particules de silice ou hybrides ont été décrits notamment dans le document US10,099, 194 B2 qui concerne des microparticules sol-gel de silice. The many advantages of microencapsulation in silica or hybrid particles have been described in particular in document US Pat. No. 10,099, 194 B2 which relates to sol-silica gel microparticles.
Ces microparticules sol-gel de silice sont gĂ©nĂ©ralement obtenues par hydrolyse et condensation d’un prĂ©curseur de silice en prĂ©sence de solvant organique en milieu alcalin comme l'ammoniaque concentrĂ©e ou en milieu acide fort, de solvants hydrophobes ou de tensioactifs pĂ©trosourcĂ©s. On connaĂźt notamment du document US 2012/104639 un procĂ©dĂ© de synthĂšse de particules de silices Ă  partir une Ă©mulsion obtenue par des agents surfactants et une condensation sol-gel classique nĂ©cessitant une augmentation du pH par une base forte. These sol-gel silica microparticles are generally obtained by hydrolysis and condensation of a silica precursor in the presence of an organic solvent in an alkaline medium such as concentrated ammonia or in a strong acid medium, hydrophobic solvents or petro-based surfactants. In particular, document US 2012/104639 discloses a process for the synthesis of silica particles from an emulsion obtained by surfactants and a conventional sol-gel condensation requiring an increase in the pH with a strong base.
La chimie dite douce est de plus en plus recherchĂ©e pour dĂ©velopper des procĂ©dĂ©s de synthĂšse qui sont plus Ă©cologiques et qui s’intĂ©grent de façon plus harmonieuse dans les processus naturels. So-called soft chemistry is increasingly sought after to develop synthetic processes that are more ecological and that integrate more harmoniously into natural processes.
Un objet de la présente invention est donc de proposer un procédé de synthÚse de particule de silice de taille contrÎlée micronique, pouvant avantageusement permettre l'emport d'actifs, qui soit plus écologique et moins énergivore que les procédés classiques de l'état de la technique. An object of the present invention is therefore to provide a process for the synthesis of silica particles of controlled micron size, which can advantageously allow the carrying of active ingredients, which is more ecological and less energy-consuming than the conventional processes of the state of the art. technical.
Les autres objets, caractĂ©ristiques et avantages de la prĂ©sente invention apparaĂźtront Ă  l'examen de la description suivante et des dessins d'accompagnement. Il est entendu que d'autres avantages peuvent ĂȘtre incorporĂ©s. The other objects, features and advantages of the present invention will become apparent from a review of the following description and the accompanying drawings. It is understood that other benefits may be incorporated.
RESUME ABSTRACT
Pour atteindre cet objectif, selon un mode de rĂ©alisation on prĂ©voit un procĂ©dĂ© de synthĂšse de particules de silice microniques comprenant les Ă©tapes suivantes : a) prĂ©paration de nuclĂ©i de silice par hydrolyse d'au moins un prĂ©curseur de silice dans l'eau en milieu catalytique acide, prĂ©fĂ©rentiellement la quantitĂ© d'acide est choisie de sorte Ă  ĂȘtre infĂ©rieure ou Ă©gale Ă  0,1 Ă©quivalent d’acide par rapport au prĂ©curseur de silice , plus prĂ©fĂ©rentiellement comprise entre 0,1 et 0,003, plus prĂ©fĂ©rentiellement Ă©gale Ă  0,005 eq d’acide, prĂ©fĂ©rentiellement l'acide est choisi parmi un acide carboxylique faible ou fort par exemple l'acide formique ou l'acide acĂ©tique ou l'acide chlorhydrique, puis b) formation d'une phase matrice par mĂ©lange d'au moins un agent de condensation choisi parmi au moins un polymĂšre polycationique basique branchĂ© ou linĂ©aire, avantageusement choisi parmi l'un au moins parmi les polyĂ©thylĂšnes imines, les polyaminoacides, les polyallylamines, des dĂ©rivĂ©s des propylĂšnes imines, les polylysines, les dĂ©rivĂ©s polysaccharides Ă  galactomannanes, fructo-oligosaccharides et oligofructoses ou un mĂ©lange, et d'au moins un anion monovalent, divalent, trivalent choisi parmi l'un au moins parmi un sel de phosphate, un sel de tartrate et un sel de citrate, un sel de sulfate, ou un sel de nitrate, c) condensation en milieu basique des nuclĂ©is de silice obtenus Ă  l'Ă©tape a) par mĂ©lange sous agitation des nuclĂ©is de silice obtenus Ă  l'Ă©tape a) et de la phase matrice obtenue Ă  l'Ă©tape b) Ă  pH alcalin infĂ©rieur ou Ă©gal Ă  10, classiquement dit pH modĂ©rĂ© ou faible, prĂ©fĂ©rentiellement pH infĂ©rieur ou Ă©gal Ă  9, prĂ©fĂ©rablement pH infĂ©rieur ou Ă©gal Ă  8. To achieve this objective, according to one embodiment, a process for the synthesis of micron silica particles is provided, comprising the following steps: a) preparation of silica nuclei by hydrolysis of at least one silica precursor in water in a catalytic medium acid, preferably the amount of acid is chosen so as to be less than or equal to 0.1 equivalent of acid relative to the silica precursor, more preferably between 0.1 and 0.003, more preferably equal to 0.005 eq of acid, preferably the acid is chosen from a weak or strong carboxylic acid, for example formic acid or acetic acid or hydrochloric acid, then b) formation of a matrix phase by mixing at least one condensation agent chosen from at least one branched or linear basic polycationic polymer, advantageously chosen from at least one from among polyethyleneimines, polyamino acids, polyallylamines, derivatives of propylene imines, polylysines, polysaccharide derivatives with galactomannans, fructo-oligosaccharides and oligofructoses or a mixture, and of at least one monovalent, divalent, trivalent anion chosen from at least one from a phosphate salt, a tartrate salt and a citrate salt, a sulphate salt, or a nitrate salt, c) condensation in a basic medium of the silica nuclei obtained in step a) by mixing with stirring the silica nuclei obtained in step a) and of the matrix phase obtained in step b) at alkaline pH less than or equal to 10, conventionally called moderate or low pH, preferably pH less than or equal to 9, preferably pH less than or equal to 8.
Le procédé selon l'invention permet la synthÚse de particules dans des conditions de chimie douce avec notamment une synthÚse dans de l'eau et une condensation à pH alcalin modéré. The process according to the invention allows the synthesis of particles under mild chemical conditions with in particular a synthesis in water and a condensation at a moderate alkaline pH.
Le présent procédé de synthÚse est peu coûteux, efficace, doux et rapide. The present method of synthesis is inexpensive, efficient, gentle and rapid.
Le procĂ©dĂ© mis en Ɠuvre est biomimĂ©tique et respecte les conditions de chimie douce. The process implemented is biomimetic and respects soft chemistry conditions.
Avantageusement, le procĂ©dĂ© ne comprend pas de solvant organique. Avantageusement, le procĂ©dĂ© ne comprend pas de tensioactifs pĂ©trosourcĂ©s. Les rendements sont de bon Ă  excellent (min 30%, moyenne 50% jusqu’à 90%). Advantageously, the method does not include any organic solvent. Advantageously, the method does not include petroleum-based surfactants. Yields range from good to excellent (min 30%, average 50% up to 90%).
BREVE DESCRIPTION DES FIGURES BRIEF DESCRIPTION OF FIGURES
Les buts, objets, ainsi que les caractĂ©ristiques et avantages de l’invention ressortiront mieux de la description dĂ©taillĂ©e d’un mode de rĂ©alisation de cette derniĂšre qui est illustrĂ© par les dessins d’accompagnement suivants dans lesquels : The aims, objects, as well as the characteristics and advantages of the invention will emerge better from the detailed description of an embodiment of the latter which is illustrated by the following accompanying drawings in which:
Les figures 1A et 1B sont des images reprĂ©sentatives par microscopie Ă  balayage (fig 1 A) et microscopie optique (fig. 1B) de microcapsules de silice obtenues Ă  l’exemple 1. Figures 1A and 1B are representative images by scanning microscopy (fig 1 A) and optical microscopy (fig. 1B) of silica microcapsules obtained in example 1.
Les figures 2A et 2B sont des images reprĂ©sentatives par microscopie optique de microcapsules de silice contenant un mĂ©lange linalol/citral obtenues Ă  l’exemple 2. Figures 2A and 2B are representative images by optical microscopy of silica microcapsules containing a linalool/citral mixture obtained in Example 2.
La figure 3 est une image reprĂ©sentative par microscopie optique de micro parti eu les de silice contenant du linalol obtenues Ă  l’exemple 3. La figure 4 est une image reprĂ©sentative par microscopie optique de microcapsules de silice contenant une composition parfumĂ©e obtenues Ă  l’exemple 4. FIG. 3 is a representative image by optical microscopy of microparties of silica containing linalool obtained in Example 3. Figure 4 is a representative image by optical microscopy of silica microcapsules containing a perfumed composition obtained in Example 4.
La figure 5 est une image reprĂ©sentative par microscopie Ă©lectronique Ă  balayage de microcapsules de silice contenant une composition parfumĂ©e obtenues Ă  l’exemple 5. Figure 5 is a representative image by scanning electron microscopy of silica microcapsules containing a perfumed composition obtained in Example 5.
Les figures 6 A et 6B sont des images reprĂ©sentatives par microscopie Ă©lectronique Ă  balayage de microparticules de silice obtenues Ă  l’exemple 6. Figures 6A and 6B are representative scanning electron microscopy images of silica microparticles obtained in Example 6.
Les figures 7 A et 7B sont des images reprĂ©sentatives par microscopie Ă©lectronique Ă  transmission (7A) et Ă  balayage (7B) de particules de silice submicroniques et microniques obtenues Ă  l’exemple 7. Figures 7A and 7B are representative transmission (7A) and scanning (7B) electron microscopy images of submicron and micron silica particles obtained in Example 7.
La Figure 8 est un thermogramme reprĂ©sentatif de particules de silice hybride obtenues Ă  l’exemple 7 et contrĂŽle de rĂ©fĂ©rence. Figure 8 is a representative thermogram of hybrid silica particles obtained in example 7 and reference control.
La figure 9 est une image reprĂ©sentative par microscopie Ă©lectronique Ă  balayage de particules de silice obtenues Ă  l’exemple 8. Figure 9 is a representative scanning electron microscopy image of silica particles obtained in Example 8.
La figure 10 est une image reprĂ©sentative par microscopie optique de microparticules de silice hybride contenant une composition parfumĂ©e obtenues Ă  l’exemple 9. Figure 10 is a representative image by optical microscopy of hybrid silica microparticles containing a perfumed composition obtained in Example 9.
La figure 11 est une image reprĂ©sentative par microscopie optique de microcapsules de silice hybride contenant une composition parfumĂ©e obtenues Ă  l’exemple 10. Figure 11 is a representative image by optical microscopy of hybrid silica microcapsules containing a perfumed composition obtained in Example 10.
La figure 12 est une image reprĂ©sentative par microscopie optique de microparticules de silice hybride contenant du linalol obtenues Ă  l’exemple 11. Figure 12 is a representative image by optical microscopy of hybrid silica microparticles containing linalool obtained in example 11.
La figure 13 est une image reprĂ©sentative par microscopie optique de microparticules de silice hybride contenant du citral obtenues Ă  l’exemple 12. Figure 13 is a representative image by optical microscopy of hybrid silica microparticles containing citral obtained in example 12.
La figure 14 est une image reprĂ©sentative par microscopie optique de particules de silice hybride contenant une composition parfumĂ©e obtenues Ă  l’exemple 13. Figure 14 is a representative image by optical microscopy of hybrid silica particles containing a perfumed composition obtained in Example 13.
La figure est 15 une image reprĂ©sentative par microscopie optique de particules de silice contenant une composition parfumĂ©e obtenues Ă  l’exemple 14. The figure is a representative image by optical microscopy of silica particles containing a perfumed composition obtained in example 14.
Les dessins sont donnĂ©s Ă  titre d'exemples et ne sont pas limitatifs de l’invention. Ils constituent des reprĂ©sentations schĂ©matiques de principe destinĂ©es Ă  faciliter la comprĂ©hension de l’invention et ne sont pas nĂ©cessairement Ă  l'Ă©chelle des applications pratiques. The drawings are given by way of examples and do not limit the invention. They constitute schematic representations of principle intended to facilitate understanding of the invention and are not necessarily scaled to practical applications.
DESCRIPTION DÉTAILLÉE DETAILED DESCRIPTION
Avant d’entamer une revue dĂ©taillĂ©e de modes de rĂ©alisation de l’invention, sont Ă©noncĂ©es ci-aprĂšs des caractĂ©ristiques optionnelles qui peuvent Ă©ventuellement ĂȘtre utilisĂ©es en association ou alternativement : Before starting a detailed review of embodiments of the invention, optional characteristics are set out below which may possibly be used in combination or alternatively:
Selon un exemple, les étapes a) à c) sont réalisées à température ambiante, plus précisément entre 15 et 30 °C voir de 5°C à 45°C. According to one example, steps a) to c) are carried out at room temperature, more precisely between 15 and 30°C or even from 5°C to 45°C.
Selon un exemple, le précurseur de silice ou un mélange de précurseur est choisi parmi l'un au moins parmi orthosilicate de tétraéthyle (TEOS), orthosilicate de tétraméthyle (TMOS), (3-Aminopropyl)triéthoxysilane (APTES), métasilicate de sodium, calcium silicate, triméthoxyméthylsilane (MTMOS), triéthoxyméthylsilane (MTEOS), triéthoxysilane, triméthoxysilane, triéthoxy(éthyl)silane (ETEOS), triméthoxy(éthyl)silane, isobutyl(triméthoxy)silane, propyl(triméthoxy)silane, orthosilicate de sodium. According to one example, the silica precursor or a precursor mixture is chosen from at least one of tetraethyl orthosilicate (TEOS), tetramethyl orthosilicate (TMOS), (3-Aminopropyl)triethoxysilane (APTES), sodium metasilicate, calcium silicate, trimethoxymethylsilane (MTMOS), triethoxymethylsilane (MTEOS), triethoxysilane, trimethoxysilane, triethoxy(ethyl)silane (ETEOS), trimethoxy(ethyl)silane, isobutyl(trimethoxy)silane, propyl(trimethoxy)silane, sodium orthosilicate.
Selon un exemple, l'agent de condensation est choisi parmi les polyéthylÚnes imines, les polyaminoacides, les polyallylamines, des dérivés des propylÚnes imines, les polylysines, les dérivés polysaccharides à galactomannanes, fructo-oligosaccharides et oligofructoses ou un mélange de ceux-ci. According to one example, the condensing agent is chosen from polyethylene imines, polyamino acids, polyallylamines, derivatives of propylene imines, polylysines, polysaccharide derivatives with galactomannans, fructo-oligosaccharides and oligofructoses or a mixture thereof.
Selon un exemple, l'agent de condensation est choisi parmi la gomme de guar ou l'inuline ou un mélange de ceux-ci. According to one example, the condensing agent is chosen from guar gum or inulin or a mixture thereof.
Selon un exemple, l'agent de condensation est choisi parmi la gomme de guar modifiée avec des groupements amines basiques ou l'inuline modifiée avec des groupements amines basiques ou un mélange de ceux-ci. According to one example, the condensing agent is chosen from guar gum modified with basic amine groups or inulin modified with basic amine groups or a mixture thereof.
Selon un exemple, l'agent de condensation est ajoutĂ© Ă  l’étape b) pour ĂȘtre en quantitĂ© infĂ©rieure ou Ă©gale Ă  100g/L dans la phase matrice, prĂ©fĂ©rentiellement infĂ©rieure ou Ă©gale Ă  50g/L, prĂ©fĂ©rentiellement infĂ©rieure ou Ă©gale Ă  20g/L. According to one example, the condensation agent is added in step b) to be in an amount less than or equal to 100g/L in the matrix phase, preferably less than or equal to 50g/L, preferably less than or equal to 20g/L .
Selon un exemple, le au moins un prĂ©curseur de silice est ajoutĂ© Ă  l’étape a) en quantitĂ© infĂ©rieure ou Ă©gale Ă  6000mM, prĂ©fĂ©rentiellement infĂ©rieure ou Ă©gale 5000mM, prĂ©fĂ©rentiellement infĂ©rieure ou Ă©gale 4500 mM. According to one example, the at least one silica precursor is added in step a) in an amount less than or equal to 6000 mM, preferably less than or equal to 5000 mM, preferably less than or equal to 4500 mM.
Selon un exemple, le au moins un prĂ©curseur de silice est prĂ©sent Ă  l’étape c) en quantitĂ© infĂ©rieure ou Ă©gale Ă  lOOOmM, prĂ©fĂ©rentiellement infĂ©rieure ou Ă©gale Ă  500mM. According to one example, the at least one silica precursor is present in step c) in an amount less than or equal to 1000 mM, preferably less than or equal to 500 mM.
Selon un exemple, l’anion monovalent, divalent ou trivalent est ajoutĂ© en concentration infĂ©rieure ou Ă©gale Ă  300mM. According to one example, the monovalent, divalent or trivalent anion is added in a concentration less than or equal to 300 mM.
Selon un exemple, l’anion monovalent, divalent ou trivalent est choisi parmi l'un au moins parmi un sel de phosphate, un sel de tartrate et un sel de citrate, un sel de sulfate, ou un sel de nitrate. According to one example, the monovalent, divalent or trivalent anion is chosen from at least one of a phosphate salt, a tartrate salt and a citrate salt, a sulphate salt, or a nitrate salt.
Selon un exemple, les particules de silice sont sphériques. According to one example, the silica particles are spherical.
Selon un exemple, le procĂ©dĂ© comprend l'ajout d’un actif Ă  l'Ă©tape a). According to one example, the method comprises the addition of an active ingredient in step a).
Selon un exemple, le procĂ©dĂ© comprend l'ajout d’un actif Ă  l'Ă©tape b). According to one example, the method comprises the addition of an active ingredient in step b).
L’actif est choisi par exemple parmi un actif parfumant ou une composition parfumante ou un actif cosmĂ©tique, tel que par exemple un filtre solaire, un actif phytosanitaire, une huile essentielle, une phase huileuse ou encore l’actif est de la silice. Selon un exemple, le procĂ©dĂ© comprend une Ă©tape de prĂ©-Ă©mulsion de l’actif dans l’eau prĂ©cĂ©dent l’ajout de l’actif Ă  l’étape a) ou b). The active ingredient is chosen for example from a perfuming active ingredient or a perfuming composition or a cosmetic active ingredient, such as for example a sunscreen, a phytosanitary active ingredient, an essential oil, an oily phase or else the active ingredient is silica. According to one example, the method comprises a step of pre-emulsifying the active ingredient in water preceding the addition of the active ingredient in step a) or b).
Selon un exemple, les nucléis obtenus à l'étape a) sont ajoutés au mélange de l'étape b). According to one example, the nuclei obtained in step a) are added to the mixture of step b).
Selon un exemple, le mélange de l'étape b) est ajouté aux nucléis obtenus à l'étape a). According to one example, the mixture from step b) is added to the nuclei obtained in step a).
Selon un exemple, le procédé comprend aprÚs l'étape c) une étape d) de séparation des particules et éventuellement une étape e) de lavage des particules isolées et éventuellement une étape f) de séchage des particules. According to one example, the method comprises, after step c), a step d) of separating the particles and optionally a step e) of washing the isolated particles and optionally a step f) of drying the particles.
Selon un exemple, le procĂ©dĂ© comprend une Ă©tape c') de fonctionnalisation particules de silice obtenues Ă  l'Ă©tape c) par ajout d'un prĂ©curseur de silice, l'Ă©tape c') Ă©tant simultanĂ©e ou successive Ă  l'Ă©tape c) et avantageusement antĂ©rieure Ă  l'Ă©tape d) de sĂ©paration. According to one example, the method comprises a step câ€Č) of functionalizing silica particles obtained in step c) by adding a silica precursor, step câ€Č) being simultaneous or successive to step c) and advantageously prior to step d) of separation.
Selon un exemple, l'étape d) de séparation est réalisée par centrifugation ou filtration par voie tangentielle. According to one example, step d) of separation is carried out by centrifugation or filtration by tangential route.
Selon un exemple, l'étape e) de purification pour éliminer des résidus organiques est réalisée par lavage, extraction chimique ou calcination. According to one example, step e) of purification to eliminate organic residues is carried out by washing, chemical extraction or calcination.
Selon un exemple, le procédé comprend aprÚs l'étape c) une étape f) de séchage réalisée par atomisation. According to one example, the method comprises, after step c), a step f) of drying carried out by atomization.
On entend par « micronique » une taille de particule comprise entre 1pm et 1000pm plus prĂ©cisĂ©ment entre 1pm et 450pm. The term "micron" means a particle size between 1 ÎŒm and 1000 ÎŒm more precisely between 1 ÎŒm and 450 ÎŒm.
Selon une possibilitĂ©, la silice produite par le prĂ©sent procĂ©dĂ© est sous forme de particules de taille micronique. On entend par micronique que les particules ont leur plus grande dimension infĂ©rieure ou Ă©gale Ă  1000 pm, plus prĂ©cisĂ©ment comprise entre 1 pm Ă  1000 pm, plus prĂ©fĂ©rentiellement entre 1pm et 450pm. According to one possibility, the silica produced by the present process is in the form of particles of micron size. By micron is meant that the particles have their largest dimension less than or equal to 1000 ÎŒm, more precisely between 1 ÎŒm to 1000 ÎŒm, more preferably between 1 ÎŒm and 450 ÎŒm.
Les particules de silice sont avantageusement de forme sphérique ce qui représente un avantage pour leur innocuité. The silica particles are advantageously spherical in shape, which represents an advantage for their innocuousness.
La présente invention concerne un procédé de synthÚse de particules de silice microniques dans des conditions de chimie douce. The present invention relates to a process for the synthesis of micron silica particles under mild chemical conditions.
PrĂ©fĂ©rentiellement, le procĂ©dĂ© met en Ɠuvre une synthĂšse bio-inspirĂ©e. Preferably, the method implements a bio-inspired synthesis.
Les particules obtenues sont avantageusement biocompatibles et/ou biodégradables. The particles obtained are advantageously biocompatible and/or biodegradable.
Les particules obtenues par le procĂ©dĂ© selon l’invention sont particuliĂšrement adaptĂ©es aux applications cosmĂ©tiques, pharmaceutiques humaines ou vĂ©tĂ©rinaires, phytosanitaires, agroalimentaires ou en parfumerie. Les particules de silice obtenues suivant un des modes de rĂ©alisation prĂ©sentent une charge de surface positive. Ceci reprĂ©sente un avantage notamment en terme de ciblage passif de surfaces, cellules et/ou tissus/Ă©pithĂ©lium qui prĂ©sentent une charge rĂ©siduelle de surface nĂ©gative. La charge de surface positive est notamment avantageuse pour la dĂ©position sur des fibres capillaires pour des applications cosmĂ©tiques ou sur des fibres textiles pour des applications de dĂ©tergence et soin du linge. The particles obtained by the process according to the invention are particularly suitable for cosmetic, human or veterinary pharmaceutical, phytosanitary, food-processing or perfumery applications. The silica particles obtained according to one of the embodiments have a positive surface charge. This represents an advantage in particular in terms of passive targeting of surfaces, cells and/or tissues/epithelium which have a residual negative surface charge. The positive surface charge is particularly advantageous for deposition on hair fibers for cosmetic applications or on textile fibers for detergent and laundry care applications.
Le procédé comprend avantageusement 3 étapes. The method advantageously comprises 3 steps.
Préférentiellement, les trois étapes : étape a), étape b) et étape c) sont réalisées en milieu aqueux. Preferably, the three steps: step a), step b) and step c) are carried out in an aqueous medium.
Selon un mode de réalisation, le procédé comprend une étape a) de préparation des nucléis de silice. Selon l'invention, l'étape a) est une hydrolyse d'au moins un précurseur de silice. L'étape a) est réalisée dans un milieu aqueux et avantageusement en milieu aqueux acido-catalysé. According to one embodiment, the method comprises a step a) of preparing the silica nuclei. According to the invention, step a) is a hydrolysis of at least one silica precursor. Step a) is carried out in an aqueous medium and advantageously in an acid-catalyzed aqueous medium.
Selon un mode de réalisation, le au moins un précurseur de silice est choisi parmi des précurseurs : According to one embodiment, the at least one silica precursor is chosen from precursors:
‱ de type siloxy rĂ©pondant Ă  la formule (R)xSi(0-R1)4.x avec R1= groupement alkyle (C1-C4) ou hydroxyle, et ‱ of the siloxy type corresponding to the formula (R)xSi(0-R1) 4.x with R1= (C1-C4) alkyl or hydroxyl group, and
‱ R= groupement type alkoxy, hydrogĂšne, alkyle linĂ©aire ou branchĂ© ou un alcĂšne, pouvant prĂ©senter un groupement fonctionnel type amine, carboxyle, thiol, hydroxyle, Ă©poxy. ‱ R= group of the alkoxy, hydrogen, linear or branched alkyl type or an alkene, which may have a functional group of the amine, carboxyl, thiol, hydroxyl or epoxy type.
‱ de type silicate rĂ©pondant Ă  la formule SiO M=mĂ©tal tel que Ca, Na par exemple, (M20)x (Si02)yx=1 ou 2, y = 1 ou 2. ‱ of the silicate type corresponding to the formula SiO M=metal such as Ca, Na for example, (M20) x (Si02) y x=1 or 2, y = 1 or 2.
Préférentiellement, le au moins un précurseur de silice est avantageusement choisi parmi l'un au moins parmi orthosilicate de tétraéthyle (TEOS), orthosilicate de tétraméthyle (TMOS), (3-Aminopropyl)triéthoxysilane (APTES), métasilicate de sodium, calcium silicate, triméthoxyméthylsilane (MTMOS), triéthoxyméthylsilane (MTEOS), triéthoxysilane, triméthoxysilane, triéthoxy(éthyl)silane (ETEOS), triméthoxy(éthyl)silane (ETMOS), isobutyl(triméthoxy)silane, propyl(triméthoxy)silane, orthosilicate de sodium. Preferably, the at least one silica precursor is advantageously chosen from at least one of tetraethyl orthosilicate (TEOS), tetramethyl orthosilicate (TMOS), (3-Aminopropyl)triethoxysilane (APTES), sodium metasilicate, calcium silicate, trimethoxymethylsilane (MTMOS), triethoxymethylsilane (MTEOS), triethoxysilane, trimethoxysilane, triethoxy(ethyl)silane (ETEOS), trimethoxy(ethyl)silane (ETMOS), isobutyl(trimethoxy)silane, propyl(trimethoxy)silane, sodium orthosilicate.
Selon une possibilité, le précurseur de silice est un extrait de silice biogénique tel que par exemple issue des résidus de riz ou de diatomées, du sodium silicate ou une source naturelle d'acide ortho silicique. According to one possibility, the silica precursor is an extract of biogenic silica such as, for example, from residues of rice or diatoms, sodium silicate or a natural source of ortho silicic acid.
Préférentiellement, la quantité de précurseur de silice ajoutée lors de l'étape a) est inférieure ou égale à 6000 mM, préférentiellement inférieure ou égale 5000mM, plus préférentiellement inférieure à 4500mM. Preferably, the amount of silica precursor added during step a) is less than or equal to 6000 mM, preferably less than or equal to 5000 mM, more preferably less than 4500 mM.
Préférentiellement, la quantité de précurseur de silice lors de l'étape c) est inférieure ou égale à lOOOmM, plus préférentiellement inférieure à 500mM. Preferably, the amount of silica precursor during step c) is lower or equal to 1000 mM, more preferably less than 500 mM.
Selon un mode de rĂ©alisation, la quantitĂ© d'acide ajoutĂ© est avantageusement infĂ©rieure ou Ă©gale Ă  0,1 Ă©quivalent acide. Plus prĂ©cisĂ©ment, la quantitĂ© d'acide est comprise entre 0,003 et 0,1 Ă©quivalent acide. À titre d'exemple prĂ©fĂ©rĂ©, la quantitĂ© d'acide est Ă©gale Ă  0,005 Ă©quivalent acide. Les quantitĂ©s d'acide sont donnĂ©es en Ă©quivalent acide par rapport au prĂ©curseur de silice. According to one embodiment, the amount of acid added is advantageously less than or equal to 0.1 acid equivalent. More specifically, the amount of acid is between 0.003 and 0.1 acid equivalent. As a preferred example, the amount of acid is equal to 0.005 acid equivalent. The amounts of acid are given in acid equivalent with respect to the silica precursor.
Selon une possibilitĂ©, l'acide est choisi parmi un acide carboxylique faible ou un acide fort. À titre prĂ©fĂ©rĂ©, l'acide est choisi parmi l'acide formique, l'acide acĂ©tique ou l'acide chlorhydrique. According to one possibility, the acid is chosen from a weak carboxylic acid or a strong acid. Preferably, the acid is chosen from formic acid, acetic acid or hydrochloric acid.
Avantageusement, le pH du milieu aqueux dans lequel les nuclĂ©is sont prĂ©parĂ©s est Ă  pH infĂ©rieur ou Ă©gal Ă  5, prĂ©fĂ©rentiellement infĂ©rieur ou Ă©gal Ă  4, prĂ©fĂ©rentiellement infĂ©rieur ou Ă©gal Ă  3. Avantageusement, le pH est infĂ©rieur ou Ă©gal Ă  3 avec une concentration d’acide minimale de sorte Ă  ce placer en milieu acido-catalysĂ© permettant d’assurer des conditions de chimie douce au procĂ©dĂ©. Advantageously, the pH of the aqueous medium in which the nuclei are prepared is at pH less than or equal to 5, preferably less than or equal to 4, preferably less than or equal to 3. Advantageously, the pH is less than or equal to 3 with a concentration of minimal acid so as to place it in an acid-catalyzed medium making it possible to ensure mild chemical conditions for the process.
À titre d'exemple, les nuclĂ©is sont formĂ©s au maximum de quelques dizaines d’atomes, par exemple, un nuclĂ©i de silice prĂ©sente une taille de l'ordre de quelques nm de diamĂštre et prĂ©fĂ©rentiellement infĂ©rieur Ă  20 nm By way of example, the nuclei are formed of a maximum of a few tens of atoms, for example, a silica nuclei has a size of the order of a few nm in diameter and preferably less than 20 nm
Sans ĂȘtre liĂ© Ă  une thĂ©orie particuliĂšre il a Ă©tĂ© constatĂ© que la concentration en prĂ©curseur de silice et en acide permettent la formation de nuclĂ©is capables de stabiliser une Ă©mulsion comprenant des microgouttelettes d’au moins un actif insoluble dans l’eau et d’obtenir avantageusement des microparticules. Without being bound to a particular theory, it has been observed that the concentration of silica precursor and of acid allow the formation of nuclei capable of stabilizing an emulsion comprising microdroplets of at least one water-insoluble active ingredient and of advantageously obtaining microparticles.
Selon un mode de rĂ©alisation, le procĂ©dĂ© comprend une Ă©tape b) de formation d'une phase matrice. La phase matrice s'entend comme la phase destinĂ©e Ă  permettre la formation de silice. La matrice est formĂ©e par mĂ©lange d'au moins un agent de condensation et d'au moins un anion monovalent, divalent, ou trivalent ou un mĂ©lange d’anion monovalent, divalent, ou trivalent. According to one embodiment, the method comprises a step b) of forming a matrix phase. The matrix phase is understood as the phase intended to allow the formation of silica. The matrix is formed by mixing at least one condensing agent and at least one monovalent, divalent, or trivalent anion or a mixture of monovalent, divalent, or trivalent anions.
L'agent de condensation est avantageusement un polymĂšre polycationique basique branchĂ© ou linĂ©aire. Ceci reprĂ©sente un avantage par rapport Ă  l’utilisation plus classique de base forte type ammoniaque. Le choix d'un polymĂšre polycationique basique permet de s'affranchir du besoin d'ajuster le pH par ajout d'une base forte type ammoniaque pour contrĂŽler la condensation. Cela permet d'avoir un procĂ©dĂ© plus Ă©cologique de type chimie douce. Le procĂ©dĂ© ne comprend pas d'Ă©tape uniquement destinĂ©e Ă  l'ajustement du pH. The condensation agent is advantageously a branched or linear basic polycationic polymer. This represents an advantage compared to the more traditional use of a strong ammonia-type base. The choice of a basic polycationic polymer eliminates the need to adjust the pH by adding a strong ammonia-type base to control the condensation. This makes it possible to have a more ecological process of soft chemistry type. The method does not include a step intended solely for adjusting the pH.
PrĂ©fĂ©rentiellement, le polymĂšre est choisi pour avoir un poids infĂ©rieur ou Ă©gal Ă  800 KDa. Selon un aspect, ledit polymĂšre comprend les polyaminoacides notamment basiques comme les polyarginines, les polylysines et polyhistidines, mais Ă©galement les polyallylamines, les polyĂ©thylĂšnes imines (PEI), les polypropylĂšnes imines, les dĂ©rivĂ©s de polysaccharides de type galactomannane, fructo-oligosaccharides, d’oligofructoses ou des mĂ©langes de ceux-ci. Preferably, the polymer is chosen to have a weight less than or equal to 800 KDa. According to one aspect, said polymer comprises polyamino acids, in particular basic ones, such as polyarginines, polylysines and polyhistidines, but also polyallylamines, polyethylene imines (PEI), polypropylene imines, derivatives of polysaccharides of galactomannan type, fructo-oligosaccharides, of oligofructoses or mixtures thereof.
L’agent de condensation peut dĂ©couler de la modification chimique d’un des polymĂšres citĂ©s ci-dessus et ceci afin de moduler ses propriĂ©tĂ©s physico-chimiques. The condensation agent can result from the chemical modification of one of the polymers mentioned above in order to modulate its physico-chemical properties.
Selon un aspect, l'agent de condensation est plus précisément un polymÚre riche en fonction amines primaires, secondaires ou tertiaires c'est à dire comprenant un nombre de résidus amines supérieur ou égal à 4. According to one aspect, the condensation agent is more precisely a polymer rich in primary, secondary or tertiary amine functions, that is to say comprising a number of amine residues greater than or equal to 4.
Dans le cas des polyĂ©thylĂšnes imines (PEI) branchĂ©s ou linĂ©aires, ils sont constituĂ©s du motif rĂ©pĂ©titif Ă©thylĂšne imine type (C2H5N)n de masse molaire 43.04g/mol. À titre d'exemple, un polymĂšre peut ĂȘtre le diĂ©thylĂšnetriamine ou tous ses homologues supĂ©rieurs. In the case of branched or linear polyethylene imines (PEI), they consist of the repetitive unit ethylene imine type (C2H5N)n with a molar mass of 43.04 g/mol. By way of example, a polymer can be diethylenetriamine or any of its higher homologs.
L'agent de condensation peut aussi ĂȘtre un PEI branchĂ© de formule suivante : H(NHCH2CH2)nNH2)n de poids molĂ©culaire compris entre 10000 et 750000, notamment entre 25000 et 750000 ou un mĂ©lange de PEI tels que par exemple des mĂ©langes de PEI Ă  10kDa et 25kDa. The condensation agent can also be a branched PEI of the following formula: H(NHCH 2 CH2)nNH 2 )n with a molecular weight of between 10,000 and 750,000, in particular between 25,000 and 750,000, or a mixture of PEI such as, for example, mixtures of PEI at 10kDa and 25kDa.
Selon un aspect, l'agent de condensation est un - un dendrimÚre polyaminé de génération supérieure à 1 contenant des motifs type [-CH2CH2N(CH2CH2CH2NH2)2]2 , à titre d'exemple le DAB-Am-4, Polypropylenimine tetramine dendrimÚre, génération 1. According to one aspect, the condensing agent is a - a polyamine dendrimer of generation greater than 1 containing [-CH 2 CH 2 N(CH 2 CH 2 CH 2 NH 2 ) 2 ] 2 type units , by way of example DAB-Am-4, Polypropyleneimine tetramine dendrimer, generation 1.
Dans le cas des dĂ©rivĂ©s de polysaccharides Ă  galactomannane, la gomme de guar modifiĂ© ou non est prĂ©fĂ©rĂ©e. La gomme de guar peut ĂȘtre modifiĂ©e par un groupement basique amine de synthĂšse ou non, Ă  titre d’exemple un groupement ammonium quaternaire. In the case of derivatives of galactomannan polysaccharides, guar gum, modified or not, is preferred. Guar gum can be modified with a synthetic or non-synthetic basic amine group, for example a quaternary ammonium group.
Dans le cas des dĂ©rivĂ©s d’oligofructoses, l’inuline est prĂ©fĂ©rĂ©e. L’inuline peut ĂȘtre modifiĂ©e par un groupement basique amine de synthĂšse ou non, Ă  titre d’exemple un groupement ammonium quaternaire. In the case of oligofructose derivatives, inulin is preferred. Inulin can be modified with a synthetic or non-synthetic basic amine group, for example a quaternary ammonium group.
Selon une possibilité, l'agent de condensation est un mélange de PEI et de guar et/ou d'inuline. According to one possibility, the condensing agent is a mixture of PEI and guar and/or inulin.
PrĂ©fĂ©rentiellement, l'agent de condensation est ajoutĂ© lors de l'Ă©tape b) pour atteindre une concentration massique finale Ă  l’étape b) infĂ©rieure ou Ă©gale Ă  100g/L, plus prĂ©cisĂ©ment infĂ©rieure ou Ă©gale Ă  50g/L, prĂ©fĂ©rentiellement infĂ©rieure ou Ă©gale Ă  20g/L. Le procĂ©dĂ© selon l’invention permet d’utiliser une faible quantitĂ© d’agent de condensation et donc obtenir un pH de condensation basique le plus proche des conditions physiologiques, prĂ©fĂ©rentiellement de l’ordre d’un pH de 9, plus prĂ©fĂ©rentiellement de l’ordre de 8. L’agent de condensation est avantageusement sĂ©lectionnĂ© pour prĂ©senter des groupements chimiques favorables Ă  la formation d’interactions non covalentes telles que par exemple des liaisons Ă©lectrostatiques et/ou type liaisons hydrogĂšnes. De cette maniĂšre, l’agent de condensation assiste de maniĂšre contrĂŽlĂ©e la polymĂ©risation des monomĂšres de silice. Preferably, the condensing agent is added during step b) to reach a final mass concentration in step b) less than or equal to 100 g/L, more precisely less than or equal to 50 g/L, preferably less than or equal at 20g/L. The method according to the invention makes it possible to use a small quantity of condensation agent and therefore to obtain a basic condensation pH closest to physiological conditions, preferably of the order of a pH of 9, more preferably of order of 8. The condensation agent is advantageously selected to have chemical groups favorable to the formation of non-covalent interactions such as, for example, electrostatic bonds and/or hydrogen bonds. In this way, the condensing agent assists in a controlled manner the polymerization of the silica monomers.
L’agent de condensation est avantageusement un polymĂšre bio-inspirĂ© ou naturel ou bio-sourcĂ©. The condensation agent is advantageously a bio-inspired or natural or bio-sourced polymer.
L’agent de condensation est avantageusement recyclĂ© Ă  la fin du procĂ©dĂ© selon l’invention. Le recyclage de l’agent de condensation est rĂ©alisĂ© par des procĂ©dĂ©s connus de l’homme de l’art tels que des techniques de filtration sur gel d’exclusion et/ou rĂ©sines Ă©changeuses d’ions, ultrafiltration sur des membranes de poids molĂ©culaire nominal limite adaptĂ©es. Le recyclage de l’agent de condensation reprĂ©sente un avantage indĂ©niable. The condensation agent is advantageously recycled at the end of the process according to the invention. Recycling of the condensation agent is carried out by methods known to those skilled in the art such as filtration techniques on exclusion gel and/or ion exchange resins, ultrafiltration on membranes of nominal molecular weight appropriate limits. Recycling the condensation agent is an undeniable advantage.
L’agent de condensation tel que notamment le PEI ou la gomme de guar modifiĂ©e ou non, agit Ă  la fois comme un catalyseur accĂ©lĂ©rant la rĂ©action de condensation et une matrice qui contrĂŽle la rĂ©action et la formation des particules pour le grossissement des nuclĂ©is Ă  partir de points de nuclĂ©ation apportĂ©s par l’association polymĂšre-anion tel que le phosphate. The condensation agent, such as in particular PEI or modified or unmodified guar gum, acts both as a catalyst accelerating the condensation reaction and as a matrix which controls the reaction and the formation of the particles for the enlargement of the nuclei from nucleation points provided by the polymer-anion association such as phosphate.
Selon un mode de rĂ©alisation, le au moins un anion monovalent, divalent, trivalent est un sel anionique. À titre prĂ©fĂ©rĂ©, l’anion monovalent, divalent, trivalent est choisi parmi l'un au moins parmi un sel de phosphate, un sel de citrate, ou un sel de tartrate, un sel de sulfate, ou un sel de nitrate. According to one embodiment, the at least one monovalent, divalent, trivalent anion is an anionic salt. Preferably, the monovalent, divalent, trivalent anion is chosen from at least one of a phosphate salt, a citrate salt, or a tartrate salt, a sulfate salt, or a nitrate salt.
À titre d'exemple, le sel de phosphate est choisi parmi phosphate de sodium, phosphate de magnĂ©sium, phosphate de potassium, phosphate de calcium. By way of example, the phosphate salt is chosen from sodium phosphate, magnesium phosphate, potassium phosphate, calcium phosphate.
À titre d'exemple, le sel de citrate est choisi parmi le citrate de sodium, citrate de potassium, citrate de calcium, citrate de magnĂ©sium. By way of example, the citrate salt is chosen from sodium citrate, potassium citrate, calcium citrate, magnesium citrate.
À titre d'exemple, le sel de tartrate est choisi parmi le tartrate de sodium, tartrate de potassium, tartrate de calcium, tartrate de sodium et potassium, tartrate de choline, tartrate d’ammonium. By way of example, the tartrate salt is chosen from sodium tartrate, potassium tartrate, calcium tartrate, sodium and potassium tartrate, choline tartrate, ammonium tartrate.
PrĂ©fĂ©rentiellement, l’anion monovalent, bivalent, ou trivalent est ajoutĂ© lors de l'Ă©tape b) pour atteindre une concentration finale infĂ©rieure ou Ă©gale Ă  300mM, plus prĂ©cisĂ©ment 200mM, par exemple 130 mM. L’ajout d’au moins un anion ou d’un mĂ©lange d’anions selon cette sĂ©lection de concentration permet d’obtenir l’effet de l’anion tout en limitant l’impact sur le pH du milieu de condensation. Preferably, the monovalent, bivalent or trivalent anion is added during step b) to reach a final concentration less than or equal to 300 mM, more precisely 200 mM, for example 130 mM. The addition of at least one anion or a mixture of anions according to this concentration selection makes it possible to obtain the effect of the anion while limiting the impact on the pH of the condensation medium.
Le au moins un anion, ou mĂ©lange d’anions, monovalent, divalent ou trivalent est ajoutĂ© Ă  l'agent de condensation pour notamment assurer des interactions Ă©lectrostatiques avec l'agent de condensation et permettre la formation de la matrice, notamment pour contrĂŽler la formation de particules sphĂ©riques. The at least one anion, or mixture of anions, monovalent, divalent or trivalent is added to the condensation agent in particular to ensure interactions electrostatics with the condensing agent and allow the formation of the matrix, in particular to control the formation of spherical particles.
Selon une possibilité, les nucléis obtenus à l'étape a), également dénommée phase hydrolyse, sont ajoutés à la matrice obtenue à l'étape b) est également dénommée, phase matrice. According to one possibility, the nuclei obtained in step a), also called hydrolysis phase, are added to the matrix obtained in step b) is also called matrix phase.
Selon une autre possibilitĂ©, la phase matrice obtenue Ă  l’étape b) est ajoutĂ©e aux nuclĂ©is obtenus Ă  l’étape a). According to another possibility, the matrix phase obtained in step b) is added to the nuclei obtained in step a).
Selon un mode de rĂ©alisation, la phase hydrolyse est ajoutĂ©e en une seule portion Ă  la phase matrice. Selon une possibilitĂ©, l’ajout se fait avec un dĂ©bit contrĂŽlĂ© ou sans contrĂŽle directement en une fois. According to one embodiment, the hydrolysis phase is added in a single portion to the matrix phase. According to one possibility, the addition is done with a controlled flow or without control directly at once.
Selon un mode de rĂ©alisation, le procĂ©dĂ© comprend une Ă©tape c) de condensation en milieu basique. L'Ă©tape de condensation assure la condensation des nuclĂ©is de silice (permettant aux particules de silice de grandir en taille) obtenus Ă  l'Ă©tape a) de maniĂšre contrĂŽlĂ©e grĂące Ă  la matrice obtenue Ă  l'Ă©tape b). L’étape de condensation permet aux nuclĂ©is obtenus Ă  l’étape a) de grandir de taille pour obtenir des particules. According to one embodiment, the method comprises a step c) of condensation in a basic medium. The condensation step ensures the condensation of the silica nuclei (allowing the silica particles to grow in size) obtained in step a) in a controlled manner thanks to the matrix obtained in step b). The condensation step allows the nuclei obtained in step a) to grow in size to obtain particles.
L'étape c) comprend avantageusement le mélange des nucléis de silice et de la matrice, préférentiellement sous agitation. Step c) advantageously comprises mixing the silica nuclei and the matrix, preferably with stirring.
Avantageusement, l'étape c) de condensation est réalisée à pH basique, dit modéré, c'est-à-dire inférieur ou égal à 10. Préférentiellement, à pH inférieur ou égal à 9 encore plus préférentiellement inférieur ou égal à 8 et supérieur à 7. Advantageously, step c) of condensation is carried out at basic pH, said to be moderate, that is to say less than or equal to 10. Preferably, at pH less than or equal to 9, even more preferably less than or equal to 8 and greater at 7.
Selon un mode de réalisation avantageux de la présente invention, le procédé de synthÚse est réalisé à une température ambiante. Avantageusement, les différentes étapes a), b) et c) sont réalisées à température ambiante, ce qui ne nécessite avantageusement aucun chauffage ou refroidissement. Avantageusement, au moins les étapes a), b) et c) du procédé de synthÚse sont réalisées sans chauffage ou refroidissement. Ces dispositions assurent un procédé peu consommateur d'énergie et permettant la synthÚse dans des conditions dites douces. La température ambiante s'entend préférentiellement entre 18C et 30°C, voir de 5°C à 45°C, plus préférentiellement entre 20°C et 25°C. According to an advantageous embodiment of the present invention, the synthesis process is carried out at ambient temperature. Advantageously, the various steps a), b) and c) are carried out at ambient temperature, which advantageously does not require any heating or cooling. Advantageously, at least steps a), b) and c) of the synthesis process are carried out without heating or cooling. These arrangements ensure a process which consumes little energy and which allows synthesis under so-called mild conditions. The ambient temperature preferably means between 18°C and 30°C, or even from 5°C to 45°C, more preferably between 20°C and 25°C.
Selon un mode de rĂ©alisation, le procĂ©dĂ© selon l'invention assurant la synthĂšse de particules microniques de silice comprend avantageusement une Ă©tape c'), postĂ©rieure ou simultanĂ©e Ă  l'Ă©tape c) de condensation, comprenant une Ă©tape de fonctionnalisation des particules. Dans le cas oĂč, l'Ă©tape c') est postĂ©rieure Ă  l'Ă©tape c), elle est avantageusement directement postĂ©rieure, c'est Ă  dire que l'Ă©tape c) et l'Ă©tape c') sont successives, prĂ©fĂ©rentiellement sans Ă©tape intermĂ©diaire. L'Ă©tape de fonctionnalisation permet de modifier la surface des particules de silice pour aboutir Ă  une fonctionnalisation de surface ciblĂ©e et attribuer de nouvelles propriĂ©tĂ©s aux particules. L'Ă©tape de fonctionnalisation comprenant avantageusement l’ajout d’un prĂ©curseur de silice. Selon un exemple, le prĂ©curseur de silice est choisi parmi l'un au moins parmi TEOS (orthosilicate de tĂ©traĂ©thyle), TMOS (orthosilicate de tĂ©tramĂ©thyle), MTMOS (mĂ©thyltrimĂ©thoxysilane), MTEOS (mĂ©thyltriĂ©thoxysilane), ETEOS (Ă©thyltriĂ©thoxysilane), ETMOS (Ă©thyltrimĂ©thoxysilane), APTES ((3-Aminopropyl)triĂ©thoxysilane), orthosilicate de sodium ou mĂ©tasilicate de sodium. Le prĂ©curseur de silice de l'Ă©tape de fonctionnalisation peut ĂȘtre identique ou diffĂ©rent du prĂ©curseur de silice utilisĂ© Ă  l'Ă©tape a). According to one embodiment, the process according to the invention ensuring the synthesis of micron particles of silica advantageously comprises a stage c'), subsequent to or simultaneous with stage c) of condensation, comprising a stage of functionalization of the particles. In the case where step câ€Č) is subsequent to step c), it is advantageously directly subsequent, that is to say that step c) and step câ€Č) are successive, preferably without step intermediate. The functionalization step makes it possible to modify the surface of the silica particles to lead to a targeted surface functionalization and to attribute new properties to the particles. The functionalization step advantageously comprising the addition of a silica precursor. According to one example, the silica precursor is chosen from at least one of TEOS (tetraethyl orthosilicate), TMOS (tetramethyl orthosilicate), MTMOS (methyltrimethoxysilane), MTEOS (methyltriethoxysilane), ETEOS (ethyltriethoxysilane), ETMOS (ethyltrimethoxysilane) , APTES ((3-Aminopropyl)triethoxysilane), sodium orthosilicate or sodium metasilicate. The silica precursor from the functionalization step can be identical to or different from the silica precursor used in step a).
Selon un mode de rĂ©alisation, le procĂ©dĂ© de l’invention assurant la synthĂšse de particules microniques de silice comprend avantageusement une Ă©tape d), postĂ©rieure Ă  l’étape c) de condensation, prĂ©fĂ©rentiellement postĂ©rieure Ă  l'Ă©tape c') si prĂ©sente, comprenant une Ă©tape de sĂ©paration des particules. L’étape de sĂ©paration permet de dissocier les micro parti eu les des Ă©ventuels nuclĂ©is non condensĂ©s, de phase matrice et/ou d’actifs rĂ©siduels. L’étape de sĂ©paration des particules peut ĂȘtre par exemple rĂ©alisĂ©e par centrifugation ou filtration tangentielle Ă  courant transversal. According to one embodiment, the method of the invention ensuring the synthesis of micron particles of silica advantageously comprises a step d), subsequent to step c) of condensation, preferably subsequent to step câ€Č) if present, comprising a particle separation step. The separation step makes it possible to dissociate the microparties from any non-condensed nuclei, matrix phase and/or residual active ingredients. The particle separation step can be carried out, for example, by centrifugation or tangential cross-flow filtration.
Selon un mode de rĂ©alisation, le procĂ©dĂ© selon l’invention assurant la synthĂšse de particules micromĂ©triques de silice comprend une Ă©tape e), postĂ©rieure Ă  l'Ă©tape c), prĂ©fĂ©rentiellement postĂ©rieure Ă  l'Ă©tape c') si prĂ©sente, et Ă©ventuellement Ă  l’étape d) de sĂ©paration qui permet une purification des microparticules de silice par lavage ou extraction chimique. L’étape de purification est destinĂ©e Ă  permettre la suppression de rĂ©sidus organiques issus du procĂ©dĂ©. Cependant, du fait du procĂ©dĂ© de synthĂšse de l’invention, rĂ©alisĂ© en conditions de chimie douce notamment bio-inspirĂ©es notamment avantageusement sans solvant organique, les rĂ©sidus organiques Ă©ventuels sont non nocifs et n'impactent pas les propriĂ©tĂ©s des particules de ce fait ils ne doivent pas obligatoirement ĂȘtre retirĂ©s des micro parti eu les et peuvent apporter de nouvelles propriĂ©tĂ©s aux particules telles que la dĂ©position. Par exemple, les polymĂšres cationiques ne doivent pas obligatoirement ĂȘtre retirĂ©s des microparticules pour favoriser la dĂ©position sur des surfaces chargĂ©es. A titre d’exemple, l’étape de purification peut ĂȘtre effectuĂ©e par des cycles de lavage et/ou centrifugation ou calcination. According to one embodiment, the method according to the invention ensuring the synthesis of micrometric particles of silica comprises a step e), subsequent to step c), preferably subsequent to step câ€Č) if present, and optionally to the separation step d) which allows purification of the silica microparticles by washing or chemical extraction. The purification step is intended to allow the removal of organic residues from the process. However, due to the synthesis process of the invention, carried out under mild chemical conditions, in particular bio-inspired, in particular advantageously without organic solvent, any organic residues are not harmful and do not impact the properties of the particles, therefore they do not do not necessarily have to be removed from the micro-parties and can bring new properties to the particles such as deposition. For example, cationic polymers do not have to be removed from microparticles to promote deposition on charged surfaces. By way of example, the purification step can be carried out by cycles of washing and/or centrifugation or calcination.
Selon un mode de rĂ©alisation, le procĂ©dĂ© selon l’invention assurant la synthĂšse de particules micromĂ©triques de silice comprend une Ă©tape de sĂ©chage des micro parti eu les f) postĂ©rieure Ă  l’étape c) de condensation prĂ©fĂ©rentiellement postĂ©rieure Ă  l'Ă©tape c') si prĂ©sente, et Ă©ventuellement des Ă©tapes d) de sĂ©paration et e) de purification. L’étape de sĂ©chage permet d’obtenir des microparticules sous la forme sĂšche, ce qui peut ĂȘtre un avantage en termes de stockage par exemple. L’étape de sĂ©chage peut ĂȘtre rĂ©alisĂ©e par atomisation ou spray drying. Avantageusement, cette Ă©tape de sĂ©chage par atomisation ou spray-drying peut conduire Ă  une Ă©tape de mise en forme mĂ©canique des microparticules de silice et d’actifs. According to one embodiment, the method according to the invention ensuring the synthesis of micrometric particles of silica comprises a step of drying the microparties had the f) after step c) of condensation preferably after step c ') if present, and optionally steps d) of separation and e) of purification. The drying step makes it possible to obtain microparticles in the dry form, which can be a advantage in terms of storage, for example. The drying step can be carried out by atomization or spray drying. Advantageously, this step of drying by atomization or spray-drying can lead to a step of mechanical shaping of the microparticles of silica and of active agents.
Selon l’invention, le procĂ©dĂ© permet de produire des particules prĂ©sentant une morphologie capsulaire ou matricielle. On entend par capsulaire que la microparticule comprend au moins une vĂ©sicule creuse. Selon une possibilitĂ©, la microparticule est une vĂ©sicule creuse ou selon une autre possibilitĂ©, la microparticule est une vĂ©sicule creuse contenant elle-mĂȘme des vĂ©sicules creuses. On entend par matricielle que la microparticule est une sphĂšre pleine. According to the invention, the method makes it possible to produce particles having a capsular or matrix morphology. By capsular is meant that the microparticle comprises at least one hollow vesicle. According to one possibility, the microparticle is a hollow vesicle or according to another possibility, the microparticle is a hollow vesicle itself containing hollow vesicles. By matrix is meant that the microparticle is a solid sphere.
Selon l’invention, le procĂ©dĂ© est avantageusement configurĂ© pour encapsuler un actif dans les microparticules. L’actif est Ă©galement dĂ©nommĂ© substance active. L’actif peut ĂȘtre de nature diverse selon l’application. L’actif comprend au moins une molĂ©cule active ou un mĂ©lange de molĂ©cules actives. L’actif est choisi par exemple parmi un actif parfumant ou une composition parfumante, ou un actif cosmĂ©tique, tel que par exemple un filtre solaire, un actif phytosanitaire, une huile essentielle ou une phase huileuse ou encore l’actif est de la silice. According to the invention, the method is advantageously configured to encapsulate an active ingredient in the microparticles. The active is also called active substance. The asset can be of various nature depending on the application. The active ingredient comprises at least one active molecule or a mixture of active molecules. The active ingredient is chosen, for example, from a perfuming active ingredient or a perfuming composition, or a cosmetic active ingredient, such as for example a sunscreen, a phytosanitary active ingredient, an essential oil or an oily phase, or else the active ingredient is silica.
Le procĂ©dĂ© selon l’invention est avantageusement configurĂ© pour encapsuler l’actif soit dans une micro-capsule, l’actif est dans le cƓur de la capsule, soit dans une microsphĂšre, l’actif est dispersĂ© dans le matĂ©riau d’encapsulation. The method according to the invention is advantageously configured to encapsulate the active ingredient either in a micro-capsule, the active ingredient is in the core of the capsule, or in a microsphere, the active ingredient is dispersed in the encapsulation material.
Selon une possibilitĂ©, l’actif comprend au moins une substance parfumante. L’actif est un parfum ou une composition parfumante. According to one possibility, the active ingredient comprises at least one perfuming substance. The active ingredient is a perfume or a perfuming composition.
Selon une possibilitĂ©, l’actif comprend au moins une substance insoluble dans l’eau. L’actif est une phase huileuse ou une huile essentielle. According to one possibility, the active comprises at least one water-insoluble substance. The active ingredient is an oily phase or an essential oil.
Selon une possibilitĂ©, l’actif comprend au moins une substance soluble dans l’eau. L'actif est une molĂ©cule polaire. According to one possibility, the active comprises at least one water-soluble substance. The active is a polar molecule.
Selon une possibilitĂ©, l’actif est de la silice permettant aux microparticules formĂ©es d’assurer un emport de silice. According to one possibility, the active ingredient is silica, allowing the microparticles formed to carry silica.
Le procĂ©dĂ© selon l’invention comprend avantageusement une Ă©tape d’ajout d’un actif. Selon un premier mode de rĂ©alisation, l’étape d’ajout d’un actif est avantageusement rĂ©alisĂ©e avant l’étape c) de condensation. The method according to the invention advantageously comprises a step of adding an active ingredient. According to a first embodiment, the step of adding an active ingredient is advantageously carried out before step c) of condensation.
Avantageusement, le procédé ne comprend pas d'ajout d'un tensio-actif, également dénommé surfactant en anglais, pour stabiliser l'actif. Advantageously, the method does not include the addition of a surfactant, also called surfactant in English, to stabilize the active ingredient.
Selon une premiĂšre possibilitĂ©, l’étape d’ajout d’un actif comprend l’ajout de l’actif Ă  la phase hydrolyse. L’actif est ajoutĂ© aux nuclĂ©is obtenus Ă  l’étape a). L’actif est avantageusement ajoutĂ© aux nuclĂ©is obtenus Ă  l’étape a) avant le mĂ©lange Ă  la phase matrice obtenue Ă  l’étape b). Avantageusement, l’actif est ajoutĂ© Ă  la fin de l’étape a), lorsque les nuclĂ©is sont formĂ©s de sorte Ă  limiter les perturbations sur la formation des nuclĂ©is lors de l’étape a). Ce procĂ©dĂ© conduit avantageusement Ă  l’obtention de particules de morphologie capsulaire. According to a first possibility, the step of adding an active ingredient comprises adding the active ingredient to the hydrolysis phase. The active ingredient is added to the nuclei obtained in step a). The asset is advantageously added to the nuclei obtained in step a) before mixing with the matrix phase obtained in step b). Advantageously, the active ingredient is added at the end of step a), when the nuclei are formed so as to limit the disturbances on the formation of the nuclei during step a). This process advantageously leads to the production of particles of capsular morphology.
Selon une deuxiĂšme possibilitĂ©, l’étape d’ajout d’un actif comprend l’ajout de l’actif Ă  la phase matrice. L’actif est ajoutĂ© au mĂ©lange de l’agent de condensation et de l’anion monovalent, divalent ou trivalent ou du mĂ©lange d’anions monovalents, divalents ou trivalents. PrĂ©fĂ©rentiellement, l’ajout de l’actif est rĂ©alisĂ© aprĂšs le mĂ©lange de l’agent de condensation et de l’anion, ou du mĂ©lange d’anions, monovalent, divalent ou trivalent. Ce procĂ©dĂ© conduit avantageusement Ă  l’obtention de microparticules de morphologie capsulaire ou matricielle sous forme de microsphĂšre. According to a second possibility, the step of adding an asset comprises adding the asset to the matrix phase. The active ingredient is added to the mixture of the condensing agent and the monovalent, divalent or trivalent anion or the mixture of monovalent, divalent or trivalent anions. Preferably, the addition of the active is carried out after mixing the condensation agent and the anion, or the mixture of anions, monovalent, divalent or trivalent. This process advantageously leads to the production of microparticles of capsular or matrix morphology in the form of a microsphere.
Avantageusement, l'actif est stabilisĂ© pas les nuclĂ©is de silice obtenus Ă  l'Ă©tape a) par des conditions contrĂŽlĂ©es d’acide et de conditions de rĂ©action. Puis, la condensation contrĂŽlĂ©e des nuclĂ©is de silice avec l'agent de condensation permettent de condenser les nuclĂ©is de silice sans dĂ©stabiliser l'actif, prĂ©sent par exemple sous forme de gouttelettes et sans ajout de surfactant. Advantageously, the active ingredient is stabilized by the silica nuclei obtained in step a) by controlled acid conditions and reaction conditions. Then, the controlled condensation of the silica nuclei with the condensation agent makes it possible to condense the silica nuclei without destabilizing the active ingredient, present for example in the form of droplets and without adding surfactant.
Selon un mode de rĂ©alisation avantageux, l’étape d’ajout d’un actif comprend une Ă©tape de prĂ©-homogĂ©nĂ©isation dans l’eau avant l’addition de l’actif Ă  la phase hydrolyse ou Ă  la phase matrice. L’étape de prĂ©-homogĂ©nĂ©isation dans l’eau est Ă©galement dĂ©nommĂ©e prĂ©-Ă©mulsion. Cette Ă©tape de prĂ©-homogĂ©nĂ©isation ou prĂ©-Ă©mulsion comprend le mĂ©lange de l’actif dans de l’eau de sorte Ă  former et Ă  stabiliser des gouttelettes d’actifs. PrĂ©fĂ©rentiellement, cette Ă©tape ne comprend pas l'ajout d'un tensio- actif. Le mĂ©lange de l’actif dans l’eau se fait sous agitation. A titre d’exemple, le mĂ©lange actif -eau est agitĂ© pour un minimum de 30 secondes et jusqu’à 5 minutes. A titre d’exemple, le mĂ©lange est agitĂ© Ă  une vitesse minimale de 2000 rpm et jusqu’à 10000 rpm. A titre d’exemple, le mĂ©lange prĂ©sente une concentration massique d’actifs dans l’eau de l’ordre de 10% par poids. Selon ce mode de rĂ©alisation, c’est l’actif prĂ© homogĂ©nĂ©isĂ© ou prĂ©-Ă©mulsionnĂ© dans l’eau qui est ajoutĂ© Ă  la phase matrice ou Ă  la phase hydrolyse. According to an advantageous embodiment, the step of adding an active ingredient comprises a pre-homogenization step in water before adding the active ingredient to the hydrolysis phase or to the matrix phase. The pre-homogenization step in water is also called pre-emulsion. This pre-homogenization or pre-emulsion step includes mixing the active ingredient in water so as to form and stabilize droplets of active ingredients. Preferably, this step does not include the addition of a surfactant. The mixing of the active ingredient in the water is done with stirring. For example, the active-water mixture is stirred for a minimum of 30 seconds and up to 5 minutes. For example, the mixture is stirred at a minimum speed of 2000 rpm and up to 10000 rpm. For example, the mixture has a mass concentration of active ingredients in water of the order of 10% by weight. According to this embodiment, it is the active ingredient pre-homogenized or pre-emulsified in water which is added to the matrix phase or to the hydrolysis phase.
Selon un deuxiĂšme mode de rĂ©alisation, l’étape d’ajout d’un actif est rĂ©alisĂ©e lors de l’étape de sĂ©chage notamment par atomisation. Le sĂ©chage des particules en prĂ©sence d’un actif favorise la stabilisation et l’adsorption. According to a second embodiment, the step of adding an active ingredient is carried out during the drying step, in particular by atomization. Drying the particles in the presence of an active promotes stabilization and adsorption.
L’invention n’est pas limitĂ©e aux modes de rĂ©alisations prĂ©cĂ©demment dĂ©crits et s’étend Ă  tous les modes de rĂ©alisation couverts par les revendications. Exemple 1 : mode de rĂ©alisation pour la formation de microcapsules de siliceThe invention is not limited to the embodiments previously described and extends to all the embodiments covered by the claims. Example 1: embodiment for the formation of silica microcapsules
2.7 g de MTMOS sont hydrolysĂ©s dans 1.1g d’eau en milieu catalytique acide (pHÂŁ2, HCl) pendant 10 minutes Ă  tempĂ©rature ambiante sous agitation (300rpm). Le mĂ©lange est ensuite ajoutĂ© avec un dĂ©bit de 1mL/min Ă  un mĂ©lange contenant 10.4mL de tampon phosphate de sodium (pH7, 500mM), 0.4g de polyĂ©thylĂšne imine (25KDa) dans 25.5g d’eau. Le milieu est agitĂ© Ă  250rpm Ă  tempĂ©rature ambiante durant 45 minutes. Les microcapsules sont isolĂ©es par centrifugation (1000g) et purifiĂ©es par lavage Ă  l’eau (2 fois). Les micro parti eu les ont Ă©tĂ© obtenues avec un rendement de 50% et un diamĂštre moyen de 24.5 pm +/- 11 pm (Ă©cart type, s) mesurĂ© Ă  partir d’observations par microscopie Ă©lectronique Ă  balayage (MEB) et retraitĂ© par le logiciel ImageJ. La morphologie sphĂ©rique type capsule des microparticules est confirmĂ©e par microscopies optiques et Ă©lectroniques (Figures 1A&B). 2.7 g of MTMOS are hydrolyzed in 1.1 g of water in an acid catalytic medium (pHÂŁ2, HCl) for 10 minutes at room temperature with stirring (300 rpm). The mixture is then added at a flow rate of 1mL/min to a mixture containing 10.4mL of sodium phosphate buffer (pH7, 500mM), 0.4g of polyethylene imine (25KDa) in 25.5g of water. The medium is stirred at 250 rpm at room temperature for 45 minutes. The microcapsules are isolated by centrifugation (1000g) and purified by washing with water (2 times). The microparties were obtained with a yield of 50% and an average diameter of 24.5 pm +/- 11 pm (standard deviation, s) measured from observations by scanning electron microscopy (SEM) and reprocessed by the ImageJ software. The capsule-like spherical morphology of the microparticles is confirmed by optical and electron microscopy (Figures 1A & B).
Exemple 2 : mode de rĂ©alisation pour la formation de microcapsules de silice en prĂ©sence d’un mĂ©lange linalol/citral Example 2: embodiment for the formation of silica microcapsules in the presence of a linalool/citral mixture
2.7 g de MTMOS sont hydrolysĂ©s dans 1.1g d’eau en milieu catalytique acide (pHÂŁ2, HCl) contenant 0.5g d’un mĂ©lange linalol/citral (1/1) pendant 10 minutes Ă  tempĂ©rature ambiante sous agitation (300rpm). Le mĂ©lange est ensuite ajoutĂ© avec un dĂ©bit de 1mL/min Ă  un mĂ©lange contenant 10.4mL de tampon phosphates de sodium (pH7, 500mM), 0.4g de polyĂ©thylĂšne imine (25KDa) dans 25.0g d’eau. Le milieu est agitĂ© (Ă  2000rpm) Ă  tempĂ©rature ambiante durant 45 minutes. Les microcapsules sont isolĂ©es par centrifugation (1000g) et purifiĂ©es par lavage Ă  l’eau (2 fois Ă  1000g). Le diamĂštre moyen des particules mesurĂ© Ă  partir d’observations par microscopie optique et retraitĂ© par le logiciel ImageJ de 36.5 pm +/- 19 pm (o) (Figures 2A et 2B). Le taux d’encapsulation thĂ©orique est approximativement de 25.6% par poids. Le taux d’encapsulation a Ă©tĂ© dĂ©terminĂ© de 13.7% par analyses GC-MS aprĂšs extraction des composĂ©s volatiles dans l’acĂ©tate d’éthyle, ce qui signifie un rendement d’encapsulation d’au minimum 58%. 2.7 g of MTMOS are hydrolyzed in 1.1 g of water in an acid catalytic medium (pHÂŁ2, HCl) containing 0.5 g of a linalool/citral mixture (1/1) for 10 minutes at room temperature with stirring (300 rpm). The mixture is then added at a flow rate of 1mL/min to a mixture containing 10.4mL of sodium phosphate buffer (pH7, 500mM), 0.4g of polyethylene imine (25KDa) in 25.0g of water. The medium is stirred (at 2000 rpm) at room temperature for 45 minutes. The microcapsules are isolated by centrifugation (1000g) and purified by washing with water (twice at 1000g). The mean particle diameter measured from optical microscopy observations and reprocessed by ImageJ software of 36.5 ”m +/- 19 ”m (o) (Figures 2A and 2B). The theoretical encapsulation rate is approximately 25.6% by weight. The encapsulation rate was determined to be 13.7% by GC-MS analyzes after extraction of the volatile compounds in ethyl acetate, which means an encapsulation yield of at least 58%.
Exemple 3 : mode de réalisation pour la formation de microparticules de silice en présence de linalol Example 3: embodiment for the formation of silica microparticles in the presence of linalool
2.7 g de MTMOS sont hydrolysĂ©s dans 1.1g d’eau en milieu catalytique acide (pHÂŁ2, HCl) contenant 0.5g de linalol pendant 10 minutes Ă  tempĂ©rature ambiante sous agitation (300rpm). Un mĂ©lange contenant 10.4mL de tampon phosphates de sodium (pH7, 500mM), 0.4g de polyĂ©thylĂšne imine (25KDa) dans 25.0g d’eau est ensuite ajoutĂ© avec un dĂ©bit de 1mL/min au prĂ©curseur hydrolysĂ©. Le milieu est agitĂ© (Ă  250rpm) Ă  tempĂ©rature ambiante durant 45 minutes. Les microcapsules sont isolĂ©es par centrifugation (1000g) et purifiĂ©es par lavage Ă  l’eau (2 fois Ă  1000g). Les microparticules ont Ă©tĂ© obtenues avec un rendement de 69%. Le diamĂštre moyen des particules est de 39.9 pm +/- 21 pm (o) mesurĂ© Ă  partir d’observations par microscopie optique et retraitĂ© par le logiciel ImageJ (Figure 3). Le taux d’encapsulation thĂ©orique du linalol est approximativement de 23% par poids. AprĂšs extraction des composĂ©s dans l’acĂ©tate d’éthyle, le taux d’encapsulation est de 19.6% par analyses GC-MS, ce qui signifie que le rendement d’encapsulation est au minimum de 85,4%. 2.7 g of MTMOS are hydrolyzed in 1.1 g of water in an acid catalytic medium (pHÂŁ2, HCl) containing 0.5 g of linalool for 10 minutes at room temperature with stirring (300 rpm). A mixture containing 10.4mL of sodium phosphate buffer (pH7, 500mM), 0.4g of polyethylene imine (25KDa) in 25.0g of water is then added at a flow rate of 1mL/min to the hydrolyzed precursor. The medium is stirred (at 250 rpm) at ambient temperature for 45 minutes. The microcapsules are isolated by centrifugation (1000g) and purified by washing with water (twice at 1000g). The microparticles were obtained with a yield of 69%. The average diameter of the particles is 39.9 ÎŒm +/- 21 ÎŒm (o) measured from observations by optical microscopy and reprocessed by the ImageJ software (Figure 3). The theoretical encapsulation rate of linalool is approximately 23% by weight. After extraction of the compounds in ethyl acetate, the degree of encapsulation is 19.6% by GC-MS analyses, which means that the encapsulation yield is at least 85.4%.
Exemple 4 : mode de rĂ©alisation pour la formation de microcapsules de silice en prĂ©sence d’une composition parfumĂ©e Example 4: embodiment for the formation of silica microcapsules in the presence of a perfumed composition
9.2 g de MTMOS sont hydrolysĂ©s dans 3.7g d’eau en milieu catalytique acide (pHÂŁ2, HCl) contenant 6.3g d’une composition parfumĂ©e contentant au minimum 30% de DPG pendant 10 minutes Ă  tempĂ©rature ambiante sous agitation (300rpm). Le mĂ©lange est ensuite ajoutĂ© avec un dĂ©bit de 3.5ml_/min Ă  un mĂ©lange contenant 39.1mL de tampon phosphates de sodium (pH7, 500mM), 1.7g de polyĂ©thylĂšne imine (25KDa) dans 89.5g d’eau. Le milieu est agitĂ© Ă  250rpm Ă  tempĂ©rature ambiante durant 45 minutes. Les microcapsules sont isolĂ©es par centrifugation (1000g) et purifiĂ©es par lavage Ă  l’eau (2 fois). Le diamĂštre moyen des microcapsules est de 141.8 pm +/- 132 pm (o, 24 pm diamĂštre min, 639 pm diamĂštre max) mesurĂ© Ă  partir d’observations par microscopie optique et retraitĂ© par le logiciel ImageJ. (Figure 4). Le taux d’encapsulation thĂ©orique de la composition parfumĂ©e est approximativement de 50% par poids. Le taux d’encapsulation a Ă©tĂ© Ă©valuĂ© par analyse thermogravimĂ©trique Ă  partir de rĂ©sidu sec (poudre sĂ©chĂ©e au minimum 2 heures Ă  70°C dans un four Ă  convection). La perte de masse mesurĂ©e entre 25° et 250°C est de 48%. Ce qui signifie que le taux d’encapsulation est au minimum de 48%. 9.2 g of MTMOS are hydrolyzed in 3.7 g of water in an acid catalytic medium (pHÂŁ2, HCl) containing 6.3 g of a perfumed composition containing at least 30% DPG for 10 minutes at room temperature with stirring (300 rpm). The mixture is then added at a flow rate of 3.5ml_/min to a mixture containing 39.1mL of sodium phosphate buffer (pH7, 500mM), 1.7g of polyethylene imine (25KDa) in 89.5g of water. The medium is stirred at 250 rpm at room temperature for 45 minutes. The microcapsules are isolated by centrifugation (1000g) and purified by washing with water (2 times). The mean diameter of the microcapsules is 141.8 pm +/- 132 pm (o, 24 pm min diameter, 639 pm max diameter) measured from observations by optical microscopy and reprocessed by the ImageJ software. (Figure 4). The theoretical encapsulation rate of the perfumed composition is approximately 50% by weight. The encapsulation rate was evaluated by thermogravimetric analysis from the dry residue (powder dried for at least 2 hours at 70°C in a convection oven). The mass loss measured between 25° and 250° C. is 48%. This means that the encapsulation rate is at least 48%.
Exemple 5 : mode de rĂ©alisation pour la formation de microcapsules de silice en prĂ©sence d’une composition parfumĂ©e Example 5: embodiment for the formation of silica microcapsules in the presence of a perfumed composition
3.4 g de MTEOS sont hydrolysĂ©s dans 1.2g d’eau en milieu catalytique acide (pHÂŁ2, HCl) contenant 0.85g d’une composition parfumĂ©e contentant au minimum 30% de DPG pendant 30 minutes Ă  tempĂ©rature ambiante sous agitation (600rpm). Le mĂ©lange est ensuite ajoutĂ© avec un dĂ©bit de 1ml_/min Ă  un mĂ©lange contenant 10.4mL de tampon phosphates de sodium (pH7, 500mM), 0.4g de polyĂ©thylĂšne imine (25KDa) dans 23.5g d’eau. Le milieu est agitĂ© Ă  3000rpm Ă  tempĂ©rature ambiante durant 45 minutes. Les microcapsules sont isolĂ©es par centrifugation (1000g) et purifiĂ©es par lavage Ă  l’eau (2 fois). Le diamĂštre moyen des microcapsules est de 35.1 pm +/- 21.0 pm (o) mesurĂ© Ă  partir d’observations par microscopie optique et retraitĂ© par le logiciel ImageJ. La morphologie sphĂ©rique de type microcapsule est observĂ©e par microscopie Ă  balayage (Figure 5). 3.4 g of MTEOS are hydrolyzed in 1.2 g of water in an acid catalytic medium (pHÂŁ2, HCl) containing 0.85 g of a perfumed composition containing at least 30% of DPG for 30 minutes at room temperature with stirring (600 rpm). The mixture is then added with a flow rate of 1 ml_/min to a mixture containing 10.4 ml of sodium phosphate buffer (pH7, 500 mM), 0.4 g of polyethylene imine (25 KDa) in 23.5 g of water. The medium is stirred at 3000 rpm at room temperature for 45 minutes. The microcapsules are isolated by centrifugation (1000g) and purified by washing with water (twice). The average diameter of the microcapsules is 35.1 ÎŒm +/- 21.0 ÎŒm (o) measured from observations by optical microscopy and reprocessed by the ImageJ software. The Spherical microcapsule-like morphology is observed by scanning microscopy (Figure 5).
Exemple 6 : mode de réalisation pour la formation de micro parti eu les de silice hybride Example 6: embodiment for the formation of microparties of hybrid silica
5.0 g de MTMOS sont hydrolysĂ©s dans 2.0g d’eau en milieu catalytique acide (pH<3, HCl) pendant 15 minutes Ă  tempĂ©rature ambiante sous agitation (300rpm). Une solution contenant 0.3 g gomme de guar modifiĂ©e cationique (N-Hance3215ℱ Ashland - Guar hydroxypropyltrimonium chloride), 20.3 g d’un tampon tartrate de sodium (pH 6.2, 500 mM), 0.08g de tampon citrate (pH 4.5, 0.78M), 0.1g avec de l’hydroxyde de sodium (6.25M) est ajoutĂ© goutte Ă  goutte avec un dĂ©bit de 2ml_/min au prĂ©curseur hydrolysĂ©. Le milieu est agitĂ© (Ă  250rpm) Ă  tempĂ©rature ambiante durant 45 minutes. Les microparticules sont isolĂ©es par centrifugation (15000g) et purifiĂ©es par lavage Ă  l’eau (3 fois). Les microparticules ont Ă©tĂ© obtenues avec un rendement minimum de 40%. Le diamĂštre moyen des particules est de 5.3 ± 2.5 pm mesurĂ© Ă  partir d’observations par microscopie Ă©lectronique Ă  balayage (MEB) et retraitĂ© par le logiciel ImageJ (Figure 6). La distribution de taille d50 Ă©gale Ă  16.7pm a Ă©tĂ© mesurĂ©e par granulomĂ©trie laser (Master sizer S 2000 Malvern). Les particules ont une morphologie sphĂ©rique matricielle observĂ©e par MEB (Figure 6A). La prĂ©sence de polymĂšre rĂ©siduel favorable Ă  la dĂ©position de surface est observĂ©e par MEB (Figure 6B). Le potentiel zĂȘta a Ă©tĂ© dĂ©terminĂ© Ă  + 11.7 mV. 5.0 g of MTMOS are hydrolyzed in 2.0 g of water in an acid catalytic medium (pH<3, HCl) for 15 minutes at room temperature with stirring (300 rpm). A solution containing 0.3 g cationic modified guar gum (N-Hance3215ℱ Ashland - Guar hydroxypropyltrimonium chloride), 20.3 g sodium tartrate buffer (pH 6.2, 500 mM), 0.08 g citrate buffer (pH 4.5, 0.78M ), 0.1g with sodium hydroxide (6.25M) is added dropwise with a flow rate of 2ml_/min to the hydrolyzed precursor. The medium is stirred (at 250 rpm) at room temperature for 45 minutes. The microparticles are isolated by centrifugation (15000g) and purified by washing with water (3 times). The microparticles were obtained with a minimum yield of 40%. The mean particle diameter is 5.3 ± 2.5 pm measured from observations by scanning electron microscopy (SEM) and reprocessed by ImageJ software (Figure 6). The size distribution d50 equal to 16.7 ÎŒm was measured by laser granulometry (Master sizer S 2000 Malvern). The particles have a matrix spherical morphology observed by SEM (Figure 6A). The presence of residual polymer favorable to surface deposition is observed by SEM (FIG. 6B). The zeta potential was determined at +11.7 mV.
Exemple 7 : mode de réalisation pour la formation de particules de silice hybride (submicroniques et microniques) Example 7: embodiment for the formation of hybrid silica particles (submicron and micron)
Une solution contenant 2.6 g de MTMOS hydrolysĂ©s dans 4.5g d’eau en milieu catalytique acide (pH<3, HCl) pendant 10 minutes Ă  tempĂ©rature ambiante sous agitation (300rpm) est ajoutĂ© Ă  un mĂ©lange contenant 0.3 g gomme de guar modifiĂ©e (N- Hance3215ℱ Ashland - Guar hydroxypropyltrimonium chloride), 10.1 g d’un tampon tartrate de sodium (pH 6.2, 500 mM), 0.09g de tampon citrate (pH 4.5, 0.78M), 0.05g avec de l’hydroxyde de sodium (6.25M).Le milieu est agitĂ© (Ă  250rpm) Ă  tempĂ©rature ambiante durant 45 minutes. Les particules sont isolĂ©es par centrifugation (15000g) et purifiĂ©es par lavage Ă  l’eau (3 fois). Les particules ont Ă©tĂ© obtenues avec un rendement de 50%. Le diamĂštre moyen des particules est de 0.75 pm ± 0.20 pm mesurĂ© Ă  partir d’observations par microscopie Ă©lectronique Ă  transmissions et retraitĂ© par le logiciel ImageJ (Figure 7A). Les particules ont une morphologie sphĂ©rique matricielle observĂ©e par MEB (Figure 7B). La prĂ©sence de polymĂšre rĂ©siduel favorable Ă  la dĂ©position de surface est observĂ©e par MEB (Figure 7B). Une analyse thermogravimĂ©trique rĂ©alisĂ©e de 25 Ă  800°C avec rampe 10°C/min a permis de mesurer une quantitĂ© de polymĂšre rĂ©siduel contenu dans le solide sec d’au minimum 4.6% par mesure de la perte de masse entre 220°C et 300°C (Figure 8). A solution containing 2.6 g of hydrolyzed MTMOS in 4.5 g of water in an acid catalytic medium (pH<3, HCl) for 10 minutes at room temperature with stirring (300 rpm) is added to a mixture containing 0.3 g of modified guar gum (N - Hance3215ℱ Ashland - Guar hydroxypropyltrimonium chloride), 10.1 g of sodium tartrate buffer (pH 6.2, 500 mM), 0.09g of citrate buffer (pH 4.5, 0.78M), 0.05g with sodium hydroxide ( 6.25M). The medium is stirred (at 250 rpm) at room temperature for 45 minutes. The particles are isolated by centrifugation (15000g) and purified by washing with water (3 times). The particles were obtained with a yield of 50%. The mean diameter of the particles is 0.75 ÎŒm ± 0.20 ÎŒm measured from observations by transmission electron microscopy and reprocessed by the ImageJ software (FIG. 7A). The particles have a matrix spherical morphology observed by SEM (Figure 7B). The presence of residual polymer favorable to surface deposition is observed by SEM (FIG. 7B). A thermogravimetric analysis carried out from 25 to 800°C with a 10°C/min ramp made it possible to measure a quantity of residual polymer contained in the solid dry of at least 4.6% by measuring the loss of mass between 220°C and 300°C (Figure 8).
Exemple 8 : mode de réalisation pour la formation de micro parti eu les de silice hybride Example 8: embodiment for the formation of micro particles of hybrid silica
5.0 g de MTMOS sont hydrolysĂ©s dans 2.0g d’eau en milieu catalytique acide (pH<3, HCl) pendant 10 minutes Ă  tempĂ©rature ambiante sous agitation (300rpm). Le mĂ©lange est ajoutĂ© goutte Ă  goutte avec un dĂ©bit de 2mL/min Ă  une solution contenant 0.3 g gomme de guar modifiĂ©e non-cationique (N-Hance HP40ℱ Ashland), 20.3 g d’un tampon tartrate de sodium (pH 6.2, 500 mM), 0.08g de tampon citrate (pH 4.5, 0.78M), 0.1g avec de l’hydroxyde de sodium (6.25M) . Le milieu est agitĂ© (Ă  250rpm) Ă  tempĂ©rature ambiante durant 45 minutes. Les microcapsules sont isolĂ©es par centrifugation (15000g) et purifiĂ©es par lavage Ă  l’eau (3 fois). Le diamĂštre moyen des microparticules est de 3.7 ± 1.7 pm mesurĂ© Ă  partir d’observations par microscopie Ă©lectronique Ă  balayage et retraitĂ© par le logiciel ImageJ (Figure 9). Les micro parti eu les ont Ă©tĂ© obtenues avec un rendement minimum de 40%. La distribution de taille d50 Ă©gale Ă  23.6pm a Ă©tĂ© mesurĂ©e par granulomĂ©trie laser (Master sizer S 2000 Malvern). Les particules ont une morphologie sphĂ©rique matricielle (Figure 9). La prĂ©sence de polymĂšre rĂ©siduel favorable Ă  la dĂ©position de surface est observĂ©e par MEB (Figure 9). 5.0 g of MTMOS are hydrolyzed in 2.0 g of water in an acid catalytic medium (pH<3, HCl) for 10 minutes at room temperature with stirring (300 rpm). The mixture is added drop by drop with a flow rate of 2 mL/min to a solution containing 0.3 g non-cationic modified guar gum (N-Hance HP40ℱ Ashland), 20.3 g of a sodium tartrate buffer (pH 6.2, 500 mM), 0.08g citrate buffer (pH 4.5, 0.78M), 0.1g with sodium hydroxide (6.25M). The medium is stirred (at 250 rpm) at room temperature for 45 minutes. The microcapsules are isolated by centrifugation (15000g) and purified by washing with water (3 times). The average diameter of the microparticles is 3.7 ± 1.7 pm measured from observations by scanning electron microscopy and reprocessed by the ImageJ software (Figure 9). The microparties were obtained with a minimum yield of 40%. The size distribution d50 equal to 23.6 ÎŒm was measured by laser granulometry (Master sizer S 2000 Malvern). The particles have a matrix spherical morphology (Figure 9). The presence of residual polymer favorable to surface deposition is observed by SEM (Figure 9).
Exemple 9 : mode de rĂ©alisation pour la formation de micro parti eu les de silice hybride en prĂ©sence d’une composition parfumĂ©e Example 9: embodiment for the formation of microparties of hybrid silica in the presence of a perfumed composition
2.6 g de MTMOS sont hydrolysĂ©s dans 1.4g d’eau en milieu catalytique acide (pH<3, HCl) contenant 0.84g d’une composition parfumĂ©e contentant au minimum 30% de DPG pendant 10 minutes Ă  tempĂ©rature ambiante sous agitation (300rpm). Le mĂ©lange est ajoutĂ© goutte Ă  goutte avec un dĂ©bit de 1ml_/min Ă  une solution contenant 0.3 g gomme de guar modifiĂ©e cationique (N-Hance3215ℱ Ashland - Guar hydroxypropyltrimonium chloride), 10.4 g d’un tampon tartrate de sodium (pH 6.2, 500 mM), 0.1g de tampon citrate (pH 4.5, 0.78M), 0.1g avec de l’hydroxyde de sodium (6.25M). Le milieu est agitĂ© (Ă  250rpm) Ă  tempĂ©rature ambiante durant 45 minutes. Les microparticules sont isolĂ©es par centrifugation (15000g) et purifiĂ©es par lavage Ă  l’eau (3 fois). Les particules sont obtenues avec un rendement minimum de 50%. Le diamĂštre des microparticules est compris entre 2.5 pm et 55 pm. Le diamĂštre moyen des microparticules est de 19.4 pm ± 12.8 pm (o) mesurĂ© Ă  partir d’observations par microscopie optique et retraitĂ© par le logiciel ImageJ (Figure 10). 2.6 g of MTMOS are hydrolyzed in 1.4 g of water in an acid catalytic medium (pH<3, HCl) containing 0.84 g of a perfumed composition containing at least 30% DPG for 10 minutes at room temperature with stirring (300 rpm). The mixture is added drop by drop with a flow rate of 1 ml_/min to a solution containing 0.3 g of cationic modified guar gum (N-Hance3215ℱ Ashland - Guar hydroxypropyltrimonium chloride), 10.4 g of a sodium tartrate buffer (pH 6.2, 500 mM), 0.1g citrate buffer (pH 4.5, 0.78M), 0.1g with sodium hydroxide (6.25M). The medium is stirred (at 250 rpm) at ambient temperature for 45 minutes. The microparticles are isolated by centrifugation (15000g) and purified by washing with water (3 times). The particles are obtained with a minimum yield of 50%. The diameter of the microparticles is between 2.5 ÎŒm and 55 ÎŒm. The average diameter of the microparticles is 19.4 pm ± 12.8 pm (o) measured from observations by optical microscopy and reprocessed by the ImageJ software (Figure 10).
Exemple 10 : mode de rĂ©alisation pour la formation de microcapsules de silice hybride en prĂ©sence d’une composition parfumĂ©e 2.7 g de MTMOS sont hydrolysĂ©s dans 1.1g d’eau en milieu catalytique acide (pHÂŁ2, HCl) contenant 0.84g d’une composition parfumĂ©e contentant au minimum 30% de DPG pendant 10 minutes Ă  tempĂ©rature ambiante sous agitation (300rpm).Le mĂ©lange est ensuite ajoutĂ© avec un dĂ©bit de 1ml_/min Ă  un mĂ©lange contenant 0.3 g gomme de guar (N-HanceHP40ℱ Ashland), 10.4 g d’un tampon phosphate de sodium (pH 7, 500 mM), 0.1g de tampon citrate (pH 4, 0.78M) et 0.4g de polyĂ©thylĂšne imine (25KDa) dans 24.4g d’eau. Le milieu est agitĂ© (Ă  250rpm) Ă  tempĂ©rature ambiante durant 45 minutes. Les microcapsules sont isolĂ©es par centrifugation (1000g) et purifiĂ©es par lavage Ă  l’eau (3 fois). Les particules sont obtenues avec un rendement minimum de 50%. Le diamĂštre moyen des microparticules est de 22.8 pm ± 13 pm (o) mesurĂ© Ă  partir d’observations par microscopie optique et retraitĂ© par le logiciel ImageJ (Figure 11). Example 10: embodiment for the formation of hybrid silica microcapsules in the presence of a perfumed composition 2.7 g of MTMOS are hydrolyzed in 1.1 g of water in an acid catalytic medium (pHÂŁ2, HCl) containing 0.84 g of a perfumed composition containing at least 30% of DPG for 10 minutes at room temperature with stirring (300 rpm). The mixture is then added at a flow rate of 1 ml_/min to a mixture containing 0.3 g guar gum (N-HanceHP40ℱ Ashland), 10.4 g of a sodium phosphate buffer (pH 7, 500 mM), 0.1 g of buffer citrate (pH 4, 0.78M) and 0.4g of polyethylene imine (25KDa) in 24.4g of water. The medium is stirred (at 250 rpm) at room temperature for 45 minutes. The microcapsules are isolated by centrifugation (1000g) and purified by washing with water (3 times). The particles are obtained with a minimum yield of 50%. The average diameter of the microparticles is 22.8 ÎŒm ± 13 ÎŒm (o) measured from observations by optical microscopy and reprocessed by the ImageJ software (FIG. 11).
Exemple 11 : mode de réalisation pour la formation de micro parti eu les de silice hybride en présence de linalol Example 11: embodiment for the formation of microparties of hybrid silica in the presence of linalool
5.0 g de MTMOS sont hydrolysĂ©s dans 2.0g d’eau en milieu catalytique acide (pH<3, HCl) pendant 10 minutes Ă  tempĂ©rature ambiante sous agitation (300rpm). Une solution contenant 0.3 g gomme de guar modifiĂ©e cationique (N-Hance3215ℱ Ashland - Guar hydroxylpropyl trimonium chloride), 20.3 g d’un tampon tartrate de sodium (pH 6.2, 500 mM), 0.1g de tampon citrate (pH 4.5, 0.78M), 0.1g avec de l’hydroxyde de sodium (6.25M) et 0.98g de linalol naturel est ajoutĂ© goutte Ă  goutte avec un dĂ©bit de 2mL/min au prĂ©curseur hydrolysĂ©. Le milieu est agitĂ© (Ă  250rpm) Ă  tempĂ©rature ambiante durant 45 minutes. Les micro parti eu les sont isolĂ©es par centrifugation (15000g) et purifiĂ©es par lavage Ă  l’eau (3 fois). Les microparticules ont Ă©tĂ© obtenues avec un rendement de 67%. Le diamĂštre des microparticules est compris entre 8 pm et 80 pm. Le diamĂštre moyen des microparticules est de 56.6 pm ± 17.4 pm (o) mesurĂ© Ă  partir d’observations par microscopie optique et retraitĂ© par le logiciel ImageJ (Figure 12). Le taux d’encapsulation thĂ©orique du linalol est approximativement de 20.3% par poids. AprĂšs extraction des composĂ©s dans l’acĂ©tate d’éthyle, le taux d’encapsulation est de 17.0% par analyses GC- MS, ce qui signifie que le rendement d’encapsulation au minimum de 83,6 %. 5.0 g of MTMOS are hydrolyzed in 2.0 g of water in an acid catalytic medium (pH<3, HCl) for 10 minutes at room temperature with stirring (300 rpm). A solution containing 0.3 g cationic modified guar gum (N-Hance3215ℱ Ashland - Guar hydroxylpropyl trimonium chloride), 20.3 g sodium tartrate buffer (pH 6.2, 500 mM), 0.1 g citrate buffer (pH 4.5, 0.78 M), 0.1g with sodium hydroxide (6.25M) and 0.98g of natural linalool is added dropwise with a flow rate of 2mL/min to the hydrolyzed precursor. The medium is stirred (at 250 rpm) at ambient temperature for 45 minutes. The microparties are isolated by centrifugation (15000g) and purified by washing with water (3 times). The microparticles were obtained with a yield of 67%. The diameter of the microparticles is between 8 ÎŒm and 80 ÎŒm. The average diameter of the microparticles is 56.6 pm ± 17.4 pm (o) measured from observations by optical microscopy and reprocessed by the ImageJ software (Figure 12). The theoretical encapsulation rate of linalool is approximately 20.3% by weight. After extraction of the compounds in ethyl acetate, the encapsulation rate is 17.0% by GC-MS analyses, which means that the encapsulation yield is at least 83.6%.
Exemple 12 : mode de réalisation pour la formation de micro parti eu les de silice hybride en présence de citral Example 12: embodiment for the formation of microparties of hybrid silica in the presence of citral
5.0 g de MTMOS sont hydrolysĂ©s dans 2.0g d’eau en milieu catalytique acide (pH<3, HCl) pendant 10 minutes Ă  tempĂ©rature ambiante sous agitation (300rpm). Une solution contenant 0.3 g gomme de guar modifiĂ©e cationique (N-Hance3215ℱ Ashland - Guar hydroxylpropyltrimonium chloride), 20.3 g d’un tampon tartrate de sodium (pH 6.2, 500 mM), 0.1g de tampon citrate (pH 4.5, 0.78M), 0.1g avec de l’hydroxyde de sodium (6.25M), 0.98g de citral est ajoutĂ© goutte Ă  goutte avec un dĂ©bit de 2ml_/min au prĂ©curseur hydrolysĂ©. Le milieu est agitĂ© (Ă  250rpm) Ă  tempĂ©rature ambiante durant 45 minutes. Les micro parti eu les sont isolĂ©es par centrifugation (15000g) et purifiĂ©es par lavage Ă  l’eau (3 fois). Les micro parti eu les ont Ă©tĂ© obtenues avec un rendement de 79%. Le diamĂštre des micro parti eu les est entre 10 pm et 70 pm. Le diamĂštre moyen des microparticules est de 39.5 pm ± 8.0 pm (o) mesurĂ© Ă  partir d’observations par microscopie optique et retraitĂ© par le logiciel ImageJ (Figure 13). Le taux d’encapsulation thĂ©orique du linalol est approximativement de 20.9% par poids. AprĂšs extraction des composĂ©s dans l’acĂ©tate d’éthyle, le taux d’encapsulation est de 15.9% par analyses GC- MS, ce qui signifie que le rendement d’encapsulation est au minimum de 76,34%. 5.0 g of MTMOS are hydrolyzed in 2.0 g of water in an acid catalytic medium (pH<3, HCl) for 10 minutes at room temperature with stirring (300 rpm). A solution containing 0.3 g cationic modified guar gum (N-Hance3215ℱ Ashland - Guar hydroxylpropyltrimonium chloride), 20.3 g sodium tartrate buffer (pH 6.2, 500 mM), 0.1 g citrate buffer (pH 4.5, 0.78M ), 0.1g with sodium hydroxide (6.25M), 0.98g of citral is added drop by drop with a flow rate of 2ml_/min to the hydrolyzed precursor. The medium is stirred (at 250 rpm) at ambient temperature for 45 minutes. The microparties are isolated by centrifugation (15000 g) and purified by washing with water (3 times). The microparties were obtained with a yield of 79%. The diameter of the microparties is between 10 ÎŒm and 70 ÎŒm. The average diameter of the microparticles is 39.5 ÎŒm ± 8.0 ÎŒm (o) measured from observations by optical microscopy and reprocessed by the ImageJ software (Figure 13). The theoretical encapsulation rate of linalool is approximately 20.9% by weight. After extraction of the compounds in ethyl acetate, the degree of encapsulation is 15.9% by GC-MS analyses, which means that the encapsulation yield is at least 76.34%.
Exemple 13 : mode de rĂ©alisation pour la formation de microparticules de silice hybride en prĂ©sence d’une composition parfumĂ©e Example 13: embodiment for the formation of hybrid silica microparticles in the presence of a perfumed composition
2.6 g de MTMOS sont hydrolysĂ©s dans 1.4g d’eau en milieu catalytique acide (pH<3, HCl) contenant 0.84g d’une composition parfumĂ©e contentant au minimum 30% de DPG pendant 10 minutes Ă  tempĂ©rature ambiante sous agitation (300rpm). Une solution contenant 11.1 g d’inuline modifiĂ©e cationique (Quatinℱ1280, Cosun), 10.4 g d’un tampon phosphate (pH 7, 500 mM) et 0.55g avec de l’hydroxyde de sodium (6.25M) est ajoutĂ© goutte Ă  goutte avec un dĂ©bit de 1mL/min au prĂ©curseur hydrolysĂ©. Le milieu est agitĂ© (Ă  250rpm) Ă  tempĂ©rature ambiante durant 45 minutes. Les microparticules sont isolĂ©es par centrifugation (1500g) et purifiĂ©es par lavage Ă  l’eau (3 fois). Les particules ont Ă©tĂ© obtenues avec un rendement de 46%. Le diamĂštre des microparticules est compris entre 10 pm et 160 pm, le diamĂštre moyen est de 15.5 pm ± 7.6 pm (o) mesurĂ© Ă  partir d’observations par microscopie optique et retraitĂ© par le logiciel ImageJ (Figure 14A). La morphologie sphĂ©rique matricielle est contrĂŽlĂ©e par microscopie Ă©lectronique Ă  balayage (Figure 14B). 2.6 g of MTMOS are hydrolyzed in 1.4 g of water in an acid catalytic medium (pH<3, HCl) containing 0.84 g of a perfumed composition containing at least 30% DPG for 10 minutes at room temperature with stirring (300 rpm). A solution containing 11.1 g of cationic modified inulin (Quatinℱ1280, Cosun), 10.4 g of a phosphate buffer (pH 7, 500 mM) and 0.55 g with sodium hydroxide (6.25 M) is added drop by drop. drop with a flow rate of 1mL/min to the hydrolyzed precursor. The medium is stirred (at 250 rpm) at ambient temperature for 45 minutes. The microparticles are isolated by centrifugation (1500g) and purified by washing with water (3 times). The particles were obtained with a yield of 46%. The diameter of the microparticles is between 10 ÎŒm and 160 ÎŒm, the average diameter is 15.5 ÎŒm ± 7.6 ÎŒm (o) measured from observations by optical microscopy and reprocessed by the ImageJ software (Figure 14A). The matrix spherical morphology is checked by scanning electron microscopy (FIG. 14B).
Exemple 14 : mode de rĂ©alisation pour la formation de microcapsules de silice en prĂ©sence d’une composition parfumĂ©e Example 14: embodiment for the formation of silica microcapsules in the presence of a perfumed composition
2.7 g de MTMOS sont hydrolysĂ©s dans 1.1g d’eau en milieu catalytique acide (pHÂŁ2, HCl) pendant 10 minutes Ă  tempĂ©rature ambiante sous agitation (300rpm). Le mĂ©lange est ensuite ajoutĂ© avec un dĂ©bit de 1ml_/min Ă  un mĂ©lange contenant 10.4mL de tampon phosphates de sodium (pH7, 500mM), 0.4g de polyĂ©thylĂšne imine (25KDa) dans 23.9g d’eau et 1.7g d’une composition parfumĂ©e contentant au minimum 70% de DPG. Le milieu est agitĂ© Ă  250rpm Ă  tempĂ©rature ambiante durant 45 minutes. Les microcapsules sont isolĂ©es par centrifugation (1000g) et purifiĂ©es par lavage Ă  l’eau (2 fois). Le diamĂštre moyen des microcapsules est de 16.7 pm +/- 6.0 pm (o) mesurĂ© Ă  partir d’observations par microscopie optique et retraitĂ© par le logiciel ImageJ. La morphologie sphĂ©rique de type microcapsule est observĂ©e par microscopie optique (Figure 15). 2.7 g of MTMOS are hydrolyzed in 1.1 g of water in an acid catalytic medium (pHÂŁ2, HCl) for 10 minutes at room temperature with stirring (300 rpm). The mixture is then added at a flow rate of 1ml_/min to a mixture containing 10.4mL of sodium phosphate buffer (pH7, 500mM), 0.4g of polyethylene imine (25KDa) in 23.9g of water and 1.7g of a composition scented containing at least 70% DPG. The medium is stirred at 250 rpm at room temperature for 45 minutes. The microcapsules are isolated by centrifugation (1000g) and purified by washing with water (twice). The average diameter of the microcapsules is 16.7 pm +/- 6.0 pm (o) measured from observations by optical microscopy and reprocessed by ImageJ software. The microcapsule-like spherical morphology is observed by optical microscopy (Figure 15).

Claims

REVENDICATIONS
1. ProcĂ©dĂ© de synthĂšse de particules de silice microniques comprenant les Ă©tapes suivantes : a. prĂ©paration de nuclĂ©i de silice par hydrolyse d'au moins un prĂ©curseur de silice dans l'eau en milieu catalytique acide, prĂ©fĂ©rentiellement la quantitĂ© d'acide est choisie de sorte Ă  ĂȘtre infĂ©rieure ou Ă©gale Ă  0,1 Ă©quivalent d’acide par rapport au prĂ©curseur de silice, b. formation d'une phase matrice par mĂ©lange d'au moins un agent de condensation choisi parmi au moins un polymĂšre polycationique basique branchĂ© ou linĂ©aire choisi parmi l'un au moins parmi les polyĂ©thylĂšnes imines, les polyaminoacides, les polyallylamines, des dĂ©rivĂ©s des propylĂšnes imines, les polylysines, les dĂ©rivĂ©s polysaccharides Ă  galactomannanes, fructo-oligosaccharides et oligofructoses ou un mĂ©lange, et d'au moins un anion monovalent, divalent ou trivalent choisi parmi l'un au moins parmi un sel de phosphate, un sel de tartrate et un sel de citrate, un sel de sulfate, ou un sel de nitrate, c. condensation en milieu basique des nuclĂ©is de silice obtenus Ă  l'Ă©tape a) par mĂ©lange sous agitation des nuclĂ©is de silice obtenus Ă  l'Ă©tape a) et de la phase matrice obtenue Ă  l'Ă©tape b) Ă  pH alcalin infĂ©rieur ou Ă©gal Ă  10.1. Process for the synthesis of micron silica particles comprising the following steps: a. preparation of silica nuclei by hydrolysis of at least one silica precursor in water in an acid catalytic medium, preferably the quantity of acid is chosen so as to be less than or equal to 0.1 equivalent of acid relative to the silica precursor, b. formation of a matrix phase by mixing at least one condensation agent chosen from at least one branched or linear basic polycationic polymer chosen from at least one from polyethyleneimines, polyamino acids, polyallylamines, derivatives of propyleneimines , polylysines, polysaccharide derivatives with galactomannans, fructo-oligosaccharides and oligofructoses or a mixture, and of at least one monovalent, divalent or trivalent anion chosen from at least one of a phosphate salt, a tartrate salt and a citrate salt, sulfate salt, or nitrate salt, c. condensation in a basic medium of the silica nuclei obtained in step a) by mixing, with stirring, the silica nuclei obtained in step a) and the matrix phase obtained in step b) at an alkaline pH less than or equal to 10 .
2. Procédé selon la revendication précédente dans lequel l'agent de condensation est choisi parmi la gomme de guar ou l'inuline, préférentiellement modifiée avec des groupements amines basiques. 2. Method according to the preceding claim, in which the condensation agent is chosen from guar gum or inulin, preferably modified with basic amine groups.
3. ProcĂ©dĂ© selon l’une quelconque des revendications prĂ©cĂ©dentes dans lequel l'agent de condensation est ajoutĂ© Ă  l’étape b) pour ĂȘtre en quantitĂ© infĂ©rieure ou Ă©gale Ă  100g/L dans la phase matrice, prĂ©fĂ©rentiellement infĂ©rieure ou Ă©gale Ă  50g/L, prĂ©fĂ©rentiellement infĂ©rieure ou Ă©gale Ă  20g/L. 3. Method according to any one of the preceding claims, in which the condensation agent is added in step b) to be in an amount less than or equal to 100 g/L in the matrix phase, preferably less than or equal to 50 g/L , preferably less than or equal to 20 g/L.
4. Procédé selon l'une quelconque des revendications précédentes dans lequel les étapes a) à c) sont réalisées à température ambiante comprise entre 18°C et 30°C. 4. Process according to any one of the preceding claims, in which steps a) to c) are carried out at ambient temperature of between 18°C and 30°C.
5. Procédé selon l'une quelconque des revendications 1 à 3 dans lequel les étapes a) à c) sont réalisées sans chauffage et sans refroidissement. 5. Method according to any one of claims 1 to 3 wherein steps a) to c) are carried out without heating and without cooling.
6. ProcĂ©dĂ© selon l’une quelconque des revendications prĂ©cĂ©dentes dans lequel le prĂ©curseur de silice ou un mĂ©lange de prĂ©curseur est choisi parmi l'un au moins parmi orthosilicate de tĂ©traĂ©thyle (TEOS), orthosilicate de tĂ©tramĂ©thyle (TMOS), (3-Aminopropyl)triĂ©thoxysilane (APTES), metasilicate de sodium, calcium silicate, trimĂ©thoxymĂ©thylsilane (MTMOS), triĂ©thoxymĂ©thylsilane (MTEOS), triĂ©thoxysilane, trimĂ©thoxysilane, triĂ©thoxy(Ă©thyl)silane (ETEOS), trimĂ©thoxy(Ă©thyl)silane (ETEOS), isobutyl(trimĂ©thoxy)silane, propyl(trimĂ©thoxy)silane, orthosilicate de sodium . 6. Method according to any one of the preceding claims, in which the silica precursor or a mixture of precursors is chosen from at least one of tetraethyl orthosilicate (TEOS), tetramethyl orthosilicate (TMOS), (3-Aminopropyl)triethoxysilane (APTES), sodium metasilicate, calcium silicate, trimethoxymethylsilane (MTMOS), triethoxymethylsilane (MTEOS), triethoxysilane, trimethoxysilane, triethoxy(ethyl)silane (ETEOS), trimethoxy(ethyl)silane (ETEOS), isobutyl (trimethoxy)silane, propyl(trimethoxy)silane, sodium orthosilicate.
7. ProcĂ©dĂ© selon l’une quelconque des revendications 1 Ă  5 dans lequel le prĂ©curseur de silice est choisi parmi l'un au moins parmi un extrait de silice biogĂ©nique, du sodium silicate ou une source naturelle d'acide ortho silicique.7. Process according to any one of claims 1 to 5, in which the silica precursor is chosen from at least one of a biogenic silica extract, sodium silicate or a natural source of ortho silicic acid.
8. ProcĂ©dĂ© selon l’une quelconque des revendications prĂ©cĂ©dentes dans lequel le au moins un prĂ©curseur de silice est ajoutĂ© Ă  l’étape a) en quantitĂ© infĂ©rieure ou Ă©gale Ă  6000mM, prĂ©fĂ©rentiellement le au moins un prĂ©curseur de silice est prĂ©sent Ă  l’étape c) en quantitĂ© infĂ©rieure ou Ă©gale Ă  lOOOmM. 8. Process according to any one of the preceding claims, in which the at least one silica precursor is added in step a) in an amount less than or equal to 6000 mM, preferably the at least one silica precursor is present in step c) in an amount less than or equal to 1000 mM.
9. ProcĂ©dĂ© selon l’une quelconque des revendications prĂ©cĂ©dentes dans lequel l’anion monovalent, divalent ou trivalent est ajoutĂ© en concentration infĂ©rieure ou Ă©gale Ă  300mM. 9. Method according to any one of the preceding claims, in which the monovalent, divalent or trivalent anion is added in a concentration less than or equal to 300 mM.
10. ProcĂ©dĂ© selon l'une quelconque des revendications prĂ©cĂ©dentes comprenant l'ajout d’un actif Ă  l'Ă©tape a). 10. Process according to any one of the preceding claims, comprising the addition of an active ingredient in step a).
11. ProcĂ©dĂ© selon l'une quelconque des revendications 1 Ă  9 comprenant l'ajout d’un actif Ă  l'Ă©tape b). 11. Method according to any one of claims 1 to 9 comprising the addition of an active ingredient in step b).
12. ProcĂ©dĂ© selon l’une quelconque des revendications 10 ou 11 comprenant une Ă©tape de prĂ©-Ă©mulsion de l’actif dans l’eau prĂ©cĂ©dent l’ajout de l’actif Ă  l’étape a) ou b). 12. Method according to any one of claims 10 or 11 comprising a step of pre-emulsifying the active ingredient in water preceding the addition of the active ingredient in step a) or b).
13. Procédé selon l'une quelconque des revendications précédentes dans lequel les nucléis obtenus à l'étape a) sont ajoutés au mélange de l'étape b). 13. Method according to any one of the preceding claims, in which the nuclei obtained in step a) are added to the mixture of step b).
14. Procédé selon l'une quelconque des revendications 1 à 12 dans lequel le mélange de l'étape b) est ajouté aux nucléis obtenus à l'étape a). 14. Process according to any one of claims 1 to 12, in which the mixture of step b) is added to the nuclei obtained in step a).
15. ProcĂ©dĂ© selon l'une quelconque des revendications prĂ©cĂ©dentes comprenant une Ă©tape c') de fonctionnalisation des particules de silice obtenues Ă  l'Ă©tape c) par ajout d'un prĂ©curseur de silice, l'Ă©tape c') Ă©tant simultanĂ©e ou successive Ă  l'Ă©tape c). 15. Process according to any one of the preceding claims, comprising a step câ€Č) of functionalizing the silica particles obtained in step c) by adding a silica precursor, step câ€Č) being simultaneous or successive to step c).
16. Procédé selon l'une quelconque des revendications précédentes comprenant aprÚs l'étape c) une étape d) de séparation des particules et éventuellement une étape e) de lavage des particules isolées et éventuellement une étape f) de séchage des particules. 16. Process according to any one of the preceding claims, comprising, after step c), a step d) of separating the particles and optionally a step e) of washing the isolated particles and optionally a step f) of drying the particles.
17. Procédé selon la revendication précédente dans lequel l'étape d) de séparation est réalisée par centrifugation ou filtration par voie tangentielle. 17. Process according to the preceding claim, in which step d) of separation is carried out by centrifugation or filtration by tangential route.
18. Procédé selon l'une quelconque des deux revendications précédentes dans lequel l'étape e) de purification pour éliminer des résidus organiques est réalisée par lavage, extraction chimique ou calcination. 18. Process according to any one of the two preceding claims, in which step e) of purification to eliminate organic residues is carried out by washing, chemical extraction or calcination.
PCT/EP2021/069508 2020-07-16 2021-07-13 Soft chemistry method for synthesising micronic silica particles WO2022013243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2007458A FR3112494B1 (en) 2020-07-16 2020-07-16 Synthesis process by soft chemistry of micron particles
FRFR2007458 2020-07-16

Publications (1)

Publication Number Publication Date
WO2022013243A1 true WO2022013243A1 (en) 2022-01-20

Family

ID=73698937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/069508 WO2022013243A1 (en) 2020-07-16 2021-07-13 Soft chemistry method for synthesising micronic silica particles

Country Status (2)

Country Link
FR (1) FR3112494B1 (en)
WO (1) WO2022013243A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008144734A1 (en) * 2007-05-21 2008-11-27 Aquea Scientific Corporation Highly charged microcapsules
US20120107499A1 (en) * 2010-06-25 2012-05-03 Traynor Daniel H Ceramic Encapsulation With Controlled Layering By Use of Functionalized Silanes
US20120104639A1 (en) 2010-06-25 2012-05-03 Traynor Daniel H Ceramic Encapsulation with Controlled Layering By Use of Prehydrolyzed Functionalized Silanes
US20140044760A1 (en) * 2008-12-04 2014-02-13 International Flavors & Fragrances Inc. Stable, flowable silica capsule formulation
WO2015197757A1 (en) * 2014-06-27 2015-12-30 Firmenich Sa Hybrid perfume microcapsules
EP3078415A1 (en) * 2013-12-06 2016-10-12 Kao Corporation Method for manufacturing microcapsules
CN104888217B (en) * 2009-06-12 2018-10-16 éčżç‰čäžčäŒŠæ‹‰æ–Żè°Ÿć€§ć­ŠćŒ»ç–—äž­ćżƒ Targeted nano light drug for cancer photodynamic therapy
US10099194B2 (en) 2011-03-18 2018-10-16 International Flavors & Fragrances Inc. Microcapsules produced from blended sol-gel precursors and method for producing the same
WO2019218027A1 (en) * 2018-05-18 2019-11-21 Monash University Core-shell particles

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008144734A1 (en) * 2007-05-21 2008-11-27 Aquea Scientific Corporation Highly charged microcapsules
US20140044760A1 (en) * 2008-12-04 2014-02-13 International Flavors & Fragrances Inc. Stable, flowable silica capsule formulation
CN104888217B (en) * 2009-06-12 2018-10-16 éčżç‰čäžčäŒŠæ‹‰æ–Żè°Ÿć€§ć­ŠćŒ»ç–—äž­ćżƒ Targeted nano light drug for cancer photodynamic therapy
US20120107499A1 (en) * 2010-06-25 2012-05-03 Traynor Daniel H Ceramic Encapsulation With Controlled Layering By Use of Functionalized Silanes
US20120104639A1 (en) 2010-06-25 2012-05-03 Traynor Daniel H Ceramic Encapsulation with Controlled Layering By Use of Prehydrolyzed Functionalized Silanes
US10099194B2 (en) 2011-03-18 2018-10-16 International Flavors & Fragrances Inc. Microcapsules produced from blended sol-gel precursors and method for producing the same
EP3078415A1 (en) * 2013-12-06 2016-10-12 Kao Corporation Method for manufacturing microcapsules
WO2015197757A1 (en) * 2014-06-27 2015-12-30 Firmenich Sa Hybrid perfume microcapsules
WO2019218027A1 (en) * 2018-05-18 2019-11-21 Monash University Core-shell particles

Also Published As

Publication number Publication date
FR3112494B1 (en) 2022-07-29
FR3112494A1 (en) 2022-01-21

Similar Documents

Publication Publication Date Title
CN105899651B (en) Benefit agent containing delivery particles based on styrene maleic anhydride copolymers
EP2244689B1 (en) Deposition of lipophilic active material in surfactant containing compositions
US7585824B2 (en) Encapsulated fragrance chemicals
JP6598781B2 (en) Hybrid microcapsule
US7196049B2 (en) Encapsulated fragrance chemicals
EP1407753B1 (en) Encapsulated fragrance chemicals
US20070138674A1 (en) Encapsulated active material with reduced formaldehyde potential
US20070207174A1 (en) Encapsulated fragrance materials and methods for making same
US20090258042A1 (en) Encapsulated Active Materials Containing Adjunct Crosslinkers
US20040071742A1 (en) Encapsulated fragrance chemicals
CA2769566C (en) Core-shell material, method for preparing same, and use thereof for the thermostimulated generation of substances of interest
US20070138672A1 (en) Process for preparing a high stability microcapsule product and method for using same
US20070138673A1 (en) Process for Preparing a High Stability Microcapsule Product and Method for Using Same
JP2018522976A (en) Compositions containing multiple populations of microcapsules containing perfume
JP6719456B2 (en) Hybrid perfume microcapsule
EP3092069B1 (en) Process for manufacturing double-walled microcapsules, microcapsules prepared by this process and the use thereof
WO2022013243A1 (en) Soft chemistry method for synthesising micronic silica particles
CN108676615A (en) A kind of preparation method of nano controlled-release essence
WO2022013250A1 (en) Process for synthesizing nanoscale and sub-micron-sized porous silica particles by soft chemistry
JP2022521733A (en) Direct nanoemulsification method for the synthesis of spherical organosiloxane submicrons / nanoparticles
FR2774382A1 (en) SOLID COMPOSITE PARTICLES COMPRISING A LIQUID AMINOUS SILICONE ENCAPSULATED IN A WATER-SOLUBLE ORGANIC MATRIX, PROCESS FOR THEIR PREPARATION AND USE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21742830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21742830

Country of ref document: EP

Kind code of ref document: A1