WO2022012420A1 - Nucleotide combination and use thereof - Google Patents

Nucleotide combination and use thereof Download PDF

Info

Publication number
WO2022012420A1
WO2022012420A1 PCT/CN2021/105374 CN2021105374W WO2022012420A1 WO 2022012420 A1 WO2022012420 A1 WO 2022012420A1 CN 2021105374 W CN2021105374 W CN 2021105374W WO 2022012420 A1 WO2022012420 A1 WO 2022012420A1
Authority
WO
WIPO (PCT)
Prior art keywords
hla
gene
cancer
carcinoma
genes
Prior art date
Application number
PCT/CN2021/105374
Other languages
French (fr)
Chinese (zh)
Inventor
冀颜
徐伟
周辉
王树彦
竺东雷
彭波
Original Assignee
信达生物制药(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信达生物制药(苏州)有限公司 filed Critical 信达生物制药(苏州)有限公司
Publication of WO2022012420A1 publication Critical patent/WO2022012420A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer

Definitions

  • the invention belongs to the field of biological diagnosis, in particular to a combination of nucleotides and uses thereof, and more particularly to a gene biomarker capable of diagnosing the prognostic effect of PD1/PDL1 pathway immune checkpoint inhibitor combined with chemotherapy drugs.
  • Cancer has always been one of the leading causes of death in the world, and has become a major disease that seriously endangers human life and health and restricts social development.
  • Today, the incidence and death toll of cancer are still rising rapidly.
  • Epidemiological data show that in 2018, there were 18.1 million new cancer cases worldwide and 9.6 million cancer deaths.
  • the number of new cancer cases and deaths in my country were about 4.292 million and 2.814 million, respectively, equivalent to an average of 12,000 new cancer cases and 7,500 cancer deaths every day. It can be seen that cancer has become the main cause of death in China, seriously threatening people's health and life, and causing huge public health problems.
  • lung cancer ranks first in the incidence of malignant tumors in my country.
  • the estimated results show that there were about 787,000 new lung cancer cases in my country in 2015, the incidence rate was 57.26/100,000, and the winning rate was 35.96/100,000.
  • the other high-incidence malignant tumors are gastric cancer, colorectal cancer, liver cancer and breast cancer, etc.
  • the top 10 malignant tumors account for about 76.70% of all malignant tumors.
  • non-small cell lung cancer accounts for about 80% to 85% of all lung cancer cases, and about 70% of NSCLC patients have locally advanced or metastatic disease that is not suitable for surgical resection at the time of diagnosis.
  • NSCLC non-small cell lung cancer
  • EGFR epidermal growth factor
  • First-line EGFR inhibitors are recommended for patients with EGFR-mutated advanced NSCLC.
  • the ALK rearrangement rate is about 3%
  • the ALK inhibitor crizotinib is recommended for first-line patients with ALK-rearranged advanced NSCLC.
  • the standard first-line treatment for advanced non-squamous NSCLC in China without EGFR mutation and ALK rearrangement is platinum-containing double-drug chemotherapy, and the survival time after failure of first-line chemotherapy is only 6-9 months. Therefore, the development of new drugs for recurrent or advanced non-squamous NSCLC still needs A long way to go.
  • immune checkpoint inhibitors such as anti-PD-1/PD-L1 antibodies
  • pembrolizumab was approved for non-small cell lung cancer.
  • nivolumab was also approved for marketing in non-small cell lung cancer; in December 2018, sintilimab was launched for the indication of Hodgkin's lymphoma, and immunological clinical trials for various indications are currently underway, including First-line non-squamous NSCLC.
  • TMB tumor mutational burden
  • MSI microsatellite instability
  • TMB tumor necrosis factor
  • PD-L1, MSI-H, etc. can predict the efficacy.
  • PD-L1 expression is not a good biomarker.
  • TMB the efficacy of immunotherapy can be predicted, different platforms are used for TMB detection in clinical experiments. The detection and analysis accuracy is not enough, and it is not suitable for the prediction of combination therapy, so we need to find a better biomaker to predict the efficacy of combination therapy.
  • the technical problem to be solved by the present invention is to provide some nucleotide combinations and their applications for overcoming the defects in the prior art.
  • the present invention solves the above technical problems through the following technical solutions.
  • nucleotide combination comprising or consisting of the following genes: CD74, CTSZ, ACP5, MS4A6A, CD83, NPC2, GPNMB, C1QB, HLA-DPA1 and HLA-DMB, or mutations in the above genes; and/or
  • the inventors have unexpectedly found that the above-mentioned genes are specifically highly expressed by macrophages in the tumor microenvironment, wherein the "specifically high expression” refers to the expression of the genes in patients who respond to tumor immune combination therapy. Expression was higher than in non-responding patients.
  • the tumor immune combination can be conventional in the art, such as PD1 immune checkpoint inhibitor combined with chemotherapy.
  • the nucleotide combination comprises or consists of the following genes:
  • nucleotide combination comprises LAP3, IFNGR1, TBXAS1, SPI1, SNX10, LYZ, HCK, ACP5, CTSH, ASAH1, MAN2B1, CD33, RASSF4, MS4A6A, DOK1, PLEK, NPC2, CD80, CCR2, NCKAP1L, ACP2, P2RX4, TLR2, CASP1, IDH1, N4BP2L1, ITGAX, C1orf162, PLA2G7, ATP6V1B2, FERMT3, TMEM86A, MERTK, SLAMF8, FCER1G, ATP6V0D1, SCIMP, TNFSF13, CTSS, MNDA, TMEM144, CYBB, SMCO4, C2, TPP1, P2RY6, CLEC7A, SMPDL3A, C1QB, OLR1, LRRC25, CD163, FUCA1, CSF1R, ADAP2, TMEM106A, ZNF267, FPR3, CARD9,
  • nucleotide combination comprises or consists of the following genes:
  • the second technical solution of the present invention is: the application of the nucleotide combination according to the one of the technical solutions in the preparation of a diagnostic reagent for the prognosis of a patient who has been administered a PD1/PDL1 pathway immune checkpoint inhibitor; Preferably, the patient has been administered a PD1/PDL1 pathway immune checkpoint inhibitor in combination with a chemotherapy drug.
  • the third technical solution of the present invention is: a kit for evaluating the prognostic effect of a patient after administration of PD1/PDL1 pathway immune checkpoint inhibitor or administration of PD1/PDL1 pathway immune checkpoint inhibitor combined with chemotherapy drugs, the reagent
  • the kit contains reagents for detecting the expression level of the combination of nucleotides as described in one of the technical solutions.
  • the expression level can be determined by any convenient method, and many suitable techniques are known in the art.
  • suitable techniques include: real-time quantitative PCR (RT-qPCR), digital PCR, microarray analysis, whole transcriptome shotgun sequencing (RNA-SEQ), direct multiplex gene expression analysis, enzyme-linked immunosorbent assay (ELISA), protein Chips, flow cytometry (eg, Flow-FISH of RNA, also known as FlowRNA), mass spectrometry, Western blots, and northern blots.
  • the reagents may be reagents suitable for determining the expression of the gene in question using any of the techniques described herein, such as RT-qPCR, digital PCR, microarray analysis, whole transcriptome shotgun sequencing, or direct multiplex gene expression analysis.
  • the kit may include primers suitable for determining the expression of the gene in question using, eg, T-qPCR, digital PCR, microarray analysis, whole transcriptome shotgun sequencing or direct multiplex gene expression analysis. The design of suitable primers is routine and within the skill of the artisan. Kits for direct multiplex gene expression analysis may also or alternatively include fluorescent probes for determining the expression of the gene in question.
  • kits may also include RNA extraction kits and/or reagents for reverse transcription of RNA into cDNA.
  • the kit may also include one or more articles of manufacture and/or reagents for carrying out the methods, such as buffers, and/or a device for obtaining the test sample itself, such as a device for obtaining and/or isolating the sample, and Containers for processing samples (these components are usually sterile).
  • one or more articles of manufacture and/or reagents for carrying out the methods such as buffers, and/or a device for obtaining the test sample itself, such as a device for obtaining and/or isolating the sample, and Containers for processing samples (these components are usually sterile).
  • the fourth technical solution of the present invention is: a system for evaluating the prognostic effect of a patient after administration of a PD1/PDL1 pathway immune checkpoint inhibitor or a PD1/PDL1 pathway immune checkpoint inhibitor combined with a chemotherapeutic drug, the system comprising a tool And a computer, the tool is used to determine the expression level of the nucleotide combination as described in one of the technical solutions.
  • the computer is programmed to determine the prognostic effect based on the patient's gene expression data.
  • the fifth technical solution of the present invention is: a method for predicting the response of a patient diagnosed with cancer after administration of a PD1/PDL1 pathway immune checkpoint inhibitor or a PD1/PDL1 pathway immune checkpoint inhibitor combined with a chemotherapeutic drug, comprising the following steps :
  • the nucleotide combination as described in one of the technical solutions is provided, and based on the expression of each gene in the combination, the patients are divided into a gene high expression group and a gene low expression group, and the PFS conditions of the two groups of patients are compared. Statistically different, high or low expression of the combined gene was considered to be associated with a corresponding therapeutic effect.
  • the PD1/PDL1 pathway immune checkpoint inhibitor is preferably PD1 antigen binding protein or PDL1 antigen binding protein; wherein the PD1 antigen binding protein or PDL1 antigen binding protein is preferably a monoclonal antibody or a bispecific antibody, Multispecific antibodies; for example, nivolumab, pembrolizumab, silimumab, toripalizumab, camrelizumab, tislelizumab, sintilimab; atezolizumab, avelumab, durvalumab, adebrelimab, pacmilimab, envafolimab;
  • the PD1/PDL1 pathway immune checkpoint inhibitor is sintilimab.
  • the chemotherapeutic drugs preferably include pemetrexed, gemcitabine or paclitaxel, and platinum; wherein, the platinum is preferably cisplatin and/or carboplatin.
  • the patient preferably has a cancer selected from the group consisting of adrenocortical carcinoma, bladder urothelial carcinoma, breast invasive carcinoma, cervical squamous cell carcinoma and adenocarcinoma, cholangiocarcinoma, colorectal carcinoma, lymphoma, diffuse large B-cell lymphoma , esophageal cancer, glioma, head and neck squamous cell carcinoma, mixed renal carcinoma, acute myeloid leukemia, hepatocellular carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, mesothelioma, ovarian serous cystadenocarcinoma, pancreatic cancer , pheochromocytoma and paraganglioma, prostate adenocarcinoma, sarcoma, skin melanoma, gastric cancer, gastric and esophageal cancer, testicular cancer, thyroid cancer, thymoma, endometrial
  • the sixth technical solution of the present invention is: the application of the nucleotide combination according to one of the technical solutions in screening PD1/PDL1 pathway immune checkpoint inhibitory drugs.
  • the reagents and raw materials used in the present invention are all commercially available.
  • nucleotide combination of the present invention can carry out effective disease prediction or prognosis diagnosis, especially in the treatment of PD1/PDL1 pathway immune checkpoint inhibitor combined with chemotherapeutic drugs.
  • Figure 1 shows the PFS curves of sample patients with RNA sequences in treatment and control groups and all patients in treatment and control groups.
  • Figure 2A and Figure 2B are the PFS curves of myloid_gene_set in the treatment group and the control group.
  • Figures 3A and 3B are PFS curves of TAM_gene_set in the treatment group and the control group.
  • Figure 4A and Figure 4B are the PFS curves of myloid_gene_set_filtered in the treatment group and the control group.
  • Figures 5A and 5B are PFS curves of TAM_gene_set_filtered in the treatment group and the control group.
  • the present invention is a combination of sintilimab combined with chemotherapy drugs pemetrexed and platinum or placebo combined with chemotherapy drugs pemetrexed and platinum in Chinese subjects with advanced or recurrent non-squamous non-small cell lung cancer.
  • placebo combined with pemetrexed, cisplatin or carboplatin was used as a parallel control, and the patients received sintilimab or placebo combined with pemetrexed, cisplatin or carboplatin for 4 cycles, and then received sintilimab or placebo combined with pemetrexed, cisplatin or carboplatin.
  • Limumab or placebo monotherapy plus pemetrexed maintenance therapy, and the maximum duration of sintilimab treatment was 24 months.
  • Biological pathway enrichment analysis method set the total number of genes N, there are two groups of genes (query group, that is, favorably predictive gene set; reference group, that is, a biological pathway), and the genes are divided into four groups: A group (a genes, both in query group and reference group), B group (b genes, in query group, not in reference group), C group (c genes, not in query group, in reference group) and D group (d genes, not in the query group, not in the reference group).
  • a group a genes, both in query group and reference group
  • B group b genes, in query group, not in reference group
  • C group c genes, not in query group, in reference group
  • D group d genes, not in the query group, not in the reference group
  • Example 1 Multicenter, multicenter, first-line treatment of sintilimab combined with pemetrexed and platinum-based chemotherapy or placebo combined with pemetrexed and platinum-based chemotherapy in subjects with advanced or recurrent non-squamous NSCLC Randomized, double-blind phase III study
  • Carboplatin AUC5 (calculated using Calvert formula), the dose of carboplatin should not exceed 750mg.
  • AUC area under the curve, area under the plasma concentration-time curve
  • the estimated CrCl used in the Calvert formula must not exceed 125ml/min
  • FFPE Paraffin-Embedded, paraffin-embedded
  • FFPE RNA sequence samples of 182 patients were analyzed, as shown in Figure 1. Although only a subset of patients, FFPE RNA sequences were specifically representative from the perspective of progression free survival (PFS, progression-free survival). In the treatment group or the control group, there was no statistical difference in the PFS curves of either the patients with RNA-seq or the whole sample. This shows that the 182 samples used for analysis can represent the clinical characteristics of all samples with statistical significance.
  • FFPE RNA sequences of 182 cases in Example 1 Based on the FFPE RNA sequences of 182 cases in Example 1, it was found that four groups of genes that are specifically highly expressed on macrophages in the tumor immune microenvironment can be used as biomarkers for tumor patient selection, such as for PD1/PDL1 pathway immunity Prediction of response or companion diagnosis of checkpoint inhibitors in combination with chemotherapeutic agents in subjects with advanced or recurrent non-squamous NSCLC.
  • the surv_cutpoint function in the survminer a software package in the statistical software R, is used to select a cutoff value for each gene, and the samples with a value greater than this cutoff value are selected.
  • the set is called the high group (the better curative effect group), and the sample set below this cutoff value is called the low group (the poor curative effect group).
  • the hazard ratio ⁇ 1&p-value ⁇ 0.05 the gene is called a favorably predictive gene.
  • the gene is called unfavorably predictive gene, and the obtained favorably predictive gene is analyzed by biological pathway enrichment analysis method to find the favorably predictive gene that is significantly enriched in the macrophage pathway.
  • the two groups of top nucleotide combinations are obtained, namely myloid_gene_set and TAM_gene_set, and the specific gene sets are shown in Table 2. The relationship between myloid_gene_set, TAM_gene_set and PFS was then evaluated, see Figures 2 and 3.
  • the first step is to evaluate the relationship between gene and PFS for all genes in myloid_gene_set and TAM_gene_set according to the method in 1), and find the favorably predictive gene;
  • the myloid_gene_set and TAM_gene_set are respectively based on the overall expression(OE) score (see https://github.com/livnatje/ImmuneResistance for the method) and the PFS data of the patients in the comb group, using a software package survminer in the statistical software R
  • the surv_cutpoint in select a cutoff for both myloid_gene_set and TAM_gene_set respectively.
  • the sample set greater than this cutoff is called the high group (better curative effect group), and the sample set lower than this cutoff is called the low group (poor curative effect group).
  • the genes with significantly high expression in the high group were retained by the gene expression differential analysis method.
  • the third step is to take the intersection of the genes obtained in the first step and the second step, namely myloid_gene_set_filtered and TAM_gene_set_filtered.
  • the specific gene collection is shown in Table 2. Then evaluate the relationship between myloid_gene_set_filtered and TAM_gene_set_filtered and PFS, see Figure 4 and Figure 5.
  • 2gene_set run the equation in step 1 in comb (treatment group) and chem (control group) in four gene_sets, myloid_gene_set, TAM_gene_set, myloid_gene_set_filtered and TAM_gene_set_filtered, respectively.
  • the comb group includes the high group and the low group
  • the chem group includes the high group and the low group.
  • the low group is set as the reference, and the statistical results indicate the statistical relationship between the high/low group and the patient's PFS.
  • the hazard ratio of the high/low group in the treatment group (comb) is ⁇ 1 and p-value ⁇ 0.05, indicating that In the comb group, the patients in the high group (better curative effect group) had a longer progression-free survival than the patients in the low group (poor curative effect group); while in the control group (chem), the hazard ratio of the high/low group was ⁇ 1, but the p- value>0.05, indicating that in the control group (chem), there was no difference in PFS between the high and low groups.
  • the input contains only myloid_gene_set, TAM_gene_set, myloid_gene_set_filtered, or TAM_gene_set_filtered gene expression data in samples in different tumors (https://portal.gdc.cancer.gov/), to predict these The probability of belonging to the high group in the tumor sample.
  • the high group represents patients with tumor microenvironment subtypes that may have a better prognosis for combination therapy (anti-PD1 antibody combined with chemotherapy drugs). Take all tumors of TCGA (The Cancer Genome Atlas, Tumor Genome Atlas) as an example.
  • ACC Adrenocortical carcinoma, adrenal cortical carcinoma
  • BLCA Breast Urothelial Carcinoma, bladder urothelial carcinoma
  • BRCA Breast invasive carcinoma, breast invasive carcinoma
  • CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma, cervical squamous cell carcinoma
  • CHOL Cervocarcinoma, cholangiocarcinoma
  • COADREAD Cold adenocarcinoma/Rectum adenocarcinoma Esophageal carcinoma, colorectal cancer
  • DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma, diffuse large
  • Table 3 Proportion of samples predicted to be likely to respond to anti-PD1 antibodies and chemotherapeutics in TCGA multiple tumor types by myloid_gene_set, TAM_gene_set, myloid_gene_set_filtered, and TAM_gene_set_filtered
  • these four gene sets can not only play a predictive role in PD1/PDL1 pathway immune checkpoint inhibitors combined with chemotherapy drugs, especially in the combination of sintilimab combined with pemetrexed, platinum (cisplatin or carboplatin) in the It plays an obvious predictive role in the treatment of patients with advanced or recurrent non-squamous NSCLC, and can also play a role in predicting efficacy in the above-mentioned indications.

Abstract

Provided is a nucleotide combination and a use thereof. The nucleotide combination comprises the following genes: CD74, CTSZ, ACP5, MS4A6A, CD83, NPC2, GPNMB, C1QB, HLA-DPA1, and HLA-DMB, or mutations of said genes; and/or a gene such as LAP3, IFNGR1, TBXAS1, SPI1, SNX10 or mutations of said genes. The genes are genes specifically expressed by a macrophage in a tumor microenvironment. Using the nucleotide combination allows for effective disease prediction or prognostic diagnosis, and especially provides a good predictive effect in combined treatment with a PD1/PDL1 pathway immune checkpoint inhibitor and a chemotherapy drug.

Description

一种核苷酸组合及其应用A kind of nucleotide combination and its application
本申请要求申请日为2020/7/17的中国专利申请2020106925834的优先权。本申请引用上述中国专利申请的全文。This application claims the priority of Chinese patent application 2020106925834 with an application date of 2020/7/17. This application cites the full text of the above Chinese patent application.
技术领域technical field
本发明属于生物诊断领域,具体涉及核苷酸组合及其用途,更具体地涉及一种可以诊断PD1/PDL1通路免疫检查点抑制剂联合化疗药物预后效果的基因生物标志物。The invention belongs to the field of biological diagnosis, in particular to a combination of nucleotides and uses thereof, and more particularly to a gene biomarker capable of diagnosing the prognostic effect of PD1/PDL1 pathway immune checkpoint inhibitor combined with chemotherapy drugs.
背景技术Background technique
癌症一直是全球首要死因之一,已经成为严重危害人类生命健康、制约社会发展的一大类疾病,如今癌症的发病率和死亡人数仍在迅速攀升。流行病学数据显示,2018年全球新发癌症病例1810万例,死亡癌症病例达960万例。2015年我国癌症新发病例数及死亡人数分别约为429.2万例和281.4万例,相当于平均每天12000人新患癌症、7500人死于癌症。可见,癌症已经成为中国最主要的死亡原因,严重威胁着人民健康和生命,产生巨大的公共健康问题。按发病人数顺位排序,肺癌位居我国恶性肿瘤发病首位。估计结果显示,2015年我国新发肺癌病例约为78.7万例,发病率为57.26/10万,中标率为35.96/10万。其他高发恶性肿瘤依次为胃癌、结直肠癌、肝癌和乳腺癌等,前10位恶性肿瘤发病约占全部恶性肿瘤发病的76.70%。Cancer has always been one of the leading causes of death in the world, and has become a major disease that seriously endangers human life and health and restricts social development. Today, the incidence and death toll of cancer are still rising rapidly. Epidemiological data show that in 2018, there were 18.1 million new cancer cases worldwide and 9.6 million cancer deaths. In 2015, the number of new cancer cases and deaths in my country were about 4.292 million and 2.814 million, respectively, equivalent to an average of 12,000 new cancer cases and 7,500 cancer deaths every day. It can be seen that cancer has become the main cause of death in China, seriously threatening people's health and life, and causing huge public health problems. According to the order of the number of cases, lung cancer ranks first in the incidence of malignant tumors in my country. The estimated results show that there were about 787,000 new lung cancer cases in my country in 2015, the incidence rate was 57.26/100,000, and the winning rate was 35.96/100,000. The other high-incidence malignant tumors are gastric cancer, colorectal cancer, liver cancer and breast cancer, etc. The top 10 malignant tumors account for about 76.70% of all malignant tumors.
其中,在所有肺癌病例中非小细胞肺癌(NSCLC)大约占80%至85%,约70%的NSCLC患者在诊断时已是不适于手术切除的局部晚期或转移性疾病。而且,在接受手术治疗的早期NSCLC患者中也有相当比例后来发生复发或远处转移,而进展死亡。中国NSCLC中约60%为非鳞NSCLC。晚期非鳞NSCLC患者的治疗方式以化疗为主,一部分患者可使用靶向治疗。中国非鳞NSCLC中表皮生长因子(EGFR)突变率约40%。EGFR突变的晚期NSCLC患者一线推荐使用EGFR抑制剂(吉非替尼、厄洛替尼或埃克替尼)。在中国ALK重排率约为3%,ALK重排的晚期NSCLC患者一线推荐ALK抑制剂克唑替尼。无EGFR突变和ALK重排中国晚期非鳞NSCLC的一线标准治疗方案为含铂的双药化疗,一线化疗失败后的生存期仅6-9个月,因此复发或晚期非鳞NSCLC的新药研发还任重道远。Among them, non-small cell lung cancer (NSCLC) accounts for about 80% to 85% of all lung cancer cases, and about 70% of NSCLC patients have locally advanced or metastatic disease that is not suitable for surgical resection at the time of diagnosis. Moreover, a considerable proportion of patients with early-stage NSCLC who received surgical treatment later developed recurrence or distant metastasis, and progressed to death. About 60% of NSCLC in China are non-squamous NSCLC. The treatment of patients with advanced non-squamous NSCLC is mainly chemotherapy, and targeted therapy can be used for some patients. The epidermal growth factor (EGFR) mutation rate in non-squamous NSCLC in China is about 40%. First-line EGFR inhibitors (gefitinib, erlotinib, or icotinib) are recommended for patients with EGFR-mutated advanced NSCLC. In China, the ALK rearrangement rate is about 3%, and the ALK inhibitor crizotinib is recommended for first-line patients with ALK-rearranged advanced NSCLC. The standard first-line treatment for advanced non-squamous NSCLC in China without EGFR mutation and ALK rearrangement is platinum-containing double-drug chemotherapy, and the survival time after failure of first-line chemotherapy is only 6-9 months. Therefore, the development of new drugs for recurrent or advanced non-squamous NSCLC still needs A long way to go.
近年来,通过抑制免疫检查点来激活人体自身免疫系统,使其发挥攻击肿瘤细胞作用的相关研究进展迅速,使用免疫检查点抑制剂(如抗PD-1/PD-L1抗体)为治疗NSCLC, 尤其是复发或转移性晚期NSCLC一线治疗提供了新的临床途径。例如,2015年6月,帕博利珠单抗获批非小细胞肺癌适应症。此外,纳武单抗在非小细胞肺癌也获批上市;2018年12月,信迪利单抗以霍奇金淋巴瘤适应症上市,目前正在开展多种适应症的免疫临床实验,其中包括一线非鳞NSCLC。In recent years, the research on activating the body's own immune system by inhibiting immune checkpoints and making them play the role of attacking tumor cells has progressed rapidly. The use of immune checkpoint inhibitors (such as anti-PD-1/PD-L1 antibodies) is used to treat NSCLC. Especially the first-line treatment of relapsed or metastatic advanced NSCLC provides a new clinical avenue. For example, in June 2015, pembrolizumab was approved for non-small cell lung cancer. In addition, nivolumab was also approved for marketing in non-small cell lung cancer; in December 2018, sintilimab was launched for the indication of Hodgkin's lymphoma, and immunological clinical trials for various indications are currently underway, including First-line non-squamous NSCLC.
目前在免疫治疗单药治疗中,有一些生物标记物(biomarker)被认为能够预测疗效,比如有肿瘤突变负荷(TMB)、PD-L1蛋白的表达、微卫星不稳定(MSI)等。2017年12月21日,Yarchoan et al.在新英格兰杂志上发表了评估肿瘤突变负荷(Tumor Mutation Burden,TMB)与客观缓解率(Objective Response Rate,ORR)之间关系的研究,发现55%不同类型肿瘤的客观缓解率差异可以用TMB来解释,TMB越高,癌症的客观缓解率越高,该研究推动了TMB在免疫疗法中的应用(Yarchoan,M.,Hopkins,A.,&Jaffee,E.M.(2017).Tumor Mutational Burden and Response Rate to PD-1 Inhibition.The New England Journal of Medicine,377(25),2500-2501.)。Currently in immunotherapy monotherapy, some biomarkers are considered to predict efficacy, such as tumor mutational burden (TMB), PD-L1 protein expression, and microsatellite instability (MSI). On December 21, 2017, Yarchoan et al. published in the New England Journal a study evaluating the relationship between Tumor Mutation Burden (TMB) and Objective Response Rate (ORR) and found 55% different The difference in objective response rate of tumor types can be explained by TMB, the higher the TMB, the higher the objective response rate of the cancer, this study promotes the application of TMB in immunotherapy (Yarchoan, M., Hopkins, A., & Jaffee, EM (2017). Tumor Mutational Burden and Response Rate to PD-1 Inhibition. The New England Journal of Medicine, 377(25), 2500-2501.).
然而,在抗PD-1抗体联合化疗药物的治疗中,并没有足够的证据证明TMB,PD-L1,MSI-H等可以预测疗效。比如在联合治疗中,PD-L1的表达并不是一个比较好的biomarker。此外,以TMB为例,虽然可以预测免疫治疗的疗效,但临床实验中采用不同的平台进行TMB检测,检测和分析精确度不够,且不适合组合治疗的预测,因此我们需要找到更好的biomaker去预测组合治疗的疗效。However, in the treatment of anti-PD-1 antibodies combined with chemotherapy drugs, there is not enough evidence to prove that TMB, PD-L1, MSI-H, etc. can predict the efficacy. For example, in combination therapy, PD-L1 expression is not a good biomarker. In addition, taking TMB as an example, although the efficacy of immunotherapy can be predicted, different platforms are used for TMB detection in clinical experiments. The detection and analysis accuracy is not enough, and it is not suitable for the prediction of combination therapy, so we need to find a better biomaker to predict the efficacy of combination therapy.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是为克服现有技术中的缺陷提供一些核苷酸组合及其应用。The technical problem to be solved by the present invention is to provide some nucleotide combinations and their applications for overcoming the defects in the prior art.
本发明通过以下技术方案解决上述技术问题。The present invention solves the above technical problems through the following technical solutions.
本发明的技术方案之一为:一种核苷酸组合,所述的核苷酸组合包含或者由以下基因组成:CD74、CTSZ、ACP5、MS4A6A、CD83、NPC2、GPNMB、C1QB、HLA-DPA1以及HLA-DMB,或者上述基因的突变;和/或One of the technical solutions of the present invention is: a nucleotide combination comprising or consisting of the following genes: CD74, CTSZ, ACP5, MS4A6A, CD83, NPC2, GPNMB, C1QB, HLA-DPA1 and HLA-DMB, or mutations in the above genes; and/or
LAP3、IFNGR1、TBXAS1、SPI1、SNX10、LYZ、HCK、ACP5、CTSH、ASAH1、MAN2B1、CD33、RASSF4、MS4A6A、DOK1、PLEK、NPC2、CD80、CCR2、NCKAP1L、ACP2、P2RX4、TLR2、CASP1、IDH1、N4BP2L1、ITGAX、C1orf162、PLA2G7、ATP6V1B2、FERMT3、TMEM86A、MERTK、SLAMF8、FCER1G、ATP6V0D1、SCIMP、TNFSF13、CTSS、MNDA、TMEM144、CYBB、SMCO4、C2、TPP1、P2RY6、CLEC7A、SMPDL3A、C1QB、OLR1、LRRC25、CD163、FUCA1、CSF1R、ADAP2、TMEM106A、ZNF267、 FPR3、CARD9、DAPK1、MPEG1、PSAP、FAM49A、FCGR1B、CSF2RA、SLC29A3、GGTA1P、IFI30、HLA-DPA1、GPX1、NFAM1、HLA-DMB、LYN、SLC43A2以及IGSF6,或者上述基因的突变。LAP3, IFNGR1, TBXAS1, SPI1, SNX10, LYZ, HCK, ACP5, CTSH, ASAH1, MAN2B1, CD33, RASSF4, MS4A6A, DOK1, PLEK, NPC2, CD80, CCR2, NCKAP1L, ACP2, P2RX4, TLR2, CASP1, IDH1, N4BP2L1, ITGAX, C1orf162, PLA2G7, ATP6V1B2, FERMT3, TMEM86A, MERTK, SLAMF8, FCER1G, ATP6V0D1, SCIMP, TNFSF13, CTSS, MNDA, TMEM144, CYBB, SMCO4, C2, TPP1, P2RY6, CLEC7A, SMPDL3A, C1QB, OLR1, LRRC25, CD163, FUCA1, CSF1R, ADAP2, TMEM106A, ZNF267, FPR3, CARD9, DAPK1, MPEG1, PSAP, FAM49A, FCGR1B, CSF2RA, SLC29A3, GGTA1P, IFI30, HLA-DPA1, GPX1, NFAM1, HLA-DMB, LYN, SLC43A2 and IGSF6, or mutations in the above genes.
发明人意外地发现:如上所述的基因在肿瘤微环境中巨噬细胞特异高表达,其中所述“特异性高表达”指的是所述基因在对于肿瘤免疫组合治疗有响应的患者中的表达高于其在无响应患者中的表达。所述的肿瘤免疫组合可为本领域常规,例如PD1免疫检查点抑制剂结合化疗。The inventors have unexpectedly found that the above-mentioned genes are specifically highly expressed by macrophages in the tumor microenvironment, wherein the "specifically high expression" refers to the expression of the genes in patients who respond to tumor immune combination therapy. Expression was higher than in non-responding patients. The tumor immune combination can be conventional in the art, such as PD1 immune checkpoint inhibitor combined with chemotherapy.
较佳地,所述的核苷酸组合包含或者由以下基因组成:Preferably, the nucleotide combination comprises or consists of the following genes:
CD74、CTSZ、ACP5、MS4A6A、CD83、NPC2、GPNMB、C1QB、HLA-DPA1和HLA-DMB,以及C1QC、C1QA、RGS1、LGMN、APOC1、APOE、HLA-DQA1、GPR183、SGK1、HSPA1B、HLA-DRA、HSPA1A、DNAJB1、ATF3、HLA-DQB1、HLA-DQA2、CCL3、NR4A2、HLA-DPB1、HLA-DRB1、FOSB、HSPB1、HSPH1、HLA-DMA、CTSBCD9、JUN、LMNA、GADD45B、CCL3L3、GSN、CCL4、SPP1、RNASE1、ZNF331、IER3、CTSL、ARL4C、PLD3、CREM、MS4A4A、FABP5、CREG1、CTSC、CXCL8、HSPD1、HSP90AA1、ITM2B、HSP90AB1、LIPA、YWHAH、CTSD、HSPE1、PPP1R15A、TMEM176B、CALR、CXCL16、HERPUD1、PRDX1、CD68、TMEM176A、MARCKS、CAPG、TNFAIP3、DUSP2、PLIN2、FCGR2A、C15orf48、CXXC1、FABP5P1和SCGB1D1中的一个或多个,或上述基因的突变;和/或CD74, CTSZ, ACP5, MS4A6A, CD83, NPC2, GPNMB, C1QB, HLA-DPA1, and HLA-DMB, and C1QC, C1QA, RGS1, LGMN, APOC1, APOE, HLA-DQA1, GPR183, SGK1, HSPA1B, HLA-DRA , HSPA1A, DNAJB1, ATF3, HLA-DQB1, HLA-DQA2, CCL3, NR4A2, HLA-DPB1, HLA-DRB1, FOSB, HSPB1, HSPH1, HLA-DMA, CTSBCD9, JUN, LMNA, GADD45B, CCL3L3, GSN, CCL4 , SPP1, RNASE1, ZNF331, IER3, CTSL, ARL4C, PLD3, CREM, MS4A4A, FABP5, CREG1, CTSC, CXCL8, HSPD1, HSP90AA1, ITM2B, HSP90AB1, LIPA, YWHAH, CTSD, HSPE1, PPP1R15A, TMEM176B, CALR, CXCL16 , HERPUD1, PRDX1, CD68, TMEM176A, MARCKS, CAPG, TNFAIP3, DUSP2, PLIN2, FCGR2A, C15orf48, CXXC1, FABP5P1 and SCGB1D1, or mutations in one or more of the above genes; and/or
所述的核苷酸组合包含LAP3、IFNGR1、TBXAS1、SPI1、SNX10、LYZ、HCK、ACP5、CTSH、ASAH1、MAN2B1、CD33、RASSF4、MS4A6A、DOK1、PLEK、NPC2、CD80、CCR2、NCKAP1L、ACP2、P2RX4、TLR2、CASP1、IDH1、N4BP2L1、ITGAX、C1orf162、PLA2G7、ATP6V1B2、FERMT3、TMEM86A、MERTK、SLAMF8、FCER1G、ATP6V0D1、SCIMP、TNFSF13、CTSS、MNDA、TMEM144、CYBB、SMCO4、C2、TPP1、P2RY6、CLEC7A、SMPDL3A、C1QB、OLR1、LRRC25、CD163、FUCA1、CSF1R、ADAP2、TMEM106A、ZNF267、FPR3、CARD9、DAPK1、MPEG1、PSAP、FAM49A、FCGR1B、CSF2RA、SLC29A3、GGTA1P、IFI30、HLA-DPA1、GPX1、NFAM1、HLA-DMB、LYN、SLC43A2和IGSF6,以及ABCA1、ABI1、ACAA1、ACER3、ACSL1、ADAMDEC1、ADORA3、ADPGK、AIF1、AKR1A1、ALDH2、ALDH3B1、AMICA1、AMPD3、ANKRD22、AP1B1、APOC1、AQP9、ARAP1、ARHGAP18、ARHGAP27、ARHGEF10L、ARPC1B、ARRB2、ATF5、ATG3、ATG7、ATP6AP1、ATP6V0B、ATP6V1F、BACH1、BCKDHA、BCL2A1、BID、BLOC1S1、BLVRA、BLVRB、C10orf54、C15orf48、C19orf38、C1QA、 C1QC、C3AR1、C5AR1、C9orf72、CAPG、CAPZA2、CAT、CCDC88A、CCR1、CCRL2、CD14、CD1D、CD274、CD300C、CD300E、CD300LB、CD300LF、CD302、CD68、CD86、CECR1、CFD、CFP、CLEC10A、CLEC12A、CLEC4A、CLEC4E、CLEC5A、CMKLR1、CMTM6、CNDP2、CNPY3、CORO7、CPVL、CREG1、CSF3R、CST3、CSTA、CTSA、CTSB、CTSC、CTSD、CXCL10、CXCL16、CXCL9、CXCR2P1、CYB5R4、CYBA、CYP2S1、DBNL、DENND1A、DHRS9、DMXL2、DNAJC5B、DOK3、DPYD、EBI3、EMR2、EPSTI1、ETV6、EVI2A、F13A1、FAM105A、FAM157B、FAM26F、FAM96A、FBP1、FCGR1A、FCGR1C、FCGR2A、FCGR2C、FCGR3B、FCGRT、FCN1、FES、FGL2、FKBP15、FLVCR2、FOLR2、FPR1、FPR2、FTH1、FTL、FUOM、GAA、GABARAP、GALC、GATM、GBP1、GCA、GK、GLA、GLB1、GLRX、GLUL、GM2A、GNA13、GNA15、GPBAR1、GPR34、GPR84、GRN、GSTO1、H2AFY、HCAR2、HCAR3、HEIH、HERPUD1、HIST2H2BF、HK2、HK3、HLA-DMA、HLA-DPB1、HLA-DPB2、HLA-DQA1、HLA-DQB1、HLA-DRA、HLA-DRB1、HLA-DRB5、HLA-DRB6、HMOX1、HN1、HPS1、HSPA6、HSPA7、HSPBAP1、IFI35、IFIT2、IFNGR2、IGFLR1、IL10RB、IL18、IL1B、IL1RN、IL4I1、IL8、IRF5、IRF7、JAK2、KCNMA1、KCNMB1、KYNU、LAIR1、LGALS2、LGALS9、LGMN、LILRA1、LILRA2、LILRA3、LILRA4、LILRA5、LILRA6、LILRB1、LILRB2、LILRB3、LILRB4、LILRB5、LIPA、LST1、LTA4H、M6PR、MAFB、MAPKAPK3、MARCO、MFSD1、MGAT1、MIF4GD、MIIP、MILR1、MKNK1、MOB1A、MPP1、MRC1、MS4A4A、MS4A7、MSR1、MTHFD2、MTMR14、MX1、MX2、MXD1、MYD88、NAAA、NADK、NAGA、NAGK、NAIP、NCF2、NCF4、NCOA4、NFKBID、NINJ1、NLRC4、NLRP3、NMI、NOD2、NPL、NR1H3、OAS1、OAZ1、OSCAR、P2RY12、P2RY13、P2RY14、PAK1、PCK2、PFKFB3、PGD、PILRA、PLA2G15、PLAUR、PLBD1、PLEKHO1、PLEKHO2、PLIN2、PLXDC2、PPM1M、PPT1、PRAM1、PRKCD、PSME2、PTAFR、PTPRE、PYCARD、RAB20、RAB4B、RAB8A、RASGEF1B、RBM47、RBPJ、REEP4、RELT、RGS10、RGS18、RGS19、RGS2、RHBDF2、RHOG、RILPL2、RIPK2、RNASE6、RNASEK、RNASET2、RNF13、RNF130、RNF144B、RNF149、RTN1、S100A11、S100A8、S100A9、SAMHD1、SAT1、SCAMP2、SCO2、SCPEP1、SDS、SECTM1、SEMA4A、SERPINA1、SERPINB1、SFT2D1、SGPL1、SH3BGRL、SHKBP1、SIGLEC1、SIGLEC14、SIGLEC5、SIGLEC7、SIGLEC9、SIRPA、SIRPB1、SIRPB2、SKAP2、SLC11A1、SLC15A3、SLC16A3、SLC1A3、SLC25A19、SLC2A5、SLC2A8、SLC2A9、SLC31A2、SLC46A3、SLC7A7、SLC9A9、SLCO2B1、SNX6、SOD2、SPINT2、SQRDL、SRC、STX11、STXBP2、TALDO1、TFRC、TGFBI、THEMIS2、TIFAB、 TLR1、TLR4、TLR5、TLR8、TMEM176A、TMEM176B、TMEM37、TMEM51、TNFAIP2、TNFAIP8L2、TNFSF13B、TRAFD1、TREM1、TREM2、TRPM2、TTYH3、TWF2、TYMP、TYROBP、UBE2D1、UBXN11、UNC93B1、VAMP8、VMO1、VSIG4、WDFY2、ZEB2、ZNF385A、CTSL、LOC338758和LOC729737中的一个或多个,或上述基因的突变。Described nucleotide combination comprises LAP3, IFNGR1, TBXAS1, SPI1, SNX10, LYZ, HCK, ACP5, CTSH, ASAH1, MAN2B1, CD33, RASSF4, MS4A6A, DOK1, PLEK, NPC2, CD80, CCR2, NCKAP1L, ACP2, P2RX4, TLR2, CASP1, IDH1, N4BP2L1, ITGAX, C1orf162, PLA2G7, ATP6V1B2, FERMT3, TMEM86A, MERTK, SLAMF8, FCER1G, ATP6V0D1, SCIMP, TNFSF13, CTSS, MNDA, TMEM144, CYBB, SMCO4, C2, TPP1, P2RY6, CLEC7A, SMPDL3A, C1QB, OLR1, LRRC25, CD163, FUCA1, CSF1R, ADAP2, TMEM106A, ZNF267, FPR3, CARD9, DAPK1, MPEG1, PSAP, FAM49A, FCGR1B, CSF2RA, SLC29A3, GGTA1P, IFI30, HLA-DPA1, GPX1, NFAM1, HLA-DMB, LYN, SLC43A2, and IGSF6, and ABCA1, ABI1, ACAA1, ACER3, ACSL1, ADAMDEC1, ADORA3, ADPGK, AIF1, AKR1A1, ALDH2, ALDH3B1, AMICA1, AMPD3, ANKRD22, AP1B1, APOC1, AQP9, ARAP1 , ARHGAP18, ARHGAP27, ARHGEF10L, ARPC1B, ARRB2, ATF5, ATG3, ATG7, ATP6AP1, ATP6V0B, ATP6V1F, BACH1, BCKDHA, BCL2A1, BID, BLOC1S1, BLVRA, BLVRB, C10orf54, C15orf48, C19orf38, C11QA, C1QC, C3AR , C9orf72, CAPG, CAPZA2, CAT, CCDC88A, CCR1, CCRL2, CD14, CD1D, CD274, CD300C, CD300E, CD300LB, CD300LF, CD302, CD68, CD86, CECR1, CFD, CFP, CLEC10A, CLEC12A, CLEC4A, CLEC4E, CLEC5A , CMKLR1, CMTM6, CNDP2, CNPY3, CORO7, CPVL, CREG1, CSF3R, CST3, CSTA, CTSA, CTSB, C TSC, CTSD, CXCL10, CXCL16, CXCL9, CXCR2P1, CYB5R4, CYBA, CYP2S1, DBNL, DENND1A, DHRS9, DMXL2, DNAJC5B, DOK3, DPYD, EBI3, EMR2, EPSTI1, ETV6, EVI2A, F13A1, FAM105A, FAM157B, FAM26F, FAM96A, FBP1, FCGR1A, FCGR1C, FCGR2A, FCGR2C, FCGR3B, FCGRT, FCN1, FES, FGL2, FKBP15, FLVCR2, FOLR2, FPR1, FPR2, FTH1, FTL, FUOM, GAA, GABARAP, GALC, GATM, GBP1, GCA, GK, GLA, GLB1, GLRX, GLUL, GM2A, GNA13, GNA15, GPBAR1, GPR34, GPR84, GRN, GSTO1, H2AFY, HCAR2, HCAR3, HEIH, HERPUD1, HIST2H2BF, HK2, HK3, HLA-DMA, HLA-DPB1, HLA-DPB2, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, HLA-DRB6, HMOX1, HN1, HPS1, HSPA6, HSPA7, HSPBAP1, IFI35, IFIT2, IFNGR2, IGFLR1, IL10RB, IL18, IL1B, IL1RN, IL4I1, IL8, IRF5, IRF7, JAK2, KCNMA1, KCNMB1, KYNU, LAIR1, LGALS2, LGALS9, LGMN, LILRA1, LILRA2, LILRA3, LILRA4, LILRA5, LILRA6, LILRB1, LILRB2, LILRB3, LILRB4, LILRB5, LIPA, LST1, LTA4H, M6PR, MAFB, MAPKAPK3, MARCO, MFSD1, MGAT1, MIF4GD, MIIP, MILR1, MKNK1, MOB1A, MPP1, MRC1, MS4A4A, MS4A7, MSR1, MTHFD2, MTMR14, MX1, MX2, MXD1, MYD88, NAAA, NADK, NAGA, NAGK, NAIP, NCF2, NCF4, NCOA4, NFKBID, NINJ1, NLRC4, NLRP3, NMI, NOD2, NPL, NR1H3, OAS1, OAZ1, OSCAR, P2RY12, P2RY13, P2RY14, PAK1, PCK2, PFKFB3, PGD, PILRA, PLA2G15, PLAUR, PLBD1, PLEKHO1, PLEKHO2, PLIN2, PLXDC2, PPM1M, PPT1, PRAM1, PRKCD, PSME2, PTAFR, PTPRE, PYCARD, RAB20, RAB4B, RAB8A, RASGEF1B, RBM47, RBPJ, REEP4, RELT, RGS10, RGS18, RGS19, RGS2, RHBDF2, RHOG, RILPL2, RIPK2, RNASE6, RNASEK, RNASET2, RNF13, RNF130, RNF144B, RNF149, RTN1, S100A11, S100A8, S100A9, SAMHD1, SAT1, SCAMP2, SCO2, SCPEP1, SDS, SECTM1, SEMA4A, SERPINA1, SERPINB1, SFT2D1, SGPL1, SH3BGRL, SHKBP1, SIGLEC1, SIGLEC14, SIGLEC5, SIGLEC7, SIGLEC9, SIRPA, SIRPB1, SIRPB2, SKAP2, SLC11A1, SLC15A3, SLC16A3, SLC1A3, SLC25A19, SLC2A8A5, SLC25A19 SLC2A9, SLC31A2, SLC46A3, SLC7A7, SLC9A9, SLCO2B1, SNX6, SOD2, SPINT2, SQRDL, SRC, STX11, STXBP2, TALDO1, TFRC, TGFBI, THEMIS2, TIFAB, TLR1, TLR4, TLR5, TLR8, TMEM176A, TMEM176B, TMEM37, One of TMEM51, TNFAIP2, TNFAIP8L2, TNFSF13B, TRAFD1, TREM1, TREM2, TRPM2, TTYH3, TWF2, TYMP, TYROBP, UBE2D1, UBXN11, UNC93B1, VAMP8, VMO1, VSIG4, WDFY2, ZEB2, ZNF385A, CTSL, LOC338758, and LOC729737 or multiple, or mutations of the above genes.
更佳地,所述的核苷酸组合包含或者由以下基因组成:More preferably, the nucleotide combination comprises or consists of the following genes:
C1QC、C1QB、C1QA、RGS1、LGMN、APOC1、APOE、HLA-DQA1、CD74、GPR183、SGK1、HSPA1B、HLA-DRA、GPNMB、HSPA1A、DNAJB1、ATF3、HLA-DQB1、HLA-DQA2、CCL3、NR4A2、HLA-DPB1、HLA-DRB1、HLA-DMB、FOSB、HSPB1、ACP5、HSPH1、HLA-DPA1、HLA-DMA、CTSB CD9、CD83、JUN、LMNA、GADD45B、CCL3L3、GSN、CCL4、SPP1、RNASE1、ZNF331、IER3、CTSL、ARL4C、PLD3、CREM、NPC2、MS4A4A、FABP5、CREG1、CTSC、CXCL8、HSPD1、HSP90AA1、ITM2B、HSP90AB1、LIPA、CTSZ、YWHAH、CTSD、HSPE1、PPP1R15A、TMEM176B、CALR、CXCL16、HERPUD1、PRDX1、CD68、TMEM176A、MARCKS、CAPG、TNFAIP3、DUSP2、MS4A6A、PLIN2、FCGR2A、C15orf48、CXXC1、FABP5P1以及SCGB1D1,或上述基因的突变;和/或,C1QC, C1QB, C1QA, RGS1, LGMN, APOC1, APOE, HLA-DQA1, CD74, GPR183, SGK1, HSPA1B, HLA-DRA, GPNMB, HSPA1A, DNAJB1, ATF3, HLA-DQB1, HLA-DQA2, CCL3, NR4A2, HLA-DPB1, HLA-DRB1, HLA-DMB, FOSB, HSPB1, ACP5, HSPH1, HLA-DPA1, HLA-DMA, CTSB CD9, CD83, JUN, LMNA, GADD45B, CCL3L3, GSN, CCL4, SPP1, RNASE1, ZNF331 , IER3, CTSL, ARL4C, PLD3, CREM, NPC2, MS4A4A, FABP5, CREG1, CTSC, CXCL8, HSPD1, HSP90AA1, ITM2B, HSP90AB1, LIPA, CTSZ, YWHAH, CTSD, HSPE1, PPP1R15A, TMEM176B, CALR, CXCL16, HERPUD1 , PRDX1, CD68, TMEM176A, MARCKS, CAPG, TNFAIP3, DUSP2, MS4A6A, PLIN2, FCGR2A, C15orf48, CXXC1, FABP5P1, and SCGB1D1, or mutations in the above genes; and/or,
ABCA1、ABI1、ACAA1、ACER3、ACP2、ACP5、ACSL1、ADAMDEC1、ADAP2、ADORA3、ADPGK、AIF1、AKR1A1、ALDH2、ALDH3B1、AMICA1、AMPD3、ANKRD22、AP1B1、APOC1、AQP9、ARAP1、ARHGAP18、ARHGAP27、ARHGEF10L、ARPC1B、ARRB2、ASAH1、ATF5、ATG3、ATG7、ATP6AP1、ATP6V0B、ATP6V0D1、ATP6V1B2、ATP6V1F、BACH1、BCKDHA、BCL2A1、BID、BLOC1S1、BLVRA、BLVRB、C10orf54、C15orf48、C19orf38、C1orf162、C1QA、C1QB、C1QC、C2、C3AR1、C5AR1、C9orf72、CAPG、CAPZA2、CARD9、CASP1、CAT、CCDC88A、CCR1、CCR2、CCRL2、CD14、CD163、CD1D、CD274、CD300C、CD300E、CD300LB、CD300LF、CD302、CD33、CD68、CD80、CD86、CECR1、CFD、CFP、CLEC10A、CLEC12A、CLEC4A、CLEC4E、CLEC5A、CLEC7A、CMKLR1、CMTM6、CNDP2、CNPY3、CORO7、CPVL、CREG1、CSF1R、CSF2RA、CSF3R、CST3、CSTA、CTSA、CTSB、CTSC、CTSD、CTSH、CTSS、CXCL10、CXCL16、CXCL9、CXCR2P1、CYB5R4、CYBA、CYBB、CYP2S1、DAPK1、DBNL、DENND1A、DHRS9、DMXL2、DNAJC5B、DOK1、DOK3、DPYD、EBI3、EMR2、EPSTI1、ETV6、EVI2A、F13A1、FAM105A、FAM157B、FAM26F、FAM49A、FAM96A、FBP1、FCER1G、FCGR1A、FCGR1B、FCGR1C、FCGR2A、FCGR2C、FCGR3B、FCGRT、FCN1、FERMT3、FES、FGL2、FKBP15、FLVCR2、FOLR2、FPR1、FPR2、FPR3、FTH1、FTL、 FUCA1、FUOM、GAA、GABARAP、GALC、GATM、GBP1、GCA、GGTA1P、GK、GLA、GLB1、GLRX、GLUL、GM2A、GNA13、GNA15、GPBAR1、GPR34、GPR84、GPX1、GRN、GSTO1、H2AFY、HCAR2、HCAR3、HCK、HEIH、HERPUD1、HIST2H2BF、HK2、HK3、HLA-DMA、HLA-DMB、HLA-DPA1、HLA-DPB1、HLA-DPB2、HLA-DQA1、HLA-DQB1、HLA-DRA、HLA-DRB1、HLA-DRB5、HLA-DRB6、HMOX1、HN1、HPS1、HSPA6、HSPA7、HSPBAP1、IDH1、IFI30、IFI35、IFIT2、IFNGR1、IFNGR2、IGFLR1、IGSF6、IL10RB、IL18、IL1B、IL1RN、IL4I1、IL8、IRF5、IRF7、ITGAX、JAK2、KCNMA1、KCNMB1、KYNU、LAIR1、LAP3、LGALS2、LGALS9、LGMN、LILRA1、LILRA2、LILRA3、LILRA4、LILRA5、LILRA6、LILRB1、LILRB2、LILRB3、LILRB4、LILRB5、LIPA、LRRC25、LST1、LTA4H、LYN、LYZ、M6PR、MAFB、MAN2B1、MAPKAPK3、MARCO、MERTK、MFSD1、MGAT1、MIF4GD、MIIP、MILR1、MKNK1、MNDA、MOB1A、MPEG1、MPP1、MRC1、MS4A4A、MS4A6A、MS4A7、MSR1、MTHFD2、MTMR14、MX1、MX2、MXD1、MYD88、N4BP2L1、NAAA、NADK、NAGA、NAGK、NAIP、NCF2、NCF4、NCKAP1L、NCOA4、NFAM1、NFKBID、NINJ1、NLRC4、NLRP3、NMI、NOD2、NPC2、NPL、NR1H3、OAS1、OAZ1、OLR1、OSCAR、P2RX4、P2RY12、P2RY13、P2RY14、P2RY6、PAK1、PCK2、PFKFB3、PGD、PILRA、PLA2G15、PLA2G7、PLAUR、PLBD1、PLEK、PLEKHO1、PLEKHO2、PLIN2、PLXDC2、PPM1M、PPT1、PRAM1、PRKCD、PSAP、PSME2、PTAFR、PTPRE、PYCARD、RAB20、RAB4B、RAB8A、RASGEF1B、RASSF4、RBM47、RBPJ、REEP4、RELT、RGS10、RGS18、RGS19、RGS2、RHBDF2、RHOG、RILPL2、RIPK2、RNASE6、RNASEK、RNASET2、RNF13、RNF130、RNF144B、RNF149、RTN1、S100A11、S100A8、S100A9、SAMHD1、SAT1、SCAMP2、SCIMP、SCO2、SCPEP1、SDS、SECTM1、SEMA4A、SERPINA1、SERPINB1、SFT2D1、SGPL1、SH3BGRL、SHKBP1、SIGLEC1、SIGLEC14、SIGLEC5、SIGLEC7、SIGLEC9、SIRPA、SIRPB1、SIRPB2、SKAP2、SLAMF8、SLC11A1、SLC15A3、SLC16A3、SLC1A3、SLC25A19、SLC29A3、SLC2A5、SLC2A8、SLC2A9、SLC31A2、SLC43A2、SLC46A3、SLC7A7、SLC9A9、SLCO2B1、SMPDL3A、SNX10、SNX6、SOD2、SPI1、SPINT2、SQRDL、SRC、STX11、STXBP2、TALDO1、TBXAS1、TFRC、TGFBI、THEMIS2、TIFAB、TLR1、TLR2、TLR4、TLR5、TLR8、TMEM106A、TMEM144、TMEM176A、TMEM176B、TMEM37、TMEM51、TMEM86A、TNFAIP2、TNFAIP8L2、TNFSF13、TNFSF13B、TPP1、TRAFD1、TREM1、TREM2、TRPM2、TTYH3、TWF2、TYMP、TYROBP、UBE2D1、UBXN11、UNC93B1、VAMP8、VMO1、VSIG4、WDFY2、ZEB2、ZNF267、ZNF385A、 CTSL、SMCO4、LOC338758以及LOC729737,或上述基因的突变。ABCA1, ABI1, ACAA1, ACER3, ACP2, ACP5, ACSL1, ADAMDEC1, ADAP2, ADORA3, ADPGK, AIF1, AKR1A1, ALDH2, ALDH3B1, AMICA1, AMPD3, ANKRD22, AP1B1, APOC1, AQP9, ARAP1, ARHGAP18, ARHGAP27, ARHGEF10L, ARPC1B, ARRB2, ASAH1, ATF5, ATG3, ATG7, ATP6AP1, ATP6V0B, ATP6V0D1, ATP6V1B2, ATP6V1F, BACH1, BCKDHA, BCL2A1, BID, BLOC1S1, BLVRA, BLVRB, C10orf54, C15orf48, C19orf38, C1orf, QC162, C1QA, C1QBCC1QA C2, C3AR1, C5AR1, C9orf72, CAPG, CAPZA2, CARD9, CASP1, CAT, CCDC88A, CCR1, CCR2, CCRL2, CD14, CD163, CD1D, CD274, CD300C, CD300E, CD300LB, CD300LF, CD302, CD33, CD68, CD80, CD86, CECR1, CFD, CFP, CLEC10A, CLEC12A, CLEC4A, CLEC4E, CLEC5A, CLEC7A, CMKLR1, CMTM6, CNDP2, CNPY3, CORO7, CPVL, CREG1, CSF1R, CSF2RA, CSF3R, CST3, CSTA, CTSA, CTSB, CTSC, CTSD, CTSH, CTSS, CXCL10, CXCL16, CXCL9, CXCR2P1, CYB5R4, CYBA, CYBB, CYP2S1, DAPK1, DBNL, DENND1A, DHRS9, DMXL2, DNAJC5B, DOK1, DOK3, DPYD, EBI3, EMR2, EPSTI1, ETV6, EVI2A, F13A1, FAM105A, FAM157B, FAM26F, FAM49A, FAM96A, FBP1, FCER1G, FCGR1A, FCGR1B, FCGR1C, FCGR2A, FCGR2C, FCGR3B, FCGRT, FCN1, FERMT3, FES, FGL2, FKBP15, FLVCR2, FOLR2, FPR1, FPR2, FPR3, FTH1, FTL, FUCA1, FUOM, GAA, GABARAP, GALC, GATM, GBP1, GCA, GGTA1P, GK, GLA, GLB1, GLRX, GLUL, GM2A, GNA13, GNA15, GPBAR1, GPR34, GPR84, GPX1, GRN, GSTO1, H2AFY, HCAR2, HCAR3, HCK, HEIH, HERPUD1, HIST2H2BF, HK2, HK3, HLA-DMA, HLA-DMB, HLA-DPA1, HLA-DPB1, HLA-DPB2, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, HLA-DRB6, HMOX1, HN1, HPS1, HSPA6, HSPA7, HSPBAP1, IDH1, IFI30, IFI35, IFIT2, IFNGR1, IFNGR2, IGFLR1, IGSF6, IL10RB, IL18, IL1B, IL1RN, IL4I1, IL8, IRF5, IRF7, ITGAX, JAK2, KCNMA1, KCNMB1, KYNU, LAIR1, LAP3, LGALS2, LGALS9, LGMN, LILRA1, LILRA2, LILRA3, LILRA4, LILRA5, LILRA6, LILRB1, LILRB2, LILRB3, LILRB4, LILRB5, LIPA, LRRC25, LST1, LTA4H, LYN, LYZ, M6PR, MAFB, MAN2B1, MAPKAPK3, MARCO, MERTK, MFSD1, MGAT1, MIF4GD, MIIP, MILR1, MKNK1, MNDA, MOB1A, MPEG1, MPP1, MRC1, MS4A4A, MS4A6A, MS4A7, MSR1, MTHFD2, MTMR14, MX1, MX2, MXD1, MYD88, N4BP2L1, NAAA, NADK, NAGA, NAGK, NAIP, NCF2, NCF4, NCKAP1L, NCOA4, NFAM1, NFKBID, NINJ1, NLRC4, NLRP3, NMI, NOD2, NPC2, NPL, NR1H3, OAS1, OAZ1, OLR1, OSCAR, P2RX4, P2RY12, P2RY13, P2RY14, P2RY6, PAK1, PCK2, PFKFB3, PGD, PILRA, PLA2G15, PLA2G7, PLAUR, PLBD1, PLEK, PLEKHO1, PLEKHO2, PLIN2, PLXDC2, PPM1M, PPT1, PRAM1, PRKCD, PSAP, PSME2, PTAFR, PTPRE, PYCARD, RAB20, RAB4B, RAB8 A, RASGEF1B, RASSF4, RBM47, RBPJ, REEP4, RELT, RGS10, RGS18, RGS19, RGS2, RHBDF2, RHOG, RILPL2, RIPK2, RNASE6, RNASEK, RNASET2, RNF13, RNF130, RNF144B, RNF149, RTN1, S100A11, S100A8, S100A9, SAMHD1, SAT1, SCAMP2, SCIMP, SCO2, SCPEP1, SDS, SECTM1, SEMA4A, SERPINA1, SERPINB1, SFT2D1, SGPL1, SH3BGRL, SHKBP1, SIGLEC1, SIGLEC14, SIGLEC5, SIGLEC7, SIGLEC9, SIRPA, SIRPB1, SIRPB2, SKAP2, SLAMF8、SLC11A1、SLC15A3、SLC16A3、SLC1A3、SLC25A19、SLC29A3 STXBP2, TALDO1, TBXAS1, TFRC, TGFBI, THEMIS2, TIFAB, TLR1, TLR2, TLR4, TLR5, TLR8, TMEM106A, TMEM144, TMEM176A, TMEM176B, TMEM37, TMEM51, TMEM86A, TNFAIP2, TNFAIP8L2, TNFSF13, TNFSF13B, TPP1, TRAFD1, TREM1, TREM2, TRPM2, TTYH3, TWF2, TYMP, TYROBP, UBE2D1, UBXN11, UNC93B1, VAMP8, VMO1, VSIG4, WDFY2, ZEB2, ZNF267, ZNF385A, CTSL, SMCO4, LOC338758, and LOC729737, or mutations in the above genes.
本发明的技术方案之二为:如技术方案之一所述的核苷酸组合在制备患者预后的诊断试剂中的应用,所述的患者被施用过PD1/PDL1通路免疫检查点抑制剂;较佳地,所述的患者被施用过PD1/PDL1通路免疫检查点抑制剂联合化疗药物。The second technical solution of the present invention is: the application of the nucleotide combination according to the one of the technical solutions in the preparation of a diagnostic reagent for the prognosis of a patient who has been administered a PD1/PDL1 pathway immune checkpoint inhibitor; Preferably, the patient has been administered a PD1/PDL1 pathway immune checkpoint inhibitor in combination with a chemotherapy drug.
本发明的技术方案之三为:一种用于评估患者施用PD1/PDL1通路免疫检查点抑制剂或者施用PD1/PDL1通路免疫检查点抑制剂联合化疗药物后预后效果的试剂盒,所述的试剂盒包含用于检测如技术方案之一所述的核苷酸组合的表达水平的试剂。The third technical solution of the present invention is: a kit for evaluating the prognostic effect of a patient after administration of PD1/PDL1 pathway immune checkpoint inhibitor or administration of PD1/PDL1 pathway immune checkpoint inhibitor combined with chemotherapy drugs, the reagent The kit contains reagents for detecting the expression level of the combination of nucleotides as described in one of the technical solutions.
所述表达水平可以通过任何方便的方法确定,并且许多合适的技术在本领域中是已知的。例如,合适的技术包括:实时定量PCR(RT-qPCR)、数字PCR、微阵列分析、全转录组鸟枪测序(RNA-SEQ)、直接多重基因表达分析、酶联免疫吸附测定(ELISA)、蛋白质芯片、流式细胞术(例如RNA的Flow-FISH,也称为FlowRNA)、质谱、Western印迹和northern印迹。The expression level can be determined by any convenient method, and many suitable techniques are known in the art. For example, suitable techniques include: real-time quantitative PCR (RT-qPCR), digital PCR, microarray analysis, whole transcriptome shotgun sequencing (RNA-SEQ), direct multiplex gene expression analysis, enzyme-linked immunosorbent assay (ELISA), protein Chips, flow cytometry (eg, Flow-FISH of RNA, also known as FlowRNA), mass spectrometry, Western blots, and northern blots.
所述的试剂可以为适于使用本申请所述的任何技术,例如RT-qPCR、数字PCR、微阵列分析、全转录组鸟枪测序或直接多重基因表达分析确定所讨论的基因的表达的试剂。例如,所述试剂盒可以包括适于使用,例如T-qPCR、数字PCR、微阵列分析、全转录组鸟枪测序或直接多重基因表达分析确定所讨论的基因的表达的引物。合适引物的设计是常规的,且在技术人员的能力范围之内。用于直接多重基因表达分析的试剂盒还可以或者选择性地包括用于确定所讨论的基因的表达的荧光探针。The reagents may be reagents suitable for determining the expression of the gene in question using any of the techniques described herein, such as RT-qPCR, digital PCR, microarray analysis, whole transcriptome shotgun sequencing, or direct multiplex gene expression analysis. For example, the kit may include primers suitable for determining the expression of the gene in question using, eg, T-qPCR, digital PCR, microarray analysis, whole transcriptome shotgun sequencing or direct multiplex gene expression analysis. The design of suitable primers is routine and within the skill of the artisan. Kits for direct multiplex gene expression analysis may also or alternatively include fluorescent probes for determining the expression of the gene in question.
除检测试剂外,所述的试剂盒还可以包括RNA提取试剂盒/或用于将RNA逆转录为cDNA的试剂。In addition to detection reagents, the kits may also include RNA extraction kits and/or reagents for reverse transcription of RNA into cDNA.
试剂盒还可以包括用于实现所述方法的一种或者多种制品和/或试剂,例如缓冲液、和/或获得测试样品本身的装置,例如用于获得和/或分离样品的装置,以及处理样品的容器(这些部件通常是无菌的)。The kit may also include one or more articles of manufacture and/or reagents for carrying out the methods, such as buffers, and/or a device for obtaining the test sample itself, such as a device for obtaining and/or isolating the sample, and Containers for processing samples (these components are usually sterile).
本发明的技术方案之四为:一种用于评估患者施用PD1/PDL1通路免疫检查点抑制剂或者PD1/PDL1通路免疫检查点抑制剂联合化疗药物后预后效果的系统,所述的系统包括工具以及一计算机,所述工具用于确定如技术方案之一所述的核苷酸组合的表达水平。The fourth technical solution of the present invention is: a system for evaluating the prognostic effect of a patient after administration of a PD1/PDL1 pathway immune checkpoint inhibitor or a PD1/PDL1 pathway immune checkpoint inhibitor combined with a chemotherapeutic drug, the system comprising a tool And a computer, the tool is used to determine the expression level of the nucleotide combination as described in one of the technical solutions.
较佳地,所述的计算机被编程为根据患者的基因表达数据判断预后效果。Preferably, the computer is programmed to determine the prognostic effect based on the patient's gene expression data.
本发明的技术方案之五为:一种预测被诊断为癌症的患者施用PD1/PDL1通路免疫检查点抑制剂或者PD1/PDL1通路免疫检查点抑制剂联合化疗药物后的反应的方法,包括以下步骤:The fifth technical solution of the present invention is: a method for predicting the response of a patient diagnosed with cancer after administration of a PD1/PDL1 pathway immune checkpoint inhibitor or a PD1/PDL1 pathway immune checkpoint inhibitor combined with a chemotherapeutic drug, comprising the following steps :
提供如技术方案之一所述的核苷酸组合,以组合中每一基因的表达量为基础,分别将患者划分为基因高表达组和基因低表达组,比较两组患者的PFS情况,发生统计学上差异的则认为组合基因的高或低表达与疗效相应有关联。The nucleotide combination as described in one of the technical solutions is provided, and based on the expression of each gene in the combination, the patients are divided into a gene high expression group and a gene low expression group, and the PFS conditions of the two groups of patients are compared. Statistically different, high or low expression of the combined gene was considered to be associated with a corresponding therapeutic effect.
在本发明技术方案之一所述的核苷酸组合、技术方案之二所述的应用、技术方案之三所述的试剂盒、技术方案之四所述的系统或者技术方案之五所述的方法中:The nucleotide combination described in the technical solution one, the application described in the technical solution 2, the kit described in the technical solution 3, the system described in the technical solution 4, or the technical solution described in the fifth solution of the present invention In the method:
所述的PD1/PDL1通路免疫检查点抑制剂较佳地为PD1抗原结合蛋白或者PDL1抗原结合蛋白;其中所述的PD1抗原结合蛋白或者PDL1抗原结合蛋白优选单克隆抗体或者为双特异性抗体、多特异性抗体;例如,纳武单抗、帕博利珠单抗、西米单抗、特瑞普利单抗、卡瑞利珠单抗、替雷利珠单抗、信迪利单抗;阿特珠单抗、阿维鲁单抗、度伐利尤单抗、adebrelimab、pacmilimab、envafolimab;The PD1/PDL1 pathway immune checkpoint inhibitor is preferably PD1 antigen binding protein or PDL1 antigen binding protein; wherein the PD1 antigen binding protein or PDL1 antigen binding protein is preferably a monoclonal antibody or a bispecific antibody, Multispecific antibodies; for example, nivolumab, pembrolizumab, silimumab, toripalizumab, camrelizumab, tislelizumab, sintilimab; atezolizumab, avelumab, durvalumab, adebrelimab, pacmilimab, envafolimab;
更佳地,所述PD1/PDL1通路免疫检查点抑制剂为信迪利单抗。More preferably, the PD1/PDL1 pathway immune checkpoint inhibitor is sintilimab.
在本发明技术方案之一所述的核苷酸组合、技术方案之二所述的应用、技术方案之三所述的试剂盒、技术方案之四所述的系统或者技术方案之五所述的方法中,所述的化疗药物较佳地包括培美曲塞、吉西他滨或者紫杉醇,以及铂类;其中,所述铂类优选顺铂和/或卡铂。The nucleotide combination described in the technical solution one, the application described in the technical solution 2, the kit described in the technical solution 3, the system described in the technical solution 4, or the technical solution described in the fifth solution of the present invention In the method, the chemotherapeutic drugs preferably include pemetrexed, gemcitabine or paclitaxel, and platinum; wherein, the platinum is preferably cisplatin and/or carboplatin.
在本发明技术方案之一所述的核苷酸组合、技术方案之二所述的应用、技术方案之三所述的试剂盒、技术方案之四所述的系统或者技术方案之五所述的方法中:The nucleotide combination described in the technical solution one, the application described in the technical solution 2, the kit described in the technical solution 3, the system described in the technical solution 4, or the technical solution described in the fifth solution of the present invention In the method:
所述患者优选患有癌症,所述癌症选自由肾上腺皮质癌、膀胱尿路上皮癌、乳房浸润癌、宫颈鳞癌和腺癌、胆管癌、结直肠癌、淋巴肿瘤弥漫性大B细胞淋巴瘤、食管癌、胶质瘤、头颈鳞状细胞癌、混合肾癌、急性髓系白血病、肝细胞癌、肺腺癌、肺鳞状细胞癌、间皮瘤、卵巢浆液性囊腺癌、胰腺癌、嗜铬细胞瘤和副神经节瘤、前列腺腺癌、肉瘤、皮肤黑色素瘤、胃癌、胃和食管癌、睾丸癌、甲状腺癌、胸腺瘤、子宫内膜癌、子宫肉瘤、葡萄膜黑色素瘤构成的群组,优选地所述癌症为非小细胞肺癌,更优选为晚期或复发性非鳞非小细胞肺癌。The patient preferably has a cancer selected from the group consisting of adrenocortical carcinoma, bladder urothelial carcinoma, breast invasive carcinoma, cervical squamous cell carcinoma and adenocarcinoma, cholangiocarcinoma, colorectal carcinoma, lymphoma, diffuse large B-cell lymphoma , esophageal cancer, glioma, head and neck squamous cell carcinoma, mixed renal carcinoma, acute myeloid leukemia, hepatocellular carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, mesothelioma, ovarian serous cystadenocarcinoma, pancreatic cancer , pheochromocytoma and paraganglioma, prostate adenocarcinoma, sarcoma, skin melanoma, gastric cancer, gastric and esophageal cancer, testicular cancer, thyroid cancer, thymoma, endometrial cancer, uterine sarcoma, uveal melanoma of the group, preferably the cancer is non-small cell lung cancer, more preferably advanced or recurrent non-squamous non-small cell lung cancer.
本发明的技术方案之六为:如技术方案之一所述的核苷酸组合在筛选PD1/PDL1通路免疫检查点抑制药物中的应用。The sixth technical solution of the present invention is: the application of the nucleotide combination according to one of the technical solutions in screening PD1/PDL1 pathway immune checkpoint inhibitory drugs.
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。On the basis of conforming to common knowledge in the art, the above preferred conditions can be combined arbitrarily to obtain preferred examples of the present invention.
本发明所用试剂和原料均市售可得。The reagents and raw materials used in the present invention are all commercially available.
本发明的积极进步效果在于:The positive progressive effect of the present invention is:
利用本发明的核苷酸组合可以进行有效的疾病预测或者预后诊断,特别是在 PD1/PDL1通路免疫检查点抑制剂联合化疗药物的治疗中起到很好的预测作用。Using the nucleotide combination of the present invention can carry out effective disease prediction or prognosis diagnosis, especially in the treatment of PD1/PDL1 pathway immune checkpoint inhibitor combined with chemotherapeutic drugs.
附图说明Description of drawings
图1为在治疗组和对照组中有RNA序列的样本病人和治疗组和对照组所有病人的PFS曲线。Figure 1 shows the PFS curves of sample patients with RNA sequences in treatment and control groups and all patients in treatment and control groups.
图2A和图2B为myloid_gene_set在治疗组和对照组中的PFS曲线。Figure 2A and Figure 2B are the PFS curves of myloid_gene_set in the treatment group and the control group.
图3A和图3B为TAM_gene_set在治疗组和对照组中的PFS曲线。Figures 3A and 3B are PFS curves of TAM_gene_set in the treatment group and the control group.
图4A和图4B为myloid_gene_set_filtered在治疗组和对照组中的PFS曲线。Figure 4A and Figure 4B are the PFS curves of myloid_gene_set_filtered in the treatment group and the control group.
图5A和图5B为TAM_gene_set_filtered在治疗组和对照组中的PFS曲线。Figures 5A and 5B are PFS curves of TAM_gene_set_filtered in the treatment group and the control group.
具体实施方式detailed description
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。The present invention is further described below by way of examples, but the present invention is not limited to the scope of the described examples. The experimental methods that do not specify specific conditions in the following examples are selected according to conventional methods and conditions, or according to the product description.
本发明是一项在中国晚期或复发性非鳞非小细胞肺癌受试者中进行的信迪利单抗联合化疗药物培美曲塞和铂类或安慰剂联合化疗药物培美曲塞和铂类的一线治疗多中心、随机、双盲III期研究。The present invention is a combination of sintilimab combined with chemotherapy drugs pemetrexed and platinum or placebo combined with chemotherapy drugs pemetrexed and platinum in Chinese subjects with advanced or recurrent non-squamous non-small cell lung cancer. A multicenter, randomized, double-blind phase III study of first-line treatment of
本发明以安慰剂联合培美曲塞、顺铂或卡铂为平行对照,分别接受信迪利单抗或安慰剂联合培美曲塞、顺铂或卡铂治疗4个周期,后予以信迪利单抗或安慰剂单药联合培美曲塞维持治疗,信迪利单抗最长治疗时间为24个月。In the present invention, placebo combined with pemetrexed, cisplatin or carboplatin was used as a parallel control, and the patients received sintilimab or placebo combined with pemetrexed, cisplatin or carboplatin for 4 cycles, and then received sintilimab or placebo combined with pemetrexed, cisplatin or carboplatin. Limumab or placebo monotherapy plus pemetrexed maintenance therapy, and the maximum duration of sintilimab treatment was 24 months.
下述实施例中用到的方法:The method used in the following examples:
1)基因表达量差异化分析方法:假设有两组样本A和B,样本数分别是a和b。对一个基因的mRNA表达量,在A、B组中分别有a、b个数值,用统计软件R(https://cran.r-project.org/mirrors.html)中的coin包中wilcox.test函数比较a个数值和b个数值间大小分布是否有显著差异。1) Differential analysis method of gene expression: Suppose there are two groups of samples A and B, and the number of samples is a and b respectively. For the mRNA expression of a gene, there are a and b values in groups A and B, respectively. Use the wilcox in the coin package in the statistical software R (https://cran.r-project.org/mirrors.html). The test function compares whether there is a significant difference in the size distribution between a and b values.
2)生物学通路富集分析方法:设总基因数N,有两组基因(query组,即favorably predictive gene set;reference组,即一个生物学通路),基因被分成四组:A组(a个基因,既在query组,又在reference组),B组(b个基因,在query组,不在reference组),C组(c个基因,不在query组,在reference组)和D组(d个基因,不在query组,不在reference组)。用fisher.test检验由a,b,c,d形成的2*2矩阵分布是否显著。2) Biological pathway enrichment analysis method: set the total number of genes N, there are two groups of genes (query group, that is, favorably predictive gene set; reference group, that is, a biological pathway), and the genes are divided into four groups: A group (a genes, both in query group and reference group), B group (b genes, in query group, not in reference group), C group (c genes, not in query group, in reference group) and D group (d genes, not in the query group, not in the reference group). Use fisher.test to test whether the 2*2 matrix distribution formed by a, b, c, d is significant.
实施例1晚期或复发性非鳞NSCLC受试者中进行的信迪利单抗联合培美曲塞和铂类化疗药物或安慰剂联合培美曲塞和铂类化疗药物一线治疗的多中心、随机、双盲III期研究Example 1 Multicenter, multicenter, first-line treatment of sintilimab combined with pemetrexed and platinum-based chemotherapy or placebo combined with pemetrexed and platinum-based chemotherapy in subjects with advanced or recurrent non-squamous NSCLC Randomized, double-blind phase III study
在该研究中,一共397个病人,按照2:1的随机分成两组:1)信迪利单抗联合力比泰
Figure PCTCN2021105374-appb-000001
(注射用培美曲塞二钠)和铂类,这组称为治疗组(comb),266个病人。
In this study, a total of 397 patients were randomly divided into two groups according to 2:1: 1) sintilimab combined with libitas
Figure PCTCN2021105374-appb-000001
(Pemetrexed disodium for injection) and platinum, this group is called the treatment group (comb), 266 patients.
2)安慰剂联合力比泰
Figure PCTCN2021105374-appb-000002
(注射用培美曲塞二钠)和铂类,这组称为对照组(chem),131个病人。
2) Placebo combined with libitas
Figure PCTCN2021105374-appb-000002
(Pemetrexed disodium for injection) and platinum, this group is called the control group (chem), 131 patients.
表1 给药方式Table 1 Mode of administration
Figure PCTCN2021105374-appb-000003
Figure PCTCN2021105374-appb-000003
Q3W:每3周给药一次Q3W: Dosing every 3 weeks
卡铂:AUC5(使用Calvert公式计算),卡铂剂量不可超过750mg。Carboplatin: AUC5 (calculated using Calvert formula), the dose of carboplatin should not exceed 750mg.
AUC(area under the curve,血药浓度-时间曲线下面积)AUC (area under the curve, area under the plasma concentration-time curve)
Calvert公式:总剂量(mg)=(目标AUC)×(CrCl+25)Calvert formula: total dose (mg) = (target AUC) × (CrCl+25)
在Calvert公式中使用的估算的CrCl不可超过125ml/minThe estimated CrCl used in the Calvert formula must not exceed 125ml/min
最大的卡铂剂量(mg)=目标AUC5(mg*min/ml)×(125+25)=5×150/min=750mgMaximum carboplatin dose (mg) = target AUC5 (mg*min/ml) x (125+25) = 5 x 150/min = 750mg
其中有182个病人有FFPE(Paraffin-Embedded,石蜡包埋)RNA序列样本,119个来自治疗组,63个来自对照组。Of these, 182 patients had FFPE (Paraffin-Embedded, paraffin-embedded) RNA-seq samples, 119 from the treatment group and 63 from the control group.
对182个病人的FFPE RNA序列样本进行分析,如图1所示,尽管只是部分病人,从progression free survival(PFS,无进展生存期)角度评估,FFPE RNA序列是具体代表性的。在治疗组或者对照组中,两组中不管是有RNA序列的样本病人,还是全部样本的PFS曲线均无统计学差异。这说明,用于分析的182个样本可以代表全部样本的临床特征,具有统计学意义。The FFPE RNA sequence samples of 182 patients were analyzed, as shown in Figure 1. Although only a subset of patients, FFPE RNA sequences were specifically representative from the perspective of progression free survival (PFS, progression-free survival). In the treatment group or the control group, there was no statistical difference in the PFS curves of either the patients with RNA-seq or the whole sample. This shows that the 182 samples used for analysis can represent the clinical characteristics of all samples with statistical significance.
实施例2四组高表达biomarker基因集合的筛选Example 2 Screening of four groups of highly expressed biomarker gene sets
基于实施例1中182例的FFPE RNA序列,发现四组肿瘤免疫微环境中巨噬细胞上特异高表达基因,这四组基因可以作为肿瘤的患者选择的biomarker,例如用于PD1/PDL1通路免疫检查点抑制剂联合化疗药物在治疗晚期或复发性非鳞NSCLC受试者中的疗效预测或伴随诊断。Based on the FFPE RNA sequences of 182 cases in Example 1, it was found that four groups of genes that are specifically highly expressed on macrophages in the tumor immune microenvironment can be used as biomarkers for tumor patient selection, such as for PD1/PDL1 pathway immunity Prediction of response or companion diagnosis of checkpoint inhibitors in combination with chemotherapeutic agents in subjects with advanced or recurrent non-squamous NSCLC.
1)myloid_gene_set和TAM_gene_set两组基因集合的获得:1) Obtaining two gene sets of myloid_gene_set and TAM_gene_set:
根据comb组病人所有的gene的表达量和comb组病人的PFS数据,利用统计学软件R中的一个软件包survminer中的surv_cutpoint函数,给每一个gene都选择一个cutoff值,大于这个cutoff值的样本集称为high组(疗效较好组),低于这个cutoff值的样本集称为low组(疗效较差组)。比较high组和low组的PFS曲线的差异,把low组作为reference组,如果hazard ratio<1&p-value<0.05,则把这个基因称为favorably predictive gene。如果hazard ratio>1&p-value<0.05,则把这个基因称为unfavorably predictive gene,将得到的favorably predictive gene通过生物学通路富集分析方法,发现在macrophage通路中显著富集的favorably predictive gene,通过统计学显著性排序,得到两组靠前的核苷酸组合,即myloid_gene_set和TAM_gene_set,具体的基因集合见表2。然后评估myloid_gene_set、TAM_gene_set和PFS的关系,见图2和图3。According to the expression levels of all genes of the patients in the comb group and the PFS data of the patients in the comb group, the surv_cutpoint function in the survminer, a software package in the statistical software R, is used to select a cutoff value for each gene, and the samples with a value greater than this cutoff value are selected. The set is called the high group (the better curative effect group), and the sample set below this cutoff value is called the low group (the poor curative effect group). Compare the difference between the PFS curves of the high group and the low group, and take the low group as the reference group. If the hazard ratio<1&p-value<0.05, the gene is called a favorably predictive gene. If hazard ratio>1&p-value<0.05, the gene is called unfavorably predictive gene, and the obtained favorably predictive gene is analyzed by biological pathway enrichment analysis method to find the favorably predictive gene that is significantly enriched in the macrophage pathway. The two groups of top nucleotide combinations are obtained, namely myloid_gene_set and TAM_gene_set, and the specific gene sets are shown in Table 2. The relationship between myloid_gene_set, TAM_gene_set and PFS was then evaluated, see Figures 2 and 3.
2)myloid_gene_set_filtered和TAM_gene_set_filtered两组基因集合的获得:2) Obtaining two gene sets of myloid_gene_set_filtered and TAM_gene_set_filtered:
第一步,分别将myloid_gene_set和TAM_gene_set中的所有基因按照1)中方法,评估gene和PFS的关系,找到favorably predictive gene;The first step is to evaluate the relationship between gene and PFS for all genes in myloid_gene_set and TAM_gene_set according to the method in 1), and find the favorably predictive gene;
第二步,分别将myloid_gene_set和TAM_gene_set根据overall expression(OE)score(方法参见https://github.com/livnatje/ImmuneResistance)和comb组病人的PFS数据,利用统计学软件R中的一个软件包survminer中的surv_cutpoint,分别给myloid_gene_set和TAM_gene_set都选择一个cutoff,大于这个cutoff的样本集称为high组(疗效较好组),低于这个cutoff的样本集称为low组(疗效较差组)。根据gene的mRNA表达量,通过基因表达差异分析方法,保留在high组中显著高表达的gene。In the second step, the myloid_gene_set and TAM_gene_set are respectively based on the overall expression(OE) score (see https://github.com/livnatje/ImmuneResistance for the method) and the PFS data of the patients in the comb group, using a software package survminer in the statistical software R The surv_cutpoint in , select a cutoff for both myloid_gene_set and TAM_gene_set respectively. The sample set greater than this cutoff is called the high group (better curative effect group), and the sample set lower than this cutoff is called the low group (poor curative effect group). According to the mRNA expression level of the gene, the genes with significantly high expression in the high group were retained by the gene expression differential analysis method.
第三步,将第一步和第二步中得到的gene取两者的交集,即到myloid_gene_set_filtered和TAM_gene_set_filtered,具体的基因合集见表2。然后评估myloid_gene_set_filtered和TAM_gene_set_filtered和PFS的关系,见图4和图5。The third step is to take the intersection of the genes obtained in the first step and the second step, namely myloid_gene_set_filtered and TAM_gene_set_filtered. The specific gene collection is shown in Table 2. Then evaluate the relationship between myloid_gene_set_filtered and TAM_gene_set_filtered and PFS, see Figure 4 and Figure 5.
3)myloid_gene_set、TAM_gene_set、myloid_gene_set_filtered及TAM_gene_set_filtered与PFS曲线的作图过程3) The drawing process of myloid_gene_set, TAM_gene_set, myloid_gene_set_filtered and TAM_gene_set_filtered and PFS curve
①利用R软件包中的coxph函数,拟合方程式Surv(time,status)~gene_set①Using the coxph function in the R software package, fit the equation Surv(time,status)~gene_set
②gene_set:myloid_gene_set、TAM_gene_set、myloid_gene_set_filtered及TAM_gene_set_filtered四个gene_set中分别在comb(治疗组)和chem(对照组)中运行步骤①中的方程。②gene_set: run the equation in step ① in comb (treatment group) and chem (control group) in four gene_sets, myloid_gene_set, TAM_gene_set, myloid_gene_set_filtered and TAM_gene_set_filtered, respectively.
每个gene_set中comb组包括high组和low组、chem组包含high组和low组,其中low组均设为reference,统计结果表示high/low组与病人PFS的统计学关系,数值见图2A、图2B、图3A、图3B、图4A、图4B和图5A、图5B,通过这些图可以发现,治疗组(comb)中high/low组的hazard ratio<1且p-value<0.05,说明comb组中high组(疗效较好组)的病人无进展生存期长于low组(疗效较差组)病人;而在对照组(chem)中,high/low组的hazard ratio<1,但p-value>0.05,说明对照组(chem)中,high与low组的PFS没有差异。In each gene_set, the comb group includes the high group and the low group, and the chem group includes the high group and the low group. The low group is set as the reference, and the statistical results indicate the statistical relationship between the high/low group and the patient's PFS. The values are shown in Figure 2A, Figure 2B, Figure 3A, Figure 3B, Figure 4A, Figure 4B and Figure 5A, Figure 5B, through these figures, it can be found that the hazard ratio of the high/low group in the treatment group (comb) is < 1 and p-value < 0.05, indicating that In the comb group, the patients in the high group (better curative effect group) had a longer progression-free survival than the patients in the low group (poor curative effect group); while in the control group (chem), the hazard ratio of the high/low group was <1, but the p- value>0.05, indicating that in the control group (chem), there was no difference in PFS between the high and low groups.
此外由图可以看出comb组high组的PFS要显著长于chem组,comb组中low组的病人的PFS曲线跟化疗组的病人high组、low组没有显著区别,说明用抗PD1抗体联合化疗药物后的预后效果要显著好于对照组。因此这四组基因可以作为预测性生物标志物(predictive biomarkers,PB)来选择对肿瘤免疫组合治疗(尤其是抗PD1抗体联合化疗药物)有较好疗效的病人。In addition, it can be seen from the figure that the PFS of the high group in the comb group is significantly longer than that in the chem group. The prognostic effect was significantly better than the control group. Therefore, these four groups of genes can be used as predictive biomarkers (PB) to select patients with better response to tumor immune combination therapy (especially anti-PD1 antibody combined with chemotherapy drugs).
表2 myloid_gene_set、TAM_gene_set、myloid_gene_set_filtered及TAM_gene_set_filtered基因集合Table 2 myloid_gene_set, TAM_gene_set, myloid_gene_set_filtered and TAM_gene_set_filtered gene sets
Figure PCTCN2021105374-appb-000004
Figure PCTCN2021105374-appb-000004
Figure PCTCN2021105374-appb-000005
Figure PCTCN2021105374-appb-000005
Figure PCTCN2021105374-appb-000006
Figure PCTCN2021105374-appb-000006
实施例3在不同肿瘤中的预测有效病人Example 3 Predicted effective patients in different tumors
通过建立一个监督机器学习模型进行预测。基于临床样本RNA序列数据分别和myloid_gene_set、TAM_gene_set、myloid_gene_set_filtered和TAM_gene_set_filtered基因集合中的基因构建4个预测模型。根据每个基因集合的overall expression(OE)score与病人PFS的关系,把样本集分成high组和low组。利用训练算法的H2O软件包中的autoML函数,输入只包含myloid_gene_set、TAM_gene_set、myloid_gene_set_filtered或TAM_gene_set_filtered在不同肿瘤中样本中的基因表达数据(https://portal.gdc.cancer.gov/),来预测这些肿瘤样本中属于high组的概率。其中,high组表示有可能对组合治疗(抗PD1抗体联合化疗药物)有较好预后的肿瘤微环境亚型的病人。以TCGA(The Cancer Genome Atlas,肿瘤基因组图谱)所有肿瘤为例说明。Make predictions by building a supervised machine learning model. Four prediction models were constructed based on clinical sample RNA sequence data and genes in myloid_gene_set, TAM_gene_set, myloid_gene_set_filtered and TAM_gene_set_filtered gene sets, respectively. According to the relationship between the overall expression (OE) score of each gene set and the patient's PFS, the sample set was divided into high group and low group. Using the autoML function in the H2O package that trains the algorithm, the input contains only myloid_gene_set, TAM_gene_set, myloid_gene_set_filtered, or TAM_gene_set_filtered gene expression data in samples in different tumors (https://portal.gdc.cancer.gov/), to predict these The probability of belonging to the high group in the tumor sample. Among them, the high group represents patients with tumor microenvironment subtypes that may have a better prognosis for combination therapy (anti-PD1 antibody combined with chemotherapy drugs). Take all tumors of TCGA (The Cancer Genome Atlas, Tumor Genome Atlas) as an example.
对于TCGA中每种肿瘤类型,下表3给出了属于high组样本的比例,说明这四组基因在多种肿瘤类型中都是存在的,说明可以在多种肿瘤中起到预测作用。具体为在ACC(Adrenocortical carcinoma,肾上腺皮质癌)、BLCA(Bladder Urothelial Carcinoma,膀胱尿路上皮癌)、BRCA(Breast invasive carcinoma,乳房浸润癌)、CESC(Cervical squamous cell carcinoma and endocervical adenocarcinoma,宫颈鳞癌和腺癌)、CHOL(Cholangiocarcinoma,胆管癌)、COADREAD(Colon adenocarcinoma/Rectum adenocarcinoma Esophageal carcinoma,结直肠癌)、DLBC(Lymphoid Neoplasm Diffuse Large B-cell Lymphoma,淋巴肿瘤弥漫性大B细胞淋巴瘤)、ESCA(Esophageal carcinoma,食管癌)、GBMLGG(Glioma,胶质瘤)、HNSC(Head and Neck squamous cell carcinoma,头颈鳞状细胞癌)、KIPAN(Pan-kidney cohort(KICH+KIRC+KIRP),混合肾癌)、LAML(Acute Myeloid Leukemia,急性髓系白血病)、LIHC(Liver hepatocellular carcinoma,肝细胞癌)、LUAD(Lung adenocarcinoma,肺腺癌)、LUSC(Lung squamous cell carcinoma,肺鳞状细胞癌)、MESO(Mesothelioma,间皮瘤)、OV(Ovarian serous cystadenocarcinoma,卵巢浆液性囊腺癌)、PAAD(Pancreatic adenocarcinoma,胰腺癌)、PCPG(Pheochromocytoma and Paraganglioma,嗜铬细胞瘤和副神经节瘤)、PRAD(Prostate adenocarcinoma,前列腺腺癌)、SARC(Sarcoma,肉瘤)、SKCM(Skin Cutaneous Melanoma,皮肤黑色素瘤)、STAD(Stomach adenocarcinoma,胃癌)、STES(Stomach and Esophageal carcinoma,胃和食管癌)、TGCT(Testicular Germ Cell Tumors,睾丸癌)、THCA(Thyroid  carcinoma,甲状腺癌)、THYM(Thymoma,胸腺瘤)、UCEC(Uterine Corpus Endometrial Carcinoma,子宫内膜癌)、UCS(Uterine Carcinosarcoma,子宫肉瘤)、UVM(Uveal Melanoma,葡萄膜黑色素瘤)中进行了预测,可以发现在上述适应症中可以预测出相应疗效病人的样本比例,也说明该组合治疗可以在上述适应症中有治疗作用。For each tumor type in TCGA, Table 3 below shows the proportion of samples belonging to the high group, indicating that these four groups of genes are present in a variety of tumor types, indicating that they can play a predictive role in a variety of tumors. Specifically, ACC (Adrenocortical carcinoma, adrenal cortical carcinoma), BLCA (Bladder Urothelial Carcinoma, bladder urothelial carcinoma), BRCA (Breast invasive carcinoma, breast invasive carcinoma), CESC (Cervical squamous cell carcinoma and endocervical adenocarcinoma, cervical squamous cell carcinoma) and adenocarcinoma), CHOL (Cholangiocarcinoma, cholangiocarcinoma), COADREAD (Colon adenocarcinoma/Rectum adenocarcinoma Esophageal carcinoma, colorectal cancer), DLBC (Lymphoid Neoplasm Diffuse Large B-cell Lymphoma, diffuse large B-cell lymphoma), ESCA (Esophageal carcinoma, esophageal cancer), GBMLGG (Glioma, glioma), HNSC (Head and Neck squamous cell carcinoma, head and neck squamous cell carcinoma), KIPAN (Pan-kidney cohort (KICH+KIRC+KIRP), mixed kidney carcinoma), LAML (Acute Myeloid Leukemia, acute myeloid leukemia), LIHC (Liver hepatocellular carcinoma, hepatocellular carcinoma), LUAD (Lung adenocarcinoma, lung adenocarcinoma), LUSC (Lung squamous cell carcinoma, lung squamous cell carcinoma), MESO (Mesothelioma, mesothelioma), OV (Ovarian serous cystadenocarcinoma, ovarian serous cystadenocarcinoma), PAAD (Pancreatic adenocarcinoma, pancreatic cancer), PCPG (Pheochromocytoma and Paraganglioma, pheochromocytoma and paraganglioma), PRAD (Prostate adenocarcinoma, prostate adenocarcinoma), SARC (Sarcoma, sarcoma), SKCM (Skin Cutaneous Melanoma, skin melanoma), STAD (Stomach adenocarcinoma, gastric cancer), STES (Stomach and Esophageal carcinoma, stomach and esophagus) cancer), TGCT (Testicular Germ Cell Tumors, testicular cancer), THCA (Thyroid carcinoma, thyroid cancer), THYM (Thymoma, thymoma), UCEC (Uterine Corpus Endometrial Carcinoma, endometrial cancer), UCS (Uterine Carcinosarcoma, uterine cancer) sarcoma) and UVM (Uveal Melanoma, uveal melanoma), it can be found that the proportion of patients with corresponding curative effects can be predicted in the above-mentioned indications, which also shows that the combination therapy can have a therapeutic effect in the above-mentioned indications.
表3:myloid_gene_set、TAM_gene_set、myloid_gene_set_filtered和TAM_gene_set_filtered在TCGA多种肿瘤类型中预测有可能对抗PD1抗体和化疗药物有响应的样本比例Table 3: Proportion of samples predicted to be likely to respond to anti-PD1 antibodies and chemotherapeutics in TCGA multiple tumor types by myloid_gene_set, TAM_gene_set, myloid_gene_set_filtered, and TAM_gene_set_filtered
Figure PCTCN2021105374-appb-000007
Figure PCTCN2021105374-appb-000007
因此,这四组基因集合不仅可以在PD1/PDL1通路免疫检查点抑制剂联合化疗药物起到预测作用,尤其是信迪利单抗联合培美曲塞、铂类(顺铂或卡铂)在治疗晚期或复发性非鳞NSCLC患者中起到明显的预测作用,还可以在上述适应症起到疗效预测作用。Therefore, these four gene sets can not only play a predictive role in PD1/PDL1 pathway immune checkpoint inhibitors combined with chemotherapy drugs, especially in the combination of sintilimab combined with pemetrexed, platinum (cisplatin or carboplatin) in the It plays an obvious predictive role in the treatment of patients with advanced or recurrent non-squamous NSCLC, and can also play a role in predicting efficacy in the above-mentioned indications.

Claims (13)

  1. 一种核苷酸组合,其特征在于,所述的核苷酸组合包含或者由以下基因组成:CD74、CTSZ、ACP5、MS4A6A、CD83、NPC2、GPNMB、C1QB、HLA-DPA1以及HLA-DMB,或者上述基因的突变;和/或A nucleotide combination, characterized in that the nucleotide combination comprises or consists of the following genes: CD74, CTSZ, ACP5, MS4A6A, CD83, NPC2, GPNMB, C1QB, HLA-DPA1 and HLA-DMB, or Mutations in the above genes; and/or
    LAP3、IFNGR1、TBXAS1、SPI1、SNX10、LYZ、HCK、ACP5、CTSH、ASAH1、MAN2B1、CD33、RASSF4、MS4A6A、DOK1、PLEK、NPC2、CD80、CCR2、NCKAP1L、ACP2、P2RX4、TLR2、CASP1、IDH1、N4BP2L1、ITGAX、C1orf162、PLA2G7、ATP6V1B2、FERMT3、TMEM86A、MERTK、SLAMF8、FCER1G、ATP6V0D1、SCIMP、TNFSF13、CTSS、MNDA、TMEM144、CYBB、SMCO4、C2、TPP1、P2RY6、CLEC7A、SMPDL3A、C1QB、OLR1、LRRC25、CD163、FUCA1、CSF1R、ADAP2、TMEM106A、ZNF267、FPR3、CARD9、DAPK1、MPEG1、PSAP、FAM49A、FCGR1B、CSF2RA、SLC29A3、GGTA1P、IFI30、HLA-DPA1、GPX1、NFAM1、HLA-DMB、LYN、SLC43A2以及IGSF6,或者上述基因的突变。LAP3, IFNGR1, TBXAS1, SPI1, SNX10, LYZ, HCK, ACP5, CTSH, ASAH1, MAN2B1, CD33, RASSF4, MS4A6A, DOK1, PLEK, NPC2, CD80, CCR2, NCKAP1L, ACP2, P2RX4, TLR2, CASP1, IDH1, N4BP2L1, ITGAX, C1orf162, PLA2G7, ATP6V1B2, FERMT3, TMEM86A, MERTK, SLAMF8, FCER1G, ATP6V0D1, SCIMP, TNFSF13, CTSS, MNDA, TMEM144, CYBB, SMCO4, C2, TPP1, P2RY6, CLEC7A, SMPDL3A, C1QB, OLR1, LRRC25, CD163, FUCA1, CSF1R, ADAP2, TMEM106A, ZNF267, FPR3, CARD9, DAPK1, MPEG1, PSAP, FAM49A, FCGR1B, CSF2RA, SLC29A3, GGTA1P, IFI30, HLA-DPA1, GPX1, NFAM1, HLA-DMB, LYN, SLC43A2 and IGSF6, or mutations in the above genes.
  2. 如权利要求1所述的核苷酸组合,其特征在于,所述的核苷酸组合包含或者由以下基因组成:The nucleotide combination of claim 1, wherein the nucleotide combination comprises or consists of the following genes:
    CD74、CTSZ、ACP5、MS4A6A、CD83、NPC2、GPNMB、C1QB、HLA-DPA1和HLA-DMB,以及C1QC、C1QA、RGS1、LGMN、APOC1、APOE、HLA-DQA1、GPR183、SGK1、HSPA1B、HLA-DRA、HSPA1A、DNAJB1、ATF3、HLA-DQB1、HLA-DQA2、CCL3、NR4A2、HLA-DPB1、HLA-DRB1、FOSB、HSPB1、HSPH1、HLA-DMA、CTSB CD9、JUN、LMNA、GADD45B、CCL3L3、GSN、CCL4、SPP1、RNASE1、ZNF331、IER3、CTSL、ARL4C、PLD3、CREM、MS4A4A、FABP5、CREG1、CTSC、CXCL8、HSPD1、HSP90AA1、ITM2B、HSP90AB1、LIPA、YWHAH、CTSD、HSPE1、PPP1R15A、TMEM176B、CALR、CXCL16、HERPUD1、PRDX1、CD68、TMEM176A、MARCKS、CAPG、TNFAIP3、DUSP2、PLIN2、FCGR2A、C15orf48、CXXC1、FABP5P1和SCGB1D1中的一个或多个,或上述基因的突变;和/或CD74, CTSZ, ACP5, MS4A6A, CD83, NPC2, GPNMB, C1QB, HLA-DPA1, and HLA-DMB, and C1QC, C1QA, RGS1, LGMN, APOC1, APOE, HLA-DQA1, GPR183, SGK1, HSPA1B, HLA-DRA , HSPA1A, DNAJB1, ATF3, HLA-DQB1, HLA-DQA2, CCL3, NR4A2, HLA-DPB1, HLA-DRB1, FOSB, HSPB1, HSPH1, HLA-DMA, CTSB CD9, JUN, LMNA, GADD45B, CCL3L3, GSN, CCL4, SPP1, RNASE1, ZNF331, IER3, CTSL, ARL4C, PLD3, CREM, MS4A4A, FABP5, CREG1, CTSC, CXCL8, HSPD1, HSP90AA1, ITM2B, HSP90AB1, LIPA, YWHAH, CTSD, HSPE1, PPP1R15A, TMEM176B, CALR, One or more of CXCL16, HERPUD1, PRDX1, CD68, TMEM176A, MARCKS, CAPG, TNFAIP3, DUSP2, PLIN2, FCGR2A, C15orf48, CXXC1, FABP5P1 and SCGB1D1, or mutations in the above genes; and/or
    所述的核苷酸组合包含LAP3、IFNGR1、TBXAS1、SPI1、SNX10、LYZ、HCK、ACP5、CTSH、ASAH1、MAN2B1、CD33、RASSF4、MS4A6A、DOK1、PLEK、NPC2、CD80、CCR2、NCKAP1L、ACP2、P2RX4、TLR2、CASP1、IDH1、N4BP2L1、ITGAX、C1orf162、PLA2G7、ATP6V1B2、FERMT3、TMEM86A、MERTK、SLAMF8、FCER1G、ATP6V0D1、SCIMP、TNFSF13、CTSS、MNDA、TMEM144、CYBB、SMCO4、C2、TPP1、P2RY6、 CLEC7A、SMPDL3A、C1QB、OLR1、LRRC25、CD163、FUCA1、CSF1R、ADAP2、TMEM106A、ZNF267、FPR3、CARD9、DAPK1、MPEG1、PSAP、FAM49A、FCGR1B、CSF2RA、SLC29A3、GGTA1P、IFI30、HLA-DPA1、GPX1、NFAM1、HLA-DMB、LYN、SLC43A2和IGSF6,以及ABCA1、ABI1、ACAA1、ACER3、ACSL1、ADAMDEC1、ADORA3、ADPGK、AIF1、AKR1A1、ALDH2、ALDH3B1、AMICA1、AMPD3、ANKRD22、AP1B1、APOC1、AQP9、ARAP1、ARHGAP18、ARHGAP27、ARHGEF10L、ARPC1B、ARRB2、ATF5、ATG3、ATG7、ATP6AP1、ATP6V0B、ATP6V1F、BACH1、BCKDHA、BCL2A1、BID、BLOC1S1、BLVRA、BLVRB、C10orf54、C15orf48、C19orf38、C1QA、C1QC、C3AR1、C5AR1、C9orf72、CAPG、CAPZA2、CAT、CCDC88A、CCR1、CCRL2、CD14、CD1D、CD274、CD300C、CD300E、CD300LB、CD300LF、CD302、CD68、CD86、CECR1、CFD、CFP、CLEC10A、CLEC12A、CLEC4A、CLEC4E、CLEC5A、CMKLR1、CMTM6、CNDP2、CNPY3、CORO7、CPVL、CREG1、CSF3R、CST3、CSTA、CTSA、CTSB、CTSC、CTSD、CXCL10、CXCL16、CXCL9、CXCR2P1、CYB5R4、CYBA、CYP2S1、DBNL、DENND1A、DHRS9、DMXL2、DNAJC5B、DOK3、DPYD、EBI3、EMR2、EPSTI1、ETV6、EVI2A、F13A1、FAM105A、FAM157B、FAM26F、FAM96A、FBP1、FCGR1A、FCGR1C、FCGR2A、FCGR2C、FCGR3B、FCGRT、FCN1、FES、FGL2、FKBP15、FLVCR2、FOLR2、FPR1、FPR2、FTH1、FTL、FUOM、GAA、GABARAP、GALC、GATM、GBP1、GCA、GK、GLA、GLB1、GLRX、GLUL、GM2A、GNA13、GNA15、GPBAR1、GPR34、GPR84、GRN、GSTO1、H2AFY、HCAR2、HCAR3、HEIH、HERPUD1、HIST2H2BF、HK2、HK3、HLA-DMA、HLA-DPB1、HLA-DPB2、HLA-DQA1、HLA-DQB1、HLA-DRA、HLA-DRB1、HLA-DRB5、HLA-DRB6、HMOX1、HN1、HPS1、HSPA6、HSPA7、HSPBAP1、IFI35、IFIT2、IFNGR2、IGFLR1、IL10RB、IL18、IL1B、IL1RN、IL4I1、IL8、IRF5、IRF7、JAK2、KCNMA1、KCNMB1、KYNU、LAIR1、LGALS2、LGALS9、LGMN、LILRA1、LILRA2、LILRA3、LILRA4、LILRA5、LILRA6、LILRB1、LILRB2、LILRB3、LILRB4、LILRB5、LIPA、LST1、LTA4H、M6PR、MAFB、MAPKAPK3、MARCO、MFSD1、MGAT1、MIF4GD、MIIP、MILR1、MKNK1、MOB1A、MPP1、MRC1、MS4A4A、MS4A7、MSR1、MTHFD2、MTMR14、MX1、MX2、MXD1、MYD88、NAAA、NADK、NAGA、NAGK、NAIP、NCF2、NCF4、NCOA4、NFKBID、NINJ1、NLRC4、NLRP3、NMI、NOD2、NPL、NR1H3、OAS1、OAZ1、OSCAR、P2RY12、P2RY13、P2RY14、PAK1、PCK2、PFKFB3、PGD、PILRA、PLA2G15、PLAUR、PLBD1、PLEKHO1、PLEKHO2、PLIN2、PLXDC2、PPM1M、PPT1、PRAM1、PRKCD、PSME2、PTAFR、PTPRE、PYCARD、RAB20、RAB4B、 RAB8A、RASGEF1B、RBM47、RBPJ、REEP4、RELT、RGS10、RGS18、RGS19、RGS2、RHBDF2、RHOG、RILPL2、RIPK2、RNASE6、RNASEK、RNASET2、RNF13、RNF130、RNF144B、RNF149、RTN1、S100A11、S100A8、S100A9、SAMHD1、SAT1、SCAMP2、SCO2、SCPEP1、SDS、SECTM1、SEMA4A、SERPINA1、SERPINB1、SFT2D1、SGPL1、SH3BGRL、SHKBP1、SIGLEC1、SIGLEC14、SIGLEC5、SIGLEC7、SIGLEC9、SIRPA、SIRPB1、SIRPB2、SKAP2、SLC11A1、SLC15A3、SLC16A3、SLC1A3、SLC25A19、SLC2A5、SLC2A8、SLC2A9、SLC31A2、SLC46A3、SLC7A7、SLC9A9、SLCO2B1、SNX6、SOD2、SPINT2、SQRDL、SRC、STX11、STXBP2、TALDO1、TFRC、TGFBI、THEMIS2、TIFAB、TLR1、TLR4、TLR5、TLR8、TMEM176A、TMEM176B、TMEM37、TMEM51、TNFAIP2、TNFAIP8L2、TNFSF13B、TRAFD1、TREM1、TREM2、TRPM2、TTYH3、TWF2、TYMP、TYROBP、UBE2D1、UBXN11、UNC93B1、VAMP8、VMO1、VSIG4、WDFY2、ZEB2、ZNF385A、CTSL、LOC338758和LOC729737中的一个或多个,或上述基因的突变。Described nucleotide combination comprises LAP3, IFNGR1, TBXAS1, SPI1, SNX10, LYZ, HCK, ACP5, CTSH, ASAH1, MAN2B1, CD33, RASSF4, MS4A6A, DOK1, PLEK, NPC2, CD80, CCR2, NCKAP1L, ACP2, P2RX4, TLR2, CASP1, IDH1, N4BP2L1, ITGAX, C1orf162, PLA2G7, ATP6V1B2, FERMT3, TMEM86A, MERTK, SLAMF8, FCER1G, ATP6V0D1, SCIMP, TNFSF13, CTSS, MNDA, TMEM144, CYBB, SMCO4, C2, TPP1, P2RY6, CLEC7A, SMPDL3A, C1QB, OLR1, LRRC25, CD163, FUCA1, CSF1R, ADAP2, TMEM106A, ZNF267, FPR3, CARD9, DAPK1, MPEG1, PSAP, FAM49A, FCGR1B, CSF2RA, SLC29A3, GGTA1P, IFI30, HLA-DPA1, GPX1, NFAM1, HLA-DMB, LYN, SLC43A2, and IGSF6, and ABCA1, ABI1, ACAA1, ACER3, ACSL1, ADAMDEC1, ADORA3, ADPGK, AIF1, AKR1A1, ALDH2, ALDH3B1, AMICA1, AMPD3, ANKRD22, AP1B1, APOC1, AQP9, ARAP1 , ARHGAP18, ARHGAP27, ARHGEF10L, ARPC1B, ARRB2, ATF5, ATG3, ATG7, ATP6AP1, ATP6V0B, ATP6V1F, BACH1, BCKDHA, BCL2A1, BID, BLOC1S1, BLVRA, BLVRB, C10orf54, C15orf48, C19orf38, C11QA, C1QC, C3AR , C9orf72, CAPG, CAPZA2, CAT, CCDC88A, CCR1, CCRL2, CD14, CD1D, CD274, CD300C, CD300E, CD300LB, CD300LF, CD302, CD68, CD86, CECR1, CFD, CFP, CLEC10A, CLEC12A, CLEC4A, CLEC4E, CLEC5A , CMKLR1, CMTM6, CNDP2, CNPY3, CORO7, CPVL, CREG1, CSF3R, CST3, CSTA, CTSA, CTSB, C TSC, CTSD, CXCL10, CXCL16, CXCL9, CXCR2P1, CYB5R4, CYBA, CYP2S1, DBNL, DENND1A, DHRS9, DMXL2, DNAJC5B, DOK3, DPYD, EBI3, EMR2, EPSTI1, ETV6, EVI2A, F13A1, FAM105A, FAM157B, FAM26F, FAM96A, FBP1, FCGR1A, FCGR1C, FCGR2A, FCGR2C, FCGR3B, FCGRT, FCN1, FES, FGL2, FKBP15, FLVCR2, FOLR2, FPR1, FPR2, FTH1, FTL, FUOM, GAA, GABARAP, GALC, GATM, GBP1, GCA, GK, GLA, GLB1, GLRX, GLUL, GM2A, GNA13, GNA15, GPBAR1, GPR34, GPR84, GRN, GSTO1, H2AFY, HCAR2, HCAR3, HEIH, HERPUD1, HIST2H2BF, HK2, HK3, HLA-DMA, HLA-DPB1, HLA-DPB2, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, HLA-DRB6, HMOX1, HN1, HPS1, HSPA6, HSPA7, HSPBAP1, IFI35, IFIT2, IFNGR2, IGFLR1, IL10RB, IL18, IL1B, IL1RN, IL4I1, IL8, IRF5, IRF7, JAK2, KCNMA1, KCNMB1, KYNU, LAIR1, LGALS2, LGALS9, LGMN, LILRA1, LILRA2, LILRA3, LILRA4, LILRA5, LILRA6, LILRB1, LILRB2, LILRB3, LILRB4, LILRB5, LIPA, LST1, LTA4H, M6PR, MAFB, MAPKAPK3, MARCO, MFSD1, MGAT1, MIF4GD, MIIP, MILR1, MKNK1, MOB1A, MPP1, MRC1, MS4A4A, MS4A7, MSR1, MTHFD2, MTMR14, MX1, MX2, MXD1, MYD88, NAAA, NADK, NAGA, NAGK, NAIP, NCF2, NCF4, NCOA4, NFKBID, NINJ1, NLRC4, NLRP3, NMI, NOD2, NPL, NR1H3, OAS1, OAZ1, OSCAR, P2RY12, P2RY13, P2RY14, PAK1, PCK2, PFKFB3, PGD, PILRA, PLA2G15, PLAUR, PLBD1, PLEKHO1, PLEKHO2, PLIN2, PLXDC2, PPM1M, PPT1, PRAM1, PRKCD, PSME2, PTAFR, PTPRE, PYCARD, RAB20, RAB4B, RAB8A, RASGEF1B, RBM47, RBPJ, REEP4, RELT, RGS10, RGS18, RGS19, RGS2, RHBDF2, RHOG, RILPL2, RIPK2, RNASE6, RNASEK, RNASET2, RNF13, RNF130, RNF144B, RNF149, RTN1, S100A11, S100A8, S100A9, SAMHD1, SAT1, SCAMP2, SCO2, SCPEP1, SDS, SECTM1, SEMA4A, SERPINA1, SERPINB1, SFT2D1, SGPL1, SH3BGRL, SHKBP1, SIGLEC1, SIGLEC14, SIGLEC5, SIGLEC7, SIGLEC9, SIRPA, SIRPB1, SIRPB2, SKAP2, SLC11A1, SLC15A3, SLC16A3, SLC1A3, SLC25A19, SLC2A8A5, SLC25A19 SLC2A9, SLC31A2, SLC46A3, SLC7A7, SLC9A9, SLCO2B1, SNX6, SOD2, SPINT2, SQRDL, SRC, STX11, STXBP2, TALDO1, TFRC, TGFBI, THEMIS2, TIFAB, TLR1, TLR4, TLR5, TLR8, TMEM176A, TMEM176B, TMEM37, One of TMEM51, TNFAIP2, TNFAIP8L2, TNFSF13B, TRAFD1, TREM1, TREM2, TRPM2, TTYH3, TWF2, TYMP, TYROBP, UBE2D1, UBXN11, UNC93B1, VAMP8, VMO1, VSIG4, WDFY2, ZEB2, ZNF385A, CTSL, LOC338758, and LOC729737 or multiple, or mutations of the above genes.
  3. 如权利要求2所述的核苷酸组合,其特征在于,所述的核苷酸组合包含或者由以下基因组成:The nucleotide combination of claim 2, wherein the nucleotide combination comprises or consists of the following genes:
    C1QC、C1QB、C1QA、RGS1、LGMN、APOC1、APOE、HLA-DQA1、CD74、GPR183、SGK1、HSPA1B、HLA-DRA、GPNMB、HSPA1A、DNAJB1、ATF3、HLA-DQB1、HLA-DQA2、CCL3、NR4A2、HLA-DPB1、HLA-DRB1、HLA-DMB、FOSB、HSPB1、ACP5、HSPH1、HLA-DPA1、HLA-DMA、CTSB CD9、CD83、JUN、LMNA、GADD45B、CCL3L3、GSN、CCL4、SPP1、RNASE1、ZNF331、IER3、CTSL、ARL4C、PLD3、CREM、NPC2、MS4A4A、FABP5、CREG1、CTSC、CXCL8、HSPD1、HSP90AA1、ITM2B、HSP90AB1、LIPA、CTSZ、YWHAH、CTSD、HSPE1、PPP1R15A、TMEM176B、CALR、CXCL16、HERPUD1、PRDX1、CD68、TMEM176A、MARCKS、CAPG、TNFAIP3、DUSP2、MS4A6A、PLIN2、FCGR2A、C15orf48、CXXC1、FABP5P1以及SCGB1D1,或上述基因的突变;和/或,C1QC, C1QB, C1QA, RGS1, LGMN, APOC1, APOE, HLA-DQA1, CD74, GPR183, SGK1, HSPA1B, HLA-DRA, GPNMB, HSPA1A, DNAJB1, ATF3, HLA-DQB1, HLA-DQA2, CCL3, NR4A2, HLA-DPB1, HLA-DRB1, HLA-DMB, FOSB, HSPB1, ACP5, HSPH1, HLA-DPA1, HLA-DMA, CTSB CD9, CD83, JUN, LMNA, GADD45B, CCL3L3, GSN, CCL4, SPP1, RNASE1, ZNF331 , IER3, CTSL, ARL4C, PLD3, CREM, NPC2, MS4A4A, FABP5, CREG1, CTSC, CXCL8, HSPD1, HSP90AA1, ITM2B, HSP90AB1, LIPA, CTSZ, YWHAH, CTSD, HSPE1, PPP1R15A, TMEM176B, CALR, CXCL16, HERPUD1 , PRDX1, CD68, TMEM176A, MARCKS, CAPG, TNFAIP3, DUSP2, MS4A6A, PLIN2, FCGR2A, C15orf48, CXXC1, FABP5P1, and SCGB1D1, or mutations in the above genes; and/or,
    ABCA1、ABI1、ACAA1、ACER3、ACP2、ACP5、ACSL1、ADAMDEC1、ADAP2、ADORA3、ADPGK、AIF1、AKR1A1、ALDH2、ALDH3B1、AMICA1、AMPD3、ANKRD22、AP1B1、APOC1、AQP9、ARAP1、ARHGAP18、ARHGAP27、ARHGEF10L、ARPC1B、ARRB2、ASAH1、ATF5、ATG3、ATG7、ATP6AP1、ATP6V0B、ATP6V0D1、ATP6V1B2、ATP6V1F、BACH1、BCKDHA、BCL2A1、BID、BLOC1S1、BLVRA、BLVRB、C10orf54、C15orf48、C19orf38、C1orf162、C1QA、C1QB、C1QC、C2、C3AR1、C5AR1、C9orf72、CAPG、CAPZA2、CARD9、CASP1、CAT、CCDC88A、CCR1、CCR2、CCRL2、CD14、 CD163、CD1D、CD274、CD300C、CD300E、CD300LB、CD300LF、CD302、CD33、CD68、CD80、CD86、CECR1、CFD、CFP、CLEC10A、CLEC12A、CLEC4A、CLEC4E、CLEC5A、CLEC7A、CMKLR1、CMTM6、CNDP2、CNPY3、CORO7、CPVL、CREG1、CSF1R、CSF2RA、CSF3R、CST3、CSTA、CTSA、CTSB、CTSC、CTSD、CTSH、CTSS、CXCL10、CXCL16、CXCL9、CXCR2P1、CYB5R4、CYBA、CYBB、CYP2S1、DAPK1、DBNL、DENND1A、DHRS9、DMXL2、DNAJC5B、DOK1、DOK3、DPYD、EBI3、EMR2、EPSTI1、ETV6、EVI2A、F13A1、FAM105A、FAM157B、FAM26F、FAM49A、FAM96A、FBP1、FCER1G、FCGR1A、FCGR1B、FCGR1C、FCGR2A、FCGR2C、FCGR3B、FCGRT、FCN1、FERMT3、FES、FGL2、FKBP15、FLVCR2、FOLR2、FPR1、FPR2、FPR3、FTH1、FTL、FUCA1、FUOM、GAA、GABARAP、GALC、GATM、GBP1、GCA、GGTA1P、GK、GLA、GLB1、GLRX、GLUL、GM2A、GNA13、GNA15、GPBAR1、GPR34、GPR84、GPX1、GRN、GSTO1、H2AFY、HCAR2、HCAR3、HCK、HEIH、HERPUD1、HIST2H2BF、HK2、HK3、HLA-DMA、HLA-DMB、HLA-DPA1、HLA-DPB1、HLA-DPB2、HLA-DQA1、HLA-DQB1、HLA-DRA、HLA-DRB1、HLA-DRB5、HLA-DRB6、HMOX1、HN1、HPS1、HSPA6、HSPA7、HSPBAP1、IDH1、IFI30、IFI35、IFIT2、IFNGR1、IFNGR2、IGFLR1、IGSF6、IL10RB、IL18、IL1B、IL1RN、IL4I1、IL8、IRF5、IRF7、ITGAX、JAK2、KCNMA1、KCNMB1、KYNU、LAIR1、LAP3、LGALS2、LGALS9、LGMN、LILRA1、LILRA2、LILRA3、LILRA4、LILRA5、LILRA6、LILRB1、LILRB2、LILRB3、LILRB4、LILRB5、LIPA、LRRC25、LST1、LTA4H、LYN、LYZ、M6PR、MAFB、MAN2B1、MAPKAPK3、MARCO、MERTK、MFSD1、MGAT1、MIF4GD、MIIP、MILR1、MKNK1、MNDA、MOB1A、MPEG1、MPP1、MRC1、MS4A4A、MS4A6A、MS4A7、MSR1、MTHFD2、MTMR14、MX1、MX2、MXD1、MYD88、N4BP2L1、NAAA、NADK、NAGA、NAGK、NAIP、NCF2、NCF4、NCKAP1L、NCOA4、NFAM1、NFKBID、NINJ1、NLRC4、NLRP3、NMI、NOD2、NPC2、NPL、NR1H3、OAS1、OAZ1、OLR1、OSCAR、P2RX4、P2RY12、P2RY13、P2RY14、P2RY6、PAK1、PCK2、PFKFB3、PGD、PILRA、PLA2G15、PLA2G7、PLAUR、PLBD1、PLEK、PLEKHO1、PLEKHO2、PLIN2、PLXDC2、PPM1M、PPT1、PRAM1、PRKCD、PSAP、PSME2、PTAFR、PTPRE、PYCARD、RAB20、RAB4B、RAB8A、RASGEF1B、RASSF4、RBM47、RBPJ、REEP4、RELT、RGS10、RGS18、RGS19、RGS2、RHBDF2、RHOG、RILPL2、RIPK2、RNASE6、RNASEK、RNASET2、RNF13、RNF130、RNF144B、RNF149、RTN1、S100A11、S100A8、S100A9、SAMHD1、SAT1、SCAMP2、SCIMP、SCO2、SCPEP1、SDS、SECTM1、SEMA4A、SERPINA1、SERPINB1、SFT2D1、 SGPL1、SH3BGRL、SHKBP1、SIGLEC1、SIGLEC14、SIGLEC5、SIGLEC7、SIGLEC9、SIRPA、SIRPB1、SIRPB2、SKAP2、SLAMF8、SLC11A1、SLC15A3、SLC16A3、SLC1A3、SLC25A19、SLC29A3、SLC2A5、SLC2A8、SLC2A9、SLC31A2、SLC43A2、SLC46A3、SLC7A7、SLC9A9、SLCO2B1、SMPDL3A、SNX10、SNX6、SOD2、SPI1、SPINT2、SQRDL、SRC、STX11、STXBP2、TALDO1、TBXAS1、TFRC、TGFBI、THEMIS2、TIFAB、TLR1、TLR2、TLR4、TLR5、TLR8、TMEM106A、TMEM144、TMEM176A、TMEM176B、TMEM37、TMEM51、TMEM86A、TNFAIP2、TNFAIP8L2、TNFSF13、TNFSF13B、TPP1、TRAFD1、TREM1、TREM2、TRPM2、TTYH3、TWF2、TYMP、TYROBP、UBE2D1、UBXN11、UNC93B1、VAMP8、VMO1、VSIG4、WDFY2、ZEB2、ZNF267、ZNF385A、CTSL、SMCO4、LOC338758以及LOC729737,或上述基因的突变。ABCA1, ABI1, ACAA1, ACER3, ACP2, ACP5, ACSL1, ADAMDEC1, ADAP2, ADORA3, ADPGK, AIF1, AKR1A1, ALDH2, ALDH3B1, AMICA1, AMPD3, ANKRD22, AP1B1, APOC1, AQP9, ARAP1, ARHGAP18, ARHGAP27, ARHGEF10L, ARPC1B, ARRB2, ASAH1, ATF5, ATG3, ATG7, ATP6AP1, ATP6V0B, ATP6V0D1, ATP6V1B2, ATP6V1F, BACH1, BCKDHA, BCL2A1, BID, BLOC1S1, BLVRA, BLVRB, C10orf54, C15orf48, C19orf38, C1orf, QC162, C1QA, C1QBCC1QA C2, C3AR1, C5AR1, C9orf72, CAPG, CAPZA2, CARD9, CASP1, CAT, CCDC88A, CCR1, CCR2, CCRL2, CD14, CD163, CD1D, CD274, CD300C, CD300E, CD300LB, CD300LF, CD302, CD33, CD68, CD80, CD86, CECR1, CFD, CFP, CLEC10A, CLEC12A, CLEC4A, CLEC4E, CLEC5A, CLEC7A, CMKLR1, CMTM6, CNDP2, CNPY3, CORO7, CPVL, CREG1, CSF1R, CSF2RA, CSF3R, CST3, CSTA, CTSA, CTSB, CTSC, CTSD, CTSH, CTSS, CXCL10, CXCL16, CXCL9, CXCR2P1, CYB5R4, CYBA, CYBB, CYP2S1, DAPK1, DBNL, DENND1A, DHRS9, DMXL2, DNAJC5B, DOK1, DOK3, DPYD, EBI3, EMR2, EPSTI1, ETV6, EVI2A, F13A1, FAM105A, FAM157B, FAM26F, FAM49A, FAM96A, FBP1, FCER1G, FCGR1A, FCGR1B, FCGR1C, FCGR2A, FCGR2C, FCGR3B, FCGRT, FCN1, FERMT3, FES, FGL2, FKBP15, FLVCR2, FOLR2, FPR1, FPR2, FPR3, FTH1, FTL, FUCA1, FUOM, GAA, GABARAP, GALC, GATM, GBP1, GCA, GGTA1P, GK, GLA, GLB1, GLRX, GLUL, GM2A, GNA13, GNA15, GPBAR1, GPR34, GPR84, GPX1, GRN, GSTO1, H2AFY, HCAR2, HCAR3, HCK, HEIH, HERPUD1, HIST2H2BF, HK2, HK3, HLA-DMA, HLA-DMB, HLA-DPA1, HLA-DPB1, HLA-DPB2, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, HLA-DRB6, HMOX1, HN1, HPS1, HSPA6, HSPA7, HSPBAP1, IDH1, IFI30, IFI35, IFIT2, IFNGR1, IFNGR2, IGFLR1, IGSF6, IL10RB, IL18, IL1B, IL1RN, IL4I1, IL8, IRF5, IRF7, ITGAX, JAK2, KCNMA1, KCNMB1, KYNU, LAIR1, LAP3, LGALS2, LGALS9, LGMN, LILRA1, LILRA2, LILRA3, LILRA4, LILRA5, LILRA6, LILRB1, LILRB2, LILRB3, LILRB4, LILRB5, LIPA, LRRC25, LST1, LTA4H, LYN, LYZ, M6PR, MAFB, MAN2B1, MAPKAPK3, MARCO, MERTK, MFSD1, MGAT1, MIF4GD, MIIP, MILR1, MKNK1, MNDA, MOB1A, MPEG1, MPP1, MRC1, MS4A4A, MS4A6A, MS4A7, MSR1, MTHFD2, MTMR14, MX1, MX2, MXD1, MYD88, N4BP2L1, NAAA, NADK, NAGA, NAGK, NAIP, NCF2, NCF4, NCKAP1L, NCOA4, NFAM1, NFKBID, NINJ1, NLRC4, NLRP3, NMI, NOD2, NPC2, NPL, NR1H3, OAS1, OAZ1, OLR1, OSCAR, P2RX4, P2RY12, P2RY13, P2RY14, P2RY6, PAK1, PCK2, PFKFB3, PGD, PILRA, PLA2G15, PLA2G7, PLAUR, PLBD1, PLEK, PLEKHO1, PLEKHO2, PLIN2, PLXDC2, PPM1M, PPT1, PRAM1, PRKCD, PSAP, PSME2, PTAFR, PTPRE, PYCARD, RAB20, RAB4B, RAB8 A, RASGEF1B, RASSF4, RBM47, RBPJ, REEP4, RELT, RGS10, RGS18, RGS19, RGS2, RHBDF2, RHOG, RILPL2, RIPK2, RNASE6, RNASEK, RNASET2, RNF13, RNF130, RNF144B, RNF149, RTN1, S100A11, S100A8, S100A9, SAMHD1, SAT1, SCAMP2, SCIMP, SCO2, SCPEP1, SDS, SECTM1, SEMA4A, SERPINA1, SERPINB1, SFT2D1, SGPL1, SH3BGRL, SHKBP1, SIGLEC1, SIGLEC14, SIGLEC5, SIGLEC7, SIGLEC9, SIRPA, SIRPB1, SIRPB2, SKAP2, SLAMF8、SLC11A1、SLC15A3、SLC16A3、SLC1A3、SLC25A19、SLC29A3 STXBP2, TALDO1, TBXAS1, TFRC, TGFBI, THEMIS2, TIFAB, TLR1, TLR2, TLR4, TLR5, TLR8, TMEM106A, TMEM144, TMEM176A, TMEM176B, TMEM37, TMEM51, TMEM86A, TNFAIP2, TNFAIP8L2, TNFSF13, TNFSF13B, TPP1, TRAFD1, TREM1, TREM2, TRPM2, TTYH3, TWF2, TYMP, TYROBP, UBE2D1, UBXN11, UNC93B1, VAMP8, VMO1, VSIG4, WDFY2, ZEB2, ZNF267, ZNF385A, CTSL, SMCO4, LOC338758, and LOC729737, or mutations in the above genes.
  4. 如权利要求1~3任一项所述的核苷酸组合在制备患者预后的诊断试剂中的应用,所述的患者被施用过PD1/PDL1通路免疫检查点抑制剂;较佳地,所述的患者被施用过PD1/PDL1通路免疫检查点抑制剂联合化疗药物。The application of the nucleotide combination according to any one of claims 1 to 3 in the preparation of a diagnostic reagent for the prognosis of a patient, the patient has been administered a PD1/PDL1 pathway immune checkpoint inhibitor; preferably, the patient of patients had been administered PD1/PDL1 pathway immune checkpoint inhibitors in combination with chemotherapy drugs.
  5. 一种用于评估患者施用PD1/PDL1通路免疫检查点抑制剂或者施用PD1/PDL1通路免疫检查点抑制剂联合化疗药物后预后效果的试剂盒,其特征在于,所述的试剂盒包含用于检测如权利要求1~3任一项所述的核苷酸组合的表达水平的试剂。A kit for evaluating the prognosis of patients after administration of PD1/PDL1 pathway immune checkpoint inhibitor or PD1/PDL1 pathway immune checkpoint inhibitor combined with chemotherapeutic drugs, characterized in that the kit comprises detection The agent for the expression level of the nucleotide combination according to any one of claims 1 to 3.
  6. 如权利要求5所述的试剂盒,其特征在于,所述的试剂盒包含通过RT-qPCR、微阵列分析、数字PCR、全转录组鸟枪测序或直接多重基因表达分析来建立所述的核苷酸组合的表达水平的试剂。The kit of claim 5, wherein the kit comprises establishing the nucleosides by RT-qPCR, microarray analysis, digital PCR, whole transcriptome shotgun sequencing or direct multiplex gene expression analysis Reagents for expression levels of acid combinations.
  7. 一种用于评估患者施用PD1/PDL1通路免疫检查点抑制剂或者PD1/PDL1通路免疫检查点抑制剂联合化疗药物后预后效果的系统,所述的系统包括工具以及一计算机,所述工具用于确定如权利要求1~3任一项所述的核苷酸组合的表达水平。A system for evaluating the prognosis of a patient after administration of a PD1/PDL1 pathway immune checkpoint inhibitor or a PD1/PDL1 pathway immune checkpoint inhibitor combined with a chemotherapeutic drug, the system includes a tool and a computer, the tool is used for Determining the expression level of the nucleotide combination of any one of claims 1-3.
  8. 如权利要求7所述的系统,其特征在于,所述的计算机被编程为根据患者的基因表达数据判断预后效果。8. The system of claim 7, wherein the computer is programmed to determine the prognostic effect based on the patient's gene expression data.
  9. 一种预测被诊断为癌症的患者施用PD1/PDL1通路免疫检查点抑制剂或者PD1/PDL1通路免疫检查点抑制剂联合化疗药物后的反应的方法,包括以下步骤:A method for predicting the response of a patient diagnosed with cancer after administration of a PD1/PDL1 pathway immune checkpoint inhibitor or a PD1/PDL1 pathway immune checkpoint inhibitor combined with a chemotherapy drug, comprising the following steps:
    提供如权利要求1~3任一项所述的核苷酸组合,以组合中每一基因的表达量为基础,分别将患者划分为基因高表达组和基因低表达组,比较两组患者的PFS情况,发生统计学上差异的则认为组合基因的高或低表达与疗效相应有关联。The nucleotide combination according to any one of claims 1 to 3 is provided, and based on the expression amount of each gene in the combination, the patients are respectively divided into a gene high expression group and a gene low expression group, and the two groups of patients are compared. In the case of PFS, if there was a statistical difference, it was considered that the high or low expression of the combined gene was associated with the therapeutic effect.
  10. 如权利要求1~3任一项所述的核苷酸组合、权利要求4所述的应用、权利要求5或6所述的试剂盒、权利要求7或8所述的系统或者权利要求9所述的方法,其特征在 于,所述的PD1/PDL1通路免疫检查点抑制剂为PD1抗原结合蛋白或者PDL1抗原结合蛋白;所述的PD1抗原结合蛋白或者PDL1抗原结合蛋白优选单克隆抗体或者为双特异性抗体、多特异性抗体;例如,纳武单抗、帕博利珠单抗、西米单抗、特瑞普利单抗、卡瑞利珠单抗、替雷利珠单抗、信迪利单抗;阿特珠单抗、阿维鲁单抗、度伐利尤单抗、adebrelimab、pacmilimab、envafolimab;The nucleotide combination of any one of claims 1 to 3, the use of claim 4, the kit of claim 5 or 6, the system of claim 7 or 8, or the method of claim 9 The method is characterized in that the PD1/PDL1 pathway immune checkpoint inhibitor is PD1 antigen-binding protein or PDL1 antigen-binding protein; the PD1 antigen-binding protein or PDL1 antigen-binding protein is preferably a monoclonal antibody or a dual antibody. Specific antibodies, multispecific antibodies; e.g., nivolumab, pembrolizumab, cilimumab, toripalizumab, camrelizumab, tislelizumab, sindi Limumab; atezolizumab, avelumab, durvalumab, adebrelimab, pacmilimab, envafolimab;
    较佳地,所述PD1/PDL1通路免疫检查点抑制剂为信迪利单抗。Preferably, the PD1/PDL1 pathway immune checkpoint inhibitor is sintilimab.
  11. 如权利要求4所述的应用、权利要求5或6所述的试剂盒、权利要求7或8所述的系统或者权利要求9所述的方法,其特征在于,所述的化疗药物包括培美曲塞、吉西他滨或者紫杉醇,以及铂类;其中,所述铂类优选顺铂和/或卡铂。The application according to claim 4, the kit according to claim 5 or 6, the system according to claim 7 or 8, or the method according to claim 9, wherein the chemotherapeutic drug comprises pemetrexed Troxet, gemcitabine or paclitaxel, and platinum; wherein, the platinum is preferably cisplatin and/or carboplatin.
  12. 如权利要求4所述的应用、权利要求5或6所述的试剂盒、权利要求7或8所述的系统或者权利要求9所述的方法,其特征在于,所述患者患有癌症,所述癌症选自由肾上腺皮质癌、膀胱尿路上皮癌、乳房浸润癌、宫颈鳞癌和腺癌、胆管癌、结直肠癌、淋巴肿瘤弥漫性大B细胞淋巴瘤、食管癌、胶质瘤、头颈鳞状细胞癌、混合肾癌、急性髓系白血病、肝细胞癌、肺腺癌、肺鳞状细胞癌、间皮瘤、卵巢浆液性囊腺癌、胰腺癌、嗜铬细胞瘤和副神经节瘤、前列腺腺癌、肉瘤、皮肤黑色素瘤、胃癌、胃和食管癌、睾丸癌、甲状腺癌、胸腺瘤、子宫内膜癌、子宫肉瘤、葡萄膜黑色素瘤构成的群组,优选地所述癌症为非小细胞肺癌,更优选为晚期或复发性非鳞非小细胞肺癌。The use of claim 4, the kit of claim 5 or 6, the system of claim 7 or 8, or the method of claim 9, wherein the patient has cancer, the The cancer is selected from adrenocortical carcinoma, bladder urothelial carcinoma, breast invasive carcinoma, cervical squamous cell carcinoma and adenocarcinoma, cholangiocarcinoma, colorectal carcinoma, lymphoma, diffuse large B-cell lymphoma, esophageal carcinoma, glioma, head and neck cancer Squamous cell carcinoma, mixed renal carcinoma, acute myeloid leukemia, hepatocellular carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, mesothelioma, ovarian serous cystadenocarcinoma, pancreatic carcinoma, pheochromocytoma, and paraganglia tumor, prostate adenocarcinoma, sarcoma, skin melanoma, gastric cancer, gastric and esophageal cancer, testicular cancer, thyroid cancer, thymoma, endometrial cancer, uterine sarcoma, uveal melanoma, preferably the cancer Non-small cell lung cancer, more preferably advanced or recurrent non-squamous non-small cell lung cancer.
  13. 如权利要求1~3任一项所述的核苷酸组合在筛选PD1/PDL1通路免疫检查点抑制药物中的应用。The application of the nucleotide combination according to any one of claims 1 to 3 in screening PD1/PDL1 pathway immune checkpoint inhibitory drugs.
PCT/CN2021/105374 2020-07-17 2021-07-09 Nucleotide combination and use thereof WO2022012420A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010692583 2020-07-17
CN202010692583.4 2020-07-17

Publications (1)

Publication Number Publication Date
WO2022012420A1 true WO2022012420A1 (en) 2022-01-20

Family

ID=79554306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105374 WO2022012420A1 (en) 2020-07-17 2021-07-09 Nucleotide combination and use thereof

Country Status (1)

Country Link
WO (1) WO2022012420A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117079710A (en) * 2023-08-18 2023-11-17 上海爱谱蒂康生物科技有限公司 Biomarkers and their use in predicting and/or diagnosing UTUC muscle infiltration

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015184061A2 (en) * 2014-05-28 2015-12-03 Dana-Farber Cancer Institute, Inc. Activating jak kinase biomarkers predictive of anti-immune checkpoint inhibitor response
WO2018132369A1 (en) * 2017-01-11 2018-07-19 Dana-Farber Cancer Institute, Inc. Biomarkers predictive of anti-immune checkpoint response
WO2018209324A2 (en) * 2017-05-11 2018-11-15 The Broad Institute, Inc. Methods and compositions of use of cd8+ tumor infiltrating lymphocyte subtypes and gene signatures thereof
CN110499364A (en) * 2019-07-30 2019-11-26 北京凯昂医学诊断技术有限公司 A kind of probe groups and its kit and application for detecting the full exon of extended pattern hereditary disease
WO2019226514A2 (en) * 2018-05-21 2019-11-28 Nanostring Technologies, Inc. Molecular gene signatures and methods of using same
WO2019232485A1 (en) * 2018-05-31 2019-12-05 Nvigen, Inc. Accurate blood test to predict cancer incidence, recurrence, guide and monitor treatment intervention

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015184061A2 (en) * 2014-05-28 2015-12-03 Dana-Farber Cancer Institute, Inc. Activating jak kinase biomarkers predictive of anti-immune checkpoint inhibitor response
WO2018132369A1 (en) * 2017-01-11 2018-07-19 Dana-Farber Cancer Institute, Inc. Biomarkers predictive of anti-immune checkpoint response
WO2018209324A2 (en) * 2017-05-11 2018-11-15 The Broad Institute, Inc. Methods and compositions of use of cd8+ tumor infiltrating lymphocyte subtypes and gene signatures thereof
WO2019226514A2 (en) * 2018-05-21 2019-11-28 Nanostring Technologies, Inc. Molecular gene signatures and methods of using same
WO2019232485A1 (en) * 2018-05-31 2019-12-05 Nvigen, Inc. Accurate blood test to predict cancer incidence, recurrence, guide and monitor treatment intervention
CN110499364A (en) * 2019-07-30 2019-11-26 北京凯昂医学诊断技术有限公司 A kind of probe groups and its kit and application for detecting the full exon of extended pattern hereditary disease

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GIBNEY, G.T. ET AL.: "Predictive biomarkers for checkpoint inhibitor-based immunotherapy", LANCET ONCOLOGY, vol. 17, no. 12, 31 December 2016 (2016-12-31), XP029835842 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117079710A (en) * 2023-08-18 2023-11-17 上海爱谱蒂康生物科技有限公司 Biomarkers and their use in predicting and/or diagnosing UTUC muscle infiltration

Similar Documents

Publication Publication Date Title
Hu et al. Siglec15 shapes a non-inflamed tumor microenvironment and predicts the molecular subtype in bladder cancer
US11091809B2 (en) Molecular diagnostic test for cancer
US10260097B2 (en) Method of using a gene expression profile to determine cancer responsiveness to an anti-angiogenic agent
US10619210B2 (en) Predicting response to epigenetic drug therapy
US10280468B2 (en) Molecular diagnostic test for predicting response to anti-angiogenic drugs and prognosis of cancer
EP2909340B1 (en) Diagnostic method for predicting response to tnf alpha inhibitor
US11447833B2 (en) Methods for preparing nucleic acid libraries for sequencing
EP2550367A2 (en) Genes and genes combinations predictive of early response or non response of subjects suffering from inflammatory disease to cytokine targeting drugs (cytd)
WO2022053065A1 (en) Biomarker used for predicting or evaluating lung cancer patients, detection method, and application
WO2022012420A1 (en) Nucleotide combination and use thereof
US20240105281A1 (en) Methods and Systems for Analyzing Nucleic Acid Molecules
US10662481B2 (en) Methods for predicting response to HDACi/DNMTi combination in multiple myeloma
Zavacky Investigating the heterogeneity of tumour-associated macrophages in renal cell carcinoma milieu
Oliver et al. OP0236 Whole Transcriptome Investigation of Response To Anti-TNF Treatment in Rheumatoid Arthritis
Shubaeva et al. THU0484 Serum Levels of Extracellular DNA (EXDNA) and EXDNA-Complexed Proteins at Ankylosing Spondylitis (AS), Correlation with Biomarkers–Crp, Esr, Methylation Level and Leukocyte Count

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21843398

Country of ref document: EP

Kind code of ref document: A1