WO2022012209A1 - Method and device for power reduction information transmission - Google Patents

Method and device for power reduction information transmission Download PDF

Info

Publication number
WO2022012209A1
WO2022012209A1 PCT/CN2021/098380 CN2021098380W WO2022012209A1 WO 2022012209 A1 WO2022012209 A1 WO 2022012209A1 CN 2021098380 W CN2021098380 W CN 2021098380W WO 2022012209 A1 WO2022012209 A1 WO 2022012209A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
transmit beam
indication information
resource
mpr
Prior art date
Application number
PCT/CN2021/098380
Other languages
French (fr)
Inventor
Li Guo
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Publication of WO2022012209A1 publication Critical patent/WO2022012209A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control

Definitions

  • the present disclosure relates to the communication field, and more particularly, to methods and devices for reporting and receiving power reduction information.
  • a New Radio (NR) /5G system generally supports multi-beam operation on downlink and uplink physical channels and reference signals.
  • the use case for supporting multi-beam operation mainly is for deployment of a high-frequency band system, where high-gain analog beamforming is used to combat large path loss.
  • 3GPP TS 38.211 V15.5.0 “NR; Physical channels and modulation”
  • 3GPP TS 38.212 V15.5.0 “NR; Multiplexing and channel coding”
  • 3GPP TS 38.213 V15.5.0 “NR; Physical layer procedures for control”
  • 3GPP TS 38.214 V15.5.0 “NR; Physical layer procedures for data”
  • 3GPP TS 38.215 V15.5.0 “NR; Physical layer measurements”
  • 3GPP TS 38.321 V15.5.0 “NR; Medium Access Control (MAC) protocol specification”
  • 3GPP TS 38.331 V15.5.0 “NR; Radio Resource Control (RRC) protocol specification” disclose relevant background technologies.
  • RRC Radio Resource Control
  • Implementations of the present disclosure provide methods and devices for reporting and receiving power reduction information.
  • a method for reporting power reduction information includes: sending, by a terminal device, indication information to a network device; wherein the indication information is used for indicating power reduction of a transmit beam of the terminal device.
  • a method for receiving power reduction information includes: receiving, by a network device, indication information from a terminal device; wherein the indication information is used for indicating power reduction of a transmit beam of the terminal device.
  • a terminal device in yet another aspect, includes a transmitting module configured to send indication information to a network device; wherein the indication information is used for indicating power reduction of a transmit beam of the terminal device.
  • a network device in yet another aspect, includes a receiving module configured to receive indication information from a terminal device; wherein the indication information is used for indicating power reduction of a transmit beam of the terminal device.
  • FIG. 1 is a schematic diagram of an exemplary application scenario where an implementation of the present disclosure may be applied.
  • FIG. 2 is a schematic diagram of an example of multi-beam operation in communication between a terminal device and a network device.
  • FIG. 3 is a schematic diagram of a method for reporting power reduction information according to an implementation of the present disclosure.
  • FIG. 4 is a schematic diagram of structure of a MAC control element according to an exemplary implementation of the present disclosure.
  • FIG. 5 is a schematic diagram of structure of a MAC control element according to another exemplary implementation of the present disclosure.
  • FIG. 6 is a schematic diagram of structure of a MAC control element according to yet another exemplary implementation of the present disclosure.
  • FIG. 7 is a schematic diagram of structure of a MAC control element according to yet another exemplary implementation of the present disclosure.
  • FIG. 8 is a schematic diagram of a method for receiving power reduction information according to an implementation of the present disclosure.
  • FIG. 9 is a schematic diagram of a terminal device according to an implementation of the present disclosure.
  • FIG. 10 is a schematic diagram of a network device according to an implementation of the present disclosure.
  • FIG. 11 is a schematic diagram of structure of a terminal device according to an exemplary implementation of the present disclosure.
  • FIG. 12 is a schematic diagram of structure of a network device according to an exemplary implementation of the present disclosure.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE long term evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • NR New Radio
  • 5G fifth-generation
  • a terminal device in implementations of the present disclosure may refer to user equipment (UE) , an access terminal, a subscriber unit, a subscriber station, a mobile station, a rover station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • UE user equipment
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) , a handheld device with a wireless communication function, a computing device or other processing devices connected to a wireless modem, an on-board device, a wearable device, a terminal device in a 5G network, or a terminal device in an evolved public land mobile network (PLMN) , etc., which are not restricted in the implementations of the present disclosure.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN evolved public land mobile network
  • a network device in implementations of the present disclosure may be a device for communicating with a terminal device, and the network device may be a Base Transceiver Station (BTS) in the GSM or CDMA system, a NodeB (NB) in the WCDMA system, an evolved base station (eNB or eNodeB) in the LTE system, or a wireless controller in a Cloud Radio Access Network (CRAN) scenario, or the network device may be a relay station, an access point, an on-board device, a wearable device, a network device (e.g., gNB) in a 5G network, or a network device in an evolved PLMN, etc., which are not restricted in the implementations of the present invention.
  • BTS Base Transceiver Station
  • NB NodeB
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • FIG. 1 shows a schematic diagram of an exemplary application scenario where an implementation of the present disclosure may be applied.
  • a communication system shown in FIG. 1 may include a terminal device 10 and a network device 20.
  • the network device 20 is configured to provide a communication service for the terminal device 10 and is connected to a core network (not shown) .
  • the terminal device 10 accesses the network by searching for a synchronization signal, or a broadcast signal, etc., transmitted by the network device 20 to communicate with the network.
  • Arrows shown in FIG. 1 may indicate uplink/downlink transmission through cellular links between the terminal device 10 and the network device 20.
  • a terminal device is described as a UE as an example, but skilled artisans should understand that the terminal device in the present disclosure is not limited to the UE, but can be other types of terminal device as mentioned above.
  • a UE In downlink beam measurement and reporting, a UE is configured to measure multiple channel state information reference signal (CSI-RS) resources or synchronization signal/physical broadcast channel (SS/PBCH) blocks. Each CSI-RS resource or SS/PBCH block can represent one gNB transmit (Tx) beam. The UE measure those CSI-RS resources or SS/PBCH blocks and then report up to 4 CSI-RS resources or SS/PBCH blocks selected from those measured reference signal resources. The beam measurement and reporting are used to assist the gNB to select a Tx beam for physical downlink control channel (PDCCH) and/or physical downlink shared channel (PDSCH) transmission. For a UE with beam correspondence capability, the downlink beam measurement and reporting can also help the gNB to select a Tx beam of the UE for PUCCH and/or PUSCH transmission.
  • PDCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the network can use a downlink reference signal (RS) identity (Id) or uplink sounding reference signal (SRS) resource Id to indicate a Tx beam for PUSCH and/or PUCCH transmission.
  • RS downlink reference signal
  • SRS uplink sounding reference signal
  • a UE with beam correspondence capability can derive a Tx beam based on a receive (Rx) beam or derive a Rx beam based on a Tx beam.
  • the gNB can configure one downlink CSI-RS resource or one SS/PBCH block as the information for a Tx beam.
  • the UE derives the Rx beam used to receive the indicated downlink CSI-RS resource or SS/PBCH block and then derives the corresponding Tx beam according the correspondence between Rx beam and Tx beam of the UE.
  • downlink beam measurement and reporting specified in release 15 can be used.
  • the gNB first configures the UE to measure a set of N 1 CSI-RS resources or SS/PBCH blocks. Each CSI-RS resource or SS/PBCH block can be considered as one gNB Tx beam.
  • the UE measures the Layer 1 reference signal received power (L1-RSRP) of each CSI-RS resource or SS/PBCH block with paired UE Rx beam and then can select one or more CSI-RS resources or SS/PBCH blocks with the largest L1-RSRP.
  • the UE reports the selected CSI-RS resources or SS/PBCH blocks along with the L1-RSRP to the gNB.
  • the gNB configures one CSI-RS resource or SS/PBCH block as the spatial relation source for a PUSCH and/or PUCCH.
  • the UE uses a Tx beam that corresponds to the UE Rx beam used to receive the CSI-RS resource or SS/PBCH block that is configured as the spatial relation source.
  • the gNB configures a set of N 2 SRS resources for uplink beam management.
  • the UE can sweep UE Tx beams over those N 2 SRS resources and the gNB measures those N 2 SRS resources to select the ‘best’ UE Tx beam for uplink transmission.
  • the gNB can select the SRS resource with largest L1-RSRP.
  • the gNB configures an SRS resource as the spatial relation source for a PUSCH and/or PUCCH. Then the UE uses the Tx beam applied to the SRS resource configured as the spatial relation source to transmit the PUSCH and/or PUCCH.
  • a UE is allowed to set its configured maximum output power.
  • Tx beam for uplink transmission (PUCCH, SRS and/or PUSCH)
  • the potential maximum transmit power reduction on some transmit beam directions is not taken into account and the consequence is that an Tx beam direction with large power backoff value might be chosen by the system for uplink transmission and thus the quality of uplink transmission is impaired.
  • the radio link could be totally impaired due to poor uplink quality caused by selecting a wrong Tx beam direction with large power reduction.
  • the maximum power reduction on some particular transmission beam directions may be taken into account in beam management, especially beam indication for uplink transmission (PUCCH, SRS and/or PUSCH) .
  • P-MPR power management maximum power reduction
  • the present disclosure provides methods and devices for reporting and receiving power reduction information.
  • UE-A is equipped with two panels. On each panel, the UE-A can formulate one or more beam directions for transmission. According to regulations, the maximum permissible exposure of transmit signal energy is limited. For example, on the transmit beam direction pointing to human body, the UE may reduce the transmit power or reduce the transmission time duration so that the radio signal energy exposed to the human body does not go beyond some limit. The UE-A can take various different method to adjust the transmit power to satisfy the regulatory requirement.
  • the UE can impose a power backoff value on all the transmit panels and all the transmit beams.
  • the UE can consider the transmit beam direction that points to human body and requires the largest power backoff value and then apply one same power backoff value on all the panels and all the beam directions.
  • the UE can impose a power backoff value on each panel.
  • the UE can impose a panel-specific power backoff on each panel.
  • the UE can consider the transmit beam on each panel and the UE can calculate one power backoff value for each panel by considering the possible transmission on any transmit beams on that panel.
  • the UE can impose a power backoff value on each transmit beam.
  • the UE can impose a beam-specific power backoff on each transmit beam.
  • the UE can determine a power backoff value for each individual transmit beam based on the direction of that transmit beam.
  • the UE can limit the transmission time duration so that the total transmission energy within a particular time duration is limited by some threshold imposed by the regulation.
  • the UE can choose one method according to the UE capability, for example, the UE capability of detecting the location of human body and determining a power backoff value. For example, if a UE is able to detect whether each transmit beam direction points to human body, the UE can apply power backoff on each individual transmit beam direction and the UE can determine a power backoff value for each individual transmit beam direction.
  • FIG. 3 is a schematic diagram of a method for reporting power reduction information according to an implementation of the present disclosure.
  • the method includes act 310.
  • a terminal device sends indication information to a network device.
  • the indication information is used for indicating power reduction of a transmit beam of the terminal device.
  • the indication information includes any one or more of: a power management maximum power reduction (P-MPR) value for the transmit beam, a revised maximum output power for the transmit beam, a power offset value with respect to a configured maximum output power for the transmit beam, or a power headroom report for the transmit beam.
  • P-MPR power management maximum power reduction
  • a UE can report information of power reduction (e.g., P-MPR) value that the UE may reduce on the maximum transmit power of a transmit beam of the UE. If a UE can formulate multiple transmit beams that can be used for uplink transmission, the UE can report information of power reduction for each transmit beam.
  • P-MPR power reduction
  • the power reduction information for a transmit beam that a UE reports can be one or more of the following: a P-MPR value for that transmit beam, a revised maximum output power for that transmit beam, a power offset value with respect to the UE configured maximum output power for that transmit beam, or a power headroom reporting for that transmit beam.
  • the power headroom reporting for the transmit beam can be calculated based on an uplink signal (for example SRS resource) which is configured to be transmitted from the transmit beam.
  • the UE can report a power headroom and a maximum output power for that transmit beam of the UE.
  • the indication information further includes an identity of the transmit beam.
  • a UE in the reporting, can report a value to indicate information of a power reduction value and an Id that identify one UE transmit beam.
  • the UE can assign an Id value for a transmit beam.
  • the UE can report one Id value that identify one UE transmit beam.
  • the identity of the transmit beam is any one of: an identity of a downlink channel state information reference signal (CSI-RS) resource, an index of a synchronization signal/physical broadcast channel (SS/PBCH) block, an identity of a sounding reference signal (SRS) resource, an identity of a transmission configuration indicator (TCI) state, an identity of a control resource set (CORESET) , or an identity of a physical uplink control channel (PUCCH) resource.
  • CSI-RS downlink channel state information reference signal
  • SS/PBCH synchronization signal/physical broadcast channel
  • SRS sounding reference signal
  • TCI transmission configuration indicator
  • CORESET control resource set
  • PUCCH physical uplink control channel
  • the indication information further includes a time fraction value indicating when the transmit beam is used for uplink transmission.
  • a UE can report a time fraction value that the UE can use one transmit beam for uplink transmission.
  • the value can indicate how much time the UE can use a first transmit beam for uplink transmission within every particular time duration, for example, every one second.
  • the indication information is sent by the terminal device through a media access control (MAC) control element (CE) signaling or a physical uplink control channel (PUCCH) transmission.
  • MAC media access control
  • CE control element
  • PUCCH physical uplink control channel
  • a UE can report a value to indicate information of a power reduction value through a MAC CE signaling or a PUCCH transmission.
  • the MAC CE includes a power offset value with respect to a configured maximum output power for the transmit beam and an identity of the transmit beam.
  • a UE can use one MAC control element to report a power offset value with respect to the UE configured maximum output power and an Id that identify one UE transmit beam.
  • FIG. 4 shows an example of a MAC control element.
  • the MAC control element shown in FIG. 4 it has a fixed size and consists of two octets defined as follows:
  • this field indicates one UE transmit beam. It provides an Id that identifies one UE transmit beam that the UE reports a power reduction value for.
  • PowerBackOff this field indicates one value of power reduction. It can be power backoff value with respect to the UE configured maximum output power.
  • P CMAX, f, c this field indicates P CMAX, f, c used for calculation of the preceding P-MPR field.
  • the MAC CE includes a P-MPR value for the transmit beam and an identity of the transmit beam.
  • FIG. 5 shows another example of the MAC control element.
  • the MAC control element shown in FIG. 5 it has a fixed size and consists of two octets defined as follows:
  • this field indicates one UE transmit beam. It provides an Id that identifies one UE transit beam that the UE reports a power reduction value for.
  • this field indicates a value of maximum power reduction. It can be the beam-specific P-MPR value. In one example, it can be a maximum power backoff value with respect to the UE configured maximum output power.
  • R reserved bit, set to 0.
  • the MAC CE includes P-MPR values and corresponding configured maximum output powers for a plurality of transmit beams of the terminal device.
  • a UE can report one or multiple values of power reduction for one or multiple UE transmit beams in one MAC control element.
  • the UE can report one P-MPR value for each transmit beam.
  • FIG. 6 shows an example of a MAC control element used to report one or more P-MPRs for one or more transmit beams.
  • the MAC control element shown in FIG. 6 it has a variable size and includes a bitmap, an MPR field and an octet containing the associated P CMAX, f, c field for each UE transmit beam.
  • the MAC CE is defined as follows:
  • this field indicates the presence of an MPR field and the associated P CMAX, f, c field.
  • the C i field set to 1 indicates an MPR field is reported for an i-th UE transmit beam
  • the C i field set to 0 indicates an MPR field is not reported for the i-th UE transmit beam.
  • R reserved bit, set to 0
  • P-MPR this field indicates a value of maximum power reduction. It can be a maximum power backoff value with respect to the UE configured maximum output power.
  • P CMAX, f, c this field indicates P CMAX, f, c used for calculation of the preceding MPR field.
  • the MAC CE includes P-MPR values for a plurality of transmit beams of the terminal device.
  • a UE can report one or multiple values of power reduction for one or multiple UE transmit beams in one MAC control element.
  • the UE can report one P-MPR value for each transmit beam.
  • FIG. 7 shows an example of a MAC control element used to report one or more P-MPRs for one or more transmit beams.
  • the MAC control element may include the following fields:
  • this field indicates the presence of an MPR field.
  • the C i field set to 1 indicates an MPR field is reported for an i-th UE transmit beam
  • the C i field set to 1 indicates an MPR field is not reported for the i-th UE transmit beam.
  • this field indicates a value of maximum power reduction. In one example, it can be beam-specific P-MPR value. In one example, it can be a maximum power backoff value with respect to the UE configured maximum output power.
  • the UE configured maximum output power may be the same for all transmit beams of the UE, and thus beam-specific P CMAX, f, c need not to be reported.
  • the indication information includes a P-MPR value for the transmit beam
  • the terminal device sends the indication information to the network device when the P-MPR value for the transmit beam is above a threshold.
  • a UE can trigger beam-specific P-MPR reporting for a first beam if the P-MPR value for the first beam is above a threshold, where the threshold can be configured or pre-specified.
  • the indication information includes a power headroom report for the transmit beam, and the power headroom is determined based on a P-MPR value for the transmit beam.
  • a UE can be requested to calculate and report UE beam-specific power headroom.
  • a UE may formulate multiple transmit beams and the UE may choose one of those transmit beams to transmit uplink signal.
  • the UE can determine a power headroom value for uplink transmission sent from a second transmit beam of the UE and the UE can report the determined power headroom value of the second transmit beam to the system.
  • the UE may use the uplink transmission occasion or a reference uplink transmission occasion associated with the second transmit beam to calculate a power headroom.
  • the UE In the reporting of power headroom of a transmit beam, the UE can be requested to report an Id that identifies the UE transmit beam, a power headroom value and a value of maximum transmit power used to calculate the reported power headroom value.
  • the UE For beam-specific power headroom report, the UE can be requested to determine a P-MPR value for each UE transmit beam.
  • the UE may take into account the UE beam-specific P-MPR value for each transmit beam.
  • the power headroom report is a Type 1 power headroom report based on an actual physical uplink shared channel (PUSCH) transmission or a reference PUSCH transmission.
  • PUSCH physical uplink shared channel
  • a UE can determine that a Type 1 power headroom report for an activated serving cell is based on an actual PUSCH transmission then, for PUSCH transmission occasion i on active uplink BWP b of carrier f of serving cell c that is transmitted with UE transmit beam x, the UE computes the Type 1 power headroom report as:
  • P CMAX, f, c (i) , P O_PUSCH, b, f, c (j) , ⁇ b, f, c (j) , PL b, f, c (q d ) , ⁇ TF, b, f, c (i) and f b, f, c (i, l) are parameters defined for PUSCH transmission on UE transmit beam x
  • P CMAX, f, c (i) is the configured maximum output power on UE transmit beam x by considering the P-MPR for the UE transmit beam x.
  • the UE can also determine power headroom report based on a reference PUSCH transmission for UE transmit beam x.
  • the UE may consider the P-MPR that the UE decides for UE transmit beam x. If the UE determines that a Type 1 power headroom report of UE transmit beam x for an activated serving cell is based on a reference PUSCH transmission then, for PUSCH transmission occasion i on active uplink BWP b of carrier f of serving cell c transmitted from UE transmit beam x, the UE computes the Type 1 power headroom report as
  • the power headroom report is a Type 3 power headroom report based on an actual SRS transmission or a reference SRS transmission.
  • a UE can determine a Type 3 power headroom report for a UE transmit beam based on SRS transmission. If a UE determines that a Type 3 power headroom report for UE transmit beam x for an activated serving cell is based on an actual SRS transmission on UE transmit beam x then, for SRS transmission occasion i on active uplink BWP b of carrier f of serving cell c that is transmitted from UE transmit beam x and if the UE is not configured for PUSCH transmission on carrier f of serving cell c, the UE computes a Type 3 power headroom report as
  • P CMAX, f, c (i) , P O_SRS, b, f, c (q s ) , M SRS, b, f, c (i) , ⁇ SRS, b, f, c (q s ) , PL b, f, c (q d ) and h b, f, c (i) are power control parameters for the SRS transmission and the value P CMAX, f, c (i) takes into account the P-MPR value determined for the UE transmit beam x.
  • a Type 3 power headroom report for UE transmit beam x for an activated serving cell is based on a reference SRS transmission then, for SRS transmission occasion i on uplink BWP b of carrier f of serving cell c, and if the UE is not configured for PUSCH transmission on uplink BWP b of carrier f of serving cell c, the UE computes a Type 3 power headroom report as
  • the indication information in addition to the power headroom report for the transmit beam, the indication information further includes any one or more of: an identity of the transmit beam, a configured maximum output power that is used to calculate the power headroom, or a P-MPR value for the transmit beam.
  • the indication information can be sent by the terminal device through a MAC CE signaling.
  • a UE can report UE transmit beam-specific power headroom report through a MAC control element message.
  • the UE can report one or more of the following information:
  • An Id of UE beam to identify one UE transmit beam can be an Id of a downlink CSI-RS resource. It can be an index of a SS/PBCH block. It can be an Id of an SRS resource. It can be an Id of a TCI state. It can be an Id of a Tx beam. It can be an Id of an CORESET. It can be an Id of a PUCCH resource.
  • Power headroom report value can be a UE beam-specific Type 1 power headroom report.
  • it can be a UE beam-specific Type 3 power headroom report.
  • a configured maximum output power that is used to calculate the power headroom is used to calculate the power headroom.
  • a value of P-MPR for the UE beam is a value of P-MPR for the UE beam.
  • the UE can report multiple power headroom reports for one UE transmit beam. Then in the MAC CE message, the UE reports one Id to identify one UE transmit beam for which the UE reports power headroom, and/or one P-MPR value of that UE transmit beam and one or more power headroom reports.
  • a UE can be requested to measure a set of CSI-RS resources or SS/PBCH blocks and report the measurement of one or more selected CSI-RS resources or SS/PBCH blocks.
  • the UE can be requested to report L1-RSRP measurement of one or more CSI-RS resources or SS/PBCH blocks along with an indicator of the CSI-RS resource or SS/PBCH block.
  • the UE can be requested to report L1-SINR measurement of one or more CSI-RS resources or SS/PBCH blocks along with the indicator of the CSI-RS resource or SS/PBCH block.
  • the UE For each reported CSI-RS resource or SS/PBCH block, the UE can be requested to report one P-MPR value associated with the CSI-RS resource or SS/PBCH block.
  • a UE report an indicator for a first CSI-RS resource and a L1-RSRP measurement associated with the first CSI-RS resource.
  • the UE can also report a first P-MPR value that is associated with the first CSI-RS resource.
  • the first P-MPR value can be a P-MPR value that the UE determines on the transmit beam direction that corresponds to the receive beam used to measure the first CSI-RS resource.
  • the indication information includes a measurement result of Layer 1 reference signal received power (L1-RSRP) or Layer 1 signal to interference noise ratio (L1-SINR) of a downlink CSI-RS resource or SS/PBCH block, and further includes a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
  • the indication information may further include an indicator that identifies the CSI-RS resource or SS/PBCH block.
  • a UE can be configured to measure L1-RSRP (or L1-SINR) of a set of N CSI-RS resources or SS/PBCH blocks.
  • the UE can be configured to report the information of K CSI-RS resources or SS/PBCH blocks which are selected from those N CSI-RS resources or SS/PBCH blocks.
  • the UE can be requested to report one or more of the following information:
  • the UE For each reported CSI-RS resource or SS/PBCH block, the UE reports an indicator that identifies the CSI-RS resource or SS/PBCH block.
  • a measurement result of L1-RSRP (or L1-SINR) .
  • a P-MPR value associated with the reported CSI-RS resource or SS/PBCH block is a P-MPR value associated with the reported CSI-RS resource or SS/PBCH block.
  • the indication information includes a measurement result of L1-RSRP or L1-SINR of a downlink CSI-RS resource or SS/PBCH block, and further includes a beam quality value that is calculated by using the measurement result of L1-RSRP or L1-SINR and a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
  • the indication information may further include an indicator that identifies the CSI-RS resource or SS/PBCH block.
  • a UE can be configured to measure L1-RSRP (or L1-SINR) of a set of N CSI-RS resources or SS/PBCH blocks.
  • the UE can be configured to report the information of K CSI-RS resources or SS/PBCH blocks which are selected from those N CSI-RS resources or SS/PBCH blocks.
  • the UE can be requested to report one or more of the following information:
  • the UE For each reported CSI-RS resource or SS/PBCH block, the UE reports an indicator that identifies the CSI-RS resource or SS/PBCH block.
  • the P-MPR value can be a dB value.
  • the L1-RSRP or L1-SINR measurement result can be a dB value.
  • the indication information includes a measurement result of L1-RSRP or L1-SINR of a downlink CSI-RS resource or SS/PBCH block, and further includes a power headroom report that is associated with the CSI-RS resource or SS/PBCH block, wherein the power headroom report is calculated based on a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
  • the power headroom report may be a Type 1 power headroom report calculated on a reference PUSCH or a Type 3 power headroom report calculated on a reference SRS resource.
  • the indication information may further include an indicator that identifies the CSI-RS resource or SS/PBCH block.
  • a UE can be configured to measure L1-RSRP (or L1-SINR) of a set of N CSI-RS resources or SS/PBCH blocks.
  • the UE can be configured to report the information of K CSI-RS resources or SS/PBCH blocks which are selected from those N CSI-RS resources or SS/PBCH blocks.
  • the UE can be requested to report one or more of the following information:
  • the UE For each reported CSI-RS resource or SS/PBCH block, the UE reports an indicator that identifies the CSI-RS resource or SS/PBCH block.
  • a measurement result of L1-RSRP (or L1-SINR) .
  • a power headroom report that is associated with the reported CSI-RS resource or SS/PBCH block.
  • the power headroom report may be computed based on path loss calculated from the L1-RSRP measurement of the reported CSI-RS resource or SS/PBCH block.
  • the power headroom report may be computed based on the P-MPR value associated with the reported CSI-RS resource or SS/PBCH block.
  • a power headroom report associated a first CSI-RS resource can be a Type 1 power headroom report calculated on a reference PUSCH.
  • the UE computes the Type 1 power headroom report as
  • a power headroom report associated a first CSI-RS resource can be a Type 3 power headroom report calculated on a reference SRS resource.
  • the UE computes the Type 3 power headroom report as:
  • a UE can determine a transmit beam-specific P-MPR value and the UE can report beam-specific MPR value for each transmit beam.
  • the UE can use a MAC CE to report the beam-specific MPR value for each transmit beam.
  • the UE can report one beam-specific MPR value and one time fraction value that the UE can use that transmit beam for uplink transmission.
  • One transmit beam can be indicated through an Id of a downlink CSI-RS resource, an index of an SS/PBCH block, an Id of a TCI state or an Id of an SRS resource.
  • the UE can determine a beam-specific power headroom report for one particular transmit beam.
  • the UE can report the beam-specific power headroom report for one transmit beam through a MAC CE message.
  • the UE can report an Id to identify a transmit beam, a beam-specific power headroom report, a beam-specific P-MPR value and/or a configured maximum output power value of the transmit beam used to determine the power headroom report.
  • the UE can be configured to measure a set of CSI-RS resources or SS/PBCH blocks and then report beam measurement result (for example L1-RSRP or L1-SINR) of one or more CSI-RS resources or SS/PBCH blocks, and the UE can be requested to report information of a beam-specific P-MPR value associated with the reported CSI-RS resource or SS/PBCH block.
  • beam measurement result for example L1-RSRP or L1-SINR
  • FIG. 8 shows a schematic diagram of a method for receiving power reduction information according to an implementation of the present disclosure.
  • the method may include act 810.
  • a network device receives indication information from a terminal device, wherein the indication information is used for indicating power reduction of a transmit beam of the terminal device.
  • the indication information includes any one or more of: a power management maximum power reduction (P-MPR) value for the transmit beam, a revised maximum output power for the transmit beam, a power offset value with respect to a configured maximum output power for the transmit beam, or a power headroom report for the transmit beam.
  • P-MPR power management maximum power reduction
  • the indication information further includes an identity of the transmit beam.
  • the identity of the transmit beam is any one of: an identity of a downlink channel state information reference signal (CSI-RS) resource, an index of a synchronization signal/physical broadcast channel (SS/PBCH) block, an identity of a sounding reference signal (SRS) resource, an identity of a transmission configuration indicator (TCI) state, an identity of a control resource set (CORESET) , or an identity of a physical uplink control channel (PUCCH) resource.
  • CSI-RS downlink channel state information reference signal
  • SS/PBCH synchronization signal/physical broadcast channel
  • SRS sounding reference signal
  • TCI transmission configuration indicator
  • CORESET control resource set
  • PUCCH physical uplink control channel
  • the indication information further includes a time fraction value indicating when the transmit beam is used for uplink transmission.
  • the network device receives the indication information through a media access control (MAC) control element (CE) signaling or a PUCCH transmission.
  • MAC media access control
  • CE control element
  • the MAC CE includes a power offset value with respect to a configured maximum output power for the transmit beam and an identity of the transmit beam.
  • the MAC CE includes a P-MPR value for the transmit beam and an identity of the transmit beam.
  • the MAC CE includes P-MPR values and corresponding configured maximum output powers for a plurality of transmit beams of the terminal device.
  • the MAC CE includes P-MPR values for a plurality of transmit beams of the terminal device.
  • the indication information includes a P-MPR value for the transmit beam
  • the network device receives the indication information from the terminal device when the P-MPR value for the transmit beam is above a threshold.
  • the indication information includes a power headroom report for the transmit beam, and the power headroom is determined based on a P-MPR value for the transmit beam.
  • the power headroom report is a Type 1 power headroom report based on an actual physical uplink shared channel (PUSCH) transmission or a reference PUSCH transmission.
  • PUSCH physical uplink shared channel
  • the power headroom report is a Type 3 power headroom report based on an actual SRS transmission or a reference SRS transmission.
  • the indication information further includes any one or more of: an identity of the transmit beam, a configured maximum output power that is used to calculate the power headroom, or a P-MPR value for the transmit beam.
  • the network device receives the indication information through a MAC CE signaling.
  • the indication information includes a measurement result of Layer 1 reference signal received power (L1-RSRP) or Layer 1 signal to interference noise ratio (L1-SINR) of a downlink CSI-RS resource or SS/PBCH block, and further includes a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
  • L1-RSRP Layer 1 reference signal received power
  • L1-SINR Layer 1 signal to interference noise ratio
  • the indication information includes a measurement result of L1-RSRP or L1-SINR of a downlink CSI-RS resource or SS/PBCH block, and further includes a beam quality value that is calculated by using the measurement result of L1-RSRP or L1-SINR and a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
  • the indication information includes a measurement result of L1-RSRP or L1-SINRof a downlink CSI-RS resource or SS/PBCH block, and further includes a power headroom report that is associated with the CSI-RS resource or SS/PBCH block, wherein the power headroom report is calculated based on a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
  • the power headroom report is a Type 1 power headroom report calculated on a reference PUSCH or a Type 3 power headroom report calculated on a reference SRS resource.
  • the indication information further includes an indicator that identifies the CSI-RS resource or SS/PBCH block.
  • FIG. 8 corresponds to the method of FIG. 3, and relevant implementation details and examples of the method of FIG. 8 are similar as those described above for the method of FIG. 3, and will not be repeated here for conciseness of the present disclosure.
  • FIG. 9 shows a schematic diagram of a terminal device 900 according to an implementation of the present disclosure.
  • the terminal device 900 may include a transmitting module 910.
  • the transmitting module 910 is configured to send indication information to a network device, wherein the indication information is used for indicating power reduction of a transmit beam of the terminal device 900.
  • the indication information includes any one or more of: a power management maximum power reduction (P-MPR) value for the transmit beam, a revised maximum output power for the transmit beam, a power offset value with respect to a configured maximum output power for the transmit beam, or a power headroom report for the transmit beam.
  • P-MPR power management maximum power reduction
  • the indication information further includes an identity of the transmit beam.
  • the identity of the transmit beam is any one of: an identity of a downlink channel state information reference signal (CSI-RS) resource, an index of a synchronization signal/physical broadcast channel (SS/PBCH) block, an identity of a sounding reference signal (SRS) resource, an identity of a transmission configuration indicator (TCI) state, an identity of a control resource set (CORESET) , or an identity of a physical uplink control channel (PUCCH) resource.
  • CSI-RS downlink channel state information reference signal
  • SS/PBCH synchronization signal/physical broadcast channel
  • SRS sounding reference signal
  • TCI transmission configuration indicator
  • CORESET control resource set
  • PUCCH physical uplink control channel
  • the indication information further includes a time fraction value indicating when the transmit beam is used for uplink transmission.
  • the transmitting module 910 is configured to send the indication information through a media access control (MAC) control element (CE) signaling or a PUCCH transmission.
  • MAC media access control
  • CE control element
  • the MAC CE includes a power offset value with respect to a configured maximum output power for the transmit beam and an identity of the transmit beam.
  • the MAC CE includes a P-MPR value for the transmit beam and an identity of the transmit beam.
  • the MAC CE includes P-MPR values and corresponding configured maximum output powers for a plurality of transmit beams of the terminal device 900.
  • the MAC CE includes P-MPR values for a plurality of transmit beams of the terminal device 900.
  • the indication information includes a P-MPR value for the transmit beam
  • the transmitting module 910 is configured to send the indication information to the network device when the P-MPR value for the transmit beam is above a threshold.
  • the indication information includes a power headroom report for the transmit beam, and the power headroom is determined based on a P-MPR value for the transmit beam.
  • the power headroom report is a Type 1 power headroom report based on an actual physical uplink shared channel (PUSCH) transmission or a reference PUSCH transmission.
  • PUSCH physical uplink shared channel
  • the power headroom report is a Type 3 power headroom report based on an actual SRS transmission or a reference SRS transmission.
  • the indication information further includes any one or more of: an identity of the transmit beam, a configured maximum output power that is used to calculate the power headroom, or a P-MPR value for the transmit beam.
  • the transmitting module 910 is configured to send the indication information through a MAC CE signaling.
  • the indication information includes a measurement result of Layer 1 reference signal received power (L1-RSRP) or Layer 1 signal to interference noise ratio (L1-SINR) of a downlink CSI-RS resource or SS/PBCH block, and further includes a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
  • L1-RSRP Layer 1 reference signal received power
  • L1-SINR Layer 1 signal to interference noise ratio
  • the indication information includes a measurement result of L1-RSRP or L1-SINR of a downlink CSI-RS resource or SS/PBCH block, and further includes a beam quality value that is calculated by using the measurement result of L1-RSRP or L1-SINR and a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
  • the indication information includes a measurement result of L1-RSRP or L1-SINR of a downlink CSI-RS resource or SS/PBCH block, and further includes a power headroom report that is associated with the CSI-RS resource or SS/PBCH block, wherein the power headroom report is calculated based on a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
  • the power headroom report is a Type 1 power headroom report calculated on a reference PUSCH or a Type 3 power headroom report calculated on a reference SRS resource.
  • the indication information further includes an indicator that identifies the CSI-RS resource or SS/PBCH block.
  • the terminal device 900 in the above exemplary implementations can be the terminal device in the various implementations and examples relating to the method of FIG. 3, and the operations and/or functions of the terminal device 900 are respectively for the purpose of implementing corresponding acts of the terminal device in the various method implementations relating to FIG. 3, and accordingly, relevant details and examples can be similar as those described above for the method implementations relating to FIG. 3 and will not be repeated here for conciseness of the present disclosure.
  • FIG. 10 shows a schematic diagram of a network device 1000 according to an implementation of the present disclosure.
  • the network device 1000 may include a receiving module 1010.
  • the receiving module 1010 is configured to receive indication information from a terminal device, wherein the indication information is used for indicating power reduction of a transmit beam of the terminal device.
  • the indication information includes any one or more of: a power management maximum power reduction (P-MPR) value for the transmit beam, a revised maximum output power for the transmit beam, a power offset value with respect to a configured maximum output power for the transmit beam, or a power headroom report for the transmit beam.
  • P-MPR power management maximum power reduction
  • the indication information further includes an identity of the transmit beam.
  • the identity of the transmit beam is any one of: an identity of a downlink channel state information reference signal (CSI-RS) resource, an index of a synchronization signal/physical broadcast channel (SS/PBCH) block, an identity of a sounding reference signal (SRS) resource, an identity of a transmission configuration indicator (TCI) state, an identity of a control resource set (CORESET) , or an identity of a physical uplink control channel (PUCCH) resource.
  • CSI-RS downlink channel state information reference signal
  • SS/PBCH synchronization signal/physical broadcast channel
  • SRS sounding reference signal
  • TCI transmission configuration indicator
  • CORESET control resource set
  • PUCCH physical uplink control channel
  • the indication information further includes a time fraction value indicating when the transmit beam is used for uplink transmission.
  • the receiving module 1010 is configured to receive the indication information through a media access control (MAC) control element (CE) signaling or a PUCCH transmission.
  • MAC media access control
  • CE control element
  • the MAC CE includes a power offset value with respect to a configured maximum output power for the transmit beam and an identity of the transmit beam.
  • the MAC CE includes a P-MPR value for the transmit beam and an identity of the transmit beam.
  • the MAC CE includes P-MPR values and corresponding configured maximum output powers for a plurality of transmit beams of the terminal device.
  • the MAC CE includes P-MPR values for a plurality of transmit beams of the terminal device.
  • the indication information includes a P-MPR value for the transmit beam
  • the receiving module 1010 is configured to receive the indication information from the terminal device when the P-MPR value for the transmit beam is above a threshold.
  • the indication information includes a power headroom report for the transmit beam, and the power headroom is determined based on a P-MPR value for the transmit beam.
  • the power headroom report is a Type 1 power headroom report based on an actual physical uplink shared channel (PUSCH) transmission or a reference PUSCH transmission.
  • PUSCH physical uplink shared channel
  • the power headroom report is a Type 3 power headroom report based on an actual SRS transmission or a reference SRS transmission.
  • the indication information further includes any one or more of: an identity of the transmit beam, a configured maximum output power that is used to calculate the power headroom, or a P-MPR value for the transmit beam.
  • the receiving module 1010 is configured to receive the indication information through a MAC CE signaling.
  • the indication information includes a measurement result of Layer 1 reference signal received power (L1-RSRP) or Layer 1 signal to interference noise ratio (L1-SINR) of a downlink CSI-RS resource or SS/PBCH block, and further includes a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
  • L1-RSRP Layer 1 reference signal received power
  • L1-SINR Layer 1 signal to interference noise ratio
  • the indication information includes a measurement result of L1-RSRP or L1-SINR of a downlink CSI-RS resource or SS/PBCH block, and further includes a beam quality value that is calculated by using the measurement result of L1-RSRP or L1-SINR and a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
  • the indication information includes a measurement result of L1-RSRP or L1-SINRof a downlink CSI-RS resource or SS/PBCH block, and further includes a power headroom report that is associated with the CSI-RS resource or SS/PBCH block, wherein the power headroom report is calculated based on a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
  • the power headroom report is a Type 1 power headroom report calculated on a reference PUSCH or a Type 3 power headroom report calculated on a reference SRS resource.
  • the indication information further includes an indicator that identifies the CSI-RS resource or SS/PBCH block.
  • the network device 1000 in the above exemplary implementations can be the network device in the various implementations and examples relating to the methods of FIG. 3 and FIG. 8, and the operations and/or functions of the network device 1000 are respectively for the purpose of implementing corresponding acts of the network device in the various method implementations relating to FIG. 3 and FIG. 8, and accordingly, relevant details and examples can be similar as those described above for the method implementations relating to FIG. 3 and FIG. 8 and will not be repeated here for conciseness of the present disclosure.
  • FIG. 11 shows a schematic diagram of structure of a terminal device 1100 according to an exemplary implementation of the present disclosure.
  • the terminal device 1100 may include a memory 1110, a transceiver 1120, and a processor 1130.
  • the memory 1110 may be configured to store data and/or information.
  • the memory 1110 may be further configured to store instructions executable by the processor 1130, and the processor 1130 may be configured to execute the instructions stored in the memory 1110 to control the transceiver 1120 to receive and/or send signals.
  • the transceiver 1120 may be configured to implement the functions/operations of the aforementioned transmitting module 910.
  • the terminal device 1100 may further include a bus system 1140, which may be configured to connect the components, such as the memory 1110, the transceiver 1120, and the processor 1130, of the terminal device 1100.
  • the memory 1110 may include a read only memory and a random access memory, and may provide instructions and data to the processor 1130.
  • a portion of the memory 1110 may further include a non-volatile random access memory.
  • the memory 1110 may further store device type information and/or other information.
  • the processor 1130 may be a central processing unit (CPU) or other general-purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or a transistor logic device, or a discrete hardware component, etc.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the bus system 1140 may include, in addition to a data bus, a power bus, a control bus, a status signal bus, etc. However, for the sake of clarity, various buses are illustrated as the bus system 1140 in FIG. 11.
  • the various acts of the terminal device in the exemplary implementations relating to the method of FIG. 3 may be implemented by instructions of software or integrated logic circuits of hardware or combination of software and hardware.
  • the software modules may be located in a typical storage medium in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, a register, etc.
  • the storage medium may be located in the memory 1110, and the processor 1130 may read the information in the memory 1110 and control the transceiver 1120 to send and/or receive signals.
  • the terminal device 1100 can be the terminal device in the various implementations and examples relating to the method of FIG. 3.
  • the terminal device 1100 may implement corresponding acts of the terminal device in the various method implementations relating to FIG. 3, and accordingly, relevant details and examples can be similar as those described above for the method implementations relating to FIG. 3 and will not be repeated here for conciseness of the present disclosure.
  • FIG. 12 shows a schematic diagram of structure of a network device 1200 according to an exemplary implementation of the present disclosure.
  • the network device 1200 may include a memory 1210, a transceiver 1220, and a processor 1230.
  • the memory 1210 may be configured to store instructions executable by the processor 1230, and the processor 1230 may be configured to execute the instructions stored in the memory 1210 to control the transceiver 1220 to receive and/or send signals.
  • the transceiver 1220 may be configured to implement the functions/operations of the aforementioned receiving module 1010. Functions/operations of the receiving module 1010 are already described in the above and will not be repeated here for conciseness of the present disclosure.
  • the network device 1200 may further include a bus system 1240, which may be configured to connect the components, such as the memory 1210, the transceiver 1220, and the processor 1230, of the network device 1200.
  • the memory 1210 may include a read only memory and a random access memory, and may provide instructions and data to the processor 1230.
  • a portion of the memory 1210 may further include a non-volatile random access memory.
  • the memory 1210 may further store device type information and/or other information.
  • the processor 1230 may be a central processing unit (CPU) or other general-purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or a transistor logic device, or a discrete hardware component, etc.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the bus system 1240 may include, in addition to a data bus, a power bus, a control bus, a status signal bus, etc. However, for the sake of clarity, various buses are illustrated as the bus system 1240 in FIG. 12.
  • the various acts of the network device in the exemplary implementations relating to the method of FIG. 8 may be implemented by instructions of software or integrated logic circuits of hardware or combination of software and hardware.
  • the software modules may be located in a typical storage medium in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, a register, etc.
  • the storage medium may be located in the memory 1210, and the processor 1230 may read the information in the memory 1210 and control the transceiver 1220 to send and/or receive signals.
  • the network device 1200 can be the network device in the various implementations and examples relating to the methods of FIG. 3 and FIG. 8.
  • the network device 1200 may implement corresponding acts of the network device in the various method implementations relating to FIG. 3 and FIG. 8, and accordingly, relevant details and examples can be similar as those described above for the method implementations relating to FIG. 3 and FIG. 8 and will not be repeated here for conciseness of the present disclosure.
  • the computer readable storage medium may store instructions that are executable by a computer or processor to implement any of the aforementioned method for reporting or receiving power reduction information and/or any exemplary implementation thereof.
  • the disclosed methods and devices may be implemented in other ways.
  • the device implementations described above are merely illustrative, the division of modules is only a logical function division, and there may be other ways of division in actual implementations.
  • multiple modules or components may be combined or integrated into another system, or some features may be ignored or not executed.
  • the coupling or communication connection between the elements shown or discussed may be a direct coupling or indirect coupling, or communication connection through some interface, device or unit, or may be an electrical, mechanical or other form of connection.
  • the components described as separate components may be or may be not physically separated, and the component may be or may be not a physical component, i.e., it may be located in one place or may be distributed over multiple network units. Some or all of the elements may be selected according to actual needs to achieve the purpose of the implementations of the present disclosure.
  • various units in various implementations of the present disclosure may be integrated in one processing module, or the various units may be physically separate, or two or more units may be integrated in one module.
  • the units may be implemented in the form of hardware or software functional modules.
  • the units may be stored in a computer readable storage medium if they are implemented in the form of software function modules and sold or used as an independent product. Based on such understanding, the technical solutions of the present disclosure may be embodied in the form of a software product, which is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, a terminal device, or a network device, etc. ) to perform all or part of the acts of the method in various implementations of the present disclosure.
  • the storage media may include a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk, an optical disk, or other media capable of storing program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods and devices for reporting and receiving power reduction information are provided. A method for reporting power reduction information includes: a terminal device sends indication information to a network device, and the indication information is used for indicating power reduction of a transmit beam of the terminal device.

Description

Method and Device for Power Reduction Information Transmission Technical Field
The present disclosure relates to the communication field, and more particularly, to methods and devices for reporting and receiving power reduction information.
Background
A New Radio (NR) /5G system generally supports multi-beam operation on downlink and uplink physical channels and reference signals. The use case for supporting multi-beam operation mainly is for deployment of a high-frequency band system, where high-gain analog beamforming is used to combat large path loss.
The 3GPP standards: 3GPP TS 38.211 V15.5.0: "NR; Physical channels and modulation" , 3GPP TS 38.212 V15.5.0: "NR; Multiplexing and channel coding" , 3GPP TS 38.213 V15.5.0: "NR; Physical layer procedures for control" , 3GPP TS 38.214 V15.5.0: "NR; Physical layer procedures for data" , 3GPP TS 38.215 V15.5.0: "NR; Physical layer measurements" , 3GPP TS 38.321 V15.5.0: "NR; Medium Access Control (MAC) protocol specification" , and 3GPP TS 38.331 V15.5.0: "NR; Radio Resource Control (RRC) protocol specification" disclose relevant background technologies.
Summary
Implementations of the present disclosure provide methods and devices for reporting and receiving power reduction information.
In an aspect, a method for reporting power reduction information is provided. The method includes: sending, by a terminal device, indication information to a network device; wherein the indication information is used for indicating power reduction of a transmit beam of the terminal device.
In another aspect, a method for receiving power reduction information is provided. The method includes: receiving, by a network device, indication information from a terminal device; wherein the indication information is used for indicating power reduction of a transmit beam of the terminal device.
In yet another aspect, a terminal device is provided. The terminal device includes a transmitting module configured to send indication information to a network device; wherein the indication information is used for indicating power reduction of a transmit beam of the terminal device.
In yet another aspect, a network device is provided. The network device includes a receiving module configured to receive indication information from a terminal device; wherein the indication information is used for indicating power reduction of a transmit beam of the terminal device.
A better understanding of the nature and advantages of implementations of the present disclosure may be gained with reference to the following detailed description and the accompanying drawings.
Brief Description of Drawings
FIG. 1 is a schematic diagram of an exemplary application scenario where an implementation of the present disclosure may be applied.
FIG. 2 is a schematic diagram of an example of multi-beam operation in communication between a terminal device and a network device.
FIG. 3 is a schematic diagram of a method for reporting power reduction information according to an implementation of the present disclosure.
FIG. 4 is a schematic diagram of structure of a MAC control element according to an exemplary implementation of the present disclosure.
FIG. 5 is a schematic diagram of structure of a MAC control element according to another exemplary implementation of the present disclosure.
FIG. 6 is a schematic diagram of structure of a MAC control element according to yet another exemplary implementation of the present disclosure.
FIG. 7 is a schematic diagram of structure of a MAC control element according to yet another exemplary implementation of the present disclosure.
FIG. 8 is a schematic diagram of a method for receiving power reduction information according to an implementation of the present disclosure.
FIG. 9 is a schematic diagram of a terminal device according to an implementation of the present disclosure.
FIG. 10 is a schematic diagram of a network device according to an implementation of the present disclosure.
FIG. 11 is a schematic diagram of structure of a terminal device according to an exemplary implementation of the present disclosure.
FIG. 12 is a schematic diagram of structure of a network device according to an exemplary implementation of the present disclosure.
Detailed Description
The technical solutions of exemplary implementations of the present disclosure will be described below with reference to the accompanying drawings. It should be understood that the exemplary implementations are intended for better understanding of the technical solutions of the present disclosure, rather than limiting the scope of the application, and skilled artisans would understand that the exemplary implementations and features disclosed herein can be combined according to actual needs.
The acts shown in the flowchart of the accompanying drawings may be implemented at least in part by a computer system storing a set of computer-executable instructions. In addition, although a logical sequence is shown in the flowchart, in some cases the acts shown or described may be performed in a different sequence, or some acts may be not performed at all.
The technical solutions of the implementations of the present disclosure may be applied to various communication systems, such as a Global System of Mobile communication (GSM) system, a Code Division Multiple Access (CDMA) system, a Wideband Code Division Multiple Access (WCDMA) system, a General Packet Radio Service (GPRS) system, a long term evolution (LTE) system, a LTE Frequency Division Duplex (FDD) system, a LTE Time Division Duplex (TDD) system, a Universal Mobile Telecommunication System (UMTS) system, a Worldwide Interoperability for Microwave Access (WiMAX) communication system, a New Radio (NR) system or fifth-generation (5G) system, or a further communication system.
A terminal device in implementations of the present disclosure may refer to user equipment (UE) , an access terminal, a subscriber unit, a subscriber station, a mobile station, a rover station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device. The access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) , a handheld device with a wireless communication function, a computing device or other processing devices connected to a wireless modem, an on-board device, a wearable device, a terminal device in a 5G network, or a terminal device in an evolved public land mobile network (PLMN) , etc., which are not restricted in the implementations of the present disclosure.
A network device (e.g., a base station) in implementations of the present disclosure may be a device for communicating with a terminal device, and the network device may be a Base Transceiver Station (BTS) in the GSM or CDMA system, a NodeB (NB) in the WCDMA system, an evolved base station (eNB or eNodeB) in the LTE system, or a wireless controller in a Cloud Radio Access Network (CRAN) scenario, or the network device may be a relay station, an access point, an on-board device, a wearable device, a network device (e.g., gNB) in a 5G network, or a network device in an evolved PLMN, etc., which are not restricted in the implementations of the present invention.
FIG. 1 shows a schematic diagram of an exemplary application scenario where an implementation of the present disclosure may be applied. A communication system shown in FIG. 1 may include a terminal device 10 and a network device 20. The network device 20 is configured to provide a communication service for the terminal device 10 and is connected to a core network (not shown) . The terminal device 10 accesses  the network by searching for a synchronization signal, or a broadcast signal, etc., transmitted by the network device 20 to communicate with the network. Arrows shown in FIG. 1 may indicate uplink/downlink transmission through cellular links between the terminal device 10 and the network device 20.
In some exemplary implementations of the present disclosure, a terminal device is described as a UE as an example, but skilled artisans should understand that the terminal device in the present disclosure is not limited to the UE, but can be other types of terminal device as mentioned above.
In an NR/5G system, the following methods may be used for multi-beam operation: beam measurement and reporting, beam indication and beam switch. In downlink beam measurement and reporting, a UE is configured to measure multiple channel state information reference signal (CSI-RS) resources or synchronization signal/physical broadcast channel (SS/PBCH) blocks. Each CSI-RS resource or SS/PBCH block can represent one gNB transmit (Tx) beam. The UE measure those CSI-RS resources or SS/PBCH blocks and then report up to 4 CSI-RS resources or SS/PBCH blocks selected from those measured reference signal resources. The beam measurement and reporting are used to assist the gNB to select a Tx beam for physical downlink control channel (PDCCH) and/or physical downlink shared channel (PDSCH) transmission. For a UE with beam correspondence capability, the downlink beam measurement and reporting can also help the gNB to select a Tx beam of the UE for PUCCH and/or PUSCH transmission.
The network can use a downlink reference signal (RS) identity (Id) or uplink sounding reference signal (SRS) resource Id to indicate a Tx beam for PUSCH and/or PUCCH transmission. A UE with beam correspondence capability can derive a Tx beam based on a receive (Rx) beam or derive a Rx beam based on a Tx beam. Thus, for PUSCH and/or PUCCH transmission from a UE with beam correspondence capability, the gNB can configure one downlink CSI-RS resource or one SS/PBCH block as the information for a Tx beam. The UE derives the Rx beam used to receive the indicated downlink CSI-RS resource or SS/PBCH block and then derives the corresponding Tx beam according the correspondence between Rx beam and Tx beam of the UE. To support this, downlink beam measurement and reporting specified in release 15 can be used. The gNB first configures the UE to measure a set of N 1 CSI-RS resources or SS/PBCH blocks. Each CSI-RS resource or SS/PBCH block can be considered as one gNB Tx beam. The UE measures the Layer 1 reference signal received power (L1-RSRP) of each CSI-RS resource or SS/PBCH block with paired UE Rx beam and then can select one or more CSI-RS resources or SS/PBCH blocks with the largest L1-RSRP. The UE reports the selected CSI-RS resources or SS/PBCH blocks along with the L1-RSRP to the gNB. The gNB configures one CSI-RS resource or SS/PBCH block as the spatial relation source for a PUSCH and/or PUCCH. To transmit the PUSCH and/or PUCCH, the UE uses a Tx beam that corresponds to the UE Rx beam used to receive the CSI-RS resource or SS/PBCH block that is configured as the spatial relation source.
For a UE without beam correspondence capability, the gNB configures a set of N 2 SRS resources for uplink beam management. The UE can sweep UE Tx beams over those N 2 SRS resources and the gNB measures those N 2 SRS resources to select the ‘best’ UE Tx beam for uplink transmission. The gNB can select the SRS resource with largest L1-RSRP. The gNB configures an SRS resource as the spatial relation source for a PUSCH and/or PUCCH. Then the UE uses the Tx beam applied to the SRS resource configured as the spatial relation source to transmit the PUSCH and/or PUCCH.
In an NR system, a UE is allowed to set its configured maximum output power. The maximum output power can be set within the following bounds as specified in 3GPP TS 38.104: P CMAX_L, f, c ≤ P CMAX, f, c ≤P CMAX_H, f, c with P CMAX_L, f, c = MIN {P EMAX, c–ΔT C, c, (P PowerClass –ΔP PowerClass) –MAX (MAX (MPR c, A-MPR c) +ΔT IB, c + ΔT C, c + ΔT RxSRS, P-MPR c) } and P CMAX_L, f, c = MIN {P EMAX, c–ΔT C, c, (P PowerClass –ΔP PowerClass) –MAX(MAX (MPR c, A-MPR c) + ΔT IB, c + ΔT C, c + ΔT RxSRS, P-MPR c) } , where P-MPR c is the allowed maximum output power reduction for ensuring compliance with applicable electromagnetic energy absorption requirements.
One major drawback of the current method of indicating Tx beam for uplink transmission (PUCCH, SRS and/or PUSCH) is that the potential maximum transmit power reduction on some transmit beam directions is not taken into account and the consequence is that an Tx beam direction with large power backoff value might be chosen by the system for uplink transmission and thus the quality of uplink transmission is impaired. In the worst case, the radio link could be totally impaired due to poor uplink quality caused by selecting a wrong Tx beam direction with large power reduction. To resolve this issue, the maximum power reduction on some particular transmission beam directions may be taken into account in beam management, especially beam indication for uplink transmission (PUCCH, SRS and/or PUSCH) .  Furthermore, only UE-specific power management maximum power reduction (P-MPR) reporting is supported in the current method, which is not sufficient to address an issue in a multi-beam based FR2 system. In an FR2 system, it may be needed to impose different power backoff values on different beam directions or different panels due to highly beamformed transmission in the FR2 system. Using only one UE-specific P-MPR on all the transmit beam directions for the FR2 system would probably impair system performance.
In order to overcome the drawbacks of the current method, the present disclosure provides methods and devices for reporting and receiving power reduction information.
Consider an example of a UE with multiple beams shown in FIG. 2. UE-A is equipped with two panels. On each panel, the UE-A can formulate one or more beam directions for transmission. According to regulations, the maximum permissible exposure of transmit signal energy is limited. For example, on the transmit beam direction pointing to human body, the UE may reduce the transmit power or reduce the transmission time duration so that the radio signal energy exposed to the human body does not go beyond some limit. The UE-A can take various different method to adjust the transmit power to satisfy the regulatory requirement.
In one example, the UE can impose a power backoff value on all the transmit panels and all the transmit beams. In this example, the UE can consider the transmit beam direction that points to human body and requires the largest power backoff value and then apply one same power backoff value on all the panels and all the beam directions.
In one example, the UE can impose a power backoff value on each panel. In other words, the UE can impose a panel-specific power backoff on each panel. In this example, the UE can consider the transmit beam on each panel and the UE can calculate one power backoff value for each panel by considering the possible transmission on any transmit beams on that panel.
In one example, the UE can impose a power backoff value on each transmit beam. In other words, the UE can impose a beam-specific power backoff on each transmit beam. In this example, the UE can determine a power backoff value for each individual transmit beam based on the direction of that transmit beam.
In one example, the UE can limit the transmission time duration so that the total transmission energy within a particular time duration is limited by some threshold imposed by the regulation.
About the examples described above, the UE can choose one method according to the UE capability, for example, the UE capability of detecting the location of human body and determining a power backoff value. For example, if a UE is able to detect whether each transmit beam direction points to human body, the UE can apply power backoff on each individual transmit beam direction and the UE can determine a power backoff value for each individual transmit beam direction.
FIG. 3 is a schematic diagram of a method for reporting power reduction information according to an implementation of the present disclosure. As shown in FIG. 3, the method includes act 310. In act 310, a terminal device sends indication information to a network device. Herein, the indication information is used for indicating power reduction of a transmit beam of the terminal device.
In an exemplary implementation, the indication information includes any one or more of: a power management maximum power reduction (P-MPR) value for the transmit beam, a revised maximum output power for the transmit beam, a power offset value with respect to a configured maximum output power for the transmit beam, or a power headroom report for the transmit beam.
For example, a UE can report information of power reduction (e.g., P-MPR) value that the UE may reduce on the maximum transmit power of a transmit beam of the UE. If a UE can formulate multiple transmit beams that can be used for uplink transmission, the UE can report information of power reduction for each transmit beam.
The power reduction information for a transmit beam that a UE reports can be one or more of the following: a P-MPR value for that transmit beam, a revised maximum output power for that transmit beam, a power offset value with respect to the UE configured maximum output power for that transmit beam, or a power headroom reporting for that transmit beam. The power headroom reporting for the transmit beam can be calculated based on an uplink signal (for example SRS resource) which is configured to be transmitted  from the transmit beam. The UE can report a power headroom and a maximum output power for that transmit beam of the UE.
In an exemplary implementation, the indication information further includes an identity of the transmit beam. For example, in the reporting, a UE can report a value to indicate information of a power reduction value and an Id that identify one UE transmit beam. In an example, the UE can assign an Id value for a transmit beam. The UE can report one Id value that identify one UE transmit beam.
In an exemplary implementation, the identity of the transmit beam is any one of: an identity of a downlink channel state information reference signal (CSI-RS) resource, an index of a synchronization signal/physical broadcast channel (SS/PBCH) block, an identity of a sounding reference signal (SRS) resource, an identity of a transmission configuration indicator (TCI) state, an identity of a control resource set (CORESET) , or an identity of a physical uplink control channel (PUCCH) resource.
In an exemplary implementation, the indication information further includes a time fraction value indicating when the transmit beam is used for uplink transmission. In an example, a UE can report a time fraction value that the UE can use one transmit beam for uplink transmission. For example, the value can indicate how much time the UE can use a first transmit beam for uplink transmission within every particular time duration, for example, every one second.
In an exemplary implementation, the indication information is sent by the terminal device through a media access control (MAC) control element (CE) signaling or a physical uplink control channel (PUCCH) transmission. For example, a UE can report a value to indicate information of a power reduction value through a MAC CE signaling or a PUCCH transmission.
In an exemplary implementation, the MAC CE includes a power offset value with respect to a configured maximum output power for the transmit beam and an identity of the transmit beam. In an example, a UE can use one MAC control element to report a power offset value with respect to the UE configured maximum output power and an Id that identify one UE transmit beam.
FIG. 4 shows an example of a MAC control element. In the example of the MAC control element shown in FIG. 4, it has a fixed size and consists of two octets defined as follows:
Id: this field indicates one UE transmit beam. It provides an Id that identifies one UE transmit beam that the UE reports a power reduction value for.
PowerBackOff: this field indicates one value of power reduction. It can be power backoff value with respect to the UE configured maximum output power.
P CMAX, f, c: this field indicates P CMAX, f, c used for calculation of the preceding P-MPR field.
R:reserved bit, set to 0.
In an exemplary implementation, the MAC CE includes a P-MPR value for the transmit beam and an identity of the transmit beam.
FIG. 5 shows another example of the MAC control element. In the example of the MAC control element shown in FIG. 5, it has a fixed size and consists of two octets defined as follows:
Id: this field indicates one UE transmit beam. It provides an Id that identifies one UE transit beam that the UE reports a power reduction value for.
P-MPR: this field indicates a value of maximum power reduction. It can be the beam-specific P-MPR value. In one example, it can be a maximum power backoff value with respect to the UE configured maximum output power.
R: reserved bit, set to 0.
In an exemplary implementation, the MAC CE includes P-MPR values and corresponding configured maximum output powers for a plurality of transmit beams of the terminal device.
In an example, a UE can report one or multiple values of power reduction for one or multiple UE transmit beams in one MAC control element. In the MAC control element, the UE can report one P-MPR value for each transmit beam.
FIG. 6 shows an example of a MAC control element used to report one or more P-MPRs for one or more transmit beams. In the example of the MAC control element shown in FIG. 6, it has a variable size and includes a bitmap, an MPR field and an octet containing the associated P CMAX, f, c field for each UE transmit beam. The MAC CE is defined as follows:
C i: this field indicates the presence of an MPR field and the associated P CMAX, f, c field. For example, the C i field set to 1 indicates an MPR field is reported for an i-th UE transmit beam, and the C i field set to 0 indicates an MPR field is not reported for the i-th UE transmit beam.
R: reserved bit, set to 0;
P-MPR: this field indicates a value of maximum power reduction. It can be a maximum power backoff value with respect to the UE configured maximum output power.
P CMAX, f, c: this field indicates P CMAX, f, c used for calculation of the preceding MPR field.
In an exemplary implementation, the MAC CE includes P-MPR values for a plurality of transmit beams of the terminal device.
In an example, a UE can report one or multiple values of power reduction for one or multiple UE transmit beams in one MAC control element. In the MAC control element, the UE can report one P-MPR value for each transmit beam.
FIG. 7 shows an example of a MAC control element used to report one or more P-MPRs for one or more transmit beams. As shown in FIG. 7, the MAC control element may include the following fields:
C i: this field indicates the presence of an MPR field. For example, the C i field set to 1 indicates an MPR field is reported for an i-th UE transmit beam, and the C i field set to 1 indicates an MPR field is not reported for the i-th UE transmit beam.
R:reserved bit, set to 0.
P-MPR: this field indicates a value of maximum power reduction. In one example, it can be beam-specific P-MPR value. In one example, it can be a maximum power backoff value with respect to the UE configured maximum output power. Herein, the UE configured maximum output power may be the same for all transmit beams of the UE, and thus beam-specific P CMAX, f, c need not to be reported.
In an exemplary implementation, the indication information includes a P-MPR value for the transmit beam, and the terminal device sends the indication information to the network device when the P-MPR value for the transmit beam is above a threshold. For example, a UE can trigger beam-specific P-MPR reporting for a first beam if the P-MPR value for the first beam is above a threshold, where the threshold can be configured or pre-specified.
In an exemplary implementation, the indication information includes a power headroom report for the transmit beam, and the power headroom is determined based on a P-MPR value for the transmit beam.
Implementations for performing beam-specific power headroom reporting are provided in the present disclosure. In an example, a UE can be requested to calculate and report UE beam-specific power headroom. A UE may formulate multiple transmit beams and the UE may choose one of those transmit beams to transmit uplink signal. The UE can determine a power headroom value for uplink transmission sent from a second transmit beam of the UE and the UE can report the determined power headroom value of the second transmit beam to the system. To determine power headroom for a second transmit beam, the UE may use the uplink transmission occasion or a reference uplink transmission occasion associated with the second transmit beam to calculate a power headroom. In the reporting of power headroom of a transmit beam, the UE can be requested to report an Id that identifies the UE transmit beam, a power headroom value and a value of maximum transmit power used to calculate the reported power headroom value. For beam-specific power headroom report, the UE can be requested to determine a P-MPR value for each UE transmit beam. When  determining beam specific power headroom report, the UE may take into account the UE beam-specific P-MPR value for each transmit beam.
In an exemplary implementation, the power headroom report is a Type 1 power headroom report based on an actual physical uplink shared channel (PUSCH) transmission or a reference PUSCH transmission.
In one example, a UE can determine that a Type 1 power headroom report for an activated serving cell is based on an actual PUSCH transmission then, for PUSCH transmission occasion i on active uplink BWP b of carrier f of serving cell c that is transmitted with UE transmit beam x, the UE computes the Type 1 power headroom report as:
Figure PCTCN2021098380-appb-000001
where P CMAX, f, c (i) , P O_PUSCH, b, f, c (j) , 
Figure PCTCN2021098380-appb-000002
α b, f, c (j) , PL b, f, c (q d) , Δ TF, b, f, c (i) and f b, f, c (i, l) are parameters defined for PUSCH transmission on UE transmit beam x, and where P CMAX, f, c (i) is the configured maximum output power on UE transmit beam x by considering the P-MPR for the UE transmit beam x.
The UE can also determine power headroom report based on a reference PUSCH transmission for UE transmit beam x. In determining the power headroom report for UE transmit beam x, the UE may consider the P-MPR that the UE decides for UE transmit beam x. If the UE determines that a Type 1 power headroom report of UE transmit beam x for an activated serving cell is based on a reference PUSCH transmission then, for PUSCH transmission occasion i on active uplink BWP b of carrier f of serving cell c transmitted from UE transmit beam x, the UE computes the Type 1 power headroom report as
Figure PCTCN2021098380-appb-000003
where
Figure PCTCN2021098380-appb-000004
is computed assuming MPR=0 dB, additional maximum power reduction (A-MPR) = 0 dB, P-MPR = the value of beam-specific P-MPR value. ΔT C = 0 dB. P O_PUSCH, b, f, c (j) and α b, f, c (j) are obtained using P O_NOMINAL_PUSCH, f, c (0) and p0-PUSCH-AlphaSetId = 0, PL b, f, c (q d) is obtained using pusch-PathlossReferenceRS-Id = 0, and l=0.
In an exemplary implementation, the power headroom report is a Type 3 power headroom report based on an actual SRS transmission or a reference SRS transmission.
In one example, a UE can determine a Type 3 power headroom report for a UE transmit beam based on SRS transmission. If a UE determines that a Type 3 power headroom report for UE transmit beam x for an activated serving cell is based on an actual SRS transmission on UE transmit beam x then, for SRS transmission occasion i on active uplink BWP b of carrier f of serving cell c that is transmitted from UE transmit beam x and if the UE is not configured for PUSCH transmission on carrier f of serving cell c, the UE computes a Type 3 power headroom report as
PH type3, b, f, c (i, q s) =P CMAX, f, c (i) - {P O_SRS, b, f, c (q s) +10log 10 (2 μ·M SRS, b, f, c (i) ) +α SRS, b, f, c (q s) ·PL b, f, c (q d) +h b, f, c (i) }   [dB]
where P CMAX, f, c (i) , P O_SRS, b, f, c (q s) , M SRS, b, f, c (i) , α SRS, b, f, c (q s) , PL b, f, c (q d) and h b, f, c (i) are power control parameters for the SRS transmission and the value P CMAX, f, c (i) takes into account the P-MPR value determined for the UE transmit beam x.
If the UE determines that a Type 3 power headroom report for UE transmit beam x for an activated serving cell is based on a reference SRS transmission then, for SRS transmission occasion i on uplink BWP  b of carrier f of serving cell c, and if the UE is not configured for PUSCH transmission on uplink BWP b of carrier f of serving cell c, the UE computes a Type 3 power headroom report as
Figure PCTCN2021098380-appb-000005
where q s is an SRS resource set corresponding to SRS-ResourceSetId = 0 for uplink BWP b and P O_SRS, b, f, c (q s) , α SRS, f, c (q s) , PL b, f, c (q d) and h b, f, c (i) are power control parameters associated with corresponding values obtained from SRS-ResourceSetId = 0 for uplink BWP b. 
Figure PCTCN2021098380-appb-000006
is computed assuming MPR=0 dB, A-MPR=0 dB, P-MPR set to the P-MPR of UE transmit beam x and ΔT C =0 dB.
In an exemplary implementation, in addition to the power headroom report for the transmit beam, the indication information further includes any one or more of: an identity of the transmit beam, a configured maximum output power that is used to calculate the power headroom, or a P-MPR value for the transmit beam. The indication information can be sent by the terminal device through a MAC CE signaling.
In an exemplary method for performing beam-specific power headroom reporting, a UE can report UE transmit beam-specific power headroom report through a MAC control element message. In the MAC CE message, the UE can report one or more of the following information:
An Id of UE beam to identify one UE transmit beam. For example, it can be an Id of a downlink CSI-RS resource. It can be an index of a SS/PBCH block. It can be an Id of an SRS resource. It can be an Id of a TCI state. It can be an Id of a Tx beam. It can be an Id of an CORESET. It can be an Id of a PUCCH resource.
Power headroom report value. For example, it can be a UE beam-specific Type 1 power headroom report. For example, it can be a UE beam-specific Type 3 power headroom report.
A configured maximum output power that is used to calculate the power headroom.
A value of P-MPR for the UE beam.
In one example, the UE can report multiple power headroom reports for one UE transmit beam. Then in the MAC CE message, the UE reports one Id to identify one UE transmit beam for which the UE reports power headroom, and/or one P-MPR value of that UE transmit beam and one or more power headroom reports.
In some implementations, a UE can be requested to measure a set of CSI-RS resources or SS/PBCH blocks and report the measurement of one or more selected CSI-RS resources or SS/PBCH blocks. The UE can be requested to report L1-RSRP measurement of one or more CSI-RS resources or SS/PBCH blocks along with an indicator of the CSI-RS resource or SS/PBCH block. The UE can be requested to report L1-SINR measurement of one or more CSI-RS resources or SS/PBCH blocks along with the indicator of the CSI-RS resource or SS/PBCH block. For each reported CSI-RS resource or SS/PBCH block, the UE can be requested to report one P-MPR value associated with the CSI-RS resource or SS/PBCH block. In one example, a UE report an indicator for a first CSI-RS resource and a L1-RSRP measurement associated with the first CSI-RS resource. The UE can also report a first P-MPR value that is associated with the first CSI-RS resource. The first P-MPR value can be a P-MPR value that the UE determines on the transmit beam direction that corresponds to the receive beam used to measure the first CSI-RS resource.
In an exemplary implementation, the indication information includes a measurement result of Layer 1 reference signal received power (L1-RSRP) or Layer 1 signal to interference noise ratio (L1-SINR) of a downlink CSI-RS resource or SS/PBCH block, and further includes a P-MPR value associated with the CSI-RS resource or SS/PBCH block. The indication information may further include an indicator that identifies the CSI-RS resource or SS/PBCH block.
For example, a UE can be configured to measure L1-RSRP (or L1-SINR) of a set of N CSI-RS resources or SS/PBCH blocks. The UE can be configured to report the information of K CSI-RS resources or  SS/PBCH blocks which are selected from those N CSI-RS resources or SS/PBCH blocks. The UE can be requested to report one or more of the following information:
For each reported CSI-RS resource or SS/PBCH block, the UE reports an indicator that identifies the CSI-RS resource or SS/PBCH block.
A measurement result of L1-RSRP (or L1-SINR) .
A P-MPR value associated with the reported CSI-RS resource or SS/PBCH block.
In an exemplary implementation, the indication information includes a measurement result of L1-RSRP or L1-SINR of a downlink CSI-RS resource or SS/PBCH block, and further includes a beam quality value that is calculated by using the measurement result of L1-RSRP or L1-SINR and a P-MPR value associated with the CSI-RS resource or SS/PBCH block. The indication information may further include an indicator that identifies the CSI-RS resource or SS/PBCH block.
For example, a UE can be configured to measure L1-RSRP (or L1-SINR) of a set of N CSI-RS resources or SS/PBCH blocks. The UE can be configured to report the information of K CSI-RS resources or SS/PBCH blocks which are selected from those N CSI-RS resources or SS/PBCH blocks. The UE can be requested to report one or more of the following information:
For each reported CSI-RS resource or SS/PBCH block, the UE reports an indicator that identifies the CSI-RS resource or SS/PBCH block.
A beam quality value that is calculated from the L1-RSRP (or L1-SINR) measurement result and a P-MPR value associated with the reported CSI-RS resource or SS/PBCH block. For example, the UE can report a value = L1-RSRP measurement result –P-MPR value. For example, the UE can report a value =L1-SINR measurement result –P-MPR value. Herein the P-MPR value can be a dB value. The L1-RSRP or L1-SINR measurement result can be a dB value.
In an exemplary implementation, the indication information includes a measurement result of L1-RSRP or L1-SINR of a downlink CSI-RS resource or SS/PBCH block, and further includes a power headroom report that is associated with the CSI-RS resource or SS/PBCH block, wherein the power headroom report is calculated based on a P-MPR value associated with the CSI-RS resource or SS/PBCH block. The power headroom report may be a Type 1 power headroom report calculated on a reference PUSCH or a Type 3 power headroom report calculated on a reference SRS resource. The indication information may further include an indicator that identifies the CSI-RS resource or SS/PBCH block.
For example, a UE can be configured to measure L1-RSRP (or L1-SINR) of a set of N CSI-RS resources or SS/PBCH blocks. The UE can be configured to report the information of K CSI-RS resources or SS/PBCH blocks which are selected from those N CSI-RS resources or SS/PBCH blocks. The UE can be requested to report one or more of the following information:
For each reported CSI-RS resource or SS/PBCH block, the UE reports an indicator that identifies the CSI-RS resource or SS/PBCH block.
A measurement result of L1-RSRP (or L1-SINR) .
A power headroom report that is associated with the reported CSI-RS resource or SS/PBCH block.
The power headroom report may be computed based on path loss calculated from the L1-RSRP measurement of the reported CSI-RS resource or SS/PBCH block.
The power headroom report may be computed based on the P-MPR value associated with the reported CSI-RS resource or SS/PBCH block.
In one example, a power headroom report associated a first CSI-RS resource can be a Type 1 power headroom report calculated on a reference PUSCH. The UE computes the Type 1 power headroom report as
Figure PCTCN2021098380-appb-000007
where
Figure PCTCN2021098380-appb-000008
is computed assuming MPR=0 dB, A-MPR=0 dB, P-MPR= the P-MPR value associated with the first CSI-RS resource. ΔT C = 0 dB. The path loss PL b, f, c (q d) is computed based on the RSRP measured from the first CSI resource.
In one example, a power headroom report associated a first CSI-RS resource can be a Type 3 power headroom report calculated on a reference SRS resource. The UE computes the Type 3 power headroom report as:
Figure PCTCN2021098380-appb-000009
where q s is an SRS resource set corresponding to SRS-ResourceSetId = 0 for uplink BWP b and P O_SRS, b, f, c (q s) , α SRS, f, c (q s) and h b, f, c (i) are power control parameters associated with corresponding values obtained from SRS-ResourceSetId = 0 for uplink BWP b, and PL b, f, c (q d) is path loss calculated from the RSRP measured from the first CSI-RS resource. 
Figure PCTCN2021098380-appb-000010
is computed assuming MPR=0 dB, A-MPR=0 dB, P-MPR= the P-MPR value associated with the first CSI-RS resource and ΔT C =0 dB.
As can be seen, various implementations for reporting power reduction information are provided in the present disclosure to resolve the issues related to maximum permissible exposure (MPE) . For example, a UE can determine a transmit beam-specific P-MPR value and the UE can report beam-specific MPR value for each transmit beam. The UE can use a MAC CE to report the beam-specific MPR value for each transmit beam. For one transmit beam, the UE can report one beam-specific MPR value and one time fraction value that the UE can use that transmit beam for uplink transmission. One transmit beam can be indicated through an Id of a downlink CSI-RS resource, an index of an SS/PBCH block, an Id of a TCI state or an Id of an SRS resource. The UE can determine a beam-specific power headroom report for one particular transmit beam. The UE can report the beam-specific power headroom report for one transmit beam through a MAC CE message. In the MAC CE, the UE can report an Id to identify a transmit beam, a beam-specific power headroom report, a beam-specific P-MPR value and/or a configured maximum output power value of the transmit beam used to determine the power headroom report. The UE can be configured to measure a set of CSI-RS resources or SS/PBCH blocks and then report beam measurement result (for example L1-RSRP or L1-SINR) of one or more CSI-RS resources or SS/PBCH blocks, and the UE can be requested to report information of a beam-specific P-MPR value associated with the reported CSI-RS resource or SS/PBCH block.
FIG. 8 shows a schematic diagram of a method for receiving power reduction information according to an implementation of the present disclosure. As shown in FIG. 8, the method may include act 810. In act 810, a network device receives indication information from a terminal device, wherein the indication information is used for indicating power reduction of a transmit beam of the terminal device.
In an exemplary implementation, the indication information includes any one or more of: a power management maximum power reduction (P-MPR) value for the transmit beam, a revised maximum output power for the transmit beam, a power offset value with respect to a configured maximum output power for the transmit beam, or a power headroom report for the transmit beam.
In an exemplary implementation, the indication information further includes an identity of the transmit beam.
In an exemplary implementation, the identity of the transmit beam is any one of: an identity of a downlink channel state information reference signal (CSI-RS) resource, an index of a synchronization signal/physical broadcast channel (SS/PBCH) block, an identity of a sounding reference signal (SRS) resource, an identity of a transmission configuration indicator (TCI) state, an identity of a control resource set (CORESET) , or an identity of a physical uplink control channel (PUCCH) resource.
In an exemplary implementation, the indication information further includes a time fraction value indicating when the transmit beam is used for uplink transmission.
In an exemplary implementation, the network device receives the indication information through a media access control (MAC) control element (CE) signaling or a PUCCH transmission.
In an exemplary implementation, the MAC CE includes a power offset value with respect to a configured maximum output power for the transmit beam and an identity of the transmit beam.
In an exemplary implementation, the MAC CE includes a P-MPR value for the transmit beam and an identity of the transmit beam.
In an exemplary implementation, the MAC CE includes P-MPR values and corresponding configured maximum output powers for a plurality of transmit beams of the terminal device.
In an exemplary implementation, the MAC CE includes P-MPR values for a plurality of transmit beams of the terminal device.
In an exemplary implementation, the indication information includes a P-MPR value for the transmit beam, and the network device receives the indication information from the terminal device when the P-MPR value for the transmit beam is above a threshold.
In an exemplary implementation, the indication information includes a power headroom report for the transmit beam, and the power headroom is determined based on a P-MPR value for the transmit beam.
In an exemplary implementation, the power headroom report is a Type 1 power headroom report based on an actual physical uplink shared channel (PUSCH) transmission or a reference PUSCH transmission.
In an exemplary implementation, the power headroom report is a Type 3 power headroom report based on an actual SRS transmission or a reference SRS transmission.
In an exemplary implementation, the indication information further includes any one or more of: an identity of the transmit beam, a configured maximum output power that is used to calculate the power headroom, or a P-MPR value for the transmit beam.
In an exemplary implementation, the network device receives the indication information through a MAC CE signaling.
In an exemplary implementation, the indication information includes a measurement result of Layer 1 reference signal received power (L1-RSRP) or Layer 1 signal to interference noise ratio (L1-SINR) of a downlink CSI-RS resource or SS/PBCH block, and further includes a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
In an exemplary implementation, the indication information includes a measurement result of L1-RSRP or L1-SINR of a downlink CSI-RS resource or SS/PBCH block, and further includes a beam quality value that is calculated by using the measurement result of L1-RSRP or L1-SINR and a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
In an exemplary implementation, the indication information includes a measurement result of L1-RSRP or L1-SINRof a downlink CSI-RS resource or SS/PBCH block, and further includes a power headroom report that is associated with the CSI-RS resource or SS/PBCH block, wherein the power headroom report is calculated based on a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
In an exemplary implementation, the power headroom report is a Type 1 power headroom report calculated on a reference PUSCH or a Type 3 power headroom report calculated on a reference SRS resource.
In an exemplary implementation, the indication information further includes an indicator that identifies the CSI-RS resource or SS/PBCH block.
Herein, it should be understood that the method of FIG. 8 corresponds to the method of FIG. 3, and relevant implementation details and examples of the method of FIG. 8 are similar as those described above for the method of FIG. 3, and will not be repeated here for conciseness of the present disclosure.
FIG. 9 shows a schematic diagram of a terminal device 900 according to an implementation of the present disclosure. As shown in FIG. 9, the terminal device 900 may include a transmitting module 910. The transmitting module 910 is configured to send indication information to a network device, wherein the indication information is used for indicating power reduction of a transmit beam of the terminal device 900.
In an exemplary implementation, the indication information includes any one or more of: a power management maximum power reduction (P-MPR) value for the transmit beam, a revised maximum output power for the transmit beam, a power offset value with respect to a configured maximum output power for the transmit beam, or a power headroom report for the transmit beam.
In an exemplary implementation, the indication information further includes an identity of the transmit beam.
In an exemplary implementation, the identity of the transmit beam is any one of: an identity of a downlink channel state information reference signal (CSI-RS) resource, an index of a synchronization signal/physical broadcast channel (SS/PBCH) block, an identity of a sounding reference signal (SRS) resource, an identity of a transmission configuration indicator (TCI) state, an identity of a control resource set (CORESET) , or an identity of a physical uplink control channel (PUCCH) resource.
In an exemplary implementation, the indication information further includes a time fraction value indicating when the transmit beam is used for uplink transmission.
In an exemplary implementation, the transmitting module 910 is configured to send the indication information through a media access control (MAC) control element (CE) signaling or a PUCCH transmission.
In an exemplary implementation, the MAC CE includes a power offset value with respect to a configured maximum output power for the transmit beam and an identity of the transmit beam.
In an exemplary implementation, the MAC CE includes a P-MPR value for the transmit beam and an identity of the transmit beam.
In an exemplary implementation, the MAC CE includes P-MPR values and corresponding configured maximum output powers for a plurality of transmit beams of the terminal device 900.
In an exemplary implementation, the MAC CE includes P-MPR values for a plurality of transmit beams of the terminal device 900.
In an exemplary implementation, the indication information includes a P-MPR value for the transmit beam, and the transmitting module 910 is configured to send the indication information to the network device when the P-MPR value for the transmit beam is above a threshold.
In an exemplary implementation, the indication information includes a power headroom report for the transmit beam, and the power headroom is determined based on a P-MPR value for the transmit beam.
In an exemplary implementation, the power headroom report is a Type 1 power headroom report based on an actual physical uplink shared channel (PUSCH) transmission or a reference PUSCH transmission.
In an exemplary implementation, the power headroom report is a Type 3 power headroom report based on an actual SRS transmission or a reference SRS transmission.
In an exemplary implementation, the indication information further includes any one or more of: an identity of the transmit beam, a configured maximum output power that is used to calculate the power headroom, or a P-MPR value for the transmit beam.
In an exemplary implementation, the transmitting module 910 is configured to send the indication information through a MAC CE signaling.
In an exemplary implementation, the indication information includes a measurement result of Layer 1 reference signal received power (L1-RSRP) or Layer 1 signal to interference noise ratio (L1-SINR) of a downlink CSI-RS resource or SS/PBCH block, and further includes a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
In an exemplary implementation, the indication information includes a measurement result of L1-RSRP or L1-SINR of a downlink CSI-RS resource or SS/PBCH block, and further includes a beam quality value that is calculated by using the measurement result of L1-RSRP or L1-SINR and a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
In an exemplary implementation, the indication information includes a measurement result of L1-RSRP or L1-SINR of a downlink CSI-RS resource or SS/PBCH block, and further includes a power headroom report that is associated with the CSI-RS resource or SS/PBCH block, wherein the power headroom report is calculated based on a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
In an exemplary implementation, the power headroom report is a Type 1 power headroom report calculated on a reference PUSCH or a Type 3 power headroom report calculated on a reference SRS resource.
In an exemplary implementation, the indication information further includes an indicator that identifies the CSI-RS resource or SS/PBCH block.
It should be understood that the terminal device 900 in the above exemplary implementations can be the terminal device in the various implementations and examples relating to the method of FIG. 3, and the operations and/or functions of the terminal device 900 are respectively for the purpose of implementing corresponding acts of the terminal device in the various method implementations relating to FIG. 3, and accordingly, relevant details and examples can be similar as those described above for the method implementations relating to FIG. 3 and will not be repeated here for conciseness of the present disclosure.
FIG. 10 shows a schematic diagram of a network device 1000 according to an implementation of the present disclosure. As shown in FIG. 10, the network device 1000 may include a receiving module 1010. The receiving module 1010 is configured to receive indication information from a terminal device, wherein the indication information is used for indicating power reduction of a transmit beam of the terminal device.
In an exemplary implementation, the indication information includes any one or more of: a power management maximum power reduction (P-MPR) value for the transmit beam, a revised maximum output power for the transmit beam, a power offset value with respect to a configured maximum output power for the transmit beam, or a power headroom report for the transmit beam.
In an exemplary implementation, the indication information further includes an identity of the transmit beam.
In an exemplary implementation, the identity of the transmit beam is any one of: an identity of a downlink channel state information reference signal (CSI-RS) resource, an index of a synchronization signal/physical broadcast channel (SS/PBCH) block, an identity of a sounding reference signal (SRS) resource, an identity of a transmission configuration indicator (TCI) state, an identity of a control resource set (CORESET) , or an identity of a physical uplink control channel (PUCCH) resource.
In an exemplary implementation, the indication information further includes a time fraction value indicating when the transmit beam is used for uplink transmission.
In an exemplary implementation, the receiving module 1010 is configured to receive the indication information through a media access control (MAC) control element (CE) signaling or a PUCCH transmission.
In an exemplary implementation, the MAC CE includes a power offset value with respect to a configured maximum output power for the transmit beam and an identity of the transmit beam.
In an exemplary implementation, the MAC CE includes a P-MPR value for the transmit beam and an identity of the transmit beam.
In an exemplary implementation, the MAC CE includes P-MPR values and corresponding configured maximum output powers for a plurality of transmit beams of the terminal device.
In an exemplary implementation, the MAC CE includes P-MPR values for a plurality of transmit beams of the terminal device.
In an exemplary implementation, the indication information includes a P-MPR value for the transmit beam, and the receiving module 1010 is configured to receive the indication information from the terminal device when the P-MPR value for the transmit beam is above a threshold.
In an exemplary implementation, the indication information includes a power headroom report for the transmit beam, and the power headroom is determined based on a P-MPR value for the transmit beam.
In an exemplary implementation, the power headroom report is a Type 1 power headroom report based on an actual physical uplink shared channel (PUSCH) transmission or a reference PUSCH transmission.
In an exemplary implementation, the power headroom report is a Type 3 power headroom report based on an actual SRS transmission or a reference SRS transmission.
In an exemplary implementation, the indication information further includes any one or more of: an identity of the transmit beam, a configured maximum output power that is used to calculate the power headroom, or a P-MPR value for the transmit beam.
In an exemplary implementation, the receiving module 1010 is configured to receive the indication information through a MAC CE signaling.
In an exemplary implementation, the indication information includes a measurement result of Layer 1 reference signal received power (L1-RSRP) or Layer 1 signal to interference noise ratio (L1-SINR) of a  downlink CSI-RS resource or SS/PBCH block, and further includes a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
In an exemplary implementation, the indication information includes a measurement result of L1-RSRP or L1-SINR of a downlink CSI-RS resource or SS/PBCH block, and further includes a beam quality value that is calculated by using the measurement result of L1-RSRP or L1-SINR and a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
In an exemplary implementation, the indication information includes a measurement result of L1-RSRP or L1-SINRof a downlink CSI-RS resource or SS/PBCH block, and further includes a power headroom report that is associated with the CSI-RS resource or SS/PBCH block, wherein the power headroom report is calculated based on a P-MPR value associated with the CSI-RS resource or SS/PBCH block.
In an exemplary implementation, the power headroom report is a Type 1 power headroom report calculated on a reference PUSCH or a Type 3 power headroom report calculated on a reference SRS resource.
In an exemplary implementation, the indication information further includes an indicator that identifies the CSI-RS resource or SS/PBCH block.
It should be understood that the network device 1000 in the above exemplary implementations can be the network device in the various implementations and examples relating to the methods of FIG. 3 and FIG. 8, and the operations and/or functions of the network device 1000 are respectively for the purpose of implementing corresponding acts of the network device in the various method implementations relating to FIG. 3 and FIG. 8, and accordingly, relevant details and examples can be similar as those described above for the method implementations relating to FIG. 3 and FIG. 8 and will not be repeated here for conciseness of the present disclosure.
FIG. 11 shows a schematic diagram of structure of a terminal device 1100 according to an exemplary implementation of the present disclosure. As shown in FIG. 11, the terminal device 1100 may include a memory 1110, a transceiver 1120, and a processor 1130. The memory 1110 may be configured to store data and/or information. The memory 1110 may be further configured to store instructions executable by the processor 1130, and the processor 1130 may be configured to execute the instructions stored in the memory 1110 to control the transceiver 1120 to receive and/or send signals. Particularly, the transceiver 1120 may be configured to implement the functions/operations of the aforementioned transmitting module 910. Functions/operations of the transmitting module 910 are already described in the above and will not be repeated here for conciseness of the present disclosure. The terminal device 1100 may further include a bus system 1140, which may be configured to connect the components, such as the memory 1110, the transceiver 1120, and the processor 1130, of the terminal device 1100.
Herein, it should be understood that the memory 1110 may include a read only memory and a random access memory, and may provide instructions and data to the processor 1130. A portion of the memory 1110 may further include a non-volatile random access memory. For example, the memory 1110 may further store device type information and/or other information.
The processor 1130 may be a central processing unit (CPU) or other general-purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or a transistor logic device, or a discrete hardware component, etc. The general-purpose processor may be a microprocessor or any conventional processor.
The bus system 1140 may include, in addition to a data bus, a power bus, a control bus, a status signal bus, etc. However, for the sake of clarity, various buses are illustrated as the bus system 1140 in FIG. 11.
The various acts of the terminal device in the exemplary implementations relating to the method of FIG. 3 may be implemented by instructions of software or integrated logic circuits of hardware or combination of software and hardware. The software modules may be located in a typical storage medium in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, a register, etc. The storage medium may be located in the memory 1110, and the processor 1130 may read the information in the memory 1110 and control the transceiver 1120 to send and/or receive signals.
It should be understood that the terminal device 1100 can be the terminal device in the various implementations and examples relating to the method of FIG. 3. The terminal device 1100 may implement corresponding acts of the terminal device in the various method implementations relating to FIG. 3, and accordingly, relevant details and examples can be similar as those described above for the method implementations relating to FIG. 3 and will not be repeated here for conciseness of the present disclosure.
FIG. 12 shows a schematic diagram of structure of a network device 1200 according to an exemplary implementation of the present disclosure. As shown in FIG. 8, the network device 1200 may include a memory 1210, a transceiver 1220, and a processor 1230. The memory 1210 may be configured to store instructions executable by the processor 1230, and the processor 1230 may be configured to execute the instructions stored in the memory 1210 to control the transceiver 1220 to receive and/or send signals. Particularly, the transceiver 1220 may be configured to implement the functions/operations of the aforementioned receiving module 1010. Functions/operations of the receiving module 1010 are already described in the above and will not be repeated here for conciseness of the present disclosure. The network device 1200 may further include a bus system 1240, which may be configured to connect the components, such as the memory 1210, the transceiver 1220, and the processor 1230, of the network device 1200.
Herein, it should be understood that the memory 1210 may include a read only memory and a random access memory, and may provide instructions and data to the processor 1230. A portion of the memory 1210 may further include a non-volatile random access memory. For example, the memory 1210 may further store device type information and/or other information.
The processor 1230 may be a central processing unit (CPU) or other general-purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or a transistor logic device, or a discrete hardware component, etc. The general-purpose processor may be a microprocessor or any conventional processor.
The bus system 1240 may include, in addition to a data bus, a power bus, a control bus, a status signal bus, etc. However, for the sake of clarity, various buses are illustrated as the bus system 1240 in FIG. 12.
The various acts of the network device in the exemplary implementations relating to the method of FIG. 8 may be implemented by instructions of software or integrated logic circuits of hardware or combination of software and hardware. The software modules may be located in a typical storage medium in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, a register, etc. The storage medium may be located in the memory 1210, and the processor 1230 may read the information in the memory 1210 and control the transceiver 1220 to send and/or receive signals.
It should be understood that the network device 1200 can be the network device in the various implementations and examples relating to the methods of FIG. 3 and FIG. 8. The network device 1200 may implement corresponding acts of the network device in the various method implementations relating to FIG. 3 and FIG. 8, and accordingly, relevant details and examples can be similar as those described above for the method implementations relating to FIG. 3 and FIG. 8 and will not be repeated here for conciseness of the present disclosure.
Further, a computer readable storage medium is provided in the present disclosure. The computer readable storage medium may store instructions that are executable by a computer or processor to implement any of the aforementioned method for reporting or receiving power reduction information and/or any exemplary implementation thereof.
It should be understood that in various implementations of the present disclosure, the term "and/or" is used to describe an association relationship between associated objects, indicating that there may be three relationships, for example, a and/or b may indicate three situations: A alone, A and B, and B alone. In addition, the symbol "/" in the present disclosure generally indicates that objects of the former and the latter connected by "/" has an "or" relationship.
Those skilled in the art should understand that the elements and acts in the various implementations disclosed herein may be implemented in electronic hardware, computer software, or a combination of the electronic hardware and the computer software. In order to clearly illustrate the interchangeability of  hardware and software, the composition and acts in the implementations have been described in general terms by functions in the above description. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present disclosure.
Those skilled in the art should understand that the specific working processes of the devices and modules described above may correspond to the corresponding processes in the method implementations and may not be repeated for convenience and conciseness of description.
In various implementations of the present disclosure, it should be understood that the disclosed methods and devices may be implemented in other ways. For example, the device implementations described above are merely illustrative, the division of modules is only a logical function division, and there may be other ways of division in actual implementations. For example, multiple modules or components may be combined or integrated into another system, or some features may be ignored or not executed. In addition, the coupling or communication connection between the elements shown or discussed may be a direct coupling or indirect coupling, or communication connection through some interface, device or unit, or may be an electrical, mechanical or other form of connection.
The components described as separate components may be or may be not physically separated, and the component may be or may be not a physical component, i.e., it may be located in one place or may be distributed over multiple network units. Some or all of the elements may be selected according to actual needs to achieve the purpose of the implementations of the present disclosure.
In addition, various units in various implementations of the present disclosure may be integrated in one processing module, or the various units may be physically separate, or two or more units may be integrated in one module. The units may be implemented in the form of hardware or software functional modules.
The units may be stored in a computer readable storage medium if they are implemented in the form of software function modules and sold or used as an independent product. Based on such understanding, the technical solutions of the present disclosure may be embodied in the form of a software product, which is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, a terminal device, or a network device, etc. ) to perform all or part of the acts of the method in various implementations of the present disclosure. The storage media may include a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk, an optical disk, or other media capable of storing program codes.
What are described above are merely exemplary implementations of the present disclosure. Although the exemplary implementations have been described in considerable detail above, numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.

Claims (84)

  1. A method for reporting power reduction information, comprising:
    sending, by a terminal device, indication information to a network device;
    wherein the indication information is used for indicating power reduction of a transmit beam of the terminal device.
  2. The method of claim 1, wherein the indication information comprises any one or more of: a power management maximum power reduction (P-MPR) value for the transmit beam, a revised maximum output power for the transmit beam, a power offset value with respect to a configured maximum output power for the transmit beam, or a power headroom report for the transmit beam.
  3. The method of claim 1 or 2, wherein the indication information further comprises an identity of the transmit beam.
  4. The method of claim 3, wherein the identity of the transmit beam is any one of: an identity of a downlink channel state information reference signal (CSI-RS) resource, an index of a synchronization signal/physical broadcast channel (SS/PBCH) block, an identity of a sounding reference signal (SRS) resource, an identity of a transmission configuration indicator (TCI) state, an identity of a control resource set (CORESET) , or an identity of a physical uplink control channel (PUCCH) resource.
  5. The method of any one of claims 1 to 4, wherein the indication information further comprises a time fraction value indicating when the transmit beam is used for uplink transmission.
  6. The method of any one of claims 1 to 5, wherein the indication information is sent by the terminal device through a media access control (MAC) control element (CE) signaling or a physical uplink control channel (PUCCH) transmission.
  7. The method of claim 6, wherein the MAC CE comprises a power offset value with respect to a configured maximum output power for the transmit beam and an identity of the transmit beam.
  8. The method of claim 6, wherein the MAC CE comprises a power management maximum power reduction (P-MPR) value for the transmit beam and an identity of the transmit beam.
  9. The method of claim 6, wherein the MAC CE comprises power management maximum power reduction (P-MPR) values and corresponding configured maximum output powers for a plurality of transmit beams of the terminal device.
  10. The method of claim 6, wherein the MAC CE comprises power management maximum power reduction (P-MPR) values for a plurality of transmit beams of the terminal device.
  11. The method of any one of claims 1 to 6, wherein the indication information comprises a power management maximum power reduction (P-MPR) value for the transmit beam, and the terminal device sends the indication information to the network device when the P-MPR value for the transmit beam is above a threshold.
  12. The method of any one of claims 1-6 and 11, wherein the indication information comprises a power headroom report for the transmit beam, and the power headroom is determined based on a power management maximum power reduction (P-MPR) value for the transmit beam.
  13. The method of claim 12, wherein the power headroom report is a Type 1 power headroom report based on an actual physical uplink shared channel (PUSCH) transmission or a reference PUSCH transmission.
  14. The method of claim 12, wherein the power headroom report is a Type 3 power headroom report based on an actual sounding reference signal (SRS) transmission or a reference SRS transmission.
  15. The method of any one of claims 12-14, wherein the indication information further comprises any one or more of: an identity of the transmit beam, a configured maximum output power that is used to calculate the power headroom, or a power management maximum power reduction (P-MPR) value for the transmit beam.
  16. The method of claim 15, wherein the indication information is sent by the terminal device through a media access control (MAC) control element (CE) signaling.
  17. The method of any one of claims 1 to 6, wherein the indication information comprises a measurement result of Layer 1 reference signal received power (L1-RSRP) or Layer 1 signal to interference  noise ratio (L1-SINR) of a downlink channel state information reference signal (CSI-RS) resource or synchronization signal/physical broadcast channel (SS/PBCH) block, and further comprises a power management maximum power reduction (P-MPR) value associated with the CSI-RS resource or SS/PBCH block.
  18. The method of any one of claims 1 to 6, wherein the indication information comprises a measurement result of Layer 1 reference signal received power (L1-RSRP) or Layer 1 signal to interference noise ratio (L1-SINR) of a downlink channel state information reference signal (CSI-RS) resource or synchronization signal/physical broadcast channel (SS/PBCH) block, and further comprises a beam quality value that is calculated by using the measurement result of L1-RSRP or L1-SINR and a power management maximum power reduction (P-MPR) value associated with the CSI-RS resource or SS/PBCH block.
  19. The method of any one of claims 1 to 6, wherein the indication information comprises a measurement result of Layer 1 reference signal received power (L1-RSRP) or Layer 1 signal to interference noise ratio (L1-SINR) of a downlink channel state information reference signal (CSI-RS) resource or synchronization signal/physical broadcast channel (SS/PBCH) block, and further comprises a power headroom report that is associated with the CSI-RS resource or SS/PBCH block, wherein the power headroom report is calculated based on a power management maximum power reduction (P-MPR) value associated with the CSI-RS resource or SS/PBCH block.
  20. The method of claim 19, wherein the power headroom report is a Type 1 power headroom report calculated on a reference physical uplink shared channel (PUSCH) or a Type 3 power headroom report calculated on a reference sounding reference signal (SRS) resource.
  21. The method of any one of claims 17 to 20, wherein the indication information further comprises an indicator that identifies the CSI-RS resource or SS/PBCH block.
  22. A method for receiving power reduction information, comprising:
    receiving, by a network device, indication information from a terminal device;
    wherein the indication information is used for indicating power reduction of a transmit beam of the terminal device.
  23. The method of claim 22, wherein the indication information comprises any one or more of: a power management maximum power reduction (P-MPR) value for the transmit beam, a revised maximum output power for the transmit beam, a power offset value with respect to a configured maximum output power for the transmit beam, or a power headroom report for the transmit beam.
  24. The method of claim 22 or 23, wherein the indication information further comprises an identity of the transmit beam.
  25. The method of claim 24, wherein the identity of the transmit beam is any one of: an identity of a downlink channel state information reference signal (CSI-RS) resource, an index of a synchronization signal/physical broadcast channel (SS/PBCH) block, an identity of a sounding reference signal (SRS) resource, an identity of a transmission configuration indicator (TCI) state, an identity of a control resource set (CORESET) , or an identity of a physical uplink control channel (PUCCH) resource.
  26. The method of any one of claims 22 to 25, wherein the indication information further comprises a time fraction value indicating when the transmit beam is used for uplink transmission.
  27. The method of any one of claims 22 to 26, wherein the network device receives the indication information through a media access control (MAC) control element (CE) signaling or a physical uplink control channel (PUCCH) transmission.
  28. The method of claim 27, wherein the MAC CE comprises a power offset value with respect to a configured maximum output power for the transmit beam and an identity of the transmit beam.
  29. The method of claim 27, wherein the MAC CE comprises a power management maximum power reduction (P-MPR) value for the transmit beam and an identity of the transmit beam.
  30. The method of claim 27, wherein the MAC CE comprises power management maximum power reduction (P-MPR) values and corresponding configured maximum output powers for a plurality of transmit beams of the terminal device.
  31. The method of claim 27, wherein the MAC CE comprises power management maximum power reduction (P-MPR) values for a plurality of transmit beams of the terminal device.
  32. The method of any one of claims 22 to 27, wherein the indication information comprises a power management maximum power reduction (P-MPR) value for the transmit beam, and the network device receives the indication information from the terminal device when the P-MPR value for the transmit beam is above a threshold.
  33. The method of any one of claims 22-27 and 32, wherein the indication information comprises a power headroom report for the transmit beam, and the power headroom is determined based on a power management maximum power reduction (P-MPR) value for the transmit beam.
  34. The method of claim 33, wherein the power headroom report is a Type 1 power headroom report based on an actual physical uplink shared channel (PUSCH) transmission or a reference PUSCH transmission.
  35. The method of claim 33, wherein the power headroom report is a Type 3 power headroom report based on an actual sounding reference signal (SRS) transmission or a reference SRS transmission.
  36. The method of any one of claims 33-35, wherein the indication information further comprises any one or more of: an identity of the transmit beam, a configured maximum output power that is used to calculate the power headroom, or a power management maximum power reduction (P-MPR) value for the transmit beam.
  37. The method of claim 36, wherein the network device receives the indication information through a media access control (MAC) control element (CE) signaling.
  38. The method of any one of claims 22 to 27, wherein the indication information comprises a measurement result of Layer 1 reference signal received power (L1-RSRP) or Layer 1 signal to interference noise ratio (L1-SINR) of a downlink channel state information reference signal (CSI-RS) resource or synchronization signal/physical broadcast channel (SS/PBCH) block, and further comprises a power management maximum power reduction (P-MPR) value associated with the CSI-RS resource or SS/PBCH block.
  39. The method of any one of claims 22 to 27, wherein the indication information comprises a measurement result of Layer 1 reference signal received power (L1-RSRP) or Layer 1 signal to interference noise ratio (L1-SINR) of a downlink channel state information reference signal (CSI-RS) resource or synchronization signal/physical broadcast channel (SS/PBCH) block, and further comprises a beam quality value that is calculated by using the measurement result of L1-RSRP or L1-SINR and a power management maximum power reduction (P-MPR) value associated with the CSI-RS resource or SS/PBCH block.
  40. The method of any one of claims 22 to 27, wherein the indication information comprises a measurement result of Layer 1 reference signal received power (L1-RSRP) or Layer 1 signal to interference noise ratio (L1-SINR) of a downlink channel state information reference signal (CSI-RS) resource or synchronization signal/physical broadcast channel (SS/PBCH) block, and further comprises a power headroom report that is associated with the CSI-RS resource or SS/PBCH block, wherein the power headroom report is calculated based on a power management maximum power reduction (P-MPR) value associated with the CSI-RS resource or SS/PBCH block.
  41. The method of claim 49, wherein the power headroom report is a Type 1 power headroom report calculated on a reference physical uplink shared channel (PUSCH) or a Type 3 power headroom report calculated on a reference sounding reference signal (SRS) resource.
  42. The method of any one of claims 38 to 41, wherein the indication information further comprises an indicator that identifies the CSI-RS resource or SS/PBCH block.
  43. A terminal device, comprising:
    a transmitting module configured to send indication information to a network device;
    wherein the indication information is used for indicating power reduction of a transmit beam of the terminal device.
  44. The terminal device of claim 43, wherein the indication information comprises any one or more of: a power management maximum power reduction (P-MPR) value for the transmit beam, a revised maximum output power for the transmit beam, a power offset value with respect to a configured maximum output power for the transmit beam, or a power headroom report for the transmit beam.
  45. The terminal device of claim 43 or 44, wherein the indication information further comprises an identity of the transmit beam.
  46. The terminal device of claim 45, wherein the identity of the transmit beam is any one of: an identity of a downlink channel state information reference signal (CSI-RS) resource, an index of a synchronization signal/physical broadcast channel (SS/PBCH) block, an identity of a sounding reference signal (SRS) resource, an identity of a transmission configuration indicator (TCI) state, an identity of a control resource set (CORESET) , or an identity of a physical uplink control channel (PUCCH) resource.
  47. The terminal device of any one of claims 43 to 46, wherein the indication information further comprises a time fraction value indicating when the transmit beam is used for uplink transmission.
  48. The terminal device of any one of claims 43 to 47, wherein the transmitting module is configured to send the indication information through a media access control (MAC) control element (CE) signaling or a physical uplink control channel (PUCCH) transmission.
  49. The terminal device of claim 48, wherein the MAC CE comprises a power offset value with respect to a configured maximum output power for the transmit beam and an identity of the transmit beam.
  50. The terminal device of claim 48, wherein the MAC CE comprises a power management maximum power reduction (P-MPR) value for the transmit beam and an identity of the transmit beam.
  51. The terminal device of claim 48, wherein the MAC CE comprises power management maximum power reduction (P-MPR) values and corresponding configured maximum output powers for a plurality of transmit beams of the terminal device.
  52. The terminal device of claim 48, wherein the MAC CE comprises power management maximum power reduction (P-MPR) values for a plurality of transmit beams of the terminal device.
  53. The terminal device of any one of claims 43 to 48, wherein the indication information comprises a power management maximum power reduction (P-MPR) value for the transmit beam, and the transmitting module is configured to send the indication information to the network device when the P-MPR value for the transmit beam is above a threshold.
  54. The terminal device of any one of claims 43-48 and 53, wherein the indication information comprises a power headroom report for the transmit beam, and the power headroom is determined based on a power management maximum power reduction (P-MPR) value for the transmit beam.
  55. The terminal device of claim 54, wherein the power headroom report is a Type 1 power headroom report based on an actual physical uplink shared channel (PUSCH) transmission or a reference PUSCH transmission.
  56. The terminal device of claim 54, wherein the power headroom report is a Type 3 power headroom report based on an actual sounding reference signal (SRS) transmission or a reference SRS transmission.
  57. The terminal device of any one of claims 54-56, wherein the indication information further comprises any one or more of: an identity of the transmit beam, a configured maximum output power that is used to calculate the power headroom, or a power management maximum power reduction (P-MPR) value for the transmit beam.
  58. The terminal device of claim 57, wherein the transmitting module is configured to send the indication information through a media access control (MAC) control element (CE) signaling.
  59. The terminal device of any one of claims 43 to 48, wherein the indication information comprises a measurement result of Layer 1 reference signal received power (L1-RSRP) or Layer 1 signal to interference noise ratio (L1-SINR) of a downlink channel state information reference signal (CSI-RS) resource or synchronization signal/physical broadcast channel (SS/PBCH) block, and further comprises a power management maximum power reduction (P-MPR) value associated with the CSI-RS resource or SS/PBCH block.
  60. The terminal device of any one of claims 43 to 48, wherein the indication information comprises a measurement result of Layer 1 reference signal received power (L1-RSRP) or Layer 1 signal to interference noise ratio (L1-SINR) of a downlink channel state information reference signal (CSI-RS) resource or synchronization signal/physical broadcast channel (SS/PBCH) block, and further comprises a beam quality value that is calculated by using the measurement result of L1-RSRP or L1-SINR and a power management maximum power reduction (P-MPR) value associated with the CSI-RS resource or SS/PBCH block.
  61. The terminal device of any one of claims 43 to 48, wherein the indication information comprises a measurement result of Layer 1 reference signal received power (L1-RSRP) or Layer 1 signal to interference noise ratio (L1-SINR) of a downlink channel state information reference signal (CSI-RS) resource or  synchronization signal/physical broadcast channel (SS/PBCH) block, and further comprises a power headroom report that is associated with the CSI-RS resource or SS/PBCH block, wherein the power headroom report is calculated based on a power management maximum power reduction (P-MPR) value associated with the CSI-RS resource or SS/PBCH block.
  62. The terminal device of claim 61, wherein the power headroom report is a Type 1 power headroom report calculated on a reference physical uplink shared channel (PUSCH) or a Type 3 power headroom report calculated on a reference sounding reference signal (SRS) resource.
  63. The terminal device of any one of claims 59 to 62, wherein the indication information further comprises an indicator that identifies the CSI-RS resource or SS/PBCH block.
  64. A network device, comprising:
    a receiving module configured to receive indication information from a terminal device;
    wherein the indication information is used for indicating power reduction of a transmit beam of the terminal device.
  65. The network device of claim 64, wherein the indication information comprises any one or more of: a power management maximum power reduction (P-MPR) value for the transmit beam, a revised maximum output power for the transmit beam, a power offset value with respect to a configured maximum output power for the transmit beam, or a power headroom report for the transmit beam.
  66. The network device of claim 64 or 65, wherein the indication information further comprises an identity of the transmit beam.
  67. The network device of claim 66, wherein the identity of the transmit beam is any one of: an identity of a downlink channel state information reference signal (CSI-RS) resource, an index of a synchronization signal/physical broadcast channel (SS/PBCH) block, an identity of a sounding reference signal (SRS) resource, an identity of a transmission configuration indicator (TCI) state, an identity of a control resource set (CORESET) , or an identity of a physical uplink control channel (PUCCH) resource.
  68. The network device of any one of claims 64 to 67, wherein the indication information further comprises a time fraction value indicating when the transmit beam is used for uplink transmission.
  69. The network device of any one of claims 64 to 68, wherein the receiving module is configured to receive the indication information through a media access control (MAC) control element (CE) signaling or a physical uplink control channel (PUCCH) transmission.
  70. The network device of claim 69, wherein the MAC CE comprises a power offset value with respect to a configured maximum output power for the transmit beam and an identity of the transmit beam.
  71. The network device of claim 69, wherein the MAC CE comprises a power management maximum power reduction (P-MPR) value for the transmit beam and an identity of the transmit beam.
  72. The network device of claim 69, wherein the MAC CE comprises power management maximum power reduction (P-MPR) values and corresponding configured maximum output powers for a plurality of transmit beams of the terminal device.
  73. The network device of claim 69, wherein the MAC CE comprises power management maximum power reduction (P-MPR) values for a plurality of transmit beams of the terminal device.
  74. The network device of any one of claims 64 to 69, wherein the indication information comprises a power management maximum power reduction (P-MPR) value for the transmit beam, and the receiving module is configured to receive the indication information from the terminal device when the P-MPR value for the transmit beam is above a threshold.
  75. The network device of any one of claims 64-69 and 74, wherein the indication information comprises a power headroom report for the transmit beam, and the power headroom is determined based on a power management maximum power reduction (P-MPR) value for the transmit beam.
  76. The network device of claim 75, wherein the power headroom report is a Type 1 power headroom report based on an actual physical uplink shared channel (PUSCH) transmission or a reference PUSCH transmission.
  77. The network device of claim 75, wherein the power headroom report is a Type 3 power headroom report based on an actual sounding reference signal (SRS) transmission or a reference SRS transmission.
  78. The network device of any one of claims 75-77, wherein the indication information further comprises any one or more of: an identity of the transmit beam, a configured maximum output power that is used to calculate the power headroom, or a power management maximum power reduction (P-MPR) value for the transmit beam.
  79. The network device of claim 78, wherein the receiving module is configured to receive the indication information through a media access control (MAC) control element (CE) signaling.
  80. The network device of any one of claims 64 to 69, wherein the indication information comprises a measurement result of Layer 1 reference signal received power (L1-RSRP) or Layer 1 signal to interference noise ratio (L1-SINR) of a downlink channel state information reference signal (CSI-RS) resource or synchronization signal/physical broadcast channel (SS/PBCH) block, and further comprises a power management maximum power reduction (P-MPR) value associated with the CSI-RS resource or SS/PBCH block.
  81. The network device of any one of claims 64 to 69, wherein the indication information comprises a measurement result of Layer 1 reference signal received power (L1-RSRP) or Layer 1 signal to interference noise ratio (L1-SINR) of a downlink channel state information reference signal (CSI-RS) resource or synchronization signal/physical broadcast channel (SS/PBCH) block, and further comprises a beam quality value that is calculated by using the measurement result of L1-RSRP or L1-SINR and a power management maximum power reduction (P-MPR) value associated with the CSI-RS resource or SS/PBCH block.
  82. The network device of any one of claims 64 to 69, wherein the indication information comprises a measurement result of Layer 1 reference signal received power (L1-RSRP) or Layer 1 signal to interference noise ratio (L1-SINR) of a downlink channel state information reference signal (CSI-RS) resource or synchronization signal/physical broadcast channel (SS/PBCH) block, and further comprises a power headroom report that is associated with the CSI-RS resource or SS/PBCH block, wherein the power headroom report is calculated based on a power management maximum power reduction (P-MPR) value associated with the CSI-RS resource or SS/PBCH block.
  83. The network device of claim 82, wherein the power headroom report is a Type 1 power headroom report calculated on a reference physical uplink shared channel (PUSCH) or a Type 3 power headroom report calculated on a reference sounding reference signal (SRS) resource.
  84. The network device of any one of claims 80 to 83, wherein the indication information further comprises an indicator that identifies the CSI-RS resource or SS/PBCH block.
PCT/CN2021/098380 2020-07-17 2021-06-04 Method and device for power reduction information transmission WO2022012209A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063053431P 2020-07-17 2020-07-17
US63/053,431 2020-07-17

Publications (1)

Publication Number Publication Date
WO2022012209A1 true WO2022012209A1 (en) 2022-01-20

Family

ID=79556117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098380 WO2022012209A1 (en) 2020-07-17 2021-06-04 Method and device for power reduction information transmission

Country Status (1)

Country Link
WO (1) WO2022012209A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108206711A (en) * 2016-12-17 2018-06-26 上海朗帛通信技术有限公司 A kind of method and apparatus in UE for power adjustment, base station
CN110583053A (en) * 2017-05-04 2019-12-17 三星电子株式会社 Method and apparatus for transmitting power headroom information in communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108206711A (en) * 2016-12-17 2018-06-26 上海朗帛通信技术有限公司 A kind of method and apparatus in UE for power adjustment, base station
CN110583053A (en) * 2017-05-04 2019-12-17 三星电子株式会社 Method and apparatus for transmitting power headroom information in communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Consideration on PHR with multi-beam operation", 3GPP DRAFT; R2-1709266 CONSIDRATION ON PHR WITH MULTIPLE BEAMS OPERATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Berlin, Germany; 20170821 - 20170825, 20 August 2017 (2017-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051319030 *

Similar Documents

Publication Publication Date Title
US10785729B2 (en) Method and device for controlling uplink power
US11805487B2 (en) Wireless communication method and device
US20180167897A1 (en) Reporting power limit and corresponding constraint
US10932197B2 (en) Wireless communication method and device
US11265059B2 (en) Data transmission method, user equipment and network device
CN116390214A (en) Power control parameter determining method, terminal, network equipment and storage medium
US20220123898A1 (en) Information transmission method and apparatus and communication device
CN115211175B (en) Method and device for uplink transmission
US20220116882A1 (en) Reference signal determination method and device, and ue
CN111742583B (en) Communication method, terminal equipment and network equipment
US20220217800A1 (en) Communication method and apparatus for activating secondary cell
EP3886486A1 (en) Information processing method and terminal device
CN111641964B (en) Wireless communication method and device
CN112350754A (en) Method, device, chip and storage medium for notifying state of antenna panel
US11202265B2 (en) Signal transmission method, terminal device, and network device
EP3687236A1 (en) Wireless communication method and device
US20230138282A1 (en) Method and device for beam failure recovery
WO2022012209A1 (en) Method and device for power reduction information transmission
EP3611973B1 (en) Wireless communication method and apparatus
WO2022052569A1 (en) Method and device for tci state configuration
CN113748720A (en) Information reporting method and device and user equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842741

Country of ref document: EP

Kind code of ref document: A1