WO2022011843A1 - 信号处理方法以及装置、rfid系统 - Google Patents

信号处理方法以及装置、rfid系统 Download PDF

Info

Publication number
WO2022011843A1
WO2022011843A1 PCT/CN2020/119027 CN2020119027W WO2022011843A1 WO 2022011843 A1 WO2022011843 A1 WO 2022011843A1 CN 2020119027 W CN2020119027 W CN 2020119027W WO 2022011843 A1 WO2022011843 A1 WO 2022011843A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
processing
modulation
shift keying
phase shift
Prior art date
Application number
PCT/CN2020/119027
Other languages
English (en)
French (fr)
Inventor
张锋
陈之晟
Original Assignee
中国科学院微电子研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院微电子研究所 filed Critical 中国科学院微电子研究所
Priority to US17/995,859 priority Critical patent/US11922257B2/en
Publication of WO2022011843A1 publication Critical patent/WO2022011843A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K17/00Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
    • G06K17/0022Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisious for transferring data to distant stations, e.g. from a sensing device
    • G06K17/0029Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisious for transferring data to distant stations, e.g. from a sensing device the arrangement being specially adapted for wireless interrogation of grouped or bundled articles tagged with wireless record carriers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10366Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2697Multicarrier modulation systems in combination with other modulation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals

Definitions

  • the present disclosure belongs to the technical field of radio frequency identification, and in particular, relates to a signal processing method and device, and an RFID system.
  • the RFID system includes an electronic tag, a reader and an application software system. Its basic working principle is: after the electronic tag enters the magnetic field generated by the reader, it receives the radio frequency signal sent by the reader, and the energy obtained by the induced current is sent out and stored in the chip. The product information, or the electronic tag actively sends a signal of a certain frequency, the reader reads the information and decodes it, and sends it to the application software system for related data processing. The transmission of signals from the electronic tag to the reader is usually carried out by means of load modulation.
  • Load modulation is to adjust the electrical parameters of the oscillating circuit in the electronic tag according to the rhythm of the data stream, so that the impedance and phase of the electronic tag change accordingly.
  • Load modulation mainly includes resistive load modulation and capacitive load modulation.
  • Figure 1 is a circuit diagram of resistive load modulation.
  • the modulation resistor R1 and the control switch S are connected in series with the load resistor R0 in parallel, and the on-off of the control switch S is controlled by binary data coding.
  • the binary data code is "1”
  • the control switch S is turned on, and the load of the electronic tag is the modulation resistor R1 and the load resistor R0 in parallel; when the binary data code is "0”, the control switch S is turned off, and the load of the electronic tag is The modulation resistor is R1.
  • the control switch S is turned on, the load of the electronic tag is small. For parallel resonance, if the parallel resistance is small, the quality factor will be reduced.
  • the quality factor will decrease, which will cause the voltage across the resonant tank to drop. Therefore, when the switch S is turned on or off, the voltage across the resonant tank will change. When the voltage at both ends of the resonant tank changes, due to inductive coupling, this change will be transmitted to the reader, which is manifested as a change in the voltage amplitude across the coil of the reader, and the voltage amplitude modulation is performed on the reader.
  • FIG. 2 is a circuit diagram of capacitive load modulation.
  • the modulation capacitor C1 is connected in series with the control switch S and then connected in parallel with the load resistor R0. Due to the connection of the modulation capacitor C1, the resonant tank is detuned, and the reader is also detuned. Control the on and off of the switch S, so that the resonant frequency of the electronic tag is converted between the two frequencies.
  • the access of the modulation capacitor C1 reduces the voltage across the coil of the electronic tag and increases the voltage across the coil of the reader.
  • the waveform change of capacitive load modulation is similar to that of resistive load modulation, but the voltage across the coil of the reader changes not only in amplitude but also in phase.
  • the present disclosure provides a signal processing method and device, and an RFID system, which are used to solve the problem that the existing load modulation mode of the RFID system is not suitable for high-speed signal propagation.
  • a signal processing method applied to an RFID electronic tag, which includes: performing coding processing on a digital baseband signal to obtain a coded signal; performing phase shift keying modulation processing on the coded signal to obtain a coded signal. Obtain a first modulated signal; perform orthogonal frequency division multiplexing modulation on the first modulated signal to obtain a second modulated signal; send the second modulated signal to an RFID reader, and the RFID reader will check the The second modulated signal is subjected to orthogonal frequency division multiplexing demodulation processing, phase shift keying demodulation processing and decoding processing in sequence.
  • the encoding processing on the digital baseband signal includes: using a Gray code encoding algorithm to perform encoding processing on the digital baseband signal.
  • the performing phase shift keying modulation processing on the encoded signal includes: performing phase shift keying modulation processing on the encoded signal by using an 8-phase shift keying modulation algorithm.
  • the performing orthogonal frequency division multiplexing modulation processing on the first modulated signal includes: inserting a pilot frequency for the first modulated signal to obtain a first serial signal; Perform serial-to-parallel conversion processing on the first serial signal to obtain N channels of first parallel signals, where N is the number of subcarriers; perform inverse fast discrete Fourier transform processing on the N channels of first parallel signals to obtain N channels of second parallel signals ; Perform parallel-serial conversion processing on the N channels of second parallel signals to obtain a second serial signal; and add a cyclic prefix to the second serial signal to obtain the second modulated signal.
  • another signal processing method applied to an RFID reader, comprising: receiving a radio frequency signal from an RFID electronic tag, where the radio frequency signal sequentially encodes a digital baseband signal for the RFID electronic tag processing, phase shift keying modulation processing, and OFDM modulation processing to obtain a signal; performing OFDM demodulation processing on the radio frequency signal to obtain a first demodulated signal; Perform phase shift keying demodulation processing on the modulated signal to obtain a second demodulated signal; and perform decoding processing on the second demodulated signal to obtain the digital baseband signal.
  • the performing phase shift keying demodulation processing on the first demodulated signal includes: using an 8-phase shift keying demodulation algorithm to perform phase shift keying on the first demodulated signal Control demodulation processing.
  • the decoding processing on the second demodulated signal includes: using a Gray code decoding algorithm to perform decoding processing on the second demodulated signal.
  • a signal processing device applied to an RFID electronic tag, comprising: an encoding module for performing encoding processing on a digital baseband signal to obtain an encoded signal; a phase shift keying modulation module for performing phase shift keying modulation processing on the encoded signal to obtain a first modulated signal; an OFDM modulation module for performing OFDM modulation processing on the first modulated signal to obtain a second modulation signal A modulated signal; a sending module for sending the second modulated signal to an RFID reader, and the RFID reader sequentially performs orthogonal frequency division multiplexing demodulation processing and phase shift keying on the second modulated signal Demodulation processing and decoding processing.
  • another signal processing device applied to an RFID reader, comprising: a receiving module for receiving a radio frequency signal from an RFID electronic tag, where the radio frequency signal is the digital signal of the RFID electronic tag
  • the baseband signal is sequentially subjected to encoding processing, phase shift keying modulation processing, and OFDM modulation processing to obtain a signal; an OFDM demodulation module is used to perform OFDM to the radio frequency signal demodulation processing to obtain a first demodulated signal; a phase shift keying demodulation module for performing phase shift keying demodulation processing on the first demodulated signal to obtain a second demodulated signal; a decoding module for The second demodulated signal is decoded to obtain the digital baseband signal.
  • an RFID system including an RFID electronic tag and an RFID reader; the RFID electronic tag encodes a digital baseband signal to obtain an encoded signal; the RFID electronic tag encodes the The signal is subjected to phase shift keying modulation processing to obtain a first modulation signal; the RFID electronic tag performs orthogonal frequency division multiplexing modulation processing on the first modulation signal to obtain a second modulation signal; the RFID electronic tag converts the The second modulated signal is sent to the RFID reader; the RFID reader receives the second modulated signal from the RFID electronic tag; the RFID reader performs orthogonal frequency division multiplexing and demultiplexing on the second modulated signal demodulation processing to obtain a first demodulated signal; the RFID reader performs phase shift keying demodulation processing on the first demodulated signal to obtain a second demodulated signal; the RFID reader demodulates the second demodulated signal The modulated signal is decoded to obtain the digital baseband signal.
  • an electronic device comprising a memory, a processor, and a computer program stored on the memory and executable on the processor, when the processor executes the computer program Implement the steps of the above signal processing method.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the steps of the above signal processing method.
  • a new modulation method is used in the communication process between the electronic tag and the reader, that is, the digital baseband signal is sequentially encoded and phase-shift keyed. Modulation processing and OFDM modulation processing.
  • the RFID system can utilize the bandwidth more effectively, thereby realizing high-speed signal transmission.
  • the RFID system may have long-distance transmission or transmission in the case of large noise in the channel. , Inter Symbol Interference) will affect the transmission of the signal, resulting in an increase in the bit error rate.
  • the interference caused by inter-channel interference and inter-symbol interference on signal transmission can be effectively resisted, and the possibility of data errors can be reduced.
  • RFID systems can also significantly reduce the bit error rate of signal transmission.
  • Fig. 1 is the circuit diagram of existing resistance load modulation
  • Fig. 2 is the circuit diagram of existing capacitive load modulation
  • FIG. 3 is a flowchart of a signal processing method according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of 8-phase shift keying modulation according to some embodiments of the present disclosure.
  • FIG. 6 is a flowchart of a signal processing method according to other embodiments of the present disclosure.
  • a signal processing method is provided, which is applied to an RFID electronic tag.
  • 3 is a flowchart of the signal processing method, and the signal processing method includes:
  • Step S31 encoding the digital baseband signal to obtain an encoded signal
  • Step S32 performing phase shift keying modulation processing on the encoded signal to obtain a first modulation signal
  • Step S33 performing orthogonal frequency division multiplexing modulation processing on the first modulated signal to obtain a second modulated signal
  • Step S34 sending the second modulated signal to the RFID reader.
  • the digital baseband signal is a signal corresponding to the data that the RFID electronic tag needs to send to the RFID reader, and is generated by the control circuit of the RFID electronic tag.
  • the coding process for the digital baseband signal is channel coding, which can improve the stability of data transmission and overcome problems such as path loss, multipath, and shadowing of wireless channels.
  • the digital baseband signal is encoded using a Gray code encoding algorithm.
  • RS encoding algorithm convolutional code encoding algorithm, etc.
  • phase shift keying PSK, Phase Shift Keying
  • 8PSK 8-phase shift keying
  • 4 is a schematic diagram of 8-phase shift keying modulation according to some embodiments of the present disclosure.
  • 8 symbols respectively correspond to 8 phases of the complex plane.
  • the binary information is encoded into 8 symbols, and each symbol can be encoded into 3 bits, which can greatly improve the data transmission rate.
  • phase-shift keying modulation will generate large inter-symbol interference
  • orthogonal frequency division multiplexing modulation processing is performed on the first modulated signal, so as to reduce the influence caused by the inter-symbol interference .
  • 5 is a flowchart of performing OFDM modulation processing on the first modulated signal according to some embodiments of the present disclosure, and performing OFDM modulation processing on the first modulated signal includes:
  • Step S51 inserting a pilot into the first modulated signal to obtain a first serial signal
  • Step S52 performing serial-to-parallel conversion processing on the first serial signal to obtain N channels of first parallel signals, where N is the number of subcarriers;
  • Step S53 performing inverse fast discrete Fourier transform processing on the N channels of first parallel signals to obtain N channels of second parallel signals;
  • Step S54 performing parallel-serial conversion processing on the N channels of second parallel signals to obtain a second serial signal
  • Step S55 adding a cyclic prefix to the second serial signal to obtain the second modulated signal.
  • channel information is estimated by inserting pilots.
  • the wireless channel changes with time, and the channel has different effects on signals of different frequencies.
  • To know the actual amplitude and phase of the signal it is necessary to obtain the amplitude and phase changes caused by the channel to the signal.
  • the pilot is sent to the RFID reader along with the data to be sent to the RFID reader.
  • the RFID reader can know the amplitude and phase changes of the signal by analyzing the signal it receives.
  • the pilot is a known string of data, and inserting the pilot into the first modulated signal is to insert the pilot at several specific frequencies of the first modulated signal.
  • the data at these specific frequencies is processed in the RFID reader, and the state of the entire channel can be estimated from the channel conditions at these locations. It should be noted that the specific frequency can be selected according to the actual application scenario, as long as the energy of the pilot frequency and the energy of the data to be sent to the RFID reader can be effectively distinguished.
  • a beam of signals travels from the sender to the receiver through multiple paths, and the propagation delays of the signals are different due to the different distances of the multiple paths. Signals with different delays are superimposed together, which will cause mutual interference between symbols.
  • the symbol time can be increased. When the symbol time is much longer than the channel delay, the influence of the crosstalk between symbols on the symbol decision will be greatly reduced, but it will reduce the symbol transmission speed.
  • a guard interval can be inserted between each OFDM symbol, and the length of the guard interval is usually longer than that of the wireless Maximum delay spread of the channel so that the multipath components of one symbol do not interfere with the next symbol.
  • a cyclic prefix is used to insert a guard interval, and a part of the OFDM symbol is moved before the symbol for transmission.
  • the symbol period, the carrier frequency spacing, and the number of subcarriers can be selected according to actual application scenarios.
  • the length of the symbol period affects the carrier spacing and the delay time of coding and modulation. If a fixed digital modulation is used, the longer the symbol period, the stronger the anti-interference ability of the system, but the larger the number of carriers and the larger operation scale required.
  • the second modulated signal is sent to the RFID reader, and the RFID reader sequentially performs orthogonal frequency division multiplexing demodulation processing and phase shift keying demodulation on the second modulated signal. processing and decoding.
  • the signal processing method provided by the present disclosure uses a new modulation method in the communication process between the RFID electronic tag and the RFID reader, that is, the digital baseband signal is sequentially subjected to encoding processing, phase-shift keying modulation processing, and orthogonal frequency division multiplexing. Treat with modulation.
  • the RFID system can utilize the bandwidth more effectively, thereby realizing high-speed signal transmission.
  • the RFID system may have long-distance transmission or transmission in the case of large noise in the channel, and the inter-channel interference and inter-symbol interference that did not need to be paid attention to will affect the transmission of the signal, resulting in Bit error rate increased.
  • the signal processing method provided by the present disclosure can also significantly reduce the The bit error rate of the signal transmission.
  • another signal processing method is also provided, which is applied to an RFID reader.
  • 6 is a flowchart of the signal processing method, the signal processing method includes:
  • Step S61 receiving a radio frequency signal from the RFID electronic tag
  • Step S62 performing orthogonal frequency division multiplexing and demodulation processing on the radio frequency signal to obtain a first demodulated signal
  • Step S63 performing phase shift keying demodulation processing on the first demodulated signal to obtain a second demodulated signal
  • Step S64 decoding the second demodulated signal to obtain the digital baseband signal.
  • the radio frequency signal is a signal obtained by the RFID electronic tag sequentially performing encoding processing, phase shift keying modulation processing and orthogonal frequency division multiplexing modulation processing on the digital baseband signal, which is the second modulation signal described above.
  • Performing OFDM demodulation processing on the radio frequency signal corresponds to performing OFDM modulation processing on the first modulated signal described above.
  • the performing orthogonal frequency division multiplexing and demodulation processing on the radio frequency signal includes:
  • Channel estimation is performed on the fourth serial signal to obtain the first demodulated signal.
  • Performing phase shift keying demodulation processing on the first demodulated signal corresponds to the above-described performing phase shift keying modulation processing on the encoded signal.
  • the performing phase shift keying demodulation processing on the first demodulated signal comprises: performing phase shift keying demodulation on the first demodulated signal by using an 8-phase shift keying demodulation algorithm deal with.
  • Decoding the second demodulated signal corresponds to the encoding process of the digital baseband signal described above.
  • the decoding processing on the second demodulated signal includes: using a Gray code decoding algorithm to perform decoding processing on the second demodulated signal.
  • a signal processing device applied to an RFID electronic tag comprising:
  • an encoding module used to encode the digital baseband signal to obtain an encoded signal
  • phase-shift keying modulation module configured to perform phase-shift keying modulation processing on the encoded signal to obtain a first modulated signal
  • an OFDM modulation module configured to perform OFDM modulation processing on the first modulated signal to obtain a second modulated signal
  • a sending module configured to send the second modulated signal to an RFID reader, and the RFID reader sequentially performs orthogonal frequency division multiplexing demodulation processing and phase shift keying demodulation processing on the second modulated signal and decoding processing.
  • the encoding module uses a Gray code encoding algorithm to encode the digital baseband signal.
  • the phase shift keying modulation module uses an 8-phase shift keying modulation algorithm to perform phase shift keying modulation processing on the encoded signal.
  • the OFDM modulation module includes:
  • an inserting module configured to insert a pilot frequency for the first modulated signal to obtain a first serial signal
  • a first serial-to-parallel conversion module configured to perform serial-to-parallel conversion processing on the first serial signal to obtain N channels of first parallel signals, where N is the number of subcarriers;
  • an inverse fast discrete Fourier transform module configured to perform inverse fast discrete Fourier transform processing on the N channels of first parallel signals to obtain N channels of second parallel signals;
  • a first parallel-serial conversion module configured to perform parallel-serial conversion processing on the N channels of second parallel signals to obtain a second serial signal
  • a prefix adding module configured to add a cyclic prefix to the second serial signal to obtain the second modulated signal.
  • the receiving module is used for receiving a radio frequency signal from the RFID electronic tag, and the radio frequency signal is a signal obtained by the RFID electronic tag sequentially performing encoding processing, phase shift keying modulation processing and orthogonal frequency division multiplexing modulation processing on the digital baseband signal ;
  • an orthogonal frequency division multiplexing demodulation module for performing orthogonal frequency division multiplexing and demodulation processing on the radio frequency signal to obtain a first demodulated signal
  • phase shift keying demodulation module configured to perform phase shift keying demodulation processing on the first demodulated signal to obtain a second demodulated signal
  • a decoding module configured to perform decoding processing on the second demodulated signal to obtain the digital baseband signal.
  • the OFDM demodulation module includes:
  • a de-prefixing module configured to remove the cyclic prefix in the radio frequency signal to obtain a third serial signal
  • a fast discrete Fourier transform module configured to perform fast discrete Fourier transform processing on the N channels of third parallel signals to obtain N channels of fourth parallel signals;
  • a second parallel-serial conversion module configured to perform parallel-serial conversion processing on the N channels of fourth parallel signals to obtain a fourth serial signal
  • a channel estimation module configured to perform channel estimation on the fourth serial signal to obtain the first demodulated signal.
  • the phase shift keying demodulation module uses an 8-phase shift keying demodulation algorithm to perform a phase shift keying demodulation process on the first demodulated signal.
  • the decoding module uses a Gray code decoding algorithm to decode the second demodulated signal.
  • an RFID system comprising an RFID electronic tag and an RFID reader
  • the RFID electronic tag encodes the digital baseband signal to obtain an encoded signal
  • the RFID electronic tag performs phase shift keying modulation processing on the encoded signal to obtain a first modulation signal
  • the RFID electronic tag performs orthogonal frequency division multiplexing modulation processing on the first modulation signal to obtain a second modulation signal;
  • the RFID electronic tag sends the second modulated signal to an RFID reader
  • the RFID reader receives the second modulated signal from the RFID electronic tag
  • the RFID reader performs orthogonal frequency division multiplexing demodulation processing on the second modulated signal to obtain a first demodulated signal
  • the RFID reader performs phase shift keying demodulation processing on the first demodulated signal to obtain a second demodulated signal
  • the RFID reader decodes the second demodulated signal to obtain the digital baseband signal.
  • an electronic device comprising a memory, a processor, and a computer program stored on the memory and executable on the processor, the processor executing the When the computer program is described, the steps of the aforementioned signal processing method are realized.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the steps of the aforementioned signal processing method.

Abstract

本公开提供了一种信号处理方法以及装置、RFID系统,所述信号处理方法应用于RFID电子标签,包括:对数字基带信号进行编码处理以获得编码信号;对所述编码信号进行移相键控调制处理以获得第一调制信号;对所述第一调制信号进行正交频分复用调制处理以获得第二调制信号;将所述第二调制信号发送给RFID阅读器,由所述RFID阅读器对所述第二调制信号依次进行正交频分复用解调处理、移相键控解调处理以及解码处理。根据本公开的一个或多个实施方式的信号处理方法以及装置、RFID系统,可以使RFID系统能够更加有效地利用带宽,从而实现信号的高速传输,还可以显著降低信号传输的误码率。

Description

信号处理方法以及装置、RFID系统
相关申请的交叉引用
本申请主张2020年7月16日提交的中国专利申请号202010686435.1且名称为“信号处理方法以及装置、RFID系统”的优先权,其全部内容通过引用包含于此。
技术领域
本公开属于射频识别技术领域,尤其涉及一种信号处理方法以及装置、RFID系统。
背景技术
随着物联网技术的快速发展,RFID(射频识别,Radio Frequency Identification)技术作为物联网感知层的关键技术之一,越来越受到人们的重视。RFID系统包括电子标签、阅读器以及应用软件系统,其基本工作原理是:电子标签进入阅读器产生的磁场后,接收阅读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息,或者由电子标签主动发送某一频率的信号,阅读器读取信息并解码后,送至应用软件系统进行相关的数据处理。电子标签向阅读器传输信号通常采用负载调制的方式进行,负载调制是按照数据流的节拍对电子标签中振荡回路的电参数进行调节,使电子标签的阻抗大小和相位随之改变。负载调制主要有电阻负载调制和电容负载调制两种方式。
图1是电阻负载调制的电路图。在电阻负载调制中,调制电阻R1和控制开关S串联后与负载电阻R0并联,控制开关S的通断由二进制数据编码控制。当二进制数据编码为“1”时,控制开关S接通,电子标签的负载为调制电阻R1和负载电阻R0并联;当二进制数据编码为“0”时,控制开关S断开,电子标签的负载为调制电阻为R1。当控制开关S接通时,电子标签的负载较小。对于并联谐振,如果并联电阻较小,将降低品质因数。也就是说,当电子标签的负载较小时,品质因数将降低,这将使谐振回路两端的电压下降。因此,控制开关S接通或断开,会使谐振回路两端的电压发生变化。当谐振回路两端的电压发生变化时,由于电感耦合,这种变化会传递给阅读器,表现为阅读器的线圈两端的电压振幅发生变化,对阅读器进行电压调幅。
图2是电容负载调制的电路图。在电容负载调制中,调制电容C1和控制开关S串联后与负载电阻R0并联。由于接入了调制电容C1,谐振回路失谐,导致阅读器也失谐。控制开关S的接通和断开,使电子标签的谐振频率在两个频率之间转换。通过定性分析可知,调制电容C1的接入使电子标签的线圈两端的电压下降,阅读器的线圈两端的电压上升。电容负载调制的波形变化,与电阻负载调制的波形变化相似,但阅读器的线圈两端的电压不仅发生振幅的变化,也发生相位的变化。
随着数据的传播速度越来越快,电子标签的容量正在逐渐加大。上述两种负载调制方式虽然简单,但无法满足爆炸式的数据传输,不适用于高速信号的传播。
发明内容
针对现有技术存在的问题,本公开提供了一种信号处理方法以及装置、RFID系统,用于解决RFID系统现有的负载调制方式不适用于高速信号的传播的问题。
在本公开的第一方面,提供了一种信号处理方法,应用于RFID电子标签,其包括:对数字基带信号进行编码处理以获得编码信号;对所述编码信号进行移相键控调制处理以获得第一调制信号;对所述第一调制信号进行正交频分复用调制处理以获得第二调制信号;将所述第二调制信号发送给RFID阅读器,由所述RFID阅读器对所述第二调制信号依次进行正交频分复用解调处理、移相键控解调处理以及解码处理。
在本公开的一些实施方式中,所述对数字基带信号进行编码处理包括:采用格雷码编码算法对所述数字基带信号进行编码处理。
在本公开的一些实施方式中,所述对所述编码信号进行移相键控调制处理包括:采用8移相键控调制算法对所述编码信号进行移相键控调制处理。
在本公开的一些实施方式中,所述对所述第一调制信号进行正交频分复用调制处理包括:为所述第一调制信号插入导频以获得第一串行信号;对所述第一串行信号进行串并转换处理以获得N路第一并行信号,N为副载波的数量;对所述N路第一并行信号进行快速离散傅立叶逆变换处理以获得N路第二并行信号;对所述N路第二并行信号进行并串转换处理以获得第二串行信号;为所述第二串行信号添加循环前缀以获得所述第二调制信号。
在本公开的第二方面,提供了另一种信号处理方法,应用于RFID阅读器,包括:从RFID电子标签接收射频信号,所述射频信号为所述RFID电子标签对数字基带信号依次进行编码处理、移相键控调制处理以及正交频分复用调 制处理获得的信号;对所述射频信号进行正交频分复用解调处理以获得第一解调信号;对所述第一解调信号进行移相键控解调处理以获得第二解调信号;对所述第二解调信号进行解码处理以获得所述数字基带信号。
在本公开的一些实施方式中,所述对所述第一解调信号进行移相键控解调处理包括:采用8移相键控解调算法对所述第一解调信号进行移相键控解调处理。
在本公开的一些实施方式中,所述对所述第二解调信号进行解码处理包括:采用格雷码解码算法对所述第二解调信号进行解码处理。
在本公开的第三方面,提供了一种信号处理装置,应用于RFID电子标签,包括:编码模块,用于对数字基带信号进行编码处理以获得编码信号;移相键控调制模块,用于对所述编码信号进行移相键控调制处理以获得第一调制信号;正交频分复用调制模块,用于对所述第一调制信号进行正交频分复用调制处理以获得第二调制信号;发送模块,用于将所述第二调制信号发送给RFID阅读器,由所述RFID阅读器对所述第二调制信号依次进行正交频分复用解调处理、移相键控解调处理以及解码处理。
在本公开的第四方面,提供了另一种信号处理装置,应用于RFID阅读器,包括:接收模块,用于从RFID电子标签接收射频信号,所述射频信号为所述RFID电子标签对数字基带信号依次进行编码处理、移相键控调制处理以及正交频分复用调制处理获得的信号;正交频分复用解调模块,用于对所述射频信号进行正交频分复用解调处理以获得第一解调信号;移相键控解调模块,用于对所述第一解调信号进行移相键控解调处理以获得第二解调信号;解码模块,用于对所述第二解调信号进行解码处理以获得所述数字基带信号。
在本公开的第五方面,提供了一种RFID系统,包括RFID电子标签和RFID阅读器;所述RFID电子标签对数字基带信号进行编码处理以获得编码信号;所述RFID电子标签对所述编码信号进行移相键控调制处理以获得第一调制信号;所述RFID电子标签对所述第一调制信号进行正交频分复用调制处理以获得第二调制信号;所述RFID电子标签将所述第二调制信号发送给RFID阅读器;所述RFID阅读器从所述RFID电子标签接收所述第二调制信号;所述RFID阅读器对所述第二调制信号进行正交频分复用解调处理以获得第一解调信号;所述RFID阅读器对所述第一解调信号进行移相键控解调处理以获得第二解调信号;所述RFID阅读器对所述第二解调信号进行解码处理以获得所述数字基带信号。
在本公开的第六方面,提供了一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行 所述计算机程序时实现上述信号处理方法的步骤。
在本公开的第七方面,提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述信号处理方法的步骤。
根据本公开的一个或多个实施方式的信号处理方法以及装置、RFID系统,在电子标签与阅读器的通信过程中使用新的调制方式,即对数字基带信号依次进行编码处理、移相键控调制处理以及正交频分复用调制处理。通过移相键控调制的调制方式,使得RFID系统能够更加有效地利用带宽,从而实现信号的高速传输。此外,随着传输速度的加快、RFID系统可能会有远距离传输或者在信道具有较大噪声的情况下传输,原本不需要注意的信道间干扰(ICI,Inter Channel Interference)和符号间干扰(ISI,Inter Symbol Interference)将会影响到信号的传输,导致误码率升高。而通过编码处理和正交频分复用调制处理,可以有效抵挡信道间干扰与符号间干扰对信号传输造成的干扰,降低数据出错的可能性,因而本共开提供的信号处理方法以及装置、RFID系统还可以显著降低信号传输的误码率。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为现有的电阻负载调制的电路图;
图2为现有的电容负载调制的电路图;
图3为依据本公开的一些实施例的信号处理方法的流程图;
图4为依据本公开的一些实施例的8移相键控调制的示意图;
图5为依据本公开的一些实施例的正交频分复用调制方法的流程图;以及
图6为依据本公开的另一些实施例的信号处理方法的流程图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
下面通过附图及具体实施例对本公开的技术方案做进一步的详细说 明。
在本公开的第一方面,提供了一种信号处理方法,应用于RFID电子标签。图3是所述信号处理方法的流程图,所述信号处理方法包括:
步骤S31,对数字基带信号进行编码处理以获得编码信号;
步骤S32,对所述编码信号进行移相键控调制处理以获得第一调制信号;
步骤S33,对所述第一调制信号进行正交频分复用调制处理以获得第二调制信号;以及,
步骤S34,将所述第二调制信号发送给RFID阅读器。
所述数字基带信号是RFID电子标签需要发送给RFID阅读器的数据对应的信号,由RFID电子标签的控制电路产生。对所述数字基带信号进行编码处理是进行信道编码,信道编码可以提高数据传输的稳定性,克服无线信道的路径损耗、多径、以及阴影等问题。在一些实施方式中,采用格雷码编码算法对所述数字基带信号进行编码处理。当然,也可以采用RS编码算法、卷积码编码算法等其他编码算法对所述数字基带信号进行编码处理,本公开对此不进行限定。
获得所述编码信号后,对所述编码信号进行移相键控(PSK,Phase Shift Keying)调制处理。在一些实施方式中,采用8移相键控(8PSK)调制算法对所述编码信号进行移相键控调制处理。图4为依据本公开的一些实施方式的8移相键控调制的示意图,对于8移相键控调制,8个符号分别对应复数平面的8个相位。二进制信息被编码为8个符号,每个符号可以编码为3个比特位,能够极大地提高数据传输速率。
由于移相键控调制会产生较大的符号间干扰,因而获得所述第一调制信号后,对所述第一调制信号进行正交频分复用调制处理,以降低符号间干扰造成的影响。图5是依据本公开的一些实施方式对所述第一调制信号进行正交频分复用调制处理的流程图,对所述第一调制信号进行正交频分复用调制处理包括:
步骤S51,为所述第一调制信号插入导频以获得第一串行信号;
步骤S52,对所述第一串行信号进行串并转换处理以获得N路第一并行信号,N为副载波的数量;
步骤S53,对所述N路第一并行信号进行快速离散傅立叶逆变换处理以获得N路第二并行信号;
步骤S54,对所述N路第二并行信号进行并串转换处理以获得第二串行信号;以及,
步骤S55,为所述第二串行信号添加循环前缀以获得所述第二调制信号。
由于信道噪声的随机性和信道多径的影响,为了恢复原始数据,在RFID阅读器中需要对信道进行估计,获得正交频分复用符号每个子载波上的绝对参考相位和幅值,以便准确无误地恢复原始数据。信道估计的准确性直接影响到整个正交频分复用调制的性能,在一些实施方式中,通过插入导频来估计信道信息。无线信道在随时间变化,信道对不同频率的信号影响不同,要知道信号实际幅度和相位,就需要求得信道对信号造成的幅度和相位变化。通过为所述第一调制信号插入导频,导频和需要发送给RFID阅读器的数据一起被发送至RFID阅读器。RFID阅读器通过对其接收的信号进行分析,就可以知道信号的幅度和相位变化。导频是已知的一串数据,为所述第一调制信号插入导频,就是将导频插入所述第一调制信号的几个特定频率处。在RFID阅读器中对这几个特定频率处的数据进行处理,可以由这几个位置的信道状况来推算整个信道的状况。需要说明的是,特定频率可以根据实际应用场景进行选取,只要使得导频的能量与需要发送给RFID阅读器的数据能量能够被有效地区别开即可。
由于无线信道中存在多径现象,一束信号从发送端经过多条路径到达接收端,多条路径由于距离不同会导致信号传播的时延不同。不同时延的信号叠加在一起,会导致码元间的相互干扰。为了解决由多径引起的码元间串扰问题,可以增加码元时间。当码元时间远远大于信道的时延时,码元间串扰对于码元判决的影响将大大减小,但随之而来的是使码元传输速度降低。为了有效地降低码元间串扰的影响,同时尽可能地减少对码元自身传输速率的影响,可以在每个正交频分复用符号之间插入保护问隔,该保护间隔长度通常大于无线信道的最大时延扩展,这样一个符号的多径分量就不会对下一个符号造成干扰。在一些实施方式中,为了不破坏子载波的正交性,采用循环前缀的方式来插入保护间隔,将正交频分复用符号的一部分移到符号之前进行发送。
需要说明的是,在正交频分复用调制过程中,符号周期、载波频率间距以及副载波个数,可根据实际应用场景来进行选择。根据通信系统的相关知识可知,符号周期的长短影响载波间距以及编码调制的延迟时间。若采用固定的数字调制,则符号周期越长,系统的抗干扰能力越强,但是所需的载波数量和运算规模也越大。
获得所述第二调制信号之后,将所述第二调制信号发送给RFID阅读器,由RFID阅读器对所述第二调制信号依次进行正交频分复用解调处理、移相键控解调处理以及解码处理。
本公开提供的信号处理方法,在RFID电子标签与RFID阅读器的通信过程中使用新的调制方式,即对所述数字基带信号依次进行编码处理、移相键控调制处理以及正交频分复用调制处理。通过移相键控调制的调制方式,使得RFID系统能够更加有效地利用带宽,从而实现信号的高速传输。此外,随着传输速度的加快、RFID系统可能会有远距离传输或者在信道具有较大噪声的情况下传输,原本不需要注意的信道间干扰和符号间干扰将会影响到信号的传输,导致误码率升高。而通过编码处理和正交频分复用调制处理,可以有效抵挡信道间干扰与符号间干扰对信号传输造成的干扰,降低数据出错的可能性,因而本公开提供的信号处理方法还可以显著降低信号传输的误码率。
在本公开的第二方面,还提供另一种信号处理方法,应用于RFID阅读器。图6是所述信号处理方法的流程图,所述信号处理方法包括:
步骤S61,从RFID电子标签接收射频信号;
步骤S62,对所述射频信号进行正交频分复用解调处理以获得第一解调信号;
步骤S63,对所述第一解调信号进行移相键控解调处理以获得第二解调信号;以及,
步骤S64,对所述第二解调信号进行解码处理以获得所述数字基带信号。
所述射频信号为RFID电子标签对数字基带信号依次进行编码处理、移相键控调制处理以及正交频分复用调制处理获得的信号,即为前述所描述的第二调制信号。
对所述射频信号进行正交频分复用解调处理,与前述描述的对所述第一调制信号进行正交频分复用调制处理对应。在一些实施方式中,所述对所述射频信号进行正交频分复用解调处理包括:
去除所述射频信号中的循环前缀以获得第三串行信号;
对所述第三串行信号进行串并转换处理以获得N路第三并行信号;
对所述N路第三并行信号进行快速离散傅立叶变换处理以获得N路第四并行信号;
对所述N路第四并行信号进行并串转换处理以获得第四串行信号;以及,
对所述第四串行信号进行信道估计以获得所述第一解调信号。
对所述第一解调信号进行移相键控解调处理,与前述描述的对所述编码信号进行移相键控调制处理对应。在一些实施方式中,所述对所述第一解调信号进行移相键控解调处理包括:采用8移相键控解调算法对所述第一解调信 号进行移相键控解调处理。
对所述第二解调信号进行解码处理,与前述描述的对所述数字基带信号进行编码处理对应。在一些实施方式中,所述对所述第二解调信号进行解码处理包括:采用格雷码解码算法对所述第二解调信号进行解码处理。
在本公开的第三方面,还提供一种信号处理装置,应用于RFID电子标签,所述信号处理装置包括:
编码模块,用于对数字基带信号进行编码处理以获得编码信号;
移相键控调制模块,用于对所述编码信号进行移相键控调制处理以获得第一调制信号;
正交频分复用调制模块,用于对所述第一调制信号进行正交频分复用调制处理以获得第二调制信号;
发送模块,用于将所述第二调制信号发送给RFID阅读器,由所述RFID阅读器对所述第二调制信号依次进行正交频分复用解调处理、移相键控解调处理以及解码处理。
在一些实施方式中,所述编码模块采用格雷码编码算法对所述数字基带信号进行编码处理。
在一些实施方式中,所述移相键控调制模块采用8移相键控调制算法对所述编码信号进行移相键控调制处理。
在一些实施方式中,所述正交频分复用调制模块包括:
插入模块,用于为所述第一调制信号插入导频以获得第一串行信号;
第一串并转换模块,用于对所述第一串行信号进行串并转换处理以获得N路第一并行信号,N为副载波的数量;
快速离散傅立叶逆变换模块,用于对所述N路第一并行信号进行快速离散傅立叶逆变换处理以获得N路第二并行信号;
第一并串转换模块,用于对所述N路第二并行信号进行并串转换处理以获得第二串行信号;
前缀添加模块,用于为所述第二串行信号添加循环前缀以获得所述第二调制信号。
在本公开的第四方面,还提供另一种信号处理装置,应用于RFID阅读器,所述信号处理装置包括:
接收模块,用于从RFID电子标签接收射频信号,所述射频信号为所述RFID电子标签对数字基带信号依次进行编码处理、移相键控调制处理以及正交频分复用调制处理获得的信号;
正交频分复用解调模块,用于对所述射频信号进行正交频分复用解调 处理以获得第一解调信号;
移相键控解调模块,用于对所述第一解调信号进行移相键控解调处理以获得第二解调信号;
解码模块,用于对所述第二解调信号进行解码处理以获得所述数字基带信号。
在一些实施方式中,所述正交频分复用解调模块包括:
去前缀模块,用于去除所述射频信号中的循环前缀以获得第三串行信号;
在本公开的一些实施方式中,用于对所述第三串行信号进行串并转换处理以获得N路第三并行信号;
快速离散傅立叶变换模块,用于对所述N路第三并行信号进行快速离散傅立叶变换处理以获得N路第四并行信号;
第二并串转换模块,用于对所述N路第四并行信号进行并串转换处理以获得第四串行信号;
信道估计模块,用于对所述第四串行信号进行信道估计以获得所述第一解调信号。
在一些实施方式中,所述移相键控解调模块采用8移相键控解调算法对所述第一解调信号进行移相键控解调处理。
在一些实施方式中,所述解码模块采用格雷码解码算法对所述第二解调信号进行解码处理。
在本公开的第五方面,还提供一种RFID系统,包括RFID电子标签和RFID阅读器;
所述RFID电子标签对数字基带信号进行编码处理以获得编码信号;
所述RFID电子标签对所述编码信号进行移相键控调制处理以获得第一调制信号;
所述RFID电子标签对所述第一调制信号进行正交频分复用调制处理以获得第二调制信号;
所述RFID电子标签将所述第二调制信号发送给RFID阅读器;
所述RFID阅读器从所述RFID电子标签接收所述第二调制信号;
所述RFID阅读器对所述第二调制信号进行正交频分复用解调处理以获得第一解调信号;
所述RFID阅读器对所述第一解调信号进行移相键控解调处理以获得第二解调信号;
所述RFID阅读器对所述第二解调信号进行解码处理以获得所述数字 基带信号。
所述RFID阅读器和所述RFID电子标签执行操作的具体方式,已经在前述进行了详细描述,此处将不做详细阐述说明。
在本公开的第六方面,还提供一种电子设备,所述电子设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现前述信号处理方法的步骤。
在本公开的第七方面,还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现前述信号处理方法的步骤。
以上所述,仅为本公开的实施例而已,并非用于限定本公开的保护范围,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。

Claims (12)

  1. 一种信号处理方法,应用于RFID电子标签,包括:
    对数字基带信号进行编码处理以获得编码信号;
    对所述编码信号进行移相键控调制处理以获得第一调制信号;
    对所述第一调制信号进行正交频分复用调制处理以获得第二调制信号;
    将所述第二调制信号发送给RFID阅读器,由所述RFID阅读器对所述第二调制信号依次进行正交频分复用解调处理、移相键控解调处理以及解码处理。
  2. 根据权利要求1所述的信号处理方法,其中所述对数字基带信号进行编码处理包括:
    采用格雷码编码算法对所述数字基带信号进行编码处理。
  3. 根据权利要求1所述的信号处理方法,其中所述对所述编码信号进行移相键控调制处理包括:
    采用8移相键控调制算法对所述编码信号进行移相键控调制处理。
  4. 根据权利要求1所述的信号处理方法,其中所述对所述第一调制信号进行正交频分复用调制处理包括:
    为所述第一调制信号插入导频以获得第一串行信号;
    对所述第一串行信号进行串并转换处理以获得N路第一并行信号,N为副载波的数量;
    对所述N路第一并行信号进行快速离散傅立叶逆变换处理以获得N路第二并行信号;
    对所述N路第二并行信号进行并串转换处理以获得第二串行信号;
    为所述第二串行信号添加循环前缀以获得所述第二调制信号。
  5. 一种信号处理方法,应用于RFID阅读器,包括:
    从RFID电子标签接收射频信号,所述射频信号为所述RFID电子标签对数字基带信号依次进行编码处理、移相键控调制处理以及正交频分复用调制处理获得的信号;
    对所述射频信号进行正交频分复用解调处理以获得第一解调信号;
    对所述第一解调信号进行移相键控解调处理以获得第二解调信号;
    对所述第二解调信号进行解码处理以获得所述数字基带信号。
  6. 根据权利要求5所述的信号处理方法,其中所述对所述第一解调信号进行移相键控解调处理包括:
    采用8移相键控解调算法对所述第一解调信号进行移相键控解调处理。
  7. 根据权利要求5所述的信号处理方法,其中所述对所述第二解调信号进行解码处理包括:
    采用格雷码解码算法对所述第二解调信号进行解码处理。
  8. 一种信号处理装置,应用于RFID电子标签,包括:
    编码模块,用于对数字基带信号进行编码处理以获得编码信号;
    移相键控调制模块,用于对所述编码信号进行移相键控调制处理以获得第一调制信号;
    正交频分复用调制模块,用于对所述第一调制信号进行正交频分复用调制处理以获得第二调制信号;
    发送模块,用于将所述第二调制信号发送给RFID阅读器,由所述RFID阅读器对所述第二调制信号依次进行正交频分复用解调处理、移相键控解调处理以及解码处理。
  9. 一种信号处理装置,应用于RFID阅读器,包括:
    接收模块,用于从RFID电子标签接收射频信号,所述射频信号为所述RFID电子标签对数字基带信号依次进行编码处理、移相键控调制处理以及正交频分复用调制处理获得的信号;
    正交频分复用解调模块,用于对所述射频信号进行正交频分复用解调处理以获得第一解调信号;
    移相键控解调模块,用于对所述第一解调信号进行移相键控解调处理以获得第二解调信号;
    解码模块,用于对所述第二解调信号进行解码处理以获得所述数字基带信号。
  10. 一种RFID系统,包括RFID电子标签和RFID阅读器;
    所述RFID电子标签对数字基带信号进行编码处理以获得编码信号;
    所述RFID电子标签对所述编码信号进行移相键控调制处理以获得第一调制信号;
    所述RFID电子标签对所述第一调制信号进行正交频分复用调制处理以获 得第二调制信号;
    所述RFID电子标签将所述第二调制信号发送给RFID阅读器;
    所述RFID阅读器从所述RFID电子标签接收所述第二调制信号;
    所述RFID阅读器对所述第二调制信号进行正交频分复用解调处理以获得第一解调信号;
    所述RFID阅读器对所述第一解调信号进行移相键控解调处理以获得第二解调信号;
    所述RFID阅读器对所述第二解调信号进行解码处理以获得所述数字基带信号。
  11. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现权利要求1-4或者权利要求5-7任一项所述方法的步骤。
  12. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现权利要求1-4或者权利要求5-7任一项所述方法的步骤。
PCT/CN2020/119027 2020-07-16 2020-09-29 信号处理方法以及装置、rfid系统 WO2022011843A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/995,859 US11922257B2 (en) 2020-07-16 2020-09-29 Signal processing methods and RFID system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010686435.1A CN112001460B (zh) 2020-07-16 2020-07-16 信号处理方法以及装置、rfid系统
CN202010686435.1 2020-07-16

Publications (1)

Publication Number Publication Date
WO2022011843A1 true WO2022011843A1 (zh) 2022-01-20

Family

ID=73467420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119027 WO2022011843A1 (zh) 2020-07-16 2020-09-29 信号处理方法以及装置、rfid系统

Country Status (3)

Country Link
US (1) US11922257B2 (zh)
CN (1) CN112001460B (zh)
WO (1) WO2022011843A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115642937B (zh) * 2022-09-19 2023-09-08 电子科技大学 频分复用式rfid读写器中基带信号处理系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050088285A1 (en) * 2003-10-28 2005-04-28 Samsung Electronics Co., Ltd. Mobile communication terminal with RFID function and RFID programming method in the same
CN101281587A (zh) * 2007-07-26 2008-10-08 北京航空航天大学 射频识别阅读方法和应答方法
CN101346734A (zh) * 2005-12-22 2009-01-14 Lg伊诺特有限公司 射频识别系统
CN102194084A (zh) * 2010-03-04 2011-09-21 英飞凌科技股份有限公司 无源rfid应答器和rfid读取设备
EP2950456A1 (en) * 2014-05-30 2015-12-02 Nxp B.V. Communication circuit and approach with modulation
CN107862228A (zh) * 2017-11-03 2018-03-30 锐捷网络股份有限公司 一种信号处理方法及rfid读写器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2190123T3 (da) * 2002-07-03 2012-05-29 Dtvg Licensing Inc Fremgangsmåde og system til generering af Low Density Parity Check (LDPC) koder
US7787547B2 (en) * 2006-03-24 2010-08-31 Broadcom Corporation Hybrid radio frequency transmitter
CN101060511B (zh) * 2006-06-22 2011-08-24 华为技术有限公司 正交频分复用系统的干扰检测方法及系统
CN101014103A (zh) * 2007-02-13 2007-08-08 鼎芯通讯(上海)有限公司 数字多媒体接收机
US7933350B2 (en) * 2007-10-30 2011-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Channel-dependent frequency-domain scheduling in an orthogonal frequency division multiplexing communications system
CN101409699B (zh) * 2008-11-28 2011-03-30 清华大学 一种用于宽带无线移动通信系统中的信号传输方法
EP3652721A1 (en) * 2017-09-04 2020-05-20 NNG Software Developing and Commercial LLC A method and apparatus for collecting and using sensor data from a vehicle
CN109039975B (zh) * 2018-09-07 2020-07-31 航天恒星科技有限公司 一种多次重复移相的码移键控调制方法及其解调方法
CN111050399B (zh) * 2018-10-12 2023-08-18 迪朵无线创新有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050088285A1 (en) * 2003-10-28 2005-04-28 Samsung Electronics Co., Ltd. Mobile communication terminal with RFID function and RFID programming method in the same
CN101346734A (zh) * 2005-12-22 2009-01-14 Lg伊诺特有限公司 射频识别系统
CN101281587A (zh) * 2007-07-26 2008-10-08 北京航空航天大学 射频识别阅读方法和应答方法
CN102194084A (zh) * 2010-03-04 2011-09-21 英飞凌科技股份有限公司 无源rfid应答器和rfid读取设备
EP2950456A1 (en) * 2014-05-30 2015-12-02 Nxp B.V. Communication circuit and approach with modulation
CN107862228A (zh) * 2017-11-03 2018-03-30 锐捷网络股份有限公司 一种信号处理方法及rfid读写器

Also Published As

Publication number Publication date
CN112001460B (zh) 2022-04-01
US11922257B2 (en) 2024-03-05
CN112001460A (zh) 2020-11-27
US20230140784A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
CN106357311B (zh) 一种基于载波索引调制的mimo-ofdm系统的检测方法
CN109391292B (zh) 加权分数傅里叶变换域双时隙分集与复用的协同传输方法
CN106161328B (zh) 基于载波索引调制的mimo-ofdm系统的检测方法
CN104780033A (zh) 一种用于sim-ofdm系统的自适应子载波分配方法
WO2022011843A1 (zh) 信号处理方法以及装置、rfid系统
CN104994052B (zh) 用于sim-ofdm系统的发送数据调制方法
Meenalakshmi et al. Enhancing channel estimation accuracy in polar-coded MIMO–OFDM systems via CNN with 5G channel models
Krishnamoorthy et al. Performance of Underwater Acoustic Channel using modified TCM OFDM coding techniques
JP2008228306A (ja) マルチキャリアデータ伝送の方法
CN101150555A (zh) 编码方法与装置和解码方法与装置
Wetz et al. Robust transmission over fast fading channels on the basis of OFDM-MFSK
JP2006511154A (ja) Ofdmシステム用の送信機ダイバーシティ方法
CN105187337B (zh) 一种基于重复编码的ofdm判决辅助信道估计算法
Qin et al. Structured Quasi-Gray labelling for Reed-Muller Grassmannian Constellations
US11329703B2 (en) Transmitter, communication apparatus, method and computer program for transmitting amplitude shift keyed signals using multiple transmit antennas
Huang et al. A Novel Maximum Distance Separable Coded OFDM-RIS for 6G Wireless Communications
Al‐Saggaf et al. Machine Learning Aided Channel Equalization in Filter Bank Multi‐Carrier Communications for 5G
US20090074101A1 (en) Detection Performance in Communication Systems
CN109257316A (zh) 一种基于水声稀疏正交频分复用的多载波调制方法
Fadhel et al. Performance analysis of coded MIMO OFDM with subcarrier power modulation
Tamilarasan et al. Performance of MIMO MC-CDMA system with Channel Estimation and MMSE Equalization
Kim New constellation design and bit mapping for dual mode ofdm-im
CN116319230B (zh) 一种信号接收方法、装置、计算机设备及存储介质
KR101225649B1 (ko) 다중 안테나 통신시스템의 채널추정 장치 및 방법
US11522741B2 (en) Receiver, communication apparatus, method and computer program for receiving an amplitude shift keyed signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945336

Country of ref document: EP

Kind code of ref document: A1