WO2022011665A1 - Network slicing nssp/ursp and ue local configuration updating - Google Patents

Network slicing nssp/ursp and ue local configuration updating Download PDF

Info

Publication number
WO2022011665A1
WO2022011665A1 PCT/CN2020/102610 CN2020102610W WO2022011665A1 WO 2022011665 A1 WO2022011665 A1 WO 2022011665A1 CN 2020102610 W CN2020102610 W CN 2020102610W WO 2022011665 A1 WO2022011665 A1 WO 2022011665A1
Authority
WO
WIPO (PCT)
Prior art keywords
list
nssp
network
application
processor
Prior art date
Application number
PCT/CN2020/102610
Other languages
French (fr)
Inventor
Nan Zhang
Zhiguo Li
Yongjun XU
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/102610 priority Critical patent/WO2022011665A1/en
Publication of WO2022011665A1 publication Critical patent/WO2022011665A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • aspects of the present disclosure relate to wireless communications, and more particularly, to network slicing enhancements and configuring a user equipment for network slice selection.
  • a BS or DU may communicate with a set of UEs on downlink channels (e.g., for transmissions from a BS or DU to a UE) and uplink channels (e.g., for transmissions from a UE to BS or DU) .
  • downlink channels e.g., for transmissions from a BS or DU to a UE
  • uplink channels e.g., for transmissions from a UE to BS or DU
  • NR e.g., new radio or 5G
  • LTE long term evolution
  • NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP.
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) .
  • OFDMA orthogonal frequency division multiple access
  • CP cyclic prefix
  • DL downlink
  • UL uplink
  • NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • MIMO multiple-input multiple-output
  • wireless networks such as NR and LTE networks
  • Edge computing devices may support dynamic distribution of processing of data and/or content between the edge computing devices and a wireless device, such as a UE.
  • Certain aspects provide a method for wireless communication by a UE operating system.
  • the method generally includes obtaining a network slice selection policy (NSSP) list associated with an application on the UE, comparing the NSSP list with a single network slice selection assistance information (S-NSSAI) list associated with a network, and determining, based on the comparison, to use the NSSP list to connect to a network slicing instance of the network, and to configure the UE with the NSSP list.
  • NSSP network slice selection policy
  • S-NSSAI single network slice selection assistance information
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
  • FIG. 2 is a block diagram conceptually illustrating a design of an example base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
  • BS base station
  • UE user equipment
  • an application may reduce the burden on a network by providing a UE with network slice selection policy (NSSP) information to the UE to allow the UE to connect to a network slicing instance for the application.
  • NSSP network slice selection policy
  • a CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • cdma2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • An OFDMA network may implement a radio technology such as NR (e.g.
  • E-UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDMA
  • UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
  • New Radio is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) .
  • 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
  • New radio (NR) access may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mmW millimeter wave
  • mMTC massive machine type communications MTC
  • URLLC ultra-reliable low-latency communications
  • These services may include latency and reliability requirements.
  • These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements.
  • TTI transmission time intervals
  • QoS quality of service
  • these services may co-exist in the same subframe.
  • FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed.
  • a UE 120 may be configured to perform operations 300 of FIG. 3, to achieve network slicing enhancements and configure a UE for network slice selection.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal FDMA
  • SC-FDMA Single-Carrier FDMA
  • a CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc.
  • UTRA includes Wideband-CDMA (W-CDMA) and Low Chip Rate (LCR) .
  • cdma2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA network may implement a radio technology such as Evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, etc.
  • E-UTRA, and GSM are part of Universal Mobile Telecommunication System (UMTS) .
  • Long Term Evolution (LTE) is an upcoming release of UMTS that uses E-UTRA.
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • SC-FDMA Single carrier frequency division multiple access
  • SC-FDMA Single carrier frequency division multiple access
  • SC-FDMA signal has lower peak-to-average power ratio (PAPR) because of its inherent single carrier structure.
  • PAPR peak-to-average power ratio
  • SC-FDMA has drawn great attention, especially in the uplink communications where lower PAPR greatly benefits the mobile terminal in terms of transmit power efficiency. It is currently a working assumption for uplink multiple access scheme in 3GPP Long Term Evolution (LTE) , or Evolved UTRA.
  • LTE Long Term Evolution
  • FIG. 1 shows a wireless communication network 100 in which aspects of the present disclosure may be practiced.
  • evolved Node Bs 110 may cache content and transmit the cached content to user equipments (UEs) 120 as described herein.
  • UEs user equipments
  • Wireless communication network 100 may be an LTE network.
  • the wireless network 100 may include a number of evolved Node Bs (eNBs) 110 and other network entities.
  • eNB evolved Node Bs
  • An eNB may be a station that communicates with the UEs and may also be referred to as a base station, an access point, etc.
  • a Node B is another example of a station that communicates with the UEs.
  • An eNB may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) .
  • CSG Closed Subscriber Group
  • An eNB for a macro cell may be referred to as a macro eNB.
  • An eNB for a pico cell may be referred to as a pico eNB.
  • An eNB for a femto cell may be referred to as a femto eNB or a home eNB.
  • the eNBs 110a, 110b and 110c may be macro eNBs for the macro cells 102a, 102b and 102c, respectively.
  • the eNB 110x may be a pico eNB for a pico cell 102x.
  • the eNBs 110y and 110z may be femto eNBs for the femto cells 102y and 102z, respectively.
  • An eNB may support one or multiple (e.g., three) cells.
  • the wireless network 100 may support synchronous or asynchronous operation.
  • the eNBs may have similar frame timing, and transmissions from different eNBs may be approximately aligned in time.
  • the eNBs may have different frame timing, and transmissions from different eNBs may not be aligned in time.
  • the techniques described herein may be used for both synchronous and asynchronous operation.
  • LTE utilizes orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the wireless network 100 may also include UEs 120 capable of communicating with a core network via one or more radio access networks (RANs) that implement one or more radio access technologies (RATs) .
  • RANs radio access networks
  • RATs radio access technologies
  • the wireless network 100 may include co-located access points (APs) and/or base stations that provide communication through a first RAN implementing a first RAT and a second RAN implementing a second RAT.
  • the first RAN may be a wide area wireless access network (WWAN) and the second RAN may be a wireless local area network (WLAN) .
  • WWAN wide area wireless access network
  • WLAN wireless local area network
  • WWAN may include, but not be limited to, for example, radio access technologies (RATs) such as LTE, UMTS, cdma2000, GSM, and the like.
  • RATs radio access technologies
  • WLAN may include, but not be limited to, for example, RATs such as Wi-Fi or IEEE 802.11 based technologies, and the like.
  • FIG. 2 is a block diagram of an example embodiment of a base station 110 (also known as an access point (AP) ) and a UE 120 in which aspects of the present disclosure may be practiced.
  • a base station 110 also known as an access point (AP)
  • AP access point
  • FIG. 2 is a block diagram of an example embodiment of a base station 110 (also known as an access point (AP) ) and a UE 120 in which aspects of the present disclosure may be practiced.
  • the various processors of UE 120 may be configured to perform operations 300 of FIG. 3.
  • traffic data for a number of data streams is provided from a data source 212 to a transmit (TX) data processor 214.
  • TX data processor 214 formats, codes, and interleaves the traffic data for each data stream based on a particular coding scheme selected for that data stream to provide coded data.
  • TX MIMO processor 220 may further process the modulation symbols (e.g., for OFDM) .
  • TX MIMO processor 220 then provides N T modulation symbol streams to N T transmitters (TMTR) 222a through 222t.
  • TMTR TX MIMO processor 220 applies beamforming weights to the symbols of the data streams and to the antenna from which the symbol is being transmitted.
  • Each receiver 222 receives and processes a respective symbol stream to provide one or more analog signals, and further conditions (e.g., amplifies, filters, and upconverts) the analog signals to provide a modulated signal suitable for transmission over the MIMO channel.
  • N T modulated signals from transmitters 222a through 222t are then transmitted from N T antennas 224a through 224t, respectively.
  • the transmitted modulated signals are received by N R antennas 252a through 252r, and the received signal from each antenna 252 is provided to a respective receiver (RCVR) 254a through 254r.
  • Each receiver 254 conditions (e.g., filters, amplifies, and downconverts) a respective received signal, digitizes the conditioned signal to provide samples, and further processes the samples to provide a corresponding “received” symbol stream.
  • An RX data processor 260 then receives and processes the N R received symbol streams from N R receivers 254 based on a particular receiver processing technique to provide N T “detected” symbol streams.
  • the RX data processor 260 then demodulates, deinterleaves, and decodes each detected symbol stream to recover the traffic data for the data stream.
  • the processing by RX data processor 260 is complementary to that performed by TX MIMO processor 220 and TX data processor 214 at base station 110.
  • a processor 270 periodically determines which pre-coding matrix to use. Processor 270 formulates a reverse link message comprising a matrix index portion and a rank value portion.
  • the modulated signals from UE 120 are received by antennas 224, conditioned by receivers 222, demodulated by a demodulator 240, and processed by a RX data processor 242 to extract the reserve link message transmitted by the UE 120.
  • Processor 230 determines which pre-coding matrix to use for determining the beamforming weights and then processes the extracted message.
  • the controllers/processors 230 and 270 may direct the operation at the base station 110 and the UE 120, respectively.
  • the processor 230, TX data processor 214, and/or other processors and modules at the base station 110 may perform or direct processes for the techniques described herein.
  • the processor 270, RX data processor 260, and/or other processors and modules at the UE 120 may perform or direct processes for the techniques described herein.
  • the processor 230, TX data processor 214, and/or other processors and modules at the UE 120 may perform or direct operations 300 of FIG. 3.
  • aspects of the present disclosure relate to wireless communications, and more particularly, to network slicing enhancements and configuring a user equipment (UE) for network slice selection.
  • UE user equipment
  • a UE may be able to configure and/or update a network slice selection policy list (NSSP) associated with the application to provide for improved indexing of applications on the UE.
  • NSSP network slice selection policy list
  • URSP may be updated by either a network policy control function (PCF) or by local UE configurations.
  • PCF network policy control function
  • Network PCF URSP may have a higher priority than local UE URSP configurations, and, if the policies conflict, the local URSP configuration may be overwritten.
  • FIG. 3 illustrates example operations 300 for wireless communications by a UE.
  • operations 300 may be performed, by a UE (e.g., the UE 120 of FIG. 1 or FIG. 2) to enhance network slicing and configure the UE for network slice selection.
  • a UE e.g., the UE 120 of FIG. 1 or FIG. 2
  • the application may be downloaded and/or upgraded during the run time of the UE.
  • the application may provide UE with a most up-to-date NSSP list of all public land mobility networks (PLMNs) specific to the application.
  • PLMNs public land mobility networks
  • the UE may check PLMN matching criteria to obtain a current PLMN-specific NSSP list the application.
  • the UE may check the NSSP list associated with the application against the S-NSSAI of the network to determine if a particular PLMN is allowed or not. If successful, UE may configure the NSSP list associated with the application locally.
  • an application A may be downloaded and installed to UE A.
  • the application A may provide the UE operating system (OS) with a PLMN-NSSP list specific to the application A.
  • OS UE operating system
  • the S-NSSAI slice type may be ultra-reliable low latency communication (uRLLC) .
  • FIG. 4 illustrates a communications device 400 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 3.
  • the communications device 400 includes a processing system 402 coupled to a transceiver 408 (e.g., a transmitter and/or a receiver) .
  • the transceiver 408 is configured to transmit and receive signals for the communications device 400 via an antenna 410, such as the various signals as described herein.
  • the processing system 402 may be configured to perform processing functions for the communications device 400, including processing signals received and/or to be transmitted by the communications device 400.
  • computer-readable medium/memory 412 stores code 414 for obtaining a NSSP list associated with an application on the UE; code 416 for comparing the NSSP list with a S-NSSAI list associated with a network; and code 418 for determining, based on the comparison, to use the NSSP list to connect to a network slicing instance of the network, and to configure the UE with the NSSP list.
  • the processor 404 has circuitry configured to implement the code stored in the computer-readable medium/memory 412.
  • the processor 404 includes circuitry 420 for obtaining a NSSP list associated with an application on the UE; circuitry 422 for comparing the NSSP list with a S-NSSAI list associated with a network; and circuitry 424 for determining, based on the comparison, to use the NSSP list to connect to a network slicing instance of the network, and to configure the UE with the NSSP list.
  • Embodiment 1 a method for wireless communications performed by a user equipment (UE) , comprising: obtaining a network slice selection policy (NSSP) list associated with an application on the UE, comparing the NSSP list with a single network slice selection assistance information (S-NSSAI) list associated with a network, and determining, based on the comparison, to use the NSSP list to connect to a network slicing instance of the network, and to configure the UE with the NSSP list.
  • NSSP network slice selection policy
  • S-NSSAI single network slice selection assistance information
  • Embodiment 3 the method of embodiment 1 or 2, wherein the NSSP list is obtained from the application.
  • Embodiment 5 the method of any of embodiments 1-4, further comprising receiving a data service request from the application.
  • Embodiment 6 the method of embodiment 5, wherein at least one of the comparison or determination is performed in response to the data service request.
  • Embodiment 11 the apparatus of any of embodiments 8-10, wherein the NSSP list comprises a list of public land mobile networks (PLMNs) .
  • PLMNs public land mobile networks
  • Embodiment 17 the apparatus of any of embodiment 15 or 16, wherein the NSSP list is obtained from the application.
  • Embodiment 18 the apparatus of any of embodiments 15-17, wherein the NSSP list comprises a list of public land mobile networks (PLMNs) .
  • PLMNs public land mobile networks
  • Embodiment 21 the apparatus of any of embodiments 15-20, wherein the memory and the at least one processor are further configured to configure the UE to update a UE route selection policy (USRP) based on the determination.
  • USRP UE route selection policy
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • determining encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • an example hardware configuration may comprise a processing system in a wireless node.
  • the processing system may be implemented with a bus architecture.
  • the bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints.
  • the bus may link together various circuits including a processor, machine-readable media, and a bus interface.
  • the bus interface may be used to connect a network adapter, among other things, to the processing system via the bus.
  • the network adapter may be used to implement the signal processing functions of the PHY layer.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • the bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further.
  • the processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
  • the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium.
  • Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • the processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media.
  • a computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface.
  • the machine-readable media, or any portion thereof may be integrated into the processor, such as the case may be with cache and/or general register files.
  • machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrical Erasable Programmable Read-Only Memory
  • registers magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • the machine-readable media may be embodied in a computer-program product.
  • a software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media.
  • the computer-readable media may comprise a number of software modules.
  • the software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions.
  • the software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices.
  • a software module may be loaded into RAM from a hard drive when a triggering event occurs.
  • the processor may load some of the instructions into cache to increase access speed.
  • One or more cache lines may then be loaded into a general register file for execution by the processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) .
  • computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
  • certain aspects may comprise a computer program product for performing the operations presented herein.
  • a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein.
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable.
  • a user terminal and/or base station can be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.
  • storage means e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.
  • CD compact disc
  • floppy disk etc.
  • any other suitable technique for providing the methods and techniques described herein to a device can be utilized.

Abstract

Aspects of the present disclosure relate to wireless communications, and more particularly, to network slicing enhancements and configuring a user equipment for network slice selection. An example method of the techniques described herein generally includes obtaining a network slice selection policy (NSSP) list associated with an application on the UE, comparing the NSSP list with a single network slice selection assistance information (S-NSSAI) list associated with a network, and determining, based on the comparison, to use the NSSP list to connect to a network slicing instance of the network, and to configure the UE with the NSSP list.

Description

NETWORK SLICING NSSP/URSP AND UE LOCAL CONFIGURATION UPDATING
Field of the Disclosure
Aspects of the present disclosure relate to wireless communications, and more particularly, to network slicing enhancements and configuring a user equipment for network slice selection.
Description of Related Art
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) . Examples of such multiple-access systems include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
In some examples, a wireless multiple-access communication system may include a number of base stations (BSs) , which are each capable of simultaneously supporting communication for multiple communication devices, otherwise known as user equipments (UEs) . In an LTE or LTE-A network, a set of one or more base stations may define an eNodeB (eNB) . In other examples (e.g., in a next generation, a new radio (NR) , or 5G network) , a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc. ) in communication with a number of central units (CUs) (e.g., central nodes (CNs) , access node controllers (ANCs) , etc. ) , where a set of one or more DUs, in communication with a CU, may define an access node (e.g., which may be referred to as a BS, 5G NB, next generation NodeB (gNB or gNodeB) , transmission reception point (TRP) , etc. ) . A BS or DU may  communicate with a set of UEs on downlink channels (e.g., for transmissions from a BS or DU to a UE) and uplink channels (e.g., for transmissions from a UE to BS or DU) .
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. NR (e.g., new radio or 5G) is an example of an emerging telecommunication standard. NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP. NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) . To these ends, NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in NR and LTE technology. Preferably, these improvements should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
In some cases, wireless networks, such as NR and LTE networks, may deploy edge computing devices, so named because they reside at an “edge” of the network. Edge computing devices may support dynamic distribution of processing of data and/or content between the edge computing devices and a wireless device, such as a UE.
BRIEF SUMMARY
The systems, methods, and devices of the disclosure each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure as expressed by the claims which follow, some features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description” one will understand how the features of this disclosure provide advantages that include improved communications a user equipment (UE) and a wireless network.
Certain aspects provide a method for wireless communication by a UE operating system. The method generally includes obtaining a network slice selection policy (NSSP) list associated with an application on the UE, comparing the NSSP list  with a single network slice selection assistance information (S-NSSAI) list associated with a network, and determining, based on the comparison, to use the NSSP list to connect to a network slicing instance of the network, and to configure the UE with the NSSP list.
Aspects generally include methods, apparatus, systems, computer readable mediums, and processing systems, as substantially described herein with reference to and as illustrated by the accompanying drawings.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects.
FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
FIG. 2 is a block diagram conceptually illustrating a design of an example base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
FIG. 3 illustrates example operations for wireless communications by a UE, in accordance with some aspects of the present disclosure.
FIG. 4 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is  contemplated that elements disclosed in one aspect may be beneficially utilized on other aspects without specific recitation.
DETAILED DESCRIPTION
Aspects of the present disclosure relate to wireless communications, and more particularly, to network slicing enhancements and configuring a user equipment for network slice selection. As will be described in more detail below, an application may reduce the burden on a network by providing a UE with network slice selection policy (NSSP) information to the UE to allow the UE to connect to a network slicing instance for the application.
The following description provides examples, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in some other examples. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to, or other than, the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
The techniques described herein may be used for various wireless communication technologies, such as LTE, CDMA, TDMA, FDMA, OFDMA, SC-FDMA and other networks. The terms “network” and “system” are often used interchangeably. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as Global System  for Mobile Communications (GSM) . An OFDMA network may implement a radio technology such as NR (e.g. 5G RA) , Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
New Radio (NR) is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) . 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
New radio (NR) access (e.g., 5G technology) may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) . These services may include latency and reliability requirements. These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements. In addition, these services may co-exist in the same subframe.
Example Wireless Communications System
FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed. For example, a UE 120 may be configured to perform operations 300 of FIG. 3, to achieve network slicing enhancements and configure a UE for network slice selection.
The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
The techniques described herein may be used for various wireless communication networks such as Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, Single-Carrier FDMA (SC-FDMA) networks, etc. The terms “networks” and “systems” are often used interchangeably. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc. UTRA includes Wideband-CDMA (W-CDMA) and Low Chip Rate (LCR) . cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) . An OFDMA network may implement a radio technology such as Evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, 
Figure PCTCN2020102610-appb-000001
etc. UTRA, E-UTRA, and GSM are part of Universal Mobile Telecommunication System (UMTS) . Long Term Evolution (LTE) is an upcoming release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These various radio technologies and standards are known in the art. For clarity, certain aspects of the techniques are described below for LTE, and LTE terminology is used in much of the description below.
Single carrier frequency division multiple access (SC-FDMA) , which utilizes single carrier modulation and frequency domain equalization is a technique. SC-FDMA has similar performance and essentially the same overall complexity as those of OFDMA system. SC-FDMA signal has lower peak-to-average power ratio (PAPR) because of its inherent single carrier structure. SC-FDMA has drawn great attention, especially in the uplink communications where lower PAPR greatly benefits the mobile terminal in terms  of transmit power efficiency. It is currently a working assumption for uplink multiple access scheme in 3GPP Long Term Evolution (LTE) , or Evolved UTRA.
FIG. 1 shows a wireless communication network 100 in which aspects of the present disclosure may be practiced. For example, evolved Node Bs 110 may cache content and transmit the cached content to user equipments (UEs) 120 as described herein.
Wireless communication network 100 may be an LTE network. The wireless network 100 may include a number of evolved Node Bs (eNBs) 110 and other network entities. An eNB may be a station that communicates with the UEs and may also be referred to as a base station, an access point, etc. A Node B is another example of a station that communicates with the UEs.
Each eNB 110 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of an eNB and/or an eNB subsystem serving this coverage area, depending on the context in which the term is used.
An eNB may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) . An eNB for a macro cell may be referred to as a macro eNB. An eNB for a pico cell may be referred to as a pico eNB. An eNB for a femto cell may be referred to as a femto eNB or a home eNB. In the example shown in FIG. 1, the  eNBs  110a, 110b and 110c may be macro eNBs for the  macro cells  102a, 102b and 102c, respectively. The eNB 110x may be a pico eNB for a pico cell 102x. The eNBs 110y and 110z may be femto eNBs for the  femto cells  102y and 102z, respectively. An eNB may support one or multiple (e.g., three) cells.
The wireless network 100 may also include relay stations. A relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., an eNB or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or an eNB) . A relay station may also be  a UE that relays transmissions for other UEs. In the example shown in FIG. 1, a relay station 110r may communicate with the eNB 110a and a UE 120r in order to facilitate communication between the eNB 110a and the UE 120r. A relay station may also be referred to as a relay eNB, a relay, etc.
The wireless network 100 may be a heterogeneous network that includes eNBs of different types, e.g., macro eNBs, pico eNBs, femto eNBs, relays, etc. These different types of eNBs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless network 100. For example, macro eNBs may have a high transmit power level (e.g., 20 Watts) whereas pico eNBs, femto eNBs and relays may have a lower transmit power level (e.g., 1 Watt) .
The wireless network 100 may support synchronous or asynchronous operation. For synchronous operation, the eNBs may have similar frame timing, and transmissions from different eNBs may be approximately aligned in time. For asynchronous operation, the eNBs may have different frame timing, and transmissions from different eNBs may not be aligned in time. The techniques described herein may be used for both synchronous and asynchronous operation.
network controller 130 may couple to a set of eNBs and provide coordination and control for these eNBs. The network controller 130 may communicate with the eNBs 110 via a backhaul. The eNBs 110 may also communicate with one another, e.g., directly or indirectly via wireless or wireline backhaul.
The UEs 120 may be dispersed throughout the wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as a terminal, a mobile station, a subscriber unit, a station, etc. A UE may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, etc. A UE may be able to communicate with macro eNBs, pico eNBs, femto eNBs, relays, etc. In FIG. 1, a solid line with double arrows indicates desired transmissions between a UE and a serving eNB, which is an eNB designated to serve the UE on the downlink and/or uplink. A dashed line with double arrows indicates interfering transmissions between a UE and an eNB.
LTE utilizes orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.  OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a ‘resource block’ ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal FFT size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively. The system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.8 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
The wireless network 100 may also include UEs 120 capable of communicating with a core network via one or more radio access networks (RANs) that implement one or more radio access technologies (RATs) . For example, according to certain aspects provided herein, the wireless network 100 may include co-located access points (APs) and/or base stations that provide communication through a first RAN implementing a first RAT and a second RAN implementing a second RAT. According to certain aspects, the first RAN may be a wide area wireless access network (WWAN) and the second RAN may be a wireless local area network (WLAN) . Examples of WWAN may include, but not be limited to, for example, radio access technologies (RATs) such as LTE, UMTS, cdma2000, GSM, and the like. Examples of WLAN may include, but not be limited to, for example, RATs such as Wi-Fi or IEEE 802.11 based technologies, and the like.
According to certain aspects provided herein, the wireless network 100 may include co-located Wi-Fi access points (APs) and femto eNBs that provide communication through Wi-Fi and cellular radio links. As used herein, the term “co-located” generally means “in close proximity to, ” and applies to Wi-Fi APs or femto eNBs within the same device enclosure or within separate devices that are in close proximity to each other. According to certain aspects of the present disclosure, as used herein, the term “femtoAP” may refer to a co-located Wi-Fi AP and femto eNB.
FIG. 2 is a block diagram of an example embodiment of a base station 110 (also known as an access point (AP) ) and a UE 120 in which aspects of the present disclosure may be practiced. For example, the various processors of UE 120 may be configured to perform operations 300 of FIG. 3.
At the base station 110, traffic data for a number of data streams is provided from a data source 212 to a transmit (TX) data processor 214. In an aspect, each data stream is transmitted over a respective transmit antenna. TX data processor 214 formats, codes, and interleaves the traffic data for each data stream based on a particular coding scheme selected for that data stream to provide coded data.
The coded data for each data stream may be multiplexed with pilot data using OFDM techniques. The pilot data is typically a known data pattern that is processed in a known manner and may be used at the receiver system to estimate the channel response. The multiplexed pilot and coded data for each data stream is then modulated (i.e., symbol mapped) based on a particular modulation scheme (e.g., BPSK, QSPK, M-PSK, or M-QAM) selected for that data stream to provide modulation symbols. The data rate, coding, and modulation for each data stream may be determined by instructions performed by processor 230.
The modulation symbols for all data streams are then provided to a TX MIMO processor 220, which may further process the modulation symbols (e.g., for OFDM) . TX MIMO processor 220 then provides N T modulation symbol streams to N T transmitters (TMTR) 222a through 222t. In certain embodiments, TX MIMO processor 220 applies beamforming weights to the symbols of the data streams and to the antenna from which the symbol is being transmitted.
Each receiver 222 receives and processes a respective symbol stream to provide one or more analog signals, and further conditions (e.g., amplifies, filters, and upconverts) the analog signals to provide a modulated signal suitable for transmission over the MIMO channel. N T modulated signals from transmitters 222a through 222t are then transmitted from N T antennas 224a through 224t, respectively.
At UE 120, the transmitted modulated signals are received by N R antennas 252a through 252r, and the received signal from each antenna 252 is provided to a respective receiver (RCVR) 254a through 254r. Each receiver 254 conditions (e.g., filters, amplifies, and downconverts) a respective received signal, digitizes the  conditioned signal to provide samples, and further processes the samples to provide a corresponding “received” symbol stream.
An RX data processor 260 then receives and processes the N R received symbol streams from N R receivers 254 based on a particular receiver processing technique to provide N T “detected” symbol streams. The RX data processor 260 then demodulates, deinterleaves, and decodes each detected symbol stream to recover the traffic data for the data stream. The processing by RX data processor 260 is complementary to that performed by TX MIMO processor 220 and TX data processor 214 at base station 110.
processor 270 periodically determines which pre-coding matrix to use. Processor 270 formulates a reverse link message comprising a matrix index portion and a rank value portion.
The reverse link message may comprise various types of information regarding the communication link and/or the received data stream. The reverse link message is then processed by a TX data processor 238, which also receives traffic data for a number of data streams from a data source 236, modulated by a modulator 280, conditioned by transmitters 254a through 254r, and transmitted back to base station 110.
At base station 110, the modulated signals from UE 120 are received by antennas 224, conditioned by receivers 222, demodulated by a demodulator 240, and processed by a RX data processor 242 to extract the reserve link message transmitted by the UE 120. Processor 230 then determines which pre-coding matrix to use for determining the beamforming weights and then processes the extracted message.
According to certain aspects, the controllers/ processors  230 and 270 may direct the operation at the base station 110 and the UE 120, respectively. According to an aspect, the processor 230, TX data processor 214, and/or other processors and modules at the base station 110 may perform or direct processes for the techniques described herein. According to another aspect, the processor 270, RX data processor 260, and/or other processors and modules at the UE 120 may perform or direct processes for the techniques described herein. For example, the processor 230, TX data processor 214, and/or other processors and modules at the UE 120 may perform or direct operations 300 of FIG. 3.
Example Network Slicing Enhancements and Configuring a UE for Network Slice Selection
As noted above, aspects of the present disclosure relate to wireless communications, and more particularly, to network slicing enhancements and configuring a user equipment (UE) for network slice selection. For example, by handling requests of an application, a UE may be able to configure and/or update a network slice selection policy list (NSSP) associated with the application to provide for improved indexing of applications on the UE.
Currently, NSSP in UE route selection policy (URSP) is an essential aspect in network slicing data traffic routing from UE applications to network slicing instances. The traffic routing task is generally complex and often involve many or all of a network slicing ecosystem stakeholders (e.g., operators, application vendors, UE vendors, end users, etc. ) .
Presently, there are millions of applications and millions of application vendors. Moreover, there are more than 200 operators and more than 2000 public land mobile networks (PLMNs) , and many UE vendors (1000+) .
In current standards information (e.g., TS23.503 and other dependent 3GPP TS) URSP may be updated by either a network policy control function (PCF) or by local UE configurations. Network PCF URSP may have a higher priority than local UE URSP configurations, and, if the policies conflict, the local URSP configuration may be overwritten.
However, any given UE may have numerous different applications, many of which may be updated, changed, and/or deleted during UE operating system (OS) run time without any notifications provided to the network PCF. Since the network may have difficulty keeping track of each applications status in real time, the PCF may not be able to update each application’s corresponding URSP during a UE’s run time.
Furthermore, due to the complex business considerations of network slicing traffic routing and the potentially millions of applications with corresponding USRPs, for the network PCF to update all PLMN URSP for a UE during the UE’s run time is overly complex and impractical.
Accordingly, certain aspects provide for enhanced network slicing and configuring a UE for network slice selection. For example, an application may provide the UE with a NSSP list to configure the UE with that NSSP list and connect to a particular network slicing instance. The local URSP configuration for a UE may be beneficial as NW PCF URSP is further developed to provide future solutions (e.g., updating back-up) .
FIG. 3 illustrates example operations 300 for wireless communications by a UE. For example, operations 300 may be performed, by a UE (e.g., the UE 120 of FIG. 1 or FIG. 2) to enhance network slicing and configure the UE for network slice selection.
Operations 300 begin, at 302, by obtaining a network slice selection policy (NSSP) list associated with an application on the UE.
At 304, the UE compares the NSSP list with a single network slice selection assistance information (S-NSSAI) list associated with a network.
At 306, the UE determines, based on the comparison, to use the NSSP list to connect to a network slicing instance of the network, and to configure the UE with the NSSP list.
In certain aspects, the application may be downloaded and/or upgraded during the run time of the UE. The application may provide UE with a most up-to-date NSSP list of all public land mobility networks (PLMNs) specific to the application. The UE may check PLMN matching criteria to obtain a current PLMN-specific NSSP list the application. In some examples, the UE may check the NSSP list associated with the application against the S-NSSAI of the network to determine if a particular PLMN is allowed or not. If successful, UE may configure the NSSP list associated with the application locally.
In certain aspects, the application may request to get data service from the UE. The UE, may then search the NSSP provided by a network policy control function (PCF) , but fail to ascertain an application specific NSSP from the NSSP provided by the network PCF. Accordingly, the UE may use the NSSP of the application and the associated S-NSSAI to connect the application to a specific network slicing instance.
The network PCF may perform an access policy check on the UE’s new requests and allow a new protocol data unit (PDU) session. As a result, the application may be routed to the specific network slicing instance by using the NSSP list specific to  the application. Thus, the burden on the network may be reduced since the NSSP list (s) associated with application (s) need not be maintained by the network.
As an example, an application A may be downloaded and installed to UE A. The application A may provide the UE operating system (OS) with a PLMN-NSSP list specific to the application A. For example, for a PLMN A on the NSSP list, the S-NSSAI slice type may be ultra-reliable low latency communication (uRLLC) .
The UE may discover that the UE is connected to PLMN A, and that uRLLC is in the allowed NSSAI lists from PLMN A. Thus, the UE may then store the UE route selection policy (URSP) as a local configuration to the UE itself. The application A may send a request for data service to the UE, and the UE may fail to ascertain a proper URSP associated with application A, where the URSP is provided by the network PCF. Thus, the UE may use the USRP associated with the application A to connect the application A to network slicing uRLLC instance. The PLMN PCF may receive a new request to discover that the PLMN is in the list of allowed PLMNs, and the application A may become connected to the network slicing uRLLC instance.
FIG. 4 illustrates a communications device 400 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 3. The communications device 400 includes a processing system 402 coupled to a transceiver 408 (e.g., a transmitter and/or a receiver) . The transceiver 408 is configured to transmit and receive signals for the communications device 400 via an antenna 410, such as the various signals as described herein. The processing system 402 may be configured to perform processing functions for the communications device 400, including processing signals received and/or to be transmitted by the communications device 400.
The processing system 402 includes a processor 404 coupled to a computer-readable medium/memory 412 via a bus 406. In certain aspects, the computer-readable medium/memory 412 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 404, cause the processor 404 to perform the operations illustrated in FIG. 4, or other operations for performing the various techniques discussed herein for adjusting frequency measurement rates. In certain aspects, computer-readable medium/memory 412 stores code 414 for obtaining a NSSP list associated with an application on the UE; code 416 for comparing the NSSP list with a S-NSSAI list  associated with a network; and code 418 for determining, based on the comparison, to use the NSSP list to connect to a network slicing instance of the network, and to configure the UE with the NSSP list. In certain aspects, the processor 404 has circuitry configured to implement the code stored in the computer-readable medium/memory 412. The processor 404 includes circuitry 420 for obtaining a NSSP list associated with an application on the UE; circuitry 422 for comparing the NSSP list with a S-NSSAI list associated with a network; and circuitry 424 for determining, based on the comparison, to use the NSSP list to connect to a network slicing instance of the network, and to configure the UE with the NSSP list.
Example Embodiments
Embodiment 1: a method for wireless communications performed by a user equipment (UE) , comprising: obtaining a network slice selection policy (NSSP) list associated with an application on the UE, comparing the NSSP list with a single network slice selection assistance information (S-NSSAI) list associated with a network, and determining, based on the comparison, to use the NSSP list to connect to a network slicing instance of the network, and to configure the UE with the NSSP list.
Embodiment 2: the method of embodiment 1, further comprising routing traffic associated with the application to the network slicing instance.
Embodiment 3: the method of embodiment 1 or 2, wherein the NSSP list is obtained from the application.
Embodiment 4: the method of any of embodiments 1-3, wherein the NSSP list comprises a list of public land mobile networks (PLMNs) .
Embodiment 5: the method of any of embodiments 1-4, further comprising receiving a data service request from the application.
Embodiment 6: the method of embodiment 5, wherein at least one of the comparison or determination is performed in response to the data service request.
Embodiment 7: the method of any of embodiments 1-6, further comprising configuring the UE to update a UE route selection policy (USRP) based on the determination.
Embodiment 8: an apparatus for wireless communications, comprising: means for obtaining a network slice selection policy (NSSP) list associated with an application  on the UE; means for comparing the NSSP list with a single network slice selection assistance information (S-NSSAI) list associated with a network; and means for determining, based on the comparison, to use the NSSP list to connect to a network slicing instance of the network, and to configure the UE with the NSSP list.
Embodiment 9: the apparatus of embodiment 8, further comprising means for routing traffic associated with the application to the network slicing instance.
Embodiment 10: the apparatus of embodiment 8 or 9, wherein the NSSP list is obtained from the application.
Embodiment 11: the apparatus of any of embodiments 8-10, wherein the NSSP list comprises a list of public land mobile networks (PLMNs) .
Embodiment 12: the apparatus of any of embodiments 8-11, further comprising means for receiving a data service request from the application.
Embodiment 13: the apparatus of embodiment 12, wherein at least one of the comparison or determination is performed in response to the data service request.
Embodiment 14: the apparatus of any of embodiments 8-13, further comprising means for configuring the UE to update a UE route selection policy (USRP) based on the determination.
Embodiment 15: an apparatus for wireless communications, comprising: a memory and a at least one processor configured to: obtain a network slice selection policy (NSSP) list associated with an application on the UE; compare the NSSP list with a single network slice selection assistance information (S-NSSAI) list associated with a network; and determine, based on the comparison, to use the NSSP list to connect to a network slicing instance of the network, and to configure the UE with the NSSP list.
Embodiment 16: the apparatus of embodiment 15, wherein the memory and the at least one processor are further configured to route traffic associated with the application to the network slicing instance.
Embodiment 17: the apparatus of any of embodiment 15 or 16, wherein the NSSP list is obtained from the application.
Embodiment 18: the apparatus of any of embodiments 15-17, wherein the NSSP list comprises a list of public land mobile networks (PLMNs) .
Embodiment 19: the apparatus of any of embodiments 15-18, wherein the memory and the at least one processor are further configured to receive a data service request from the application.
Embodiment 20: the apparatus of embodiment 19, wherein at least one of the comparison or determination is performed in response to the data service request.
Embodiment 21: the apparatus of any of embodiments 15-20, wherein the memory and the at least one processor are further configured to configure the UE to update a UE route selection policy (USRP) based on the determination.
The methods disclosed herein comprise one or more steps or actions for achieving the methods. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is specified, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
As used herein, the term “determining” encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. All structural and functional  equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112 (f) unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for. ”
The various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions. The means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor. Generally, where there are operations illustrated in figures, those operations may have corresponding counterpart means-plus-function components with similar numbering.
The various illustrative logical blocks, modules and circuits described in connection with the present disclosure may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device (PLD) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
If implemented in hardware, an example hardware configuration may comprise a processing system in a wireless node. The processing system may be implemented with a bus architecture. The bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints. The bus may link together various circuits including a processor, machine-readable media, and a bus interface. The bus interface may be used to connect a network adapter, among other things, to the processing system via the bus.  The network adapter may be used to implement the signal processing functions of the PHY layer. In the case of a user terminal 120 (see FIG. 1) , a user interface (e.g., keypad, display, mouse, joystick, etc. ) may also be connected to the bus. The bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further. The processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
If implemented in software, the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium. Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. The processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media. A computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. By way of example, the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface. Alternatively, or in addition, the machine-readable media, or any portion thereof, may be integrated into the processor, such as the case may be with cache and/or general register files. Examples of machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives,  or any other suitable storage medium, or any combination thereof. The machine-readable media may be embodied in a computer-program product.
A software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media. The computer-readable media may comprise a number of software modules. The software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions. The software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices. By way of example, a software module may be loaded into RAM from a hard drive when a triggering event occurs. During execution of the software module, the processor may load some of the instructions into cache to increase access speed. One or more cache lines may then be loaded into a general register file for execution by the processor. When referring to the functionality of a software module below, it will be understood that such functionality is implemented by the processor when executing instructions from that software module.
Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and
Figure PCTCN2020102610-appb-000002
disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in some aspects computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) . In addition, for other aspects computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
Thus, certain aspects may comprise a computer program product for performing the operations presented herein. For example, such a computer program product may comprise a computer-readable medium having instructions stored (and/or  encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein. For example, instructions for performing the operations described herein and illustrated in FIGs. 3.
Further, it should be appreciated that modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable. For example, such a device can be coupled to a server to facilitate the transfer of means for performing the methods described herein. Alternatively, various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device. Moreover, any other suitable technique for providing the methods and techniques described herein to a device can be utilized.
It is to be understood that the claims are not limited to the precise configuration and components illustrated above. Various modifications, changes and variations may be made in the arrangement, operation and details of the methods and apparatus described above without departing from the scope of the claims.

Claims (21)

  1. A method for wireless communications performed by a user equipment (UE) , comprising:
    obtaining a network slice selection policy (NSSP) list associated with an application on the UE;
    comparing the NSSP list with a single network slice selection assistance information (S-NSSAI) list associated with a network; and
    determining, based on the comparison, to use the NSSP list to connect to a network slicing instance of the network, and to configure the UE with the NSSP list.
  2. The method of claim 1, further comprising routing traffic associated with the application to the network slicing instance.
  3. The method of claim 1, wherein the NSSP list is obtained from the application.
  4. The method of claim 1, wherein the NSSP list comprises a list of public land mobile networks (PLMNs) .
  5. The method of claim 1, further comprising receiving a data service request from the application.
  6. The method of claim 5, wherein at least one of the comparison or determination is performed in response to the data service request.
  7. The method of claim 1, further comprising configuring the UE to update a UE route selection policy (USRP) based on the determination.
  8. An apparatus for wireless communications, comprising:
    means for obtaining a network slice selection policy (NSSP) list associated with an application on the UE;
    means for comparing the NSSP list with a single network slice selection assistance information (S-NSSAI) list associated with a network; and
    means for determining, based on the comparison, to use the NSSP list to connect to a network slicing instance of the network, and to configure the UE with the NSSP list.
  9. The method of claim 8, further comprising means for routing traffic associated with the application to the network slicing instance.
  10. The method of claim 8, wherein the NSSP list is obtained from the application.
  11. The method of claim 8, wherein the NSSP list comprises a list of public land mobile networks (PLMNs) .
  12. The method of claim 8, further comprising means for receiving a data service request from the application.
  13. The method of claim 12, wherein at least one of the comparison or determination is performed in response to the data service request.
  14. The method of claim 8, further comprising means for configuring the UE to update a UE route selection policy (USRP) based on the determination.
  15. An apparatus for wireless communications, comprising:
    a memory and a at least one processor configured to:
    obtain a network slice selection policy (NSSP) list associated with an application on the UE;
    compare the NSSP list with a single network slice selection assistance information (S-NSSAI) list associated with a network; and
    determine, based on the comparison, to use the NSSP list to connect to a network slicing instance of the network, and to configure the UE with the NSSP list.
  16. The method of claim 15, wherein the memory and the at least one processor are further configured to route traffic associated with the application to the network slicing instance.
  17. The method of claim 15, wherein the NSSP list is obtained from the application.
  18. The method of claim 15, wherein the NSSP list comprises a list of public land mobile networks (PLMNs) .
  19. The method of claim 15, wherein the memory and the at least one processor are further configured to receive a data service request from the application.
  20. The method of claim 19, wherein at least one of the comparison or determination is performed in response to the data service request.
  21. The method of claim 15, wherein the memory and the at least one processor are further configured to configure the UE to update a UE route selection policy (USRP) based on the determination.
PCT/CN2020/102610 2020-07-17 2020-07-17 Network slicing nssp/ursp and ue local configuration updating WO2022011665A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/102610 WO2022011665A1 (en) 2020-07-17 2020-07-17 Network slicing nssp/ursp and ue local configuration updating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/102610 WO2022011665A1 (en) 2020-07-17 2020-07-17 Network slicing nssp/ursp and ue local configuration updating

Publications (1)

Publication Number Publication Date
WO2022011665A1 true WO2022011665A1 (en) 2022-01-20

Family

ID=79554442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102610 WO2022011665A1 (en) 2020-07-17 2020-07-17 Network slicing nssp/ursp and ue local configuration updating

Country Status (1)

Country Link
WO (1) WO2022011665A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4271048A1 (en) * 2022-04-27 2023-11-01 Vodafone GmbH Dynamic network slice deployment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110120879A (en) * 2018-02-06 2019-08-13 华为技术有限公司 A kind of support method, equipment and the system of application service level agreements
US20190313236A1 (en) * 2018-04-09 2019-10-10 Samsung Electronics Co., Ltd. Method and device using network slicing in mobile communication system
CN110915260A (en) * 2017-05-13 2020-03-24 高通股份有限公司 Relocation of access and mobility management functions upon network change of network slice supported by network-triggered user equipment
EP3641424A1 (en) * 2017-06-17 2020-04-22 LG Electronics Inc. -1- Method for registering terminal in wireless communication system and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110915260A (en) * 2017-05-13 2020-03-24 高通股份有限公司 Relocation of access and mobility management functions upon network change of network slice supported by network-triggered user equipment
EP3641424A1 (en) * 2017-06-17 2020-04-22 LG Electronics Inc. -1- Method for registering terminal in wireless communication system and apparatus therefor
CN110120879A (en) * 2018-02-06 2019-08-13 华为技术有限公司 A kind of support method, equipment and the system of application service level agreements
US20190313236A1 (en) * 2018-04-09 2019-10-10 Samsung Electronics Co., Ltd. Method and device using network slicing in mobile communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, ALCATEL-LUCENT SHANGHAI BELL: "Use of slice ID and NSSAI", 3GPP DRAFT; R3-171115_SLICEID, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Spokane, USA; 20170403 - 20170407, 3 April 2017 (2017-04-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051245835 *
QUALCOMM INCORPORATED: "TS 23.501: Slicing support for the 5GS UE", 3GPP DRAFT; S2-176948_TS 23.501 NETWORKSLICINGUESUPPORTV2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Ljubljana, Slovenia; 20171023 - 20171027, 22 October 2017 (2017-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051346904 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4271048A1 (en) * 2022-04-27 2023-11-01 Vodafone GmbH Dynamic network slice deployment

Similar Documents

Publication Publication Date Title
US10939280B2 (en) Optimization of user equipment radio capability signaling
EP4115596B1 (en) Domain name system (dns) override for edge computing
WO2022011665A1 (en) Network slicing nssp/ursp and ue local configuration updating
US20210360565A1 (en) Delaying ue radio capability id (urcid) update for eplmn
US20210099945A1 (en) Reduced overhead network slice selection assistance information (nssai) signaling
WO2022056659A1 (en) Ue applicable nssai negotiation
US11805453B2 (en) Security key in layer 1 (L1) and layer 2 (L2) based mobility
US20230141754A1 (en) Ensuring compatibility between network slice operating frequencies and user equipment (ue) radio capabilities
WO2022000106A1 (en) Network slicing enhancement
WO2022000327A1 (en) Network slicing enhancement
WO2021146974A1 (en) Techniques for network registration
WO2021226877A1 (en) Adaptively indicating a release version
WO2021212318A1 (en) Priority 5g-anchor cell selection after circuit switched fallback
US20240129720A1 (en) Restricted access and use control for user equipment with reduced capabilities
WO2021232264A1 (en) Multi-subscription out-of-service scan
US20230118538A1 (en) Mitigating limited service in multi-sim mode due to temperature rise
WO2022027632A1 (en) A method of ue assisted enablement from ue to network on preferred resource in a multi-sim device
WO2022011629A1 (en) Techniques for maintaining a frequency database for cell selection for multi-sim devices
WO2021223054A1 (en) Data stall recovery
CN117941464A (en) Mitigating restricted service due to temperature rise in multi-SIM mode
CN114208284A (en) Optimization to support enhanced handover procedures
CN116530152A (en) Technique for protecting public land mobile network from overload experiencing disasters
TW202410721A (en) Optimization of user equipment radio capability signaling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944953

Country of ref document: EP

Kind code of ref document: A1