WO2022010334A1 - Structural damage determination method for eye disease and device therefor - Google Patents

Structural damage determination method for eye disease and device therefor Download PDF

Info

Publication number
WO2022010334A1
WO2022010334A1 PCT/KR2021/010804 KR2021010804W WO2022010334A1 WO 2022010334 A1 WO2022010334 A1 WO 2022010334A1 KR 2021010804 W KR2021010804 W KR 2021010804W WO 2022010334 A1 WO2022010334 A1 WO 2022010334A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
eye image
user
center
optic nerve
Prior art date
Application number
PCT/KR2021/010804
Other languages
French (fr)
Korean (ko)
Inventor
이원준
임한웅
김형준
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2022010334A1 publication Critical patent/WO2022010334A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10101Optical tomography; Optical coherence tomography [OCT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30041Eye; Retina; Ophthalmic

Definitions

  • the present invention relates to a method and apparatus for determining structural damage of an eye disease using an eye image.
  • Glaucoma is an optic nerve disorder caused by an increase in intraocular pressure, resulting in visual field loss and visual impairment, and is a very dangerous and frequently occurring disease among ophthalmic diseases. Glaucoma, along with cataract and macular degeneration, is one of the three major blindness-causing ophthalmic diseases. Due to its chronic and irreversible nature, early detection of glaucoma can be delayed through treatment or surgery, and the therapeutic effect is also good.
  • the methods for diagnosing glaucoma include Scanning Laser Polarimetry (SLP) or Optical Coherence Tomography (OCT), Visual Field Test, and the depression rate of the optic disc (OD). There are various methods such as comparison.
  • optical tomography in the case of optical tomography (OCT), in the past, the optic nerve papilla and the macula were photographed separately, and the results were analyzed separately.
  • OCT optical tomography
  • a broad-spectrum optical coherence tomography device that can simultaneously image the optic nerve and the macula has been developed. Therefore, a new method for determining structural damage of eye diseases using broad-spectrum optical coherence tomography (optical nerve and macula images taken simultaneously by a wide-range optical coherence tomography device) is required.
  • An object of the present invention is to provide a method and an apparatus for judging structural damage of an eye disease in a wide range using a broad-spectrum optical coherence tomography image.
  • a processor and a memory electrically connected to the processor, wherein, when the processor is executed, each of n normal eye images corresponding to a normal person is registered according to a preset method to generate n normal matched eye images, (provided that n is a natural number greater than or equal to 2), a user eye image is matched to correspond to the normal matched eye image to generate a user matched eye image, and by comparing the normal matched eye image with the user registered eye image, the user Disclosed is an apparatus for determining structural damage of an eye disease, storing instructions for determining a degree of eye damage in a matched eye image.
  • the memory detects a first optic nerve center and a first macular center of each of the n normal eye images, and obtains the normally matched eye image based on the first optic nerve center and the first macular center.
  • the generated instructions may be stored, but the normal eye image may correspond to a broad-spectrum optical coherence tomography image.
  • the memory is an instruction for generating the n normal matched eye images by matching the first optic nerve center and the first macular center of each of the normal eye images to the preset reference optic nerve center and the reference macular center, respectively. can be saved
  • the memory generates a reference distance between the reference optic nerve center and the reference macular center, and a reference angle formed by a virtual line connecting the reference optic nerve center and the reference macular center and the border of the reference eye image and may store instructions for generating the n normally matched eye images using the reference distance and the reference angle.
  • the memory is an instruction for detecting a second optic nerve center and a second macula center of the user eye image, and generating the user-matched eye image based on the second optic nerve center and the second macula center
  • the user eye image may correspond to a broad-spectrum optical coherence tomography image.
  • the memory generates a first user eye image by adjusting the size of the user eye image so that the distance between the second optic nerve center and the second macular center corresponds to a preset reference distance, and 2 generates a second user eye image by rotating the first user eye image so that an angle between a line connecting the 2 optic nerve center and the second macular center and a border of the user eye image corresponds to a preset reference angle; 2 It is possible to store instructions for generating the user-matched eye image by shifting the positions of the second optic nerve center and the second macular center in the user eye image to correspond to preset positions of the reference optic nerve center and the reference macular center.
  • the memory may store instructions for determining the degree of eye damage in the user-matched eye image by comparing the optic nerve thickness of each of the n normal matched eye images with the optic nerve thickness of the user-registered eye image.
  • the memory compares retinal nerve fiber layer (RNFL) values within a preset area of each of the n normal matched eye images with a retinal nerve fiber layer (RNFL) value within a preset area of the user matched eye image.
  • RNFL retinal nerve fiber layer
  • Instructions for determining the degree of eye damage in the user-matched eye image may be stored.
  • the memory may store instructions for determining the degree of eye damage in the user-registered eye image by comparing the ganglion cell thickness of each of the n normal matched eye images with the ganglion cell thickness of the user-registered eye image. have.
  • the memory includes ganglion cell complex (GCC) values outside a preset area of each of the n normal matched eye images and a ganglion cell complex (GCC, Ganglion Cell Complex) values may be compared to store instructions for determining the degree of eye damage in the user-matched eye image.
  • GCC ganglion cell complex
  • GCC Ganglion Cell Complex
  • the memory changes the color of the user-matched eye image according to the comparison result, and changes a portion in which the degree of eye damage is more severe than a preset first sub-ratio to a first color, and the eye damage A portion of which the degree is more severe than the preset second sub-ratio is changed to a second color, and the second sub-ratio may store instructions in which the eye damage rate is greater than that of the first sub-ratio.
  • the degree of structural damage to the eye disease of the patient can be grasped at a glance.
  • FIG. 1 is a block diagram of an apparatus for determining structural damage of an eye disease according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a normal eye image processing method used in a method for determining structural damage of an eye disease according to an embodiment of the present invention.
  • FIG. 3 is a flowchart for explaining a method of analyzing the degree of progression of an eye disease of the user according to an embodiment of the present invention.
  • FIGS. 4 and 5 are diagrams illustrating an operation of registering an eyeball image according to an embodiment of the present invention.
  • FIG. 6 is a view for comparing a conventional image in which a partial optic nerve image and a partial macular image are connected with an ocular disease progression image according to an embodiment of the present invention.
  • first, second, etc. are used herein to describe various members, regions, layers, regions, and/or components, these members, parts, regions, layers, regions, and/or components refer to these terms. It is self-evident that it should not be limited by These terms do not imply a specific order, upper and lower, or superiority, and are used only to distinguish one member, region, region, or component from another member, region, region, or component. Accordingly, the first member, region, region, or component to be described below may refer to the second member, region, region, or component without departing from the teachings of the present invention. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
  • the term 'and/or' includes each and every combination of one or more of the recited elements.
  • FIG. 1 is a block diagram of an apparatus for determining structural damage of an eye disease according to an embodiment of the present invention.
  • an apparatus 100 for determining structural damage to eye diseases may be a device capable of generating a fundus image by photographing a user's eye and analyzing the fundus image have.
  • the apparatus 100 for determining eye disease structural damage according to an embodiment of the present invention may be a wide-range optical coherence tomography apparatus capable of photographing a wide-area optical coherence tomography image.
  • the apparatus 100 for determining eye disease structural damage may be a device capable of receiving and analyzing a fundus image generated by another device.
  • the apparatus 100 for determining eye disease structural damage may include a processor 110 , a communication modem 120 , a memory 130 , an input device 140 , and/or a camera 150 .
  • the eye disease structural damage determination apparatus 100 compares the fundus images of several people (especially broad-spectrum optical coherence tomography images) with the fundus images of the user to analyze the degree of progression of the user's eye disease (eg, glaucoma).
  • the memory 130 may store fundus images of several people, instructions and/or information for analyzing a user's fundus image, and the processor 110 accesses the memory 130 to provide the corresponding instructions and/or Alternatively, the progress of the user's eye disease may be analyzed by executing the information.
  • an analysis operation of the apparatus 100 for determining eye disease structural damage will be described in detail with reference to FIGS. 2 to 6 .
  • FIG. 2 is a flowchart of a normal eye image processing method used in a method for determining structural damage of an eye disease according to an embodiment of the present invention.
  • processor 110 executing instructions stored in the memory 130 .
  • the processor 110 is described as a subject performing each step.
  • the eyeball image may be an image of the user's eyeball generated through optical coherence tomography (OCT).
  • OCT optical coherence tomography
  • the ocular image may be a 'wide-range optical coherence tomography image'. Therefore, the ocular image may include both the optic nerve papilla and the macula.
  • the normal eye image may be an eye image corresponding to the eye of a normal person without eye disease.
  • the user eye image may be an eye image that is a target for determining the structural damage of an eye disease.
  • the first normal eye image and the nth normal eye image may be collected and stored in the memory 130 (where n is a natural number equal to or greater than 2).
  • the camera 150 may be a camera capable of optical coherence tomography (OCT).
  • OCT optical coherence tomography
  • the processor 110 may store, in the memory 130 , n eye images (ie, n normal eye images) designated as having no eye disease among the eye images captured by the camera 150 . That is, the administrator may operate the input device 140 to separate and designate that there is no eye disease among the eye images captured by the camera 150 , and the processor 110 stores the separately designated eye images in the memory 130 . It can be saved as eye images.
  • the processor 110 may store the first normal eye image to the nth normal eye image received from the external device through the communication modem 120 in the memory 130 .
  • step S220 the processor 110 may match each of the n normal eye images collected according to a preset method based on the macula and the optic nerve disc. This is because the position of the optic nerve and/or the position of the macula are different for each person. This will be described with reference to FIGS. 4 to 5 .
  • FIGS. 4 and 5 are diagrams illustrating an operation of registering an eyeball image according to an embodiment of the present invention.
  • the processor 110 may detect an optic nerve center and/or a macular center from each of the n normal eye images.
  • the manager may operate the input device 140 to designate the optic nerve center and/or macular center in each normal eye image, and the processor 110 detects the point designated by the manager as the optic nerve center and/or macular center You can do it.
  • the processor 110 may recognize the optic nerve in the normal eye image, automatically detect the center of the part where the recognized optic nerve is gathered as the optic nerve center, recognize the ganglion cell layer of the macula, and , it may be possible to automatically detect the center of gravity of the recognized ganglion cell layer as the center of the macula.
  • the processor 110 may register n normal eye images using the reference optic nerve center and/or the reference macular center.
  • the reference optic nerve center and/or the reference macular center may be any preset point.
  • the processor 110 may designate any one of n normal eye images as a reference eye image.
  • the processor 110 may designate the first generated normal eye image among the n normal eye images as the reference eye image, or may designate a normal eye image corresponding to the designation of the administrator as the reference eye image.
  • the processor 110 may detect an optic nerve center and/or a macular center included in the reference eye image. An operation of the processor 110 detecting the optic nerve center and/or the macular center in the reference eye image may be similar to that described above.
  • the processor 110 may detect the optic nerve center of the reference eye image as the reference optic nerve center and the macular center of the reference eye image as the reference macular center.
  • the reference eye image is not any one of the n normal eye images, but may be an arbitrary eye image or a virtual eye image.
  • the processor 110 may detect the reference optic nerve center and/or the reference macular center from the reference eye image.
  • reference eye image 400 is an example of a reference eye image 400, and the reference eye image 400 having a rectangular shape may include a reference optic nerve center (A) and a reference macular center (B).
  • the processor 110 may match the optic nerve center of each of the n normal eye images to the reference optic nerve center, and may match each macular center to the reference macular center.
  • the processor 110 may generate the distance between the reference optic nerve center (A) and the reference macular center (B) as the reference distance. Also, the processor 110 may generate an angle between the imaginary line connecting the reference optic nerve center A and the reference macular center B and the edge of the reference eye image 400 as the reference angle ⁇ .
  • the processor 110 is configured so that the distance between the optic nerve center and the macular center in any normal eye image (eg, the mth normal eye image, where m is a natural number less than or equal to n) corresponds to the reference distance so that the mth normal eye image corresponds to the reference distance. It is possible to increase or decrease the size of the eye image (hereinafter referred to as 'the m-1 normal eye image').
  • the processor 110 is configured so that the angle between the imaginary line connecting the center of the optic nerve and the center of the macula in the m-1 th normal eye image and the rim of the m-1 th normal eye image corresponds to the reference angle ⁇ . 1
  • the normal eye image can be rotated (hereinafter referred to as 'the m-2 normal eye image'). Accordingly, the m-2 th normal eye image and the reference eye image can be matched with the center of the optic nerve and the center of the macula.
  • the above-described operation of matching the n normal eye images of the processor 110 is merely exemplary. Accordingly, the method for the processor 110 to match all n normal eye images is not limited to the above-described operation and may vary.
  • 4B is an example of an m-th normal eye image 400 - 1 , wherein the size of the m-th normal eye image is as small as vertical ( ⁇ ) and as small as horizontal ( ⁇ ).
  • the case where the angle between the imaginary line connecting the optic nerve center (A') and the macular center (B') of the mth normal eye image and the edge of the mth normal eye image 400-1 is ⁇ ' is exemplified. .
  • the processor 110 increases the size of the mth normal eye image 400-1 so that the distance between the optic nerve center (A') and the macular center (B') corresponds to the reference distance, as illustrated in FIG. 5 .
  • the processor 110 By rotating the mth normal eye image 400-1 by the difference between ⁇ ' and ⁇ , the mth normal eye image 400-2 matched with the reference eye image may be generated.
  • the processor 110 may generate distribution information on the thickness of the optic nerve and/or the thickness of the ganglion cell layer in the eyes of normal people using the matched n normal eye images.
  • the processor 110 may generate n pieces of optic nerve thickness information and/or ganglion cell layer thickness information corresponding to an arbitrary point of the eye (meaning a point based on a reference eye image).
  • an arbitrary point may mean a point corresponding to each pixel of the reference eye image.
  • an arbitrary point may mean an area including a plurality of adjacent pixels of the reference eye image.
  • the processor 110 may generate information on the optic nerve thickness and/or ganglion cell layer thickness of n normal people corresponding to the first pixel (ie, the first point) of the n matched reference eye images. .
  • the processor 110 may generate a retinal nerve fiber layer (RNFL) value as information about the optic nerve thickness in a preset region in the matched normal eye image.
  • the processor 110 may generate a ganglion cell complex (GCC, Ganglion Cell Complex) value as information about the thickness of ganglion cells of the macula outside the preset area.
  • the preset region may mean a preset region centered on the optic disc of the reference eye image.
  • the preset region may mean a circle having a radius r with the optic nerve papilla of the reference eye image as a central point.
  • the preset area may be a square having the optic nerve head of the reference eye image as the center of gravity. Accordingly, the shape and/or size of the preset area does not limit the scope of the present invention.
  • step S240 when a new normal eye image (n+1 normal eye image) is captured through the camera 150 or received through the communication modem 120, the processor 110 matches it with the reference eye image and then the optic nerve thickness and/or update information about the ganglion cell layer thickness. This is because the information of the new n+1th normal eye image must be reflected.
  • the processor 110 may store the normal eye image for comparison with the user's eye image into a database in the memory 130 .
  • FIG. 3 is a flowchart for explaining a method of analyzing the degree of progression of an eye disease of the user according to an embodiment of the present invention.
  • processor 110 executing instructions stored in the memory 130 .
  • the processor 110 is described as a subject performing each step.
  • step S310 when the user's eye image is generated, the processor 110 may match the user's eye image to the reference eye image according to a preset method (step S320).
  • the user's eye image may be a 'wide-range optical coherence tomography image' of the user captured by the camera 150 . Therefore, the user's eye image may include both the optic nerve papilla and the macula for the user's eye.
  • the user's eye image may be an image received from an external device through the communication modem 120 .
  • the processor 110 may match the user eye image with the reference eye image in the same or similar method as that of S220 of FIG. 2 . That is, the processor 110 may detect the center of the optic nerve and/or the center of the macula in the user's eye image. In order to distinguish the optic nerve center and/or macular center of the normal eye image from the optic nerve center and/or macular center of the user's eye image, the former is referred to as the first optic nerve center and/or the first macular center, and the latter is referred to as the second optic nerve center and/or the second macular center.
  • the processor 110 may increase or decrease the size of the user's eye image so that the detected distance between the second optic nerve center and the second macula center corresponds to the reference distance.
  • the user's eyeball image whose size is changed by the operation is referred to as a first user's eyeball image.
  • the processor 110 may rotate the first user's eye image so that the angle between the imaginary line connecting the second optic nerve center and the second macula center and the edge of the user's eye image corresponds to the reference angle.
  • An image generated by being rotated by the motion is referred to as a second user's eye image.
  • the processor 110 may shift the second optic nerve center and the second macular center of the second user's eye image to correspond to positions of the reference optic nerve center and the reference macular center.
  • the image (user eye image matched to the reference eye image) generated by the operation is referred to as a user-matched eye image.
  • the processor 110 may generate information on the thickness of the optic nerve and/or the thickness of the ganglion cell layer of the user-matched eye image.
  • the operation of the processor 110 generating information on the optic nerve thickness and/or the ganglion cell layer thickness of the user-matched eye image may be the same or similar to the operation described in step S230 of FIG. 2 . That is, for example, the processor 110 may generate a retinal nerve fiber layer (RNFL) value as information on the thickness of the optic nerve within a preset region of the user-matched eye image, and the thickness of ganglion cells of the macula outside the preset region.
  • RNFL retinal nerve fiber layer
  • GCC Ganglion Cell Complex
  • step S340 the processor 110 generates information on the user-matched eye image (information on the optic nerve thickness and/or ganglion cell layer thickness) and n normal eye images stored in the memory 130 in advance (optic nerve thickness and/or ganglion). Information on cell layer thickness) can be compared and displayed in a preset color according to the degree of eye damage rate.
  • the processor 110 may compare the first user optic nerve thickness information corresponding to the first pixel of the user-matched eye image and the n pieces of first normal optic nerve thickness information corresponding to the first pixel of the normal eye image. As a result of the comparison, if the first user optic nerve thickness information is less than or equal to a first sub-ratio (eg, 5%) of the n pieces of first normal optic nerve thickness information, the processor 110 controls the color of the first pixel of the user-matched eye image. It can be changed to 1 color (eg, as a color of a dark region in FIG. 6 , such as yellow). That is, when the thickness of the first user optic nerve is thinner than the lower 5% of the thickness of the n first normal optic nerves, the processor 110 may change the color of the first pixel of the user-matched eye image to the first color.
  • a first sub-ratio eg, 5%
  • the processor 110 controls the color of the first pixel of the user-matched eye image. It can be changed to 2 colors (eg, red, etc. as the color of the darkest region in FIG. 6 ). That is, when the thickness of the first user's optic nerve is thinner than the lower 1% of the thickness of the n first normal optic nerves, the processor 110 may change the color of the first pixel of the user-matched eye image to the second color.
  • the first pixel may be a pixel within a preset area.
  • the processor 110 may store information on the second user ganglion cell layer thickness corresponding to the second pixel of the user-matched eye image and the n second normal ganglion cell layer thicknesses corresponding to the second pixel of the normal eye image. information can be compared. As a result of comparison, if the second user ganglion cell layer thickness information is less than or equal to the first sub-ratio (eg, 5%) of the n pieces of second normal ganglion cell layer thickness information, the processor 110 controls the color of the second pixel of the user-matched eye image. may be changed to a first color (eg, as a color of a dark region of FIG. 6 , such as yellow).
  • a first color eg, as a color of a dark region of FIG. 6 , such as yellow
  • the processor 110 selects the color of the second pixel of the user-matched eye image. It may be changed to a second color (eg, red, etc. as a color of the darkest region of FIG. 6 ).
  • the second pixel may be a pixel outside the preset area.
  • the portion marked with the second color is a portion where the optic nerve is damaged more than the first lower normal eye images.
  • FIG. 6 is a view for comparing a conventional image in which a partial optic nerve image and a partial macular image are connected with an ocular disease progression image according to an embodiment of the present invention.
  • FIG. 6 (a) is an image in which the conventional individually generated partial optic nerve image and the macula partial image are connected, and is an image in which the optic nerve and/or ganglion cell layer is damaged visually.
  • FIG. 6(b) is an image in which the optic nerve and/or the ganglion cell layer is visually marked using a broad-spectrum optical coherence tomography image according to the present invention.
  • the damaged area of the optic nerve and the like could only be partially displayed, so that the degree of structural damage of the ophthalmic disease could not be clearly understood.
  • the degree of damage to the optic nerve of an ophthalmic disease can be compared and displayed as a whole with a normal person (particularly, a normal person with some damage to the optic nerve), the degree of structural damage to the eye disease of the patient can be grasped at a glance.
  • a circle 600 indicated by a dotted line in FIG. 6B illustrates the “preset region” described with reference to FIGS. 2 and 3 .
  • the processor can generate a retinal nerve fiber layer (RNFL) value as information about the thickness of the optic nerve inside the circle 600, and outside the circle 600, as information about the thickness of ganglion cells of the macula, the ganglion cell complex (GCC, Ganglion Cell Complex) value.
  • RNFL retinal nerve fiber layer

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Ophthalmology & Optometry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

The present invention relates to a structural damage determination method for eye disease and a device therefor. The structural damage determination device for eye disease according to one embodiment of the present invention may comprise a processor and a memory electrically connected to the processor, wherein the memory may store instructions that, when executed, cause the processor to: register n normal eye images corresponding to a normal person according to a preconfigured method to generate n registered normal eye images (n is a natural number equal to or greater than 2); register a user's eye image to correspond to the registered normal eye images to generate a user's registered eye image; and compare the user's registered eye image with the registered normal eye images to determine a level of eye damage in the user's registered eye image. According to the present invention, the result from a comparison between a broad-spectrum optical coherence tomography image of a normal person and a broad-spectrum optical coherence tomography image of a patient can be displayed as a change in color, etc. and thus the structural damage level related to the patient's eye disease can be determined at a glance.

Description

안구질환 구조적 손상 판단 방법 및 그 장치Eye disease structural damage determination method and device
본 발명은 안구 영상을 이용하여 안구질환의 구조적 손상을 판단하는 방법 및 그 장치에 대한 것이다.The present invention relates to a method and apparatus for determining structural damage of an eye disease using an eye image.
녹내장은 안압의 상승으로 인해 시신경에 장애가 생겨 시야 결손 및 시력 손상을 일으키는 것으로, 안과 질환 중 매우 위험하고 빈번하게 발생하고 있는 질환이다. 녹내장은 백내장, 황반변성과 더불어 3대 실명 유발 안과질환으로, 만성적이고, 비가역적으로 진행하는 특성 때문에 조기에 발견한 녹내장은 치료제 또는 수술을 통해 진행을 늦출 수 있고, 치료 효과 역시 좋은 편이다. Glaucoma is an optic nerve disorder caused by an increase in intraocular pressure, resulting in visual field loss and visual impairment, and is a very dangerous and frequently occurring disease among ophthalmic diseases. Glaucoma, along with cataract and macular degeneration, is one of the three major blindness-causing ophthalmic diseases. Due to its chronic and irreversible nature, early detection of glaucoma can be delayed through treatment or surgery, and the therapeutic effect is also good.
현재 녹내장을 진단하는 방법으로는 주사레이저현미경(Scanning Laser Polarimetry, SLP) 또는 빛간섭단층촬영 (Optical Coherence Tomography, OCT), 시야검사(Visual Field Test), 시신경유두(Optic Disc, OD)의 함몰 비율 비교 등 다양한 방법이 있다. Currently, the methods for diagnosing glaucoma include Scanning Laser Polarimetry (SLP) or Optical Coherence Tomography (OCT), Visual Field Test, and the depression rate of the optic disc (OD). There are various methods such as comparison.
특히 빛간선단층촬영(OCT)의 경우, 과거에는 시신경 유두 부분과 황반 부분이 따로 촬영되고, 그 결과도 각각 따로 분석되기 때문에, 녹내장 진행과 관련된 시신경과 황반부의 공간적 관계가 파악되기 힘든 문제가 있었다. 하지만 최근 시신경과 황반부를 동시에 촬영할 수 있는 광범위 빛간섭단층촬영 장치가 개발되었다. 이에 광범위 빛간섭단층 영상(광범위 빛간섭단층촬영 장치에 의해 시신경과 황반부가 동시에 촬영된 이미지)를 이용한 새로운 안구질환의 구조적 손상 판단 방법이 요구된다.In particular, in the case of optical tomography (OCT), in the past, the optic nerve papilla and the macula were photographed separately, and the results were analyzed separately. . However, recently, a broad-spectrum optical coherence tomography device that can simultaneously image the optic nerve and the macula has been developed. Therefore, a new method for determining structural damage of eye diseases using broad-spectrum optical coherence tomography (optical nerve and macula images taken simultaneously by a wide-range optical coherence tomography device) is required.
본 발명은 광범위 빛간섭단층촬영 영상을 이용하여 안구 질환의 구조적 손상을 광범위하게 판단할 수 있는 방법 및 그 장치를 제공하고자 한다.An object of the present invention is to provide a method and an apparatus for judging structural damage of an eye disease in a wide range using a broad-spectrum optical coherence tomography image.
본 발명의 일 실시 예에 따르면, 프로세서; 및 상기 프로세서에 전기적으로 연결된 메모리를 포함하고, 상기 메모리는, 상기 프로세서가 실행 시에, 정상인에 상응하는 n개의 정상안구영상 각각을 미리 설정된 방법에 따라 정합하여 n개의 정상정합안구영상을 생성하고(단, 상기 n은 2 이상의 자연수임), 사용자안구영상을 상기 정상정합안구영상에 상응하도록 정합하여 사용자정합안구영상을 생성하며, 상기 정상정합안구영상과 상기 사용자정합안구영상을 비교하여 상기 사용자정합안구영상의 안구 손상 정도를 판단하는 인스트럭션들을 저장하는, 안구질환 구조적 손상 판단 장치가 개시된다. According to an embodiment of the present invention, a processor; and a memory electrically connected to the processor, wherein, when the processor is executed, each of n normal eye images corresponding to a normal person is registered according to a preset method to generate n normal matched eye images, (provided that n is a natural number greater than or equal to 2), a user eye image is matched to correspond to the normal matched eye image to generate a user matched eye image, and by comparing the normal matched eye image with the user registered eye image, the user Disclosed is an apparatus for determining structural damage of an eye disease, storing instructions for determining a degree of eye damage in a matched eye image.
실시예에 따라, 상기 메모리는, 상기 n개의 정상안구영상 각각의 제1 시신경중심 및 제1 황반부중심을 검출하고, 상기 제1 시신경중심 및 상기 제1 황반부중심을 기준으로 상기 정상정합안구영상을 생성하는 인스트럭션들을 저장하되, 상기 정상안구영상은 광범위 빛간섭단층 영상에 상응할 수 있다. According to an embodiment, the memory detects a first optic nerve center and a first macular center of each of the n normal eye images, and obtains the normally matched eye image based on the first optic nerve center and the first macular center. The generated instructions may be stored, but the normal eye image may correspond to a broad-spectrum optical coherence tomography image.
실시예에 따라, 상기 메모리는, 상기 정상안구영상들 각각의 제1 시신경중심 및 제1 황반부중심을 미리 설정된 기준시신경중심 및 기준황반부중심에 각각 정합시켜 상기 n개의 정상정합안구영상을 생성하는 인스트럭션들을 저장할 수 있다. According to an embodiment, the memory is an instruction for generating the n normal matched eye images by matching the first optic nerve center and the first macular center of each of the normal eye images to the preset reference optic nerve center and the reference macular center, respectively. can be saved
실시예에 따라, 상기 메모리는, 상기 기준시신경중심 및 상기 기준황반부중심 간의 기준거리를 생성하고, 상기 기준시신경중심 및 상기 기준황반부중심을 연결하는 가상의 선과 기준안구영상의 테두리가 이루는 기준각도를 생성하며, 상기 기준거리 및 상기 기준각도를 이용하여 상기 n개의 정상정합안구영상을 생성하는 인스트럭션들을 저장할 수 있다. According to an embodiment, the memory generates a reference distance between the reference optic nerve center and the reference macular center, and a reference angle formed by a virtual line connecting the reference optic nerve center and the reference macular center and the border of the reference eye image and may store instructions for generating the n normally matched eye images using the reference distance and the reference angle.
실시예에 따라, 상기 메모리는, 상기 사용자안구영상의 제2 시신경 중심 및 제2 황반부 중심을 검출하고, 상기 제2 시신경 중심 및 상기 제2 황반부 중심을 기준으로 상기 사용자정합안구영상을 생성하는 인스트럭션들을 저장하되, 상기 사용자안구영상은 광범위 빛간섭단층 영상에 상응할 수 있다. According to an embodiment, the memory is an instruction for detecting a second optic nerve center and a second macula center of the user eye image, and generating the user-matched eye image based on the second optic nerve center and the second macula center However, the user eye image may correspond to a broad-spectrum optical coherence tomography image.
실시예에 따라, 상기 메모리는, 상기 제2 시신경중심 및 상기 제2 황반부중심의 거리가 미리 설정된 기준거리에 상응하도록 상기 사용자안구영상의 크기를 조절하여 제1 사용자안구영상을 생성하고, 상기 제2 시신경중심 및 상기 제2 황반부중심을 연결하는 선과 상기 사용자안구영상의 테두리가 이루는 각도가 미리 설정된 기준각도에 상응하도록 상기 제1 사용자안구영상을 회전시켜 제2 사용자안구영상을 생성하며, 상기 제2 사용자안구영상 내의 상기 제2 시신경중심과 상기 제2 황반부중심의 위치를 미리 설정된 기준시신경중심 및 기준황반부중심의 위치에 상응하도록 쉬프트하여 상기 사용자정합안구영상을 생성하는 인스트럭션들을 저장할 수 있다. According to an embodiment, the memory generates a first user eye image by adjusting the size of the user eye image so that the distance between the second optic nerve center and the second macular center corresponds to a preset reference distance, and 2 generates a second user eye image by rotating the first user eye image so that an angle between a line connecting the 2 optic nerve center and the second macular center and a border of the user eye image corresponds to a preset reference angle; 2 It is possible to store instructions for generating the user-matched eye image by shifting the positions of the second optic nerve center and the second macular center in the user eye image to correspond to preset positions of the reference optic nerve center and the reference macular center.
실시예에 따라, 상기 메모리는, 상기 n개의 정상정합안구영상 각각의 시신경 두께와 상기 사용자정합안구영상의 시신경 두께를 비교하여 상기 사용자정합안구영상의 안구 손상 정도를 판단하는 인스트럭션들을 저장할 수 있다. According to an embodiment, the memory may store instructions for determining the degree of eye damage in the user-matched eye image by comparing the optic nerve thickness of each of the n normal matched eye images with the optic nerve thickness of the user-registered eye image.
실시예에 따라, 상기 메모리는, 상기 n개의 정상정합안구영상 각각의 미리 설정된 영역 내의 망막신경섬유층(RNFL)값들과 상기 사용자정합안구영상의 미리 설정된 영역 내의 망막신경섬유층(RNFL)값을 비교하여 상기 사용자정합안구영상의 안구 손상 정도를 판단하는 인스트럭션들을 저장할 수 있다. According to an embodiment, the memory compares retinal nerve fiber layer (RNFL) values within a preset area of each of the n normal matched eye images with a retinal nerve fiber layer (RNFL) value within a preset area of the user matched eye image. Instructions for determining the degree of eye damage in the user-matched eye image may be stored.
실시예에 따라, 상기 메모리는, 상기 n개의 정상정합안구영상 각각의 신경절세포 두께와 상기 사용자정합안구영상의 신경절세포 두께를 비교하여 상기 사용자정합안구영상의 안구 손상 정도를 판단하는 인스트럭션들을 저장할 수 있다. According to an embodiment, the memory may store instructions for determining the degree of eye damage in the user-registered eye image by comparing the ganglion cell thickness of each of the n normal matched eye images with the ganglion cell thickness of the user-registered eye image. have.
실시예에 따라, 상기 메모리는, 상기 n개의 정상정합안구영상 각각의 미리 설정된 영역 외의 신경절세포복합체(GCC, Ganglion Cell Complex)값들과 상기 사용자정합안구영상의 미리 설정된 영역 외의 신경절세포복합체(GCC, Ganglion Cell Complex)값을 비교하여 상기 사용자정합안구영상의 안구 손상 정도를 판단하는 인스트럭션들을 저장할 수 있다. According to an embodiment, the memory includes ganglion cell complex (GCC) values outside a preset area of each of the n normal matched eye images and a ganglion cell complex (GCC, Ganglion Cell Complex) values may be compared to store instructions for determining the degree of eye damage in the user-matched eye image.
실시예에 따라, 상기 메모리는, 상기 비교 결과에 따라 상기 사용자정합안구영상의 색상을 변경하되, 상기 안구 손상 정도가 미리 설정된 제1 하위비율보다 심한 부분은 제1 색상으로 변경하고, 상기 안구 손상 정도가 미리 설정된 제2 하위비율보다도 심한 부분은 제2 색상으로 변경하되, 상기 제2 하위비율이 상기 제1 하위비율보다 안구손상율이 더 큰 것인, 인스트럭션들을 저장할 수 있다.According to an embodiment, the memory changes the color of the user-matched eye image according to the comparison result, and changes a portion in which the degree of eye damage is more severe than a preset first sub-ratio to a first color, and the eye damage A portion of which the degree is more severe than the preset second sub-ratio is changed to a second color, and the second sub-ratio may store instructions in which the eye damage rate is greater than that of the first sub-ratio.
본 발명에 따르면, 정상인의 광범위 빛간섭단층 영상과 환자의 광범위 빛간섭단층 영상이 비교된 결과가 색상 등의 변화로 디스플레이될 수 있으므로, 환자의 안구 질환 구조적 손상 정도가 한눈에 파악될 수 있다. According to the present invention, since the result of comparing the broad spectrum optical coherence tomography image of a normal person and the broad spectrum optical tomography image of a patient can be displayed as a change in color, etc., the degree of structural damage to the eye disease of the patient can be grasped at a glance.
또한, 본 발명에 따르면 의사가 환자의 안구 손상 부위를 놓칠 가능성이 현저히 낮아지므로, 안구질환의 진단력을 높일 수 있고 효율적인 안구 치료의 발판이 될 수 있다.In addition, according to the present invention, since the possibility that the doctor misses the patient's eye damage site is significantly lowered, it is possible to increase the diagnostic power of eye diseases and to become a stepping stone for effective eye treatment.
본 발명의 상세한 설명에서 인용되는 도면을 보다 충분히 이해하기 위하여 각 도면의 간단한 설명이 제공된다.In order to more fully understand the drawings cited in the Detailed Description, a brief description of each drawing is provided.
도 1은 본 발명의 일 실시예에 따른 안구질환 구조적 손상 판단 장치에 대한 블록 구성도이다. 1 is a block diagram of an apparatus for determining structural damage of an eye disease according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 안구질환 구조적 손상 판단 방법에 사용되는 정상안구영상 처리 방법에 대한 순서도이다. 2 is a flowchart of a normal eye image processing method used in a method for determining structural damage of an eye disease according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따라 당해 사용자의 안구질환 진행 정도를 분석하는 방법을 설명하기 위한 순서도이다. 3 is a flowchart for explaining a method of analyzing the degree of progression of an eye disease of the user according to an embodiment of the present invention.
도 4 및 도 5는 본 발명의 일 실시예에 따라 안구영상을 정합하는 동작을 예시한 도면이다. 4 and 5 are diagrams illustrating an operation of registering an eyeball image according to an embodiment of the present invention.
도 6은 종래의 시신경 부분 영상과 황반 부분 영상을 연결한 이미지와 본 발명의 일 실시예에 따른 안구질환진행영상을 비교하기 위한 도면이다. 6 is a view for comparing a conventional image in which a partial optic nerve image and a partial macular image are connected with an ocular disease progression image according to an embodiment of the present invention.
본 발명의 기술적 사상에 따른 예시적인 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 기술적 사상을 더욱 완전하게 설명하기 위하여 제공되는 것으로, 아래의 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 기술적 사상의 범위가 아래의 실시예들로 한정되는 것은 아니다. 오히려, 이들 실시예들은 본 개시를 더욱 충실하고 완전하게 하며 당업자에게 본 발명의 기술적 사상을 완전하게 전달하기 위하여 제공되는 것이다.Exemplary embodiments according to the technical spirit of the present invention are provided to more completely explain the technical spirit of the present invention to those of ordinary skill in the art, and the following embodiments are modified in various other forms may be, and the scope of the technical spirit of the present invention is not limited to the following embodiments. Rather, these embodiments are provided so as to more fully and complete the present disclosure, and to fully convey the technical spirit of the present invention to those skilled in the art.
본 명세서에서 제1, 제2 등의 용어가 다양한 부재, 영역, 층들, 부위 및/또는 구성 요소들을 설명하기 위하여 사용되지만, 이들 부재, 부품, 영역, 층들, 부위 및/또는 구성 요소들은 이들 용어에 의해 한정되어서는 안 됨은 자명하다. 이들 용어는 특정 순서나 상하, 또는 우열을 의미하지 않으며, 하나의 부재, 영역, 부위, 또는 구성 요소를 다른 부재, 영역, 부위 또는 구성 요소와 구별하기 위하여만 사용된다. 따라서, 이하 상술할 제1 부재, 영역, 부위 또는 구성 요소는 본 발명의 기술적 사상의 가르침으로부터 벗어나지 않고서도 제2 부재, 영역, 부위 또는 구성 요소를 지칭할 수 있다. 예를 들면, 본 발명의 권리 범위로부터 이탈되지 않은 채 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.Although the terms first, second, etc. are used herein to describe various members, regions, layers, regions, and/or components, these members, parts, regions, layers, regions, and/or components refer to these terms. It is self-evident that it should not be limited by These terms do not imply a specific order, upper and lower, or superiority, and are used only to distinguish one member, region, region, or component from another member, region, region, or component. Accordingly, the first member, region, region, or component to be described below may refer to the second member, region, region, or component without departing from the teachings of the present invention. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
달리 정의되지 않는 한, 여기에 사용되는 모든 용어들은 기술 용어와 과학 용어를 포함하여 본 발명의 개념이 속하는 기술 분야에서 통상의 지식을 가진 자가 공통적으로 이해하고 있는 바와 동일한 의미를 지닌다. 또한, 통상적으로 사용되는, 사전에 정의된 바와 같은 용어들은 관련되는 기술의 맥락에서 이들이 의미하는 바와 일관되는 의미를 갖는 것으로 해석되어야 하며, 여기에 명시적으로 정의하지 않는 한 과도하게 형식적인 의미로 해석되어서는 아니 될 것이다.Unless defined otherwise, all terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the concept of the present invention belongs, including technical and scientific terms. In addition, commonly used terms as defined in the dictionary should be construed as having a meaning consistent with their meaning in the context of the relevant technology, and unless explicitly defined herein, in an overly formal sense. shall not be interpreted.
여기에서 사용된 '및/또는' 용어는 언급된 부재들의 각각 및 하나 이상의 모든 조합을 포함한다.As used herein, the term 'and/or' includes each and every combination of one or more of the recited elements.
이하에서는 첨부한 도면들을 참조하여 본 발명의 기술적 사상에 의한 실시예들에 대해 상세히 설명한다.Hereinafter, embodiments according to the technical spirit of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 안구질환 구조적 손상 판단 장치에 대한 블록 구성도이다. 1 is a block diagram of an apparatus for determining structural damage of an eye disease according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 안구질환 구조적 손상 판단 장치(100)는 사용자의 안구를 촬영하여 안저영상(Fundus image)을 생성하고, 안저영상을 분석할 수 있는 장치일 수 있다. 특히 본 발명의 일 실시예에 따른 안구질환 구조적 손상 판단 장치(100)는 광범위 빛간섭단층 영상을 촬영할 수 있는 광범위 빛간섭단층촬영 장치일 수 있다. 또는 안구질환 구조적 손상 판단 장치(100)는 다른 장치에서 생성된 안저영상을 입력받아 분석할 수 있는 장치일 수도 있다. 안구질환 구조적 손상 판단 장치(100)는 프로세서(110), 통신모뎀(120), 메모리(130), 입력장치(140) 및/또는 카메라(150)를 포함할 수 있다. Referring to FIG. 1 , an apparatus 100 for determining structural damage to eye diseases according to an embodiment of the present invention may be a device capable of generating a fundus image by photographing a user's eye and analyzing the fundus image have. In particular, the apparatus 100 for determining eye disease structural damage according to an embodiment of the present invention may be a wide-range optical coherence tomography apparatus capable of photographing a wide-area optical coherence tomography image. Alternatively, the apparatus 100 for determining eye disease structural damage may be a device capable of receiving and analyzing a fundus image generated by another device. The apparatus 100 for determining eye disease structural damage may include a processor 110 , a communication modem 120 , a memory 130 , an input device 140 , and/or a camera 150 .
안구질환 구조적 손상 판단 장치(100)는 여러 사람의 안저영상(특히 광범위 빛간섭단층 영상)과 당해 사용자의 안저영상을 비교하여 당해 사용자의 안구질환(예를 들어, 녹내장)의 진행 정도를 분석할 수 있다. 즉, 메모리(130)에는 여러 사람의 안저영상들, 사용자의 안저영상 분석을 위한 인스트럭션들 및/또는 정보들이 저장될 수 있고, 프로세서(110)는 메모리(130)에 접속하여 당해 인스트럭션들 및/또는 정보들을 실행하여 사용자의 안구질환의 진행 정도를 분석할 수 있을 것이다. 이하, 도 2 내지 도 6을 참조하여 안구질환 구조적 손상 판단 장치(100)의 분석 동작에 대해 구체적으로 설명한다. The eye disease structural damage determination apparatus 100 compares the fundus images of several people (especially broad-spectrum optical coherence tomography images) with the fundus images of the user to analyze the degree of progression of the user's eye disease (eg, glaucoma). can That is, the memory 130 may store fundus images of several people, instructions and/or information for analyzing a user's fundus image, and the processor 110 accesses the memory 130 to provide the corresponding instructions and/or Alternatively, the progress of the user's eye disease may be analyzed by executing the information. Hereinafter, an analysis operation of the apparatus 100 for determining eye disease structural damage will be described in detail with reference to FIGS. 2 to 6 .
도 2는 본 발명의 일 실시예에 따른 안구질환 구조적 손상 판단 방법에 사용되는 정상안구영상 처리 방법에 대한 순서도이다. 2 is a flowchart of a normal eye image processing method used in a method for determining structural damage of an eye disease according to an embodiment of the present invention.
이하에서 설명될 각 단계들은 프로세서(110)가 메모리(130)에 저장된 인스트럭션들을 실행하여 수행되는 단계들일 수 있다. 하지만 이해와 설명의 편의를 위해 프로세서(110)가 각 단계들을 수행하는 주체인 것으로 설명한다. Each of the steps to be described below may be steps performed by the processor 110 executing instructions stored in the memory 130 . However, for the convenience of understanding and description, the processor 110 is described as a subject performing each step.
도 2를 참조하여 본 발명의 일 실시예에 따른 안구질환 구조적 손상 판단 방법에 대해 설명하기 전에, 이하에서 사용될 용어들을 정의한다. Before describing the method for determining structural damage of eye disease according to an embodiment of the present invention with reference to FIG. 2 , terms to be used below are defined.
먼저 안구영상은 빛간섭단층촬영(OCT)을 통해 생성된 사용자의 안구에 대한 영상일 수 있다. 특히 안구영상은 '광범위 빛간섭단층 영상'일 수 있다. 따라서 안구영상에는 시신경 유두 부분과 황반 부분이 모두 포함되어 있을 수 있다. First, the eyeball image may be an image of the user's eyeball generated through optical coherence tomography (OCT). In particular, the ocular image may be a 'wide-range optical coherence tomography image'. Therefore, the ocular image may include both the optic nerve papilla and the macula.
또한, 정상안구영상은 안구질환이 없는 정상인의 안구에 상응하는 안구영상일 수 있다. Also, the normal eye image may be an eye image corresponding to the eye of a normal person without eye disease.
또한, 사용자안구영상은 안구질환 구조적 손상 판단의 대상이 되는 안구영상일 수 있다. In addition, the user eye image may be an eye image that is a target for determining the structural damage of an eye disease.
단계 S210에서, 메모리(130)에는 제1 정상안구영상 및 제n 정상안구영상이 수집되어 저장될 수 있다(단, n은 2 이상의 자연수임). 예를 들어, 카메라(150)는 빛간섭단층촬영(OCT)이 가능한 카메라일 수 있다. 프로세서(110)는 카메라(150)에 의해 촬영된 안구영상들 중 안구질환이 없는 것으로 지정된 n개의 안구영상(즉, n개의 정상안구영상)을 메모리(130)에 저장할 수 있다. 즉, 관리자는 입력장치(140)를 조작하여 카메라(150)에 의해 촬영된 안구영상들 중 안구질환이 없는 것을 분리 지정할 수 있고, 프로세서(110)는 분리 지정된 안구영상들을 메모리(130)에 정상안구영상들로 저장할 수 있다. 다른 예를 들어, 프로세서(110)는 통신모뎀(120)을 통해 외부 장치에서 수신된 제1 정상안구영상 내지 제n 정상안구영상을 메모리(130)에 저장할 수도 있다. In step S210 , the first normal eye image and the nth normal eye image may be collected and stored in the memory 130 (where n is a natural number equal to or greater than 2). For example, the camera 150 may be a camera capable of optical coherence tomography (OCT). The processor 110 may store, in the memory 130 , n eye images (ie, n normal eye images) designated as having no eye disease among the eye images captured by the camera 150 . That is, the administrator may operate the input device 140 to separate and designate that there is no eye disease among the eye images captured by the camera 150 , and the processor 110 stores the separately designated eye images in the memory 130 . It can be saved as eye images. As another example, the processor 110 may store the first normal eye image to the nth normal eye image received from the external device through the communication modem 120 in the memory 130 .
단계 S220에서, 프로세서(110)는 수집된 n개의 정상안구영상 각각을 황반과 시신경 유두를 기준으로 미리 설정된 방법에 따라 정합할 수 있다. 사람마다 시신경의 위치 및/또는 황반부의 위치 등이 모두 상이하기 때문이다. 이에 대해서는 도 4 내지 도 5를 참조하여 설명한다. In step S220 , the processor 110 may match each of the n normal eye images collected according to a preset method based on the macula and the optic nerve disc. This is because the position of the optic nerve and/or the position of the macula are different for each person. This will be described with reference to FIGS. 4 to 5 .
도 4 및 도 5는 본 발명의 일 실시예에 따라 안구영상을 정합하는 동작을 예시한 도면이다. 4 and 5 are diagrams illustrating an operation of registering an eyeball image according to an embodiment of the present invention.
먼저, 프로세서(110)는 n개의 정상안구영상 각각에서 시신경중심 및/또는 황반부중심을 검출할 수 있다. 예를 들어, 관리자는 입력장치(140)를 조작하여 각 정상안구영상에서 시신경중심 및/또는 황반부중심을 지정할 수 있고, 프로세서(110)는 관리자로부터 지정된 지점을 시신경중심 및/또는 황반부중심으로 검출할 수 있을 것이다. 다른 예를 들어, 프로세서(110)는 정상안구영상에서 시신경을 인식하고, 인식된 시신경이 모여 있는 부분의 중심을 시신경중심으로 자동 검출할 수 있고, 황반부의 신경절세포층(ganglion cell layer)을 인식하고, 인식된 신경절세포층의 무게중심을 황반부중심으로 자동 검출할 수도 있을 것이다. First, the processor 110 may detect an optic nerve center and/or a macular center from each of the n normal eye images. For example, the manager may operate the input device 140 to designate the optic nerve center and/or macular center in each normal eye image, and the processor 110 detects the point designated by the manager as the optic nerve center and/or macular center You can do it. For another example, the processor 110 may recognize the optic nerve in the normal eye image, automatically detect the center of the part where the recognized optic nerve is gathered as the optic nerve center, recognize the ganglion cell layer of the macula, and , it may be possible to automatically detect the center of gravity of the recognized ganglion cell layer as the center of the macula.
또한, 프로세서(110)는 기준시신경중심 및/또는 기준황반부중심을 이용하여 n개의 정상안구영상을 정합할 수 있다. 여기서 기준시신경중심 및/또는 기준황반부중심은 미리 설정된 임의의 점일 수 있다. 예를 들어, 프로세서(110)는 n개의 정상안구영상 중 어느 하나를 기준안구영상으로 지정할 수 있다. 프로세서(110)는 n개의 정상안구영상 중 가장 먼저 생성된 정상안구영상을 기준안구영상으로 지정하거나, 관리자의 지정에 상응하는 정상안구영상을 기준안구영상으로 지정할 수 있다. 프로세서(110)는 기준안구영상에 포함된 시신경중심 및/또는 황반부중심을 검출할 수 있다. 프로세서(110)가 기준안구영상에서 시신경중심 및/또는 황반부중심을 검출하는 동작은 상술한 바와 유사할 수 있다. 또한 프로세서(110)는 기준안구영상의 시신경중심을 기준시신경중심으로, 기준안구영상의 황반부중심을 기준황반부중심으로 검출할 수 있다. Also, the processor 110 may register n normal eye images using the reference optic nerve center and/or the reference macular center. Here, the reference optic nerve center and/or the reference macular center may be any preset point. For example, the processor 110 may designate any one of n normal eye images as a reference eye image. The processor 110 may designate the first generated normal eye image among the n normal eye images as the reference eye image, or may designate a normal eye image corresponding to the designation of the administrator as the reference eye image. The processor 110 may detect an optic nerve center and/or a macular center included in the reference eye image. An operation of the processor 110 detecting the optic nerve center and/or the macular center in the reference eye image may be similar to that described above. In addition, the processor 110 may detect the optic nerve center of the reference eye image as the reference optic nerve center and the macular center of the reference eye image as the reference macular center.
한편, 기준안구영상은 n개의 정상안구영상 중 어느 하나가 아니라, 임의의 안구영상 또는 가상의 안구영상일 수도 있다. 이 경우에도 마찬가지로, 프로세서(110)는 기준안구영상에서 기준시신경중심 및/또는 기준황반부중심을 검출할 수 있을 것이다. Meanwhile, the reference eye image is not any one of the n normal eye images, but may be an arbitrary eye image or a virtual eye image. Likewise in this case, the processor 110 may detect the reference optic nerve center and/or the reference macular center from the reference eye image.
도 4의 (a)는 기준안구영상(400)의 예시로서, 사각형 형상의 기준안구영상(400)에는 기준시신경중심(A) 및 기준황반부중심(B)이 포함될 수 있다. 4A is an example of a reference eye image 400, and the reference eye image 400 having a rectangular shape may include a reference optic nerve center (A) and a reference macular center (B).
또한, 프로세서(110)는 n개의 정상안구영상 각각의 시신경중심을 기준시신경중심에 일치시키고, 각각의 황반부중심을 기준황반부중심에 일치시킬 수 있다. In addition, the processor 110 may match the optic nerve center of each of the n normal eye images to the reference optic nerve center, and may match each macular center to the reference macular center.
예를 들어, 프로세서(110)는 기준시신경중심(A)과 기준황반부중심(B) 간의 거리를 기준거리로 생성할 수 있다. 또한, 프로세서(110)는 기준시신경중심(A)과 기준황반부중심(B)을 연결하는 가상의 선과 기준안구영상(400)의 테두리가 이루는 각도를 기준각도(θ)로 생성할 수 있다. 또한, 프로세서(110)는 임의의 정상안구영상(예를 들어, 제m 정상안구영상, 단 m은 n 이하의 자연수임) 내의 시신경중심과 황반부중심의 거리가 기준거리에 상응해지도록 제m 정상안구영상의 크기를 늘이거나 줄일 수 있다(이하, '제m-1 정상안구영상'이라 칭함). 또한, 프로세서(110)는 제m-1 정상안구영상 내의 시신경중심과 황반부중심을 연결하는 가상의 선과 제m-1 정상안구영상 테두리가 이루는 각도가 기준각도(θ)에 상응해지도록 제m-1 정상안구영상을 회전시킬 수 있다(이하, '제m-2 정상안구영상'이라 칭함). 이에 의하여 제m-2 정상안구영상과 기준안구영상은 시신경중심과 황반부중심이 정합될 수 있다. For example, the processor 110 may generate the distance between the reference optic nerve center (A) and the reference macular center (B) as the reference distance. Also, the processor 110 may generate an angle between the imaginary line connecting the reference optic nerve center A and the reference macular center B and the edge of the reference eye image 400 as the reference angle θ. In addition, the processor 110 is configured so that the distance between the optic nerve center and the macular center in any normal eye image (eg, the mth normal eye image, where m is a natural number less than or equal to n) corresponds to the reference distance so that the mth normal eye image corresponds to the reference distance. It is possible to increase or decrease the size of the eye image (hereinafter referred to as 'the m-1 normal eye image'). In addition, the processor 110 is configured so that the angle between the imaginary line connecting the center of the optic nerve and the center of the macula in the m-1 th normal eye image and the rim of the m-1 th normal eye image corresponds to the reference angle θ. 1 The normal eye image can be rotated (hereinafter referred to as 'the m-2 normal eye image'). Accordingly, the m-2 th normal eye image and the reference eye image can be matched with the center of the optic nerve and the center of the macula.
상술한 프로세서(110)의 n개의 정상안구영상을 정합하는 동작은 예시적인 것일 뿐이다. 따라서, 프로세서(110)가 n개의 정상안구영상을 모두 정합하는 방법은 상술한 동작에 한정되지 않고 다양할 수 있을 것이다. The above-described operation of matching the n normal eye images of the processor 110 is merely exemplary. Accordingly, the method for the processor 110 to match all n normal eye images is not limited to the above-described operation and may vary.
도 4의 (b)는 제m 정상안구영상(400-1)의 예시로서, 제m 정상안구영상의 크기는 세로 (α)만큼 작고, 가로 (β)만큼 작은 경우가 예시된다. 또한, 제m 정상안구영상의 시신경중심(A') 및 황반부중심(B')을 연결하는 가상의 선과 제m 정상안구영상(400-1)의 테두리가 이루는 각도는 θ'인 경우가 예시된다. 4B is an example of an m-th normal eye image 400 - 1 , wherein the size of the m-th normal eye image is as small as vertical (α) and as small as horizontal (β). In addition, the case where the angle between the imaginary line connecting the optic nerve center (A') and the macular center (B') of the mth normal eye image and the edge of the mth normal eye image 400-1 is θ' is exemplified. .
따라서, 프로세서(110)는 도 5에 예시된 바와 같이 시신경중심(A')과 황반부중심(B')의 거리가 기준거리에 상응하도록 제m 정상안구영상(400-1)의 크기를 늘리고, θ'과 θ의 차이만큼 제m 정상안구영상(400-1)을 회전시켜 기준안구영상과 정합된 제m 정상안구영상(400-2)을 생성할 수 있을 것이다. Accordingly, the processor 110 increases the size of the mth normal eye image 400-1 so that the distance between the optic nerve center (A') and the macular center (B') corresponds to the reference distance, as illustrated in FIG. 5 , By rotating the mth normal eye image 400-1 by the difference between θ' and θ, the mth normal eye image 400-2 matched with the reference eye image may be generated.
다시 도 2를 참조하면, 단계 S230에서, 프로세서(110)는 정합된 n개의 정상안구영상을 이용하여 정상인들의 안구 내 시신경 두께 및/또는 신경절세포층 두께에 대한 분포 정보를 생성할 수 있다. Referring back to FIG. 2 , in step S230 , the processor 110 may generate distribution information on the thickness of the optic nerve and/or the thickness of the ganglion cell layer in the eyes of normal people using the matched n normal eye images.
예를 들어, 프로세서(110)는 안구의 임의의 지점(기준안구영상을 기준으로 한 지점을 의미함)에 상응하는 n개의 시신경 두께 정보 및/또는 신경절세포층 두께 정보를 생성할 수 있다. 여기서 임의의 지점은 기준안구영상의 각 픽셀에 상응하는 지점을 의미할 수 있다. 또는 임의의 지점은 기준안구영상의 인접한 복수의 픽셀을 포함하는 영역을 의미할 수 있다. 따라서 프로세서(110)는 정합된 n개의 기준안구영상의 제1 픽셀(즉 제1 지점)에 상응하는 n명의 정상인들의 시신경두께에 대한 정보 및/또는 신경절세포층두께에 대한 정보를 생성할 수 있을 것이다. For example, the processor 110 may generate n pieces of optic nerve thickness information and/or ganglion cell layer thickness information corresponding to an arbitrary point of the eye (meaning a point based on a reference eye image). Here, an arbitrary point may mean a point corresponding to each pixel of the reference eye image. Alternatively, an arbitrary point may mean an area including a plurality of adjacent pixels of the reference eye image. Accordingly, the processor 110 may generate information on the optic nerve thickness and/or ganglion cell layer thickness of n normal people corresponding to the first pixel (ie, the first point) of the n matched reference eye images. .
한편, 프로세서(110)는 정합된 정상안구영상 내 미리 설정된 영역에서는 시신경 두께에 대한 정보로서 망막신경섬유층(RNFL)값을 생성할 수 있다. 또한, 프로세서(110)는 상기 미리 설정된 영역 외에서는 황반의 신경절세포 두께에 대한 정보로서 신경절세포복합체(GCC, Ganglion Cell Complex)값을 생성할 수 있다. 여기서 미리 설정된 영역은 기준안구영상의 시신경유두를 중심으로 미리 설정된 영역을 의미할 수 있다. 예를 들어, 미리 설정된 영역은 기준안구영상의 시신경 유두를 중심점으로 하고 반지름 r인 원을 의미할 수 있다. 다른 예를 들어, 미리 설정된 영역은 기준안구영상의 시신경 유두를 무게중심으로 하는 정사각형일 수도 있다. 따라서, 미리 설정된 영역의 모양 및/또는 크기는 본 발명의 권리범위를 제한하지 않는다. Meanwhile, the processor 110 may generate a retinal nerve fiber layer (RNFL) value as information about the optic nerve thickness in a preset region in the matched normal eye image. In addition, the processor 110 may generate a ganglion cell complex (GCC, Ganglion Cell Complex) value as information about the thickness of ganglion cells of the macula outside the preset area. Here, the preset region may mean a preset region centered on the optic disc of the reference eye image. For example, the preset region may mean a circle having a radius r with the optic nerve papilla of the reference eye image as a central point. For another example, the preset area may be a square having the optic nerve head of the reference eye image as the center of gravity. Accordingly, the shape and/or size of the preset area does not limit the scope of the present invention.
단계 S240에서, 프로세서(110)는 새로운 정상안구영상(제n+1 정상안구영상)이 카메라(150)를 통해 촬영되거나 통신모뎀(120)을 통해 수신되면 이를 기준안구영상과 정합시킨 후 시신경두께 및/또는 신경절세포층두께에 대한 정보를 업데이트할 수 있다. 새로운 제n+1 정상안구영상의 정보를 반영하여야 하기 때문이다. In step S240, when a new normal eye image (n+1 normal eye image) is captured through the camera 150 or received through the communication modem 120, the processor 110 matches it with the reference eye image and then the optic nerve thickness and/or update information about the ganglion cell layer thickness. This is because the information of the new n+1th normal eye image must be reflected.
상술한 방법에 의하여 프로세서(110)는 사용자의 안구영상과 비교하기 위한 정상안구영상을 데이터베이스화하여 메모리(130)에 저장할 수 있다. According to the above-described method, the processor 110 may store the normal eye image for comparison with the user's eye image into a database in the memory 130 .
도 3은 본 발명의 일 실시예에 따라 당해 사용자의 안구질환 진행 정도를 분석하는 방법을 설명하기 위한 순서도이다. 3 is a flowchart for explaining a method of analyzing the degree of progression of an eye disease of the user according to an embodiment of the present invention.
이하에서 설명될 각 단계들은 프로세서(110)가 메모리(130)에 저장된 인스트럭션들을 실행하여 수행되는 단계들일 수 있다. 하지만 이해와 설명의 편의를 위해 프로세서(110)가 각 단계들을 수행하는 주체인 것으로 설명한다. Each of the steps to be described below may be steps performed by the processor 110 executing instructions stored in the memory 130 . However, for the convenience of understanding and description, the processor 110 is described as a subject performing each step.
단계 S310에서, 사용자안구영상이 생성되면, 프로세서(110)는 사용자안구영상을 기준안구영상에 상응하도록 미리 설정된 방법에 따라 정합할 수 있다(단계 S320). 여기서, 사용자안구영상은 카메라(150)에서 촬영된 당해 사용자에 대한 '광범위 빛간섭단층 영상'일 수 있다. 따라서 사용자안구영상에는 당해 사용자의 안구에 대한 시신경 유두 및 황반 부분이 모두 포함되어 있을 수 있다. 물론 사용자안구영상은 통신모뎀(120)을 통해 외부 장치에서 수신된 영상일 수도 있다. In step S310, when the user's eye image is generated, the processor 110 may match the user's eye image to the reference eye image according to a preset method (step S320). Here, the user's eye image may be a 'wide-range optical coherence tomography image' of the user captured by the camera 150 . Therefore, the user's eye image may include both the optic nerve papilla and the macula for the user's eye. Of course, the user's eye image may be an image received from an external device through the communication modem 120 .
또한, 프로세서(110)는 도 2의 S220의 방식과 동일, 유사한 방법으로 사용자안구영상을 기준안구영상과 정합시킬 수 있다. 즉, 프로세서(110)는 사용자안구영상에서 시신경 중심 및/또는 황반부 중심을 검출할 수 있다. 정상안구영상의 시신경 중심 및/또는 황반부 중심과 사용자안구영상의 시신경 중심 및/또는 황반부 중심을 구분하기 위하여, 전자를 제1 시신경 중심 및/또는 제1 황반부 중심으로 칭하고, 후자를 제2 시신경 중심 및/또는 제2 황반부 중심으로 칭한다. 프로세서(110)는 검출된 제2 시신경 중심 및 제2 황반부 중심의 거리가 기준거리에 상응하도록 사용자안구영상의 크기를 늘리거나 줄일 수 있다. 당해 동작으로 크기가 변화된 사용자안구영상을 제1 사용자안구영상으로 칭한다. In addition, the processor 110 may match the user eye image with the reference eye image in the same or similar method as that of S220 of FIG. 2 . That is, the processor 110 may detect the center of the optic nerve and/or the center of the macula in the user's eye image. In order to distinguish the optic nerve center and/or macular center of the normal eye image from the optic nerve center and/or macular center of the user's eye image, the former is referred to as the first optic nerve center and/or the first macular center, and the latter is referred to as the second optic nerve center and/or the second macular center. The processor 110 may increase or decrease the size of the user's eye image so that the detected distance between the second optic nerve center and the second macula center corresponds to the reference distance. The user's eyeball image whose size is changed by the operation is referred to as a first user's eyeball image.
또한, 프로세서(110)는 제2 시신경 중심과 제2 황반부 중심을 연결하는 가상의 선(line)과 사용자안구영상의 테두리가 이루는 각도가 기준각도에 상응하도록 제1 사용자안구영상을 회전시킬 수 있다. 당해 동작으로 회전되어 생성된 영상을 제2 사용자안구영상이라 칭한다. In addition, the processor 110 may rotate the first user's eye image so that the angle between the imaginary line connecting the second optic nerve center and the second macula center and the edge of the user's eye image corresponds to the reference angle. . An image generated by being rotated by the motion is referred to as a second user's eye image.
또한, 프로세서(110)는 제2 사용자안구영상의 제2 시신경중심 및 제2 황반부중심을 기준시신경중심 및 기준황반부중심의 위치에 상응하도록 쉬프트(shift)할 수 있다. 당해 동작으로 생성된 영상(기준안구영상에 정합된 사용자안구영상)을 사용자정합안구영상이라 칭한다. In addition, the processor 110 may shift the second optic nerve center and the second macular center of the second user's eye image to correspond to positions of the reference optic nerve center and the reference macular center. The image (user eye image matched to the reference eye image) generated by the operation is referred to as a user-matched eye image.
단계 S330에서, 프로세서(110)는 사용자정합안구영상의 시신경두께 및/또는 신경절세포층두께에 대한 정보를 생성할 수 있다. 프로세서(110)가 사용자정합안구영상의 시신경두께 및/또는 신경절세포층두께에 대한 정보를 생성하는 동작은 도 2의 단계 S230에서 설명한 동작과 동일 또는 유사할 수 있다. 즉, 예를 들어 프로세서(110)는 사용자정합안구영상의 미리 설정된 영역 내에서는 시신경 두께에 대한 정보로서 망막신경섬유층(RNFL)값을 생성할 수 있고, 상기 미리 설정된 영역 외에서는 황반의 신경절세포 두께에 대한 정보로서 신경절세포복합체(GCC, Ganglion Cell Complex)값을 생성할 수 있다.In operation S330, the processor 110 may generate information on the thickness of the optic nerve and/or the thickness of the ganglion cell layer of the user-matched eye image. The operation of the processor 110 generating information on the optic nerve thickness and/or the ganglion cell layer thickness of the user-matched eye image may be the same or similar to the operation described in step S230 of FIG. 2 . That is, for example, the processor 110 may generate a retinal nerve fiber layer (RNFL) value as information on the thickness of the optic nerve within a preset region of the user-matched eye image, and the thickness of ganglion cells of the macula outside the preset region. As information about the ganglion cell complex (GCC, Ganglion Cell Complex) value can be generated.
단계 S340에서, 프로세서(110)는 사용자정합안구영상의 정보(시신경두께 및/또는 신경절세포층두께에 대한 정보)와 미리 메모리(130)에 저장된 n개의 정상안구영상의 정보(시신경두께 및/또는 신경절세포층두께에 대한 정보)를 비교하여, 안구손상율의 정도에 따라 미리 설정된 색상으로 표시할 수 있다. In step S340, the processor 110 generates information on the user-matched eye image (information on the optic nerve thickness and/or ganglion cell layer thickness) and n normal eye images stored in the memory 130 in advance (optic nerve thickness and/or ganglion). Information on cell layer thickness) can be compared and displayed in a preset color according to the degree of eye damage rate.
예를 들어, 프로세서(110)는 사용자정합안구영상의 제1 픽셀에 상응하는 제1 사용자시신경두께정보 및 정상안구영상의 제1 픽셀에 상응하는 n개의 제1 정상시신경두께정보를 비교할 수 있다. 비교 결과 제1 사용자시신경두께정보가 n개의 제1 정상시신경두께정보의 제1 하위비율(예를 들어, 5%) 이하라면, 프로세서(110)는 사용자정합안구영상의 제1 픽셀의 색상을 제1 색상(예를 들어, 도 6의 진한 영역의 색상으로서, 노란색 등)으로 변경할 수 있다. 즉, 제1 사용자시신경두께가 n개의 제1 정상시신경두께의 하위 5%보다 얇으면, 프로세서(110)는 사용자정합안구영상의 제1 픽셀의 색상을 제1 색상으로 변경할 수 있다. For example, the processor 110 may compare the first user optic nerve thickness information corresponding to the first pixel of the user-matched eye image and the n pieces of first normal optic nerve thickness information corresponding to the first pixel of the normal eye image. As a result of the comparison, if the first user optic nerve thickness information is less than or equal to a first sub-ratio (eg, 5%) of the n pieces of first normal optic nerve thickness information, the processor 110 controls the color of the first pixel of the user-matched eye image. It can be changed to 1 color (eg, as a color of a dark region in FIG. 6 , such as yellow). That is, when the thickness of the first user optic nerve is thinner than the lower 5% of the thickness of the n first normal optic nerves, the processor 110 may change the color of the first pixel of the user-matched eye image to the first color.
또한, 비교 결과 제1 사용자시신경두께정보가 n개의 제1 정상시신경두께정보의 제2 하위비율(예를 들어, 1%) 이하라면, 프로세서(110)는 사용자정합안구영상의 제1 픽셀의 색상을 제2 색상(예를 들어, 도 6의 가장 진한 영역의 색상으로서, 붉은색 등)으로 변경할 수 있다. 즉, 제1 사용자시신경두께가 n개의 제1 정상시신경두께의 하위 1% 보다도 얇으면, 프로세서(110)는 사용자정합안구영상의 제1 픽셀의 색상을 제2 색상으로 변경할 수 있다. 여기서, 제1 픽셀은 미리 설정된 영역 내부의 픽셀일 수 있을 것이다. Also, As a result of the comparison, if the first user optic nerve thickness information is less than or equal to the second sub-ratio (eg, 1%) of the n pieces of first normal optic nerve thickness information, the processor 110 controls the color of the first pixel of the user-matched eye image. It can be changed to 2 colors (eg, red, etc. as the color of the darkest region in FIG. 6 ). That is, when the thickness of the first user's optic nerve is thinner than the lower 1% of the thickness of the n first normal optic nerves, the processor 110 may change the color of the first pixel of the user-matched eye image to the second color. Here, the first pixel may be a pixel within a preset area.
다른 예를 들어, 프로세서(110)는 사용자정합안구영상의 제2 픽셀에 상응하는 제2 사용자신경절세포층두께에 대한 정보 및 정상안구영상의 제2 픽셀에 상응하는 n개의 제2 정상신경절세포층두께에 대한 정보를 비교할 수 있다. 비교 결과 제2 사용자신경절세포층두께정보가 n개의 제2 정상신경절세포층두께 정보의 제1 하위비율(예를 들어, 5%) 이하라면, 프로세서(110)는 사용자정합안구영상의 제2 픽셀의 색상을 제1 색상(예를 들어, 도 6의 진한 영역의 색상으로서, 노란색 등)으로 변경할 수 있다. 또한, 비교 결과 제2 사용자신경절세포층두께정보가 n개의 제2 정상시신경두께정보의 제2 하위비율(예를 들어, 1%) 이하라면, 프로세서(110)는 사용자정합안구영상의 제2 픽셀의 색상을 제2 색상(예를 들어, 도 6의 가장 진한 영역의 색상으로서, 붉은색 등)으로 변경할 수 있다. 여기서, 제2 픽셀은 미리 설정된 영역 외부의 픽셀일 수 있을 것이다. For another example, the processor 110 may store information on the second user ganglion cell layer thickness corresponding to the second pixel of the user-matched eye image and the n second normal ganglion cell layer thicknesses corresponding to the second pixel of the normal eye image. information can be compared. As a result of comparison, if the second user ganglion cell layer thickness information is less than or equal to the first sub-ratio (eg, 5%) of the n pieces of second normal ganglion cell layer thickness information, the processor 110 controls the color of the second pixel of the user-matched eye image. may be changed to a first color (eg, as a color of a dark region of FIG. 6 , such as yellow). Also, As a result of comparison, if the second user ganglion cell layer thickness information is less than or equal to the second sub-ratio (eg, 1%) of the n pieces of second normal optic nerve thickness information, the processor 110 selects the color of the second pixel of the user-matched eye image. It may be changed to a second color (eg, red, etc. as a color of the darkest region of FIG. 6 ). Here, the second pixel may be a pixel outside the preset area.
이에 의하여 사용자안구영상이 디스플레이될 때 제2 색상으로 표시된 부분은 시신경 손상이 제1 하위정상안구영상들에 비해서도 많이 손상된 부분임을 직관적으로 인지할 수 있다. Accordingly, when the user's eye image is displayed, it can be intuitively recognized that the portion marked with the second color is a portion where the optic nerve is damaged more than the first lower normal eye images.
도 6은 종래의 시신경 부분 영상과 황반 부분 영상을 연결한 이미지와 본 발명의 일 실시예에 따른 안구질환진행영상을 비교하기 위한 도면이다. 6 is a view for comparing a conventional image in which a partial optic nerve image and a partial macular image are connected with an ocular disease progression image according to an embodiment of the present invention.
도 6의 (a)는 종래의 개별적으로 생성된 시신경 부분 영상과 황반 부분 영상을 연결한 이미지로서, 시신경 및/또는 신경절세포층이 손상된 부분을 시각적으로 표시한 이미지이다. 또한, 도 6의 (b)는 본 발명에 따라 광범위 빛간섭단층 영상을 이용하여 시신경 및/또는 신경절세포층이 손상된 부분을 시각적으로 표시한 이미지이다. 6 (a) is an image in which the conventional individually generated partial optic nerve image and the macula partial image are connected, and is an image in which the optic nerve and/or ganglion cell layer is damaged visually. Also, FIG. 6(b) is an image in which the optic nerve and/or the ganglion cell layer is visually marked using a broad-spectrum optical coherence tomography image according to the present invention.
도 6의 (a)에는 시신경 등이 손상된 부위가 부분적으로 밖에 표시될 수 없어서 안과 질환의 구조적 손상 정도가 명확히 파악될 수 없었다. 하지만 본 발명에 따르면, 안과질환자의 시신경 손상 정도가 정상인(특히 시신경이 다소 손상된 정상인)과 전체적으로 비교 표시될 수 있으므로, 환자의 안구 질환 구조적 손상 정도가 한눈에 파악될 수 있다.In (a) of FIG. 6 , the damaged area of the optic nerve and the like could only be partially displayed, so that the degree of structural damage of the ophthalmic disease could not be clearly understood. However, according to the present invention, since the degree of damage to the optic nerve of an ophthalmic disease can be compared and displayed as a whole with a normal person (particularly, a normal person with some damage to the optic nerve), the degree of structural damage to the eye disease of the patient can be grasped at a glance.
한편, 도 6의 (b)의 점선으로 표시된 원(600)은 도 2 및 도 3을 참조하여 설명한 "미리 설정된 영역"을 예시한 것이다. 프로세서는 당해 원(600) 내부에서는 시신경 두께에 대한 정보로서 망막신경섬유층(RNFL)값을 생성할 수 있고, 당해 원(600) 외부에서는 황반의 신경절세포 두께에 대한 정보로서 신경절세포복합체(GCC, Ganglion Cell Complex)값을 생성할 수 있을 것이다.Meanwhile, a circle 600 indicated by a dotted line in FIG. 6B illustrates the “preset region” described with reference to FIGS. 2 and 3 . The processor can generate a retinal nerve fiber layer (RNFL) value as information about the thickness of the optic nerve inside the circle 600, and outside the circle 600, as information about the thickness of ganglion cells of the macula, the ganglion cell complex (GCC, Ganglion Cell Complex) value.
이상, 본 발명을 바람직한 실시 예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시 예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러가지 변형 및 변경이 가능하다.As mentioned above, although the present invention has been described in detail with reference to a preferred embodiment, the present invention is not limited to the above embodiment, and various modifications and changes can be made by those skilled in the art within the technical spirit and scope of the present invention. This is possible.

Claims (11)

  1. 프로세서; 및processor; and
    상기 프로세서에 전기적으로 연결된 메모리를 포함하고,a memory electrically coupled to the processor;
    상기 메모리는, 상기 프로세서가 실행 시에, The memory, when the processor executes,
    정상인에 상응하는 n개의 정상안구영상 각각을 미리 설정된 방법에 따라 정합하여 n개의 정상정합안구영상을 생성하고(단, 상기 n은 2 이상의 자연수임),Registering each of n normal eye images corresponding to a normal person according to a preset method to generate n normal matched eye images (provided that n is a natural number equal to or greater than 2),
    사용자안구영상을 상기 정상정합안구영상에 상응하도록 정합하여 사용자정합안구영상을 생성하며,A user eye image is matched to the normal matched eye image to generate a user matched eye image,
    상기 정상정합안구영상과 상기 사용자정합안구영상을 비교하여 상기 사용자정합안구영상의 안구 손상 정도를 판단하는 인스트럭션들을 저장하는, 안구질환 구조적 손상 판단 장치.and storing instructions for determining the degree of eye damage in the user-registered eye image by comparing the normal matched eye image with the user-registered eye image.
  2. 제1항에 있어서,According to claim 1,
    상기 메모리는,The memory is
    상기 n개의 정상안구영상 각각의 제1 시신경중심 및 제1 황반부중심을 검출하고, Detecting the first optic nerve center and the first macular center of each of the n normal eye images,
    상기 제1 시신경중심 및 상기 제1 황반부중심을 기준으로 상기 정상정합안구영상을 생성하는 generating the normally matched eye image based on the first optic nerve center and the first macular center
    인스트럭션들을 저장하되,Save the instructions,
    상기 정상안구영상은 광범위 빛간섭단층 영상에 상응하는, 안구질환 구조적 손상 판단 장치. The normal eye image corresponds to a broad-spectrum optical coherence tomography image, an eye disease structural damage determination device.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 메모리는,The memory is
    상기 정상안구영상들 각각의 제1 시신경중심 및 제1 황반부중심을 미리 설정된 기준시신경중심 및 기준황반부중심에 각각 정합시켜 상기 n개의 정상정합안구영상을 생성하는 generating the n normal matched eye images by matching the first optic nerve center and the first macular center of each of the normal eye images to the preset reference optic nerve center and the reference macular center, respectively
    인스트럭션들을 저장하는, 안구질환 구조적 손상 판단 장치. Storing the instructions, an eye disease structural damage determination device.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 메모리는,The memory is
    상기 기준시신경중심 및 상기 기준황반부중심 간의 기준거리를 생성하고, generating a reference distance between the reference optic nerve center and the reference macular center,
    상기 기준시신경중심 및 상기 기준황반부중심을 연결하는 가상의 선과 기준안구영상의 테두리가 이루는 기준각도를 생성하며, generating a reference angle formed by an imaginary line connecting the reference optic nerve center and the reference macular center and the border of the reference eye image,
    상기 기준거리 및 상기 기준각도를 이용하여 상기 n개의 정상정합안구영상을 생성하는 generating the n normally matched eye images using the reference distance and the reference angle
    인스트럭션들을 저장하는, 안구질환 구조적 손상 판단 장치. Storing the instructions, an eye disease structural damage determination device.
  5. 제2항에 있어서,3. The method of claim 2,
    상기 메모리는,The memory is
    상기 사용자안구영상의 제2 시신경중심 및 제2 황반부중심을 검출하고, detecting a second optic nerve center and a second macular center of the user's eye image,
    상기 제2 시신경중심 및 상기 제2 황반부중심을 기준으로 상기 사용자정합안구영상을 생성하는 generating the user-matched eye image based on the second optic nerve center and the second macular center
    인스트럭션들을 저장하되,Save the instructions,
    상기 사용자안구영상은 광범위 빛간섭단층 영상에 상응하는, 안구질환 구조적 손상 판단 판단 장치. The user eye image corresponds to a broad-spectrum optical coherence tomography image, an eye disease structural damage determination device.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 메모리는,The memory is
    상기 제2 시신경중심 및 상기 제2 황반부중심의 거리가 미리 설정된 기준거리에 상응하도록 상기 사용자안구영상의 크기를 조절하여 제1 사용자안구영상을 생성하고, generating a first user eye image by adjusting the size of the user eye image so that the distance between the second optic nerve center and the second macular center corresponds to a preset reference distance;
    상기 제2 시신경중심 및 상기 제2 황반부중심을 연결하는 선과 상기 사용자안구영상의 테두리가 이루는 각도가 미리 설정된 기준각도에 상응하도록 상기 제1 사용자안구영상을 회전시켜 제2 사용자안구영상을 생성하며, A second user eye image is generated by rotating the first user eye image so that an angle between the line connecting the second optic nerve center and the second macular center and the edge of the user eye image corresponds to a preset reference angle,
    상기 제2 사용자안구영상 내의 상기 제2 시신경중심과 상기 제2 황반부중심의 위치를 미리 설정된 기준시신경중심 및 기준황반부중심의 위치에 상응하도록 쉬프트하여 상기 사용자정합안구영상을 생성하는 generating the user-matched eye image by shifting the positions of the second optic nerve center and the second macular center in the second user eye image to correspond to preset positions of the reference optic nerve center and the reference macular center
    인스트럭션들을 저장하는, 안구질환 구조적 손상 판단 장치. Storing the instructions, an eye disease structural damage determination device.
  7. 제1항에 있어서,According to claim 1,
    상기 메모리는,The memory is
    상기 n개의 정상정합안구영상 각각의 시신경 두께와 상기 사용자정합안구영상의 시신경 두께를 비교하여 상기 사용자정합안구영상의 안구 손상 정도를 판단하는 인스트럭션들을 저장하는, 안구질환 구조적 손상 판단 장치. and storing instructions for determining the degree of eye damage in the user-matched eye image by comparing the optic nerve thickness of each of the n normal matched eye images with the optic nerve thickness of the user-matched eye image.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 메모리는,The memory is
    상기 n개의 정상정합안구영상 각각의 미리 설정된 영역 내의 망막신경섬유층(RNFL)값들과 상기 사용자정합안구영상의 미리 설정된 영역 내의 망막신경섬유층(RNFL)값을 비교하여 상기 사용자정합안구영상의 안구 손상 정도를 판단하는 인스트럭션들을 저장하는, 안구질환 구조적 손상 판단 장치. The degree of eye damage in the user-registered eye image by comparing retinal nerve fiber layer (RNFL) values in a preset area of each of the n normal matched eye images with retinal nerve fiber layer (RNFL) values in a preset area of the user-registered eye image. Storing the instructions to determine, eye disease structural damage determination device.
  9. 제1항에 있어서,According to claim 1,
    상기 메모리는,The memory is
    상기 n개의 정상정합안구영상 각각의 신경절세포 두께와 상기 사용자정합안구영상의 신경절세포 두께를 비교하여 상기 사용자정합안구영상의 안구 손상 정도를 판단하는 인스트럭션들을 저장하는, 안구질환 구조적 손상 판단 장치. and storing instructions for determining the degree of eye damage in the user-matched eye image by comparing the ganglion cell thickness of each of the n normal matched eye images with the ganglion cell thickness of the user-registered eye image.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 n개의 정상정합안구영상 각각의 미리 설정된 영역 외의 신경절세포복합체(GCC, Ganglion Cell Complex)값들과 상기 사용자정합안구영상의 미리 설정된 영역 외의 신경절세포복합체(GCC, Ganglion Cell Complex)값을 비교하여 상기 사용자정합안구영상의 안구 손상 정도를 판단하는 인스트럭션들을 저장하는, 안구질환 구조적 손상 판단 장치. By comparing the ganglion cell complex (GCC) values outside the preset region of each of the n normal matched eye images with the ganglion cell complex (GCC, Ganglion Cell Complex) values outside the preset region of the user-matched eye image, the An apparatus for determining structural damage to an eye disease that stores instructions for determining the degree of eye damage in the user-matched eye image.
  11. 제7항 내지 제10항 중 어느 한 항에 있어서,11. The method according to any one of claims 7 to 10,
    상기 메모리는,The memory is
    상기 비교 결과에 따라 상기 사용자정합안구영상의 색상을 변경하되, Change the color of the user-matched eye image according to the comparison result,
    상기 안구 손상 정도가 미리 설정된 제1 하위비율보다 심한 부분은 제1 색상으로 변경하고,The portion in which the degree of eye damage is more severe than the preset first sub-ratio is changed to the first color,
    상기 안구 손상 정도가 미리 설정된 제2 하위비율보다도 심한 부분은 제2 색상으로 변경하며,The portion in which the degree of eye damage is more severe than the preset second sub-ratio is changed to a second color,
    상기 제2 하위비율이 상기 제1 하위비율보다 안구손상율이 더 큰 것인, 인스트럭션들을 저장하는, 안구질환 구조적 손상 판단 장치.The second sub-ratio is that the eye damage rate is greater than the first sub-ratio, storing instructions, eye disease structural damage determination device.
PCT/KR2021/010804 2020-07-10 2021-08-13 Structural damage determination method for eye disease and device therefor WO2022010334A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0085446 2020-07-10
KR1020200085446A KR102400623B1 (en) 2020-07-10 2020-07-10 Method for determining structural damage of eye disease and Device thereof

Publications (1)

Publication Number Publication Date
WO2022010334A1 true WO2022010334A1 (en) 2022-01-13

Family

ID=79553529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010804 WO2022010334A1 (en) 2020-07-10 2021-08-13 Structural damage determination method for eye disease and device therefor

Country Status (2)

Country Link
KR (1) KR102400623B1 (en)
WO (1) WO2022010334A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117853334A (en) * 2024-03-07 2024-04-09 中国人民解放军海军青岛特勤疗养中心 Medical image reconstruction method and system based on DICOM image

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130013966A (en) * 2011-07-29 2013-02-06 주식회사 모든넷 Chest image diagnosis system based on image warping, and method thereof
KR20130100384A (en) * 2009-06-02 2013-09-10 캐논 가부시끼가이샤 Image processing apparatus, control method thereof, and computer program
KR20190022216A (en) * 2017-08-25 2019-03-06 주식회사 메디웨일 Eye image analysis method
JP2019150486A (en) * 2018-03-06 2019-09-12 キヤノン株式会社 Image processing apparatus, image processing method, and program
JP2020103579A (en) * 2018-12-27 2020-07-09 キヤノン株式会社 Image processing device, image processing method, and program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102032047B1 (en) 2018-03-21 2019-10-14 가톨릭대학교 산학협력단 Image analysis method and apparatus for glaucoma diagnosis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130100384A (en) * 2009-06-02 2013-09-10 캐논 가부시끼가이샤 Image processing apparatus, control method thereof, and computer program
KR20130013966A (en) * 2011-07-29 2013-02-06 주식회사 모든넷 Chest image diagnosis system based on image warping, and method thereof
KR20190022216A (en) * 2017-08-25 2019-03-06 주식회사 메디웨일 Eye image analysis method
JP2019150486A (en) * 2018-03-06 2019-09-12 キヤノン株式会社 Image processing apparatus, image processing method, and program
JP2020103579A (en) * 2018-12-27 2020-07-09 キヤノン株式会社 Image processing device, image processing method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117853334A (en) * 2024-03-07 2024-04-09 中国人民解放军海军青岛特勤疗养中心 Medical image reconstruction method and system based on DICOM image
CN117853334B (en) * 2024-03-07 2024-05-14 中国人民解放军海军青岛特勤疗养中心 Medical image reconstruction method and system based on DICOM image

Also Published As

Publication number Publication date
KR20220007337A (en) 2022-01-18
KR102400623B1 (en) 2022-05-20

Similar Documents

Publication Publication Date Title
WO2021118255A2 (en) System and method for analyzing corneal lesion using anterior ocular segment image, and computer-readable recording medium
WO2018169330A1 (en) Systems and methods for determining defects in visual field of a user
BR112020006142A2 (en) digital therapeutic corrective glasses
Perez-Fernandez et al. Normal Gain of VOR with Refixation Saccades in Patients with Unilateral Vestibulopathy.
WO2019240567A1 (en) Anterior eye disease diagnostic system and diagnostic method using same
WO2018030818A1 (en) Automatic strabismus measurement apparatus
WO2022010334A1 (en) Structural damage determination method for eye disease and device therefor
US20070188705A1 (en) Ocular fundus portion analyzer and ocular fundus portion analyzing method
Castelo-Branco et al. Simultaneous comparison of relative damage to chromatic pathways in ocular hypertension and glaucoma: correlation with clinical measures
GB2491941A (en) Image processing to detect abnormal eye conditions
WO2013062345A1 (en) Colour lighting control method for improving image quality in a vision system
JPH09201334A (en) Ophthalmological device
Wen et al. A novel motion-on-color paradigm for isolating magnocellular pathway function in preperimetric glaucoma
CN210043977U (en) Heterophoria detection system
WO2014011014A1 (en) Ophthalmic apparatus, and treatment site measuring method for the apparatus
Damato et al. A hand-held OKP chart for the screening of glaucoma: preliminary evaluation
WO2021107433A1 (en) Method and apparatus for determining structural progression of ocular disease
WO2019172503A1 (en) Device for visual field defect evaluation via eye tracking, method for visual field defect evaluation using same, and computer-readable storage medium
Örnek et al. Retinal nerve fiber layer thickness in vitiligo patients
Larson et al. The threshold for the detection of strabismus
Utama et al. Color blind test quantification using RGB primary color cluster
WO2020226455A1 (en) Optic neuropathy prediction device using fundus image, and method for providing optic neuropathy prediction result
WO2021141186A1 (en) Multi-type cognitive rehabilitation training system and method
WO2018117366A1 (en) Iris verification method
WO2021112436A1 (en) Device and method for automatic calculation of cleanness of bowel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837552

Country of ref document: EP

Kind code of ref document: A1