WO2022010333A1 - 3d printing system - Google Patents

3d printing system Download PDF

Info

Publication number
WO2022010333A1
WO2022010333A1 PCT/KR2021/008902 KR2021008902W WO2022010333A1 WO 2022010333 A1 WO2022010333 A1 WO 2022010333A1 KR 2021008902 W KR2021008902 W KR 2021008902W WO 2022010333 A1 WO2022010333 A1 WO 2022010333A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocurable resin
injection
resin
nozzle
housing
Prior art date
Application number
PCT/KR2021/008902
Other languages
French (fr)
Korean (ko)
Inventor
박성진
이홍주
김기형
Original Assignee
주식회사 류진랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 류진랩 filed Critical 주식회사 류진랩
Priority claimed from KR1020210091029A external-priority patent/KR20220007561A/en
Publication of WO2022010333A1 publication Critical patent/WO2022010333A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • Embodiments disclosed herein relate to a 3D printing system, and more particularly, to a 3D printing system capable of modeling an output while laminating a photocurable resin layer by layer in conjunction with slicing software.
  • a 3D printer (3D molding machine) uses 3D information of an object composed of a digital file to structure (slice) the object into a very thin layer, and then builds the actual sculpture by stacking the materials layer by layer from this information. technology to implement.
  • These 3D printers can be largely divided into a photocuring stacking method and an FDM (FFF) method.
  • FFF FDM
  • the photocurable lamination method is to perform 3D printing using a photocurable resin as disclosed in Korean Patent Application Laid-Open No. 10-2016-0130592, and is molded by irradiating light from a light source that provides light to a tank filled with resin. It is a technology to form a sculpture by curing the resin in the desired area.
  • the plate is repeatedly driven up and down through the elevating member, and layers by hardening of the resin are laminated on the plate one by one to output the sculpture.
  • the conventional resin 3D printer performs printing after filling the resin receiving part with a certain amount of resin, printing may fail if the resin is insufficient while printing. Because it has to fill a certain amount without it, the waste of resin is severe, and the increase in operating cost can be a burden.
  • a large storage unit In addition, in order to print a large print, a large storage unit must be used. If the large storage unit is filled with a large amount of resin, the material cost increases, and the weight of the resin puts a load on the 3D printer, which causes fatigue in the image switching unit at the bottom of the storage unit. It can accumulate and cause 3D printer failure.
  • Embodiments disclosed in the present specification avoid waste of material by spraying a required amount of photocurable resin to a required location in conjunction with slicing software when 3D printing is performed, and provide an easy 3D printing system for large-area printing there is a purpose to
  • the embodiments disclosed in this specification provide a light source of a light engine to a predetermined position of the accommodation unit to selectively supply a photocurable resin to an area where printing is performed in the accommodation space of the accommodation unit while printing is performed. It aims to present a 3D printing system.
  • the receiving unit for accommodating the photocurable resin; a light engine installed in the lower part of the accommodating part to provide a light source for molding an output to the accommodating part to cure the photocurable resin; a plate which is installed so as to be lifted on the upper part of the receiving part and is immersed in a photocurable resin by laminating the photocurable resin in a single layer on the bottom surface to form a three-dimensional output; a lifting member for allowing the stacking of the next single layer by lifting the plate to separate it from the bottom surface of the receiving unit after lamination of one single layer is completed on the plate, and lowering the plate again; and supplying the photocurable resin to the accommodating part at a predetermined water level, while adjusting the supply position of the photocurable resin, selectively supplying the photocurable resin to the area where printing is made by the light engine in the accommodating space of the accommodating part It may include a resin supply member.
  • the resin supply member receiving the photo-curable resin in a state installed on the outside of the accommodating portion, formed to a predetermined length, the injection housing extending into the receiving space of the accommodating portion; at least one injection nozzle installed along the longitudinal direction of the injection housing to inject the photocurable resin supplied to the injection housing into the receiving space of the housing; and a nozzle rotation motor for rotatably coupling one end of the spray housing to the outer periphery of the housing to move the spray nozzle to a predetermined area of the accommodation space while rotating the spray housing.
  • the injection nozzles are installed at predetermined intervals along the longitudinal direction of the injection housing while forming a plurality, and the resin supply member controls the injection area of the injection nozzles while controlling the opening and closing of each of the injection nozzles. It may further include a nozzle valve.
  • the injection housing is configured to be stretchable in length while forming a telescopic structure
  • the resin supply member may include a stretching member for linearly moving the injection nozzles while stretching the length of the injection housing.
  • the resin supply member by movably coupling the nozzle rotation motor to the outer periphery of the housing portion to move the nozzle rotation motor together with the injection housing to move the injection nozzle to a predetermined area of the accommodation space It may further include a nozzle slider.
  • the 3D printing system according to any one of the above-mentioned problem solving means supplies the photocurable resin to the area of the receiving part where printing by the light engine is made through the injection housing and the injection nozzle for supplying the resin supply member, so It is possible to present a 3D printing system that can prevent wastage and at the same time avoid output failure due to material exhaustion.
  • 1 is a configuration diagram showing the configuration of a 3D printing system according to an embodiment.
  • FIG. 2 is a plan view showing the configuration of a resin supply member according to an embodiment.
  • FIG 3 is a front view showing the configuration of a resin supply member according to an embodiment.
  • FIG. 4 is a plan view showing the configuration of a resin supply member according to another embodiment.
  • FIG. 1 is a configuration diagram showing the configuration of a 3D printing system according to an embodiment
  • FIG. 2 is a plan view showing the configuration of a resin supply member according to an embodiment
  • FIG. 3 is a configuration diagram of a resin supply member according to an embodiment It is a front view showing 4 is a plan view showing the configuration of a resin supply member according to another embodiment.
  • the 3D printing system 10 is a device for molding an output while stacking layers one by one using a photocurable resin, and is particularly suitable for modeling a large-area output.
  • the 3D printing system 10 includes a receiving unit 100 , a light engine 200 , a plate 300 , a lifting member 400 , and a resin supply member 500 . ) may be included.
  • the accommodating part 100 is configured in the form of a container with an open top, and is a component for accommodating a photocurable resin passed by light.
  • the photocurable resin is cured when receiving light, and all configurations known in the art to which the present invention pertains, including resin, may be applied.
  • the accommodating part 100 may be installed above the light engine 200 to be described later to transmit the light source provided from the light engine 200 and harden the photocurable resin.
  • a plate 300 to be described later on which the cured photocurable resin can be laminated is installed so as to be able to move up and down, so that the photocurable resin corresponding to the tomographic image can be laminated layer by layer.
  • the light engine 200 is a component that is installed in the lower portion of the receiving unit 100 and irradiates a light source for modeling the output to the receiving unit to perform 3D printing while curing the photocurable resin of the receiving unit 100 .
  • the light engine 200 irradiates a light source corresponding to the two-dimensional image for each tomographic image of the sculpture to the receiving unit 100 to cure the photocurable resin in a form corresponding to the tomographic image and laminate it on the plate 300 to be described later.
  • a component corresponding to the two-dimensional image for each tomographic image of the sculpture to the receiving unit 100 to cure the photocurable resin in a form corresponding to the tomographic image and laminate it on the plate 300 to be described later.
  • the light engine 200 may include a backlight unit 210 , an image switching unit 200 , a transparent support member 230 , and a control unit 240 .
  • the backlight unit 210 is a component that is installed under the receiving unit 100 to provide a backlight.
  • the backlight unit 210 may provide a backlight for outputting a sculpture in the lower portion of the image switching unit 220 to be described later under the control of the control unit 240 , and a plurality of light source elements are mounted to the control unit 240 . ) to provide a backlight while emitting light under the control of
  • the backlight unit 210 may be divided into a plurality of areas and controlled for each division while providing a backlight by the controller 240 , or may be controlled individually.
  • the backlight unit 210 is a micro LED (Light Emitting Diode), mini LED, LCD, LED, OLED (Organic Light Emitting Diode), any one selected from the group of self-luminous display devices including FED (Field Emission Display) It may be composed of an assembly of one element, and in addition, an element providing a light source having a predetermined wavelength may be included.
  • the image switching unit 220 is a component for curing the photocurable resin by irradiating a light source corresponding to the tomographic image to the receiving unit 100 based on the sliced data for molding the output.
  • the image switching unit 220 operates by the control unit 240 and switches the light source provided from the backlight unit 210 to a tomographic image form and irradiates the photocurable resin toward the accommodating unit 100 in a tomographic image form. can be cured with
  • the image switching unit 200 is illustrated to provide a light source from a lower portion of the accommodation unit 100 , but unlike the illustration, the image switching unit 200 may provide a light source from an upper portion or a side of the accommodation unit 100 .
  • the image switching unit 220 is composed of an LCD and can be operated under the control of the control unit 240 , and unlike the microLED, mini LED, LED, OLED, and FED that do not require the aforementioned backlight unit 210 . It may be composed of a self-luminous device such as
  • the transparent support member 230 is a component for preventing the image switching unit 220 from sagging. This may be prevented, and the backlight irradiated from the backlight unit 210 may be transmitted through the image switching unit 220 .
  • the control unit 240 is a component that controls the light emission of the image switching unit 220 and the backlight unit 210, and is synchronized with the image of the image switching unit 220 based on slicing software to control the light emission of the backlight unit 210 can be controlled
  • the light engine 200 may be composed of a self-luminous member such as OLED, LED, microLED, mini LED, FED, etc. while the above-described configuration of the backlight unit 210 is omitted, and a laser or DLP is used as a light source. A configuration such as a method may be applied.
  • the plate 300 is immersed in a photo-curable resin while being installed so as to be able to lift or lower on the upper portion of the receiving unit 100, and a three-dimensional sculpture while laminating the photo-curable resin cured by the light of the light engine 200 on the bottom surface. can form.
  • the plate 300 descends from the upper portion of the accommodating unit 100 by an elevating member 400 to be described later to face the bottom surface of the accommodating unit 100, and in this state, the light of the light engine 200 is When irradiated, the photocurable resin corresponding to the two-dimensional planar shape of the irradiated light is cured and laminated on the bottom surface, and then it can be separated from the bottom surface of the accommodation unit 100 while rising by the lifting member 400 again.
  • the lifting member 400 is a component that raises and lowers the plate 300 from the upper portion of the receiving unit 100 .
  • the lifting member 400 may be configured to include a lifting rail 410 and a slider 420 .
  • the lifting rail 410 may extend in a vertical direction while being installed adjacent to the accommodating part 100 to provide an elevating path of the plate 300 .
  • the slider 420 is movably coupled to the elevating rail 410 in a state of being fixed to the plate 300 , and may elevate the plate 300 while moving along the elevating rail 410 by control.
  • the slider 420 and the lifting rail 410 are configured by a ball screw method, a linear motor method, or a rack gear and a pinion gear method, and can lift and lower the plate 300 while moving in a straight line.
  • the lifting member 400 may include a horizontal moving member (not shown) that horizontally moves the slider 420 to correct the position of the plate 530 .
  • the resin supply member 500 is a component for supplying the photocurable resin to the accommodating part 100 at a predetermined water level, and in particular, by adjusting the supply position of the photocurable resin, the light engine 200 in the accommodating space of the accommodating part 100 . ), it is a component that can selectively supply a photocurable resin to the printing area.
  • the resin supply member 500 may be configured to include a spray housing 510 , a spray nozzle 520 , and a nozzle rotation motor 530 as shown in FIGS. 2 and 3 .
  • the spray housing 510 is a component that supplies the photocurable resin to the receiving space of the receiving unit 100, and is installed on the outside of the receiving unit 100 while connected to the supply line of the photocurable resin, as shown in FIG. As shown, it may be formed to a predetermined length and extend into the accommodation space of the accommodation unit 100 .
  • the spray housing 510 may be supplied with a photocurable resin of a capacity required for printing under the control of the controller 240, and the photocurable resin is applied to the receiving unit 100 based on a detection signal of a water level sensor (not shown). It may be supplied at a predetermined water level.
  • the spray nozzle 520 is a component that sprays and supplies the photocurable resin supplied to the spray housing 510 into the receiving space of the accommodating part 100 .
  • the injection nozzle 520 may be composed of at least one, and as shown in FIG. 3 , a plurality of injection nozzles 520 may be installed at predetermined intervals along the longitudinal direction of the injection housing 510 .
  • the nozzle rotation motor 530 is a component that selectively adjusts the supply position of the photocurable resin by moving the injection housing 510 and the injection nozzle 520 to a predetermined area of the accommodation space of the accommodation unit 100 .
  • the nozzle rotation motor 530 rotatably combines one end of the spray housing 510 with the outside of the receiving part 100 to rotate the spray housing 510 through forward and reverse rotation, as shown in FIG. 2 .
  • the injection nozzle 520 can be moved to a predetermined area while reciprocating (swinging) in the horizontal direction.
  • the nozzle rotation motor 530 may move the nozzle housing 510 to an area where printing is performed by the light engine 200 while operating based on the slicing software under the control of the controller 240 .
  • the photo-curable resin can be supplied to the printing area through the spray housing 510 and the spray nozzle 520 in the receiving unit 100, smooth printing can be performed while preventing material exhaustion.
  • opening and closing of the injection nozzles 520 may be controlled through the configuration of the nozzle valve 525 as shown in FIG. 3 .
  • the nozzle valve 525 may be installed in each of the injection nozzles 520 , and may selectively open and close each of the injection nozzles 520 while operating under the control of the controller 240 .
  • the nozzle valve 525 operates under the control of the control unit 240 and opens only the injection nozzle 520 corresponding to the area in which printing is performed, thereby supplying the photocurable resin to the area.
  • the nozzle valve 525 may supply a photocurable resin of a capacity required for printing through the control of the control unit 240 while opening and closing the injection nozzle 520 .
  • the resin may be supplied at a predetermined water level.
  • the injection housing 510 may be configured in multiple stages to have a telescopic structure and to be stretchable in length.
  • the resin supply member 500 is configured to expand and contract in length through the configuration of the expansion and contraction member 550 to linearly move the spray nozzles 520 .
  • the expansion and contraction member 550 is built into the injection housing 510 and is composed of a cylinder or a motor capable of expanding and contracting the length of the injection housing 510 through linear movement of the rod, and may be operated by the control unit 240 . .
  • the injection nozzle 520 may move to a predetermined area while linearly moving in the longitudinal direction of the injection housing 510 by expansion and contraction of the injection housing 510 .
  • the resin supply member 500 may be configured to further include a nozzle slider 560 as shown in FIG.
  • the nozzle slider 560 is a component for moving the spraying nozzle 520 to a predetermined area while moving the spraying housing 510 together with the nozzle rotating motor 530 .
  • the nozzle slider 560 may movably couple the nozzle rotation motor 530 to the nozzle rail 565 provided on the outside of the receiving unit 100 , and rotate the nozzle while operating under the control of the controller 240 .
  • the motor 530 may be moved to a predetermined area together with the injection housing 510 .
  • the injection nozzle 520 moves within the receiving space of the accommodating part 100 through a rotational movement by the nozzle rotation motor 530 and a linear movement by the nozzle slider 560 to move to an area where printing is performed.
  • a photocurable resin can be supplied.
  • the nozzle slider 560 and the nozzle rail 565 are configured in a ball screw method, a linear motor method, or a rack gear and a pinion gear method, and linearly move the nozzle rotating motor 530 together with the spray housing 510. area can be moved.
  • the control unit 240 may form and stack one unit layer corresponding to the tomographic image of the printed product on the bottom surface of the plate 300 lowered to the receiving unit 100 .
  • the light engine 200 irradiates the light source corresponding to the tomographic image of the output to the accommodating unit 100 through the backlight unit 210 and the image switching unit 220 under the control of the control unit 240 to achieve photocurability.
  • the resin is cured in a shape corresponding to the tomographic image to form a unit layer of one layer, and the plate 300 is lowered horizontally by the elevating member 400 to laminate the cured unit layer on the bottom surface.
  • the controller 240 operates the nozzle rotation motor 530 or the nozzle slider 560 to move the spray housing 510 and the spray nozzle 520 to the printing area, and controls the nozzle valve 525 to the printing area.
  • the photocurable resin can be supplied to the printing area while opening the injection nozzle 520 located in the .
  • the printing is performed through the injection housing 510 and the injection nozzle 520 for supplying the resin supply member 500.
  • the region of the receiving unit 100 By supplying a photocurable resin to the printer, it is possible to prevent wastage of materials during printing and at the same time avoid failure of printing due to exhaustion of materials, and has the advantage of being suitable for printing large-area sculptures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

Provided is a 3D printing system capable of forming an object to be printed while laminating layers one upon another by using photocurable resin, the 3D printing system comprising: a receiving part for receiving photocurable resin; a light engine which is installed at the lower side of the receiving part and provides a light source for forming an object to be printed to the receiving part to cure the photocurable resin; a plate which is installed at the upper side of the receiving part to be able to move up and down, and forms a three-dimensional object to be printed by laminating photocurable resin for each monolayer on the bottom surface thereof while being immersed in the photocurable resin; an elevation member which, after lamination of a monolayer on the plate is completed, moves the plate up to separate the plate from the bottom surface of the receiving part, and moves the plate down again to allow lamination of a subsequent monolayer; and a resin supply member for supplying photocurable resin to the receiving part up to a predetermined level, the resin supply member selectively supplying the photocurable resin to a region, in which printing is performed by the light engine, among the reception space of the receiving part while adjusting a position of supply of the photocurable resin.

Description

3D 프린팅 시스템3D printing system
본 명세서에서 개시되는 실시예들은 3D 프린팅 시스템에 관한 것으로, 더욱 상세하게는 슬라이싱 소프트웨어와 연동하여 광경화성 수지를 한 층씩 적층하면서 출력물을 조형할 수 있는 3D 프린팅 시스템에 관한 것이다.Embodiments disclosed herein relate to a 3D printing system, and more particularly, to a 3D printing system capable of modeling an output while laminating a photocurable resin layer by layer in conjunction with slicing software.
일반적으로 3D프린터(3차원 조형기)는 디지털 파일로 구성된 물체의 3차원 정보를 이용하여, 물체를 아주 얇은 층으로 구조화(슬라이싱) 한 후, 이 정보로부터 재료 물질들을 한 층씩 쌓아 올려서, 실제 조형물을 구현하는 기술이다.In general, a 3D printer (3D molding machine) uses 3D information of an object composed of a digital file to structure (slice) the object into a very thin layer, and then builds the actual sculpture by stacking the materials layer by layer from this information. technology to implement.
이러한 3D프린터는 크게 광경화 적층 방식과 FDM (FFF) 방식으로 구분될 수 있다.These 3D printers can be largely divided into a photocuring stacking method and an FDM (FFF) method.
이 중에서 광경화 적층 방식은 공개특허공보 제10-2016-0130592호에 개시된 바와 같이 광경화성 수지를 이용하여 3D 프린팅을 수행하는 것으로, 레진이 담긴 수조에 빛을 제공하는 광원의 빛을 조사함으로써 조형하고자 하는 영역의 레진을 경화시켜서 조형물을 형성하는 기술이다.Among them, the photocurable lamination method is to perform 3D printing using a photocurable resin as disclosed in Korean Patent Application Laid-Open No. 10-2016-0130592, and is molded by irradiating light from a light source that provides light to a tank filled with resin. It is a technology to form a sculpture by curing the resin in the desired area.
이러한 종래기술의 레진 3D프린터는 승강부재를 통해 플레이트를 상하로 반복 구동하면서 레진의 경화에 의한 레이어를 플레이트에 한 층씩 적층하여 조형물의 출력을 진행하게 된다.In this prior art resin 3D printer, the plate is repeatedly driven up and down through the elevating member, and layers by hardening of the resin are laminated on the plate one by one to output the sculpture.
그런데, 종래의 레진 3D프린터는 레진 수납부에 일정량의 레진을 충진한 후 출력을 진행하므로 출력을 진행하다가 레진이 부족하면 출력에 실패할 수 있기 때문에 수시로 레진을 보충해야 하고, 출력물의 크기에 상관 없이 일정량을 채워야 하기 때문에 레진의 낭비가 심하여 운용비의 상승이 부담이 될 수 있다. However, since the conventional resin 3D printer performs printing after filling the resin receiving part with a certain amount of resin, printing may fail if the resin is insufficient while printing. Because it has to fill a certain amount without it, the waste of resin is severe, and the increase in operating cost can be a burden.
게다가, 대형출력물을 출력하기 위해서는 대형 수납부를 사용해야 하는데 대형 수납부에 레진을 대용량으로 충진하게 되면 재료 사용비가 상승하고, 레진 무게로 인해 3D프린터에 부하를 주어 수납부 하부의 이미지스위칭부에 피로를 누적하여 3D프린터 고장의 원인이 될 수 있다.In addition, in order to print a large print, a large storage unit must be used. If the large storage unit is filled with a large amount of resin, the material cost increases, and the weight of the resin puts a load on the 3D printer, which causes fatigue in the image switching unit at the bottom of the storage unit. It can accumulate and cause 3D printer failure.
따라서 상술된 문제점을 해결하기 위한 기술이 필요하게 되었다.Therefore, there is a need for a technique for solving the above-mentioned problems.
한편, 전술한 배경기술은 발명자가 본 발명의 도출을 위해 보유하고 있었거나, 본 발명의 도출 과정에서 습득한 기술 정보로서, 반드시 본 발명의 출원 전에 일반 공중에게 공개된 공지기술이라 할 수는 없다.On the other hand, the above-mentioned background art is technical information that the inventor possessed for the purpose of derivation of the present invention or acquired during the derivation process of the present invention, and it cannot be said that it is necessarily known technology disclosed to the general public before the filing of the present invention. .
본 명세서에서 개시되는 실시예들은, 3D 출력을 진행할 때 슬라이싱 소프트웨어와 연동하여 필요한 양의 광경화성 수지를 필요한 위치에 분사해 줌으로써 재료의 낭비를 회피하고, 대면적 출력에 용이한 3D 프린팅 시스템을 제시하는데 목적이 있다.Embodiments disclosed in the present specification avoid waste of material by spraying a required amount of photocurable resin to a required location in conjunction with slicing software when 3D printing is performed, and provide an easy 3D printing system for large-area printing there is a purpose to
구체적으로, 본 명세서에서 개시되는 실시예들은, 광엔진의 광원을 수납부의 소정의 위치에 제공하여 프린팅을 진행하면서 수납부의 수용공간 중 프린팅이 이루어지는 영역에 광경화성 수지를 선택적으로 공급할 수 있는 3D 프린팅 시스템을 제시하는데 목적이 있다.Specifically, the embodiments disclosed in this specification provide a light source of a light engine to a predetermined position of the accommodation unit to selectively supply a photocurable resin to an area where printing is performed in the accommodation space of the accommodation unit while printing is performed. It aims to present a 3D printing system.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 3D 프린팅 시스템의 일 실시예에 따르면, 광경화성 수지를 수용하는 수납부; 상기 수납부의 하부에 설치되어 출력물의 조형을 위한 광원을 상기 수납부로 제공하여 광경화성 수지를 경화시키는 광엔진; 상기 수납부의 상부에 승강가능하게 설치되어 광경화성 수지에 담기면서 저면에 광경화성 수지를 단층별로 적층하여 3차원 출력물을 형성하는 플레이트; 상기 플레이트에 하나의 단층의 적층이 완료된 후 상기 플레이트를 상승시켜 상기 수납부의 바닥면에서 분리하고, 다시 플레이트를 하강시켜 다음 단층의 적층을 허용하는 승강부재; 및 상기 수납부에 광경화성 수지를 소정의 수위로 공급하되, 광경화성 수지의 공급위치를 조절하면서 상기 수납부의 수용공간 중 상기 광엔진에 의해 프린팅이 이루어지는 영역에 광경화성 수지를 선택적으로 공급하는 레진공급부재를 포함할 수 있다.As a technical means for achieving the above-described technical problem, according to an embodiment of the 3D printing system, the receiving unit for accommodating the photocurable resin; a light engine installed in the lower part of the accommodating part to provide a light source for molding an output to the accommodating part to cure the photocurable resin; a plate which is installed so as to be lifted on the upper part of the receiving part and is immersed in a photocurable resin by laminating the photocurable resin in a single layer on the bottom surface to form a three-dimensional output; a lifting member for allowing the stacking of the next single layer by lifting the plate to separate it from the bottom surface of the receiving unit after lamination of one single layer is completed on the plate, and lowering the plate again; and supplying the photocurable resin to the accommodating part at a predetermined water level, while adjusting the supply position of the photocurable resin, selectively supplying the photocurable resin to the area where printing is made by the light engine in the accommodating space of the accommodating part It may include a resin supply member.
또한, 상기 레진공급부재는, 상기 수납부의 외곽에 설치된 상태로 광경화성 수지를 공급받으며, 소정의 길이로 형성되어 상기 수납부의 수용공간으로 연장되는 분사하우징; 상기 분사하우징의 길이방향을 따라 설치되어 상기 분사하우징으로 공급된 광경화성 수지를 상기 수납부의 수용공간으로 분사하는 적어도 하나의 분사노즐; 및 상기 분사하우징의 일단부를 상기 수납부의 외곽에 회전 가능하게 결합하여 상기 분사하우징을 회전시키면서 상기 분사노즐을 상기 수용공간 중 소정의 영역으로 이동시키는 노즐회전모터를 포함할 수 있다.In addition, the resin supply member, receiving the photo-curable resin in a state installed on the outside of the accommodating portion, formed to a predetermined length, the injection housing extending into the receiving space of the accommodating portion; at least one injection nozzle installed along the longitudinal direction of the injection housing to inject the photocurable resin supplied to the injection housing into the receiving space of the housing; and a nozzle rotation motor for rotatably coupling one end of the spray housing to the outer periphery of the housing to move the spray nozzle to a predetermined area of the accommodation space while rotating the spray housing.
또한, 상기 분사노즐은, 복수를 이루면서 상기 분사하우징의 길이방향을 따라 소정의 간격으로 설치되고, 상기 레진공급부재는, 상기 분사노즐들 각각의 개폐를 제어하면서 상기 분사노즐들의 분사 영역을 제어하는 노즐밸브를 더 포함할 수 있다.In addition, the injection nozzles are installed at predetermined intervals along the longitudinal direction of the injection housing while forming a plurality, and the resin supply member controls the injection area of the injection nozzles while controlling the opening and closing of each of the injection nozzles. It may further include a nozzle valve.
또한, 상기 분사하우징은, 텔레스코픽 구조를 이루면서 길이가 신축 가능하게 구성되고, 상기 레진 공급부재는, 상기 분사하우징의 길이를 신축시키면서 상기 분사노즐들을 직선이동시키는 신축부재를 포함할 수 있다.In addition, the injection housing is configured to be stretchable in length while forming a telescopic structure, and the resin supply member may include a stretching member for linearly moving the injection nozzles while stretching the length of the injection housing.
또한, 상기 레진공급부재는, 상기 노즐회전모터를 상기 수납부의 외곽에 이동 가능하게 결합하여 상기 노즐회전모터를 상기 분사하우징과 함께 이동시키면서 상기 분사노즐을 상기 수용공간 중 소정의 영역으로 이동시키는 노즐슬라이더를 더 포함할 수 있다.In addition, the resin supply member, by movably coupling the nozzle rotation motor to the outer periphery of the housing portion to move the nozzle rotation motor together with the injection housing to move the injection nozzle to a predetermined area of the accommodation space It may further include a nozzle slider.
전술한 과제 해결 수단 중 어느 하나에 의한 3D 프린팅 시스템은, 레진공급부재를 공급하는 분사하우징 및 분사노즐을 통해 광엔진에 의한 프린팅이 이루어지는 수납부의 영역에 광경화성 수지를 공급하므로 출력 시 재료의 낭비를 방지하는 동시에 재료의 소진으로 인한 출력의 실패를 회피할 수 있는 3D 프린팅 시스템을 제시할 수 있다.The 3D printing system according to any one of the above-mentioned problem solving means supplies the photocurable resin to the area of the receiving part where printing by the light engine is made through the injection housing and the injection nozzle for supplying the resin supply member, so It is possible to present a 3D printing system that can prevent wastage and at the same time avoid output failure due to material exhaustion.
또한, 프린팅을 위한 슬라이싱 소프트웨어와 연동하여 꼭 필요한 양의 광경화성 수지를 프린팅 영역에 공급하므로 대면적 조형물의 출력에 적합하고 광경화성 수지의 낭비를 줄일 수 있어서 운용비를 절감할 수 있는 장점이 있다.In addition, since the required amount of photocurable resin is supplied to the printing area in conjunction with the slicing software for printing, it is suitable for printing large-area objects, and waste of photocurable resin can be reduced, thereby reducing operating costs.
개시되는 실시예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 개시되는 실시예들이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Effects obtainable in the disclosed embodiments are not limited to the above-mentioned effects, and other effects not mentioned are clear to those of ordinary skill in the art to which the embodiments disclosed from the description below belong. can be understood clearly.
도 1은 일 실시예에 따른 3D 프린팅 시스템의 구성을 나타내는 구성도이다.1 is a configuration diagram showing the configuration of a 3D printing system according to an embodiment.
도 2는 일 실시예에 따른 레진공급부재의 구성을 나타내는 평면도이다.2 is a plan view showing the configuration of a resin supply member according to an embodiment.
도 3은 일 실시예에 따른 레진공급부재의 구성을 나타내는 정면도이다.3 is a front view showing the configuration of a resin supply member according to an embodiment.
도 4는 다른 실시예에 따른 레진공급부재의 구성을 나타내는 평면도이다.4 is a plan view showing the configuration of a resin supply member according to another embodiment.
아래에서는 첨부한 도면을 참조하여 다양한 실시예들을 상세히 설명한다. 아래에서 설명되는 실시예들은 여러 가지 상이한 형태로 변형되어 실시될 수도 있다. 실시예들의 특징을 보다 명확히 설명하기 위하여, 이하의 실시예들이 속하는 기술분야에서 통상의 지식을 가진 자에게 널리 알려져 있는 사항들에 관해서 자세한 설명은 생략하였다. 그리고, 도면에서 실시예들의 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, various embodiments will be described in detail with reference to the accompanying drawings. The embodiments described below may be modified and implemented in various different forms. In order to more clearly describe the characteristics of the embodiments, detailed descriptions of matters widely known to those of ordinary skill in the art to which the following embodiments belong are omitted. In addition, in the drawings, parts irrelevant to the description of the embodiments are omitted, and similar reference numerals are attached to similar parts throughout the specification.
명세서 전체에서, 어떤 구성이 다른 구성과 "연결"되어 있다고 할 때, 이는 '직접적으로 연결'되어 있는 경우뿐 아니라, '그 중간에 다른 구성을 사이에 두고 연결'되어 있는 경우도 포함한다. 또한, 어떤 구성이 어떤 구성을 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 그 외 다른 구성을 제외하는 것이 아니라 다른 구성들을 더 포함할 수도 있음을 의미한다.Throughout the specification, when a component is said to be “connected” with another component, it includes not only a case of 'directly connected' but also a case of 'connected with another component interposed therebetween'. In addition, when a component "includes" a component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.
이하 첨부된 도면을 참고하여 실시예들을 상세히 설명하기로 한다.Hereinafter, embodiments will be described in detail with reference to the accompanying drawings.
도 1은 일 실시예에 따른 3D 프린팅 시스템의 구성을 나타내는 구성도이고, 도 2는 일 실시예에 따른 레진공급부재의 구성을 나타내는 평면도이며, 도 3은 일 실시예에 따른 레진공급부재의 구성을 나타내는 정면도이다. 또한, 도 4는 다른 실시예에 따른 레진공급부재의 구성을 나타내는 평면도이다.1 is a configuration diagram showing the configuration of a 3D printing system according to an embodiment, FIG. 2 is a plan view showing the configuration of a resin supply member according to an embodiment, and FIG. 3 is a configuration diagram of a resin supply member according to an embodiment It is a front view showing 4 is a plan view showing the configuration of a resin supply member according to another embodiment.
일 실시예에 따른 3D 프린팅 시스템(10)은 광경화성 수지를 이용하여 레이어를 한 층씩 적층하면서 출력물을 조형하는 장치로서, 특히 대면적화된 출력물을 조형하는데 적합한 장치이다.The 3D printing system 10 according to an embodiment is a device for molding an output while stacking layers one by one using a photocurable resin, and is particularly suitable for modeling a large-area output.
구체적으로, 일 실시예에 따른 3D 프린팅 시스템(10)은 도 1에 도시된 바와 같이 수납부(100), 광엔진(200), 플레이트(300), 승강부재(400) 및 레진공급부재(500)를 포함하여 구성될 수 있다.Specifically, as shown in FIG. 1 , the 3D printing system 10 according to an embodiment includes a receiving unit 100 , a light engine 200 , a plate 300 , a lifting member 400 , and a resin supply member 500 . ) may be included.
상기 수납부(100)는 상부가 개방된 용기형태로 구성되어 빛에 의해 경과되는 광경화성 수지를 수용하는 구성요소이다.The accommodating part 100 is configured in the form of a container with an open top, and is a component for accommodating a photocurable resin passed by light.
여기서, 광경화성 수지는 빛을 받을 경우 경화되는 것으로, 레진을 포함하여 본 발명이 속하는 분야에 알려진 모든 구성이 적용될 수 있다.Here, the photocurable resin is cured when receiving light, and all configurations known in the art to which the present invention pertains, including resin, may be applied.
이러한 수납부(100)는 후술되는 광엔진(200)의 상부에 설치되어 광엔진(200)에서 제공되는 광원을 투과시키면서 광경화성 수지를 경화시킬 수 있다.The accommodating part 100 may be installed above the light engine 200 to be described later to transmit the light source provided from the light engine 200 and harden the photocurable resin.
또한, 수납부(100)는 경화된 광경화성 수지가 적층될 수 있는 후술되는 플레이트(300)가 승강 가능하게 설치되어 단층이미지에 대응하는 광경화성 수지가 한 층씩 적층될 수 있다.In addition, in the housing unit 100, a plate 300 to be described later on which the cured photocurable resin can be laminated is installed so as to be able to move up and down, so that the photocurable resin corresponding to the tomographic image can be laminated layer by layer.
상기 광엔진(200)은 수납부(100)의 하부에 설치되어 출력물의 조형을 위한 광원을 수납부로 조사하여 수납부(100)의 광경화성 수지를 경화시키면서 3D프린팅을 수행하는 구성요소이다.The light engine 200 is a component that is installed in the lower portion of the receiving unit 100 and irradiates a light source for modeling the output to the receiving unit to perform 3D printing while curing the photocurable resin of the receiving unit 100 .
즉, 광엔진(200)은 조형물의 단층별 2차원 이미지에 대응하는 광원을 수납부(100)로 조사함으로써 광경화성 수지를 단층 이미지에 대응하는 형태로 경화시켜 후술되는 플레이트(300)에 적층시키는 구성요소이다.That is, the light engine 200 irradiates a light source corresponding to the two-dimensional image for each tomographic image of the sculpture to the receiving unit 100 to cure the photocurable resin in a form corresponding to the tomographic image and laminate it on the plate 300 to be described later. is a component
구체적으로, 광엔진(200)은 도 1에 도시된 바와 같이 백라이트부(210), 이미지스위칭부(200), 투명지지부재(230) 및 제어부(240)를 포함하여 구성될 수 있다.Specifically, as shown in FIG. 1 , the light engine 200 may include a backlight unit 210 , an image switching unit 200 , a transparent support member 230 , and a control unit 240 .
상기 백라이트부(210)는 수납부(100)의 하부에 설치되어 백라이트를 제공하는 구성요소이다.The backlight unit 210 is a component that is installed under the receiving unit 100 to provide a backlight.
구체적으로, 백라이트부(210)는 제어부(240)의 제어에 의해 후술되는 이미지스위칭부(220)의 하부에서 조형물의 출력을 위한 백라이트를 제공할 수 있으며, 복수의 광원소자가 실장되어 제어부(240)의 제어에 의해 발광하면서 백라이트를 제공할 수 있다.Specifically, the backlight unit 210 may provide a backlight for outputting a sculpture in the lower portion of the image switching unit 220 to be described later under the control of the control unit 240 , and a plurality of light source elements are mounted to the control unit 240 . ) to provide a backlight while emitting light under the control of
이러한 백라이트부(210)는 제어부(240)에 의해 백라이트를 제공하면서 다수의 영역으로 구획되어 구획별로 제어되거나 개별로 구분되어 제어될 수 있다.The backlight unit 210 may be divided into a plurality of areas and controlled for each division while providing a backlight by the controller 240 , or may be controlled individually.
여기서, 백라이트부(210)는 마이크로 LED(Light Emitting Diode), 미니 LED, LCD, LED, OLED(Organic Light Emitting Diode), FED(Field Emission Display)를 포함하는 자체 발광 디스플레이 소자의 군에서 선택되는 어느 하나의 소자들의 집합체로 구성될 수 있으며, 이외에도 소정의 파장을 가지는 광원을 제공하는 소자를 포함할 수도 있다.Here, the backlight unit 210 is a micro LED (Light Emitting Diode), mini LED, LCD, LED, OLED (Organic Light Emitting Diode), any one selected from the group of self-luminous display devices including FED (Field Emission Display) It may be composed of an assembly of one element, and in addition, an element providing a light source having a predetermined wavelength may be included.
상기 이미지스위칭부(220)는 출력물의 조형을 위해 슬라이싱된 데이터를 기반으로 단층이미지에 대응하는 광원을 수납부(100)로 조사하여 광경화성 수지를 경화시키는 구성요소이다.The image switching unit 220 is a component for curing the photocurable resin by irradiating a light source corresponding to the tomographic image to the receiving unit 100 based on the sliced data for molding the output.
구체적으로, 이미지스위칭부(220)는 제어부(240)에 의해 작동하면서 백라이트부(210)에서 제공되는 광원을 단층이미지 형태로 스위칭시켜서 수납부(100)를 향해 조사함으로써 광경화성 수지를 단층이미지 형태로 경화시킬 수 있다.Specifically, the image switching unit 220 operates by the control unit 240 and switches the light source provided from the backlight unit 210 to a tomographic image form and irradiates the photocurable resin toward the accommodating unit 100 in a tomographic image form. can be cured with
여기서, 이미지스위칭부(200)는 수납부(100)의 하부에서 광원을 제공하는 것을 도시되었으나, 도시된 바와 달리 수납부(100)의 상부 또는 측방에서 광원을 제공할 수도 있다.Here, the image switching unit 200 is illustrated to provide a light source from a lower portion of the accommodation unit 100 , but unlike the illustration, the image switching unit 200 may provide a light source from an upper portion or a side of the accommodation unit 100 .
이러한 이미지스위칭부(220)는 LCD로 구성되어 제어부(240)의 제어에 의해 작동할 수 있으며, 이와 달리 전술한 백라이트부(210)를 필요로 하지 않는 마이크로LED, 미니 LED, LED, OLED, FED 등의 자발광소자로 구성될 수도 있다The image switching unit 220 is composed of an LCD and can be operated under the control of the control unit 240 , and unlike the microLED, mini LED, LED, OLED, and FED that do not require the aforementioned backlight unit 210 . It may be composed of a self-luminous device such as
상기 투명지지부재(230)는 이미지스위칭부(220)의 처짐을 방지하기 위한 구성요소로, 이미지스위칭부(220)의 하부에 밀착된 상태로 설치되어 이미지스위칭부(220)가 자중에 의해 처지는 것을 방지할 수 있으며, 백라이트부(210)에서 조사되는 백라이트를 이미지스위칭부(220)로 투과시킬 수 있다.The transparent support member 230 is a component for preventing the image switching unit 220 from sagging. This may be prevented, and the backlight irradiated from the backlight unit 210 may be transmitted through the image switching unit 220 .
상기 제어부(240)는 이미지스위칭부(220)와 백라이트부(210)의 발광을 제어하는 구성요소로 슬라이싱 소프트웨어를 기반으로 이미지스위칭부(220)의 이미지와 동기화되어 백라이트부(210)의 발광을 제어할 수 있다.The control unit 240 is a component that controls the light emission of the image switching unit 220 and the backlight unit 210, and is synchronized with the image of the image switching unit 220 based on slicing software to control the light emission of the backlight unit 210 can be controlled
한편, 광엔진(200)은 전술한 백라이트부(210)의 구성이 생략되면서 OLED, LED, 마이크로LED, 미니LED, FED 등의 자발광부재로 구성될 수 있으며, 레이저나 DLP를 광원으로 사용하는 방식 등의 구성이 적용될 수도 있다.On the other hand, the light engine 200 may be composed of a self-luminous member such as OLED, LED, microLED, mini LED, FED, etc. while the above-described configuration of the backlight unit 210 is omitted, and a laser or DLP is used as a light source. A configuration such as a method may be applied.
상기 플레이트(300)는 수납부(100)의 상부에 승강이 가능하게 설치되면서 광경화성 수지에 담기며, 전술한 광엔진(200)의 빛에 의해 경화된 광경화성 수지를 저면에 적층하면서 3차원 조형물을 형성할 수 있다.The plate 300 is immersed in a photo-curable resin while being installed so as to be able to lift or lower on the upper portion of the receiving unit 100, and a three-dimensional sculpture while laminating the photo-curable resin cured by the light of the light engine 200 on the bottom surface. can form.
구체적으로, 플레이트(300)는 수납부(100)의 상부에서 후술되는 승강부재(400)에 의해 하강하여 수납부(100)의 바닥면에 대면하며, 이 상태에서 광엔진(200)의 빛이 조사될 경우 조사된 빛의 2차원 평면형태에 대응하는 광경화성 수지가 경화되면서 저면에 적층된 후, 다시 승강부재(400)에 의해 상승하면서 수납부(100)의 바닥면에서 분리될 수 있다.Specifically, the plate 300 descends from the upper portion of the accommodating unit 100 by an elevating member 400 to be described later to face the bottom surface of the accommodating unit 100, and in this state, the light of the light engine 200 is When irradiated, the photocurable resin corresponding to the two-dimensional planar shape of the irradiated light is cured and laminated on the bottom surface, and then it can be separated from the bottom surface of the accommodation unit 100 while rising by the lifting member 400 again.
상기 승강부재(400)는 플레이트(300)를 수납부(100)의 상부에서 상승 및 하강시키는 구성요소이다.The lifting member 400 is a component that raises and lowers the plate 300 from the upper portion of the receiving unit 100 .
이러한 승강부재(400)는 승강레일(410) 및 슬라이더(420)를 포함하여 구성될 수 있다.The lifting member 400 may be configured to include a lifting rail 410 and a slider 420 .
승강레일(410)은 수납부(100)에 인접 설치되면서 수직방향으로 연장되어 플레이트(300)의 승강경로를 제공할 수 있다.The lifting rail 410 may extend in a vertical direction while being installed adjacent to the accommodating part 100 to provide an elevating path of the plate 300 .
슬라이더(420)는 플레이트(300)에 고정된 상태로 승강레일(410)에 이동 가능하게 결합되며, 제어에 의해 승강레일(410)을 따라 이동하면서 플레이트(300)를 승강시킬 수 있다.The slider 420 is movably coupled to the elevating rail 410 in a state of being fixed to the plate 300 , and may elevate the plate 300 while moving along the elevating rail 410 by control.
여기서, 슬라이더(420) 및 승강레일(410)은 볼스크류 방식이나 리니어모터 방식 또는 랙기어와 피니언기어 방식으로 구성되어 직선운동하면서 플레이트(300)를 승강시킬 수 있다.Here, the slider 420 and the lifting rail 410 are configured by a ball screw method, a linear motor method, or a rack gear and a pinion gear method, and can lift and lower the plate 300 while moving in a straight line.
또한, 승강부재(400)는 플레이트(530)의 위치를 보정할 수 있도록 슬라이더(420)를 수평이동시키는 미도시된 수평이동부재가 구성될 수도 있다.In addition, the lifting member 400 may include a horizontal moving member (not shown) that horizontally moves the slider 420 to correct the position of the plate 530 .
레진공급부재(500)는 수납부(100)에 광경화성 수지를 소정의 수위로 공급하는 구성요소로, 특히 광경화성 수지의 공급위치를 조절함으로써 수납부(100)의 수용공간 중 광엔진(200)에 의해 프린팅이 이루어지는 영역에 광경화성 수지를 선택적으로 공급할 수 있는 구성요소이다.The resin supply member 500 is a component for supplying the photocurable resin to the accommodating part 100 at a predetermined water level, and in particular, by adjusting the supply position of the photocurable resin, the light engine 200 in the accommodating space of the accommodating part 100 . ), it is a component that can selectively supply a photocurable resin to the printing area.
구체적으로, 레진공급부재(500)는 도 2 및 도 3에 도시된 바와 같이 분사하우징(510), 분사노즐(520) 및 노즐회전모터(530)를 포함하여 구성될 수 있다.Specifically, the resin supply member 500 may be configured to include a spray housing 510 , a spray nozzle 520 , and a nozzle rotation motor 530 as shown in FIGS. 2 and 3 .
상기 분사하우징(510)은 광경화성 수지를 수납부(100)의 수용공간으로 공급하는 구성요소로, 광경화성 수지의 공급라인에 연결된 상태로 수납부(100)의 외곽에 설치되며, 도 2에 도시된 바와 같이 소정의 길이로 형성되어 수납부(100)의 수용공간으로 연장될 수 있다.The spray housing 510 is a component that supplies the photocurable resin to the receiving space of the receiving unit 100, and is installed on the outside of the receiving unit 100 while connected to the supply line of the photocurable resin, as shown in FIG. As shown, it may be formed to a predetermined length and extend into the accommodation space of the accommodation unit 100 .
이러한 분사하우징(510)은 제어부(240)의 제어에 의해 프린팅에 필요한 용량의 광경화성 수지가 공급될 수 있으며, 미도시된 수위센서의 감지신호를 기반으로 수납부(100)에 광경화성 수지를 소정의 수위로 공급할 수도 있다.The spray housing 510 may be supplied with a photocurable resin of a capacity required for printing under the control of the controller 240, and the photocurable resin is applied to the receiving unit 100 based on a detection signal of a water level sensor (not shown). It may be supplied at a predetermined water level.
상기 분사노즐(520)은 분사하우징(510)으로 공급된 광경화성 수지를 수납부(100)의 수용공간으로 분사하여 공급하는 구성요소이다.The spray nozzle 520 is a component that sprays and supplies the photocurable resin supplied to the spray housing 510 into the receiving space of the accommodating part 100 .
이러한 분사노즐(520)은 적어도 하나로 구성될 수 있으며, 도 3에 도시된 바와 같이 복수로 구성되어 분사하우징(510)의 길이방향을 따라 소정의 간격으로 설치될 수 있다.The injection nozzle 520 may be composed of at least one, and as shown in FIG. 3 , a plurality of injection nozzles 520 may be installed at predetermined intervals along the longitudinal direction of the injection housing 510 .
상기 노즐회전모터(530)는 분사하우징(510) 및 분사노즐(520)을 수납부(100)의 수용공간 중 소정의 영역으로 이동시킴으로써 광경화성 수지의 공급위치를 선택적으로 조절하는 구성요소이다.The nozzle rotation motor 530 is a component that selectively adjusts the supply position of the photocurable resin by moving the injection housing 510 and the injection nozzle 520 to a predetermined area of the accommodation space of the accommodation unit 100 .
구체적으로, 노즐회전모터(530)는 도 2에 도시된 바와 같이 분사하우징(510)의 일단부를 수납부(100)의 외곽에 회전 가능하게 결합하여 정회전 및 역회전을 통해 분사하우징(510)을 수평방향으로 왕복회전(스윙)시키면서 분사노즐(520)을 소정의 영역으로 이동시킬 수 있다.Specifically, the nozzle rotation motor 530 rotatably combines one end of the spray housing 510 with the outside of the receiving part 100 to rotate the spray housing 510 through forward and reverse rotation, as shown in FIG. 2 . The injection nozzle 520 can be moved to a predetermined area while reciprocating (swinging) in the horizontal direction.
이러한 노즐회전모터(530)는 제어부(240)의 제어를 통해 슬라이싱 소프트웨어를 기반으로 작동하면서 광엔진(200)에 의한 프린팅이 이루어지는 영역으로 노즐하우징(510)을 이동시킬 수 있다.The nozzle rotation motor 530 may move the nozzle housing 510 to an area where printing is performed by the light engine 200 while operating based on the slicing software under the control of the controller 240 .
이에 따라, 수납부(100)는 분사하우징(510) 및 분사노즐(520)을 통해 프린팅 영역에 광경화성 수지가 공급될 수 있으므로 재료의 소진을 방지하면서 원활한 프린팅이 이루어질 수 있다.Accordingly, since the photo-curable resin can be supplied to the printing area through the spray housing 510 and the spray nozzle 520 in the receiving unit 100, smooth printing can be performed while preventing material exhaustion.
한편, 분사노즐(520)들은 도 3에 도시된 바와 같이 노즐밸브(525)의 구성을 통해 개폐가 각각 제어될 수 있다.On the other hand, opening and closing of the injection nozzles 520 may be controlled through the configuration of the nozzle valve 525 as shown in FIG. 3 .
노즐밸브(525)는 각각의 분사노즐(520)에 설치될 수 있으며, 제어부(240)의 제어에 의해 작동하면서 분사노즐(520)들을 각각 선택적으로 개폐할 수 있다.The nozzle valve 525 may be installed in each of the injection nozzles 520 , and may selectively open and close each of the injection nozzles 520 while operating under the control of the controller 240 .
이러한 노즐밸브(525)는 제어부(240)의 제어에 의해 작동하면서 프린팅이 이루어지는 영역에 대응하는 분사노즐(520)만을 개방하여 광경화성 수지를 해당 영역에 공급할 수 있다.The nozzle valve 525 operates under the control of the control unit 240 and opens only the injection nozzle 520 corresponding to the area in which printing is performed, thereby supplying the photocurable resin to the area.
또한, 노즐밸브(525)는 분사노즐(520)을 개폐하면서 제어부(240)의 제어를 통해 프린팅에 필요한 용량의 광경화성 수지를 공급할 수 있으며, 미도시된 수위센서의 감지신호를 기반으로 광경화성 수지를 소정의 수위로 공급할 수도 있다.In addition, the nozzle valve 525 may supply a photocurable resin of a capacity required for printing through the control of the control unit 240 while opening and closing the injection nozzle 520 . The resin may be supplied at a predetermined water level.
한편, 분사하우징(510)은 도 4에 도시된 바와 같이 다단으로 구성되어 텔레스코픽 구조로 구성되면서 길이가 신축 가능하게 구성될 수 있다.On the other hand, as shown in FIG. 4 , the injection housing 510 may be configured in multiple stages to have a telescopic structure and to be stretchable in length.
이 경우, 레진공급부재(500)는 신축부재(550)의 구성을 통해 길이가 신축하도록 구성되어 분사노즐(520)들을 직선이동시킬 수 있다.In this case, the resin supply member 500 is configured to expand and contract in length through the configuration of the expansion and contraction member 550 to linearly move the spray nozzles 520 .
여기서, 신축부재(550)는 분사하우징(510)에 내장되어 로드의 직선이동을 통해 분사하우징(510)의 길이를 신축시킬 수 있는 실린더나 모터로 구성되어 제어부(240)에 의해 작동할 수 있다.Here, the expansion and contraction member 550 is built into the injection housing 510 and is composed of a cylinder or a motor capable of expanding and contracting the length of the injection housing 510 through linear movement of the rod, and may be operated by the control unit 240 . .
이에 따라, 분사노즐(520)은 분사하우징(510)의 신축에 의해 분사하우징(510)의 길이방향으로 직선이동하면서 소정의 영역으로 이동할 수 있다.Accordingly, the injection nozzle 520 may move to a predetermined area while linearly moving in the longitudinal direction of the injection housing 510 by expansion and contraction of the injection housing 510 .
한편, 레진공급부재(500)는 도 4에 도시된 바와 같이 노즐슬라이더(560)를 더 포함하여 구성될 수 있다.On the other hand, the resin supply member 500 may be configured to further include a nozzle slider 560 as shown in FIG.
상기 노즐슬라이더(560)는 분사하우징(510)을 노즐회전모터(530)와 함께 이동시키면서 분사노즐(520)을 소정의 영역으로 이동시키기 위한 구성요소이다.The nozzle slider 560 is a component for moving the spraying nozzle 520 to a predetermined area while moving the spraying housing 510 together with the nozzle rotating motor 530 .
이러한 노즐슬라이더(560)는 수납부(100)의 외곽에 마련되는 노즐레일(565)에 노즐회전모터(530)를 이동가능하게 결합할 수 있으며, 제어부(240)의 제어에 의해 작동하면서 노즐회전모터(530)를 분사하우징(510)과 함께 소정의 영역으로 이동시킬 수 있다.The nozzle slider 560 may movably couple the nozzle rotation motor 530 to the nozzle rail 565 provided on the outside of the receiving unit 100 , and rotate the nozzle while operating under the control of the controller 240 . The motor 530 may be moved to a predetermined area together with the injection housing 510 .
이에 따라, 분사노즐(520)은 노즐회전모터(530)에 의한 회전운동 및 노즐슬라이더(560)에 의한 직선운동을 통해 수납부(100)의 수용공간 내에서 이동하면서 프린팅이 이루어지는 영역으로 이동하여 광경화성 수지를 공급할 수 있다.Accordingly, the injection nozzle 520 moves within the receiving space of the accommodating part 100 through a rotational movement by the nozzle rotation motor 530 and a linear movement by the nozzle slider 560 to move to an area where printing is performed. A photocurable resin can be supplied.
여기서, 노즐슬라이더(560) 및 노즐레일(565)은 볼스크류 방식이나 리니어모터 방식 또는 랙기어와 피니언기어 방식으로 구성되어 직선운동하면서 노즐회전모터(530)를 분사하우징(510)과 함께 소정의 영역으로 이동시킬 수 있다.Here, the nozzle slider 560 and the nozzle rail 565 are configured in a ball screw method, a linear motor method, or a rack gear and a pinion gear method, and linearly move the nozzle rotating motor 530 together with the spray housing 510. area can be moved.
상기와 같은 구성요소를 포함하는 일 실시예에 따른 3D 프린팅 시스템(10)에 의한 3D 프린팅 과정을 설명한다.A 3D printing process by the 3D printing system 10 according to an embodiment including the above components will be described.
제어부(240)는 수납부(100)로 하강한 플레이트(300)의 저면에 출력물의 단층이미지에 대응하는 한 층의 단위 레이어를 형성하여 적층할 수 있다The control unit 240 may form and stack one unit layer corresponding to the tomographic image of the printed product on the bottom surface of the plate 300 lowered to the receiving unit 100 .
구체적으로, 광엔진(200)은 제어부(240)의 제어에 의한 백라이트부(210) 및 이미지스위칭부(220)를 통해 출력물의 단층이미지에 대응하는 광원을 수납부(100)로 조사함으로써 광경화성 수지를 단층이미지에 대응하는 형태로 경화시켜서 한 층의 단위레이어를 형성하며, 플레이트(300)는 승강부재(400)에 의해 수평 상태로 하강하여 경화된 단위레이어를 저면에 적층할 수 있다.Specifically, the light engine 200 irradiates the light source corresponding to the tomographic image of the output to the accommodating unit 100 through the backlight unit 210 and the image switching unit 220 under the control of the control unit 240 to achieve photocurability. The resin is cured in a shape corresponding to the tomographic image to form a unit layer of one layer, and the plate 300 is lowered horizontally by the elevating member 400 to laminate the cured unit layer on the bottom surface.
이때, 제어부(240)는 노즐회전모터(530) 또는 노즐슬라이더(560)를 작동시켜서 분사하우징(510)과 분사노즐(520)을 프린팅 영역으로 이동시키고, 노즐밸브(525)를 제어하여 프린팅 영역에 위치하는 분사노즐(520)을 개방하면서 광경화성 수지를 프린팅 영역에 공급할 수 있다.At this time, the controller 240 operates the nozzle rotation motor 530 or the nozzle slider 560 to move the spray housing 510 and the spray nozzle 520 to the printing area, and controls the nozzle valve 525 to the printing area. The photocurable resin can be supplied to the printing area while opening the injection nozzle 520 located in the .
이상에서 살펴 본 바와 같이 일 실시예에 따른 3D 프린팅 시스템(10)은 레진공급부재(500)를 공급하는 분사하우징(510) 및 분사노즐(520)을 통해 프린팅이 이루어지는 수납부(100)의 영역에 광경화성 수지를 공급하므로 출력 시 재료의 낭비를 방지하는 동시에 재료의 소진으로 인한 출력의 실패를 회피할 수 있으며, 대면적 조형물의 출력에 적합한 장점이 있다.As described above, in the 3D printing system 10 according to an embodiment, the printing is performed through the injection housing 510 and the injection nozzle 520 for supplying the resin supply member 500. The region of the receiving unit 100. By supplying a photocurable resin to the printer, it is possible to prevent wastage of materials during printing and at the same time avoid failure of printing due to exhaustion of materials, and has the advantage of being suitable for printing large-area sculptures.
상술된 실시예들은 예시를 위한 것이며, 상술된 실시예들이 속하는 기술분야의 통상의 지식을 가진 자는 상술된 실시예들이 갖는 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 상술된 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above-described embodiments are for illustration, and those of ordinary skill in the art to which the above-described embodiments pertain can easily transform into other specific forms without changing the technical idea or essential features of the above-described embodiments. you will understand Therefore, it should be understood that the above-described embodiments are illustrative in all respects and not restrictive. For example, each component described as a single type may be implemented in a dispersed form, and likewise components described as distributed may be implemented in a combined form.
본 명세서를 통해 보호 받고자 하는 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태를 포함하는 것으로 해석되어야 한다.The scope to be protected through this specification is indicated by the claims described below rather than the above detailed description, and it should be construed to include all changes or modifications derived from the meaning and scope of the claims and their equivalents. .

Claims (5)

  1. 광경화성 수지를 수용하는 수납부;a accommodating part for accommodating a photocurable resin;
    상기 수납부의 하부에 설치되어 출력물의 조형을 위한 광원을 상기 수납부로 제공하여 광경화성 수지를 경화시키는 광엔진;a light engine installed in the lower part of the accommodating part to provide a light source for molding an output to the accommodating part to cure the photocurable resin;
    상기 수납부의 상부에 승강가능하게 설치되어 광경화성 수지에 담기면서 저면에 광경화성 수지를 단층별로 적층하여 3차원 출력물을 형성하는 플레이트;a plate which is installed so as to be lifted on the upper part of the receiving part and is immersed in a photocurable resin by laminating the photocurable resin in a single layer on the bottom surface to form a three-dimensional output;
    상기 플레이트에 하나의 단층의 적층이 완료된 후 상기 플레이트를 상승시켜 상기 수납부의 바닥면에서 분리하고, 다시 플레이트를 하강시켜 다음 단층의 적층을 허용하는 승강부재; 및a lifting member for allowing the stacking of the next single layer by lifting the plate to separate it from the bottom surface of the receiving unit after lamination of one single layer is completed on the plate, and lowering the plate again; and
    상기 수납부에 광경화성 수지를 소정의 수위로 공급하되, 광경화성 수지의 공급위치를 조절하면서 상기 수납부의 수용공간 중 상기 광엔진에 의해 프린팅이 이루어지는 영역에 광경화성 수지를 선택적으로 공급하는 레진공급부재를 포함하는 3D 프린팅 시스템.A resin for supplying a photocurable resin to the accommodating part at a predetermined water level, and selectively supplying a photocurable resin to an area where printing is made by the light engine in the accommodating space of the accommodating part while controlling the supply position of the photocurable resin A 3D printing system including a supply member.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 레진공급부재는,The resin supply member,
    상기 수납부의 외곽에 설치된 상태로 광경화성 수지를 공급받으며, 소정의 길이로 형성되어 상기 수납부의 수용공간으로 연장되는 분사하우징;a spray housing that is supplied with a photocurable resin in a state of being installed on the periphery of the accommodating part, is formed to a predetermined length and extends into the accommodating space of the accommodating part;
    상기 분사하우징의 길이방향을 따라 설치되어 상기 분사하우징으로 공급된 광경화성 수지를 상기 수납부의 수용공간으로 분사하는 적어도 하나의 분사노즐; 및at least one injection nozzle installed along the longitudinal direction of the injection housing to inject the photocurable resin supplied to the injection housing into the receiving space of the housing; and
    상기 분사하우징의 일단부를 상기 수납부의 외곽에 회전 가능하게 결합하여 상기 분사하우징을 회전시키면서 상기 분사노즐을 상기 수용공간 중 소정의 영역으로 이동시키는 노즐회전모터를 포함하는 3D 프린팅 시스템.A 3D printing system comprising a nozzle rotation motor for rotatably coupling one end of the injection housing to the outer periphery of the accommodating part to move the injection nozzle to a predetermined area of the accommodation space while rotating the injection housing.
  3. 제 2 항에 있어서,3. The method of claim 2,
    상기 분사노즐은,The spray nozzle is
    복수를 이루면서 상기 분사하우징의 길이방향을 따라 소정의 간격으로 설치되고, It is installed at predetermined intervals along the longitudinal direction of the injection housing while forming a plurality,
    상기 레진공급부재는,The resin supply member,
    상기 분사노즐들 각각의 개폐를 제어하면서 상기 분사노즐들의 분사 영역을 제어하는 노즐밸브를 더 포함하는 3D 프린팅 시스템.3D printing system further comprising a nozzle valve for controlling the injection area of the injection nozzles while controlling the opening and closing of each of the injection nozzles.
  4. 제 2 항에 있어서,3. The method of claim 2,
    상기 분사하우징은,The spray housing is
    텔레스코픽 구조를 이루면서 길이가 신축 가능하게 구성되고,It is configured to be stretchable in length while forming a telescopic structure,
    상기 레진 공급부재는,The resin supply member,
    상기 분사하우징의 길이를 신축시키면서 상기 분사노즐들을 직선이동시키는 신축부재를 포함하는 3D 프린팅 시스템.3D printing system including a stretchable member for linearly moving the injection nozzles while stretching the length of the injection housing.
  5. 제 2 항에 있어서,3. The method of claim 2,
    상기 레진공급부재는,The resin supply member,
    상기 노즐회전모터를 상기 수납부의 외곽에 이동 가능하게 결합하여 상기 노즐회전모터를 상기 분사하우징과 함께 이동시키면서 상기 분사노즐을 상기 수용공간 중 소정의 영역으로 이동시키는 노즐슬라이더를 더 포함하는 3D 프린팅 시스템.3D printing further comprising a nozzle slider for moving the nozzle rotation motor to a predetermined area of the accommodation space while moving the nozzle rotation motor together with the injection housing by movably coupling the nozzle rotation motor to the outer periphery of the accommodating part system.
PCT/KR2021/008902 2020-07-10 2021-07-12 3d printing system WO2022010333A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200085122 2020-07-10
KR10-2020-0085122 2020-07-10
KR10-2021-0091029 2021-07-12
KR1020210091029A KR20220007561A (en) 2020-07-10 2021-07-12 3d printing system

Publications (1)

Publication Number Publication Date
WO2022010333A1 true WO2022010333A1 (en) 2022-01-13

Family

ID=79553526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008902 WO2022010333A1 (en) 2020-07-10 2021-07-12 3d printing system

Country Status (1)

Country Link
WO (1) WO2022010333A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027015A (en) * 2004-07-14 2006-02-02 Hokkaido Optical shaping apparatus, coater and optical shaping method
JP2009166447A (en) * 2008-01-21 2009-07-30 Sony Corp Optical shaping apparatus and optical shaping method
WO2015137930A1 (en) * 2014-03-11 2015-09-17 Empire Technology Development Llc Extrusion nozzles, methods, and systems for three dimensional printing
WO2018213356A1 (en) * 2017-05-15 2018-11-22 Holo, Inc. Viscous film three-dimensional printing systems and methods
US20180361659A1 (en) * 2015-12-16 2018-12-20 3M Innovative Properties Company An additive manufacturing system and a method of additive manufacturing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027015A (en) * 2004-07-14 2006-02-02 Hokkaido Optical shaping apparatus, coater and optical shaping method
JP2009166447A (en) * 2008-01-21 2009-07-30 Sony Corp Optical shaping apparatus and optical shaping method
WO2015137930A1 (en) * 2014-03-11 2015-09-17 Empire Technology Development Llc Extrusion nozzles, methods, and systems for three dimensional printing
US20180361659A1 (en) * 2015-12-16 2018-12-20 3M Innovative Properties Company An additive manufacturing system and a method of additive manufacturing
WO2018213356A1 (en) * 2017-05-15 2018-11-22 Holo, Inc. Viscous film three-dimensional printing systems and methods

Similar Documents

Publication Publication Date Title
WO2022010332A1 (en) 3d printer and 3d printing method
KR20200106980A (en) Additive manufacturing apparatus, system, and method
US10166717B2 (en) Photo-sodification modeling apparatus and method
KR101407050B1 (en) 3D printer using variable vat layer laminate method
WO2022010333A1 (en) 3d printing system
WO2016200016A1 (en) Stacking-type stereolithography device
KR20180088243A (en) Three-dimensional printing method
KR20190027695A (en) Stereolithography 3D printer
WO2019009679A1 (en) 3d printer for shaping three-dimensional object
WO2019107712A1 (en) 3d printer for forming 3d object
KR20210033917A (en) 3d printing system
WO2010077097A2 (en) High-speed stacking stereolithography device
WO2019124815A1 (en) 3d printer and printing system
KR102180817B1 (en) 3d printer and printing system
WO2020096430A1 (en) 3d printer using micro led
KR20220007561A (en) 3d printing system
WO2020141822A1 (en) 3d printer and printing system
CN107160683A (en) A kind of multibeam laser light source is molded 3D printer
WO2021054793A1 (en) 3d printing system
CN206202805U (en) Material stacking adapter
CN204977467U (en) Three dimensional printing machine and three dimensional printing machine that is used for microgravity environment
CN206840717U (en) Multibeam laser light source is molded 3D printer
WO2017052237A1 (en) Photocurable 3d forming method and photocurable 3d forming apparatus
CN207697056U (en) A kind of photocuring 3D printer
KR20220007560A (en) 3d printer and 3d printing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21837255

Country of ref document: EP

Kind code of ref document: A1