WO2022010048A1 - Stretchable solar module - Google Patents

Stretchable solar module Download PDF

Info

Publication number
WO2022010048A1
WO2022010048A1 PCT/KR2020/016199 KR2020016199W WO2022010048A1 WO 2022010048 A1 WO2022010048 A1 WO 2022010048A1 KR 2020016199 W KR2020016199 W KR 2020016199W WO 2022010048 A1 WO2022010048 A1 WO 2022010048A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
solar cell
stretchable
connector
module
Prior art date
Application number
PCT/KR2020/016199
Other languages
French (fr)
Korean (ko)
Inventor
차승일
윤민주
심연향
이동윤
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200084226A external-priority patent/KR102706604B1/en
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2022010048A1 publication Critical patent/WO2022010048A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a stretchable solar module that can be installed on an installation surface of various shapes.
  • PV photovoltaic
  • a technology for generating energy by installing a solar cell on the top of a structure such as a roof of a building or vehicle is developing.
  • the use of the solar panel cannot be limited to the installation location, and the module needs to be integrated into any space, whereas in order to install a general plate-type solar cell in the design of a structure that is diversifying, an additional structure must be separately installed or the installation location.
  • the conventional solar cell module has a flat and solid structure, which guarantees mechanical durability and can be manufactured simply.
  • this structure limits the application of these modules, there is a need for a photovoltaic module that can be deformed for various applications. In this case, it is necessary to install the solar cell module on a curved surface that covers the entire area without electrical deterioration. Since the solar cell is hard and brittle, a new technology providing such flexibility is required.
  • a curved glass substrate is manufactured, and using this, a curved glass substrate is used, such as a sunroof and a panoramic roof.
  • a curved dye-sensitized solar cell suitable for application to a vehicle body structure and a method for manufacturing the same.
  • a solar cell module in order for a solar panel to cover an arbitrary curved surface, a solar cell module must be applicable regardless of the curvature of the surface. For this, flexibility and elasticity are required.
  • the efficiency of solar cells in the past has been determined by the materials used in their manufacturing, maximizing electrical output requires a flexible and stretchable connection that can cover the mounting surface as much as possible with the solar cell.
  • the present inventors focused on the above technical requirements and connected the unit solar cells with a flexible conductive connector to realize various shapes through flexible wrinkle patterns and interconnections, and a stretchable solar module without loss of area It is a technical solution task to provide.
  • the present invention for solving the above technical problem
  • It consists of two or more unit solar cells, and a conductive connector connecting the unit solar cells,
  • the conductive connector provides a stretchable solar module, characterized in that it is a metal fiber-based connector having elasticity and flexibility.
  • the metal fiber-based connector is a connector made of a metal fabric, and when adjacent unit solar cells are connected, the direction in which the adjacent unit solar cells are connected and the metal fabric are biased in an oblique direction. It is connected, characterized in that it has elasticity due to tension or contraction of the metal fabric connecting body.
  • the unit solar cell is made of a polygonal shape of a triangle, a square, or a hexagon, characterized in that it forms a tessellation structure by the flexible folding.
  • one end of the connector is connected to the negative electrode of one unit solar cell, and the other end of the connector is connected to the positive electrode of another unit solar cell, so that the adjacent unit solar cells are connected. characterized in that it is formed.
  • the unit solar cell is
  • the stretchable solar module of the present invention has the effect of being able to deform into various shapes as the unit solar cells are interconnected while showing a flexible folding pattern through a conductive connector having elasticity and flexibility.
  • a tessellation structure can be formed because it can be folded up to 180° by the metal fabric connector used when connecting the unit solar cells. In this way, it is possible to install a solar module without electrical deterioration corresponding to an arbitrary curved surface by the elasticity and flexible folding.
  • FIG. 1 shows a stretchable solar module array according to an embodiment of the present invention.
  • FIG. 2 shows the structure of a unit solar cell in the stretchable solar module 100 of the present invention.
  • FIG. 3 shows a structure in which unit solar cells are connected in the stretchable solar module of the present invention.
  • Figure 4a shows the elasticity according to the tension direction of the metal fabric used in the stretchable solar module of the present invention.
  • Figure 4b is a stress-strain test result of the metal fabric used in the stretchable solar module of the present invention.
  • 5 and 6 respectively show electrical characteristics after stretching and folding of the solar module array to which two unit solar cells are connected, compared with the original solar array.
  • FIG. 7 shows a solar module array model having two model types including a right triangle and an equilateral triangle.
  • FIG. 10 shows energy conversion efficiency of a right-angled triangle and an equilateral triangle unit solar cell according to an embodiment of the present invention.
  • FIG. 11 shows a 64 cell tessellation structure solar module array having a right triangle and an equilateral triangle according to an embodiment of the present invention.
  • FIG. 13 and 14 show an origami-type solar module array and wrinkle pattern for an airplane, a hexagonal tower according to an embodiment of the present invention.
  • 15 shows a 16-cell 70° array according to an embodiment of the present invention.
  • 16 shows the power output densities of a planar array and a 70° array according to an embodiment of the present invention.
  • the present invention comprises two or more unit solar battery cells and a conductive connector connecting the unit solar battery cells, wherein the conductive connector is a metal fiber-based connector having elasticity and flexibility. It is about a chubble solar module.
  • the stretchable solar module of the present invention can implement various shapes by interconnecting adjacent unit solar cells by the metal fiber-based connector having elasticity and flexibility.
  • the metal fiber-based connector may be a connector made of a metal fabric.
  • the direction in which the adjacent unit solar cells are connected and the metal fabric are connected in a biased state in an oblique direction, so that the elasticity due to tension or contraction of the metal fabric connector is improved.
  • origami-type folding is possible as adjacent unit solar cells are interconnected while forming a flexibly folded structure by tension or contraction of the metal fabric connector.
  • Tessellation is a structure in which planar figures are collected without overlapping and there are no gaps.
  • regular tessellation means a tessellation composed of only one regular polygon, and there are three cases in which a regular polygon is an equilateral triangle, a square, and a regular hexagon.
  • a regular tessellation structure can be formed by folding or stretching.
  • the stretchable solar module of the present invention can implement an origami-type flexible folding structure through a flexible and flexible metal fiber-based connector, so that it is possible to implement a solar module array in various designs and shapes, It can be confirmed that it can sufficiently respond to arbitrary curved surfaces and incident angles.
  • FIG. 2 shows the structure of a unit solar cell in the stretchable solar module 100 of the present invention
  • FIG. 3 shows a structure in which the unit solar cell is connected in the stretchable solar module of the present invention.
  • the unit solar cell includes a substrate layer 130; an insulator layer 120 formed on the substrate layer; a solar cell layer 110 formed on the insulator layer on which a solar cell is disposed; and a sealing material layer 140 disposed while sealing the upper surface of the solar cell layer to protect the solar cell.
  • the substrate layer a person skilled in the art may select and use a metal substrate, a polymer substrate, or the like. As an example, a stainless steel substrate may be used.
  • the sealing material layer it is also possible to use two types of silicone rubber including polydimethylsiloxane (PDMS) as the sealing material layer to replace the conventional EVA glass sealing material.
  • PDMS polydimethylsiloxane
  • the sealing material in the present invention should be made of a material that does not penetrate moisture, protects the solar cell from external impact, and transmits light without loss at the same time, and it must be a stretchable material.
  • the sealing material layer 140 may include the entire back surface of the solar cell and the connection electrode 200 to be sealed with silicone rubber, and the front surface of the solar cell module receiving sunlight may be sealed with transparent PDMS.
  • connection position of the connector is important to ensure the flatness of the solar module, and when the negative electrode and the positive electrode partially overlap, a shear force is generated in the unit solar cell and the unit solar cell may be damaged. Therefore, in order for the adjacent unit solar cells to be connected to each other, the negative electrode of the lower surface of the solar cell layer 110 of any one unit solar cell cell and one end of the connecting body 210 are connected, and the connecting body 210 is connected. The other end of is connected to the positive electrode of the upper surface of the solar cell layer 110 of another unit solar cell. This means that when the unit solar cells are connected, they can be flexibly and flexibly connected even if they are located above and below the solar cell layer, respectively, by using the stretchable and flexible metal fabric as described above.
  • connection of adjacent unit solar cells using a connector may be connected in series or in parallel, or may be connected in series-parallel.
  • the junction 220 may be formed through soldering, and the lower portion of the solar cell layer 110 except for the soldering junction 220 . is configured to be insulated with the insulating layer 120 .
  • Figure 4a shows the elasticity according to the tension direction of the metal fabric used in the stretchable solar module of the present invention.
  • the tensile strength is higher can check that That is, when the direction in which adjacent unit solar cells are connected and the metal fabric are connected in a biased state in the diagonal direction, elasticity due to tension or contraction of the metal fabric connector can be improved, and more preferably, an oblique angle When is 45°, elasticity due to tension or contraction is maximum.
  • the metal fabric may be a fabric manufactured using copper to form a joint by soldering while exhibiting high conductivity. More preferably, when a metal fabric impregnated with silicone rubber is used rather than a general metal fabric, the tensile strength is stronger, so that elasticity and flexibility can be greatly improved. In this case, platinum-catalyzed silicones may be used as the silicone rubber.
  • Figure 4b shows the stress-strain test results, the results of the metal fabric sheet in two different force directions (90 ° and 45 °). Comparing the stress-strain curve in tension along the warp or weft at 90° and the stress-strain curve in diagonal tension at 45°, it is clear that the extension length of the metal fabric under tension is determined by the material properties, 45 ° In the diagonal tension, it can be seen that the extension length is more than twice the tension in the 90° direction.
  • a solar module array is constructed using a right-angled triangle unit solar cell cell and an equilateral triangle unit solar cell cell, Current density and energy conversion efficiency were measured.
  • FIG. 5 and 6 respectively show electrical characteristics after stretching and folding of the solar module array to which two unit solar cells are connected, compared with the original solar array.
  • FF fill factor
  • Eff electrical efficiency
  • FIG. 6 it was found that fill factor (FF) and open circuit voltage (Voc) slightly decreased after folding. From these results, it can be confirmed that the unit solar cell can be easily stretched or folded without damage, and that it can be easily restored to its original shape after deformation. However, all parameters measured during the folding and stretching tests remained within ⁇ 0.03% of the original standard array, which is negligible given that the energy conversion efficiency changed by approximately ⁇ 0.01% in both strain types.
  • the wrinkle line of the tessellation is determined by the formation of a unit solar cell.
  • a photovoltaic module array having two model types including a right triangle and an equilateral triangle is configured and shown in FIG. 7 .
  • model 1 is a rotation pattern
  • model 2 is a linear pattern.
  • FIG. 8 shows the current density according to voltage application for each model of the solar module array shown in FIG. 7
  • FIG. 9 is a right-angled triangle and equilateral triangle unit solar cell 1 cell and 4 cell arrays, voltage applied shows the current density according to
  • FIG. 10 shows the energy conversion efficiency of a right-angled triangle and an equilateral triangle unit solar cell.
  • FIG. 11 shows a 64 cell tessellation structure solar module array having a right-angled triangle and an equilateral triangle.
  • the 64 cell tessellation structure solar module array of FIG. 11 is serially connected, and the total area of the module is 231 cm 2 (15.2 cm ⁇ 15.2 cm), but the spacing between cells is the maximum coverage of the area. was made as small as possible to ensure
  • a substrate and a sealing material (PDMS) are used in a solar module, rigid substrates used in conventional solar panels such as glass and frames are not required, and as a result, c-Si solar cells can be produced. can Accordingly, the solar module array can be freely formed on any surface.
  • FIG. 12 shows energy conversion efficiency under outdoor conditions based on the number of unit solar cells in the array.
  • the energy conversion efficiency was found to be in the range of 14 ⁇ 16%, and it was found to be similar regardless of the number of cells. This is judged to be a result of loss of serial connection due to mismatch between cells and climate parameters such as dust and clouds, which are lower than the values obtained in the solar simulator presented in Fig. It is possible to overcome by classifying unit solar cells before
  • FIG. 13 and 14 show an origami solar module array and wrinkle pattern for an airplane, a hexagonal tower.
  • the straight and dotted lines shown in the diagram represent the mountain and valley folding lines of the origami pattern, and an origami-type solar module array can be manufactured without difficulty.
  • the solar module array of the tessellation structure consisting of 16 right-angled triangular unit solar cells has an area of 52 cm 2 and is connected in parallel and in series.
  • FIG. 15 shows such a 16cell 70° array
  • FIG. 16 shows a comparison of power output densities between a planar array and a 70° array. Since the luminous intensity of sunlight decreases as the AOI increases, the calculated value reflecting the luminous intensity is shown in FIG. 16 , as shown in FIG. 16 , the electrical output based on the AOI decreases, but on average, the 70° array increases more per day compared to the planar array. It can be seen that high electrical output is produced. That is, the origami-type tessellation-structured solar module array can produce a higher average electrical output when used under omnidirectional lighting and various lighting intensity conditions commonly found in daily life.
  • the unit sun has a flexible folding structure without loss of area so that it can have various shapes and sizes in response to flexibility, various sizes, lighting conditions such as indoor and partially shaded environments, and solar conditions with a change in incident angle. It is possible to provide a stretchable photovoltaic module in which battery cells are interconnected, and through these various shapes, it is possible to output higher power on average than a planar module. Accordingly, it is expected that the present invention can extend sunlight to other applications of urban environments and flexible and flexible electrical devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a stretchable solar module that can be mounted on variously-shaped mounting surfaces, and disclosed is a stretchable solar module comprising: two or more unit solar cells; and a conductive connector for connecting the unit solar cells, wherein the conductive connector is a metal-fiber-based connector having elasticity and flexibility. According to the present invention, a stretchable solar module for connecting unit solar cells to each other in a flexible folding structure without a loss of an area can be provided to have various shapes and sizes in correspondence to flexibility, various sizes, lighting conditions such as those of the indoors and partially shaded environments, solar conditions that have changes of an incident angle, and the like, and power higher than that of a planar module, on average, can be outputted through these various shapes.

Description

스트레처블 태양광 모듈Stretchable Solar Modules
본 발명은 다양한 형상의 설치면에 설치 가능한 스트레처블 태양광 모듈에 관한 것이다.The present invention relates to a stretchable solar module that can be installed on an installation surface of various shapes.
최근 고도의 산업성장과 인구증가에 따라 에너지 소비가 급증하고 이로 인해 배출되는 이산화탄소와 같은 온실가스의 증가는 인류의 미래를 위협하는 존재가 되어가고 있다. 이에 대한 대책방안으로 대체에너지의 연구 및 개발이 활발히 이루어지는 가운데 그 중 태양광발전시스템은 국내에서 2012년부터 신재생에너지공급의무화제도(RPS: Renewable Portfolio Standard)시행과 같은 제도적 기반과 함께 급속히 보급이 진행되고 있다.With the recent rapid industrial growth and population increase, energy consumption is rapidly increasing, and the increase in greenhouse gases, such as carbon dioxide, is becoming a threat to the future of mankind. As a countermeasure against this, research and development of alternative energy is being actively carried out, and among them, solar power generation system is rapidly spreading along with the institutional basis such as the implementation of the Renewable Portfolio Standard (RPS) in Korea from 2012. is in progress
빌딩 통합 태양 광 발전(BIPV), 태양열 자동차, 전기 웨어러블 장치용 에너지 원과 같은 응용 분야에서 태양 광 발전(PV)에 대한 수요가 스마트 그리드를 포함한 새로운 전력원으로서 증가하고 있다. 즉, 건물 또는 차량의 지붕과 같이 구조물의 최상단에 태양전지를 설치하여 에너지를 생산하는 기술이 발전하고 있다. 그러나 태양 전지 패널의 사용은 설치 위치에 제한될 수 없고, 모듈은 어떤 공간에도 통합되는 것이 필요한 데 반하여, 다양해지는 구조물의 디자인에 일반적인 판형 태양전지를 설치하기 위해서는 추가적인 구조물을 별도로 설치해야 하거나 설치 장소에 제약이 있는 등의 문제점이 있었다.In applications such as building-integrated photovoltaic (BIPV), solar vehicles, and energy sources for electric wearable devices, the demand for photovoltaic (PV) is growing as a new power source, including smart grids. That is, a technology for generating energy by installing a solar cell on the top of a structure such as a roof of a building or vehicle is developing. However, the use of the solar panel cannot be limited to the installation location, and the module needs to be integrated into any space, whereas in order to install a general plate-type solar cell in the design of a structure that is diversifying, an additional structure must be separately installed or the installation location There were problems such as restrictions on
이와같이 기존의 태양 전지 모듈은 평평하고 견고한 구조로 기계적 내구성을 보장하고 간단하게 제조할 수 있다. 그러나 이 구조는 이러한 모듈의 적용을 제한되므로, 다양한 응용 분야에 변형 가능한 태양 광 모듈이 필요하다. 이 경우, 전기적 열화없이 전체 면적을 커버하는 곡면에 태양 전지 모듈을 설치하는 것이 필요한데, 태양 전지는 단단하고 깨지기 쉽기 때문에 이러한 유연성을 제공하는 새로운 기술이 요구되고 있다. As described above, the conventional solar cell module has a flat and solid structure, which guarantees mechanical durability and can be manufactured simply. However, since this structure limits the application of these modules, there is a need for a photovoltaic module that can be deformed for various applications. In this case, it is necessary to install the solar cell module on a curved surface that covers the entire area without electrical deterioration. Since the solar cell is hard and brittle, a new technology providing such flexibility is required.
이러한 문제점을 해결하기 위한 기술로서, '곡면형 염료감응 태양전지 및 그 제조방법(등록번호 : 10-1144038)'에서는 곡면형의 유리 기판을 제작하고, 이를 이용하여 선루프 및 파노라마 루프 등과 같이 휘어진 차체 구조에 적용하기에 적합한 곡면형 염료감응 태양전지 및 그 제조방법을 제공하고 있다.As a technology to solve this problem, in 'Curved dye-sensitized solar cell and its manufacturing method (registration number: 10-1144038)', a curved glass substrate is manufactured, and using this, a curved glass substrate is used, such as a sunroof and a panoramic roof. Provided are a curved dye-sensitized solar cell suitable for application to a vehicle body structure and a method for manufacturing the same.
상기 선행기술과 같이, 다양한 곡면 구조체에 태양전지를 설치하기 위한 기술로서 후면전극 또는 유리기판을 곡률을 갖는 곡면 형상으로 제작하여 설치하는 방법이 있었으나 다양한 곡면을 갖는 설치장소마다 그에 꼭 맞는 곡률을 적용하기에는 한계가 있다. As in the prior art, as a technology for installing solar cells on various curved structures, there was a method of manufacturing and installing a rear electrode or a glass substrate in a curved shape having a curvature, but a curvature that is suitable for each installation place having various curved surfaces is applied. There are limits to what you can do.
한편, 태양광 패널이 임의의 곡면을 덮을 수 있으려면 표면의 곡률에 관계없이 태양 전지 모듈을 적용 할 수 있어야하는 바, 이를 위해서는 유연성과 신축성이 요구된다. 따라서 과거 태양 전지의 효율은 제조 과정에서 사용 된 재료에 의해 결정되었지만, 전기 출력을 극대화하려면 장착 표면을 가능한 한 태양 전지로 덮을 수 있는 유연하고 신축성있는 연결이 요구된다. 또한 최근 보고된 바에 따르면 이러한 연결시 변형을 허용하는 구성 요소 간의 간격으로 인해 면적 손실의 문제가 있다. 따라서 태양광 모듈의 커버리지 면적의 손실이 없고 전기적 열화를 증가시키지 않으면서도 임의의 곡면을 덮을 수 있도록 하는 태양광 모듈의 개발이 요구되고 있다. On the other hand, in order for a solar panel to cover an arbitrary curved surface, a solar cell module must be applicable regardless of the curvature of the surface. For this, flexibility and elasticity are required. Thus, while the efficiency of solar cells in the past has been determined by the materials used in their manufacturing, maximizing electrical output requires a flexible and stretchable connection that can cover the mounting surface as much as possible with the solar cell. Also, according to a recent report, there is a problem of area loss due to the spacing between components that allow deformation during such connection. Therefore, the development of a solar module capable of covering an arbitrary curved surface without loss of the coverage area of the solar module and without increasing electrical deterioration is required.
이에, 본 발명자들은 상기와 같은 기술적 요구에 착안하여 신축성이 있는 전도성 연결체로 단위태양전지셀을 연결하여 유연한 주름 패턴과 상호연결을 통해 다양한 형상을 구현하면서 면적의 손실이 없는 스트레처블 태양광 모듈을 제공하는 것을 기술적 해결과제로 한다. Accordingly, the present inventors focused on the above technical requirements and connected the unit solar cells with a flexible conductive connector to realize various shapes through flexible wrinkle patterns and interconnections, and a stretchable solar module without loss of area It is a technical solution task to provide.
상기한 기술적 과제를 해결하기 위한 본 발명은, The present invention for solving the above technical problem,
2개 이상의 단위태양전지셀과, 상기 단위태양전지셀을 연결하는 전도성 연결체를 포함하여 이루어지고, It consists of two or more unit solar cells, and a conductive connector connecting the unit solar cells,
상기 전도성 연결체는 신축성과 유연성을 갖는 금속섬유 기반 연결체인 것을 특징으로 하는, 스트레처블 태양광 모듈을 제공한다.The conductive connector provides a stretchable solar module, characterized in that it is a metal fiber-based connector having elasticity and flexibility.
바람직하게는, 상기 금속섬유 기반 연결체는 금속직물로 이루어진 연결체이고, 인접한 단위태양전지셀의 연결시, 상기 인접한 단위태양전지셀이 연결되는 방향과 상기 금속직물이 사선방향으로 바이어스된 상태로 연결되어, 상기 금속직물 연결체의 인장 또는 수축에 의한 신축성을 갖는 것을 특징으로 한다. Preferably, the metal fiber-based connector is a connector made of a metal fabric, and when adjacent unit solar cells are connected, the direction in which the adjacent unit solar cells are connected and the metal fabric are biased in an oblique direction. It is connected, characterized in that it has elasticity due to tension or contraction of the metal fabric connecting body.
또한 본 발명에 있어서, 상기 인접한 단위태양전지셀의 연결시, 상기 금속직물 연결체의 인장 또는 수축을 이용한 유연한 접힘이 가능한 것을 특징이다. In addition, in the present invention, when the adjacent unit solar cell cells are connected, flexible folding is possible using tension or contraction of the metal fabric connector.
또한 본 발명에 있어서, 상기 단위태양전지셀은 삼각형, 사각형 또는 육각형인 폴리곤 형상으로 이루어져, 상기 유연한 접힘에 의한 테셀레이션 구조를 형성하는 것을 특징으로 한다. In addition, in the present invention, the unit solar cell is made of a polygonal shape of a triangle, a square, or a hexagon, characterized in that it forms a tessellation structure by the flexible folding.
또한 본 발명에 있어서, 상기 연결체의 일 단부는 하나의 단위태양전지셀의 음극에 연결되고, 상기 연결체의 다른 단부는 다른 단위태양전지셀의 양극에 연결되어, 인접한 단위태양전지셀이 연결형성되는 것을 특징으로 한다. Also in the present invention, one end of the connector is connected to the negative electrode of one unit solar cell, and the other end of the connector is connected to the positive electrode of another unit solar cell, so that the adjacent unit solar cells are connected. characterized in that it is formed.
또한 본 발명에 있어서,Also in the present invention,
상기 단위태양전지셀은, The unit solar cell is
기판층; substrate layer;
상기 기판층의 상부에 형성되는 절연체층; an insulator layer formed on the substrate layer;
상기 절연체층의 상부에 형성되어 태양전지가 배치되는 태양전지층; 및 a solar cell layer formed on the insulator layer on which a solar cell is disposed; and
상기 태양전지를 보호하기 위하여 태양전지층 상면을 밀봉시키며 배치되는 밀봉재층;을 포함하여 이루어지는 것을 특징으로 한다. and a sealing material layer disposed while sealing the upper surface of the solar cell layer to protect the solar cell.
상기 본 발명의 스트레처블 태양광 모듈은, 단위태양전지셀이 신축성과 유연성을 갖는 전도성 연결체를 통하여 유연한 접힘 패턴을 보이면서 상호연결됨에 따라 다양한 형상으로 변형할 수 있는 효과가 있다. 이러한 본 발명에 따르면, 단위태양전지셀의 연결시 사용되는 금속직물 연결체에 의하여 최대 180 °까지 접을 수 있어 테셀레이션 구조를 형성할 수 있는 효과가 있다. 이와 같이 신축성과 유연한 접힘에 의하여 임의의 곡면에 대응하여 전기적 열화 없이 태양광 모듈을 설치하는 것이 가능하게 된다. 특히 테셀레이션 구조 형성에 따른 종이접기 형 접힘구조 구현을 통해 다양한 각도의 입사광과 다양한 곡면에 대응하는 태양광 모듈의 설치가 가능하면서도 일반적인 평면 구조의 태양전지와 비교하여 효율의 저하가 없이 동일한 효율로 태양광 발전이 가능하다는 이점이 있다.The stretchable solar module of the present invention has the effect of being able to deform into various shapes as the unit solar cells are interconnected while showing a flexible folding pattern through a conductive connector having elasticity and flexibility. According to the present invention, a tessellation structure can be formed because it can be folded up to 180° by the metal fabric connector used when connecting the unit solar cells. In this way, it is possible to install a solar module without electrical deterioration corresponding to an arbitrary curved surface by the elasticity and flexible folding. In particular, by implementing an origami-type folding structure according to the formation of a tessellation structure, it is possible to install photovoltaic modules corresponding to various angles of incident light and various curved surfaces, while providing solar cells with the same efficiency without a decrease in efficiency compared to solar cells with a general planar structure. There is an advantage that photovoltaic power generation is possible.
도 1은 본 발명의 일 실시예에 따른 스트레처블 태양광 모듈 어레이를 나타낸 것이다. 1 shows a stretchable solar module array according to an embodiment of the present invention.
도 2는 본 발명의 스트레처블 태양광 모듈(100)에 있어 단위태양전지셀의 구조를 나타낸 것이다. 2 shows the structure of a unit solar cell in the stretchable solar module 100 of the present invention.
도 3은 본 발명의 스트레처블 태양광 모듈에 있어 단위 태양전지셀이 연결되는 구조를 나타낸 것이다. 3 shows a structure in which unit solar cells are connected in the stretchable solar module of the present invention.
도 4a는 본 발명의 스트레처블 태양광 모듈에 사용되는 금속직물의 장력방향에 따른 신축성을 나타낸 것이다. Figure 4a shows the elasticity according to the tension direction of the metal fabric used in the stretchable solar module of the present invention.
도 4b는 본 발명의 스트레처블 태양광 모듈에 사용되는 금속직물의 응력-변형 테스트 결과를 나타낸 것이다.Figure 4b is a stress-strain test result of the metal fabric used in the stretchable solar module of the present invention.
도 5 및 도 6은 오리지널 태양광 어레이와 비교할 때 2개의 단위태양전지셀이 연결된 태양광 모듈 어레이의 스트레칭 후, 폴딩 후의 전기적 특성을 각각 나타낸 것이다. 5 and 6 respectively show electrical characteristics after stretching and folding of the solar module array to which two unit solar cells are connected, compared with the original solar array.
도 7은 직각삼각형과 정삼각형을 포함하는 두 가지 모델 유형을 갖는 태양광 모듈 어레이 모델을 나타낸 것이다. 7 shows a solar module array model having two model types including a right triangle and an equilateral triangle.
도 8은 본 발명의 일 실시예에 따른 전압인가에 따른 전류밀도를 나타낸 것이다. 8 shows the current density according to voltage application according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 직각삼각형과 정삼각형 단위태양전지셀 1 cell과 4 cell 어레이에 대하여, 전압인가에 따른 전류밀도를 나타낸 것이다.9 shows current densities according to voltage application in 1 cell and 4 cell arrays of right-angled triangle and equilateral triangle unit solar cells according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 직각삼각형과 정삼각형 단위태양전지셀의 에너지 변환효율을 나타낸 것이다. 10 shows energy conversion efficiency of a right-angled triangle and an equilateral triangle unit solar cell according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 직각삼각형과 정삼각형이 있는 64 cell 테셀레이션 구조 태양광 모듈 어레이를 나타낸 것이다. 11 shows a 64 cell tessellation structure solar module array having a right triangle and an equilateral triangle according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 어레이의 단위태양전지셀 수를 기준으로 하는 실외 조건에서의 에너지 변환효율을 나타낸 것이다. 12 shows energy conversion efficiency under outdoor conditions based on the number of unit solar cells in an array according to an embodiment of the present invention.
도 13 및 도 14는 본 발명의 일 실시예에 따른 비행기, 육각형 타워에 대한 종이접기 형 태양광 모듈 어레이 및 주름 패턴을 나타낸 것이다. 13 and 14 show an origami-type solar module array and wrinkle pattern for an airplane, a hexagonal tower according to an embodiment of the present invention.
도 15는 본 발명의 일 실시예에 따른 16-cell 70° 어레이를 나타낸 것이다. 15 shows a 16-cell 70° array according to an embodiment of the present invention.
도 16에 본 발명의 일 실시예에 따른 평면 어레이와 70° 어레이의 전력 출력 밀도를 나타낸 것이다. 16 shows the power output densities of a planar array and a 70° array according to an embodiment of the present invention.
<부호의 설명><Explanation of code>
100: 단위태양전지셀100: unit solar cell
110: 태양전지층110: solar cell layer
120: 절연체층120: insulator layer
130: 기판층130: substrate layer
140: 밀봉재층140: sealing material layer
210: 전도성 연결체210: conductive connector
220: 접합부220: junction
이하, 본 발명을 첨부된 도면 도 1 내지 도 17에 의거하여 상세히 설명한다.다만, 도면과 상세한 설명에서 일반적인 태양전지, 태양광발전, 유연성 수지(PDMS) 등으로부터 이 분야의 종사자들이 용이하게 알 수 있는 구성 및 작용에 대한 도시 및 언급은 간략히 하거나 생략하였다. 특히 도면의 도시 및 상세한 설명에 있어서 본 발명의 기술적 특징과 직접적으로 연관되지 않는 요소의 구체적인 기술적 구성 및 작용에 대한 상세한 설명 및 도시는 생략하고, 본 발명과 관련되는 기술적 구성만을 간략하게 도시하거나 설명하였다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings 1 to 17. However, in the drawings and detailed description, general solar cells, photovoltaic power generation, and flexible resin (PDMS) Illustrations and references to configurations and actions that can be easily understood by those skilled in this field from etc. have been simplified or omitted. In particular, in the drawings and detailed description, detailed descriptions and illustrations of specific technical configurations and actions of elements not directly related to the technical features of the present invention are omitted, and only the technical configurations related to the present invention are briefly illustrated or described. did.
본 발명은 2개 이상의 단위태양전지셀과, 상기 단위태양전지셀을 연결하는 전도성 연결체를 포함하여 이루어지고, 상기 전도성 연결체는 신축성과 유연성을 갖는 금속섬유 기반 연결체인 것을 특징으로 하는 스트레처블 태양광 모듈에 대한 것이다. The present invention comprises two or more unit solar battery cells and a conductive connector connecting the unit solar battery cells, wherein the conductive connector is a metal fiber-based connector having elasticity and flexibility. It is about a chubble solar module.
본 발명의 스트레처블 태양광 모듈은 상기 신축성과 유연성을 갖는 금속섬유 기반 연결체에 의하여 인접한 단위태양전지셀이 상호연결됨으로써 다양한 형상을 구현할 수 있다. The stretchable solar module of the present invention can implement various shapes by interconnecting adjacent unit solar cells by the metal fiber-based connector having elasticity and flexibility.
바람직하게는 상기 금속섬유 기반 연결체는 금속직물로 이루어진 연결체일 수 있다. 이 때, 인접한 단위태양전지셀의 연결시, 상기 인접한 단위태양전지셀이 연결되는 방향과 상기 금속직물이 사선방향으로 바이어스된 상태로 연결되어, 상기 금속직물 연결체의 인장 또는 수축에 의한 신축성을 갖게 된다. Preferably, the metal fiber-based connector may be a connector made of a metal fabric. At this time, when the adjacent unit solar cells are connected, the direction in which the adjacent unit solar cells are connected and the metal fabric are connected in a biased state in an oblique direction, so that the elasticity due to tension or contraction of the metal fabric connector is improved. will have
또한 상기 인접한 단위태양전지셀의 연결시, 상기 금속직물 연결체의 인장 또는 수축을 이용하여 유연한 접힘이 가능하게 된다. In addition, when the adjacent unit solar cells are connected, flexible folding is possible by using tension or contraction of the metal fabric connecting body.
따라서 본 발명의 스트레처블 태양광 모듈은 금속직물 연결체의 인장 또는 수축에 의해 인접한 단위태양전지셀이 유연하게 접힘구조를 형성하면서 상호연결됨에 따라서 종이접기 형 접힘이 가능하게 된다. Therefore, in the stretchable solar module of the present invention, origami-type folding is possible as adjacent unit solar cells are interconnected while forming a flexibly folded structure by tension or contraction of the metal fabric connector.
이 때, 상기 단위태양전지셀이 삼각형, 사각형 또는 육각형인 폴리곤 형상으로 이루어지는 경우, 이러한 유연한 접힘에 의하여 태양광 모듈이 테셀레이션 구조를 형성하는 것도 가능하다. 테셀레이션(tessellation)은 평면 도형을 겹치지 않으면서 빈틈이 없게 모으는 구조로서, 정규 테셀레이션, 준정규 테셀레이션, 비정규 테셀레이션의 종류가 있다. 그 중에서도 정규 테셀레이션이란 한 가지 정다각형으로만 이루어진 테셀레이션을 의미하며 정다각형이 정삼각형, 정사각형, 정육각형으로 되는 3가지 경우가 존재한다. 따라서 본 발명에서 상기 단위태양전지셀이 삼각형, 사각형 또는 육각형인 폴리곤 형상으로 이루어지는 경우 폴딩 또는 스트레칭됨에 따른 정규 테셀레이션 구조를 형성할 수 있게 된다. 본 발명의 일 실시예에서는 가장 자유로운 구조로 폴딩 또는 스트레칭 될 수 있는 삼각형 형상인 것으로 한다.In this case, when the unit solar cell has a polygonal shape such as a triangle, a square, or a hexagon, it is also possible for the solar module to form a tessellation structure by such flexible folding. Tessellation is a structure in which planar figures are collected without overlapping and there are no gaps. There are regular tessellation, semi-regular tessellation, and non-regular tessellation. Among them, the regular tessellation means a tessellation composed of only one regular polygon, and there are three cases in which a regular polygon is an equilateral triangle, a square, and a regular hexagon. Therefore, in the present invention, when the unit solar cell has a triangular, quadrangular, or hexagonal polygonal shape, a regular tessellation structure can be formed by folding or stretching. In one embodiment of the present invention, it is assumed that it has a triangular shape that can be folded or stretched in the most free structure.
도 1은 본 발명의 일 실시예에 따른 스트레처블 태양광 모듈 어레이를 나타낸 것이다. 이를 참고하면, 본 발명의 스트레처블 태양광 모듈은 신축성있고 유연한 금속섬유 기반의 연결체를 통하여 종이접기 형의 유연한 접힘구조를 구현할 수 있어 다양한 디자인과 형상으로 태양광 모듈 어레이를 구현할 수 있어, 임의의 곡면과 입사각에 충분히 대응가능한 것을 확인할 수 있다. 1 shows a stretchable solar module array according to an embodiment of the present invention. Referring to this, the stretchable solar module of the present invention can implement an origami-type flexible folding structure through a flexible and flexible metal fiber-based connector, so that it is possible to implement a solar module array in various designs and shapes, It can be confirmed that it can sufficiently respond to arbitrary curved surfaces and incident angles.
도 2는 본 발명의 스트레처블 태양광 모듈(100)에 있어 단위태양전지셀의 구조를, 도 3은 본 발명의 스트레처블 태양광 모듈에 있어 단위 태양전지셀이 연결되는 구조를 나타낸 것이다. 이를 참고하면, 단위태양전지셀은 기판층(130); 상기 기판층의 상부에 형성되는 절연체층(120); 상기 절연체층의 상부에 형성되어 태양전지가 배치되는 태양전지층(110); 및 상기 태양전지를 보호하기 위하여 태양전지층 상면을 밀봉시키며 배치되는 밀봉재층(140);을 포함하여 이루어진다. FIG. 2 shows the structure of a unit solar cell in the stretchable solar module 100 of the present invention, and FIG. 3 shows a structure in which the unit solar cell is connected in the stretchable solar module of the present invention. . Referring to this, the unit solar cell includes a substrate layer 130; an insulator layer 120 formed on the substrate layer; a solar cell layer 110 formed on the insulator layer on which a solar cell is disposed; and a sealing material layer 140 disposed while sealing the upper surface of the solar cell layer to protect the solar cell.
또한 일 예로서, 상기 기판층으로는 금속 기판, 고분자 기판 등, 당업계 통상적 기술자가 선택하여 사용가능하다. 일 예로서 스테인리스 스틸기판을 사용할 수 있다. Also, as an example, as the substrate layer, a person skilled in the art may select and use a metal substrate, a polymer substrate, or the like. As an example, a stainless steel substrate may be used.
또한 상기 밀봉재층으로 PDMS (polydimethylsiloxane)를 포함하여 두 가지 유형의 실리콘 고무를 이용하여 종래 EVA 유리 밀봉재를 대체하여 사용하는 것도 가능하다. 이는 종래 태양전지의 Encapsulation(밀봉)을 위하여 back-sheet - EVA film - 태양전지 - EVA film - Glass로 적층한 후, 이를 열압착하여 태양전지 모듈을 제조하였으나, 이러한 방식으로는 태양전지를 접거나 구부릴 수 없기 때문에 스트레처블 태양광 모듈을 제조할 수 없기 때문이다. 이에, 본 발명에서의 밀봉재는 수분을 침투시키지 않고, 외부의 충격으로부터 태양전지를 보호하며 동시에 빛을 손실없이 투과시킬 수 있는 소재로 되어야하며, 신축가능한 소재여야 한다.In addition, it is also possible to use two types of silicone rubber including polydimethylsiloxane (PDMS) as the sealing material layer to replace the conventional EVA glass sealing material. For encapsulation (sealing) of the conventional solar cell, the solar cell module was manufactured by laminating it with back-sheet - EVA film - solar cell - EVA film - glass, and then thermocompression bonding it. This is because stretchable solar modules cannot be manufactured because they cannot be bent. Accordingly, the sealing material in the present invention should be made of a material that does not penetrate moisture, protects the solar cell from external impact, and transmits light without loss at the same time, and it must be a stretchable material.
이 때, 상기 밀봉재층(140)은 태양전지 전체의 후면과 연결 전극(200)까지 포함하여 실리콘 고무로 밀봉하고, 태양광을 받는 태양전지모듈의 앞면은 투명 PDMS로 밀봉하도록 형성될 수 있다.In this case, the sealing material layer 140 may include the entire back surface of the solar cell and the connection electrode 200 to be sealed with silicone rubber, and the front surface of the solar cell module receiving sunlight may be sealed with transparent PDMS.
또한, 연결체의 연결위치는 태양광 모듈의 평탄도를 보장하는 데 중요한 바, 음극과 양극이 부분적으로 겹치면 단위태양전지셀에 전단력이 발생하여 단위태양전지셀이 파손될 수 있다. 따라서 상기 인접한 단위태양전지셀이 연결형성되기 위해서는, 어느 하나의 단위태양전지셀의 태양전지층(110) 하면의 음극과 상기 연결체(210)의 일 단부가 연결되고, 상기 연결체(210)의 다른 단부는 다른 단위태양전지셀의 태양전지층(110) 상면의 양극에 연결되도록 한다. 이는 단위태양전지셀의 연결시 상술한 바와 같이 신축성과 유연성이 있는 금속직물을 이용함에 따라 각각 태양전지층의 상부와 하부에 위치하더라도 유연하게 신축적으로 연결형성될 수 있는 것이다. 이와같이 연결체를 이용한 인접한 단위태양전지셀의 연결은 직렬 또는 병렬로 연결될 수 있고, 직-병렬로 연결될 수도 있다. 이 때, 상기 연결체(210)와 태양전지층(110)의 연결시 솔더링을 통해 접합부(220)을 형성할 수 있고, 태양전지층(110)의 하부는 상기 솔더링 접합부(220)을 제외하고는 절연층(120)으로 절연되도록 구성된다. In addition, the connection position of the connector is important to ensure the flatness of the solar module, and when the negative electrode and the positive electrode partially overlap, a shear force is generated in the unit solar cell and the unit solar cell may be damaged. Therefore, in order for the adjacent unit solar cells to be connected to each other, the negative electrode of the lower surface of the solar cell layer 110 of any one unit solar cell cell and one end of the connecting body 210 are connected, and the connecting body 210 is connected. The other end of is connected to the positive electrode of the upper surface of the solar cell layer 110 of another unit solar cell. This means that when the unit solar cells are connected, they can be flexibly and flexibly connected even if they are located above and below the solar cell layer, respectively, by using the stretchable and flexible metal fabric as described above. As such, the connection of adjacent unit solar cells using a connector may be connected in series or in parallel, or may be connected in series-parallel. At this time, when the connection body 210 and the solar cell layer 110 are connected, the junction 220 may be formed through soldering, and the lower portion of the solar cell layer 110 except for the soldering junction 220 . is configured to be insulated with the insulating layer 120 .
도 4a는 본 발명의 스트레처블 태양광 모듈에 사용되는 금속직물의 장력방향에 따른 신축성을 나타낸 것이다. 금속직물의 길이방향이 가로방향과 수직을 이루는 경우에 가로방향으로 인장력을 가하는 경우에 비하여, 금속직물의 길이방향이 45°로 기울어진 경우에 가로방향으로 인장력을 가했을 때, 인장강도가 더 큰 것을 확인할 수 있다. 즉, 인접한 단위태양전지셀이 연결되는 방향과 상기 금속직물이 사선방향으로 바이어스된 상태로 연결되어야, 상기 금속직물 연결체의 인장 또는 수축에 의한 신축성을 향상시킬 수 있으며, 보다 바람직하게는 사선각도가 45°일 때, 인장 또는 수축에 의한 신축성이 최대가 된다. 이 때, 상기 금속직물은 높은 전도성을 나타내면서 솔더링에 의한 접합부를 형성할 수 있도록 구리를 이용하여 제작된 직물일 수 있다. 보다 바람직하게는 일반적인 금속직물보다 실리콘 고무(Silicone rubbber)가 함침된 금속 직물을 이용할 때 인장 강도가 더 강해져서 신축성과 유연성을 더 크게 향상시킬 수 있다. 이 경우, 실리콘 고무로는 백금 촉매 실리콘(platinum-catalyzed silicones)을 사용할 수 있다.Figure 4a shows the elasticity according to the tension direction of the metal fabric used in the stretchable solar module of the present invention. Compared to the case where the tensile force is applied in the transverse direction when the longitudinal direction of the metallic fabric is perpendicular to the transverse direction, when the tensile force is applied in the transverse direction when the longitudinal direction of the metallic fabric is inclined at 45°, the tensile strength is higher can check that That is, when the direction in which adjacent unit solar cells are connected and the metal fabric are connected in a biased state in the diagonal direction, elasticity due to tension or contraction of the metal fabric connector can be improved, and more preferably, an oblique angle When is 45°, elasticity due to tension or contraction is maximum. In this case, the metal fabric may be a fabric manufactured using copper to form a joint by soldering while exhibiting high conductivity. More preferably, when a metal fabric impregnated with silicone rubber is used rather than a general metal fabric, the tensile strength is stronger, so that elasticity and flexibility can be greatly improved. In this case, platinum-catalyzed silicones may be used as the silicone rubber.
도 4b는 응력-변형 테스트 결과를 나타낸 것으로, 두 가지 다른 힘 방향 (90° 및 45°)으로 금속직물시트에서 수행한 결과이다. 90°에서 경사 또는 위사를 따라 장력을 가한 경우 응력 변형 곡선과, 45°에서 대각선 장력이 있는 응력-변형 곡선을 비교하면, 장력을 받는 금속직물의 확장 길이가 재료 특성에 의해 결정됨은 물론, 45° 대각선 장력에서 연장 길이가 90° 방향 장력의 두 배 이상임을 확인할 수 있다. Figure 4b shows the stress-strain test results, the results of the metal fabric sheet in two different force directions (90 ° and 45 °). Comparing the stress-strain curve in tension along the warp or weft at 90° and the stress-strain curve in diagonal tension at 45°, it is clear that the extension length of the metal fabric under tension is determined by the material properties, 45 ° In the diagonal tension, it can be seen that the extension length is more than twice the tension in the 90° direction.
또한 본 발명의 바람직한 실시예로서 금속직물 연결체에 의하여 연결되는 태양광 모듈의 전기적 특성을 확인하기 위하여, 직각삼각형 단위태양전지셀과 정삼각형 단위태양전지셀을 이용하여 태양광 모듈 어레이를 구성하고, 전류밀도와 에너지 변환효율을 측정하였다. In addition, as a preferred embodiment of the present invention, in order to confirm the electrical characteristics of the solar module connected by the metal fabric connector, a solar module array is constructed using a right-angled triangle unit solar cell cell and an equilateral triangle unit solar cell cell, Current density and energy conversion efficiency were measured.
도 5 및 도 6은 오리지널 태양광 어레이와 비교할 때 2개의 단위태양전지셀이 연결된 태양광 모듈 어레이의 스트레칭 후, 폴딩 후의 전기적 특성을 각각 나타낸 것이다. 도 5를 참고하면, 2 cell 어레이의 스트레칭 후 FF(fill factro)가 증가하여 Eff(electrical efficiency)가 약간 증가했고, 다만 전류밀도가 감소했지만 0.02% 미만인 것으로 나타났다. 도 6을 참고하면, 폴딩 후에는 FF(fill factor)와 Voc(open circuit voltage)가 약간 감소하는 것으로 나타났다. 이러한 결과로부터 손상없이 단위태양전지셀을 쉽게 스트레칭하거나 폴딩하는 것이 가능하고, 변형 후에 원래의 모양으로 쉽게 복구할 수 있음을 확인할 수 있다. 단, 폴딩 및 스트레칭 테스트 중에 측정 된 모든 매개 변수는 원래 표준 어레이의 ± 0.03 % 이내로 유지되었는데, 이는 두 변형 유형 모두에서 에너지 변환 효율이 약 ± 0.01 % 변경되었다는 점을 감안할 때 무시할 수 있는 양이다. 5 and 6 respectively show electrical characteristics after stretching and folding of the solar module array to which two unit solar cells are connected, compared with the original solar array. Referring to FIG. 5 , after stretching of the two-cell array, FF (fill factor) increased and Eff (electrical efficiency) slightly increased, but the current density decreased, but it was found to be less than 0.02%. Referring to FIG. 6 , it was found that fill factor (FF) and open circuit voltage (Voc) slightly decreased after folding. From these results, it can be confirmed that the unit solar cell can be easily stretched or folded without damage, and that it can be easily restored to its original shape after deformation. However, all parameters measured during the folding and stretching tests remained within ±0.03% of the original standard array, which is negligible given that the energy conversion efficiency changed by approximately ±0.01% in both strain types.
본 발명의 스트레처블 태양광 모듈이 테셀레이션 구조를 형성함에 있어서, 테셀레이션의 주름선은 단위태양전지셀의 형성에 의해 결정된다. 이에, 본 발명의 바람직한 실시예로서, 직각삼각형과 정삼각형을 포함하는 두 가지 모델 유형을 갖는 태양광 모듈 어레이를 구성하고 도 7에 나타내었다. 이 때, 모델 1은 회전 패턴이고, 모델 2는 선형 패턴이다. When the stretchable solar module of the present invention forms a tessellation structure, the wrinkle line of the tessellation is determined by the formation of a unit solar cell. Accordingly, as a preferred embodiment of the present invention, a photovoltaic module array having two model types including a right triangle and an equilateral triangle is configured and shown in FIG. 7 . In this case, model 1 is a rotation pattern, and model 2 is a linear pattern.
도 8은 도 7에 제시한 태양광 모듈 어레이의 각 모델에 대하여, 전압인가에 따른 전류밀도를 나타낸 것이고, 도 9는 직각삼각형과 정삼각형 단위태양전지셀 1 cell과 4 cell 어레이에 대하여, 전압인가에 따른 전류밀도를 나타낸 것이고, 도 10은 직각삼각형과 정삼각형 단위태양전지셀의 에너지 변환효율을 나타낸 것이다. 이를 참고하면 도 8의 전류밀도 곡선에서 다른 단위태양전지셀의 레이아웃과 셀의 모양이 전기성능에 거의 영향을 미치지 않음을 확인할 수 있다. 비교를 위해 1 cell과 4cell 어레이의 전기적 성능을 시험한 도 9와 도 10의 결과를 참고하면, 전기적 특성에 있어서 단위태양전지셀의 형태로 인한 전류밀도나 광 입사각에 따른 에너지변환효율의 변화는 유사하게 나타났다. 또한 1 cell인 경우에 비하여 직렬로 연결된 4 cell 어레이에서 개방회로전압은 단위태양전지셀의 수에 비례하고 단락전류밀도는 단위태양전지셀의 수에 반비례하는 것으로 나타났다. 이러한 결과로부터 전기적 열화없이 금속직물 연결체로 단위태양전지셀을 연결하여 테셀레이션 구조를 형성할 수 있음을 확인할 수 있다.FIG. 8 shows the current density according to voltage application for each model of the solar module array shown in FIG. 7 , and FIG. 9 is a right-angled triangle and equilateral triangle unit solar cell 1 cell and 4 cell arrays, voltage applied shows the current density according to , and FIG. 10 shows the energy conversion efficiency of a right-angled triangle and an equilateral triangle unit solar cell. Referring to this, it can be seen from the current density curve of FIG. 8 that the layout and shape of other unit solar cells have little effect on the electrical performance. For comparison, referring to the results of FIGS. 9 and 10 testing the electrical performance of the 1-cell and 4-cell arrays, the change in energy conversion efficiency according to the current density or light incident angle due to the shape of the unit solar cell in the electrical characteristics is appeared similar. In addition, it was found that the open circuit voltage was proportional to the number of unit solar cells and the short circuit current density was inversely proportional to the number of unit solar cells in a 4-cell array connected in series compared to the case of 1 cell. From these results, it can be confirmed that a tessellation structure can be formed by connecting the unit solar cells with a metal fabric connector without electrical degradation.
도 11은 직각삼각형과 정삼각형이 있는 64 cell 테셀레이션 구조 태양광 모듈 어레이를 나타낸 것이다. 본 발명의 바람직한 실시예로서 도 11의 64 cell 테셀레이션 구조 태양광 모듈 어레이는 직렬 연결로, 모듈의 총 면적은 231㎠ (15.2cm × 15.2cm)로 제작하되, 셀 사이의 간격은 영역의 최대 커버리지를 보장하기 위해 가능한 한 작게 제작하였다. 도 2에 나타낸 바와 같이 태양광 모듈 내에서 기판과 밀봉재(PDMS)를 사용하면 유리 및 프레임과 같은 기존 태양 전지판에 사용되는 단단한 기판이 요구되지 않으며, 그 결과에 따라 c-Si 태양 전지가 생성될 수 있다. 이에 따라 태양광 모듈 어레이는 어떤 표면에도 자유롭게 형성 될 수 있게 되는 것이다. 11 shows a 64 cell tessellation structure solar module array having a right-angled triangle and an equilateral triangle. As a preferred embodiment of the present invention, the 64 cell tessellation structure solar module array of FIG. 11 is serially connected, and the total area of the module is 231 cm 2 (15.2 cm × 15.2 cm), but the spacing between cells is the maximum coverage of the area. was made as small as possible to ensure As shown in FIG. 2 , when a substrate and a sealing material (PDMS) are used in a solar module, rigid substrates used in conventional solar panels such as glass and frames are not required, and as a result, c-Si solar cells can be produced. can Accordingly, the solar module array can be freely formed on any surface.
또한 도 12는 어레이의 단위태양전지셀 수를 기준으로 하는 실외 조건에서의 에너지 변환효율을 나타낸 것이다. 평균 0.83 태양 하에서 시험한 결과, 에너지 변환효율은 14~16 % 범위인 것으로 나타났고 셀의 수에 관계없이 유사한 것으로 나타났다. 이는 도 10에서 제시한 태양 광 시뮬레이터에서 얻은 값보다 낮은 바, 먼지, 구름 등과 같은 기후 매개 변수와 셀 간의 불일치로 인해 직렬 연결이 손실됨에 따른 결과로 판단되며, 이러한 요인은 기준 시스템을 수정하고 연결하기 전에 단위태양전지셀을 분류하여 극복하는 것이 가능하다. Also, FIG. 12 shows energy conversion efficiency under outdoor conditions based on the number of unit solar cells in the array. As a result of testing under the average of 0.83 sun, the energy conversion efficiency was found to be in the range of 14~16%, and it was found to be similar regardless of the number of cells. This is judged to be a result of loss of serial connection due to mismatch between cells and climate parameters such as dust and clouds, which are lower than the values obtained in the solar simulator presented in Fig. It is possible to overcome by classifying unit solar cells before
도 13 및 도 14에 비행기, 육각형 타워에 대한 종이접기 형 태양광 모듈 어레이 및 주름 패턴을 나타낸 것이다. 이를 참고하면, 다이어그램에 표시된 직선과 점선이 종이접기 패턴의 산과 계곡 접는 선을 나타낸 것으로, 어려움 없이 종이접기형의 태양광 모듈 어레이를 제작할 수 있다. 즉, 유연한 접힘 구조와 단위태양전지셀의 모양을 이용하여 종이접기 방식으로 적절한 주름 패턴을 가지는 테셀레이션 구조의 태양광 모듈 어레이를 구성할 수 있고, 면적의 손실 없이 임의의 모양을 형성할 수 있어, 설계의 제한 없이 더 큰 구조에도 적용가능하게 된다. 13 and 14 show an origami solar module array and wrinkle pattern for an airplane, a hexagonal tower. Referring to this, the straight and dotted lines shown in the diagram represent the mountain and valley folding lines of the origami pattern, and an origami-type solar module array can be manufactured without difficulty. In other words, it is possible to construct a solar module array of a tessellation structure having an appropriate wrinkle pattern in an origami method by using a flexible folding structure and the shape of a unit solar cell, and it is possible to form an arbitrary shape without loss of area, It can be applied to a larger structure without design limitation.
또한 본 발명의 바람직한 실시예로서 평면 어레이와 전력을 비교하였다. 이를 위해 직각삼각형의 단위태양전지셀 16개로 이루어지는 테셀레이션 구조의 태양광 모듈 어레이는 52 ㎠면적을 가지며, 병렬 및 직렬로 연결하였다. 도 15에 이러한 16cell 70° 어레이를 도시하였고, 도 16에 평면 어레이와 70° 어레이의 전력 출력 밀도를 비교하여 나타내었다. 태양광의 광도는 AOI가 증가함에 따라 감소하므로 광도를 반영하여 계산된 값은 도 16에 도시된 바와 같이, AOI를 기반으로 한 전기 출력은 감소하지만 평균적으로 70° 어레이는 평면 어레이에 비하여 하루에 더 높은 전기 출력을 산출함을 확인할 수 있다. 즉, 종이접기 방식의 테셀레이션 구조 태양광 모듈 어레이는 전 방향 조명과 일상 생활에서 흔히 볼 수 있는 다양한 조명 강도 조건에서 사용할 때 평균적으로 더 높은 전기 출력을 산출할 수 있도록 하는 것이 가능함을 의미한다. In addition, power was compared with a planar array as a preferred embodiment of the present invention. To this end, the solar module array of the tessellation structure consisting of 16 right-angled triangular unit solar cells has an area of 52 cm 2 and is connected in parallel and in series. FIG. 15 shows such a 16cell 70° array, and FIG. 16 shows a comparison of power output densities between a planar array and a 70° array. Since the luminous intensity of sunlight decreases as the AOI increases, the calculated value reflecting the luminous intensity is shown in FIG. 16 , as shown in FIG. 16 , the electrical output based on the AOI decreases, but on average, the 70° array increases more per day compared to the planar array. It can be seen that high electrical output is produced. That is, the origami-type tessellation-structured solar module array can produce a higher average electrical output when used under omnidirectional lighting and various lighting intensity conditions commonly found in daily life.
이와같이 본 발명에 따르면, 유연성, 다양한 크기, 실내 및 부분적으로 그늘진 환경과 같은 조명조건, 입사각의 변화가 있는 태양 조건 등에 대응하여 다양한 형상과 크기를 가질 수 있도록 면적의 손실없는 유연한 접힘구조로 단위태양전지셀이 상호연결되도록 형성되는 스트레처블 태양광 모듈을 제공할 수 있고, 이러한 다양한 형상을 통해 평균적으로 평면 모듈보다 더 높은 전력을 출력할 수 있다. 이에 본 발명은 태양광을 도시 환경 및 신축성 있고 유연한 전기 장치의 다른 애플리케이션으로 확장할 수 있을 것으로 기대된다. As described above, according to the present invention, the unit sun has a flexible folding structure without loss of area so that it can have various shapes and sizes in response to flexibility, various sizes, lighting conditions such as indoor and partially shaded environments, and solar conditions with a change in incident angle. It is possible to provide a stretchable photovoltaic module in which battery cells are interconnected, and through these various shapes, it is possible to output higher power on average than a planar module. Accordingly, it is expected that the present invention can extend sunlight to other applications of urban environments and flexible and flexible electrical devices.
상술한 바와 같은, 본 발명의 실시예에 따른 태양광 모듈을 상기한 설명 및 도면에 따라 도시하였지만, 이는 예를 들어 설명한 것에 불과하며 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화 및 변경이 가능하다는 것을 이 분야의 통상적인 기술자들은 잘 이해할 수 있을 것이다.As described above, although the photovoltaic module according to the embodiment of the present invention has been shown according to the above description and drawings, this is merely an example and various changes and modifications are made within the scope not departing from the technical spirit of the present invention. It will be well understood by those skilled in the art that this is possible.

Claims (6)

  1. 2개 이상의 단위태양전지셀과, 상기 단위태양전지셀을 연결하는 전도성 연결체를 포함하여 이루어지고,It consists of two or more unit solar cells, and a conductive connector connecting the unit solar cells,
    상기 전도성 연결체는 신축성과 유연성을 갖는 금속섬유 기반 연결체인 것을 특징으로 하는, 스트레처블 태양광 모듈.The conductive connector is a stretchable solar module, characterized in that it is a metal fiber-based connector having elasticity and flexibility.
  2. 제1 항에 있어서, According to claim 1,
    상기 금속섬유 기반 연결체는 금속직물로 이루어진 연결체이고,The metal fiber-based connector is a connector made of a metal fabric,
    인접한 단위태양전지셀의 연결시, 상기 인접한 단위태양전지셀이 연결되는 방향과 상기 금속직물이 사선방향으로 바이어스된 상태로 연결되어, 상기 금속직물 연결체의 인장 또는 수축에 의한 신축성을 갖는 것을 특징으로 하는, 스트레처블 태양광 모듈. When adjacent unit solar cells are connected, the metal fabric is connected in a state in which the adjacent unit solar cells are connected and the metal fabric is biased in an oblique direction, so that it has elasticity due to tension or contraction of the metal fabric connector. A stretchable solar module.
  3. 제2 항에 있어서, 3. The method of claim 2,
    상기 인접한 단위태양전지셀의 연결시, 상기 금속직물 연결체의 인장 또는 수축을 이용한 유연한 접힘이 가능한 것을 특징으로 하는, 스트레처블 태양광 모듈. When the adjacent unit solar cells are connected, a stretchable solar module, characterized in that flexible folding using tension or contraction of the metal fabric connector is possible.
  4. 제3 항에 있어서, 4. The method of claim 3,
    상기 단위태양전지셀은 삼각형, 사각형 또는 육각형인 폴리곤 형상으로 이루어져, 상기 유연한 접힘에 의한 테셀레이션 구조를 형성하는 것을 특징으로 하는, 스트레처블 태양광 모듈. The unit solar cell is made of a polygonal shape of a triangle, a square or a hexagon, characterized in that to form a tessellation structure by the flexible folding, a stretchable solar module.
  5. 제1 항에 있어서,According to claim 1,
    상기 단위태양전지셀은, The unit solar cell is
    기판층; substrate layer;
    상기 기판층의 상부에 형성되는 절연체층; an insulator layer formed on the substrate layer;
    상기 절연체층의 상부에 형성되어 태양전지가 배치되는 태양전지층; 및 a solar cell layer formed on the insulator layer on which a solar cell is disposed; and
    상기 태양전지를 보호하기 위하여 태양전지층 상면을 밀봉시키며 배치되는 밀봉재층;을 포함하여 이루어지는 것을 특징으로 하는, 스트레처블 태양광 모듈. A stretchable solar module comprising a; a sealing material layer disposed while sealing the upper surface of the solar cell layer to protect the solar cell.
  6. 제1 항에 있어서,According to claim 1,
    상기 연결체의 일 단부는 하나의 단위태양전지셀의 음극에 연결되고, 상기 연결체의 다른 단부는 다른 단위태양전지셀의 양극에 연결되어, 인접한 단위태양전지셀이 연결형성되는 것을 특징으로 하는, 스트레처블 태양광 모듈. One end of the connector is connected to the negative electrode of one unit solar cell, and the other end of the connector is connected to the positive electrode of another unit solar cell, so that adjacent unit solar cells are connected. , stretchable solar modules.
PCT/KR2020/016199 2020-07-08 2020-11-17 Stretchable solar module WO2022010048A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0084226 2020-07-08
KR1020200084226A KR102706604B1 (en) 2020-07-08 Solar cell with a tessellation structure

Publications (1)

Publication Number Publication Date
WO2022010048A1 true WO2022010048A1 (en) 2022-01-13

Family

ID=79553288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016199 WO2022010048A1 (en) 2020-07-08 2020-11-17 Stretchable solar module

Country Status (1)

Country Link
WO (1) WO2022010048A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130183789A1 (en) * 2010-05-28 2013-07-18 Solarworld Innovations Gmbh Method for Contacting and Connecting Solar Cells
US20140111711A1 (en) * 2011-07-11 2014-04-24 Fujifilm Corporation Conductive sheet, touch panel, display device, method for producing said conductive sheet, and non-transitory recording medium
KR20160116895A (en) * 2015-03-31 2016-10-10 코오롱인더스트리 주식회사 Portable organic solar cell module body
WO2017110402A1 (en) * 2015-12-25 2017-06-29 スフェラーパワー株式会社 Conductive triaxial woven structure and triaxial woven structure with electronic device using same
KR20190103350A (en) * 2017-06-16 2019-09-04 하이어 디멘션 머티리얼즈, 인크. Individual Cells Connected on a Large Scale

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130183789A1 (en) * 2010-05-28 2013-07-18 Solarworld Innovations Gmbh Method for Contacting and Connecting Solar Cells
US20140111711A1 (en) * 2011-07-11 2014-04-24 Fujifilm Corporation Conductive sheet, touch panel, display device, method for producing said conductive sheet, and non-transitory recording medium
KR20160116895A (en) * 2015-03-31 2016-10-10 코오롱인더스트리 주식회사 Portable organic solar cell module body
WO2017110402A1 (en) * 2015-12-25 2017-06-29 スフェラーパワー株式会社 Conductive triaxial woven structure and triaxial woven structure with electronic device using same
KR20190103350A (en) * 2017-06-16 2019-09-04 하이어 디멘션 머티리얼즈, 인크. Individual Cells Connected on a Large Scale

Also Published As

Publication number Publication date
KR20220006361A (en) 2022-01-17

Similar Documents

Publication Publication Date Title
JP3792867B2 (en) Solar cell module, solar cell array, and solar power generation apparatus construction method
WO2011078630A2 (en) Solar power generating apparatus
EP1172863A2 (en) Method of installing solar cell modules, and solar cell module
US20190319148A1 (en) Photovoltaic tile and photovoltaic system
WO2018052222A1 (en) Flexible solar panels
WO2013100498A1 (en) Connector and solar cell module comprising the same
KR101351542B1 (en) Shading apparatus having solar cell
WO2016196759A1 (en) Single-cell encapsulation and flexible-format module architecture and mounting assembly for photovoltaic power generation and method for constructing, inspecting and qualifying the same
Sim et al. Origami-foldable tessellated Crystalline-Si solar cell module with metal textile-based stretchable connections
CN108023537A (en) A kind of color steel tile roof photovoltaic module structure
WO2020013509A1 (en) Solar power generator and solar power generating blind
WO2022010048A1 (en) Stretchable solar module
KR100357905B1 (en) Solar light power generation module for face of building
WO2013077673A1 (en) Solar cell apparatus
JP3633944B2 (en) Solar cell module and solar cell array using the same
KR20110007272A (en) Curtain device combined photovaltaic
WO2012165705A1 (en) Support frame for building-integrated photovoltaic cell window and building-integrated photovoltaic cell window using same
KR102137989B1 (en) Photovoltaic power generation facility
WO2022102873A1 (en) Light source-tracking solar cell array, and solar power generation system using same
KR102706604B1 (en) Solar cell with a tessellation structure
WO2013094939A1 (en) Solar cell module
JP2007180065A (en) Solar battery array
WO2022265336A1 (en) Solar light module including impact-absorbing structure
CN211422454U (en) Photovoltaic window
WO2023075007A1 (en) Three-dimensional solar cell module, for concentrating indirect light

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944387

Country of ref document: EP

Kind code of ref document: A1