WO2022009763A1 - Information acquisition device and information acquisition system - Google Patents

Information acquisition device and information acquisition system Download PDF

Info

Publication number
WO2022009763A1
WO2022009763A1 PCT/JP2021/024913 JP2021024913W WO2022009763A1 WO 2022009763 A1 WO2022009763 A1 WO 2022009763A1 JP 2021024913 W JP2021024913 W JP 2021024913W WO 2022009763 A1 WO2022009763 A1 WO 2022009763A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
generation element
electromotive force
environment
information acquisition
Prior art date
Application number
PCT/JP2021/024913
Other languages
French (fr)
Japanese (ja)
Inventor
裕一朗 宮内
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2022009763A1 publication Critical patent/WO2022009763A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C15/00Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems

Definitions

  • the present invention relates to an information acquisition device and an information acquisition system.
  • a system that adds new value to various services by acquiring and analyzing various data representing the state of the temporal and spatial environment with a large number of sensors has been attracting attention.
  • a wireless transmission device that uses an energy harvesting element that generates electricity according to the state of the environment as a power source is attracting attention.
  • Patent Document 1 discloses a network system that performs wireless communication using an energy harvesting element that generates electric energy according to the state of the environment and grasps the state of the environment according to the communication frequency. Further, Patent Document 2 discloses a fire alarm that detects a fire by using a thermoelectric power generation element that generates a voltage corresponding to a temperature difference.
  • Patent Document 1 needs to continue to receive communication signals for a certain period of time in order to measure the communication frequency, and has a problem that it is difficult to grasp the state of the environment in a timely manner. Further, in the system disclosed in Patent Document 2, since communication is performed by the voltage generated when a temperature difference occurs due to heating, the environmental state (temperature change) can be grasped in a timely manner, but the time of the environmental state can be obtained. It is difficult to grasp detailed information such as changes.
  • an object of the present invention is to provide an information acquisition device and an information acquisition system capable of acquiring detailed information on the state of the environment in a timely manner.
  • the information acquisition device is based on a power generation element that generates an electromotive force according to the state of the environment, a measuring unit that measures the electromotive force, and a time change of the measured electromotive force. It has an acquisition unit that acquires information on the state, and a transmission unit that transmits a signal including information on the state of the environment by using the generated electromotive force.
  • the information acquisition system includes a power generation element that generates an electromotive force according to the state of the environment.
  • the measurement unit that measures the electromotive force, the acquisition unit that acquires information about the state of the environment based on the time change of the measured electromotive force, and the generated electromotive force are used to relate to the state of the environment.
  • An information acquisition system comprising a transmitting unit for transmitting a signal including information and a receiving unit for receiving the signal.
  • the block diagram which shows the structure of the information acquisition apparatus which concerns on embodiment of this invention.
  • the graph which shows the integrated value of the power generation amount in the state of an abnormal environment In the embodiment of the present invention, the graph which shows the integrated value of the power generation amount in the state of an abnormal environment.
  • the graph showing the frequency dependence of the vibration acceleration in the state of an abnormal environment is provided.
  • the information acquisition device 100 has at least a power generation element 101, a measurement unit 102, an acquisition unit 103, and a transmission unit 104.
  • the element generates an electromotive force according to the state of the environment of the power generation element 101.
  • the power generation element 101 is subjected to vibration, specifically exposed to gas, irradiated with light, changes in temperature, heated, or subjected to frictional force. It means that it is due to environmental changes such as receiving pressure.
  • the generated electromotive force is measured by the measuring unit 102, and the acquisition unit 103 acquires information about the environment based on the time change of the measured electromotive force.
  • Information about the environment is transmitted by the transmission unit 104 using the generated electromotive force.
  • the transmission of the signal including the information about the environment by the transmission unit 104 may be performed by wire, but wireless is preferable. The following describes an example of performing wireless transmission.
  • the transmitted information about the environment is acquired based on the time change of the electromotive force
  • detailed information about the state of the environment is included.
  • the electromotive force periodically increases or decreases due to the vibration of the element, and the data of the time change of the electromotive force is Fourier transformed to obtain the frequency distribution of the electromotive force (called the electromotive force spectrum). You can also get the data.
  • an electromotive force spectrum having a peak at a specific frequency can be obtained, but in an abnormal environmental state (a state in which abnormal vibration occurs), peaks appear at a plurality of frequencies.
  • the power generation element 101 may be any element that generates electromotive force (electrical energy) according to the state of the environment.
  • any of a vibration power generation element that generates an electromotive force by vibration, a gas power generation element that generates an electromotive force by exposure to a specific gas, and a photopower generation element that generates an electromotive force by being irradiated with light can be used.
  • a friction power generation element that generates an electromotive force by receiving frictional force or a piezoelectric element that generates an electromotive force by receiving pressure can be used.
  • the power generation element 101 can detect changes in the state of the environment and wirelessly transmit it by the electromotive force generated by the element itself, it is preferable to use a power generation element corresponding to many energy sources existing in the environment.
  • a vibration power generation element or a photovoltaic power generation element is used because vibration and sunlight are present.
  • a vibration power generation element, a thermoelectric power generation element, a friction power generation element and the like are used.
  • a magnetostrictive power generation element in an environment where an impact is applied.
  • the magnetic strain power generation element preferably contains a material having ductility such as an iron-gallium alloy, an iron-cobalt alloy, an iron-aluminum alloy, an iron-gallium-aluminum alloy, or an iron-silicon-boron alloy. ..
  • a piezoelectric element containing a piezoelectric polymer such as PVDF (polyvinylidene fluoride) is used.
  • the measuring unit 102 in the present embodiment measures the electromotive force generated by the element 101. It is not particularly limited as long as it can measure the electromotive force, and a general voltmeter or the like can be used.
  • FIG. 2 shows a process (FIG. 2 (b)) of converting a time change of the electromotive force of the element 101 (FIG. 2 (a)) into an integrated value (information regarding an environmental state) of the amount of power generation.
  • the power generation amount P (t) and the average power generation amount Pave at an arbitrary time t can be expressed by the following (Equation 1) and (Equation 2).
  • FIG. 2B is the sum of the power generation amount P (t), and the slope of FIG. 2B is the average power generation amount Pave.
  • the amount of power generation is proportional to the square of the vibration acceleration of the vibration power generation element. Therefore, the vibration acceleration can be calculated immediately from the amount of power generation, and the vibration state of the power generation element 101 can be grasped in a timely and detailed manner.
  • the amount of power generation is proportional to the square of the temperature difference detected by the thermoelectric power generation element. Therefore, data on the temperature difference can be immediately calculated from the amount of power generation, and detailed information such as the temperature change and the time change of the environment in which the power generation element is placed can be obtained in a timely manner. Therefore, the acquisition unit 103 can acquire information on the state of the environment in detail and in a timely manner.
  • the acquisition unit 103 may perform the processing as shown in FIG. In FIG. 4, the time change of the electromotive force (FIG. 4 (a)) is Fourier transformed to obtain the frequency distribution of the electromotive force (FIG. 4 (b)). Further, since the electromotive force of the element has a frequency dependence (FIG. 4 (c)), by correcting FIG. 4 (b) with the frequency dependence table, the vibration power generation element is placed in the environment. The frequency spectrum of vibration acceleration can be obtained (FIG. 4 (d)).
  • the acquisition unit 103 includes processors such as a memory and a CPU.
  • the memory is typically configured to include a storage unit such as a ROM or a RAM.
  • the storage unit is not only composed of one storage medium, but may be configured to include a plurality of storage units.
  • the transmission unit 104 wirelessly transmits information about the environment output by the acquisition unit 103 using the electromotive force generated by the power generation element 101.
  • wireless communication protocols such as Wi-Fi, Bluetooth (registered trademark), 2G, 3G, 4G, and 5G can be used.
  • the communication interface includes an input buffer, a communication module, and an antenna.
  • the communication module is composed of a baseband part and an RF part, and adds header information to data, corrects errors, and packetizes data based on a wireless communication protocol.
  • spread spectrum, modulation, demodulation processing, and the like can be performed according to the wireless communication protocol.
  • the communication module can also perform retransmission control and the like when a communication error occurs.
  • the receiving unit 110 which will be described later, can also use the communication protocol described here, include the configuration described here, and perform the same operation.
  • the control unit 105 measures the electromotive force by the measurement unit 102, acquires information by the acquisition unit 103, and controls wireless transmission by the transmission unit. For example, control is also performed so that the output as shown in FIGS. 3B and 5B is wirelessly transmitted to the output of the acquisition unit 103 when the output is output by the acquisition unit 103. Further, when the control unit 105 receives a transmission request signal from an external device such as a receiving device 200 or another IoT wireless transmission device 100A or 100B by wirelessly transmitting at regular intervals or putting the information acquisition device 100 in a standby state. It can be controlled to transmit wirelessly to IoT (Fig. 6).
  • the control unit 105 transmits when the time derivative value of the integrated value becomes a predetermined value or more.
  • the 104 may be made to perform wireless transmission.
  • the control unit receives a transmission unit when the vibration acceleration becomes a predetermined value or more. May perform wireless transmission.
  • the control unit 105 includes a processor such as a memory and a CPU.
  • the memory is typically configured to include a storage unit such as a ROM or a RAM.
  • the storage unit is not only composed of one storage medium, but may be configured to include a plurality of storage units.
  • the information regarding the state of the environment in this embodiment is acquired based on the time change of the electromotive force generated by the power generation element.
  • the integrated value of the integrated value of the power generation amount of the power generation element, the differential value of the integrated value of the power generation amount, the time change of the differential value of the integrated value of the power generation amount, and the like can be mentioned.
  • the power generation element is a vibration power generation element
  • the vibration acceleration can be used
  • the power generation element is a thermoelectric power generation element
  • a value such as the square of the temperature difference can be used as information regarding the state of the environment.
  • the environment is the surroundings of the information acquisition device according to the present embodiment, particularly the power generation element.
  • the environment can be set to detect (monitor) the object or its vicinity.
  • the environmental state is specifically the state of the environment resulting from actions such as vibration, gas exposure, light irradiation, heating (change in temperature), frictional force, and pressure.
  • the transmission unit 104 can wirelessly transmit information about the environment even when a sudden abnormality occurs.
  • FIG. 3B when the integrated value of the power generation amount is output from the acquisition unit 103, a large electromotive force is generated when a sudden abnormality occurs in the environment such as an impact on the power generation element 101, so that the arrow in FIG. 3B.
  • discontinuity can be observed as a peak by differentiating the function of FIG. 3B (time change of the integrated value of the amount of power generation). Therefore, it is possible to determine whether or not an abnormality such as an impact has occurred based on the presence or absence of a peak of the differential value. Therefore, when this peak occurs, the control unit 105 can transmit the environmental data at the time of abnormality by controlling the transmission unit 104 to wirelessly transmit. That is, by acquiring a differential value of the integrated value of the amount of power generation as information on the state of the environment and transmitting it wirelessly, it is possible to notify a sudden abnormality of the state of the environment.
  • FIG. 5B shows an example in which the frequency distribution (spectrum) of the vibration acceleration is output from the acquisition unit 103 by the conversion shown in FIG.
  • the peak of the frequency distribution (FIG. 5A) that exists when the environmental condition is normal may disappear or fluctuate when an abnormality occurs (FIG. 5B).
  • the abnormality can be determined by the presence or absence of a peak at a specific frequency in the frequency distribution of the vibration acceleration. Therefore, depending on the presence or absence of a peak at a specific frequency in the frequency distribution, the control unit 105 can transmit environmental data at the time of abnormality by controlling the transmission unit 104 to wirelessly transmit.
  • Display part Further, by providing the display unit 106 in the information acquisition device as shown in FIG. 1, even if the receiving device is not in the vicinity of the information acquisition device, the presence or absence of an abnormality can be determined by the display. For example, even when an abnormality occurs in a device that is difficult to visually determine, the display unit 107 makes it easy to determine the presence or absence of the abnormality.
  • the display unit 107 may be a light emitter such as an LED. Furthermore, by installing a plurality of LEDs, the degree of abnormality can be displayed.
  • the power storage unit 106 may be provided. In this case, even when the electromotive force generated by the power generation element 101 is small, the information acquisition device 100 can be stably driven by accumulating the electromotive force in the power storage unit 106.
  • the power storage unit 106 various capacitors such as an electric double layer capacitor and an electrolytic capacitor, or various secondary batteries such as a lithium ion secondary battery and a lithium ion polymer secondary battery can be used.
  • a sensor 108 separate from the power generation element 101 may be provided.
  • the sensor 108 for example, any of a vibration sensor, a gas sensor, an optical sensor, and a temperature sensor can be used.
  • the information about the environment acquired by the sensor can be acquired, so that more detailed information about the environment in which the information acquisition device is placed can be transmitted.
  • the power generation element 101 is a vibration power generation element and the sensor is a temperature sensor or a gas sensor, information on the environment of both temperature or gas and vibration can be transmitted.
  • the information acquisition system 300 includes the above-mentioned information acquisition device and a reception unit 110 that receives information regarding the state of the environment transmitted by the transmission unit 104.
  • the signal processing unit 201 that processes the signal received by the receiving unit may be provided. It may have a receiving device 200 including a receiving unit 110 and a signal processing unit 201.
  • Example 1 This embodiment will be described with reference to the block diagram shown in FIG.
  • a vibration power generator having a resonance frequency of 100 Hz was used as the power generation element 101.
  • the power generation element 101 is installed in a motor having an eccentric weight mounted on a bearing and vibrated at 100 Hz to drive an information acquisition device (IoT wireless transmission device) 100.
  • IoT wireless transmission device information acquisition device
  • a voltmeter is used for the measuring unit 102, and the acquisition unit 103 acquires an integrated value of the amount of power generation based on the time change of the electromotive force measured by the measuring unit.
  • the acquisition unit 103 can convert the integrated value of the power generation amount for 100 seconds into the vibration acceleration, and the control unit 105 can be set to transmit the acquired vibration acceleration data from the transmission unit 104.
  • the control unit 105 sets the transmission frequency of wireless transmission by the transmission unit to once an hour, and determines the presence or absence of an abnormality based on the peak presence / absence determination signal output by the acquisition unit 103. If there is a peak, the transmission unit 104 is set to wirelessly transmit the vibration acceleration data. Further, the evaluation of wireless transmission can be confirmed by the output of the receiving unit 110.
  • the above information acquisition device 100 performs periodic wireless transmission once an hour.
  • the average vibration acceleration is 1G.
  • the average vibration acceleration at that time is 1.1 G. In this way, the presence or absence of an abnormality can be detected in a timely manner by receiving the wireless transmission at a time other than the wireless transmission timing.
  • the information transmitted by wireless transmission is vibration acceleration data, and detailed information on the state of the environment, that is, quantitative information on vibration can be obtained.
  • Example 2 This implementation will be described with reference to the block diagram shown in FIG. In this embodiment, the matters different from those of the first embodiment will be described, and the common matters will be omitted.
  • a red LED is used for the display unit 107.
  • the control unit 105 determines that the environment is in an abnormal state from the information regarding the state of the environment acquired by the acquisition unit 103, the control unit 105 causes the power generation element 101 to be set on the red LED of the display unit 107. It is possible to control the continuous supply of electric power.
  • the blinking of the red LED cannot be confirmed during the period when the control unit determines that no abnormality has occurred.
  • the blinking of the red LED can be confirmed.
  • it can be confirmed by visually observing the display unit that the environment is in an abnormal state.
  • Example 3 This embodiment will be described with reference to the block diagram shown in FIG. In this embodiment, the matters different from those of the first embodiment will be described, and the common matters will be omitted.
  • the power generation element 101 a vibration power generator having a resonance frequency of 20 Hz is used.
  • the information acquisition device is installed in the vicinity of the motor driven at a frequency of 20 Hz, the time for outputting the integrated value of the power generation amount of the acquisition unit 103 is 1 second, and the transmission interval of the transmission unit 104 is once an hour.
  • a supercapacitor is used as the power storage unit 106.
  • the electromotive force generated by the power generation element 101 can be stored in a supercapacitor, that is, an electric double layer capacitor, and the acquisition unit 103, the control unit 105, and the transmission unit 104 can be supplied.
  • the average vibration acceleration at the time of periodic wireless transmission is 0.05 G and the vibration acceleration at the time of receiving an impact is 0.1 G.
  • Example 4 This embodiment will be described with reference to the block diagram shown in FIG. In this embodiment, the matters different from those of the first embodiment will be described, and the common matters will be omitted.
  • the sensor 108 is used as a temperature sensor, and the information acquisition device 100 including the sensor 108 is provided on the motor. Further, the control unit 105 also controls not only the vibration acceleration data acquired by the acquisition unit 103 but also the temperature data of the sensor 108 to be transmitted from the transmission unit 104.
  • the room temperature under the evaluation environment is 23 ° C.
  • the information acquisition device 100 having the above configuration performs periodic wireless transmission once an hour.
  • the average vibration acceleration is 1 G and the average temperature of the motor surface is 40 ° C.
  • the power generation element 101 by giving an impact to the power generation element 101, it is possible to confirm the wireless transmission output at a time other than the periodic wireless transmission timing. It can be seen that the average vibration acceleration at that time is 1.1 G, and the average temperature of the motor surface is 40 ° C.
  • the information acquisition device according to the present embodiment can acquire environmental information such as vibration acceleration and temperature from both the power generation element 101 and the sensor 108.
  • the power generation element that only controls the wireless transmission on a regular basis is evaluated. While the periodic wireless transmission is performed once an hour, a shock is given within 1 hour before the transmission, but the average acceleration in the periodic wireless transmission does not change. That is, it cannot be determined whether or not an abnormality has occurred.
  • the present invention is not limited to the above-described embodiments.
  • the present invention can be modified in various ways based on the technical idea.
  • the numerical values and components mentioned in the above-described embodiment are merely examples. If necessary, different numerical values and components may be used.
  • the information acquisition device and the information acquisition system it is possible to detect in detail a sudden abnormal state in an environment without a power source, which was difficult with existing IoT devices. Therefore, it is particularly effective as a device or system that streamlines or replaces the maintenance and inspection work that a person has directly visited, even though it has been difficult for a person to access. For example, use it as a device or system for detecting and inspecting abnormalities in infrastructure such as bridges, tunnels, and buried pipes, detecting abnormalities in inaccessible equipment installed in plants, and predicting abnormalities inside automobile tires. Can also be expected. Since the present invention can remotely detect sudden abnormalities in an environment without a power source, it can be applied to a wide range of fields other than those described above.

Abstract

This information acquisition device has: a power generation element that generates an electromotive force in response to the state of an environment; a measurement unit that measures the electromotive force; an acquisition unit that acquires information concerning the state of the environment on the basis of a change over time of the measured electromotive force; and a transmission unit that, by using the generated electromotive force, transmits a signal including the information concerning the environment.

Description

情報取得装置、情報取得システムInformation acquisition device, information acquisition system
 本発明は情報取得装置、及び情報取得システムに関する。 The present invention relates to an information acquisition device and an information acquisition system.
 近年、時間的、空間的な環境の状態を表す様々なデータを多数のセンサにより取得し、解析することで各種サービスに新たな価値を付加するシステムが注目されている。特に環境の状態に応じて発電する環境発電素子を電源として用いる無線送信デバイスが注目されている。 In recent years, a system that adds new value to various services by acquiring and analyzing various data representing the state of the temporal and spatial environment with a large number of sensors has been attracting attention. In particular, a wireless transmission device that uses an energy harvesting element that generates electricity according to the state of the environment as a power source is attracting attention.
 特許文献1は、環境の状態に応じて電気エネルギーを生み出す環境発電素子を用いて無線通信を行い、通信頻度により環境状態を把握するネットワークシステムを開示している。また、特許文献2には、温度差に応じた電圧を発生する熱発電素子を用いて、火災を検知する火災報知器を開示する。 Patent Document 1 discloses a network system that performs wireless communication using an energy harvesting element that generates electric energy according to the state of the environment and grasps the state of the environment according to the communication frequency. Further, Patent Document 2 discloses a fire alarm that detects a fire by using a thermoelectric power generation element that generates a voltage corresponding to a temperature difference.
特開2015-28439号公報JP-A-2015-28439 特開平3-240198号公報Japanese Unexamined Patent Publication No. 3-240198
 しかしながら、特許文献1に開示のシステムは、通信頻度を測定するためにはある一定期間、通信信号を受信し続ける必要があり、環境の状態をタイムリーに把握しづらいという課題がある。また、特許文献2に開示のシステムは、加熱によって温度差が生じたときに発生する電圧によって通信がなされるので、環境の状態(温度変化)をタイムリーに把握ができるが、環境状態の時間変化といった詳細な情報を把握することは難しい。 However, the system disclosed in Patent Document 1 needs to continue to receive communication signals for a certain period of time in order to measure the communication frequency, and has a problem that it is difficult to grasp the state of the environment in a timely manner. Further, in the system disclosed in Patent Document 2, since communication is performed by the voltage generated when a temperature difference occurs due to heating, the environmental state (temperature change) can be grasped in a timely manner, but the time of the environmental state can be obtained. It is difficult to grasp detailed information such as changes.
 したがって、本発明では、環境の状態の詳細な情報をタイムリーに取得することができる情報取得装置及び情報取得システムを提供することを目的とする。 Therefore, an object of the present invention is to provide an information acquisition device and an information acquisition system capable of acquiring detailed information on the state of the environment in a timely manner.
 本発明に係る情報取得装置は、環境の状態に応じて起電力を発生させる発電素子と、前記起電力を測定する測定部と、測定された前記起電力の時間変化に基づいて、前記環境の状態に関する情報を取得する取得部と、発生した前記起電力を用いて、前記環境の状態に関する情報を含む信号を送信する送信部と、有する。 The information acquisition device according to the present invention is based on a power generation element that generates an electromotive force according to the state of the environment, a measuring unit that measures the electromotive force, and a time change of the measured electromotive force. It has an acquisition unit that acquires information on the state, and a transmission unit that transmits a signal including information on the state of the environment by using the generated electromotive force.
 本発明に係る情報取得システムは、環境の状態に応じて起電力を発生させる発電素子と、
 前記起電力を測定する測定部と、測定された前記起電力の時間変化に基づいて、前記環境の状態に関する情報を取得する取得部と、発生した前記起電力を用いて、前記環境の状態に関する情報を含む信号を送信する送信部と、前記信号を受信する受信部と、を有することを特徴とする情報取得システム。
The information acquisition system according to the present invention includes a power generation element that generates an electromotive force according to the state of the environment.
The measurement unit that measures the electromotive force, the acquisition unit that acquires information about the state of the environment based on the time change of the measured electromotive force, and the generated electromotive force are used to relate to the state of the environment. An information acquisition system comprising a transmitting unit for transmitting a signal including information and a receiving unit for receiving the signal.
 本発明に係る情報取得装置や情報取得システムによれば、環境の状態の詳細な情報をタイムリーに取得することができる。その結果、突発的に発生した環境の異常をすぐに、かつ正確に知ることができる。 According to the information acquisition device and the information acquisition system according to the present invention, detailed information on the state of the environment can be acquired in a timely manner. As a result, sudden environmental abnormalities can be known immediately and accurately.
本発明の実施形態に係る情報取得装置の構成を示すブロック図。The block diagram which shows the structure of the information acquisition apparatus which concerns on embodiment of this invention. 本発明の実施形態において、測定部で測定される起電力の時間変化の一例を表すグラフ(a)と、発電量の積算値の時間変化の一例を表すグラフ(b)。In the embodiment of the present invention, a graph (a) showing an example of a time change of an electromotive force measured by a measuring unit and a graph (b) showing an example of a time change of an integrated value of power generation amount. 本発明の実施形態において、通常の環境の状態における発電量の積算値を表すグラフ。In the embodiment of the present invention, the graph which shows the integrated value of the power generation amount in the state of a normal environment. 本発明の実施形態において、異常な環境の状態における発電量の積算値を表すグラフ。In the embodiment of the present invention, the graph which shows the integrated value of the power generation amount in the state of an abnormal environment. 本発明の実施形態における発電素子によって発生する起電力の一例を表すグラフ(a)と、(a)の起電力の時間変化に関数をフーリエ変換して得られるグラフ(b)と、発電量の周波数分布の一例を表すグラフ(c)と、(b)と(c)のグラフから得られる発電素子の振動加速度の周波数分布を表すグラフ(d)。A graph (a) showing an example of the electromotive force generated by the power generation element in the embodiment of the present invention, a graph (b) obtained by Fourier transforming a function into the time change of the electromotive force in (a), and the amount of power generation. The graph (c) showing an example of the frequency distribution and the graph (d) showing the frequency distribution of the vibration acceleration of the power generation element obtained from the graphs of (b) and (c). 本発明の実施形態において、通常の環境の状態における振動加速度の周波数依存性を表すグラフ。In the embodiment of the present invention, a graph showing the frequency dependence of vibration acceleration under normal environmental conditions. 本発明の実施形態において、異常な環境の状態における振動加速度の周波数依存性を表すグラフ。In the embodiment of the present invention, the graph showing the frequency dependence of the vibration acceleration in the state of an abnormal environment. 本発明の実施形態に係る情報取得システムの構成を示すブロック図。The block diagram which shows the structure of the information acquisition system which concerns on embodiment of this invention.
 以下に本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、本明細書の開示は下記実施形態や実施例に限定されるものではなく、本明細書の開示の趣旨に基づき種々の変形(各実施例の有機的な組合せを含む)が可能であり、それらを本明細書の開示の範囲から除外するものではない。即ち、後述する各実施例及びその変形例を組み合わせた構成も全て本明細書に開示の実施形態に含まれるものである。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. The disclosure of the present specification is not limited to the following embodiments and examples, and various modifications (including organic combinations of the respective examples) are possible based on the purpose of the disclosure of the present specification. , They are not excluded from the scope of disclosure herein. That is, all the configurations in which each embodiment described later and a modification thereof are combined are also included in the embodiments disclosed in the present specification.
 (情報取得装置)
 本実施形態に係る情報取得装置の構成を、図1を用いて説明する。
(Information acquisition device)
The configuration of the information acquisition device according to the present embodiment will be described with reference to FIG.
 本実施形態に係る情報取得装置100は、発電素子101、測定部102、取得部103、送信部104を少なくとも有する。発電素子101の環境の状態に応じて、素子が起電力を発生する。環境の状態に応じてとは、例えば、発電素子101が、振動作用を受ける、特定にガスの曝露を受ける、光を照射される、温度の変化が生じる、加熱される、摩擦力を受ける、圧力を受けるといった環境変化によってという意味である。 The information acquisition device 100 according to the present embodiment has at least a power generation element 101, a measurement unit 102, an acquisition unit 103, and a transmission unit 104. The element generates an electromotive force according to the state of the environment of the power generation element 101. Depending on the state of the environment, for example, the power generation element 101 is subjected to vibration, specifically exposed to gas, irradiated with light, changes in temperature, heated, or subjected to frictional force. It means that it is due to environmental changes such as receiving pressure.
 発生した起電力は測定部102によって測定され、取得部103は、測定された起電力の時間変化に基づいて、環境に関する情報を取得する。環境に関する情報は、発生した起電力を用い、送信部104によって送信が行われる。送信部104による環境に関する情報を含む信号の送信は、有線によって行われても良いが、無線の方が好ましい。以下は無線送信を行う例を説明する。 The generated electromotive force is measured by the measuring unit 102, and the acquisition unit 103 acquires information about the environment based on the time change of the measured electromotive force. Information about the environment is transmitted by the transmission unit 104 using the generated electromotive force. The transmission of the signal including the information about the environment by the transmission unit 104 may be performed by wire, but wireless is preferable. The following describes an example of performing wireless transmission.
 送信される環境に関する情報は、起電力の時間変化に基づいて取得されるため、環境の状態に関する詳細な情報が含まれる。例えば、素子101が振動センサの場合、素子の振動によって周期的に起電力が増減し、その起電力の時間変化のデータをフーリエ変換することで、起電力の周波数分布(起電力スペクトルと呼ぶこともできる)のデータが得られる。通常の環境状態では、特定の周波数にピークをもつ起電力スペクトルが得られるが、異常な環境状態(異常な振動が発生した状態)では、複数の周波数においてピークが現れる。すなわち、異常が発生したという情報のみならず、どのような振動成分が含まれているか、振動が時間的にどのように変化しているかについても知ることができる。また、環境に関する情報が送信されるため、環境の情報を一定期間受信することで環境の状態を把握する場合に比べて、タイムリーに環境の状態を把握することができる。 Since the transmitted information about the environment is acquired based on the time change of the electromotive force, detailed information about the state of the environment is included. For example, when the element 101 is a vibration sensor, the electromotive force periodically increases or decreases due to the vibration of the element, and the data of the time change of the electromotive force is Fourier transformed to obtain the frequency distribution of the electromotive force (called the electromotive force spectrum). You can also get the data. In a normal environmental state, an electromotive force spectrum having a peak at a specific frequency can be obtained, but in an abnormal environmental state (a state in which abnormal vibration occurs), peaks appear at a plurality of frequencies. That is, it is possible to know not only the information that an abnormality has occurred, but also what kind of vibration component is contained and how the vibration changes with time. Further, since the information about the environment is transmitted, it is possible to grasp the state of the environment in a timely manner as compared with the case of grasping the state of the environment by receiving the information of the environment for a certain period of time.
 以下、本発明の実施形態に係る情報取得装置の各構成要素について詳細に説明する。 Hereinafter, each component of the information acquisition device according to the embodiment of the present invention will be described in detail.
 (発電素子)
 発電素子101は、環境の状態に応じて起電力(電気エネルギー)を生じる素子であればよい。例えば、振動によって起電力を生じる振動発電素子、特定のガスの曝露により起電力を生じるガス発電素子、光が照射されることによって起電力を生じる光発電素子、のいずれかを用いることができる。その他にも加熱(温度の変化)により起電力を生じる熱電発電素子、摩擦力を受けることにより起電力を生じる摩擦発電素子、圧力を受けることにより起電力を生じる圧電素子のいずれかを用いることができる。また、発電素子101は、素子自身が発生させる起電力によって、環境の状態変化の検知や無線送信が可能であるため、環境中に多く存在するエネルギー源に対応する発電素子を用いることが好ましい。例えば、橋などであれば振動や太陽光が存在するため振動発電素子や光発電素子が用いられる。また、自動車のタイヤ等では、振動、熱、摩擦等が生じるため振動発電素子や熱電発電素子、摩擦発電素子が用いられる。さらに、発電素子101は各環境下で耐久性の高いものを用いることが好ましい。例えば、振動発電素子において、衝撃が加わるような環境下では磁歪発電素子を用いることが好ましい。磁歪発電素子は、鉄-ガリウム合金、鉄-コバルト合金、鉄-アルミニウム合金、鉄-ガリウム-アルミニウム合金、鉄-シリコン‐ホウ素合金のいずれかの磁歪材料等の延性を有する材料を含むことが好ましい。また、柔軟性が求められるような環境下では、PVDF(ポリフッ化ビニリデン)等の圧電ポリマーを含む圧電素子が用いられる。
(Power generation element)
The power generation element 101 may be any element that generates electromotive force (electrical energy) according to the state of the environment. For example, any of a vibration power generation element that generates an electromotive force by vibration, a gas power generation element that generates an electromotive force by exposure to a specific gas, and a photopower generation element that generates an electromotive force by being irradiated with light can be used. In addition, either a thermoelectric power generation element that generates an electromotive force by heating (change in temperature), a friction power generation element that generates an electromotive force by receiving frictional force, or a piezoelectric element that generates an electromotive force by receiving pressure can be used. can. Further, since the power generation element 101 can detect changes in the state of the environment and wirelessly transmit it by the electromotive force generated by the element itself, it is preferable to use a power generation element corresponding to many energy sources existing in the environment. For example, in the case of a bridge or the like, a vibration power generation element or a photovoltaic power generation element is used because vibration and sunlight are present. Further, in automobile tires and the like, vibration, heat, friction and the like are generated, so a vibration power generation element, a thermoelectric power generation element, a friction power generation element and the like are used. Further, it is preferable to use a power generation element 101 having high durability in each environment. For example, in a vibration power generation element, it is preferable to use a magnetostrictive power generation element in an environment where an impact is applied. The magnetic strain power generation element preferably contains a material having ductility such as an iron-gallium alloy, an iron-cobalt alloy, an iron-aluminum alloy, an iron-gallium-aluminum alloy, or an iron-silicon-boron alloy. .. Further, in an environment where flexibility is required, a piezoelectric element containing a piezoelectric polymer such as PVDF (polyvinylidene fluoride) is used.
 (測定部)
 本実施形態における測定部102は、素子101で生じた起電力を測定する。起電力を測定できるものであれば特に限定されず、一般的な電圧計等を用いることができる。
(Measurement unit)
The measuring unit 102 in the present embodiment measures the electromotive force generated by the element 101. It is not particularly limited as long as it can measure the electromotive force, and a general voltmeter or the like can be used.
 (取得部)
 本実施形態における取得部103は、素子により生じる起電力を用いて後述の図2や図4に示すように、起電力の時間変化に基づいて、環境の状態に関する情報を取得するための処理を行う回路を用いることができる。図2では、素子101の起電力の時間変化(図2(a))を、発電量の積算値(環境の状態に関する情報)に変換する処理(図2(b))を表している。任意の時間tにおける発電量P(t)、平均発電量Paveは以下の(式1)、(式2)で表すことができる。
(Acquisition department)
The acquisition unit 103 in the present embodiment performs a process for acquiring information on the state of the environment based on the time change of the electromotive force, as shown in FIGS. 2 and 4 described later, using the electromotive force generated by the element. You can use the circuit to do. FIG. 2 shows a process (FIG. 2 (b)) of converting a time change of the electromotive force of the element 101 (FIG. 2 (a)) into an integrated value (information regarding an environmental state) of the amount of power generation. The power generation amount P (t) and the average power generation amount Pave at an arbitrary time t can be expressed by the following (Equation 1) and (Equation 2).
P(t)=V(t)/R・・・(式1)
Pave=1/T×ΣP(t)dt・・・(式2)
 ここで、Rは発電素子101の内部インピーダンス、Tは時間1と時間2の差分、Σは時間1から時間2までの加算をあらわす記号である。また、V(t)は時間1から時間2の任意の時間tにおける発電素子101の起電力、dtは取得部103のサンプリングレートによって決まる時間である。この発電量P(t)を加算したものが図2(b)であり、図2(b)の傾きが平均発電量Paveとなる。また、振動発電の場合、発電量は振動発電素子の振動加速度の二乗に比例する。そのため、発電量から振動加速度がすぐに算出でき、発電素子101の振動状態をタイムリーかつ詳細に把握することができる。また、熱電発電の場合、発電量は熱電発電素子が検出した温度差の二乗に比例する。したがって、発電量から温度差に関するデータがすぐに算出でき、発電素子がおかれた環境の温度変化やその時間変化といった詳細な情報をタイムリーに取得できる。したがって、取得部103は環境の状態に関する情報を詳細かつタイムリーに取得できる。
P (t) = V (t) 2 / R ... (Equation 1)
Pave = 1 / T × ΣP (t) dt ... (Equation 2)
Here, R is a symbol representing the internal impedance of the power generation element 101, T is a symbol representing the difference between time 1 and time 2, and Σ is a symbol representing addition from time 1 to time 2. Further, V (t) is the electromotive force of the power generation element 101 at any time t from time 1 to time 2, and dt is the time determined by the sampling rate of the acquisition unit 103. FIG. 2B is the sum of the power generation amount P (t), and the slope of FIG. 2B is the average power generation amount Pave. Further, in the case of vibration power generation, the amount of power generation is proportional to the square of the vibration acceleration of the vibration power generation element. Therefore, the vibration acceleration can be calculated immediately from the amount of power generation, and the vibration state of the power generation element 101 can be grasped in a timely and detailed manner. Further, in the case of thermoelectric power generation, the amount of power generation is proportional to the square of the temperature difference detected by the thermoelectric power generation element. Therefore, data on the temperature difference can be immediately calculated from the amount of power generation, and detailed information such as the temperature change and the time change of the environment in which the power generation element is placed can be obtained in a timely manner. Therefore, the acquisition unit 103 can acquire information on the state of the environment in detail and in a timely manner.
 また、発電素子101が振動発電素子の場合、取得部103は図4に示すような処理を行っても良い。図4では、起電力の時間変化(図4(a))をフーリエ変換し、起電力の周波数分布を取得する(図4(b))。さらに、素子の起電力には周波数依存性(図4(c))があるため、その周波数依存性のテーブルによって、図4(b)を補正することで、振動発電素子が置かれた環境における振動加速度の周波数スペクトルを得ることができる(図4(d))。 Further, when the power generation element 101 is a vibration power generation element, the acquisition unit 103 may perform the processing as shown in FIG. In FIG. 4, the time change of the electromotive force (FIG. 4 (a)) is Fourier transformed to obtain the frequency distribution of the electromotive force (FIG. 4 (b)). Further, since the electromotive force of the element has a frequency dependence (FIG. 4 (c)), by correcting FIG. 4 (b) with the frequency dependence table, the vibration power generation element is placed in the environment. The frequency spectrum of vibration acceleration can be obtained (FIG. 4 (d)).
 なお、取得部103は、メモリ、CPU等のプロセッサーを含み構成される。メモリは、典型的にはROM、RAMといった記憶部を含み構成される。なお、記憶部は、1つの記憶媒体から構成されるだけでなく、複数の記憶部を含み構成されていてもよい。 The acquisition unit 103 includes processors such as a memory and a CPU. The memory is typically configured to include a storage unit such as a ROM or a RAM. The storage unit is not only composed of one storage medium, but may be configured to include a plurality of storage units.
 (送信部)
 送信部104は、取得部103により出力される環境に関する情報を発電素子101により生じる起電力を用いて無線送信する。
(Sender)
The transmission unit 104 wirelessly transmits information about the environment output by the acquisition unit 103 using the electromotive force generated by the power generation element 101.
 無線通信の通信プロトコルにはWi-Fi、Bluetooth(登録商標)、2G、3G、4G、5Gなどの無線通信プロトコルを用いることができる。通信インタフェースは、入力バッファ、通信モジュール、アンテナを含み構成される。通信モジュールはベースバンド部とRF部から構成され、無線通信プロトコルに基づいてデータにヘッダ情報追加、エラー訂正、パケット化を行う。また、無線通信プロトコルに沿ったスペクトラム拡散、変調、復調処理などを行うことができる。また、通信モジュールは通信エラー時には再送制御なども行うことができる。なお、後述する受信部110も、ここで説明した通信プロトコルを用い、ここで説明した構成を含み、同様の動作を行うことができる。 As the communication protocol for wireless communication, wireless communication protocols such as Wi-Fi, Bluetooth (registered trademark), 2G, 3G, 4G, and 5G can be used. The communication interface includes an input buffer, a communication module, and an antenna. The communication module is composed of a baseband part and an RF part, and adds header information to data, corrects errors, and packetizes data based on a wireless communication protocol. In addition, spread spectrum, modulation, demodulation processing, and the like can be performed according to the wireless communication protocol. In addition, the communication module can also perform retransmission control and the like when a communication error occurs. The receiving unit 110, which will be described later, can also use the communication protocol described here, include the configuration described here, and perform the same operation.
 (制御部)
 制御部105は、測定部102による起電力の測定や、取得部103による情報取得や、送信部による無線送信の制御を行う。例えば、取得部103の出力に図3Bや図5Bのような出力が、取得部103により出力された場合に無線送信するような制御も行う。また、制御部105は、一定間隔での無線送信、または情報取得装置100を待機状態にして受信装置200や、他のIoT無線送信デバイス100Aや100B等の外部デバイスより送信依頼信号が来た際に無線送信するように制御を行うことができる(図6)。
(Control unit)
The control unit 105 measures the electromotive force by the measurement unit 102, acquires information by the acquisition unit 103, and controls wireless transmission by the transmission unit. For example, control is also performed so that the output as shown in FIGS. 3B and 5B is wirelessly transmitted to the output of the acquisition unit 103 when the output is output by the acquisition unit 103. Further, when the control unit 105 receives a transmission request signal from an external device such as a receiving device 200 or another IoT wireless transmission device 100A or 100B by wirelessly transmitting at regular intervals or putting the information acquisition device 100 in a standby state. It can be controlled to transmit wirelessly to IoT (Fig. 6).
 なお、発電素子101が振動発電素子であり、環境の状態に関する情報が、発電量の積算値を含む場合、制御部105は積算値の時間微分値が所定値以上となったときに、送信部104に無線送信を行わせてもよい。また、発電素子101が振動発電素子であり、環境の状態に関する情報が、発電素子が受けた振動の振動加速度を含む場合、制御部は、振動加速度が所定値以上となったときに、送信部に無線送信を行わせてもよい。 When the power generation element 101 is a vibration power generation element and the information on the environmental state includes the integrated value of the amount of power generation, the control unit 105 transmits when the time derivative value of the integrated value becomes a predetermined value or more. The 104 may be made to perform wireless transmission. Further, when the power generation element 101 is a vibration power generation element and the information regarding the environmental state includes the vibration acceleration of the vibration received by the power generation element, the control unit receives a transmission unit when the vibration acceleration becomes a predetermined value or more. May perform wireless transmission.
 制御部105は、メモリ、CPU等のプロセッサーを含み構成される。メモリは、典型的にはROM、RAMといった記憶部を含み構成される。なお、記憶部は、1つの記憶媒体から構成されるだけでなく、複数の記憶部を含み構成されていてもよい。 The control unit 105 includes a processor such as a memory and a CPU. The memory is typically configured to include a storage unit such as a ROM or a RAM. The storage unit is not only composed of one storage medium, but may be configured to include a plurality of storage units.
 (環境の状態に関する情報)
 本実施形態における環境の状態に関する情報は、発電素子によって生じる起電力の時間変化に基づいて取得されるものである。例えば、発電素子の発電量の積算値、発電量の積算値の微分値、発電量の積算値の微分値の時間変化などが挙げられる。また、発電素子が振動発電素子である場合は振動加速度を、発電素子が熱電発電素子である場合は温度差の二乗といった値を環境の状態に関する情報とすることができる。また、環境とは、本実施形態に係る情報取得装置、特に発電素子の周囲のことである。情報取得装置が対象物や対象物の近傍に取り付けられている場合、対象物やその近傍を検出(監視)対象とする環境とすることができる。環境の状態とは、具体的には、振動、ガスの曝露、光の照射、加熱(温度の変化)、摩擦力、圧力といった作用の結果生じる環境の状態のことである。
(Information about the state of the environment)
The information regarding the state of the environment in this embodiment is acquired based on the time change of the electromotive force generated by the power generation element. For example, the integrated value of the integrated value of the power generation amount of the power generation element, the differential value of the integrated value of the power generation amount, the time change of the differential value of the integrated value of the power generation amount, and the like can be mentioned. Further, when the power generation element is a vibration power generation element, the vibration acceleration can be used, and when the power generation element is a thermoelectric power generation element, a value such as the square of the temperature difference can be used as information regarding the state of the environment. Further, the environment is the surroundings of the information acquisition device according to the present embodiment, particularly the power generation element. When the information acquisition device is attached to the object or the vicinity of the object, the environment can be set to detect (monitor) the object or its vicinity. The environmental state is specifically the state of the environment resulting from actions such as vibration, gas exposure, light irradiation, heating (change in temperature), frictional force, and pressure.
 送信部104によって、前述のような取得部103の出力に応じた送信部104の制御を行うことで、突発的な異常が生じた場合であっても、環境に関する情報を無線で送信できる。図3Bでは、取得部103から発電量の積算値が出力される場合、発電素子101に衝撃等の環境に突発的な異常が生じた場合に大きな起電力が発生することで、図3Bの矢印で示すような発電量の積算値の不連続性が生じる。すなわち、環境の状態に関する情報として発電量の積算値を取得し、無線で送信することで、突発的な環境の状態の異常を通知することができる。 By controlling the transmission unit 104 according to the output of the acquisition unit 103 as described above, the transmission unit 104 can wirelessly transmit information about the environment even when a sudden abnormality occurs. In FIG. 3B, when the integrated value of the power generation amount is output from the acquisition unit 103, a large electromotive force is generated when a sudden abnormality occurs in the environment such as an impact on the power generation element 101, so that the arrow in FIG. 3B. There is a discontinuity in the integrated value of the amount of power generation as shown by. That is, by acquiring the integrated value of the amount of power generation as information on the state of the environment and transmitting it wirelessly, it is possible to notify the sudden abnormality of the state of the environment.
 また、このような不連続性は、図3Bの関数(発電量の積算値の時間変化)を微分することでピークとして観測することができる。そのため、微分値のピークの有無によって衝撃等の異常の発生有無を判断することができる。従って、このピークが生じた場合に制御部105は送信部104が無線送信するように制御を行うことで、異常時の環境データを送信することができる。すなわち、環境の状態に関する情報として発電量の積算値の微分値を取得し、無線で送信することで、突発的な環境の状態の異常を通知することができる。 Further, such discontinuity can be observed as a peak by differentiating the function of FIG. 3B (time change of the integrated value of the amount of power generation). Therefore, it is possible to determine whether or not an abnormality such as an impact has occurred based on the presence or absence of a peak of the differential value. Therefore, when this peak occurs, the control unit 105 can transmit the environmental data at the time of abnormality by controlling the transmission unit 104 to wirelessly transmit. That is, by acquiring a differential value of the integrated value of the amount of power generation as information on the state of the environment and transmitting it wirelessly, it is possible to notify a sudden abnormality of the state of the environment.
 また、図5Bは、取得部103から図4で示される変換により振動加速度の周波数分布(スペクトル)が出力される場合の一例を示す。環境の状態が正常な場合に存在する周波数分布のピーク(図5A)が、異常が生じた場合には無くなる、もしくは変動する(図5B)場合がある。このような場合は、振動加速度の周波数分布における特定周波数のピークの有無によって異常を判断することができる。従って、周波数分布の特定周波数のピークの有無により、制御部105は送信部104が無線送信するように制御を行うことで、異常時の環境データを送信することができる。 Further, FIG. 5B shows an example in which the frequency distribution (spectrum) of the vibration acceleration is output from the acquisition unit 103 by the conversion shown in FIG. The peak of the frequency distribution (FIG. 5A) that exists when the environmental condition is normal may disappear or fluctuate when an abnormality occurs (FIG. 5B). In such a case, the abnormality can be determined by the presence or absence of a peak at a specific frequency in the frequency distribution of the vibration acceleration. Therefore, depending on the presence or absence of a peak at a specific frequency in the frequency distribution, the control unit 105 can transmit environmental data at the time of abnormality by controlling the transmission unit 104 to wirelessly transmit.
 (表示部)
 また、図1に示すように表示部106を情報取得装置に設けることで、受信装置が情報取得装置の近傍に無くても、その表示によっても、異常の有無を判断することができる。例えば、目視による判断が難しい機器の異常が生じた場合であっても、この表示部107によって異常の有無を判断しやすくできる。表示部107は例えばLEDのような発光器であってもよい。さらに複数のLEDを設置することで、異常の程度を表示することもできる。
(Display part)
Further, by providing the display unit 106 in the information acquisition device as shown in FIG. 1, even if the receiving device is not in the vicinity of the information acquisition device, the presence or absence of an abnormality can be determined by the display. For example, even when an abnormality occurs in a device that is difficult to visually determine, the display unit 107 makes it easy to determine the presence or absence of the abnormality. The display unit 107 may be a light emitter such as an LED. Furthermore, by installing a plurality of LEDs, the degree of abnormality can be displayed.
 (蓄電部)
 また、図1のように蓄電部106を備えても良い。この場合、発電素子101により生じる起電力が小さい場合であっても、蓄電部106に起電力を蓄積することで、情報取得装置100を安定的に駆動することができる。蓄電部106は電気二重層キャパシタや電解コンデンサ等の各種コンデンサ、またはリチウムイオン二次電池やリチウムイオンポリマー二次電池など各種二次電池を用いることができる。
(Power storage unit)
Further, as shown in FIG. 1, the power storage unit 106 may be provided. In this case, even when the electromotive force generated by the power generation element 101 is small, the information acquisition device 100 can be stably driven by accumulating the electromotive force in the power storage unit 106. As the power storage unit 106, various capacitors such as an electric double layer capacitor and an electrolytic capacitor, or various secondary batteries such as a lithium ion secondary battery and a lithium ion polymer secondary battery can be used.
 (センサ)
 さらに、発電素子101と別体のセンサ108を設けても良い。センサ108は例えば、振動センサ、ガスセンサ、光センサ、温度センサのいずれかを用いることができる。この場合、発電素子101だけでなく、センサによって取得される環境に関する情報をも取得できるため、情報取得装置の置かれている環境のより詳細な情報を送信することができる。例えば、発電素子101を振動発電素子とし、センサを温度センサやガスセンサとすると温度またはガスと、振動の両方の環境に関する情報を送信することができる。
(Sensor)
Further, a sensor 108 separate from the power generation element 101 may be provided. As the sensor 108, for example, any of a vibration sensor, a gas sensor, an optical sensor, and a temperature sensor can be used. In this case, not only the power generation element 101 but also the information about the environment acquired by the sensor can be acquired, so that more detailed information about the environment in which the information acquisition device is placed can be transmitted. For example, if the power generation element 101 is a vibration power generation element and the sensor is a temperature sensor or a gas sensor, information on the environment of both temperature or gas and vibration can be transmitted.
 (情報取得システム)
 本実施形態に係る情報取得システム300は、上記情報取得装置と、送信部104によって送信された環境の状態に関する情報を受信する受信部110を有する。受信部110の他に受信部で受信された信号を処理する信号処理部201を有していても良い。受信部110と信号処理部201を含む受信装置200を有していてもよい。
(Information acquisition system)
The information acquisition system 300 according to the present embodiment includes the above-mentioned information acquisition device and a reception unit 110 that receives information regarding the state of the environment transmitted by the transmission unit 104. In addition to the receiving unit 110, the signal processing unit 201 that processes the signal received by the receiving unit may be provided. It may have a receiving device 200 including a receiving unit 110 and a signal processing unit 201.
 以下に、具体的な実施例をあげて本発明を詳しく説明する。なお、本発明は下記の実施例の構成や形態に限定されるものではない。 The present invention will be described in detail below with specific examples. The present invention is not limited to the configurations and embodiments of the following examples.
 [実施例1]
 本実施例について、図1に示すブロック図を用いて説明する。発電素子101として、共振周波数100Hzの振動発電機を用いた。発電素子101を、偏芯おもりを軸受けに設置したモーターに設置し、100Hzで振動させ、情報取得装置(IoT無線送信デバイス)100の駆動を行う。また、測定部102には電圧計を用い、取得部103は、測定部によって測定される起電力の時間変化に基づいて、発電量の積算値を取得する。さらに取得部103は100秒分の発電量の積算値を振動加速度に変換し、制御部105は、取得した振動加速度のデータを送信部104から送信するように設定できる。さらに発電量の積算値の時間微分値におけるピークの有無(異常の有無)の判定を信号として制御部105に出力するように設定した。制御部105によって、送信部による無線送信の送信頻度を1時間に1回に設定し、異常有無の判定を取得部103により出力されるピークの有無の判定信号をもとに行う。ピークがある場合は送信部104によって振動加速度のデータを無線送信するように設定する。さらに、無線送信の評価は、受信部110の出力によって確認できる。
[Example 1]
This embodiment will be described with reference to the block diagram shown in FIG. A vibration power generator having a resonance frequency of 100 Hz was used as the power generation element 101. The power generation element 101 is installed in a motor having an eccentric weight mounted on a bearing and vibrated at 100 Hz to drive an information acquisition device (IoT wireless transmission device) 100. Further, a voltmeter is used for the measuring unit 102, and the acquisition unit 103 acquires an integrated value of the amount of power generation based on the time change of the electromotive force measured by the measuring unit. Further, the acquisition unit 103 can convert the integrated value of the power generation amount for 100 seconds into the vibration acceleration, and the control unit 105 can be set to transmit the acquired vibration acceleration data from the transmission unit 104. Further, it is set to output the determination of the presence / absence of a peak (presence / absence of abnormality) in the time derivative value of the integrated value of the power generation amount to the control unit 105 as a signal. The control unit 105 sets the transmission frequency of wireless transmission by the transmission unit to once an hour, and determines the presence or absence of an abnormality based on the peak presence / absence determination signal output by the acquisition unit 103. If there is a peak, the transmission unit 104 is set to wirelessly transmit the vibration acceleration data. Further, the evaluation of wireless transmission can be confirmed by the output of the receiving unit 110.
 以上の情報取得装置100により1時間に1回の定期的な無線送信が行われることを確認できる。その結果、平均の振動加速度は1Gであることが分かる。さらに、発電素子101に衝撃を与えることで、定期的な無線送信タイミングではない時間での無線送信出力を確認できる。その際の平均振動加速度は1.1Gである。このようにして、無線送信タイミングではない時間に無線送信を受信することで、タイムリーに異常の有無を検出できる。また、無線送信で送られる情報は振動加速度のデータであり、環境の状態の詳細な情報、すなわち振動の定量的な情報を得ることができる。 It can be confirmed that the above information acquisition device 100 performs periodic wireless transmission once an hour. As a result, it can be seen that the average vibration acceleration is 1G. Further, by giving an impact to the power generation element 101, it is possible to confirm the wireless transmission output at a time other than the periodic wireless transmission timing. The average vibration acceleration at that time is 1.1 G. In this way, the presence or absence of an abnormality can be detected in a timely manner by receiving the wireless transmission at a time other than the wireless transmission timing. Further, the information transmitted by wireless transmission is vibration acceleration data, and detailed information on the state of the environment, that is, quantitative information on vibration can be obtained.
 [実施例2]
 本実施については、図1に示すブロック図を用いて説明する。本実施例では実施例1と異なる事項について説明し、共通する事項は説明を省略する。なお表示部107には赤色LEDを用いる。制御部105は、取得部103による取得される環境の状態に関する情報から、環境が異常な状態に置かれていると制御部105が判定する場合、表示部107の赤色LEDに発電素子101の起電力を供給し続ける制御を行うことができる。
[Example 2]
This implementation will be described with reference to the block diagram shown in FIG. In this embodiment, the matters different from those of the first embodiment will be described, and the common matters will be omitted. A red LED is used for the display unit 107. When the control unit 105 determines that the environment is in an abnormal state from the information regarding the state of the environment acquired by the acquisition unit 103, the control unit 105 causes the power generation element 101 to be set on the red LED of the display unit 107. It is possible to control the continuous supply of electric power.
 制御部によって異常が生じていないと判定されている期間においては、赤色LEDの点滅は確認できない。一方、発電素子101に衝撃を与えることで、赤色LEDの点滅が確認できる。結果として、環境が異常な状態にあることを、表示部を目視することによっても確認できる。 The blinking of the red LED cannot be confirmed during the period when the control unit determines that no abnormality has occurred. On the other hand, by giving an impact to the power generation element 101, the blinking of the red LED can be confirmed. As a result, it can be confirmed by visually observing the display unit that the environment is in an abnormal state.
 [実施例3]
 本実施例を図1に示すブロック図を用いて説明する。本実施例では実施例1と異なる事項について説明し、共通する事項は説明を省略する。ただし、発電素子101として、共振周波数20Hzの振動発電機を用いる。また、情報取得装置を周波数20Hzで駆動するモーターの近傍に設置し,取得部103の発電量の積算値を出力する時間を1秒、送信部104の送信間隔を1時間に1回とする。さらに蓄電部106として、スーパーキャパシタを用いる。スーパーキャパシタ、すなわち電気二重層キャパシタに発電素子101により生じる起電力を蓄積し、取得部103、制御部105、及び送信部104を供給するようにできる。
[Example 3]
This embodiment will be described with reference to the block diagram shown in FIG. In this embodiment, the matters different from those of the first embodiment will be described, and the common matters will be omitted. However, as the power generation element 101, a vibration power generator having a resonance frequency of 20 Hz is used. Further, the information acquisition device is installed in the vicinity of the motor driven at a frequency of 20 Hz, the time for outputting the integrated value of the power generation amount of the acquisition unit 103 is 1 second, and the transmission interval of the transmission unit 104 is once an hour. Further, a supercapacitor is used as the power storage unit 106. The electromotive force generated by the power generation element 101 can be stored in a supercapacitor, that is, an electric double layer capacitor, and the acquisition unit 103, the control unit 105, and the transmission unit 104 can be supplied.
 その結果、発電素子101の発電量が小さくても、安定的に無線送信を行うことを確認できる。また、定期的な無線送信時における平均の振動加速度は0.05G、衝撃を受けた場合の振動加速度は0.1Gであることを確認できる。 As a result, it can be confirmed that stable wireless transmission is performed even if the power generation amount of the power generation element 101 is small. Further, it can be confirmed that the average vibration acceleration at the time of periodic wireless transmission is 0.05 G and the vibration acceleration at the time of receiving an impact is 0.1 G.
 [実施例4]
 本実施例を図1に示すブロック図を用いて説明する。本実施例では実施例1と異なる事項について説明し、共通する事項は説明を省略する。ただし、センサ108を温度センサとし、センサ108を含む情報取得装置100をモーター上に設ける。また、制御部105は、取得部103で取得される振動加速度のデータだけではなく、センサ108の温度データを送信部104から送信させる制御も行う。なお、評価を行う環境下の室温は23℃である。
[Example 4]
This embodiment will be described with reference to the block diagram shown in FIG. In this embodiment, the matters different from those of the first embodiment will be described, and the common matters will be omitted. However, the sensor 108 is used as a temperature sensor, and the information acquisition device 100 including the sensor 108 is provided on the motor. Further, the control unit 105 also controls not only the vibration acceleration data acquired by the acquisition unit 103 but also the temperature data of the sensor 108 to be transmitted from the transmission unit 104. The room temperature under the evaluation environment is 23 ° C.
 以上の構成の情報取得装置100により1時間に1回の定期的な無線送信が行われることを確認できる。その結果、平均の振動加速度は1G、モーター表面の平均温度は40℃であることが分かる。さらに、発電素子101に衝撃を与えることで、定期的な無線送信タイミングではない時間での無線送信出力を確認できる。その際の平均振動加速度は1.1Gで、モーター表面の平均温度は40℃であることが分かる。このように、本実施例に係る情報取得装置は、発電素子101とセンサ108の両方から振動加速度と温度といった環境の情報を取得できる。 It can be confirmed that the information acquisition device 100 having the above configuration performs periodic wireless transmission once an hour. As a result, it can be seen that the average vibration acceleration is 1 G and the average temperature of the motor surface is 40 ° C. Further, by giving an impact to the power generation element 101, it is possible to confirm the wireless transmission output at a time other than the periodic wireless transmission timing. It can be seen that the average vibration acceleration at that time is 1.1 G, and the average temperature of the motor surface is 40 ° C. As described above, the information acquisition device according to the present embodiment can acquire environmental information such as vibration acceleration and temperature from both the power generation element 101 and the sensor 108.
 [比較例]
 実施例1において定期的に無線送信する制御のみ行う発電素子の評価を行う。1時間に1回の定期的な無線送信が行われる一方、送信前1時間以内に衝撃を与えたが定期的な無線送信での平均加速度に変化は見られない。すなわち、異常が生じたかどうか判別できない。
[Comparison example]
In the first embodiment, the power generation element that only controls the wireless transmission on a regular basis is evaluated. While the periodic wireless transmission is performed once an hour, a shock is given within 1 hour before the transmission, but the average acceleration in the periodic wireless transmission does not change. That is, it cannot be determined whether or not an abnormality has occurred.
 本発明の実施形態及び実施例について具体的に説明したが、本発明は上述の実施形態に限定されるものではない。本発明は技術的思想に基づく各種の変形が可能である。例えば、上述の実施形態において挙げた数値、構成要素はあくまでも一例に過ぎない。必要に応じてこれと異なる数値、構成要素を用いても良い。 Although the embodiments and examples of the present invention have been specifically described, the present invention is not limited to the above-described embodiments. The present invention can be modified in various ways based on the technical idea. For example, the numerical values and components mentioned in the above-described embodiment are merely examples. If necessary, different numerical values and components may be used.
 上述の実施形態及び実施例に係る情報取得装置、および情報取得システムを用いれば、既存のIoTデバイスでは困難であった電源のない環境での突発的な異常状態を詳細に検出可能である。従って、これまで人がアクセスすることが困難であるにもかかわらず、人が直接赴き行っていた維持点検業務を効率化または置き換えるデバイス、システムとして特に有効である。例えば、橋梁やトンネル、埋設された配管等のインフラの異常検知・点検、プラント等に設置されたアクセス困難な機器の異常検知、自動車のタイヤ内部での異常予知のためのデバイス、システムとして用いることも期待できる。なお、本発明は電源のない環境で突発的な異常の検知を遠隔で行うことができるため、上記で記載した分野以外の幅広い分野での応用が可能である。 By using the information acquisition device and the information acquisition system according to the above-described embodiments and examples, it is possible to detect in detail a sudden abnormal state in an environment without a power source, which was difficult with existing IoT devices. Therefore, it is particularly effective as a device or system that streamlines or replaces the maintenance and inspection work that a person has directly visited, even though it has been difficult for a person to access. For example, use it as a device or system for detecting and inspecting abnormalities in infrastructure such as bridges, tunnels, and buried pipes, detecting abnormalities in inaccessible equipment installed in plants, and predicting abnormalities inside automobile tires. Can also be expected. Since the present invention can remotely detect sudden abnormalities in an environment without a power source, it can be applied to a wide range of fields other than those described above.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, the following claims are attached in order to publicize the scope of the present invention.
 本願は、2020年7月6日提出の日本国特許出願特願2020-116401を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 This application claims priority based on Japanese Patent Application No. 2020-116401 submitted on July 6, 2020, and all the contents thereof are incorporated herein by reference.

Claims (15)

  1.  環境の状態に応じて起電力を発生させる発電素子と、
     前記起電力を測定する測定部と、
     測定された前記起電力の時間変化に基づいて、前記環境の状態に関する情報を取得する取得部と、
     発生した前記起電力を用いて、前記環境の状態に関する情報を含む信号を送信する送信部と、を有する情報取得装置。
    A power generation element that generates electromotive force according to the state of the environment,
    The measuring unit that measures the electromotive force and
    An acquisition unit that acquires information on the state of the environment based on the measured time change of the electromotive force, and
    An information acquisition device including a transmission unit that transmits a signal including information on the state of the environment by using the generated electromotive force.
  2.  前記発電素子が、振動によって起電力を生じる振動発電素子、特定のガスの曝露により起電力を生じるガス発電素子、光が照射されることによって起電力を生じる光発電素子、加熱により起電力を生じる熱電発電素子、摩擦力を受けることにより起電力を生じる摩擦発電素子、圧力を受けることにより起電力を生じる圧電素子のいずれかであることを特徴とする請求項1に記載の情報取得装置。 The power generation element is a vibration power generation element that generates an electromotive force by vibration, a gas power generation element that generates an electromotive force by exposure to a specific gas, a photopower generation element that generates an electromotive force by being irradiated with light, and a photopower generation element that generates an electromotive force by heating. The information acquisition device according to claim 1, wherein the information acquisition device is any one of a thermoelectric power generation element, a friction power generation element that generates an electromotive force by receiving frictional force, and a piezoelectric element that generates an electromotive force by receiving pressure.
  3.  前記振動発電素子が磁歪発電素子であることを特徴とする請求項2に記載の情報取得装置。 The information acquisition device according to claim 2, wherein the vibration power generation element is a magnetostrictive power generation element.
  4.  前記磁歪発電素子は、鉄-ガリウム合金、鉄-コバルト合金、鉄-アルミニウム合金、鉄-ガリウム-アルミニウム合金、鉄-シリコン-ホウ素合金のいずれかの磁歪材料を含むことを特徴とする請求項3に記載の情報取得装置。 3. The magnetic strain power generation element is characterized by including any one of an iron-gallium alloy, an iron-cobalt alloy, an iron-aluminum alloy, an iron-gallium-aluminum alloy, and an iron-silicon-boron alloy. The information acquisition device described in.
  5.  前記環境の状態に関する情報が前記発電素子による発電量の積算値を含むことを特徴とする請求項1乃至4のいずれか1項に記載の情報取得装置。 The information acquisition device according to any one of claims 1 to 4, wherein the information regarding the state of the environment includes an integrated value of the amount of power generated by the power generation element.
  6.  前記発電素子が振動発電素子であり、
     前記環境の状態に関する情報が、前記発電素子が受けた振動の振動加速度を含むことを特徴とする請求項1乃至4のいずれか1項に記載の情報取得装置。
    The power generation element is a vibration power generation element.
    The information acquisition device according to any one of claims 1 to 4, wherein the information regarding the state of the environment includes the vibration acceleration of the vibration received by the power generation element.
  7.  前記送信部によって前記環境の状態に関する情報を送信するタイミングを制御する制御部をさらに有することを特徴とする請求項1乃至6のいずれか1項に記載の情報取得装置。 The information acquisition device according to any one of claims 1 to 6, further comprising a control unit that controls the timing at which information regarding the state of the environment is transmitted by the transmission unit.
  8.  前記発電素子が振動発電素子であり、
     前記環境の状態に関する情報は、発電量の積算値を含み、
     前記制御部が前記積算値の時間微分値が所定値以上となったときに、前記送信部に無線送信を行わせることを特徴とする、請求項7に記載の情報取得装置。
    The power generation element is a vibration power generation element.
    The information regarding the state of the environment includes the integrated value of the amount of power generation, and includes the integrated value.
    The information acquisition device according to claim 7, wherein the control unit causes the transmission unit to perform wireless transmission when the time derivative value of the integrated value becomes a predetermined value or more.
  9.  前記発電素子が振動発電素子であり、
     前記環境の状態に関する情報は、前記発電素子が受けた振動の振動加速度を含み、
     前記制御部が、前記振動加速度が所定値以上となったときに、前記送信部に無線送信を行わせることを特徴とする、請求項7に記載の情報取得装置。
    The power generation element is a vibration power generation element.
    The information regarding the state of the environment includes the vibration acceleration of the vibration received by the power generation element.
    The information acquisition device according to claim 7, wherein the control unit causes the transmission unit to perform wireless transmission when the vibration acceleration becomes a predetermined value or more.
  10.  前記環境の状態に関する情報を表示する表示部を備える請求項1乃至9のいずれか1項に記載の情報取得装置。 The information acquisition device according to any one of claims 1 to 9, further comprising a display unit for displaying information on the state of the environment.
  11.  前記起電力を蓄積する蓄電部を備える請求項1乃至10のいずれか1項に記載の情報取得装置。 The information acquisition device according to any one of claims 1 to 10, further comprising a power storage unit that stores the electromotive force.
  12.  環境の状態を検知するセンサをさらに備える請求項1乃至11のいずれか1項に記載の情報取得装置。 The information acquisition device according to any one of claims 1 to 11, further comprising a sensor for detecting the state of the environment.
  13.  前記センサが振動センサ、ガスセンサ、光センサ、温度センサのいずれかであることを特徴とする請求項12に記載の情報取得装置。 The information acquisition device according to claim 12, wherein the sensor is any one of a vibration sensor, a gas sensor, an optical sensor, and a temperature sensor.
  14.  前記送信部は、前記環境の状態に関する情報を含む信号を無線によって送信する請求項1乃至13のいずれか1項に記載の情報取得装置。 The information acquisition device according to any one of claims 1 to 13, wherein the transmission unit wirelessly transmits a signal including information on the state of the environment.
  15.  環境の状態に応じて起電力を発生させる発電素子と、
     前記起電力を測定する測定部と、
     測定された前記起電力の時間変化に基づいて、前記環境の状態に関する情報を取得する取得部と、
     発生した前記起電力を用いて、前記環境に関する情報を含む信号を送信する送信部と、前記信号を受信する受信部と、を有することを特徴とする情報取得システム。
    A power generation element that generates electromotive force according to the state of the environment,
    The measuring unit that measures the electromotive force and
    An acquisition unit that acquires information on the state of the environment based on the measured time change of the electromotive force, and
    An information acquisition system comprising: a transmitting unit that transmits a signal including information about the environment using the generated electromotive force, and a receiving unit that receives the signal.
PCT/JP2021/024913 2020-07-06 2021-07-01 Information acquisition device and information acquisition system WO2022009763A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-116401 2020-07-06
JP2020116401A JP2022014195A (en) 2020-07-06 2020-07-06 Information acquisition device and information acquisition system

Publications (1)

Publication Number Publication Date
WO2022009763A1 true WO2022009763A1 (en) 2022-01-13

Family

ID=79552500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024913 WO2022009763A1 (en) 2020-07-06 2021-07-01 Information acquisition device and information acquisition system

Country Status (2)

Country Link
JP (1) JP2022014195A (en)
WO (1) WO2022009763A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140145860A1 (en) * 2012-11-28 2014-05-29 Samsung Electronics Co., Ltd. System and method for managing sensor information in portable terminal
JP2017009305A (en) * 2015-06-17 2017-01-12 Nttエレクトロニクス株式会社 Sensing device and sensing system
JP2017022508A (en) * 2015-07-09 2017-01-26 ローム株式会社 Energy harvesting system
US20170151964A1 (en) * 2013-04-30 2017-06-01 Korea Railroad Research Institute Energy harvester and wireless sensor device having energy harvester
JP2018207551A (en) * 2015-09-17 2018-12-27 株式会社日立製作所 Energy harvesting type radio device and system
JP2019088154A (en) * 2017-11-09 2019-06-06 富士通株式会社 Situation detection apparatus, situation detection system, and situation detection method
WO2019130659A1 (en) * 2017-12-26 2019-07-04 スター精密株式会社 Machine tool and machine tool control method
JP2020160959A (en) * 2019-03-27 2020-10-01 パナソニックIpマネジメント株式会社 Building diagnostic apparatus and building diagnostic method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140145860A1 (en) * 2012-11-28 2014-05-29 Samsung Electronics Co., Ltd. System and method for managing sensor information in portable terminal
US20170151964A1 (en) * 2013-04-30 2017-06-01 Korea Railroad Research Institute Energy harvester and wireless sensor device having energy harvester
JP2017009305A (en) * 2015-06-17 2017-01-12 Nttエレクトロニクス株式会社 Sensing device and sensing system
JP2017022508A (en) * 2015-07-09 2017-01-26 ローム株式会社 Energy harvesting system
JP2018207551A (en) * 2015-09-17 2018-12-27 株式会社日立製作所 Energy harvesting type radio device and system
JP2019088154A (en) * 2017-11-09 2019-06-06 富士通株式会社 Situation detection apparatus, situation detection system, and situation detection method
WO2019130659A1 (en) * 2017-12-26 2019-07-04 スター精密株式会社 Machine tool and machine tool control method
JP2020160959A (en) * 2019-03-27 2020-10-01 パナソニックIpマネジメント株式会社 Building diagnostic apparatus and building diagnostic method

Also Published As

Publication number Publication date
JP2022014195A (en) 2022-01-19

Similar Documents

Publication Publication Date Title
US10942044B2 (en) Monitoring system and method
US10046779B2 (en) Energy harvester and wireless sensor device having energy harvester
US9978251B2 (en) Wireless location-based system and method for detecting hazardous and non-hazardous conditions
WO2012049771A1 (en) Automatic remote monitoring and diagnosis system
CA2504006A1 (en) Remote battery monitoring systems and sensors
CN108332789A (en) A kind of structural healthy monitoring system of train pantograph
WO2022009763A1 (en) Information acquisition device and information acquisition system
JP6495509B2 (en) Remote status monitoring system and monitoring method
KR20150107932A (en) Apparatus for wireless temperature detection of high voltage power utilities
JP2006304523A (en) Management system of power distribution facility and management method of power distribution facility
WO2018117164A1 (en) Plant equipment diagnostic system
US11428094B2 (en) Wireless load cell monitoring system and method
EP4040417A1 (en) Sensor device, management system, management server, acceptance inspecting device, method executed by sensor device, and nomenclature plate
Tomicek et al. Vibration-powered wireless sensor for structural monitoring during earthquakes
JP2005128699A (en) Electric appliance diagnosis system
Gallo et al. Multisensor network for urban electromagnetic field monitoring
KR20140024518A (en) Method and sensor node for managing power quantity consumed, apparatus for collecting power quantity consumed by using the same
JP2005077360A (en) Service life diagnostic device of digital protective relay, service life diagnostic system and service life diagnostic method
Yun et al. Wireless sensing technologies for bridge monitoring and assessment
Phillips Staying in shape
JP7107492B2 (en) Wireless sensor device and state estimation system
CN112629736B (en) Bolt connection structure state monitoring system and monitoring method based on micro-nano sensor
Bestley et al. Efficient low wind energy harvesters for wireless sensor networks
KR20120075538A (en) Mobile watch control method of transformer system
WO2018211836A1 (en) Remote state monitoring system and monitoring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837132

Country of ref document: EP

Kind code of ref document: A1