WO2022009685A1 - Method for producing heteroconductive member - Google Patents
Method for producing heteroconductive member Download PDFInfo
- Publication number
- WO2022009685A1 WO2022009685A1 PCT/JP2021/023917 JP2021023917W WO2022009685A1 WO 2022009685 A1 WO2022009685 A1 WO 2022009685A1 JP 2021023917 W JP2021023917 W JP 2021023917W WO 2022009685 A1 WO2022009685 A1 WO 2022009685A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base material
- insulating base
- water
- conductive member
- repellent
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/12—Anodising more than once, e.g. in different baths
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/18—After-treatment, e.g. pore-sealing
- C25D11/20—Electrolytic after-treatment
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/18—After-treatment, e.g. pore-sealing
- C25D11/24—Chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/26—Anodisation of refractory metals or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/34—Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R11/00—Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
- H01R11/01—Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R43/00—Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
Definitions
- the present invention relates to a method for manufacturing an anisotropic conductive member.
- a structure in which a plurality of through holes provided in an insulating base material are filled with a conductive substance such as metal is one of the fields that have been attracting attention in nanotechnology in recent years, for example, as an anisotropic conductive member.
- An anisotropic conductive member is inserted between an electronic component such as a semiconductor element and a circuit board, and an electrical connection can be obtained between the electronic component and the circuit board simply by applying pressure. Therefore, the electronic component such as a semiconductor element can be used. It is widely used as an electrical connection member, an inspection connector for performing a functional inspection, and the like. In particular, electronic components such as semiconductor devices are significantly downsized.
- Patent Document 1 describes (1) an anodic oxidation treatment step of anodicating an aluminum substrate to form an alumina film having micropores, and (2) the above-mentioned anode. After the oxidation treatment step, the penetration treatment step of penetrating the pores formed by the micropores generated by the anodic oxidation to obtain the insulating base material, and (3) the insulating group obtained after the penetration treatment step.
- a method for manufacturing an anisotropic conductive member is described ([claim 1] to [claim 3]).
- the conduction path in the vicinity of the conduction path or the through path where an unfilled region exists, the conduction path It was clarified that the protruding portion of the above may buckle due to pressurization at the time of joining or the like and come into contact with an adjacent conduction path, so that the insulating property may be impaired.
- the present inventor applies treatments to a predetermined metal-filled microstructure by each of the water-repellent step and the projecting step to obtain the protruding portion of the conduction path.
- the present invention has been completed by finding that it is possible to suppress the variation in height. That is, it was found that the above problem can be achieved by the following configuration.
- It has an insulating base material, a plurality of through-passages penetrating in the thickness direction of the insulating base material, and a plurality of conduction paths composed of a conductive substance filled inside the plurality of through-passages.
- Process and A water-repellent step that makes the inner wall of the gangway in the unfilled area water-repellent After the water-repellent step, a treatment liquid is applied to the surface of the metal-filled microstructure, the surface of the insulating base material is selectively partially removed in the thickness direction, and one end of a plurality of conduction paths is made of the insulating base material.
- a method for manufacturing an anisotropic conductive member which comprises a projecting step of projecting from a surface.
- a water repellent agent is applied to the surface of the through-passage in the unfilled region on the opening side of the metal-filled microstructure, and the inner wall and surface of the through-passage in the unfilled region are both coated.
- an anisotropic conductive member capable of suppressing a variation in the height of a protruding portion of a conduction path.
- FIG. 1A shows a state of a metal-filled microstructure before a water-repellent step in a schematic cross-sectional view for explaining an example (first aspect) of the method for manufacturing an anisotropic conductive member of the present invention. It is a schematic sectional view.
- FIG. 1B is a schematic cross-sectional view showing a state after the water repellent step in a schematic cross-sectional view for explaining an example (first aspect) of the method for manufacturing an anisotropic conductive member of the present invention.
- FIG. 1C is a schematic cross-sectional view showing a state after the projecting step in a schematic cross-sectional view for explaining an example (first aspect) of the method for manufacturing an anisotropic conductive member of the present invention.
- FIG. 2A is a schematic cross-sectional view for explaining another example (second aspect) of the method for manufacturing an anisotropic conductive member of the present invention, which is a metal-filled microstructure with a substrate before the water repellent step. It is a schematic cross-sectional view which shows the state of.
- FIG. 2B is a schematic cross-sectional view for explaining another example (second aspect) of the method for manufacturing an anisotropic conductive member of the present invention, which is a schematic cross-sectional view showing a state after the water-repellent step. It is a figure.
- FIG. 2A is a schematic cross-sectional view for explaining another example (second aspect) of the method for manufacturing an anisotropic conductive member of the present invention, which is a schematic cross-sectional view showing a state after the water-repellent step. It is a figure.
- FIG. 1 is a schematic cross-sectional view for explaining another example (second aspect) of the method for manufacturing an anisotropic conductive member of the present invention
- FIG. 2C is a schematic cross-sectional view showing a state after the projecting step in a schematic cross-sectional view for explaining another example (second aspect) of the method for manufacturing an anisotropic conductive member of the present invention.
- FIG. 2D is a schematic cross-sectional view showing a state after the substrate removing step in a schematic cross-sectional view for explaining another example (second aspect) of the method for manufacturing an anisotropic conductive member of the present invention.
- FIG. 3 is a reference drawing in which one end (outermost surface) of the projected conduction path is overlapped so that the height of the contour lines becomes zero.
- FIG. 4 is a reference drawing of the frequency distribution of the height of the protruding portion of the conduction path.
- the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
- the method for manufacturing an anisotropic conductive member of the present invention includes an insulating base material, a plurality of through passages penetrating in the thickness direction of the insulating base material, and a plurality of through paths. It has a plurality of conduction paths made of a conductive material filled in the inside of the through path, and one end of the plurality of conduction paths is provided in a state of protruding from at least one surface of the insulating base material.
- a method for manufacturing a conductive member hereinafter, also abbreviated as "specific anisotropic conductive member”).
- It has an insulating base material, a plurality of through-passages penetrating in the thickness direction of the insulating base material, and a plurality of conduction paths made of a conductive substance filled inside the plurality of through-passages, and has a plurality of conduction paths.
- the specific metal-filled microstructure is treated by each of the water-repellent step and the projecting step to suppress the variation in the height of the projecting portion of the conduction path. Can be done. This is not clear in detail, but it is presumed to be as follows. First, the present inventor finds that if an unfilled region exists in the conduction path (gangway) of the metal-filled microstructure, the treatment liquid is in the unfilled region when the insulating base material is removed in the projecting step.
- the protruding part of the gangway is seated by pressurization at the time of joining or the like in the vicinity of the gangway or the gangway where the unfilled region exists. It was revealed that he would give in. Therefore, in the present invention, by making the inner wall of the through-passage in the unfilled region of the specific metal-filled microstructure water-repellent, the insulating base material is used when the insulating base material is removed in the subsequent projecting step. Since it is possible to prevent unintentional dissolution, it is considered that the variation in the height of the protruding portion of the conduction path can be suppressed.
- the specific anisotropic conductive member 20 is a Dt in the thickness direction of the insulating base material 3 and the insulating base material 3. It has a plurality of through-passages 4 provided so as to penetrate the through-passage and a plurality of conduction paths 5 composed of a conductive material filled inside the plurality of through-passages 4, and among the plurality of conduction paths 5.
- a preparatory step for preparing a specific metal-filled microstructure 10 in which an unfilled region 6 in which a conductive substance is not filled is present in at least a part of the inside of the through-passage 4 in the thickness direction in some conduction paths. See FIG. 1A;
- a water repellent agent is applied to the surface 10a on the opening side of the through-passage 4 of the unfilled region 6 in the specified metal-filled microstructure 10, and the inner wall of the through-passage 4 in the unfilled region 6 and
- a water-repellent step of removing the water-repellent agent on the surface 10a by scraping the surface layer of the surface 10a after making the surface 10a water-repellent see FIG.
- a treatment liquid is applied to the surface 10a of the structure 10, the surface of the insulating base material 3 is selectively partially removed in the thickness direction Dt, and one end of the plurality of conducting paths 5 protrudes from the surface of the insulating base material 3. It can be produced by a manufacturing method having a protrusion step (see FIG. 1C);
- the production method of the present invention preferably uses a specific metal-filled microstructure with a substrate attached as the specific metal-filled microstructure used in the water-repellent step and the projecting step.
- a specific metal-filled microstructure with a substrate attached as the specific metal-filled microstructure used in the water-repellent step and the projecting step.
- FIGS. 2A to 2D hereinafter, these are collectively abbreviated as “FIG. 2”
- the specific anisotropic conductive member 20 prepares a specific metal-filled microstructure 10 having a substrate 1. Preparation step to be performed (see FIG.
- a water-repellent step of removing the water-repellent agent on the surface 10a by scraping the surface layer of the surface 10a (the surface opposite to the substrate 1) after making the inner wall and the surface 10a of 4 water-repellent (See);
- a treatment liquid is applied to the surface 10a of the specific metal-filled microstructure 10 to which the substrate 1 is attached, and the surface of the insulating base material 3 is selectively partially removed in the thickness direction Dt.
- a manufacturing method including a protrusion step of projecting one end of a plurality of conduction paths 5 from the surface of the insulating base material 3 (see FIG. 2C); a substrate removal step of removing the substrate 1 (see FIG. 2D); be able to.
- one surface 10a of the specific metal-filled microstructure 10 is treated by each of the water-repellent step and the projecting step, but the manufacturing method of the present invention is used.
- the other surface of the specific metal-filled microstructure 10 may also be treated by each of the water-repellent step and the projecting step.
- the state shown in FIGS. 1D and 2D that is, the insulating base material 3 and the plurality of conduction paths 5 provided so as to penetrate in the thickness direction of the insulating base material 3 are provided, and the plurality of conduction paths 5 are provided.
- the back surface of the specific anisotropic conductive member 20 provided with one end protruding from one surface of the insulating base material 4 is treated by each step of the water repellent step and the protruding step. May be good.
- the preparation step of the manufacturing method of the present invention is a step of preparing a specific metal-filled microstructure.
- a conventionally known method can be used, for example, the method described in claim 1 of Patent Document 1 (Japanese Unexamined Patent Publication No. 2008-270157), International Publication No. 2018/155273. Examples thereof include the method described in claim 1, the method described in paragraphs [0027] to [0031] of JP-A-2019-153415, and the like.
- the specific metal-filled microstructure in some of the conductive paths, the unfilled region in which at least a part of the inside of the through-passage in the thickness direction is not filled with the conductive substance is described above. By performing the preparatory process by the method, it will inevitably exist at a certain rate.
- the insulating base material of the specified metal-filled microstructure has an electrical resistivity ( about 10 14 ⁇ ⁇ cm) similar to that of the insulating base material constituting a conventionally known anisotropic conductive film or the like. If there is, it is not particularly limited.
- the insulating base material examples include a metal oxide base material, a metal nitride base material, a glass base material, a ceramic base material such as silicon carbide and silicon nitride, a carbon base material such as diamond-like carbon, and a polyimide base material. Examples thereof include these composite materials.
- a ceramic material or an inorganic material containing 50% by mass or more of a carbon material may be formed on an organic material having through holes.
- a metal oxide base material is preferable because micropores having a desired average opening diameter are formed as through paths and it is easy to form a conduction path described later, and an anode of a valve metal is preferable. It is more preferably an oxide film.
- the valve metal include, for example, aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony and the like. Of these, aluminum is preferable because it has good dimensional stability and is relatively inexpensive. Therefore, it is preferable to use an aluminum substrate to form an anodic oxide film which is an insulating base material to manufacture an anisotropic conductive member.
- the aluminum substrate is not particularly limited, and specific examples thereof include a pure aluminum plate; an alloy plate containing aluminum as a main component and containing a trace amount of a foreign element; high-purity aluminum is vapor-deposited on low-purity aluminum (for example, a recycled material).
- the surface of the aluminum substrate to be anodized is preferably 99.5% by mass or more, more preferably 99.9% by mass or more, and 99.99% by mass or more. Is more preferable. When the aluminum purity is in the above range, the regularity of the through-hole arrangement is sufficient.
- the surface of the aluminum substrate to be anodized is previously subjected to heat treatment, degreasing treatment and mirror finish treatment.
- heat treatment the degreasing treatment, and the mirror finish treatment, the same treatments as those described in paragraphs [0044] to [0054] of JP-A-2008-270158 can be applied.
- the through-passage of the specific metal-filled microstructure is preferably composed of micropores provided so as to penetrate in the thickness direction of the anodic oxide film of the valve metal.
- the conduction path of the specific metal-filled microstructure is made of a conductive substance, and is made of a metal filled in a micropore (through path) provided so as to penetrate in the thickness direction of the anodic oxide film of the valve metal. It is preferably configured.
- the metal is preferably an electrical resistivity of less materials 10 3 ⁇ ⁇ cm, and specific examples thereof include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium ( Mg), nickel (Ni), zinc (Zn) and the like are preferably exemplified. Of these, Cu, Au, Al, and Ni are preferable, Cu and Au are more preferable, and Cu is even more preferable, from the viewpoint of electrical conductivity.
- the water-repellent step of the manufacturing method of the present invention is a step of making the inner wall of the gangway repellency in an unfilled region where at least a part of the inside of the gangway in the thickness direction is not filled with a conductive substance. ..
- a method for making water repellent it is preferable to make it water repellent by a water repellent agent, and when applied to a flat aluminum oxide plate, the water contact angle can be increased by 5 ° or more. Watering is more preferred.
- the water-repellent step is at least one of a silicon-containing compound and a fluorine-containing compound as a water-repellent agent because the water-repellent effect can be maintained even for the etchant used for dissolving the anodic oxide film.
- the treatment step using one of them is preferable, and the treatment step using a fluorine-containing compound is more preferable.
- fluorine-containing compound examples include at least one fluorine-containing compound selected from the group consisting of the following formulas (I), (II), (III), (IV) and (V).
- these fluorine-containing compounds may have any form such as a monomer, a macromer, an oligomer and the like.
- R 1 represents a hydrogen atom or a methyl group
- R 2 is -C p H 2p -, - C (C p H 2p + 1) H -, - CH 2 C (C p H 2p + 1) H- or -CH 2 CH 2 O-
- R f are -C n F 2n + 1 ,-(CF 2 ) n H, -C n F 2n + 1 -CF 3 ,-(CF 2 ) p OC n H 2n C i F 2i + 1 ,-(CF 2) ) P OC m H 2m C i F 2i H, -N (C p H 2p + 1 ) COC n F 2n + 1 , -N (C p H 2p + 1 ) SO 2 C n F 2n + 1 .
- p is an integer of 1 to 10
- n is an integer of 1 to 16
- m is an integer of 1 to 16
- CF 2 CFOR g ... (II) (R g in the formula represents a fluoroalkyl group having 1 to 20 carbon atoms.)
- R 3 and R 4 are hydrogen atoms or methyl groups
- R 5 and R 6 are -C q H 2q- , -C (C q H 2q + 1 ) H-, -CH 2 C (C q H 2q + 1 ).
- R j is -C t F 2 t.
- q is an integer of 1 to 10 and t is an integer of 1 to 16.
- the water-repellent step not only the inner wall of the gangway, but also the surface on the opening side of the gangway in the unfilled region of the specific metal-filled microstructure. It may be made water repellent.
- the water-repellent treatment it is preferable to perform the water-repellent treatment and then the drying treatment.
- the conditions for the drying treatment are not particularly limited, and examples thereof include a treatment in which the product is left to stand for 1 minute to 1 hour in an environment of 20 to 90 ° C.
- the water-repellent step is also abbreviated as the surface on the opening side of the gangway of the unfilled region in the metal-filled microstructure (hereinafter, also referred to as "specific surface” in this paragraph. ),
- a water repellent agent is applied to both the inner wall of the gangway in the unfilled region and the specific surface to make it water repellent, and after the first step, the water repellent agent on the specific surface is applied. It is preferable to have a second step of removing.
- a method for removing the water repellent agent in the second step for example, a method of wiping off the water repellent agent on the specific surface, a method of scraping the surface layer of the specific surface, and the like can be mentioned.
- the method of shaving is preferable.
- the thickness of the surface layer of the specific surface to be scraped is preferably 0.5 to 2 ⁇ m.
- the method for scraping the surface layer of a specific surface is not particularly limited, and examples thereof include mechanical polishing treatment, chemical mechanical polishing (CMP) treatment, electrolytic polishing treatment, and ion milling treatment, which are shown below.
- a polishing cloth having a particle size of # 800 to # 1500 (for example, a SiC cloth) is used for wrapping, the thickness is adjusted, and then polishing is performed with a diamond slurry having an average particle size of 1 to 3 ⁇ m. Further, by polishing with a diamond slurry having an average particle diameter of 0.1 to 0.5 ⁇ m, a mirror surface state can be obtained.
- the polishing thickness of the electrode surface is preferably 0.5 ⁇ m to 20 ⁇ m, while the polishing thickness of the opening surface is preferably 10 ⁇ m to 50 ⁇ m.
- the rotation speed is preferably 10 rpm to 100 rpm, more preferably 20 to 60 rpm.
- the load is preferably 0.01 to 0.1 kgf / cm 2 , more preferably 0.02 to 0.08 kgf / cm 2 .
- CMP ⁇ Chemical mechanical polishing (CMP) treatment>
- a CMP slurry such as PNANERLITE-7000 manufactured by Fujimi Incorporated, GPX HSC800 manufactured by Hitachi Chemical Co., Ltd., and CL-1000 manufactured by Asahi Glass Co., Ltd. can be used.
- Electrolytic polishing examples include "Aluminum Handbook", 6th edition, edited by Japan Aluminum Association, 2001, p. Various methods described in 164-165; methods described in US Pat. No. 2,708,655; “Practical Surface Techniques", vol. 33, No. 3, 1986, p. The methods described in 32-38; etc. are preferably mentioned.
- the ion milling treatment is performed when more precise polishing than the above-mentioned CMP treatment or electrolytic polishing treatment is required, and a known technique can be used. It is preferable to use a general argon ion as the ion species.
- the treatment liquid for example, an acid aqueous solution that does not dissolve the metal (for example, copper or the like) constituting the above-mentioned conduction path but dissolves an insulating base material (for example, aluminum oxide which is an anodic oxide film of aluminum).
- an insulating base material for example, aluminum oxide which is an anodic oxide film of aluminum.
- an alkaline aqueous solution may be mentioned.
- examples of the method of applying the treatment liquid to the surface of the metal-filled microstructure include a dipping method and a spraying method. Above all, the dipping method is preferable.
- an aqueous acid solution When an aqueous acid solution is used, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, or hydrochloric acid, or a mixture thereof. Above all, an aqueous solution containing no chromic acid is preferable because it is excellent in safety.
- the concentration of the aqueous acid solution is preferably 1 to 10% by mass.
- the temperature of the aqueous acid solution is preferably 25 to 60 ° C.
- an alkaline aqueous solution it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide.
- the concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass.
- the temperature of the alkaline aqueous solution is preferably 20 to 35 ° C. Specifically, for example, a 50 g / L, 40 ° C. phosphoric acid aqueous solution, a 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution, or a 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution is preferably used. ..
- the immersion time in the acid aqueous solution or the alkaline aqueous solution is preferably 8 to 120 minutes, more preferably 10 to 90 minutes, still more preferably 15 to 60 minutes.
- the soaking time means the total of each soaking time when the soaking treatment for a short time is repeated. A cleaning treatment may be performed between the immersion treatments.
- the height of the projecting portion where one end of the plurality of conduction paths protrudes from the surface of the insulating base material by the projecting step is 50 nm for the reason that the bondability with the surface of the member having low flatness is good.
- the above is preferable, 0.1 to 0.8 ⁇ m is more preferable, and 0.2 to 0.5 ⁇ m is further preferable.
- the height of the protruding portion is 10 fields at a magnification of 60,000 times using a field emission scanning electron microscope (FE-SEM) for a cross section in the thickness direction of the metal-filled microstructure. It is the average value of the values measured by observing and measuring the height of the protruding portion protruding from the surface of the insulating base material for each of a plurality of conduction paths.
- FE-SEM field emission scanning electron microscope
- the production method of the present invention preferably has a cleaning step of cleaning the surface of the specific metal-filled microstructure after the projecting step.
- the cleaning method include a method of immersing in a rinse solution and a method of spraying the rinse solution using a conventionally known rinse solution.
- the rinse solution preferably contains water as a main component.
- the rinsing liquid may contain a water-miscible solvent such as alcohols, acetone, tetrahydrofuran and the like as a solvent other than water.
- the rinse liquid preferably contains a surfactant.
- the substrate is removed after the second removal step. It may have a process.
- the method for removing the substrate is not particularly limited, and examples thereof include a method for removing the substrate by dissolution. The method of removing the aluminum substrate by melting will be described in detail below.
- ⁇ Dissolution of aluminum substrate For the dissolution of the aluminum substrate, it is preferable to use a treatment liquid that is difficult to dissolve the anodic oxide film and easily dissolves aluminum.
- the dissolution rate of such a treatment liquid in aluminum is preferably 1 ⁇ m / min or more, more preferably 3 ⁇ m / min or more, and further preferably 5 ⁇ m / min or more.
- the dissolution rate for the anodic oxide film is preferably 0.1 nm / min or less, more preferably 0.05 nm / min or less, and even more preferably 0.01 nm / min or less.
- the treatment liquid contains at least one metal compound having a lower ionization tendency than aluminum and has a pH of 4 or less or 8 or more, and the pH is 3 or less or 9 or more. Is more preferable, and 2 or less or 10 or more is further preferable.
- Such treatment liquids are based on an acid or alkaline aqueous solution and include, for example, manganese, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, platinum, etc. It is preferably a compound containing a gold compound (for example, platinum chloride acid), these fluorides, these chlorides and the like. Of these, an acid aqueous solution base is preferable, and a chloride blend is preferable.
- a treatment liquid obtained by blending a hydrochloric acid aqueous solution with mercury chloride (hydrochloric acid / mercury chloride) and a treatment liquid obtained by blending a hydrochloric acid aqueous solution with copper chloride (hydrochloric acid / copper chloride) are preferable from the viewpoint of treatment latitude.
- the composition of such a treatment liquid is not particularly limited, and for example, a bromine / methanol mixture, a bromine / ethanol mixture, aqua regia, or the like can be used.
- the acid or alkali concentration of such a treatment liquid is preferably 0.01 to 10 mol / L, more preferably 0.05 to 5 mol / L.
- the treatment temperature using such a treatment liquid is preferably ⁇ 10 ° C. to 80 ° C., preferably 0 ° C. to 60 ° C.
- the above-mentioned aluminum substrate is melted by contacting with the above-mentioned treatment liquid.
- the contact method is not particularly limited, and examples thereof include a dipping method and a spraying method. Above all, the dipping method is preferable.
- the contact time at this time is preferably 10 seconds to 5 hours, more preferably 1 minute to 3 hours.
- Example 1 A specific anisotropic conductive member was produced by the following procedure.
- the aluminum substrate was subjected to electrolytic polishing treatment under the conditions of a voltage of 25 V, a liquid temperature of 65 ° C., and a liquid flow velocity of 3.0 m / min using an electrolytic polishing liquid having the following composition.
- the cathode was a carbon electrode, and the power supply was GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.).
- the flow velocity of the electrolytic solution was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
- the surface roughness Ra after electrolytic polishing was less than 0.03 um.
- Electrolytic polishing liquid composition ⁇ 85% by mass phosphoric acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.) 660 mL ⁇ Pure water 160mL ⁇ Sulfuric acid 150mL ⁇ Ethylene glycol 30mL
- the aluminum substrate after the pre-anodizing treatment was subjected to a demembrane treatment by immersing it in a 0.5 mol / L phosphoric acid aqueous solution (liquid temperature: 40 ° C.) for 20 minutes.
- a reanodizing treatment was performed for 5 hours with an electrolytic solution of 0.50 mol / L oxalic acid under the conditions of a voltage of 40 V, a liquid temperature of 16 ° C., and a liquid flow rate of 3.0 m / min, and an anodized film having a film thickness of 40 ⁇ m.
- a stainless steel electrode was used as the cathode, and GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.) was used as the power source.
- a NeoCool BD36 manufactured by Yamato Kagaku Co., Ltd.
- a pair stirrer PS-100 manufactured by EYELA Tokyo Rika Kikai Co., Ltd. was used as the stirring and heating device.
- the flow velocity of the electrolytic solution was measured using a vortex type flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
- electrolytic treatment electrolytic removal treatment
- electrolytic removal treatment is performed while continuously lowering the voltage from 40 V to 0 V at a voltage drop rate of 0.2 V / sec under the same treatment liquid and treatment conditions as the above anodizing treatment.
- the surface of the anodic oxide film was washed with warm water at 50 ° C., NeutraClean 68 (manufactured by Rohm and Haas) at 45 ° C., and warm water at 50 ° C., and a sodium hydroxide aqueous solution (25) containing 5 g / L of zinc was continuously used.
- etching treatment etching removal treatment
- electroless nickel treatment was performed in order to suppress hydrogen generation during the plating treatment, and a plating seed layer in which zinc and nickel were laminated was formed on the bottom of the pore.
- the average opening diameter of the micropores present in the anodic oxide film after the barrier layer removing step was 60 nm.
- the average aperture diameter was calculated as an average value measured at 50 points by taking a surface photograph (magnification 50,000 times) by FE-SEM.
- the average thickness of the anodic oxide film after the barrier layer removing step was 40 ⁇ m.
- the anodic oxide film is cut in the thickness direction with a focused ion beam (FIB), and a surface photograph (magnification of 50,000 times) is taken of the cross section by FE-SEM. It was calculated as an average value measured by points.
- the density of micropores present in the anodic oxide film was about 100 million / mm 2 .
- the density of micropores was measured and calculated by the method described in paragraphs [0168] and [0169] of JP-A-2008-270158.
- the degree of regularization of the micropores present in the anodic oxide film was 92%.
- the degree of regularization was calculated by taking a surface photograph (magnification 20000 times) with an FE-SEM and measuring by the method described in paragraphs [0024] to [0027] of JP-A-2008-270158.
- the metal-filled microstructure after the water-repellent step is immersed in a phosphoric acid solution to selectively dissolve the anodic oxide film, whereby a cylinder of the filled metal filled in a plurality of through holes is formed.
- a specific idiosyncratic conductive member As the phosphoric acid solution, a 0.5 mol / L aqueous solution (liquid temperature: 40 ° C.) was used, and the treatment time was set to 10 minutes.
- Examples 2 to 9 and Comparative Examples 1 to 3 A specific anisotropic conductive member was produced by the same method as in Example 1 except that the treatment conditions in the water repellent step and the projecting step were changed to the conditions shown in Table 1 below.
- the polishing in the water-repellent step performed in Examples 2 to 8 after the applied water-repellent agent was dried, silica abrasive grains were used to make the polishing thicker than the state before the water-repellent agent was applied. Polishing was performed until the surface layer of 0.5 ⁇ m was removed, and the water-repellent surface layer was removed.
- Substrate 3 Insulating base material 4 Through-passage 5 Conduction path 5a Protruding part 6 Unfilled area 10 Specified metal-filled microstructure 10a Surface 20 Specified anisotropic conductive member Dt Thickness direction h Height of protruding part
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing Of Electrical Connectors (AREA)
Abstract
The purpose of the present invention is to provide a method for producing a heteroconductive member in which it is possible to suppress variations in the heights of protruding portions of a conductive path. A method for producing a heteroconductive member comprising an insulating base material, a plurality of pass-through paths that pass through the insulating base material in the thickness direction thereof, and a plurality of conductive paths composed of a conductive material that fills the inside of the plurality of pass-through paths, one end of the plurality of conductive paths being provided so as to protrude from at least one surface of the insulating base material, the method comprising: a preparation step in which a metal-filled microstructure having an unfilled region therein is prepared; a water repellency step in which the inner walls of the pass-through paths in the unfilled region are made to be water repellant; and a protrusion step in which, after the water repellency step, a treatment liquid is applied to the surface of the metal-filled microstructure, the surface of the insulating base material is selectively and partially removed in the thickness direction, and one end of the plurality of conductive paths is made to protrude from the surface of the insulating base material.
Description
本発明は、異方導電性部材の製造方法に関するものである。
The present invention relates to a method for manufacturing an anisotropic conductive member.
絶縁性基材に設けられた複数の貫通孔に金属等の導電性物質が充填されてなる構造体は、近年ナノテクノロジーでも注目されている分野のひとつであり、例えば、異方導電性部材としての用途が期待されている。
異方導電性部材は、半導体素子等の電子部品と回路基板との間に挿入し、加圧するだけで電子部品と回路基板間の電気的接続が得られるため、半導体素子等の電子部品等の電気的接続部材、および機能検査を行う際の検査用コネクタ等として広く使用されている。
特に、半導体素子等の電子部品は、ダウンサイジング化が顕著である。従来のワイヤーボンディングのような配線基板を直接接続する方式、フリップチップボンディング、およびサーモコンプレッションボンディング等では、電子部品の電気的な接続の安定性を十分に保証することができないため、電子接続部材として異方導電性部材が注目されている。 A structure in which a plurality of through holes provided in an insulating base material are filled with a conductive substance such as metal is one of the fields that have been attracting attention in nanotechnology in recent years, for example, as an anisotropic conductive member. Is expected to be used.
An anisotropic conductive member is inserted between an electronic component such as a semiconductor element and a circuit board, and an electrical connection can be obtained between the electronic component and the circuit board simply by applying pressure. Therefore, the electronic component such as a semiconductor element can be used. It is widely used as an electrical connection member, an inspection connector for performing a functional inspection, and the like.
In particular, electronic components such as semiconductor devices are significantly downsized. As a method of directly connecting a wiring board such as conventional wire bonding, flip-chip bonding, thermocompression bonding, etc., the stability of electrical connection of electronic components cannot be sufficiently guaranteed, so that it can be used as an electronic connection member. An anisotropic conductive member is attracting attention.
異方導電性部材は、半導体素子等の電子部品と回路基板との間に挿入し、加圧するだけで電子部品と回路基板間の電気的接続が得られるため、半導体素子等の電子部品等の電気的接続部材、および機能検査を行う際の検査用コネクタ等として広く使用されている。
特に、半導体素子等の電子部品は、ダウンサイジング化が顕著である。従来のワイヤーボンディングのような配線基板を直接接続する方式、フリップチップボンディング、およびサーモコンプレッションボンディング等では、電子部品の電気的な接続の安定性を十分に保証することができないため、電子接続部材として異方導電性部材が注目されている。 A structure in which a plurality of through holes provided in an insulating base material are filled with a conductive substance such as metal is one of the fields that have been attracting attention in nanotechnology in recent years, for example, as an anisotropic conductive member. Is expected to be used.
An anisotropic conductive member is inserted between an electronic component such as a semiconductor element and a circuit board, and an electrical connection can be obtained between the electronic component and the circuit board simply by applying pressure. Therefore, the electronic component such as a semiconductor element can be used. It is widely used as an electrical connection member, an inspection connector for performing a functional inspection, and the like.
In particular, electronic components such as semiconductor devices are significantly downsized. As a method of directly connecting a wiring board such as conventional wire bonding, flip-chip bonding, thermocompression bonding, etc., the stability of electrical connection of electronic components cannot be sufficiently guaranteed, so that it can be used as an electronic connection member. An anisotropic conductive member is attracting attention.
このような異方導電性部材の製造方法に関して、例えば、特許文献1には、(1)アルミニウム基板を陽極酸化し、マイクロポアを有するアルミナ皮膜を形成する陽極酸化処理工程、(2)上記陽極酸化処理工程の後に、上記陽極酸化により生じたマイクロポアによる孔を貫通化して上記絶縁性基材を得る貫通化処理工程、(3)上記貫通化処理工程の後に、得られた上記絶縁性基材における貫通化した孔の内部に導電性部材を充填して上記異方導電性部材を得る導電性部材充填工程、(4)上記導電性部材充填工程の後に、上記絶縁性基材の表面および裏面を平滑化する表面平滑処理工程、ならびに、(5)上記表面平滑工程の後に、上記絶縁性基材の表面および裏面から上記導電性部材が突出した構造を形成する導通路突出工程を具備する異方導電性部材の製造方法が記載されている([請求項1]~[請求項3])。また、特許文献1には、導通路突出工程に関して、「(5-a)上記絶縁性基材の表面および裏面の一部を除去することにより、上記絶縁性基材の表面および裏面から導電性部材が突出した構造を形成する処理」が記載されており([請求項5])、具体的には、表面平滑処理工程後の異方導電性部材を酸水溶液またはアルカリ水溶液に接触させることにより、異方導電性部材表面の絶縁性基材のみを一部溶解させて除去して導通路を突出させる処理が記載されている([0134])。
Regarding the method for manufacturing such an anisotropic conductive member, for example, Patent Document 1 describes (1) an anodic oxidation treatment step of anodicating an aluminum substrate to form an alumina film having micropores, and (2) the above-mentioned anode. After the oxidation treatment step, the penetration treatment step of penetrating the pores formed by the micropores generated by the anodic oxidation to obtain the insulating base material, and (3) the insulating group obtained after the penetration treatment step. The conductive member filling step of filling the inside of the through hole in the material to obtain the anisotropic conductive member, (4) after the conductive member filling step, the surface of the insulating base material and the surface of the insulating base material A surface smoothing treatment step for smoothing the back surface and (5) a conduction path projecting step for forming a structure in which the conductive member protrudes from the front surface and the back surface of the insulating base material are provided after the surface smoothing step. A method for manufacturing an anisotropic conductive member is described ([claim 1] to [claim 3]). Further, in Patent Document 1, regarding the conduction path projecting step, "(5-a) Conductivity is obtained from the front surface and the back surface of the insulating base material by removing a part of the front surface and the back surface of the insulating base material. "Treatment for forming a structure in which the member protrudes" is described ([claim 5]), and specifically, by contacting the anisotropic conductive member after the surface smoothing treatment step with an acid aqueous solution or an alkaline aqueous solution. , A process of partially dissolving and removing only the insulating base material on the surface of the anisotropic conductive member to project the conduction path is described ([0134]).
本発明者は、特許文献1に記載された異方導電性部材の製造方法を検討したところ、異方導電性部材表面の絶縁性基材のみを一部溶解させて除去して導通路を突出させる際に、一部の導通路において、貫通路(マイクロポアの貫通孔)の内部の厚み方向の少なくとも一部に導電性物質(導電性部材)が充填されていない未充填領域があると、絶縁性基材を溶解する条件によっては、導通路の突出部分の長さにバラツキが生じる場合があることを明らかとし、例えば、未充填領域が存在する導通路や貫通路の付近では、導通路の突出部分が接合等の際の加圧によって座屈し、隣接する導通路と接触することで絶縁性が損なわれる場合があることを明らかとした。
When the present inventor examined the method for manufacturing the anisotropic conductive member described in Patent Document 1, only a part of the insulating base material on the surface of the anisotropic conductive member was melted and removed to project the conduction path. If there is an unfilled region in which the conductive substance (conductive member) is not filled in at least a part of the inside of the through passage (through hole of the micropore) in the thickness direction in some of the conduction paths. It was clarified that the length of the protruding portion of the conduction path may vary depending on the conditions for melting the insulating base material. For example, in the vicinity of the conduction path or the through path where an unfilled region exists, the conduction path It was clarified that the protruding portion of the above may buckle due to pressurization at the time of joining or the like and come into contact with an adjacent conduction path, so that the insulating property may be impaired.
そこで、本発明は、導通路の突出部分の高さのバラツキを抑制することができる異方導電性部材の製造方法を提供することを課題とする。
Therefore, it is an object of the present invention to provide a method for manufacturing an anisotropic conductive member capable of suppressing a variation in the height of a protruding portion of a conduction path.
本発明者は、上記課題を達成すべく鋭意研究した結果、所定の金属充填微細構造体に対して、撥水化工程および突出工程の各工程による処理を施すことにより、導通路の突出部分の高さのバラツキを抑制することができることを見出し、本発明を完成させた。
すなわち、以下の構成により上記課題を達成することができることを見出した。 As a result of diligent research to achieve the above problems, the present inventor applies treatments to a predetermined metal-filled microstructure by each of the water-repellent step and the projecting step to obtain the protruding portion of the conduction path. The present invention has been completed by finding that it is possible to suppress the variation in height.
That is, it was found that the above problem can be achieved by the following configuration.
すなわち、以下の構成により上記課題を達成することができることを見出した。 As a result of diligent research to achieve the above problems, the present inventor applies treatments to a predetermined metal-filled microstructure by each of the water-repellent step and the projecting step to obtain the protruding portion of the conduction path. The present invention has been completed by finding that it is possible to suppress the variation in height.
That is, it was found that the above problem can be achieved by the following configuration.
[1] 絶縁性基材と、絶縁性基材の厚み方向に貫通した複数の貫通路と、複数の貫通路の内部に充填された導電性物質で構成された複数の導通路とを有し、複数の導通路の一端が絶縁性基材の少なくとも一方の面から突出した状態で設けられる異方導電性部材の製造方法であって、
絶縁性基材と、絶縁性基材の厚み方向に貫通した複数の貫通路と、複数の貫通路の内部に充填された導電性物質で構成された複数の導通路とを有し、かつ、複数の導通路のうち一部の導通路において、貫通路の内部の厚み方向の少なくとも一部に導電性物質が充填されていない未充填領域が存在している金属充填微細構造体を準備する準備工程と、
未充填領域における貫通路の内壁を撥水化する撥水化工程と、
撥水化工程後に、金属充填微細構造体の表面に処理液を付与し、選択的に絶縁性基材の表面を厚み方向に一部除去し、複数の導通路の一端を絶縁性基材の表面から突出させる突出工程と、を有する、異方導電性部材の製造方法。 [1] It has an insulating base material, a plurality of through-passages penetrating in the thickness direction of the insulating base material, and a plurality of conduction paths composed of a conductive substance filled inside the plurality of through-passages. A method for manufacturing an anisotropic conductive member, wherein one end of a plurality of conduction paths is provided so as to project from at least one surface of an insulating base material.
It has an insulating base material, a plurality of through-passages penetrating in the thickness direction of the insulating base material, and a plurality of conduction paths made of a conductive substance filled inside the plurality of through-passages. Preparation for preparing a metal-filled microstructure in which an unfilled region in which at least a part of the inside of the gangway in the thickness direction is not filled with a conductive substance exists in some of the conductive paths. Process and
A water-repellent step that makes the inner wall of the gangway in the unfilled area water-repellent,
After the water-repellent step, a treatment liquid is applied to the surface of the metal-filled microstructure, the surface of the insulating base material is selectively partially removed in the thickness direction, and one end of a plurality of conduction paths is made of the insulating base material. A method for manufacturing an anisotropic conductive member, which comprises a projecting step of projecting from a surface.
絶縁性基材と、絶縁性基材の厚み方向に貫通した複数の貫通路と、複数の貫通路の内部に充填された導電性物質で構成された複数の導通路とを有し、かつ、複数の導通路のうち一部の導通路において、貫通路の内部の厚み方向の少なくとも一部に導電性物質が充填されていない未充填領域が存在している金属充填微細構造体を準備する準備工程と、
未充填領域における貫通路の内壁を撥水化する撥水化工程と、
撥水化工程後に、金属充填微細構造体の表面に処理液を付与し、選択的に絶縁性基材の表面を厚み方向に一部除去し、複数の導通路の一端を絶縁性基材の表面から突出させる突出工程と、を有する、異方導電性部材の製造方法。 [1] It has an insulating base material, a plurality of through-passages penetrating in the thickness direction of the insulating base material, and a plurality of conduction paths composed of a conductive substance filled inside the plurality of through-passages. A method for manufacturing an anisotropic conductive member, wherein one end of a plurality of conduction paths is provided so as to project from at least one surface of an insulating base material.
It has an insulating base material, a plurality of through-passages penetrating in the thickness direction of the insulating base material, and a plurality of conduction paths made of a conductive substance filled inside the plurality of through-passages. Preparation for preparing a metal-filled microstructure in which an unfilled region in which at least a part of the inside of the gangway in the thickness direction is not filled with a conductive substance exists in some of the conductive paths. Process and
A water-repellent step that makes the inner wall of the gangway in the unfilled area water-repellent,
After the water-repellent step, a treatment liquid is applied to the surface of the metal-filled microstructure, the surface of the insulating base material is selectively partially removed in the thickness direction, and one end of a plurality of conduction paths is made of the insulating base material. A method for manufacturing an anisotropic conductive member, which comprises a projecting step of projecting from a surface.
[2] 撥水化工程が、金属充填微細構造体における未充填領域の貫通路の開口側の表面に対して撥水化剤を塗布し、未充填領域における貫通路の内壁および表面をいずれも撥水化する第1工程と、第1工程の後、表面上の撥水化剤を除去する第2工程とを有する、[1]に記載の異方導電性部材の製造方法。
[3] 撥水化工程が、ケイ素含有化合物およびフッ素含有化合物の少なくとも一方を用いた処理工程である、[1]または[2]に記載の異方導電性部材の製造方法。
[4] 絶縁性基材が、バルブ金属の陽極酸化膜である、[1]~[3]のいずれかに記載の異方導電性部材の製造方法。
[5] バルブ金属が、アルミニウムである、[4]に記載の異方導電性部材の製造方法。
[6] 導電性物質が、銅である、[1]~[5]のいずれかに記載の異方導電性部材の製造方法。
[7] 突出工程によって絶縁性基材の表面から突出した複数の導通路の突出部分の高さが、50nm以上である、[1]~[6]のいずれかに記載の異方導電性部材の製造方法。 [2] In the water repellent step, a water repellent agent is applied to the surface of the through-passage in the unfilled region on the opening side of the metal-filled microstructure, and the inner wall and surface of the through-passage in the unfilled region are both coated. The method for producing an anisotropic conductive member according to [1], which comprises a first step of making water repellent and a second step of removing a water repellent agent on the surface after the first step.
[3] The method for producing an anisotropic conductive member according to [1] or [2], wherein the water repellent step is a treatment step using at least one of a silicon-containing compound and a fluorine-containing compound.
[4] The method for manufacturing an anisotropic conductive member according to any one of [1] to [3], wherein the insulating base material is a valve metal anodic oxide film.
[5] The method for manufacturing an anisotropic conductive member according to [4], wherein the valve metal is aluminum.
[6] The method for producing an anisotropic conductive member according to any one of [1] to [5], wherein the conductive substance is copper.
[7] The anisotropic conductive member according to any one of [1] to [6], wherein the height of the protruding portions of the plurality of conduction paths protruding from the surface of the insulating base material by the protruding step is 50 nm or more. Manufacturing method.
[3] 撥水化工程が、ケイ素含有化合物およびフッ素含有化合物の少なくとも一方を用いた処理工程である、[1]または[2]に記載の異方導電性部材の製造方法。
[4] 絶縁性基材が、バルブ金属の陽極酸化膜である、[1]~[3]のいずれかに記載の異方導電性部材の製造方法。
[5] バルブ金属が、アルミニウムである、[4]に記載の異方導電性部材の製造方法。
[6] 導電性物質が、銅である、[1]~[5]のいずれかに記載の異方導電性部材の製造方法。
[7] 突出工程によって絶縁性基材の表面から突出した複数の導通路の突出部分の高さが、50nm以上である、[1]~[6]のいずれかに記載の異方導電性部材の製造方法。 [2] In the water repellent step, a water repellent agent is applied to the surface of the through-passage in the unfilled region on the opening side of the metal-filled microstructure, and the inner wall and surface of the through-passage in the unfilled region are both coated. The method for producing an anisotropic conductive member according to [1], which comprises a first step of making water repellent and a second step of removing a water repellent agent on the surface after the first step.
[3] The method for producing an anisotropic conductive member according to [1] or [2], wherein the water repellent step is a treatment step using at least one of a silicon-containing compound and a fluorine-containing compound.
[4] The method for manufacturing an anisotropic conductive member according to any one of [1] to [3], wherein the insulating base material is a valve metal anodic oxide film.
[5] The method for manufacturing an anisotropic conductive member according to [4], wherein the valve metal is aluminum.
[6] The method for producing an anisotropic conductive member according to any one of [1] to [5], wherein the conductive substance is copper.
[7] The anisotropic conductive member according to any one of [1] to [6], wherein the height of the protruding portions of the plurality of conduction paths protruding from the surface of the insulating base material by the protruding step is 50 nm or more. Manufacturing method.
本発明によれば、導通路の突出部分の高さのバラツキを抑制することができる異方導電性部材の製造方法を提供することができる。
According to the present invention, it is possible to provide a method for manufacturing an anisotropic conductive member capable of suppressing a variation in the height of a protruding portion of a conduction path.
以下、本発明について詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。 Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be based on the representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In the present specification, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。 Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be based on the representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In the present specification, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
[異方導電性部材の製造方法]
本発明の異方導電性部材の製造方法(以下、「本発明の製造方法」とも略す。)は、絶縁性基材と、絶縁性基材の厚み方向に貫通した複数の貫通路と、複数の貫通路の内部に充填された導電性物質で構成された複数の導通路とを有し、複数の導通路の一端が絶縁性基材の少なくとも一方の面から突出した状態で設けられる異方導電性部材(以下、「特定異方導電性部材」とも略す。)の製造方法であって、
絶縁性基材と、絶縁性基材の厚み方向に貫通した複数の貫通路と、複数の貫通路の内部に充填された導電性物質で構成された複数の導通路とを有し、かつ、複数の導通路のうち一部の導通路において、貫通路の内部の厚み方向の少なくとも一部に導電性物質が充填されていない未充填領域が存在している金属充填微細構造体(以下、「特定金属充填微細構造体」とも略す。)を準備する準備工程と;
未充填領域における貫通路の内壁を撥水化する撥水化工程と;
撥水化工程後に、金属充填微細構造体の表面に処理液を付与し、選択的に絶縁性基材の表面を厚み方向に一部除去し、複数の導通路の一端を絶縁性基材の表面から突出させる突出工程と;
を有する、異方導電性部材の製造方法である。 [Manufacturing method of anisotropic conductive member]
The method for manufacturing an anisotropic conductive member of the present invention (hereinafter, also abbreviated as "the manufacturing method of the present invention") includes an insulating base material, a plurality of through passages penetrating in the thickness direction of the insulating base material, and a plurality of through paths. It has a plurality of conduction paths made of a conductive material filled in the inside of the through path, and one end of the plurality of conduction paths is provided in a state of protruding from at least one surface of the insulating base material. A method for manufacturing a conductive member (hereinafter, also abbreviated as "specific anisotropic conductive member").
It has an insulating base material, a plurality of through-passages penetrating in the thickness direction of the insulating base material, and a plurality of conduction paths made of a conductive substance filled inside the plurality of through-passages, and has a plurality of conduction paths. A metal-filled microstructure in which an unfilled region in which at least a part of the inside of the through-passage in the thickness direction is not filled with a conductive substance exists in some of the conductive paths (hereinafter, "" Also abbreviated as "specific metal-filled microstructure") and the preparatory step;
A water-repellent step that makes the inner wall of the gangway in the unfilled area water-repellent;
After the water-repellent step, a treatment liquid is applied to the surface of the metal-filled microstructure, the surface of the insulating base material is selectively partially removed in the thickness direction, and one end of a plurality of conduction paths is made of the insulating base material. With the protrusion process of protruding from the surface;
It is a method of manufacturing an anisotropic conductive member having.
本発明の異方導電性部材の製造方法(以下、「本発明の製造方法」とも略す。)は、絶縁性基材と、絶縁性基材の厚み方向に貫通した複数の貫通路と、複数の貫通路の内部に充填された導電性物質で構成された複数の導通路とを有し、複数の導通路の一端が絶縁性基材の少なくとも一方の面から突出した状態で設けられる異方導電性部材(以下、「特定異方導電性部材」とも略す。)の製造方法であって、
絶縁性基材と、絶縁性基材の厚み方向に貫通した複数の貫通路と、複数の貫通路の内部に充填された導電性物質で構成された複数の導通路とを有し、かつ、複数の導通路のうち一部の導通路において、貫通路の内部の厚み方向の少なくとも一部に導電性物質が充填されていない未充填領域が存在している金属充填微細構造体(以下、「特定金属充填微細構造体」とも略す。)を準備する準備工程と;
未充填領域における貫通路の内壁を撥水化する撥水化工程と;
撥水化工程後に、金属充填微細構造体の表面に処理液を付与し、選択的に絶縁性基材の表面を厚み方向に一部除去し、複数の導通路の一端を絶縁性基材の表面から突出させる突出工程と;
を有する、異方導電性部材の製造方法である。 [Manufacturing method of anisotropic conductive member]
The method for manufacturing an anisotropic conductive member of the present invention (hereinafter, also abbreviated as "the manufacturing method of the present invention") includes an insulating base material, a plurality of through passages penetrating in the thickness direction of the insulating base material, and a plurality of through paths. It has a plurality of conduction paths made of a conductive material filled in the inside of the through path, and one end of the plurality of conduction paths is provided in a state of protruding from at least one surface of the insulating base material. A method for manufacturing a conductive member (hereinafter, also abbreviated as "specific anisotropic conductive member").
It has an insulating base material, a plurality of through-passages penetrating in the thickness direction of the insulating base material, and a plurality of conduction paths made of a conductive substance filled inside the plurality of through-passages, and has a plurality of conduction paths. A metal-filled microstructure in which an unfilled region in which at least a part of the inside of the through-passage in the thickness direction is not filled with a conductive substance exists in some of the conductive paths (hereinafter, "" Also abbreviated as "specific metal-filled microstructure") and the preparatory step;
A water-repellent step that makes the inner wall of the gangway in the unfilled area water-repellent;
After the water-repellent step, a treatment liquid is applied to the surface of the metal-filled microstructure, the surface of the insulating base material is selectively partially removed in the thickness direction, and one end of a plurality of conduction paths is made of the insulating base material. With the protrusion process of protruding from the surface;
It is a method of manufacturing an anisotropic conductive member having.
本発明においては、上述した通り、特定金属充填微細構造体に対して、撥水化工程および突出工程の各工程による処理を施すことにより、導通路の突出部分の高さのバラツキを抑制することができる。
これは、詳細には明らかではないが、およそ以下のとおりと推測される。
まず、本発明者は、金属充填微細構造体の導通路(貫通路)に未充填領域が存在していると、突出工程において絶縁性基材を除去する際に、処理液が未充填領域の貫通路内に浸入し、絶縁性基材が内部から溶解が進行するため、未充填領域が存在する導通路や貫通路の付近において、導通路の突出部分が接合等の際の加圧によって座屈することを明らかとした。
そのため、本発明においては、特定金属充填微細構造体における未充填領域の貫通路の内壁を撥水化することにより、その後の突出工程において絶縁性基材を除去する際に、絶縁性基材の意図しない溶解を防ぐことができるため、導通路の突出部分の高さのバラツキを抑制することができたと考えられる。 In the present invention, as described above, the specific metal-filled microstructure is treated by each of the water-repellent step and the projecting step to suppress the variation in the height of the projecting portion of the conduction path. Can be done.
This is not clear in detail, but it is presumed to be as follows.
First, the present inventor finds that if an unfilled region exists in the conduction path (gangway) of the metal-filled microstructure, the treatment liquid is in the unfilled region when the insulating base material is removed in the projecting step. Since it penetrates into the gangway and the insulating base material dissolves from the inside, the protruding part of the gangway is seated by pressurization at the time of joining or the like in the vicinity of the gangway or the gangway where the unfilled region exists. It was revealed that he would give in.
Therefore, in the present invention, by making the inner wall of the through-passage in the unfilled region of the specific metal-filled microstructure water-repellent, the insulating base material is used when the insulating base material is removed in the subsequent projecting step. Since it is possible to prevent unintentional dissolution, it is considered that the variation in the height of the protruding portion of the conduction path can be suppressed.
これは、詳細には明らかではないが、およそ以下のとおりと推測される。
まず、本発明者は、金属充填微細構造体の導通路(貫通路)に未充填領域が存在していると、突出工程において絶縁性基材を除去する際に、処理液が未充填領域の貫通路内に浸入し、絶縁性基材が内部から溶解が進行するため、未充填領域が存在する導通路や貫通路の付近において、導通路の突出部分が接合等の際の加圧によって座屈することを明らかとした。
そのため、本発明においては、特定金属充填微細構造体における未充填領域の貫通路の内壁を撥水化することにより、その後の突出工程において絶縁性基材を除去する際に、絶縁性基材の意図しない溶解を防ぐことができるため、導通路の突出部分の高さのバラツキを抑制することができたと考えられる。 In the present invention, as described above, the specific metal-filled microstructure is treated by each of the water-repellent step and the projecting step to suppress the variation in the height of the projecting portion of the conduction path. Can be done.
This is not clear in detail, but it is presumed to be as follows.
First, the present inventor finds that if an unfilled region exists in the conduction path (gangway) of the metal-filled microstructure, the treatment liquid is in the unfilled region when the insulating base material is removed in the projecting step. Since it penetrates into the gangway and the insulating base material dissolves from the inside, the protruding part of the gangway is seated by pressurization at the time of joining or the like in the vicinity of the gangway or the gangway where the unfilled region exists. It was revealed that he would give in.
Therefore, in the present invention, by making the inner wall of the through-passage in the unfilled region of the specific metal-filled microstructure water-repellent, the insulating base material is used when the insulating base material is removed in the subsequent projecting step. Since it is possible to prevent unintentional dissolution, it is considered that the variation in the height of the protruding portion of the conduction path can be suppressed.
次に、本発明の製造方法における各工程の概要を図1A~図1C、および、図2A~図2Dを用いて説明した後に、各処理工程について詳述する。
Next, the outline of each step in the manufacturing method of the present invention will be described with reference to FIGS. 1A to 1C and FIGS. 2A to 2D, and then each processing step will be described in detail.
<第1態様>
図1A~図1C(以下、これらをまとめて単に「図1」とも略す。)に示すように、特定異方導電性部材20は、絶縁性基材3と絶縁性基材3の厚み方向Dtに貫通して設けられた複数の貫通路4と複数の貫通路4の内部に充填された導電性物質で構成された複数の導通路5とを有し、かつ、複数の導通路5のうち一部の導通路において、貫通路4の内部の厚み方向の少なくとも一部に導電性物質が充填されていない未充填領域6が存在している特定金属充填微細構造体10を準備する準備工程と(図1A参照);特定金属充填微細構造体10における未充填領域6の貫通路4の開口側の表面10aに対して撥水化剤を塗布し、未充填領域6における貫通路4の内壁および表面10aをいずれも撥水化した後、表面10aの表層を削り、表面10a上の撥水化剤を除去する撥水化工程と(図1B参照);撥水化工程後に、特定金属充填微細構造体10の表面10aに処理液を付与し、選択的に絶縁性基材3の表面を厚み方向Dtに一部除去し、複数の導通路5の一端を絶縁性基材3の表面から突出させる突出工程と(図1C参照);を有する製造方法により作製することができる。 <First aspect>
As shown in FIGS. 1A to 1C (hereinafter, these are collectively abbreviated as “FIG. 1”), the specific anisotropicconductive member 20 is a Dt in the thickness direction of the insulating base material 3 and the insulating base material 3. It has a plurality of through-passages 4 provided so as to penetrate the through-passage and a plurality of conduction paths 5 composed of a conductive material filled inside the plurality of through-passages 4, and among the plurality of conduction paths 5. A preparatory step for preparing a specific metal-filled microstructure 10 in which an unfilled region 6 in which a conductive substance is not filled is present in at least a part of the inside of the through-passage 4 in the thickness direction in some conduction paths. (See FIG. 1A); A water repellent agent is applied to the surface 10a on the opening side of the through-passage 4 of the unfilled region 6 in the specified metal-filled microstructure 10, and the inner wall of the through-passage 4 in the unfilled region 6 and A water-repellent step of removing the water-repellent agent on the surface 10a by scraping the surface layer of the surface 10a after making the surface 10a water-repellent (see FIG. 1B); A treatment liquid is applied to the surface 10a of the structure 10, the surface of the insulating base material 3 is selectively partially removed in the thickness direction Dt, and one end of the plurality of conducting paths 5 protrudes from the surface of the insulating base material 3. It can be produced by a manufacturing method having a protrusion step (see FIG. 1C);
図1A~図1C(以下、これらをまとめて単に「図1」とも略す。)に示すように、特定異方導電性部材20は、絶縁性基材3と絶縁性基材3の厚み方向Dtに貫通して設けられた複数の貫通路4と複数の貫通路4の内部に充填された導電性物質で構成された複数の導通路5とを有し、かつ、複数の導通路5のうち一部の導通路において、貫通路4の内部の厚み方向の少なくとも一部に導電性物質が充填されていない未充填領域6が存在している特定金属充填微細構造体10を準備する準備工程と(図1A参照);特定金属充填微細構造体10における未充填領域6の貫通路4の開口側の表面10aに対して撥水化剤を塗布し、未充填領域6における貫通路4の内壁および表面10aをいずれも撥水化した後、表面10aの表層を削り、表面10a上の撥水化剤を除去する撥水化工程と(図1B参照);撥水化工程後に、特定金属充填微細構造体10の表面10aに処理液を付与し、選択的に絶縁性基材3の表面を厚み方向Dtに一部除去し、複数の導通路5の一端を絶縁性基材3の表面から突出させる突出工程と(図1C参照);を有する製造方法により作製することができる。 <First aspect>
As shown in FIGS. 1A to 1C (hereinafter, these are collectively abbreviated as “FIG. 1”), the specific anisotropic
<第2態様>
本発明の製造方法は、作業性の観点から、撥水化工程、および、突出工程に用いる特定金属充填微細構造体として、基板が付いた状態の特定金属充填微細構造体を用いることが好ましい。
例えば、図2A~図2D(以下、これらをまとめて単に「図2」とも略す。)に示す通り、特定異方導電性部材20は、基板1が付いた特定金属充填微細構造体10を準備する準備工程と(図2A参照);特定金属充填微細構造体10における未充填領域6の貫通路4の開口側の表面10aに対して撥水化剤を塗布し、未充填領域6における貫通路4の内壁および表面10aをいずれも撥水化した後、表面10a(基板1と反対側の表面)の表層を削り、表面10a上の撥水化剤を除去する撥水化工程と(図2B参照);撥水化工程後に、基板1が付いた特定金属充填微細構造体10の表面10aに処理液を付与し、選択的に絶縁性基材3の表面を厚み方向Dtに一部除去し、複数の導通路5の一端を絶縁性基材3の表面から突出させる突出工程と(図2C参照);基板1を除去する基板除去工程と(図2D参照);を有する製造方法により作製することができる。 <Second aspect>
From the viewpoint of workability, the production method of the present invention preferably uses a specific metal-filled microstructure with a substrate attached as the specific metal-filled microstructure used in the water-repellent step and the projecting step.
For example, as shown in FIGS. 2A to 2D (hereinafter, these are collectively abbreviated as “FIG. 2”), the specific anisotropicconductive member 20 prepares a specific metal-filled microstructure 10 having a substrate 1. Preparation step to be performed (see FIG. 2A); A water-repellent step of removing the water-repellent agent on the surface 10a by scraping the surface layer of the surface 10a (the surface opposite to the substrate 1) after making the inner wall and the surface 10a of 4 water-repellent (FIG. 2B). (See); After the water repellent step, a treatment liquid is applied to the surface 10a of the specific metal-filled microstructure 10 to which the substrate 1 is attached, and the surface of the insulating base material 3 is selectively partially removed in the thickness direction Dt. , A manufacturing method including a protrusion step of projecting one end of a plurality of conduction paths 5 from the surface of the insulating base material 3 (see FIG. 2C); a substrate removal step of removing the substrate 1 (see FIG. 2D); be able to.
本発明の製造方法は、作業性の観点から、撥水化工程、および、突出工程に用いる特定金属充填微細構造体として、基板が付いた状態の特定金属充填微細構造体を用いることが好ましい。
例えば、図2A~図2D(以下、これらをまとめて単に「図2」とも略す。)に示す通り、特定異方導電性部材20は、基板1が付いた特定金属充填微細構造体10を準備する準備工程と(図2A参照);特定金属充填微細構造体10における未充填領域6の貫通路4の開口側の表面10aに対して撥水化剤を塗布し、未充填領域6における貫通路4の内壁および表面10aをいずれも撥水化した後、表面10a(基板1と反対側の表面)の表層を削り、表面10a上の撥水化剤を除去する撥水化工程と(図2B参照);撥水化工程後に、基板1が付いた特定金属充填微細構造体10の表面10aに処理液を付与し、選択的に絶縁性基材3の表面を厚み方向Dtに一部除去し、複数の導通路5の一端を絶縁性基材3の表面から突出させる突出工程と(図2C参照);基板1を除去する基板除去工程と(図2D参照);を有する製造方法により作製することができる。 <Second aspect>
From the viewpoint of workability, the production method of the present invention preferably uses a specific metal-filled microstructure with a substrate attached as the specific metal-filled microstructure used in the water-repellent step and the projecting step.
For example, as shown in FIGS. 2A to 2D (hereinafter, these are collectively abbreviated as “FIG. 2”), the specific anisotropic
<他の態様>
図1および図2においては、特定金属充填微細構造体10の一方の表面10aに対して、撥水化工程、および、突出工程の各工程による処理を施しているが、本発明の製造方法は、特定金属充填微細構造体10の他方の表面に対しても、撥水化工程、および、突出工程の各工程による処理を施してもよい。
例えば、図1Dおよび図2Dに示す状態、すなわち、絶縁性基材3と、絶縁性基材3の厚み方向に貫通して設けられた複数の導通路5とを有し、複数の導通路5の一端が絶縁性基材4の一方の面から突出した状態で設けられた特定異方導電性部材20の裏面に対して、撥水化工程、および、突出工程の各工程による処理を施してもよい。 <Other aspects>
In FIGS. 1 and 2, onesurface 10a of the specific metal-filled microstructure 10 is treated by each of the water-repellent step and the projecting step, but the manufacturing method of the present invention is used. The other surface of the specific metal-filled microstructure 10 may also be treated by each of the water-repellent step and the projecting step.
For example, the state shown in FIGS. 1D and 2D, that is, the insulatingbase material 3 and the plurality of conduction paths 5 provided so as to penetrate in the thickness direction of the insulating base material 3 are provided, and the plurality of conduction paths 5 are provided. The back surface of the specific anisotropic conductive member 20 provided with one end protruding from one surface of the insulating base material 4 is treated by each step of the water repellent step and the protruding step. May be good.
図1および図2においては、特定金属充填微細構造体10の一方の表面10aに対して、撥水化工程、および、突出工程の各工程による処理を施しているが、本発明の製造方法は、特定金属充填微細構造体10の他方の表面に対しても、撥水化工程、および、突出工程の各工程による処理を施してもよい。
例えば、図1Dおよび図2Dに示す状態、すなわち、絶縁性基材3と、絶縁性基材3の厚み方向に貫通して設けられた複数の導通路5とを有し、複数の導通路5の一端が絶縁性基材4の一方の面から突出した状態で設けられた特定異方導電性部材20の裏面に対して、撥水化工程、および、突出工程の各工程による処理を施してもよい。 <Other aspects>
In FIGS. 1 and 2, one
For example, the state shown in FIGS. 1D and 2D, that is, the insulating
〔準備工程〕
本発明の製造方法が有する準備工程は、特定金属充填微細構造体を準備する工程である。
ここで、準備工程としては、従来公知の方法を用いることができ、例えば、特許文献1(特開2008-270157号公報)の請求項1に記載された方法、国際公開第2018/155273号の請求項1に記載された方法、特開2019-153415号公報の段落[0027]~[0031]に記載された方法などが挙げられる。
なお、特定金属充填微細構造体における、複数の導通路のうち一部の導通路において、貫通路の内部の厚み方向の少なくとも一部に導電性物質が充填されていない未充填領域は、上述した方法で準備工程を行うことで、一定の割合で不可避的に存在することになる。 [Preparation process]
The preparation step of the manufacturing method of the present invention is a step of preparing a specific metal-filled microstructure.
Here, as a preparatory step, a conventionally known method can be used, for example, the method described inclaim 1 of Patent Document 1 (Japanese Unexamined Patent Publication No. 2008-270157), International Publication No. 2018/155273. Examples thereof include the method described in claim 1, the method described in paragraphs [0027] to [0031] of JP-A-2019-153415, and the like.
In the specific metal-filled microstructure, in some of the conductive paths, the unfilled region in which at least a part of the inside of the through-passage in the thickness direction is not filled with the conductive substance is described above. By performing the preparatory process by the method, it will inevitably exist at a certain rate.
本発明の製造方法が有する準備工程は、特定金属充填微細構造体を準備する工程である。
ここで、準備工程としては、従来公知の方法を用いることができ、例えば、特許文献1(特開2008-270157号公報)の請求項1に記載された方法、国際公開第2018/155273号の請求項1に記載された方法、特開2019-153415号公報の段落[0027]~[0031]に記載された方法などが挙げられる。
なお、特定金属充填微細構造体における、複数の導通路のうち一部の導通路において、貫通路の内部の厚み方向の少なくとも一部に導電性物質が充填されていない未充填領域は、上述した方法で準備工程を行うことで、一定の割合で不可避的に存在することになる。 [Preparation process]
The preparation step of the manufacturing method of the present invention is a step of preparing a specific metal-filled microstructure.
Here, as a preparatory step, a conventionally known method can be used, for example, the method described in
In the specific metal-filled microstructure, in some of the conductive paths, the unfilled region in which at least a part of the inside of the through-passage in the thickness direction is not filled with the conductive substance is described above. By performing the preparatory process by the method, it will inevitably exist at a certain rate.
<絶縁性基材>
上記特定金属充填微細構造体が有する絶縁性基材は、従来公知の異方導電性フィルム等を構成する絶縁性基材と同程度の電気抵抗率(1014Ω・cm程度)を有するものであれば特に限定されない。 <Insulating base material>
The insulating base material of the specified metal-filled microstructure has an electrical resistivity ( about 10 14 Ω · cm) similar to that of the insulating base material constituting a conventionally known anisotropic conductive film or the like. If there is, it is not particularly limited.
上記特定金属充填微細構造体が有する絶縁性基材は、従来公知の異方導電性フィルム等を構成する絶縁性基材と同程度の電気抵抗率(1014Ω・cm程度)を有するものであれば特に限定されない。 <Insulating base material>
The insulating base material of the specified metal-filled microstructure has an electrical resistivity ( about 10 14 Ω · cm) similar to that of the insulating base material constituting a conventionally known anisotropic conductive film or the like. If there is, it is not particularly limited.
絶縁性基材としては、例えば、金属酸化物基材、金属窒化物基材、ガラス基材、シリコンカーバイド、シリコンナイトライド等のセラミックス基材、ダイヤモンドライクカーボン等のカーボン基材、ポリイミド基材、これらの複合材料等が挙げられる。絶縁性基材としては、これ以外に、例えば、貫通孔を有する有機素材上に、セラミックス材料またはカーボン材料を50質量%以上含む無機材料で成膜したものであってもよい。
Examples of the insulating base material include a metal oxide base material, a metal nitride base material, a glass base material, a ceramic base material such as silicon carbide and silicon nitride, a carbon base material such as diamond-like carbon, and a polyimide base material. Examples thereof include these composite materials. As the insulating base material, for example, a ceramic material or an inorganic material containing 50% by mass or more of a carbon material may be formed on an organic material having through holes.
絶縁性基材としては、所望の平均開口径を有するマイクロポアが貫通路として形成され、後述する導通路を形成しやすいという理由から、金属酸化物基材であることが好ましく、バルブ金属の陽極酸化膜であることがより好ましい。
ここで、バルブ金属としては、具体的には、例えば、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等が挙げられる。これらのうち、寸法安定性がよく、比較的安価であることからアルミニウムであることが好ましい。
このため、アルミニウム基板を用いて、絶縁性基材である陽極酸化膜を形成し、異方導電性部材を製造することが好ましい。 As the insulating base material, a metal oxide base material is preferable because micropores having a desired average opening diameter are formed as through paths and it is easy to form a conduction path described later, and an anode of a valve metal is preferable. It is more preferably an oxide film.
Here, examples of the valve metal include, for example, aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony and the like. Of these, aluminum is preferable because it has good dimensional stability and is relatively inexpensive.
Therefore, it is preferable to use an aluminum substrate to form an anodic oxide film which is an insulating base material to manufacture an anisotropic conductive member.
ここで、バルブ金属としては、具体的には、例えば、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等が挙げられる。これらのうち、寸法安定性がよく、比較的安価であることからアルミニウムであることが好ましい。
このため、アルミニウム基板を用いて、絶縁性基材である陽極酸化膜を形成し、異方導電性部材を製造することが好ましい。 As the insulating base material, a metal oxide base material is preferable because micropores having a desired average opening diameter are formed as through paths and it is easy to form a conduction path described later, and an anode of a valve metal is preferable. It is more preferably an oxide film.
Here, examples of the valve metal include, for example, aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony and the like. Of these, aluminum is preferable because it has good dimensional stability and is relatively inexpensive.
Therefore, it is preferable to use an aluminum substrate to form an anodic oxide film which is an insulating base material to manufacture an anisotropic conductive member.
アルミニウム基板は、特に限定されず、その具体例としては、純アルミニウム板;アルミニウムを主成分とし微量の異元素を含む合金板;低純度のアルミニウム(例えば、リサイクル材料)に高純度アルミニウムを蒸着させた基板;シリコンウエハ、石英、ガラス等の表面に蒸着、スパッタ等の方法により高純度アルミニウムを被覆させた基板;アルミニウムをラミネートした樹脂基板;等が挙げられる。
The aluminum substrate is not particularly limited, and specific examples thereof include a pure aluminum plate; an alloy plate containing aluminum as a main component and containing a trace amount of a foreign element; high-purity aluminum is vapor-deposited on low-purity aluminum (for example, a recycled material). A substrate; a substrate obtained by coating the surface of a silicon wafer, quartz, glass or the like with high-purity aluminum by a method such as vapor deposition or sputtering; a resin substrate laminated with aluminum; and the like.
アルミニウム基板のうち、陽極酸化処理を施す側の表面は、アルミニウム純度が、99.5質量%以上であることが好ましく、99.9質量%以上であることがより好ましく、99.99質量%以上であることが更に好ましい。アルミニウム純度が上述の範囲であると、貫通孔配列の規則性が十分となる。
The surface of the aluminum substrate to be anodized is preferably 99.5% by mass or more, more preferably 99.9% by mass or more, and 99.99% by mass or more. Is more preferable. When the aluminum purity is in the above range, the regularity of the through-hole arrangement is sufficient.
また、アルミニウム基板のうち、陽極酸化処理を施す側の表面は、あらかじめ熱処理、脱脂処理および鏡面仕上げ処理が施されることが好ましい。
ここで、熱処理、脱脂処理および鏡面仕上げ処理については、特開2008-270158号公報の[0044]~[0054]段落に記載された各処理と同様の処理を施すことができる。 Further, it is preferable that the surface of the aluminum substrate to be anodized is previously subjected to heat treatment, degreasing treatment and mirror finish treatment.
Here, regarding the heat treatment, the degreasing treatment, and the mirror finish treatment, the same treatments as those described in paragraphs [0044] to [0054] of JP-A-2008-270158 can be applied.
ここで、熱処理、脱脂処理および鏡面仕上げ処理については、特開2008-270158号公報の[0044]~[0054]段落に記載された各処理と同様の処理を施すことができる。 Further, it is preferable that the surface of the aluminum substrate to be anodized is previously subjected to heat treatment, degreasing treatment and mirror finish treatment.
Here, regarding the heat treatment, the degreasing treatment, and the mirror finish treatment, the same treatments as those described in paragraphs [0044] to [0054] of JP-A-2008-270158 can be applied.
<貫通路>
上記特定金属充填微細構造体が有する貫通路は、バルブ金属の陽極酸化膜の厚み方向に貫通して設けられたマイクロポアで構成されていることが好ましい。 <Gangway>
The through-passage of the specific metal-filled microstructure is preferably composed of micropores provided so as to penetrate in the thickness direction of the anodic oxide film of the valve metal.
上記特定金属充填微細構造体が有する貫通路は、バルブ金属の陽極酸化膜の厚み方向に貫通して設けられたマイクロポアで構成されていることが好ましい。 <Gangway>
The through-passage of the specific metal-filled microstructure is preferably composed of micropores provided so as to penetrate in the thickness direction of the anodic oxide film of the valve metal.
<導通路>
上記特定金属充填微細構造体が有する導通路は、導電性物質で構成されており、バルブ金属の陽極酸化膜の厚み方向に貫通して設けられたマイクロポア(貫通路)に充填された金属で構成されていることが好ましい。
上記金属は、電気抵抗率が103Ω・cm以下の材料であるのが好ましく、その具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)、亜鉛(Zn)等が好適に例示される。
中でも、電気伝導性の観点から、Cu、Au、Al、Niが好ましく、Cu、Auがより好ましく、Cuが更に好ましい。 <Conduction path>
The conduction path of the specific metal-filled microstructure is made of a conductive substance, and is made of a metal filled in a micropore (through path) provided so as to penetrate in the thickness direction of the anodic oxide film of the valve metal. It is preferably configured.
The metal is preferably an electrical resistivity ofless materials 10 3 Ω · cm, and specific examples thereof include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium ( Mg), nickel (Ni), zinc (Zn) and the like are preferably exemplified.
Of these, Cu, Au, Al, and Ni are preferable, Cu and Au are more preferable, and Cu is even more preferable, from the viewpoint of electrical conductivity.
上記特定金属充填微細構造体が有する導通路は、導電性物質で構成されており、バルブ金属の陽極酸化膜の厚み方向に貫通して設けられたマイクロポア(貫通路)に充填された金属で構成されていることが好ましい。
上記金属は、電気抵抗率が103Ω・cm以下の材料であるのが好ましく、その具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)、亜鉛(Zn)等が好適に例示される。
中でも、電気伝導性の観点から、Cu、Au、Al、Niが好ましく、Cu、Auがより好ましく、Cuが更に好ましい。 <Conduction path>
The conduction path of the specific metal-filled microstructure is made of a conductive substance, and is made of a metal filled in a micropore (through path) provided so as to penetrate in the thickness direction of the anodic oxide film of the valve metal. It is preferably configured.
The metal is preferably an electrical resistivity of
Of these, Cu, Au, Al, and Ni are preferable, Cu and Au are more preferable, and Cu is even more preferable, from the viewpoint of electrical conductivity.
〔撥水化工程〕
本発明の製造方法が有する撥水化工程は、貫通路の内部の厚み方向の少なくとも一部に導電性物質が充填されていない未充填領域における、貫通路の内壁を撥水化する工程である。
撥水化の方法としては、撥水化剤による撥水化が好ましく、平坦な酸化アルミニウム板に対して適用した場合に水接触角を5°以上増加させることが可能な撥水化剤による撥水化がより好ましい。 [Water repellent process]
The water-repellent step of the manufacturing method of the present invention is a step of making the inner wall of the gangway repellency in an unfilled region where at least a part of the inside of the gangway in the thickness direction is not filled with a conductive substance. ..
As a method for making water repellent, it is preferable to make it water repellent by a water repellent agent, and when applied to a flat aluminum oxide plate, the water contact angle can be increased by 5 ° or more. Watering is more preferred.
本発明の製造方法が有する撥水化工程は、貫通路の内部の厚み方向の少なくとも一部に導電性物質が充填されていない未充填領域における、貫通路の内壁を撥水化する工程である。
撥水化の方法としては、撥水化剤による撥水化が好ましく、平坦な酸化アルミニウム板に対して適用した場合に水接触角を5°以上増加させることが可能な撥水化剤による撥水化がより好ましい。 [Water repellent process]
The water-repellent step of the manufacturing method of the present invention is a step of making the inner wall of the gangway repellency in an unfilled region where at least a part of the inside of the gangway in the thickness direction is not filled with a conductive substance. ..
As a method for making water repellent, it is preferable to make it water repellent by a water repellent agent, and when applied to a flat aluminum oxide plate, the water contact angle can be increased by 5 ° or more. Watering is more preferred.
本発明においては、陽極酸化皮膜の溶解に用いるエッチャントに対しても撥水効果を維持することができるという理由から、撥水化工程が、撥水化剤としてケイ素含有化合物およびフッ素含有化合物の少なくとも一方を用いた処理工程であることが好ましく、フッ素含有化合物を用いた処理工程であることがより好ましい。
In the present invention, the water-repellent step is at least one of a silicon-containing compound and a fluorine-containing compound as a water-repellent agent because the water-repellent effect can be maintained even for the etchant used for dissolving the anodic oxide film. The treatment step using one of them is preferable, and the treatment step using a fluorine-containing compound is more preferable.
上記フッ素含有化合物としては、下記式(I)、(II)、(III)、(IV)および(V)からなる群から選ばれた少なくとも1種のフッ素含有化合物が挙げられる。なお、これらのフッ素含有化合物は、モノマー、マクロマー、オリゴマーなどのいずれの形態を有するものであってよい。
Examples of the fluorine-containing compound include at least one fluorine-containing compound selected from the group consisting of the following formulas (I), (II), (III), (IV) and (V). In addition, these fluorine-containing compounds may have any form such as a monomer, a macromer, an oligomer and the like.
CH2=CR1COOR2Rf・・・(I)
〔式中、R1は水素原子又はメチル基、R2は-CpH2p-、-C(CpH2p+1)H-、-CH2C(CpH2p+1)H-又は-CH2CH2O-、Rfは-CnF2n+1、-(CF2)nH、-CnF2n+1-CF3、-(CF2)pOCnH2nCiF2i+1、-(CF2)pOCmH2mCiF2iH、-N(CpH2p+1)COCnF2n+1、-N(CpH2p+1)SO2CnF2n+1である。但し、pは1~10、nは1~16、mは0~10、iは0~16の整数である。〕 CH 2 = CR 1 COOR 2 R f ... (I)
Wherein, R 1 represents a hydrogen atom or a methyl group, R 2 is -C p H 2p -, - C (C p H 2p + 1) H -, - CH 2 C (C p H 2p + 1) H- or -CH 2 CH 2 O-, R f are -C n F 2n + 1 ,-(CF 2 ) n H, -C n F 2n + 1 -CF 3 ,-(CF 2 ) p OC n H 2n C i F 2i + 1 ,-(CF 2) ) P OC m H 2m C i F 2i H, -N (C p H 2p + 1 ) COC n F 2n + 1 , -N (C p H 2p + 1 ) SO 2 C n F 2n + 1 . However, p is an integer of 1 to 10, n is an integer of 1 to 16, m is an integer of 0 to 10, and i is an integer of 0 to 16. ]
〔式中、R1は水素原子又はメチル基、R2は-CpH2p-、-C(CpH2p+1)H-、-CH2C(CpH2p+1)H-又は-CH2CH2O-、Rfは-CnF2n+1、-(CF2)nH、-CnF2n+1-CF3、-(CF2)pOCnH2nCiF2i+1、-(CF2)pOCmH2mCiF2iH、-N(CpH2p+1)COCnF2n+1、-N(CpH2p+1)SO2CnF2n+1である。但し、pは1~10、nは1~16、mは0~10、iは0~16の整数である。〕 CH 2 = CR 1 COOR 2 R f ... (I)
Wherein, R 1 represents a hydrogen atom or a methyl group, R 2 is -C p H 2p -, - C (C p H 2p + 1) H -, - CH 2 C (C p H 2p + 1) H- or -CH 2 CH 2 O-, R f are -C n F 2n + 1 ,-(CF 2 ) n H, -C n F 2n + 1 -CF 3 ,-(CF 2 ) p OC n H 2n C i F 2i + 1 ,-(CF 2) ) P OC m H 2m C i F 2i H, -N (C p H 2p + 1 ) COC n F 2n + 1 , -N (C p H 2p + 1 ) SO 2 C n F 2n + 1 . However, p is an integer of 1 to 10, n is an integer of 1 to 16, m is an integer of 0 to 10, and i is an integer of 0 to 16. ]
CF2=CFORg・・・(II)
(式中Rgは炭素数1~20のフルオロアルキル基を表わす。) CF 2 = CFOR g ... (II)
(R g in the formula represents a fluoroalkyl group having 1 to 20 carbon atoms.)
(式中Rgは炭素数1~20のフルオロアルキル基を表わす。) CF 2 = CFOR g ... (II)
(R g in the formula represents a fluoroalkyl group having 1 to 20 carbon atoms.)
CH2=CHRg・・・(III)
(式中Rgは炭素数1~20のフルオロアルキル基を表わす。) CH 2 = CHR g ... (III)
(R g in the formula represents a fluoroalkyl group having 1 to 20 carbon atoms.)
(式中Rgは炭素数1~20のフルオロアルキル基を表わす。) CH 2 = CHR g ... (III)
(R g in the formula represents a fluoroalkyl group having 1 to 20 carbon atoms.)
CH2=CR3COOR5RjR6OCOCR4=CH2 ・・・(IV)
〔式中、R3、R4は水素原子又はメチル基、R5、R6は-CqH2q-、-C(CqH2q+1)H-、-CH2C(CqH2q+1)H-又は-CH2CH2O-、Rjは-CtF2tである。但し、qは1~10、tは1~16の整数である。〕 CH 2 = CR 3 COOR 5 R j R 6 OCOCR 4 = CH 2 ... (IV)
[In the formula, R 3 and R 4 are hydrogen atoms or methyl groups, R 5 and R 6 are -C q H 2q- , -C (C q H 2q + 1 ) H-, -CH 2 C (C q H 2q + 1 ). H- or -CH 2 CH 2 O-, R j is -C t F 2 t. However, q is an integer of 1 to 10 and t is an integer of 1 to 16. ]
〔式中、R3、R4は水素原子又はメチル基、R5、R6は-CqH2q-、-C(CqH2q+1)H-、-CH2C(CqH2q+1)H-又は-CH2CH2O-、Rjは-CtF2tである。但し、qは1~10、tは1~16の整数である。〕 CH 2 = CR 3 COOR 5 R j R 6 OCOCR 4 = CH 2 ... (IV)
[In the formula, R 3 and R 4 are hydrogen atoms or methyl groups, R 5 and R 6 are -C q H 2q- , -C (C q H 2q + 1 ) H-, -CH 2 C (C q H 2q + 1 ). H- or -CH 2 CH 2 O-, R j is -C t F 2 t. However, q is an integer of 1 to 10 and t is an integer of 1 to 16. ]
CH2=CR7COOCH2(CH2Rk)CHOCOCR8=CH2・・・(V)
(式中、R7、R8は水素原子又はメチル基、Rkは-CyF2y+1である。但し、yは1~16の整数である。) CH 2 = CR 7 COOCH 2 (CH 2 R k ) CHOCOCR 8 = CH 2 ... (V)
(In the formula, R 7 and R 8 are hydrogen atoms or methyl groups, and R k is −C y F 2y + 1. However, y is an integer of 1 to 16.)
(式中、R7、R8は水素原子又はメチル基、Rkは-CyF2y+1である。但し、yは1~16の整数である。) CH 2 = CR 7 COOCH 2 (CH 2 R k ) CHOCOCR 8 = CH 2 ... (V)
(In the formula, R 7 and R 8 are hydrogen atoms or methyl groups, and R k is −C y F 2y + 1. However, y is an integer of 1 to 16.)
上記式(I)で表される化合物としては、具体的には、例えば、CF3(CF2)7CH2CH2OCOCH=CH2、CF3CH2OCOCH=CH2、CF3(CF2)4CH2CH2OCOC(CH3)=CH2、C7F15CON(C2H5)CH2OCOC(CH3)=CH2、CF3(CF2)7SO2N(CH3)CH2CH2OCOCH=CH2、CF3(CF2)7SO2N(C3H7)CH2CH2OCOCH=CH2、C2F5SO2N(C3H7)CH2CH2OCOC(CH3)=CH2、(CF3)2CF(CF2)6(CH2)3OCOCH=CH2、(CF3)2CF(CF2)10(CH2)3OCOC(CH3)=CH2、CF3(CF2)4CH(CH3)OCOC(CH3)=CH2、
Specific examples of the compound represented by the above formula (I) include CF 3 (CF 2 ) 7 CH 2 CH 2 OCOCH = CH 2 , CF 3 CH 2 OCOCH = CH 2 , and CF 3 (CF 2). ) 4 CH 2 CH 2 OCOC (CH 3 ) = CH 2 , C 7 F 15 CON (C 2 H 5 ) CH 2 OCOC (CH 3 ) = CH 2 , CF 3 (CF 2 ) 7 SO 2 N (CH 3) ) CH 2 CH 2 OCOCH = CH 2 , CF 3 (CF 2 ) 7 SO 2 N (C 3 H 7 ) CH 2 CH 2 OCOCH = CH 2 , C 2 F 5 SO 2 N (C 3 H 7 ) CH 2 CH 2 OCOC (CH 3) = CH 2, (CF 3) 2 CF (CF 2) 6 (CH 2) 3 OCOCH = CH 2, (CF 3) 2 CF (CF 2) 10 (CH 2) 3 OCOC ( CH 3 ) = CH 2 , CF 3 (CF 2 ) 4 CH (CH 3 ) OCOC (CH 3 ) = CH 2 ,
、CF3CH2OCH2CH2OCOCH=CH2、C2F5(CH2CH2O)2CH2OCOCH=CH2、(CF3)2CFO(CH2)5OCOCH=CH2、CF3(CF2)4OCH2CH2OCOC(CH3)=CH2、C2F5CON(C2H5)CH2OCOCH=CH2、CF3(CF2)2CON(CH3)CH(CH3)CH2OCOCH=CH2、H(CF2)6C(C2H5)OCOC(CH3)=CH2、H(CF2)8CH2OCOCH=CH2、H(CF2)4CH2OCOCH=CH2、H(CF2)CH2OCOC(CH3)=CH2、
, CF 3 CH 2 OCH 2 CH 2 OCOCH = CH 2 , C 2 F 5 (CH 2 CH 2 O) 2 CH 2 OCOCH = CH 2 , (CF 3 ) 2 CFO (CH 2 ) 5 OCOCH = CH 2 , CF 3 (CF 2 ) 4 OCH 2 CH 2 OCOC (CH 3 ) = CH 2 , C 2 F 5 CON (C 2 H 5 ) CH 2 OCOCH = CH 2 , CF 3 (CF 2 ) 2 CON (CH 3 ) CH (CH 3 ) CH 2 OCOCH = CH 2 , H (CF 2 ) 6 C (C 2 H 5 ) OCOC (CH 3 ) = CH 2 , H (CF 2 ) 8 CH 2 OCOCH = CH 2 , H (CF 2) ) 4 CH 2 OCOCH = CH 2 , H (CF 2 ) CH 2 OCOC (CH 3 ) = CH 2 ,
、CF3(CF2)7SO2N(CH3)CH2CH2OCOC(CH3)=CH2、CF3(CF2)7SO2N(CH3)(CH2)10OCOCH=CH2、C2F5SO2N(C2H5)CH2CH2OCOC(CH3)=CH2、CF3(CF2)7SO2N(CH3)(CH2)4OCOCH=CH2、C2F5SO2N(C2H5)C(C2H5)HCH2OCOCH=CH2等が挙げられる。
, CF 3 (CF 2 ) 7 SO 2 N (CH 3 ) CH 2 CH 2 OCOC (CH 3 ) = CH 2 , CF 3 (CF 2 ) 7 SO 2 N (CH 3 ) (CH 2 ) 10 OCOCH = CH 2 , C 2 F 5 SO 2 N (C 2 H 5 ) CH 2 CH 2 OCOC (CH 3 ) = CH 2 , CF 3 (CF 2 ) 7 SO 2 N (CH 3 ) (CH 2 ) 4 OCOCH = CH 2 , C 2 F 5 SO 2 N (C 2 H 5 ) C (C 2 H 5 ) HCH 2 OCOCH = CH 2 and the like.
また、上記式(II)および(III)で表される化合物としては、具体的には、例えば、C3F7CH=CH2、C4F9CH=CH2、C10F21CH=CH2、C3F7OCF=CF2、C7F15OCF=CF2及びC8F17OCF=CF2などが挙げられる。
Specific examples of the compounds represented by the above formulas (II) and (III) include, for example, C 3 F 7 CH = CH 2 , C 4 F 9 CH = CH 2 , C 10 F 21 CH =. CH 2 , C 3 F 7 OCF = CF 2 , C 7 F 15 OCF = CF 2 and C 8 F 17 OCF = CF 2 and the like.
上記式(IV)および(V)で表される化合物としては、具体的には、例えば、CH2=CHCOOCH2(CF2)3CH2OCOCH=CH2、CH2=CHCOOCH2CH(CH2C8F17)OCOCH=CH2などが挙げられる。
Specific examples of the compounds represented by the above formulas (IV) and (V) include, for example, CH 2 = CHCOOCH 2 (CF 2 ) 3 CH 2 OCOCH = CH 2 , CH 2 = CHCOOCH 2 CH (CH 2). C 8 F 17 ) OCOCH = CH 2 and the like.
また、本発明においては、作業性の観点から、撥水化工程では、貫通路の内壁だけでなく、上記特定金属充填微細構造体における未充填領域の貫通路の開口側の表面に対しても撥水化を施してもよい。
Further, in the present invention, from the viewpoint of workability, in the water-repellent step, not only the inner wall of the gangway, but also the surface on the opening side of the gangway in the unfilled region of the specific metal-filled microstructure. It may be made water repellent.
更に、本発明においては、作業性の観点から、撥水化工程では、撥水化を施した後に、乾燥処理を施すことが好ましい。
上記乾燥処理の条件は特に限定されないが、例えば、20~90℃の環境下で、1分~1時間放置する処理などが挙げられる。 Further, in the present invention, from the viewpoint of workability, in the water-repellent step, it is preferable to perform the water-repellent treatment and then the drying treatment.
The conditions for the drying treatment are not particularly limited, and examples thereof include a treatment in which the product is left to stand for 1 minute to 1 hour in an environment of 20 to 90 ° C.
上記乾燥処理の条件は特に限定されないが、例えば、20~90℃の環境下で、1分~1時間放置する処理などが挙げられる。 Further, in the present invention, from the viewpoint of workability, in the water-repellent step, it is preferable to perform the water-repellent treatment and then the drying treatment.
The conditions for the drying treatment are not particularly limited, and examples thereof include a treatment in which the product is left to stand for 1 minute to 1 hour in an environment of 20 to 90 ° C.
本発明の製造方法は、作業性の観点から、上記撥水化工程が、金属充填微細構造体における未充填領域の貫通路の開口側の表面(以下、本段落において「特定表面」とも略す。)に対して撥水化剤を塗布し、未充填領域における貫通路の内壁および特定表面をいずれも撥水化する第1工程と、第1工程の後、特定表面上の撥水化剤を除去する第2工程とを有していることが好ましい。
ここで、第2工程における撥水化剤の除去方法としては、例えば、特定表面上の撥水化剤を拭き取る方法、特定表面の表層を削る方法などが挙げられ、中でも、特定表面の表層を削る方法が好ましい。
特定表面の表層を削る方法において、削る特定表面の表層の厚さは、0.5~2μmであることが好ましい。
また、特定表面の表層を削る方法は特に限定されず、例えば、以下に示す、機械研磨処理、化学機械研磨(CMP)処理、電解研磨処理、イオンミリング処理が好適に挙げられる。 In the manufacturing method of the present invention, from the viewpoint of workability, the water-repellent step is also abbreviated as the surface on the opening side of the gangway of the unfilled region in the metal-filled microstructure (hereinafter, also referred to as "specific surface" in this paragraph. ), A water repellent agent is applied to both the inner wall of the gangway in the unfilled region and the specific surface to make it water repellent, and after the first step, the water repellent agent on the specific surface is applied. It is preferable to have a second step of removing.
Here, as a method for removing the water repellent agent in the second step, for example, a method of wiping off the water repellent agent on the specific surface, a method of scraping the surface layer of the specific surface, and the like can be mentioned. The method of shaving is preferable.
In the method of scraping the surface layer of the specific surface, the thickness of the surface layer of the specific surface to be scraped is preferably 0.5 to 2 μm.
The method for scraping the surface layer of a specific surface is not particularly limited, and examples thereof include mechanical polishing treatment, chemical mechanical polishing (CMP) treatment, electrolytic polishing treatment, and ion milling treatment, which are shown below.
ここで、第2工程における撥水化剤の除去方法としては、例えば、特定表面上の撥水化剤を拭き取る方法、特定表面の表層を削る方法などが挙げられ、中でも、特定表面の表層を削る方法が好ましい。
特定表面の表層を削る方法において、削る特定表面の表層の厚さは、0.5~2μmであることが好ましい。
また、特定表面の表層を削る方法は特に限定されず、例えば、以下に示す、機械研磨処理、化学機械研磨(CMP)処理、電解研磨処理、イオンミリング処理が好適に挙げられる。 In the manufacturing method of the present invention, from the viewpoint of workability, the water-repellent step is also abbreviated as the surface on the opening side of the gangway of the unfilled region in the metal-filled microstructure (hereinafter, also referred to as "specific surface" in this paragraph. ), A water repellent agent is applied to both the inner wall of the gangway in the unfilled region and the specific surface to make it water repellent, and after the first step, the water repellent agent on the specific surface is applied. It is preferable to have a second step of removing.
Here, as a method for removing the water repellent agent in the second step, for example, a method of wiping off the water repellent agent on the specific surface, a method of scraping the surface layer of the specific surface, and the like can be mentioned. The method of shaving is preferable.
In the method of scraping the surface layer of the specific surface, the thickness of the surface layer of the specific surface to be scraped is preferably 0.5 to 2 μm.
The method for scraping the surface layer of a specific surface is not particularly limited, and examples thereof include mechanical polishing treatment, chemical mechanical polishing (CMP) treatment, electrolytic polishing treatment, and ion milling treatment, which are shown below.
<機械研磨処理>
機械研磨処理としては、例えば、#800~#1500の粒度の研磨布(例えば、SiC布)を用いて、ラッピングを行い、厚みを調整し、その後、平均粒子径1~3μmのダイヤモンドスラリーでポリッシングを行い、さらに、平均粒子径0.1~0.5μmのダイヤモンドスラリーでポリッシングを行うことで、鏡面状態にすることができる。
ここで、電極面の研磨厚みは0.5μm~20μmであるのが好ましく、対する開口面の研磨厚みは10μm~50μmであるのが好ましい。
また、回転速度は、10rpm~100rpmであるのが好ましく、20~60rpmであるのがより好ましい。
また、荷重は、0.01~0.1kgf/cm2であるのが好ましく、0.02~0.08kgf/cm2であるのがより好ましい。 <Mechanical polishing process>
As the mechanical polishing treatment, for example, a polishing cloth having a particle size of # 800 to # 1500 (for example, a SiC cloth) is used for wrapping, the thickness is adjusted, and then polishing is performed with a diamond slurry having an average particle size of 1 to 3 μm. Further, by polishing with a diamond slurry having an average particle diameter of 0.1 to 0.5 μm, a mirror surface state can be obtained.
Here, the polishing thickness of the electrode surface is preferably 0.5 μm to 20 μm, while the polishing thickness of the opening surface is preferably 10 μm to 50 μm.
The rotation speed is preferably 10 rpm to 100 rpm, more preferably 20 to 60 rpm.
The load is preferably 0.01 to 0.1 kgf / cm 2 , more preferably 0.02 to 0.08 kgf / cm 2 .
機械研磨処理としては、例えば、#800~#1500の粒度の研磨布(例えば、SiC布)を用いて、ラッピングを行い、厚みを調整し、その後、平均粒子径1~3μmのダイヤモンドスラリーでポリッシングを行い、さらに、平均粒子径0.1~0.5μmのダイヤモンドスラリーでポリッシングを行うことで、鏡面状態にすることができる。
ここで、電極面の研磨厚みは0.5μm~20μmであるのが好ましく、対する開口面の研磨厚みは10μm~50μmであるのが好ましい。
また、回転速度は、10rpm~100rpmであるのが好ましく、20~60rpmであるのがより好ましい。
また、荷重は、0.01~0.1kgf/cm2であるのが好ましく、0.02~0.08kgf/cm2であるのがより好ましい。 <Mechanical polishing process>
As the mechanical polishing treatment, for example, a polishing cloth having a particle size of # 800 to # 1500 (for example, a SiC cloth) is used for wrapping, the thickness is adjusted, and then polishing is performed with a diamond slurry having an average particle size of 1 to 3 μm. Further, by polishing with a diamond slurry having an average particle diameter of 0.1 to 0.5 μm, a mirror surface state can be obtained.
Here, the polishing thickness of the electrode surface is preferably 0.5 μm to 20 μm, while the polishing thickness of the opening surface is preferably 10 μm to 50 μm.
The rotation speed is preferably 10 rpm to 100 rpm, more preferably 20 to 60 rpm.
The load is preferably 0.01 to 0.1 kgf / cm 2 , more preferably 0.02 to 0.08 kgf / cm 2 .
<化学機械研磨(CMP)処理>
CMP処理には、フジミインコーポレイテッド社製のPNANERLITE-7000、日立化成社製のGPX HSC800、旭硝子(セイミケミカル)社製のCL-1000等のCMPスラリーを用いることができる。 <Chemical mechanical polishing (CMP) treatment>
For the CMP treatment, a CMP slurry such as PNANERLITE-7000 manufactured by Fujimi Incorporated, GPX HSC800 manufactured by Hitachi Chemical Co., Ltd., and CL-1000 manufactured by Asahi Glass Co., Ltd. can be used.
CMP処理には、フジミインコーポレイテッド社製のPNANERLITE-7000、日立化成社製のGPX HSC800、旭硝子(セイミケミカル)社製のCL-1000等のCMPスラリーを用いることができる。 <Chemical mechanical polishing (CMP) treatment>
For the CMP treatment, a CMP slurry such as PNANERLITE-7000 manufactured by Fujimi Incorporated, GPX HSC800 manufactured by Hitachi Chemical Co., Ltd., and CL-1000 manufactured by Asahi Glass Co., Ltd. can be used.
<電解研磨処理>
電解研磨としては、例えば、「アルミニウムハンドブック」,第6版,(社)日本アルミニウム協会編,2001年,p.164-165に記載されている各種の方法;米国特許第2708655号明細書に記載されている方法;「実務表面技術」,vol.33,No.3,1986年,p.32-38に記載されている方法;等が好適に挙げられる。 <Electropolishing treatment>
Examples of electrolytic polishing include "Aluminum Handbook", 6th edition, edited by Japan Aluminum Association, 2001, p. Various methods described in 164-165; methods described in US Pat. No. 2,708,655; "Practical Surface Techniques", vol. 33, No. 3, 1986, p. The methods described in 32-38; etc. are preferably mentioned.
電解研磨としては、例えば、「アルミニウムハンドブック」,第6版,(社)日本アルミニウム協会編,2001年,p.164-165に記載されている各種の方法;米国特許第2708655号明細書に記載されている方法;「実務表面技術」,vol.33,No.3,1986年,p.32-38に記載されている方法;等が好適に挙げられる。 <Electropolishing treatment>
Examples of electrolytic polishing include "Aluminum Handbook", 6th edition, edited by Japan Aluminum Association, 2001, p. Various methods described in 164-165; methods described in US Pat. No. 2,708,655; "Practical Surface Techniques", vol. 33, No. 3, 1986, p. The methods described in 32-38; etc. are preferably mentioned.
<イオンミリング処理>
イオンミリング処理は、上記CMPによる処理や、電解研磨処理よりもさらに精密な研磨が必要な際に施され、公知の技術を用いることができる。イオン種としては一般的なアルゴンイオンを用いることが好ましい。 <Ion milling treatment>
The ion milling treatment is performed when more precise polishing than the above-mentioned CMP treatment or electrolytic polishing treatment is required, and a known technique can be used. It is preferable to use a general argon ion as the ion species.
イオンミリング処理は、上記CMPによる処理や、電解研磨処理よりもさらに精密な研磨が必要な際に施され、公知の技術を用いることができる。イオン種としては一般的なアルゴンイオンを用いることが好ましい。 <Ion milling treatment>
The ion milling treatment is performed when more precise polishing than the above-mentioned CMP treatment or electrolytic polishing treatment is required, and a known technique can be used. It is preferable to use a general argon ion as the ion species.
〔突出工程〕
本発明の製造方法が有する突出工程は、撥水化工程後に、特定金属充填微細構造体の表面に処理液を付与し、選択的に絶縁性基材の表面を厚み方向に一部除去し、複数の導通路の一端を絶縁性基材の表面から突出させる工程である。 [Protrusion process]
In the projecting step of the production method of the present invention, after the water repellent step, a treatment liquid is applied to the surface of the specific metal-filled microstructure, and the surface of the insulating base material is selectively partially removed in the thickness direction. This is a step of projecting one end of a plurality of conduction paths from the surface of the insulating base material.
本発明の製造方法が有する突出工程は、撥水化工程後に、特定金属充填微細構造体の表面に処理液を付与し、選択的に絶縁性基材の表面を厚み方向に一部除去し、複数の導通路の一端を絶縁性基材の表面から突出させる工程である。 [Protrusion process]
In the projecting step of the production method of the present invention, after the water repellent step, a treatment liquid is applied to the surface of the specific metal-filled microstructure, and the surface of the insulating base material is selectively partially removed in the thickness direction. This is a step of projecting one end of a plurality of conduction paths from the surface of the insulating base material.
上記処理液としては、例えば、上述した導通路を構成する金属(例えば、銅など)を溶解せず、絶縁性基材(例えば、アルミニウムの陽極酸化膜である酸化アルミニウムなど)を溶解する酸水溶液またはアルカリ水溶液が挙げられる。
また、上記処理液を金属充填微細構造体の表面に付与する方法としては、例えば、浸漬法、スプレー法が挙げられる。中でも、浸漬法が好ましい。 As the treatment liquid, for example, an acid aqueous solution that does not dissolve the metal (for example, copper or the like) constituting the above-mentioned conduction path but dissolves an insulating base material (for example, aluminum oxide which is an anodic oxide film of aluminum). Alternatively, an alkaline aqueous solution may be mentioned.
In addition, examples of the method of applying the treatment liquid to the surface of the metal-filled microstructure include a dipping method and a spraying method. Above all, the dipping method is preferable.
また、上記処理液を金属充填微細構造体の表面に付与する方法としては、例えば、浸漬法、スプレー法が挙げられる。中でも、浸漬法が好ましい。 As the treatment liquid, for example, an acid aqueous solution that does not dissolve the metal (for example, copper or the like) constituting the above-mentioned conduction path but dissolves an insulating base material (for example, aluminum oxide which is an anodic oxide film of aluminum). Alternatively, an alkaline aqueous solution may be mentioned.
In addition, examples of the method of applying the treatment liquid to the surface of the metal-filled microstructure include a dipping method and a spraying method. Above all, the dipping method is preferable.
酸水溶液を用いる場合は、硫酸、リン酸、硝酸、塩酸等の無機酸またはこれらの混合物の水溶液を用いることが好ましい。中でも、クロム酸を含有しない水溶液が安全性に優れる点で好ましい。酸水溶液の濃度は1~10質量%であることが好ましい。酸水溶液の温度は、25~60℃であることが好ましい。
また、アルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。アルカリ水溶液の濃度は0.1~5質量%であることが好ましい。アルカリ水溶液の温度は、20~35℃であることが好ましい。
具体的には、例えば、50g/L、40℃のリン酸水溶液、0.5g/L、30℃の水酸化ナトリウム水溶液または0.5g/L、30℃の水酸化カリウム水溶液が好適に用いられる。
酸水溶液またはアルカリ水溶液への浸漬時間は、8~120分であることが好ましく、10~90分であることがより好ましく、15~60分であることが更に好ましい。ここで、浸漬時間は、短時間の浸漬処理を繰り返した場合には、各浸漬時間の合計をいう。なお、各浸漬処理の間には、洗浄処理を施してもよい。 When an aqueous acid solution is used, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, or hydrochloric acid, or a mixture thereof. Above all, an aqueous solution containing no chromic acid is preferable because it is excellent in safety. The concentration of the aqueous acid solution is preferably 1 to 10% by mass. The temperature of the aqueous acid solution is preferably 25 to 60 ° C.
When an alkaline aqueous solution is used, it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide. The concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass. The temperature of the alkaline aqueous solution is preferably 20 to 35 ° C.
Specifically, for example, a 50 g / L, 40 ° C. phosphoric acid aqueous solution, a 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution, or a 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution is preferably used. ..
The immersion time in the acid aqueous solution or the alkaline aqueous solution is preferably 8 to 120 minutes, more preferably 10 to 90 minutes, still more preferably 15 to 60 minutes. Here, the soaking time means the total of each soaking time when the soaking treatment for a short time is repeated. A cleaning treatment may be performed between the immersion treatments.
また、アルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。アルカリ水溶液の濃度は0.1~5質量%であることが好ましい。アルカリ水溶液の温度は、20~35℃であることが好ましい。
具体的には、例えば、50g/L、40℃のリン酸水溶液、0.5g/L、30℃の水酸化ナトリウム水溶液または0.5g/L、30℃の水酸化カリウム水溶液が好適に用いられる。
酸水溶液またはアルカリ水溶液への浸漬時間は、8~120分であることが好ましく、10~90分であることがより好ましく、15~60分であることが更に好ましい。ここで、浸漬時間は、短時間の浸漬処理を繰り返した場合には、各浸漬時間の合計をいう。なお、各浸漬処理の間には、洗浄処理を施してもよい。 When an aqueous acid solution is used, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, or hydrochloric acid, or a mixture thereof. Above all, an aqueous solution containing no chromic acid is preferable because it is excellent in safety. The concentration of the aqueous acid solution is preferably 1 to 10% by mass. The temperature of the aqueous acid solution is preferably 25 to 60 ° C.
When an alkaline aqueous solution is used, it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide. The concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass. The temperature of the alkaline aqueous solution is preferably 20 to 35 ° C.
Specifically, for example, a 50 g / L, 40 ° C. phosphoric acid aqueous solution, a 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution, or a 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution is preferably used. ..
The immersion time in the acid aqueous solution or the alkaline aqueous solution is preferably 8 to 120 minutes, more preferably 10 to 90 minutes, still more preferably 15 to 60 minutes. Here, the soaking time means the total of each soaking time when the soaking treatment for a short time is repeated. A cleaning treatment may be performed between the immersion treatments.
本発明においては、平坦性の低い部材表面との接合性が良好となる理由から、突出工程によって、複数の導通路の一端を絶縁性基材の表面から突出した突出部分の高さは、50nm以上であることが好ましく、0.1~0.8μmであることがより好ましく、0.2~0.5μmであることが更に好ましい。
ここで、突出部分の高さは、金属充填微細構造体の厚み方向の断面について、電界放出形走査電子顕微鏡(Field Emission Scanning Electron Microscope:FE-SEM)を用いて、倍率60000倍で10視野を観察し、複数の導通路ごとに絶縁性基材の表面から突出した突出部分の高さを測定した値の平均値をいう。 In the present invention, the height of the projecting portion where one end of the plurality of conduction paths protrudes from the surface of the insulating base material by the projecting step is 50 nm for the reason that the bondability with the surface of the member having low flatness is good. The above is preferable, 0.1 to 0.8 μm is more preferable, and 0.2 to 0.5 μm is further preferable.
Here, the height of the protruding portion is 10 fields at a magnification of 60,000 times using a field emission scanning electron microscope (FE-SEM) for a cross section in the thickness direction of the metal-filled microstructure. It is the average value of the values measured by observing and measuring the height of the protruding portion protruding from the surface of the insulating base material for each of a plurality of conduction paths.
ここで、突出部分の高さは、金属充填微細構造体の厚み方向の断面について、電界放出形走査電子顕微鏡(Field Emission Scanning Electron Microscope:FE-SEM)を用いて、倍率60000倍で10視野を観察し、複数の導通路ごとに絶縁性基材の表面から突出した突出部分の高さを測定した値の平均値をいう。 In the present invention, the height of the projecting portion where one end of the plurality of conduction paths protrudes from the surface of the insulating base material by the projecting step is 50 nm for the reason that the bondability with the surface of the member having low flatness is good. The above is preferable, 0.1 to 0.8 μm is more preferable, and 0.2 to 0.5 μm is further preferable.
Here, the height of the protruding portion is 10 fields at a magnification of 60,000 times using a field emission scanning electron microscope (FE-SEM) for a cross section in the thickness direction of the metal-filled microstructure. It is the average value of the values measured by observing and measuring the height of the protruding portion protruding from the surface of the insulating base material for each of a plurality of conduction paths.
〔洗浄工程〕
本発明の製造方法は、上記突出工程後に、特定金属充填微細構造体の表面を洗浄する洗浄工程を有していることが好ましい。
洗浄する方法としては、従来公知のリンス液を用いて、例えば、リンス液に浸漬する方法、リンス液をスプレー噴射する方法などが挙げられる。 [Washing process]
The production method of the present invention preferably has a cleaning step of cleaning the surface of the specific metal-filled microstructure after the projecting step.
Examples of the cleaning method include a method of immersing in a rinse solution and a method of spraying the rinse solution using a conventionally known rinse solution.
本発明の製造方法は、上記突出工程後に、特定金属充填微細構造体の表面を洗浄する洗浄工程を有していることが好ましい。
洗浄する方法としては、従来公知のリンス液を用いて、例えば、リンス液に浸漬する方法、リンス液をスプレー噴射する方法などが挙げられる。 [Washing process]
The production method of the present invention preferably has a cleaning step of cleaning the surface of the specific metal-filled microstructure after the projecting step.
Examples of the cleaning method include a method of immersing in a rinse solution and a method of spraying the rinse solution using a conventionally known rinse solution.
リンス液は、主成分として水を含有することが好ましい。
また、リンス液は、水以外の溶剤として、アルコール類、アセトン、テトラヒドロフラン等などの水混和性溶剤を含有していてもよい。
また、リンス液は、界面活性剤を含有することが好ましい。 The rinse solution preferably contains water as a main component.
Further, the rinsing liquid may contain a water-miscible solvent such as alcohols, acetone, tetrahydrofuran and the like as a solvent other than water.
Further, the rinse liquid preferably contains a surfactant.
また、リンス液は、水以外の溶剤として、アルコール類、アセトン、テトラヒドロフラン等などの水混和性溶剤を含有していてもよい。
また、リンス液は、界面活性剤を含有することが好ましい。 The rinse solution preferably contains water as a main component.
Further, the rinsing liquid may contain a water-miscible solvent such as alcohols, acetone, tetrahydrofuran and the like as a solvent other than water.
Further, the rinse liquid preferably contains a surfactant.
〔基板除去工程〕
本発明の製造方法は、上述した第2態様(図2)に示すように、基板が付いた特定金属充填微細構造体を用いた場合には、第2除去工程後に、基板を除去する基板除去工程を有していてもよい。
基板を除去する方法は特に限定されず、例えば、溶解により除去する方法等が好適に挙げられる。以下にアルミニウム基板を溶解により除去する方法について詳述する。 [Substrate removal process]
As shown in the second aspect (FIG. 2) described above, in the manufacturing method of the present invention, when a specific metal-filled microstructure with a substrate is used, the substrate is removed after the second removal step. It may have a process.
The method for removing the substrate is not particularly limited, and examples thereof include a method for removing the substrate by dissolution. The method of removing the aluminum substrate by melting will be described in detail below.
本発明の製造方法は、上述した第2態様(図2)に示すように、基板が付いた特定金属充填微細構造体を用いた場合には、第2除去工程後に、基板を除去する基板除去工程を有していてもよい。
基板を除去する方法は特に限定されず、例えば、溶解により除去する方法等が好適に挙げられる。以下にアルミニウム基板を溶解により除去する方法について詳述する。 [Substrate removal process]
As shown in the second aspect (FIG. 2) described above, in the manufacturing method of the present invention, when a specific metal-filled microstructure with a substrate is used, the substrate is removed after the second removal step. It may have a process.
The method for removing the substrate is not particularly limited, and examples thereof include a method for removing the substrate by dissolution. The method of removing the aluminum substrate by melting will be described in detail below.
<アルミニウム基板の溶解>
上記アルミニウム基板の溶解は、陽極酸化膜を溶解しにくく、アルミニウムを溶解しやすい処理液を用いるのが好ましい。
このような処理液は、アルミニウムに対する溶解速度が、1μm/分以上であるのが好ましく、3μm/分以上であるのがより好ましく、5μm/分以上であるのが更に好ましい。同様に、陽極酸化膜に対する溶解速度が、0.1nm/分以下となるのが好ましく、0.05nm/分以下となるのがより好ましく、0.01nm/分以下となるのが更に好ましい。
具体的には、アルミよりもイオン化傾向の低い金属化合物を少なくとも1種含み、かつ、pHが4以下または8以上となる処理液であるのが好ましく、そのpHが3以下または9以上であるのがより好ましく、2以下または10以上であるのが更に好ましい。 <Dissolution of aluminum substrate>
For the dissolution of the aluminum substrate, it is preferable to use a treatment liquid that is difficult to dissolve the anodic oxide film and easily dissolves aluminum.
The dissolution rate of such a treatment liquid in aluminum is preferably 1 μm / min or more, more preferably 3 μm / min or more, and further preferably 5 μm / min or more. Similarly, the dissolution rate for the anodic oxide film is preferably 0.1 nm / min or less, more preferably 0.05 nm / min or less, and even more preferably 0.01 nm / min or less.
Specifically, it is preferable that the treatment liquid contains at least one metal compound having a lower ionization tendency than aluminum and has a pH of 4 or less or 8 or more, and the pH is 3 or less or 9 or more. Is more preferable, and 2 or less or 10 or more is further preferable.
上記アルミニウム基板の溶解は、陽極酸化膜を溶解しにくく、アルミニウムを溶解しやすい処理液を用いるのが好ましい。
このような処理液は、アルミニウムに対する溶解速度が、1μm/分以上であるのが好ましく、3μm/分以上であるのがより好ましく、5μm/分以上であるのが更に好ましい。同様に、陽極酸化膜に対する溶解速度が、0.1nm/分以下となるのが好ましく、0.05nm/分以下となるのがより好ましく、0.01nm/分以下となるのが更に好ましい。
具体的には、アルミよりもイオン化傾向の低い金属化合物を少なくとも1種含み、かつ、pHが4以下または8以上となる処理液であるのが好ましく、そのpHが3以下または9以上であるのがより好ましく、2以下または10以上であるのが更に好ましい。 <Dissolution of aluminum substrate>
For the dissolution of the aluminum substrate, it is preferable to use a treatment liquid that is difficult to dissolve the anodic oxide film and easily dissolves aluminum.
The dissolution rate of such a treatment liquid in aluminum is preferably 1 μm / min or more, more preferably 3 μm / min or more, and further preferably 5 μm / min or more. Similarly, the dissolution rate for the anodic oxide film is preferably 0.1 nm / min or less, more preferably 0.05 nm / min or less, and even more preferably 0.01 nm / min or less.
Specifically, it is preferable that the treatment liquid contains at least one metal compound having a lower ionization tendency than aluminum and has a pH of 4 or less or 8 or more, and the pH is 3 or less or 9 or more. Is more preferable, and 2 or less or 10 or more is further preferable.
このような処理液としては、酸またはアルカリ水溶液をベースとし、例えば、マンガン、亜鉛、クロム、鉄、カドミウム、コバルト、ニッケル、スズ、鉛、アンチモン、ビスマス、銅、水銀、銀、パラジウム、白金、金の化合物(例えば、塩化白金酸)、これらのフッ化物、これらの塩化物等を配合したものであるのが好ましい。
中でも、酸水溶液ベースが好ましく、塩化物をブレンドするのが好ましい。
特に、塩酸水溶液に塩化水銀をブレンドした処理液(塩酸/塩化水銀)、塩酸水溶液に塩化銅をブレンドした処理液(塩酸/塩化銅)が、処理ラチチュードの観点から好ましい。
なお、このような処理液の組成は特に限定されず、例えば、臭素/メタノール混合物、臭素/エタノール混合物、王水等を用いることができる。 Such treatment liquids are based on an acid or alkaline aqueous solution and include, for example, manganese, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, platinum, etc. It is preferably a compound containing a gold compound (for example, platinum chloride acid), these fluorides, these chlorides and the like.
Of these, an acid aqueous solution base is preferable, and a chloride blend is preferable.
In particular, a treatment liquid obtained by blending a hydrochloric acid aqueous solution with mercury chloride (hydrochloric acid / mercury chloride) and a treatment liquid obtained by blending a hydrochloric acid aqueous solution with copper chloride (hydrochloric acid / copper chloride) are preferable from the viewpoint of treatment latitude.
The composition of such a treatment liquid is not particularly limited, and for example, a bromine / methanol mixture, a bromine / ethanol mixture, aqua regia, or the like can be used.
中でも、酸水溶液ベースが好ましく、塩化物をブレンドするのが好ましい。
特に、塩酸水溶液に塩化水銀をブレンドした処理液(塩酸/塩化水銀)、塩酸水溶液に塩化銅をブレンドした処理液(塩酸/塩化銅)が、処理ラチチュードの観点から好ましい。
なお、このような処理液の組成は特に限定されず、例えば、臭素/メタノール混合物、臭素/エタノール混合物、王水等を用いることができる。 Such treatment liquids are based on an acid or alkaline aqueous solution and include, for example, manganese, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, platinum, etc. It is preferably a compound containing a gold compound (for example, platinum chloride acid), these fluorides, these chlorides and the like.
Of these, an acid aqueous solution base is preferable, and a chloride blend is preferable.
In particular, a treatment liquid obtained by blending a hydrochloric acid aqueous solution with mercury chloride (hydrochloric acid / mercury chloride) and a treatment liquid obtained by blending a hydrochloric acid aqueous solution with copper chloride (hydrochloric acid / copper chloride) are preferable from the viewpoint of treatment latitude.
The composition of such a treatment liquid is not particularly limited, and for example, a bromine / methanol mixture, a bromine / ethanol mixture, aqua regia, or the like can be used.
また、このような処理液の酸またはアルカリ濃度は、0.01~10mol/Lが好ましく、0.05~5mol/Lがより好ましい。
更に、このような処理液を用いた処理温度は、-10℃~80℃が好ましく、0℃~60℃が好ましい。 The acid or alkali concentration of such a treatment liquid is preferably 0.01 to 10 mol / L, more preferably 0.05 to 5 mol / L.
Further, the treatment temperature using such a treatment liquid is preferably −10 ° C. to 80 ° C., preferably 0 ° C. to 60 ° C.
更に、このような処理液を用いた処理温度は、-10℃~80℃が好ましく、0℃~60℃が好ましい。 The acid or alkali concentration of such a treatment liquid is preferably 0.01 to 10 mol / L, more preferably 0.05 to 5 mol / L.
Further, the treatment temperature using such a treatment liquid is preferably −10 ° C. to 80 ° C., preferably 0 ° C. to 60 ° C.
また、上記アルミニウム基板の溶解は、上述した処理液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸せき法、スプレー法が挙げられる。中でも、浸せき法が好ましい。このときの接触時間としては、10秒~5時間が好ましく、1分~3時間がより好ましい。
Further, the above-mentioned aluminum substrate is melted by contacting with the above-mentioned treatment liquid. The contact method is not particularly limited, and examples thereof include a dipping method and a spraying method. Above all, the dipping method is preferable. The contact time at this time is preferably 10 seconds to 5 hours, more preferably 1 minute to 3 hours.
以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
The present invention will be described in more detail below based on examples. The materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limiting by the examples shown below.
[実施例1]
以下の手順で、特定異方導電性部材を作製した。 [Example 1]
A specific anisotropic conductive member was produced by the following procedure.
以下の手順で、特定異方導電性部材を作製した。 [Example 1]
A specific anisotropic conductive member was produced by the following procedure.
(1)アルミニウム基板の作製
アルミニウムの純度が99.99%の鋳塊を圧延した板材(厚み0.1mm)をアルミニウム基板として用いた。 (1) Preparation of Aluminum Substrate A plate (thickness 0.1 mm) obtained by rolling an ingot having an aluminum purity of 99.99% was used as the aluminum substrate.
アルミニウムの純度が99.99%の鋳塊を圧延した板材(厚み0.1mm)をアルミニウム基板として用いた。 (1) Preparation of Aluminum Substrate A plate (thickness 0.1 mm) obtained by rolling an ingot having an aluminum purity of 99.99% was used as the aluminum substrate.
(2)電解研磨処理
上記アルミニウム基板に対して、以下組成の電解研磨液を用いて、電圧25V、液温度65℃、液流速3.0m/minの条件で電解研磨処理を施した。
陰極はカーボン電極とし、電源は、GP0110-30R(株式会社高砂製作所社製)を用いた。また、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。
電解研磨後の表面粗さRaは0.03um未満であった。
(電解研磨液組成)
・85質量%リン酸(和光純薬工業株式会社製試薬) 660mL
・純水 160mL
・硫酸 150mL
・エチレングリコール 30mL (2) Electropolishing Treatment The aluminum substrate was subjected to electrolytic polishing treatment under the conditions of a voltage of 25 V, a liquid temperature of 65 ° C., and a liquid flow velocity of 3.0 m / min using an electrolytic polishing liquid having the following composition.
The cathode was a carbon electrode, and the power supply was GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.). The flow velocity of the electrolytic solution was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
The surface roughness Ra after electrolytic polishing was less than 0.03 um.
(Electrolytic polishing liquid composition)
・ 85% by mass phosphoric acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.) 660 mL
・ Pure water 160mL
・ Sulfuric acid 150mL
・ Ethylene glycol 30mL
上記アルミニウム基板に対して、以下組成の電解研磨液を用いて、電圧25V、液温度65℃、液流速3.0m/minの条件で電解研磨処理を施した。
陰極はカーボン電極とし、電源は、GP0110-30R(株式会社高砂製作所社製)を用いた。また、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。
電解研磨後の表面粗さRaは0.03um未満であった。
(電解研磨液組成)
・85質量%リン酸(和光純薬工業株式会社製試薬) 660mL
・純水 160mL
・硫酸 150mL
・エチレングリコール 30mL (2) Electropolishing Treatment The aluminum substrate was subjected to electrolytic polishing treatment under the conditions of a voltage of 25 V, a liquid temperature of 65 ° C., and a liquid flow velocity of 3.0 m / min using an electrolytic polishing liquid having the following composition.
The cathode was a carbon electrode, and the power supply was GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.). The flow velocity of the electrolytic solution was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
The surface roughness Ra after electrolytic polishing was less than 0.03 um.
(Electrolytic polishing liquid composition)
・ 85% by mass phosphoric acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.) 660 mL
・ Pure water 160mL
・ Sulfuric acid 150mL
・ Ethylene glycol 30mL
(3)陽極酸化処理工程
次いで、電解研磨処理後のアルミニウム基板に、特開2007-204802号公報に記載の手順にしたがって自己規則化法による陽極酸化処理を施した。
電解研磨処理後のアルミニウム基板に、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度16℃、液流速3.0m/minの条件で、5時間のプレ陽極酸化処理を施した。
その後、プレ陽極酸化処理後のアルミニウム基板を0.5mol/Lリン酸水溶液(液温:40℃)に20分浸漬させる脱膜処理を施した。
その後、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度16℃、液流速3.0m/minの条件で、5時間の再陽極酸化処理を施し、膜厚40μmの陽極酸化膜を得た。
なお、プレ陽極酸化処理および再陽極酸化処理は、いずれも陰極はステンレス電極とし、電源はGP0110-30R(株式会社高砂製作所製)を用いた。また、冷却装置にはNeoCool BD36(ヤマト科学株式会社製)、撹拌加温装置にはペアスターラーPS-100(EYELA東京理化器械株式会社製)を用いた。更に、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。 (3) Anodizing Treatment Step Next, the aluminum substrate after the electrolytic polishing treatment was subjected to anodizing treatment by a self-regulation method according to the procedure described in JP-A-2007-204802.
The aluminum substrate after the electrolytic polishing treatment was subjected to pre-anodizing treatment for 5 hours with an electrolytic solution of 0.50 mol / L oxalic acid under the conditions of a voltage of 40 V, a liquid temperature of 16 ° C., and a liquid flow rate of 3.0 m / min. ..
Then, the aluminum substrate after the pre-anodizing treatment was subjected to a demembrane treatment by immersing it in a 0.5 mol / L phosphoric acid aqueous solution (liquid temperature: 40 ° C.) for 20 minutes.
Then, a reanodizing treatment was performed for 5 hours with an electrolytic solution of 0.50 mol / L oxalic acid under the conditions of a voltage of 40 V, a liquid temperature of 16 ° C., and a liquid flow rate of 3.0 m / min, and an anodized film having a film thickness of 40 μm. Got
In both the pre-anodizing treatment and the re-anodizing treatment, a stainless steel electrode was used as the cathode, and GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.) was used as the power source. A NeoCool BD36 (manufactured by Yamato Kagaku Co., Ltd.) was used as the cooling device, and a pair stirrer PS-100 (manufactured by EYELA Tokyo Rika Kikai Co., Ltd.) was used as the stirring and heating device. Further, the flow velocity of the electrolytic solution was measured using a vortex type flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
次いで、電解研磨処理後のアルミニウム基板に、特開2007-204802号公報に記載の手順にしたがって自己規則化法による陽極酸化処理を施した。
電解研磨処理後のアルミニウム基板に、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度16℃、液流速3.0m/minの条件で、5時間のプレ陽極酸化処理を施した。
その後、プレ陽極酸化処理後のアルミニウム基板を0.5mol/Lリン酸水溶液(液温:40℃)に20分浸漬させる脱膜処理を施した。
その後、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度16℃、液流速3.0m/minの条件で、5時間の再陽極酸化処理を施し、膜厚40μmの陽極酸化膜を得た。
なお、プレ陽極酸化処理および再陽極酸化処理は、いずれも陰極はステンレス電極とし、電源はGP0110-30R(株式会社高砂製作所製)を用いた。また、冷却装置にはNeoCool BD36(ヤマト科学株式会社製)、撹拌加温装置にはペアスターラーPS-100(EYELA東京理化器械株式会社製)を用いた。更に、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。 (3) Anodizing Treatment Step Next, the aluminum substrate after the electrolytic polishing treatment was subjected to anodizing treatment by a self-regulation method according to the procedure described in JP-A-2007-204802.
The aluminum substrate after the electrolytic polishing treatment was subjected to pre-anodizing treatment for 5 hours with an electrolytic solution of 0.50 mol / L oxalic acid under the conditions of a voltage of 40 V, a liquid temperature of 16 ° C., and a liquid flow rate of 3.0 m / min. ..
Then, the aluminum substrate after the pre-anodizing treatment was subjected to a demembrane treatment by immersing it in a 0.5 mol / L phosphoric acid aqueous solution (liquid temperature: 40 ° C.) for 20 minutes.
Then, a reanodizing treatment was performed for 5 hours with an electrolytic solution of 0.50 mol / L oxalic acid under the conditions of a voltage of 40 V, a liquid temperature of 16 ° C., and a liquid flow rate of 3.0 m / min, and an anodized film having a film thickness of 40 μm. Got
In both the pre-anodizing treatment and the re-anodizing treatment, a stainless steel electrode was used as the cathode, and GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.) was used as the power source. A NeoCool BD36 (manufactured by Yamato Kagaku Co., Ltd.) was used as the cooling device, and a pair stirrer PS-100 (manufactured by EYELA Tokyo Rika Kikai Co., Ltd.) was used as the stirring and heating device. Further, the flow velocity of the electrolytic solution was measured using a vortex type flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
(4)バリア層除去工程
次いで、上記陽極酸化処理と同様の処理液および処理条件で、電圧を40Vから0Vまで連続的に電圧降下速度0.2V/secで降下させながら電解処理(電解除去処理)を施した。
その後、50℃の温水、45℃のNeutraClean68(ロームアンドハース社製)、更に50℃の温水で陽極酸化膜表面の洗浄を行い、連続して5g/Lの亜鉛を含む水酸化ナトリウム水溶液(25℃)に浸漬し、エッチング処理(エッチング除去処理)を施し、陽極酸化膜のマイクロポアの底部にあるバリア層を除去し、マイクロポアを介して露出したアルミニウム表面に亜鉛を析出させた。
次いで、めっき処理中の水素発生を抑制するために無電解ニッケル処理を施し、ポア底部に亜鉛とニッケルが積層しためっきシード層を形成した。 (4) Barrier layer removal step Next, electrolytic treatment (electrolytic removal treatment) is performed while continuously lowering the voltage from 40 V to 0 V at a voltage drop rate of 0.2 V / sec under the same treatment liquid and treatment conditions as the above anodizing treatment. ) Was given.
Then, the surface of the anodic oxide film was washed with warm water at 50 ° C., NeutraClean 68 (manufactured by Rohm and Haas) at 45 ° C., and warm water at 50 ° C., and a sodium hydroxide aqueous solution (25) containing 5 g / L of zinc was continuously used. It was immersed in (° C.) and subjected to etching treatment (etching removal treatment) to remove the barrier layer at the bottom of the micropores of the anodic oxide film, and zinc was deposited on the exposed aluminum surface through the micropores.
Next, electroless nickel treatment was performed in order to suppress hydrogen generation during the plating treatment, and a plating seed layer in which zinc and nickel were laminated was formed on the bottom of the pore.
次いで、上記陽極酸化処理と同様の処理液および処理条件で、電圧を40Vから0Vまで連続的に電圧降下速度0.2V/secで降下させながら電解処理(電解除去処理)を施した。
その後、50℃の温水、45℃のNeutraClean68(ロームアンドハース社製)、更に50℃の温水で陽極酸化膜表面の洗浄を行い、連続して5g/Lの亜鉛を含む水酸化ナトリウム水溶液(25℃)に浸漬し、エッチング処理(エッチング除去処理)を施し、陽極酸化膜のマイクロポアの底部にあるバリア層を除去し、マイクロポアを介して露出したアルミニウム表面に亜鉛を析出させた。
次いで、めっき処理中の水素発生を抑制するために無電解ニッケル処理を施し、ポア底部に亜鉛とニッケルが積層しためっきシード層を形成した。 (4) Barrier layer removal step Next, electrolytic treatment (electrolytic removal treatment) is performed while continuously lowering the voltage from 40 V to 0 V at a voltage drop rate of 0.2 V / sec under the same treatment liquid and treatment conditions as the above anodizing treatment. ) Was given.
Then, the surface of the anodic oxide film was washed with warm water at 50 ° C., NeutraClean 68 (manufactured by Rohm and Haas) at 45 ° C., and warm water at 50 ° C., and a sodium hydroxide aqueous solution (25) containing 5 g / L of zinc was continuously used. It was immersed in (° C.) and subjected to etching treatment (etching removal treatment) to remove the barrier layer at the bottom of the micropores of the anodic oxide film, and zinc was deposited on the exposed aluminum surface through the micropores.
Next, electroless nickel treatment was performed in order to suppress hydrogen generation during the plating treatment, and a plating seed layer in which zinc and nickel were laminated was formed on the bottom of the pore.
ここで、バリア層除去工程後の陽極酸化膜に存在するマイクロポアの平均開口径は60nmであった。なお、平均開口径は、FE-SEMにより表面写真(倍率50000倍)を撮影し、50点測定した平均値として算出した。
また、バリア層除去工程後の陽極酸化膜の平均厚みは40μmであった。なお、平均厚みは、陽極酸化膜を厚さ方向に対して集束イオンビーム(Focused Ion Beam:FIB)で切削加工し、その断面をFE-SEMにより表面写真(倍率50000倍)を撮影し、10点測定した平均値として算出した。
また、陽極酸化膜に存在するマイクロポアの密度は、約1億個/mm2であった。なお、マイクロポアの密度は、特開2008-270158号公報の[0168]および[0169]段落に記載された方法で測定し、算出した。
また、陽極酸化膜に存在するマイクロポアの規則化度は、92%であった。なお、規則化度は、FE-SEMにより表面写真(倍率20000倍)を撮影し、特開2008-270158号公報の[0024]~[0027]段落に記載された方法で測定し、算出した。 Here, the average opening diameter of the micropores present in the anodic oxide film after the barrier layer removing step was 60 nm. The average aperture diameter was calculated as an average value measured at 50 points by taking a surface photograph (magnification 50,000 times) by FE-SEM.
The average thickness of the anodic oxide film after the barrier layer removing step was 40 μm. For the average thickness, the anodic oxide film is cut in the thickness direction with a focused ion beam (FIB), and a surface photograph (magnification of 50,000 times) is taken of the cross section by FE-SEM. It was calculated as an average value measured by points.
The density of micropores present in the anodic oxide film was about 100 million / mm 2 . The density of micropores was measured and calculated by the method described in paragraphs [0168] and [0169] of JP-A-2008-270158.
The degree of regularization of the micropores present in the anodic oxide film was 92%. The degree of regularization was calculated by taking a surface photograph (magnification 20000 times) with an FE-SEM and measuring by the method described in paragraphs [0024] to [0027] of JP-A-2008-270158.
また、バリア層除去工程後の陽極酸化膜の平均厚みは40μmであった。なお、平均厚みは、陽極酸化膜を厚さ方向に対して集束イオンビーム(Focused Ion Beam:FIB)で切削加工し、その断面をFE-SEMにより表面写真(倍率50000倍)を撮影し、10点測定した平均値として算出した。
また、陽極酸化膜に存在するマイクロポアの密度は、約1億個/mm2であった。なお、マイクロポアの密度は、特開2008-270158号公報の[0168]および[0169]段落に記載された方法で測定し、算出した。
また、陽極酸化膜に存在するマイクロポアの規則化度は、92%であった。なお、規則化度は、FE-SEMにより表面写真(倍率20000倍)を撮影し、特開2008-270158号公報の[0024]~[0027]段落に記載された方法で測定し、算出した。 Here, the average opening diameter of the micropores present in the anodic oxide film after the barrier layer removing step was 60 nm. The average aperture diameter was calculated as an average value measured at 50 points by taking a surface photograph (magnification 50,000 times) by FE-SEM.
The average thickness of the anodic oxide film after the barrier layer removing step was 40 μm. For the average thickness, the anodic oxide film is cut in the thickness direction with a focused ion beam (FIB), and a surface photograph (magnification of 50,000 times) is taken of the cross section by FE-SEM. It was calculated as an average value measured by points.
The density of micropores present in the anodic oxide film was about 100 million / mm 2 . The density of micropores was measured and calculated by the method described in paragraphs [0168] and [0169] of JP-A-2008-270158.
The degree of regularization of the micropores present in the anodic oxide film was 92%. The degree of regularization was calculated by taking a surface photograph (magnification 20000 times) with an FE-SEM and measuring by the method described in paragraphs [0024] to [0027] of JP-A-2008-270158.
(5)金属充填工程(電解めっき処理)
次いで、アルミニウム基板を陰極にし、銅を正極にして電解めっき処理を施した。
具体的には、以下に示す組成の銅めっき液を使用し、定電流電解を施すことにより、マイクロポアの内部に銅が充填された導通路を有する金属充填微細構造体を作製した。
ここで、定電流電解は、株式会社山本鍍金試験器社製のめっき装置を用い、北斗電工株式会社製の電源(HZ-3000)を用い、めっき液中でサイクリックボルタンメトリを行って析出電位を確認した後に、以下に示す条件で処理を施した。
(銅めっき液組成および条件)
・硫酸銅 250g/L
・硫酸 1g/L
・塩酸 0.05g/L
・SPS(ビス(3-スルホプロピル)ジサルファイド) 5mg/L
・ポリエチレングリコール 10mg/L
・温度 30℃
・電流密度 10A/dm2 (5) Metal filling process (electroplating process)
Next, an aluminum substrate was used as a cathode and copper was used as a cathode for electrolytic plating.
Specifically, a copper plating solution having the composition shown below was used and constant current electrolysis was performed to prepare a metal-filled microstructure having a conduction path in which copper was filled inside the micropores.
Here, for constant current electrolysis, a plating apparatus manufactured by Yamamoto Plating Tester Co., Ltd. is used, and a power source (HZ-3000) manufactured by Hokuto Denko Co., Ltd. is used to perform cyclic voltammetry in the plating solution for precipitation. After confirming the potential, the treatment was performed under the conditions shown below.
(Copper plating solution composition and conditions)
・ Copper sulfate 250g / L
・ Sulfuric acid 1g / L
・ Hydrochloric acid 0.05g / L
・ SPS (bis (3-sulfopropyl) disulfide) 5 mg / L
・Polyethylene glycol 10 mg / L
・ Temperature 30 ℃
・ Current density 10A / dm 2
次いで、アルミニウム基板を陰極にし、銅を正極にして電解めっき処理を施した。
具体的には、以下に示す組成の銅めっき液を使用し、定電流電解を施すことにより、マイクロポアの内部に銅が充填された導通路を有する金属充填微細構造体を作製した。
ここで、定電流電解は、株式会社山本鍍金試験器社製のめっき装置を用い、北斗電工株式会社製の電源(HZ-3000)を用い、めっき液中でサイクリックボルタンメトリを行って析出電位を確認した後に、以下に示す条件で処理を施した。
(銅めっき液組成および条件)
・硫酸銅 250g/L
・硫酸 1g/L
・塩酸 0.05g/L
・SPS(ビス(3-スルホプロピル)ジサルファイド) 5mg/L
・ポリエチレングリコール 10mg/L
・温度 30℃
・電流密度 10A/dm2 (5) Metal filling process (electroplating process)
Next, an aluminum substrate was used as a cathode and copper was used as a cathode for electrolytic plating.
Specifically, a copper plating solution having the composition shown below was used and constant current electrolysis was performed to prepare a metal-filled microstructure having a conduction path in which copper was filled inside the micropores.
Here, for constant current electrolysis, a plating apparatus manufactured by Yamamoto Plating Tester Co., Ltd. is used, and a power source (HZ-3000) manufactured by Hokuto Denko Co., Ltd. is used to perform cyclic voltammetry in the plating solution for precipitation. After confirming the potential, the treatment was performed under the conditions shown below.
(Copper plating solution composition and conditions)
・ Copper sulfate 250g / L
・ Sulfuric acid 1g / L
・ Hydrochloric acid 0.05g / L
・ SPS (bis (3-sulfopropyl) disulfide) 5 mg / L
・
・ Temperature 30 ℃
・ Current density 10A / dm 2
マイクロポアに金属を充填した後の陽極酸化膜の表面をFE-SEMで観察し、1000個のマイクロポアにおける金属による封孔の有無を観察して封孔率(封孔マイクロポアの個数/1000個)を算出したところ96%であった。
また、マイクロポアに金属を充填した後の陽極酸化膜を厚さ方向に対してFIBで切削加工し、その断面をFE-SEMにより表面写真(倍率50000倍)を撮影し、マイクロポアの内部を確認したところ、封孔されたマイクロポアにおいては、その内部が金属で完全に充填されていることが分かった。 Observe the surface of the anodic oxide film after filling the micropores with metal by FE-SEM, and observe the presence or absence of metal sealing in 1000 micropores, and the sealing ratio (number of sealing micropores / 1000). When the number) was calculated, it was 96%.
In addition, the anodized oxide film after filling the micropores with metal is cut by FIB in the thickness direction, and a surface photograph (magnification of 50,000 times) of the cross section is taken by FE-SEM to show the inside of the micropores. Upon confirmation, it was found that the inside of the sealed micropore was completely filled with metal.
また、マイクロポアに金属を充填した後の陽極酸化膜を厚さ方向に対してFIBで切削加工し、その断面をFE-SEMにより表面写真(倍率50000倍)を撮影し、マイクロポアの内部を確認したところ、封孔されたマイクロポアにおいては、その内部が金属で完全に充填されていることが分かった。 Observe the surface of the anodic oxide film after filling the micropores with metal by FE-SEM, and observe the presence or absence of metal sealing in 1000 micropores, and the sealing ratio (number of sealing micropores / 1000). When the number) was calculated, it was 96%.
In addition, the anodized oxide film after filling the micropores with metal is cut by FIB in the thickness direction, and a surface photograph (magnification of 50,000 times) of the cross section is taken by FE-SEM to show the inside of the micropores. Upon confirmation, it was found that the inside of the sealed micropore was completely filled with metal.
(6)撥水化工程
次いで、金属充填微細構造体のアルミニウム基板と反対側の表面に、撥水化剤としてのプロテクトシルCIT(BASF社製)を原液のまま塗布し、この表面とともに、未充填領域におけるマイクロポアの内壁を含めて撥水化し、室温(23℃)で10分間乾燥させた。
次いで、金属充填微細構造体のアルミニウム基板と反対側の表面に塗布した撥水化剤をスキーザーで拭き取り、乾燥させた。 (6) Water-repellent step Next, protect sill CIT (manufactured by BASF) as a water-repellent agent is applied to the surface of the metal-filled microstructure on the opposite side of the aluminum substrate as the undiluted solution. The inner wall of the micropores in the filling region was made water repellent and dried at room temperature (23 ° C.) for 10 minutes.
Next, the water repellent agent applied to the surface of the metal-filled microstructure opposite to the aluminum substrate was wiped off with a skizer and dried.
次いで、金属充填微細構造体のアルミニウム基板と反対側の表面に、撥水化剤としてのプロテクトシルCIT(BASF社製)を原液のまま塗布し、この表面とともに、未充填領域におけるマイクロポアの内壁を含めて撥水化し、室温(23℃)で10分間乾燥させた。
次いで、金属充填微細構造体のアルミニウム基板と反対側の表面に塗布した撥水化剤をスキーザーで拭き取り、乾燥させた。 (6) Water-repellent step Next, protect sill CIT (manufactured by BASF) as a water-repellent agent is applied to the surface of the metal-filled microstructure on the opposite side of the aluminum substrate as the undiluted solution. The inner wall of the micropores in the filling region was made water repellent and dried at room temperature (23 ° C.) for 10 minutes.
Next, the water repellent agent applied to the surface of the metal-filled microstructure opposite to the aluminum substrate was wiped off with a skizer and dried.
(7)突出工程
次いで、撥水化工程後の金属充填微細構造体をリン酸溶液に浸漬し、陽極酸化膜を選択的に溶解することで、複数の貫通孔に充填された充填金属の円柱を突出させて特定異方導電性部材を得た。なお、リン酸溶液は、0.5mol/Lの水溶液(液温:40℃)を用い、処理時間を10分とした。 (7) Projection Step Next, the metal-filled microstructure after the water-repellent step is immersed in a phosphoric acid solution to selectively dissolve the anodic oxide film, whereby a cylinder of the filled metal filled in a plurality of through holes is formed. Was projected to obtain a specific idiosyncratic conductive member. As the phosphoric acid solution, a 0.5 mol / L aqueous solution (liquid temperature: 40 ° C.) was used, and the treatment time was set to 10 minutes.
次いで、撥水化工程後の金属充填微細構造体をリン酸溶液に浸漬し、陽極酸化膜を選択的に溶解することで、複数の貫通孔に充填された充填金属の円柱を突出させて特定異方導電性部材を得た。なお、リン酸溶液は、0.5mol/Lの水溶液(液温:40℃)を用い、処理時間を10分とした。 (7) Projection Step Next, the metal-filled microstructure after the water-repellent step is immersed in a phosphoric acid solution to selectively dissolve the anodic oxide film, whereby a cylinder of the filled metal filled in a plurality of through holes is formed. Was projected to obtain a specific idiosyncratic conductive member. As the phosphoric acid solution, a 0.5 mol / L aqueous solution (liquid temperature: 40 ° C.) was used, and the treatment time was set to 10 minutes.
[実施例2~9および比較例1~3]
撥水化工程および突出工程における処理条件を下記表1に示す条件に変更した以外は、実施例1と同様の方法で、特定異方導電性部材を作製した。
なお、実施例2~8で行った撥水化工程における研磨は、塗布した撥水化剤を乾燥させた後、シリカ砥粒を用いて、撥水化剤の塗布前の状態よりも厚さ0.5μmの表層が除去されるまで研磨し、撥水化された表層を除去した。 [Examples 2 to 9 and Comparative Examples 1 to 3]
A specific anisotropic conductive member was produced by the same method as in Example 1 except that the treatment conditions in the water repellent step and the projecting step were changed to the conditions shown in Table 1 below.
In the polishing in the water-repellent step performed in Examples 2 to 8, after the applied water-repellent agent was dried, silica abrasive grains were used to make the polishing thicker than the state before the water-repellent agent was applied. Polishing was performed until the surface layer of 0.5 μm was removed, and the water-repellent surface layer was removed.
撥水化工程および突出工程における処理条件を下記表1に示す条件に変更した以外は、実施例1と同様の方法で、特定異方導電性部材を作製した。
なお、実施例2~8で行った撥水化工程における研磨は、塗布した撥水化剤を乾燥させた後、シリカ砥粒を用いて、撥水化剤の塗布前の状態よりも厚さ0.5μmの表層が除去されるまで研磨し、撥水化された表層を除去した。 [Examples 2 to 9 and Comparative Examples 1 to 3]
A specific anisotropic conductive member was produced by the same method as in Example 1 except that the treatment conditions in the water repellent step and the projecting step were changed to the conditions shown in Table 1 below.
In the polishing in the water-repellent step performed in Examples 2 to 8, after the applied water-repellent agent was dried, silica abrasive grains were used to make the polishing thicker than the state before the water-repellent agent was applied. Polishing was performed until the surface layer of 0.5 μm was removed, and the water-repellent surface layer was removed.
[評価]
作製した各特定異方導電性部材の断面について、FE-SEMを用いて、倍率60000倍で10視野を観察した。
得られた画像にあらかじめ用意した50nmピッチの等高線画像を、突出させた導通路の一端(最表面)が等高線の高さ=0になるように重ね合わせ(図3参照)、目視にて導通路間の絶縁性基材の高さが等高線のどの範囲になるかを判別し、記録した。
これを10視野分まとめて、導通路の突出部分の高さの度数分布(図4参照)を得た。
この度数分布を統計的に処理して、導通路の突出部分の平均高さ、および、標準偏差を算出し、後者の3倍(3σ)を導通路の突出部分の高さのばらつき(変動幅)とした。 [evaluation]
About the cross section of each specific anisotropic conductive member produced, 10 visual fields were observed at a magnification of 60,000 times using FE-SEM.
A contour line image with a pitch of 50 nm prepared in advance is superimposed on the obtained image so that one end (outermost surface) of the projected conduction path has the height of the contour line = 0 (see FIG. 3), and the conduction path is visually observed. The range of the contour lines where the height of the insulating substrate between them was located was determined and recorded.
This was put together for 10 fields of view to obtain a frequency distribution (see FIG. 4) of the height of the protruding portion of the conduction path.
This frequency distribution is statistically processed to calculate the average height and standard deviation of the protruding portion of the conduction path, and the latter three times (3σ) is the variation in the height of the protruding portion of the conduction path (variation width). ).
作製した各特定異方導電性部材の断面について、FE-SEMを用いて、倍率60000倍で10視野を観察した。
得られた画像にあらかじめ用意した50nmピッチの等高線画像を、突出させた導通路の一端(最表面)が等高線の高さ=0になるように重ね合わせ(図3参照)、目視にて導通路間の絶縁性基材の高さが等高線のどの範囲になるかを判別し、記録した。
これを10視野分まとめて、導通路の突出部分の高さの度数分布(図4参照)を得た。
この度数分布を統計的に処理して、導通路の突出部分の平均高さ、および、標準偏差を算出し、後者の3倍(3σ)を導通路の突出部分の高さのばらつき(変動幅)とした。 [evaluation]
About the cross section of each specific anisotropic conductive member produced, 10 visual fields were observed at a magnification of 60,000 times using FE-SEM.
A contour line image with a pitch of 50 nm prepared in advance is superimposed on the obtained image so that one end (outermost surface) of the projected conduction path has the height of the contour line = 0 (see FIG. 3), and the conduction path is visually observed. The range of the contour lines where the height of the insulating substrate between them was located was determined and recorded.
This was put together for 10 fields of view to obtain a frequency distribution (see FIG. 4) of the height of the protruding portion of the conduction path.
This frequency distribution is statistically processed to calculate the average height and standard deviation of the protruding portion of the conduction path, and the latter three times (3σ) is the variation in the height of the protruding portion of the conduction path (variation width). ).
表1に示す結果から、撥水化工程を行わない場合には、導通路の突出部分の高さのバラツキが生じることが分かった(比較例1~3)。
これに対し、撥水化工程を行った場合には、導通路の突出部分の高さのバラツキを抑制できることが分かった(実施例1~9)。 From the results shown in Table 1, it was found that the height of the protruding portion of the conduction path varies when the water repellent step is not performed (Comparative Examples 1 to 3).
On the other hand, it was found that when the water repellent step was performed, the height variation of the protruding portion of the conduction path could be suppressed (Examples 1 to 9).
これに対し、撥水化工程を行った場合には、導通路の突出部分の高さのバラツキを抑制できることが分かった(実施例1~9)。 From the results shown in Table 1, it was found that the height of the protruding portion of the conduction path varies when the water repellent step is not performed (Comparative Examples 1 to 3).
On the other hand, it was found that when the water repellent step was performed, the height variation of the protruding portion of the conduction path could be suppressed (Examples 1 to 9).
1 基板
3 絶縁性基材
4 貫通路
5 導通路
5a 突出部分
6 未充填領域
10 特定金属充填微細構造体
10a 表面
20 特定異方導電性部材
Dt 厚み方向
h 突出部分の高さ 1Substrate 3 Insulating base material 4 Through-passage 5 Conduction path 5a Protruding part 6 Unfilled area 10 Specified metal-filled microstructure 10a Surface 20 Specified anisotropic conductive member Dt Thickness direction h Height of protruding part
3 絶縁性基材
4 貫通路
5 導通路
5a 突出部分
6 未充填領域
10 特定金属充填微細構造体
10a 表面
20 特定異方導電性部材
Dt 厚み方向
h 突出部分の高さ 1
Claims (7)
- 絶縁性基材と、前記絶縁性基材の厚み方向に貫通した複数の貫通路と、前記複数の貫通路の内部に充填された導電性物質で構成された複数の導通路とを有し、前記複数の導通路の一端が前記絶縁性基材の少なくとも一方の面から突出した状態で設けられる異方導電性部材の製造方法であって、
絶縁性基材と、前記絶縁性基材の厚み方向に貫通した複数の貫通路と、前記複数の貫通路の内部に充填された導電性物質で構成された複数の導通路とを有し、かつ、前記複数の導通路のうち一部の導通路において、前記貫通路の内部の厚み方向の少なくとも一部に前記導電性物質が充填されていない未充填領域が存在している金属充填微細構造体を準備する準備工程と、
前記未充填領域における前記貫通路の内壁を撥水化する撥水化工程と、
前記撥水化工程後に、前記金属充填微細構造体の表面に処理液を付与し、選択的に前記絶縁性基材の表面を厚み方向に一部除去し、前記複数の導通路の一端を前記絶縁性基材の表面から突出させる突出工程と、を有する、異方導電性部材の製造方法。 It has an insulating base material, a plurality of through-passages penetrating in the thickness direction of the insulating base material, and a plurality of conduction paths made of a conductive substance filled inside the plurality of through-passages. A method for manufacturing an anisotropic conductive member provided with one end of the plurality of conduction paths protruding from at least one surface of the insulating base material.
It has an insulating base material, a plurality of through-passages penetrating in the thickness direction of the insulating base material, and a plurality of conduction paths made of a conductive substance filled inside the plurality of through-passages. Further, in a part of the conductive paths among the plurality of conductive paths, a metal-filled microstructure in which an unfilled region in which the conductive substance is not filled exists in at least a part of the inside of the through-passage in the thickness direction. The preparatory process to prepare the body and
A water-repellent step of making the inner wall of the gangway in the unfilled region water-repellent,
After the water-repellent step, a treatment liquid is applied to the surface of the metal-filled microstructure, a part of the surface of the insulating base material is selectively removed in the thickness direction, and one end of the plurality of conduction paths is described. A method for manufacturing an anisotropic conductive member, which comprises a projecting step of projecting from the surface of an insulating base material. - 前記撥水化工程が、前記金属充填微細構造体における前記未充填領域の貫通路の開口側の表面に対して撥水化剤を塗布し、前記未充填領域における前記貫通路の内壁および前記表面をいずれも撥水化する第1工程と、前記第1工程の後、前記表面上の前記撥水化剤を除去する第2工程とを有する、請求項1に記載の異方導電性部材の製造方法。 In the water-repellent step, a water-repellent agent is applied to the surface of the metal-filled microstructure on the opening side of the through-passage of the unfilled region, and the inner wall and the surface of the through-passage in the unfilled region are applied. The isotropic conductive member according to claim 1, further comprising a first step of making water repellent and a second step of removing the water repellent agent on the surface after the first step. Production method.
- 前記撥水化工程が、ケイ素含有化合物およびフッ素含有化合物の少なくとも一方を用いた処理工程である、請求項1または2に記載の異方導電性部材の製造方法。 The method for producing an anisotropic conductive member according to claim 1 or 2, wherein the water repellent step is a treatment step using at least one of a silicon-containing compound and a fluorine-containing compound.
- 前記絶縁性基材が、バルブ金属の陽極酸化膜である、請求項1~3のいずれか1項に記載の異方導電性部材の製造方法。 The method for manufacturing an anisotropic conductive member according to any one of claims 1 to 3, wherein the insulating base material is a valve metal anodic oxide film.
- 前記バルブ金属が、アルミニウムである、請求項4に記載の異方導電性部材の製造方法。 The method for manufacturing an anisotropic conductive member according to claim 4, wherein the valve metal is aluminum.
- 前記導電性物質が、銅である、請求項1~5のいずれか1項に記載の異方導電性部材の製造方法。 The method for manufacturing an anisotropic conductive member according to any one of claims 1 to 5, wherein the conductive substance is copper.
- 前記突出工程によって前記絶縁性基材の表面から突出した前記複数の導通路の突出部分の高さが、50nm以上である、請求項1~6のいずれか1項に記載の異方導電性部材の製造方法。 The anisotropic conductive member according to any one of claims 1 to 6, wherein the height of the protruding portion of the plurality of conduction paths protruding from the surface of the insulating base material by the protruding step is 50 nm or more. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022535013A JP7369871B2 (en) | 2020-07-10 | 2021-06-24 | Manufacturing method of anisotropically conductive member |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020119337 | 2020-07-10 | ||
JP2020-119337 | 2020-07-10 | ||
JP2020-123440 | 2020-07-20 | ||
JP2020123440 | 2020-07-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022009685A1 true WO2022009685A1 (en) | 2022-01-13 |
Family
ID=79553031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/023917 WO2022009685A1 (en) | 2020-07-10 | 2021-06-24 | Method for producing heteroconductive member |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7369871B2 (en) |
TW (1) | TW202209355A (en) |
WO (1) | WO2022009685A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220165619A1 (en) * | 2019-08-16 | 2022-05-26 | Fujifilm Corporation | Method for manufacturing structure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0346262A (en) * | 1989-07-13 | 1991-02-27 | Nitto Denko Corp | Semiconductor device |
JP2009132974A (en) * | 2007-11-30 | 2009-06-18 | Fujifilm Corp | Microfine structure |
JP2011080139A (en) * | 2009-09-10 | 2011-04-21 | Fujifilm Corp | Metal-filled fine structure and method for producing the same |
WO2017002354A1 (en) * | 2015-06-30 | 2017-01-05 | 日東電工株式会社 | Anisotropic electroconductive film |
-
2021
- 2021-06-24 WO PCT/JP2021/023917 patent/WO2022009685A1/en active Application Filing
- 2021-06-24 JP JP2022535013A patent/JP7369871B2/en active Active
- 2021-07-06 TW TW110124689A patent/TW202209355A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0346262A (en) * | 1989-07-13 | 1991-02-27 | Nitto Denko Corp | Semiconductor device |
JP2009132974A (en) * | 2007-11-30 | 2009-06-18 | Fujifilm Corp | Microfine structure |
JP2011080139A (en) * | 2009-09-10 | 2011-04-21 | Fujifilm Corp | Metal-filled fine structure and method for producing the same |
WO2017002354A1 (en) * | 2015-06-30 | 2017-01-05 | 日東電工株式会社 | Anisotropic electroconductive film |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220165619A1 (en) * | 2019-08-16 | 2022-05-26 | Fujifilm Corporation | Method for manufacturing structure |
US12002713B2 (en) * | 2019-08-16 | 2024-06-04 | Fujifilm Corporation | Method for manufacturing structure |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022009685A1 (en) | 2022-01-13 |
TW202209355A (en) | 2022-03-01 |
JP7369871B2 (en) | 2023-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6029764B2 (en) | Method for producing metal-filled microstructure | |
JP5435493B2 (en) | Fine structure and manufacturing method thereof | |
US8574418B2 (en) | Electroplating method for coating a substrate surface with a metal | |
JP2009509044A (en) | Electroplating composition for coating substrate surface with metal | |
WO2022009685A1 (en) | Method for producing heteroconductive member | |
WO2022014293A1 (en) | Method for producing heteroconductive member | |
US10870924B2 (en) | Aluminum-copper connector having a heterostructure, and method for producing the heterostructure | |
CN116783331A (en) | Metal-filled microstructure and method for producing metal-filled microstructure | |
TWI683608B (en) | Multi-layer wiring board | |
JP5694888B2 (en) | Anisotropic conductive member and manufacturing method thereof | |
TW202341303A (en) | Metal filled microstructure | |
JP3959044B2 (en) | Pretreatment method for plating aluminum and aluminum alloy | |
JP2011202194A (en) | Method of manufacturing metal filling fine structure | |
JP5523941B2 (en) | Method for producing metal-filled microstructure | |
JP2010177171A (en) | Anisotropic conductive member and method of manufacturing the same | |
TW202302921A (en) | Structure, method for manufacturing structure | |
JP7402981B2 (en) | Structure and method for manufacturing the structure | |
TWI844761B (en) | Twinned copper layer, substrate having the same and method for preparing the same | |
WO2024070341A1 (en) | Metal nanowire production method | |
WO2024070339A1 (en) | Conductive adhesive material-forming composition, conductive adhesive material, device, and method for producing conductive adhesive material | |
WO2024154463A1 (en) | Composition, conductive joining material, device and production method of conductive joining material | |
Chuang et al. | Fabrication of through-silicon vias (TSV) by nickel electroplating in supercritical CO 2 | |
JP2021139015A (en) | Composition for electroless gold plating | |
Chuang et al. | Through-silicon via arrays manufactured by photo assisted electrochemical etching and copper electroplating under SC-CO 2 environment | |
JP2024101461A (en) | Nickel-plated material and lead conductor for tab lead |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21838684 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022535013 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21838684 Country of ref document: EP Kind code of ref document: A1 |