WO2022009651A1 - Compound, light-emitting material, and light-emitting device - Google Patents

Compound, light-emitting material, and light-emitting device Download PDF

Info

Publication number
WO2022009651A1
WO2022009651A1 PCT/JP2021/023285 JP2021023285W WO2022009651A1 WO 2022009651 A1 WO2022009651 A1 WO 2022009651A1 JP 2021023285 W JP2021023285 W JP 2021023285W WO 2022009651 A1 WO2022009651 A1 WO 2022009651A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light emitting
ring
compound
substituted
Prior art date
Application number
PCT/JP2021/023285
Other languages
French (fr)
Japanese (ja)
Inventor
香織 藤澤
ヨン ジュ ジョ
善丈 鈴木
Original Assignee
株式会社Kyulux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kyulux filed Critical 株式会社Kyulux
Priority to CN202180046493.0A priority Critical patent/CN115734996A/en
Publication of WO2022009651A1 publication Critical patent/WO2022009651A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the present invention relates to a compound useful as a light emitting material and a light emitting device using the compound.
  • organic electroluminescence elements organic electroluminescence elements
  • various measures have been taken to improve the luminous efficiency by newly developing and combining electron transport materials, hole transport materials, light emitting materials and the like constituting organic electroluminescence devices.
  • research on organic electroluminescence devices using delayed fluorescent materials can be seen.
  • the delayed fluorescent material is a material that emits fluorescence when returning from the excited singlet state to the ground state after an intersystem crossing from the excited triplet state to the excited singlet state occurs in the excited state. Fluorescence by such a pathway is called delayed fluorescence because it is observed later than the fluorescence from the excited singlet state directly generated from the ground state (normal fluorescence).
  • the probability of occurrence of the excited singlet state and the excited triplet state is statistically 25%: 75%, so that the excited singlet state directly generated is used. There is a limit to the improvement of light emission efficiency only by the fluorescence of.
  • the delayed fluorescent material not only the excited singlet state but also the excited triplet state can be used for fluorescence emission by the path via the above-mentioned inverse intersystem crossing, so that the emission is higher than that of the ordinary fluorescent material. Efficiency will be obtained.
  • 2CzPN having the following structure is a material that emits delayed fluorescence, it has a problem that the luminous efficiency is not high and the luminous efficiency is significantly reduced in a high current density region (see Non-Patent Document 1). ).
  • the present inventors have conducted repeated studies for the purpose of providing a more useful compound as a light emitting material for a light emitting device. Then, we proceeded with diligent studies for the purpose of deriving and generalizing the general formulas of compounds that are more useful as luminescent materials.
  • the present inventors have found that among benzonitrile derivatives, a compound having a structure satisfying a specific condition is useful as a light emitting material.
  • the present invention has been proposed based on these findings, and specifically has the following configurations.
  • Ar represents a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon ring group, or a substituted or unsubstituted aromatic heterocyclic group containing a nitrogen atom as a ring skeleton constituent atom.
  • 1 to 3 of R 1 to R 4 each independently represent a carbazole-9-yl group D'(although the hydrogen atom may be substituted) in which a benzofuran ring is condensed.
  • R 1 to 3 of R 1 to R 4 are each independently a donor group D (however, a carbazole-9-yl group fused with a benzofuran ring, a substituted or unsubstituted aromatic hydrocarbon ring group, and a substituted or unsubstituted aromatic hydrocarbon ring group, and Represents a substituted or unsubstituted aromatic heterocyclic group containing a nitrogen atom as a ring skeleton constituent atom).
  • the remaining 0 to 2 R 1 to R 4 represent hydrogen atoms.
  • the compound of the present invention is useful as a light emitting material. Further, the compound of the present invention includes a compound that emits delayed fluorescence. The compound of the present invention is also useful as a material for an organic light emitting device.
  • the isotope species of hydrogen atoms existing in the molecule of the compound used in the present invention are not particularly limited, and for example, all the hydrogen atoms in the molecule may be 1 H, and some or all of them may be 2 H. (Duterium D) may be used.
  • the hydrogen atom that Ar can take may be 2 H (Duterium D).
  • Ar in the general formula (1) represents a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon ring group, or a substituted or unsubstituted aromatic heterocyclic group containing a nitrogen atom as a ring skeleton constituent atom.
  • Ar is a hydrogen atom.
  • Ar is a substituted or unsubstituted aromatic hydrocarbon ring group, and further, an embodiment in which Ar is a substituted or unsubstituted aromatic heterocyclic group containing a nitrogen atom can be adopted.
  • aromatic hydrocarbon ring group means a group in which the ring (one ring) to be bonded is an aromatic hydrocarbon ring. For example, it contains a phenyl group bonded by one carbon atom constituting the ring skeleton of the benzene ring.
  • the hydrogen atoms constituting the bonded aromatic hydrocarbon ring may be substituted.
  • one or more rings may be condensed on the aromatic hydrocarbon ring to be bonded. Further, another ring may be condensed with the condensed ring. Examples of the ring to be condensed include an aromatic hydrocarbon ring, an aromatic heterocycle, an aliphatic hydrocarbon ring, and an aliphatic heterocycle.
  • Examples of the aromatic hydrocarbon ring include a benzene ring.
  • Examples of the aromatic heterocycle include a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, a pyrrole ring, a pyrazole ring, and an imidazole ring.
  • Examples of the aliphatic hydrocarbon ring include a cyclopentane ring, a cyclohexane ring, and a cycloheptane ring.
  • Examples of the aliphatic heterocycle include a piperidine ring, a pyrrolidine ring, and an imidazoline ring.
  • fused ring constituting the aromatic hydrocarbon ring examples include a naphthalene ring, an anthracene ring, a phenanthrene ring, a pyran ring, and a tetracene ring.
  • fused ring containing a hetero atom examples include an indole ring, an isoindole ring, a benzimidazole ring, a benzotriazole ring, a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxaline ring, and a cinnoline ring.
  • fused rings they are bonded by carbon atoms constituting the benzene ring.
  • the number of carbon atoms of the substituted or unsubstituted aromatic hydrocarbon ring group that Ar can take is preferably 6 to 40, more preferably 6 to 30, and even more preferably 6 to 20.
  • the number of ring skeleton constituent atoms of the ring to be bonded is preferably 6 to 14, more preferably 6 to 12, and even more preferably 6.
  • aromatic heterocyclic group as used in the present invention means that the ring (one ring) to be bonded is an aromatic heterocycle and is bonded by one carbon atom constituting the ring skeleton of the aromatic heterocycle. It includes, for example, a pyridyl group bonded at one carbon atom constituting the ring skeleton of a pyridine ring.
  • the aromatic heterocycles that can be taken by R 1 to R 5 include a nitrogen atom as a ring skeleton constituent atom of the ring (one ring) to be bonded.
  • the bonded ring may contain a heteroatom other than the nitrogen atom as a ring-skeleton-constituting atom, but it is preferable that the ring contains only a nitrogen atom as the ring-skeleton-constituting heteroatom.
  • the number of heteroatoms contained in the ring to be bonded is preferably 1 to 3, and more preferably 1 or 2.
  • Examples of the ring to be bonded include a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, a pyrrole ring, a pyrazole ring, and an imidazole ring.
  • the hydrogen atoms constituting the bonded ring may be substituted. Further, one or more rings may be condensed. Further, another ring may be condensed on the condensed ring.
  • the ring to be condensed include an aromatic hydrocarbon ring, an aromatic heterocycle, an aliphatic hydrocarbon ring, and an aliphatic heterocycle.
  • the aromatic hydrocarbon ring, the aromatic heterocycle, the aliphatic hydrocarbon ring and the aliphatic heterocycle referred to here refer to the corresponding description in the above description of the "aromatic hydrocarbon ring group". Can be done.
  • fused ring constituting the aromatic heterocycle examples include a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxaline ring, a cinnoline ring, and a pteridine ring.
  • fused rings they are bonded by carbon atoms constituting the ring skeleton of the heterocycle.
  • the number of carbon atoms of the substituted or unsubstituted aromatic heterocyclic group that Ar can adopt is preferably 3 to 30, more preferably 3 to 20, and even more preferably 4 to 15.
  • the number of ring skeleton constituent atoms of the ring to be bonded is preferably 6 to 14, more preferably 6 to 12, and even more preferably 6.
  • the aromatic hydrocarbon ring group and the aromatic heterocyclic group that Ar can take may be substituted.
  • substituents include an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a heteroaryloxy group, a heteroarylthio group and a cyano group. These substituents may be substituted with yet another substituent.
  • Preferred groups of substituents include alkyl groups, aryl groups, alkoxy groups and alkylthio groups.
  • the "alkyl group" referred to here may be linear, branched or cyclic.
  • the number of carbon atoms of the alkyl group can be, for example, 1 or more, 2 or more, and 4 or more. Further, the number of carbon atoms can be 30 or less, 20 or less, 10 or less, 6 or less, and 4 or less. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, n-hexyl group and isohexyl group.
  • 2-Ethylhexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, n-nonyl group, isononyl group, n-decanyl group, isodecanyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group can be mentioned.
  • the alkyl group as a substituent may be further substituted with an aryl group.
  • the "alkenyl group" may be linear, branched or cyclic. Further, two or more of the linear portion, the annular portion and the branched portion may be mixed.
  • the carbon number of the alkenyl group can be, for example, 2 or more and 4 or more. Further, the number of carbon atoms can be 30 or less, 20 or less, 10 or less, 6 or less, and 4 or less.
  • Specific examples of the alkenyl group include ethenyl group, n-propenyl group, isopropenyl group, n-butenyl group, isobutenyl group, n-pentenyl group, isopentenyl group, n-hexenyl group, isohexenyl group and 2-ethylhexenyl group. Can be mentioned.
  • the alkenyl group as a substituent may be further substituted with a substituent.
  • the "aryl group” and the “heteroaryl group” may be a monocyclic ring or a condensed ring in which two or more rings are condensed.
  • the number of fused rings is preferably 2 to 6, and can be selected from, for example, 2 to 4.
  • the ring include a benzene ring, a pyridine ring, a pyrimidine ring, a triazine ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a triphenylene ring, a quinoline ring, a pyrazine ring, a quinoxaline ring, and a naphthylidine ring.
  • arylene group or the heteroarylene group examples include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthrasenyl group, a 2-anthrasenyl group, a 9-anthrasenyl group, a 2-pyridyl group, a 3-pyridyl group, and 4 -Pyridyl groups can be mentioned.
  • the alkyl moiety of the "alkoxy group” and the "alkylthio group the above description and specific examples of the alkyl group can be referred to.
  • aryl portion of the "aryloxy group” and the “arylthio group” the above description and specific examples of the aryl group can be referred to.
  • heteroaryl portion of the “heteroaryloxy group” and the “heteroarylthio group” the above description and specific examples of the heteroaryl group can be referred to.
  • Ar2 to Ar4 represent a tolyl group
  • Ar9 represents a 4-methoxyphenyl group
  • Ar10 represents a 4-methylthiophenyl group
  • Ar15 represents a 2,4,6-trimethylphenyl group.
  • R 1 to 3 of R 1 to R 4 of the general formula (1) each independently have a carbazole-9-yl group D'condensed with a benzofuran ring (however, the hydrogen atom may be substituted). show.
  • R 1 to R 4 is D'
  • R 3 is D'
  • R 4 is D'
  • two of R 1 to R 4 are D'
  • different D's may be adopted.
  • the two D's are preferably R 1 and R 4. However, it can also be R 2 and R 4. It can also be R 3 and R 4.
  • When three of R 1 to R 4 are D' it is preferable that all three D'are the same. However, all three may be different D's, or two may be the same and one may be different.
  • the three D' can be R 1 , R 2 and R 4 . It can also be R 1 , R 2, and R 3.
  • D' is a carbazole-9-yl group fused with a benzofuran ring, preferably a group having a structure in which a benzofuran ring is directly condensed with at least one of two benzene rings constituting the carbazole-9-yl structure. It may be a group in which a benzofuran ring is directly condensed with both of the two benzene rings constituting the carbazole-9-yl structure.
  • the benzofuran ring may be a furan ring that is fused to a benzene ring having a carbazolyl-9-yl structure, or a benzene ring that constitutes a benzofuran ring and is fused to a benzene ring having a carbazolyl-9-yl structure. May be good.
  • the former is preferable. Only one benzofuran ring may be condensed in the carbazolyl-9-yl structure of D', or two or more may be condensed. When two or more are condensed, their benzofuran rings may have the same structure or different structures. Further, the types of rings to be condensed may be the same or different.
  • one benzofuran ring is condensed into two benzene rings having a carbazolyl-9-yl structure, or one benzofuran ring is condensed into only one of the two benzene rings.
  • the hydrogen atom constituting the carbazolyl-9-yl group fused with the benzofuran ring may be substituted.
  • the hydrogen atom constituting the benzofuran ring may be substituted, or the hydrogen atom constituting the carbazolyl-9-yl structure may be substituted.
  • substituents examples include an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a heteroaryloxy group, a heteroarylthio group and a substituted amino group.
  • Preferred substituents include an alkyl group, an aryl group and a substituted amino group.
  • the substituent bonded to the nitrogen atom of the amino group is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted.
  • the heteroaryl group of the above is preferable, and a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group is more preferable.
  • the substituted amino group is particularly preferably a substituted or unsubstituted diarylamino group or a substituted or unsubstituted diheteroarylamino group.
  • the two groups bonded to the nitrogen atom may be bonded to each other to form a cyclic structure (for example, a substituted or unsubstituted carbazole-9-yl group).
  • a ring other than the benzofuran ring may be condensed in the carbazolyl-9-yl structure.
  • Such a ring may be any of an aromatic hydrocarbon ring, an aromatic heterocycle, an aliphatic hydrocarbon ring, and an aliphatic heterocycle, but is a group consisting of an aromatic hydrocarbon ring and an aliphatic hydrocarbon ring. It is preferable that only the ring is more selected, and more preferably only the aromatic hydrocarbon ring. Further, it is also preferable that no ring other than the benzofuran ring is condensed in the carbazolyl-9-yl structure. Further, it is also preferable that the carbazolyl-9-yl group condensed with the benzofuran ring is unsubstituted.
  • optionally substituted compound groups D'1 to D'42 the optionally substituted compound groups D'1 to D'30 are preferable, and the optionally substituted compound group D' 1 to D'16 are more preferable, and compound groups D'1 to D'6 which may be substituted are further preferable.
  • D'1 to D'42 are substituted with a methyl group
  • D'1 to D'42 are substituted with an ethyl group
  • D'1 to D'42 are substituted with an isopropyl group.
  • Substituted compounds, D'1 to D'42 substituted with a tert-butyl group, D'1 to D'42 substituted with a phenyl group, and D'1 to D'42 having a benzene ring A group of condensed compounds can also be exemplified.
  • R 1 to 3 of R 1 to R 4 of the general formula (1) are each independently a donor group D (however, a carbazole-9-yl group fused with a benzofuran ring, a substituted or unsubstituted aromatic hydrocarbon). Represents a hydrogen ring group and a substituted or unsubstituted aromatic heterocyclic group containing a nitrogen atom as a ring skeleton constituent atom).
  • D a donor group
  • D represents a hydrogen ring group and a substituted or unsubstituted aromatic heterocyclic group containing a nitrogen atom as a ring skeleton constituent atom.
  • the "donor group” in the present invention is a group having a negative Hammet's ⁇ p value.
  • k is the rate constant of the benzene derivative having no substituent
  • k 0 is the rate constant of the benzene derivative substituted with the substituent
  • K is the equilibrium constant of the benzene derivative having no substituent
  • K 0 is the substituent.
  • the equilibrium constant of the benzene derivative substituted with, ⁇ represents the reaction constant determined by the type and conditions of the reaction.
  • ⁇ p value refers to the description of ⁇ p value in Hansch, C.et.al., Chem.Rev., 91,165-195 (1991). can. Groups with a negative Hammett ⁇ p value tend to show electron donating properties (donor properties), and groups with a positive Hammett ⁇ p value tend to show electron attractor properties (acceptor properties).
  • the donor group in the present invention is preferably a group containing a substituted amino group.
  • the donor group in the present invention may be a group bonded with a nitrogen atom of a substituted amino group or a group bonded with a group to which a substituted amino group is bonded.
  • the group to which the substituted amino group is bonded is preferably a ⁇ -conjugated group. More preferred are groups bonded at the nitrogen atom of the substituted amino group.
  • Particularly preferred as the donor group in the present invention is a substituted or unsubstituted carbazole-9-yl group.
  • the 1 to 3 donor groups D present in the general formula (1) are independently substituted or unsubstituted carbazole-9-yl groups.
  • the substituent of the carbazole-9-yl group includes an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a heteroaryloxy group, a heteroarylthio group and a substituted amino.
  • a group can be mentioned, and preferred substituents include an alkyl group, an aryl group, and a substituted amino group.
  • the substituted amino group referred to here includes a substituted or unsubstituted carbazolyl group, and particularly includes a substituted or unsubstituted carbazole-9-yl group and a substituted or unsubstituted carbazole-3-yl group.
  • the donor group in the present invention preferably has 5 or more atoms other than hydrogen atoms, preferably 10 or more, and more preferably 13 or more. Further, it is preferably 80 or less, more preferably 60 or less, and further preferably 40 or less.
  • R 1 to R 4 of the general formula (1) those that are neither D nor D'are hydrogen atoms.
  • the number of hydrogen atoms is 0 to 2, and may be 0 or 1. In a preferred embodiment of the present invention, none of R 1 to R 4 is a hydrogen atom (the number of hydrogen atoms is 0).
  • Types 1 to 20 have 3 D and 1 D'pattern, types 3 and 6 have 2 D and 2 D'patterns, and types 7 and 8 have 1 D.
  • D' is a pattern with 3 pieces, types 9 to 14 have 2 D's and 1 D'and 1 hydrogen atom, and types 15 to 20 have 1 D and 2'. It is a pattern with one hydrogen atom. A pattern in which a hydrogen atom is replaced with a deuterium atom can also be mentioned.
  • types 1 to 8 are preferable, and types 1 to 6 are more preferable.
  • the compound represented by the general formula (1) is composed only of an atom selected from the group consisting of a carbon atom, a hydrogen atom, a nitrogen atom, an oxygen atom and a sulfur atom. In a preferred embodiment of the present invention, the compound represented by the general formula (1) is composed only of a carbon atom, a hydrogen atom, a nitrogen atom and an oxygen atom.
  • the molecular weight of the compound represented by the general formula (1) is, for example, 1500 or less when the organic layer containing the compound represented by the general formula (1) is intended to be formed into a film by a vapor deposition method. It is preferably 1200 or less, more preferably 1000 or less, and even more preferably 900 or less. The lower limit of the molecular weight is the molecular weight of the smallest compound represented by the general formula (1).
  • the compound represented by the general formula (1) may be formed into a film by a coating method regardless of the molecular weight. By using the coating method, it is possible to form a film even if the compound has a relatively large molecular weight.
  • the compound represented by the general formula (1) has an advantage that it is easily dissolved in an organic solvent among the cyanobenzene compounds. Therefore, the compound represented by the general formula (1) is easy to apply the coating method and is easy to purify to increase the purity.
  • a compound containing a plurality of structures represented by the general formula (1) in the molecule it is conceivable to use a polymer obtained by pre-existing a polymerizable group in the structure represented by the general formula (1) and polymerizing the polymerizable group as a light emitting material.
  • a monomer containing a polymerizable functional group is prepared in any of R 1 to R 4 and Ar of the general formula (1), and this is polymerized alone or copolymerized with another monomer. Therefore, it is conceivable to obtain a polymer having a repeating unit and use the polymer as a light emitting material.
  • dimers and trimers by coupling compounds having a structure represented by the general formula (1) to each other and use them as a light emitting material.
  • a polymer having a repeating unit containing a structure represented by the general formula (1) As an example of a polymer having a repeating unit containing a structure represented by the general formula (1), a polymer containing a structure represented by the following general formula (2) or (3) can be mentioned.
  • Q represents a group containing the structure represented by the general formula (1)
  • L 1 and L 2 represent a linking group.
  • the carbon number of the linking group is preferably 0 to 20, more preferably 1 to 15, and even more preferably 2 to 10.
  • X 11 represents an oxygen atom or a sulfur atom, and is preferably an oxygen atom.
  • L 11 represents a linking group, preferably a substituted or unsubstituted alkylene group, or a substituted or unsubstituted arylene group, and is a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted alkylene group. It is more preferably a phenylene group.
  • R 101 , R 102 , R 103 and R 104 each independently represent a substituent.
  • the linking group represented by L 1 and L 2 can be bonded to any of R 1 to R 4 and Ar of the general formula (1) constituting Q. Two or more linking groups may be linked to one Q to form a crosslinked structure or a network structure.
  • a hydroxy group is introduced into any of R 1 to R 4 and Ar of the general formula (1), and the polymer is used as a linker as described below. It can be synthesized by reacting a compound to introduce a polymerizable group and polymerizing the polymerizable group.
  • the polymer containing the structure represented by the general formula (1) in the molecule may be a polymer consisting only of repeating units having the structure represented by the general formula (1), or may have other structures. It may be a polymer containing a repeating unit having. Further, the repeating unit having the structure represented by the general formula (1) contained in the polymer may be a single type or two or more types. Examples of the repeating unit having no structure represented by the general formula (1) include those derived from a monomer used for ordinary copolymerization. For example, a repeating unit derived from a monomer having an ethylenically unsaturated bond such as ethylene and styrene can be mentioned.
  • the compound represented by the general formula (1) is a light emitting material. In certain embodiments, the compound represented by the general formula (1) is a compound capable of emitting delayed fluorescence. In one embodiment of the present disclosure, the compound represented by the general formula (1) is in the UV region, the blue, green, yellow, orange, red region of the visible spectrum when excited by thermal or electronic means. It can emit light (eg, about 420 nm to about 500 nm, about 500 nm to about 600 nm or about 600 nm to about 700 nm) or in the near infrared region.
  • the compound of the general formula (1) when excited by thermal or electronic means, is in the red or orange region of the visible spectrum (eg, from about 620 nm to about 780 nm, about 780 nm). It can emit light at 650 nm). In certain embodiments of the present disclosure, the compound of the general formula (1), when excited by thermal or electronic means, has an orange or yellow region of the visible spectrum (eg, from about 570 nm to about 620 nm, about 620 nm). It can emit light at 590 nm (about 570 nm).
  • the compound of the general formula (1) when excited by thermal or electronic means, is in the green region of the visible spectrum (eg, from about 490 nm to about 575 nm, about 510 nm). Can emit light. In certain embodiments of the present disclosure, the compound of the general formula (1), when excited by thermal or electronic means, is in the blue region of the visible spectrum (eg, from about 400 nm to about 490 nm, about 475 nm). Can emit light. In certain embodiments of the present disclosure, the compound represented by the general formula (1) can emit light in the ultraviolet spectral region (eg, 280-400 nm) when excited by thermal or electronic means. In certain embodiments of the present disclosure, the compound represented by the general formula (1) can emit light in the infrared spectral region (eg, 780 nm to 2 ⁇ m) when excited by thermal or electronic means.
  • the ultraviolet spectral region eg, 280-400 nm
  • the electronic properties of small molecule chemical libraries can be calculated using known ab initio quantum chemistry calculations.
  • TD-DFT / B3LYP / 6-31G * can be analyzed to screen molecular fragments (parts) with HOMO above a specific threshold and LUMO below a specific threshold, and the calculated triplet of that part.
  • the term state is over 2.75 eV.
  • the donor portion (“D”) can be selected.
  • the receptor moiety (“A”) can be selected.
  • the bridge moiety (“B”) is, for example, a strong conjugated system that can severely limit the acceptor and donor moieties to specific conformations, resulting in overlap between the ⁇ -conjugated system of the donor and acceptor moieties.
  • compound libraries are sorted using one or more of the following properties: 1. 1. Emission near a specific wavelength 2. Calculated triplet state above a specific energy level 3.
  • the difference between the lowest triplet excited state of the singlet excited state and the lowest in the 77K ( ⁇ E ST) is less than about 0.5 eV, less than about 0.4 eV, less than about 0.3 eV, Less than about 0.2 eV or less than about 0.1 eV.
  • E ST value some embodiments, less than about 0.09 eV, less than about 0.08 eV, less than about 0.07 eV, less than about 0.06 eV, less than about 0.05 eV, less than about 0.04 eV, less than about 0.03eV , Less than about 0.02 eV or less than about 0.01 eV.
  • the compound represented by the general formula (1) is in excess of 25%, eg, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%. , About 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95% or higher quantum yields.
  • the compound represented by the general formula (1) is a novel compound.
  • the compound represented by the general formula (1) can be synthesized by combining known reactions. For example, in the synthesis of a compound in which Ar is a hydrogen atom, DH is reacted with 2,3,5,6-tetrafluorinated cyanobenzene in dimethylformamide (DMF) to which potassium carbonate is added, and then D'-H is further synthesized. Can be synthesized by reacting with. Further, the reaction order of DH and D'H may be reversed, and D'H may be reacted first, and then DH may be reacted.
  • DMF dimethylformamide
  • the compound represented by the general formula (1) it is combined with a compound represented by the general formula (1), the compound is dispersed, covalently bonded to the compound, coated with the compound, carried or associated with the compound 1. Used with one or more materials (eg, small molecules, polymers, metals, metal complexes, etc.) to form solid films or layers.
  • the compound represented by the general formula (1) can be combined with an electrically active material to form a film.
  • the compound represented by the general formula (1) may be combined with the hole transport polymer.
  • the compound represented by the general formula (1) may be combined with the electron transport polymer.
  • the compound represented by the general formula (1) may be combined with the hole transport polymer and the electron transport polymer. In some cases, the compound represented by the general formula (1) may be combined with a copolymer having both a hole transport part and an electron transport part. According to the above embodiment, the electrons and / or holes formed in the solid film or layer can interact with the compound represented by the general formula (1).
  • the film containing the compound of the present invention represented by the general formula (1) can be formed by a wet step.
  • a solution containing the composition containing the compound of the present invention is applied to the surface, and a film is formed after removing the solvent.
  • the wet process include, but are not limited to, a spin coating method, a slit coating method, an inkjet method (spray method), a gravure printing method, an offset printing method, and a flexographic printing method.
  • an appropriate organic solvent capable of dissolving the composition containing the compound of the present invention is selected and used.
  • a substituent eg, an alkyl group
  • the film containing the compound of the invention can be formed in a dry process.
  • the vacuum deposition method can be employed as the dry process, without limitation. When the vacuum vapor deposition method is adopted, the compounds constituting the film may be co-deposited from individual vapor deposition sources, or may be co-deposited from a single vapor deposition source in which the compounds are mixed.
  • a mixed powder in which a powder of the compound is mixed may be used, a compression molded product obtained by compressing the mixed powder may be used, or each compound is heated and melted and cooled.
  • a mixture may be used.
  • the composition ratio of the plurality of compounds contained in the vapor deposition source is obtained by performing co-evaporation under the condition that the vapor deposition rates (weight reduction rates) of the plurality of compounds contained in a single vapor deposition source are the same or almost the same. It is possible to form a film having a composition ratio corresponding to the above.
  • a film having a desired composition ratio can be easily formed.
  • a temperature at which each compound to be co-deposited has the same weight loss rate can be specified, and that temperature can be adopted as the temperature at the time of co-depositing.
  • Organic light emitting diode One aspect of the present invention relates to the use of a compound represented by the general formula (1) of the present invention as a light emitting material for an organic light emitting device.
  • the compound represented by the general formula (1) of the present invention can be effectively used as a light emitting material in the light emitting layer of the organic light emitting device.
  • the compound represented by the general formula (1) comprises delayed fluorescence (delayed fluorescent material) that emits delayed fluorescence.
  • the present invention provides a delayed fluorophore having a structure represented by the general formula (1).
  • the present invention relates to the use of a compound represented by the general formula (1) as a delayed fluorophore.
  • the compound of the present invention is represented by the general formula (1), which can be used as a host material and can be used with one or more light emitting materials, wherein the light emitting material is a fluorescent material. It may be a phosphorescent material or TADF.
  • the compound represented by the general formula (1) can also be used as a hole transport material.
  • the compound represented by the general formula (1) can be used as an electron transporting material.
  • the present invention relates to a method of causing delayed fluorescence from a compound represented by the general formula (1).
  • the organic light emitting element containing the compound as a light emitting material emits delayed fluorescence and exhibits high light emission efficiency.
  • the light emitting layer comprises a compound represented by the general formula (1), the compound represented by the general formula (1) being oriented parallel to the substrate.
  • the substrate is a film-forming surface.
  • the orientation of the compound represented by the general formula (1) with respect to the film-forming surface affects or determines the direction of propagation of the light emitted by the compound to be aligned.
  • the efficiency of light extraction from the light emitting layer is improved by aligning the propagation directions of the light emitted by the compound represented by the general formula (1).
  • the organic light emitting device comprises a light emitting layer.
  • the light emitting layer comprises a compound represented by the general formula (1) as a light emitting material.
  • the organic light emitting device is an organic light luminescence device (organic PL element).
  • the organic light emitting device is an organic electroluminescence device (organic EL device).
  • the compound represented by the general formula (1) assists the light emission of other light emitting materials contained in the light emitting layer (as a so-called assist dopant).
  • the compound represented by the general formula (1) contained in the light emitting layer is at its lowest excited singlet energy level and with the lowest excited singlet energy level of the host material contained in the light emitting layer. It is included between the lowest excited singlet energy levels of other light emitting materials contained in the light emitting layer.
  • the organic light luminescence device comprises at least one light emitting layer.
  • the organic electroluminescence device comprises at least an anode, a cathode, and an organic layer between the anode and the cathode.
  • the organic layer comprises at least a light emitting layer.
  • the organic layer comprises only a light emitting layer.
  • the organic layer comprises one or more organic layers in addition to the light emitting layer.
  • the organic layer include a hole transport layer, a hole injection layer, an electron barrier layer, a hole barrier layer, an electron injection layer, an electron transport layer and an exciton barrier layer.
  • the hole transport layer may be a hole injection transport layer having a hole injection function
  • the electron transport layer may be an electron injection transport layer having an electron injection function.
  • the light emitting layer is a layer in which holes and electrons injected from the anode and cathode, respectively, recombine to form excitons.
  • the layer emits light.
  • only the light emitting material is used as the light emitting layer.
  • the light emitting layer comprises a light emitting material and a host material.
  • the light emitting material is one or more compounds of the general formula (1).
  • singlet and triplet exciters generated in a light emitting material are confined in the light emitting material in order to improve the light emission efficiency of the organic electroluminescence element and the organic photoluminescence element.
  • a host material is used in addition to the light emitting material in the light emitting layer.
  • the host material is an organic compound.
  • the organic compound has an excited singlet energy and an excited triplet energy, at least one of which is higher than those of the light emitting materials of the present invention.
  • the singlet and triplet excitons generated in the luminescent material of the invention are confined in the molecule of the luminescent material of the invention. In certain embodiments, singlet and triplet excitons are sufficiently confined to improve photoradiation efficiency.
  • singlet and triplet excitons are not sufficiently confined, even though high photoradiation efficiency is still obtained, i.e., host materials capable of achieving high photoradiation efficiency are particularly limited. Can be used in the present invention without any need.
  • light emission occurs in the light emitting material in the light emitting layer of the device of the present invention.
  • the emitted light comprises both fluorescence and delayed fluorescence.
  • the radiated light includes radiated light from the host material.
  • the radiated light consists of synchrotron radiation from the host material.
  • the synchrotron radiation includes synchrotron radiation from a compound represented by the general formula (1) and synchrotron radiation from a host material.
  • TADF molecules and host materials are used.
  • TADF is an assist dopant.
  • various compounds can be adopted as a light emitting material (preferably a fluorescent material).
  • luminescent materials include anthracene derivatives, tetracene derivatives, naphthacene derivatives, pyrene derivatives, perylene derivatives, chrysene derivatives, rubrene derivatives, coumarin derivatives, pyran derivatives, stylben derivatives, fluorene derivatives, anthryl derivatives, pyrromethene derivatives, and terphenyl derivatives.
  • Turphenylene derivatives fluoranthene derivatives, amine derivatives, quinacridone derivatives, oxadiazole derivatives, malononitrile derivatives, pyran derivatives, carbazole derivatives, durolysin derivatives, thiazole derivatives, derivatives having metals (Al, Zn), etc. can be used. be.
  • These exemplary skeletons may or may not have substituents. Further, these exemplary skeletons may be combined with each other.
  • a light emitting material that can be used in combination with the assist dopant represented by the general formula (1) will be illustrated.
  • the compound described in paragraphs 0220 to 0239 of WO2015 / 022974 can also be particularly preferably adopted as a light emitting material used together with the assist dopant represented by the general formula (1).
  • the amount of the compound of the present invention as the light emitting material contained in the light emitting layer is 0.1% by weight or more. In certain embodiments, when the host material is used, the amount of the compound of the present invention as the light emitting material contained in the light emitting layer is 1% by weight or more. In certain embodiments, when the host material is used, the amount of the compound of the present invention as the light emitting material contained in the light emitting layer is 50% by weight or less. In certain embodiments, when the host material is used, the amount of the compound of the present invention as the light emitting material contained in the light emitting layer is 20% by weight or less.
  • the amount of the compound of the present invention as the light emitting material contained in the light emitting layer is 10% by weight or less.
  • the host material of the light emitting layer is an organic compound having a hole transport function and an electron transport function.
  • the host material for the light emitting layer is an organic compound that prevents the wavelength of the synchrotron radiation from increasing.
  • the host material for the light emitting layer is an organic compound with a high glass transition temperature.
  • the host material is selected from the group consisting of:
  • the light emitting layer comprises two or more differently structured TADF molecules. For example, a light emitting layer containing these three materials in which the excited singlet energy level is higher in the order of the host material, the first TADF molecule, and the second TADF molecule can be obtained.
  • the 1TADF molecule with a 2TADF molecule is preferably both a difference Delta] E ST of the lowest excited triplet energy level of the lowest excited singlet energy level and 77K or less 0.3 eV, below 0.25eV It is more preferably 0.2 eV or less, more preferably 0.15 eV or less, further preferably 0.1 eV or less, still more preferably 0.07 eV or less. , 0.05 eV or less, even more preferably 0.03 eV or less, and particularly preferably 0.01 eV or less.
  • the content of the first TADF molecule in the light emitting layer is preferably higher than the content of the second TADF molecule.
  • the content of the host material in the light emitting layer is preferably higher than the content of the second TADF molecule.
  • the content of the first TADF molecule in the light emitting layer may be higher, lower, or the same as the content of the host material.
  • the composition in the light emitting layer may be 10 to 70% by weight of the host material, 10 to 80% by weight of the first TADF molecule, and 0.1 to 30% by weight of the second TADF molecule.
  • the composition in the light emitting layer may be 20 to 45% by weight of the host material, 50 to 75% by weight of the first TADF molecule, and 5 to 20% by weight of the second TADF molecule.
  • the emission quantum yield ⁇ PL2 (B) by photoexcitation of the co-deposited film of the second TADF molecule and the host material (content of the second TADF molecule in this co-deposited film B wt%) and the second TADF molecule alone.
  • the emission quantum yield ⁇ PL2 (100) due to photoexcitation of the film satisfies the relational expression of ⁇ PL2 (B)> ⁇ PL2 (100).
  • the light emitting layer can contain three structurally different TADF molecules.
  • the compound of the present invention may be any of a plurality of TADF compounds contained in the light emitting layer.
  • the light emitting layer can be composed of a material selected from the group consisting of a host material, an assist dopant, and a light emitting material. In certain embodiments, the light emitting layer is free of metallic elements. In certain embodiments, the light emitting layer can be composed of a material composed only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms, oxygen atoms and sulfur atoms. Alternatively, the light emitting layer may be composed of a material composed only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms and oxygen atoms.
  • the TADF material may be a known delayed fluorescent material.
  • Preferred delayed fluorescent materials include paragraphs 0008 to 0048 and 0995 to 0133 of WO2013 / 154064, paragraphs 0007 to 0047 and 0073 to 985 of WO2013 / 011954, and paragraphs 0007 to 0033 and 0059 to 0066 of WO2013 / 01955.
  • WO 2013/081088 paragraphs 0008 to 0071 and 0118 to 0133, Japanese Patent Laid-Open No. 2013-256490, paragraphs 0009 to 0046 and 093 to 0134, Japanese Patent Laid-Open No.
  • exemplary compounds include those capable of emitting delayed fluorescence.
  • those capable of emitting delayed fluorescence can be preferably adopted.
  • the above publications described in this paragraph are hereby incorporated herein by reference.
  • the organic electroluminescence device of the present invention is held by a substrate, the substrate is not particularly limited and is commonly used in organic electroluminescence devices, such as glass, clear plastic, quartz and silicon. Any material formed by the above may be used.
  • the anode of an organic electroluminescence device is manufactured from a metal, alloy, conductive compound or a combination thereof.
  • the metal, alloy or conductive compound has a high work function (4 eV or higher).
  • the metal is Au.
  • the conductive transparent material is selected from CuI, indium tin oxide (ITO), SnO 2 and ZnO. In some embodiments, it uses an amorphous material capable of forming such IDIXO (In 2 O 3 -ZnO) , a transparent conductive film.
  • the anode is a thin film. In some embodiments, the thin film is made by vapor deposition or sputtering.
  • the film is patterned by a photolithography method.
  • the pattern may be formed using a mask having a shape suitable for vapor deposition or sputtering on the electrode material.
  • a wet film forming method such as a printing method or a coating method is used.
  • synchrotron radiation passes through the anode, the anode has a transmittance of greater than 10% and the anode has a sheet resistance of no more than a few hundred ohms per unit area.
  • the thickness of the anode is 10-1,000 nm. In some embodiments, the thickness of the anode is 10-200 nm. In some embodiments, the thickness of the anode will vary depending on the material used.
  • the cathode is made of an electrode material such as a metal with a low work function (4 eV or less) (referred to as an electron-injected metal), an alloy, a conductive compound or a combination thereof.
  • the electrode material is sodium, sodium-potassium alloy, magnesium, lithium, magnesium-copper mixture, magnesium-silver mixture, magnesium-aluminum mixture, magnesium-indium mixture, aluminum-aluminum oxide (Al 2). O 3 ) Selected from mixtures, indium, lithium-aluminum mixtures and rare earth elements.
  • a mixture of the electron-injected metal and a second metal which is a stable metal with a higher work function than the electron-injected metal, is used.
  • the mixture is selected from a magnesium-silver mixture, a magnesium-aluminum mixture, a magnesium-indium mixture, an aluminum-aluminum oxide (Al 2 O 3 ) mixture, a lithium-aluminum mixture and aluminum.
  • the mixture improves electron injection properties and resistance to oxidation.
  • the cathode is manufactured by forming the electrode material as a thin film by vapor deposition or sputtering.
  • the cathode has a sheet resistance of tens of ohms or less per unit area.
  • the cathode has a thickness of 10 nm to 5 ⁇ m.
  • the thickness of the cathode is 50-200 nm.
  • any one of the anode and cathode of the organic electroluminescence element is transparent or translucent in order to transmit synchrotron radiation.
  • the transparent or translucent electroluminescent device improves the light radiance.
  • the cathode is formed of the conductive transparent material described above with respect to the anode to form a transparent or translucent cathode.
  • the device comprises an anode and a cathode, both of which are transparent or translucent.
  • the injection layer is the layer between the electrode and the organic layer. In some embodiments, the injection layer reduces the drive voltage and enhances the light emission brightness. In some embodiments, the injection layer comprises a hole injection layer and an electron injection layer. The injection layer can be arranged between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer. In some embodiments, an injection layer is present. In some embodiments, there is no injection layer. The following are examples of preferable compounds that can be used as hole injection materials.
  • the barrier layer is a layer capable of preventing charges (electrons or holes) and / or excitons present in the light emitting layer from diffusing outside the light emitting layer.
  • the electron barrier layer resides between the light emitting layer and the hole transport layer, preventing electrons from passing through the light emitting layer to the hole transport layer.
  • the hole barrier layer exists between the light emitting layer and the electron transport layer to prevent holes from passing through the light emitting layer to the electron transport layer.
  • the barrier layer prevents excitons from diffusing outside the light emitting layer.
  • the electron barrier layer and the hole barrier layer constitute an exciton barrier layer.
  • the term "electron barrier layer" or "exciton barrier layer” includes both an electron barrier layer and a layer having both the functions of an exciton barrier layer.
  • Hole barrier layer functions as an electron transport layer. In some embodiments, the hole barrier layer prevents holes from reaching the electron transport layer during electron transport. In some embodiments, the hole barrier layer increases the probability of electron-hole recombination in the light emitting layer.
  • the material used for the hole barrier layer may be the same material as described above for the electron transport layer. The following are examples of preferable compounds that can be used for the hole barrier layer.
  • the electron barrier layer transports holes.
  • the electron barrier layer blocks electrons from reaching the hole transport layer during hole transport.
  • the electron barrier layer increases the probability of electron-hole recombination in the light emitting layer.
  • the material used for the electron barrier layer may be the same material as described above for the hole transport layer. Specific examples of preferable compounds that can be used as an electron barrier material are given below.
  • Exciton barrier layer prevents excitons generated through recombination of holes and electrons in the light emitting layer from diffusing to the charge transport layer. In some embodiments, the exciton barrier layer allows for effective exciton confinement in the light emitting layer. In some embodiments, the light emission efficiency of the device is improved. In some embodiments, the exciton barrier layer is adjacent to the light emitting layers on either the anode side and the cathode side, and on either side of the anode side. In some embodiments, when the exciton barrier layer is present on the anode side, the layer may be present between the hole transport layer and the light emitting layer and adjacent to the light emitting layer.
  • the layer when the exciton barrier layer is present on the cathode side, the layer may be present between the light emitting layer and the cathode and adjacent to the light emitting layer.
  • a hole injection layer, an electron barrier layer or a similar layer resides between the anode and the exciton barrier layer adjacent to the light emitting layer on the anode side.
  • a hole injection layer, an electron barrier layer, a hole barrier layer or a similar layer is present between the cathode and an exciton barrier layer adjacent to the light emitting layer on the cathode side.
  • the excited element barrier layer comprises an excited singlet energy and an excited triplet energy, at least one of which is higher than the excited singlet energy and the excited triplet energy of the light emitting material, respectively.
  • the hole transport layer contains a hole transport material.
  • the hole transport layer is monolayer. In some embodiments, the hole transport layer has multiple layers. In some embodiments, the hole transport material has one of the hole injection or transport properties and the electron barrier properties. In some embodiments, the hole transport material is an organic material. In some embodiments, the hole transport material is an inorganic material. Examples of known hole transport materials that can be used in the present invention are, but are not limited to, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane inducers, pyrazoline derivatives, pyrazolones.
  • the hole transport material is selected from porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds.
  • the hole transport material is an aromatic tertiary amine compound. Specific examples of preferable compounds that can be used as hole transport materials are given below.
  • Electron transport layer contains an electron transport material.
  • the electron transport layer is a single layer.
  • the electron transport layer has multiple layers.
  • the electron transport material only needs to have the function of transporting the electrons injected from the cathode to the light emitting layer.
  • the electron transport material also functions as a hole barrier material.
  • electron transport layers examples include, but are not limited to, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidene methane derivatives, anthracinodimethanes, antron derivatives, and oxadi. Examples thereof include azole derivatives, azole derivatives, azine derivatives or combinations thereof, or polymers thereof.
  • the electron transport material is a thiadiazole inducer or a quinoxaline derivative.
  • the electron transport material is a polymeric material. Specific examples of preferable compounds that can be used as electron transport materials are given below.
  • preferable compounds as materials that can be added to each organic layer are given.
  • it may be added as a stabilizing material.
  • the light emitting layer is incorporated into the device.
  • devices include, but are not limited to, OLED valves, OLED lamps, television displays, computer monitors, mobile phones and tablets.
  • the electronic device comprises an OLED having an anode, a cathode, and at least one organic layer comprising a light emitting layer between the anode and the cathode.
  • the components described herein can be incorporated into a variety of photosensitive or photoactivating devices, such as OLEDs or optoelectronic devices.
  • the construct may be useful for facilitating charge transfer or energy transfer within the device and / or as a hole transport material.
  • Examples of the device include an organic light emitting diode (OLED), an organic integrated line (OIC), an organic field effect transistor (O-FET), an organic thin film (O-TFT), an organic light emitting transistor (O-LET), and an organic solar cell. (O-SC), an organic optical detector, an organic photoreceiver, an organic field-quench device (O-FQD), a light emitting fuel cell (LEC) or an organic laser diode (O-laser).
  • the electronic device comprises an OLED comprising an anode, a cathode, and at least one organic layer comprising a light emitting layer between the anode and the cathode.
  • the device comprises an OLED of different colors.
  • the device comprises an array containing a combination of OLEDs.
  • the combination of OLEDs is a combination of three colors (eg RGB).
  • the combination of OLEDs is a combination of colors that are neither red nor green nor blue (eg, orange and yellow-green).
  • the combination of OLEDs is a combination of two colors, four colors or more.
  • the device is A circuit board having a first surface with a mounting surface and a second surface opposite the mounting surface and defining at least one opening.
  • At least one OLED that has The housing for the circuit board and An OLED light comprising at least one connector located at the end of the housing, wherein the housing and the connector define a package suitable for mounting in lighting equipment.
  • the OLED light has a plurality of OLEDs mounted on a circuit board such that light is emitted in multiple directions.
  • some light emitted in the first direction is polarized and emitted in the second direction.
  • a reflector is used to polarize the light emitted in the first direction.
  • the light emitting layer of the present invention can be used in a screen or display.
  • the compounds according to the invention are deposited onto a substrate using steps such as, but not limited to, vacuum evaporation, deposition, vapor deposition or chemical vapor deposition (CVD).
  • the substrate is a photoplate structure useful in two-sided etching that provides pixels with a unique aspect ratio.
  • the screen also referred to as a mask
  • the design of the corresponding artwork pattern allows the placement of very steep, narrow tie bars between pixels in the vertical direction, as well as large, wide-ranging bevel openings in the horizontal direction.
  • Pixel internal patterning makes it possible to construct 3D pixel openings with different aspect ratios in the horizontal and vertical directions.
  • imaged "stripe" or halftone circles in the pixel area protects the etching in the particular area until these particular patterns are undercut and removed from the substrate. At that time, all the pixel regions are processed at the same etching rate, but the depth varies depending on the halftone pattern.
  • By changing the size and spacing of the halftone patterns it is possible to etch with different protection rates within the pixel, allowing for the deep localized etching required to form steep vertical bevels. ..
  • the preferred material for the vapor deposition mask is Invar.
  • Invar is a metal alloy that is cold-rolled in the form of a long thin sheet at a steel mill. Invar cannot be electrodeposited onto the spin mandrel as a nickel mask.
  • a suitable and low-cost method for forming an opening region in a vapor deposition mask is a wet chemical etching method.
  • the screen or display pattern is a pixel matrix on a substrate.
  • the screen or display pattern is processed using lithography (eg, photolithography and e-beam lithography).
  • the screen or display pattern is processed using wet chemical etching.
  • the screen or display pattern is processed using plasma etching.
  • the OLED display is generally manufactured by forming a large mother panel and then cutting the mother panel in cell panel units. Normally, each cell panel on the mother panel forms a thin film transistor (TFT) having an active layer and a source / drain electrode on a base substrate, a flattening film is applied to the TFT, and a pixel electrode and a light emitting layer are applied. , The counter electrode and the encapsulating layer are formed in order over time, and are formed by cutting from the mother panel.
  • TFT thin film transistor
  • the OLED display is generally manufactured by forming a large mother panel and then cutting the mother panel in cell panel units.
  • each cell panel on the mother panel forms a thin film transistor (TFT) having an active layer and a source / drain electrode on a base substrate, a flattening film is applied to the TFT, and a pixel electrode and a light emitting layer are applied.
  • TFT thin film transistor
  • the counter electrode and the encapsulating layer are formed in order over time, and are formed by cutting from the mother panel.
  • a method of manufacturing an organic light emitting diode (OLED) display is provided, wherein the method is: The process of forming a barrier layer on the base base material of the mother panel, A step of forming a plurality of display units on a cell panel unit on the barrier layer, A step of forming an encapsulation layer on each of the display units of the cell panel, A step of applying an organic film to the interface portion between the cell panels is included.
  • the barrier layer is, for example, an inorganic film formed of SiNx, the ends of the barrier layer being coated with an organic film formed of polyimide or acrylic.
  • the organic film helps the mother panel to be softly cut in cell panel units.
  • the thin film transistor (TFT) layer comprises a light emitting layer, a gate electrode, and a source / drain electrode.
  • Each of the plurality of display units may have a thin film transistor (TFT) layer, a flattening film formed on the TFT layer, and a light emitting unit formed on the flattened film, and the interface portion may have a light emitting unit.
  • the applied organic film is formed of the same material as the flattening film, and is formed at the same time as the flattening film is formed.
  • the light emitting unit is coupled to the TFT layer by a passivation layer, a flattening film in between, and an encapsulating layer that coats and protects the light emitting unit.
  • the organic film is not coupled to either the display unit or the encapsulation layer.
  • each of the organic film and the flattening film may contain either polyimide or acrylic.
  • the barrier layer may be an inorganic film.
  • the base substrate may be made of polyimide.
  • the method further comprises a step of attaching a carrier substrate made of a glass material to the other surface of the base substrate before forming a barrier layer on one surface of the base substrate made of polyimide. It may include a step of separating the carrier substrate from the base substrate prior to cutting along the interface portion.
  • the OLED display is a flexible display.
  • the passivation layer is an organic film placed on the TFT layer for coating the TFT layer.
  • the flattening film is an organic film formed on the passivation layer.
  • the flattening film is made of polyimide or acrylic, similar to the organic film formed at the ends of the barrier layer. In some embodiments, the flattening film and the organic film are formed simultaneously during the manufacture of the OLED display. In some embodiments, the organic film may be formed at the edges of the barrier layer, whereby a portion of the organic film is in direct contact with the base substrate and the rest of the organic film is removed. , Surrounding the edge of the barrier layer and in contact with the barrier layer.
  • the light emitting layer has a pixel electrode, a counter electrode, and an organic light emitting layer disposed between the pixel electrode and the counter electrode.
  • the pixel electrode is connected to a source / drain electrode in the TFT layer.
  • an appropriate voltage is formed between the pixel electrode and the counter electrode so that the organic light emitting layer emits light, thereby the image. Is formed.
  • the image forming unit having the TFT layer and the light emitting unit will be referred to as a display unit.
  • the encapsulation layer that covers the display unit and prevents the penetration of external moisture may be formed in a thin film encapsulation structure in which organic films and inorganic films are alternately laminated.
  • the encapsulation layer has a thin film encapsulation structure in which a plurality of thin films are laminated.
  • the organic film applied to the interface section is spaced apart from each of the plurality of display units.
  • the organic film is formed in such a manner that some of the organic films are in direct contact with the base substrate and the rest of the organic film surrounds the edges of the barrier layer while in contact with the barrier layer. Will be done.
  • the OLED display is flexible and uses a flexible base substrate made of polyimide.
  • the base substrate is formed on a carrier substrate made of a glass material, which is then separated.
  • the barrier layer is formed on the surface of the base substrate opposite the carrier substrate.
  • the barrier layer is patterned according to the size of each cell panel. For example, a base substrate is formed on all surfaces of the mother panel, while a barrier layer is formed according to the size of each cell panel, thereby forming a groove in the interface portion between the barrier layers of the cell panel. Each cell panel can be cut along the groove.
  • the manufacturing method further comprises the step of cutting along an interface portion, where a groove is formed in the barrier layer, at least a portion of the organic film is formed in the groove, and the groove is formed. Does not penetrate the base substrate.
  • a TFT layer of each cell panel is formed, and a passivation layer, which is an inorganic film, and a flattening film, which is an organic film, are placed on the TFT layer to cover the TFT layer.
  • a polyimide or acrylic flattening film is formed, for example, the groove of the interface portion is covered with an organic film made of polyimide or acrylic, for example.
  • the groove of the interface portion between the barrier layers is covered with an organic film to absorb the impact that can be transmitted to the barrier layer without the organic film, so that each cell panel is softly cut and the barrier layer is used. It may be prevented from cracking.
  • the organic film and the flattening film covering the grooves of the interface portion are arranged at intervals from each other.
  • the organic film and the flattening film are interconnected as one layer, external moisture may infiltrate into the display unit through the flattening film and the portion where the organic film remains.
  • the organic film and the flattening film are spaced apart from each other so that the organic film is spaced apart from the display unit.
  • the display unit is formed by the formation of a light emitting unit and the encapsulation layer is placed on the display unit to cover the display unit.
  • the carrier base material that supports the base base material is separated from the base base material.
  • the carrier substrate is separated from the base substrate due to the difference in the coefficient of thermal expansion between the carrier substrate and the base substrate.
  • the mother panel is cut in cell panel units.
  • the mother panel is cut along the interface between the cell panels using a cutter.
  • the grooves in the interface section where the mother panel is cut are covered with an organic film so that the organic film absorbs the impact during cutting.
  • the barrier layer can be prevented from cracking during cutting. In some embodiments, the method reduces the defective rate of the product and stabilizes its quality.
  • Another embodiment is a barrier layer formed on a base substrate, a display unit formed on the barrier layer, an encapsulating layer formed on the display unit, and an organic coating applied to the ends of the barrier layer.
  • the emission characteristics are evaluated by a source meter (Caseley: 2400 series), a semiconductor parameter analyzer (Agilent Technology: E5273A), an optical power meter measuring device (Newport: 1930C), and an optical spectroscope. (Ocean Optics Co., Ltd .: USB2000), spectroradiometer (Topcon Co., Ltd .: SR-3) and streak camera (Hamamatsu Photonics Co., Ltd. C4334 type) were used.
  • Example 295 Fabrication and evaluation of thin film Compound 295 is vapor-deposited on a quartz substrate by a vacuum vapor deposition method under conditions of a vacuum degree of less than 1 ⁇ 10 -3 Pa, and consists of only compound 295.
  • the thin film was formed to have a thickness of 100 nm and used as the neat thin film of Example 1.
  • compound 295 and PYD2Cz or PPF are deposited from different vapor deposition sources on a quartz substrate by a vacuum vapor deposition method under conditions of a vacuum degree of less than 1 ⁇ 10 -3 Pa, and the concentration of compound 295 is 20 weight.
  • a thin film of% was formed to have a thickness of 100 nm and used as a dope thin film of Example 1.
  • Example 2 and comparative compound 1 instead of compound 295, thin films of Example 2, Example 3 and Comparative Example 1 were obtained.
  • the characteristics of each of the obtained thin films were evaluated by irradiating them with 300 nm excitation light.
  • the emission spectrum was observed using a neat thin film, and the peak wavelength ( ⁇ max ) was read.
  • the photoluminescence quantum efficiency (PLQY) was measured using a doped thin film, and the lifetime of delayed fluorescence ( ⁇ d ) was obtained from the transient attenuation curve of light emission.
  • the lowest excited singlet energy (E S1) and the lowest excited triplet energy (E T1) found through the following procedure to obtain a Delta] E ST by calculating E S1 -E T1.
  • ES1 Minimum excitation singlet energy
  • the fluorescence spectrum of the thin film was measured at room temperature (300 K) (vertical axis: emission intensity, horizontal axis: wavelength).
  • a tangent line was drawn for the rising edge of the emission spectrum on the short wave side, and the wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis was obtained.
  • the value obtained by converting this wavelength value into an energy value by the following conversion formula was defined as ES1 .
  • E S1 [eV] 1239.85 / ⁇ edge (2) Minimum excited triplet energy ( ET1 )
  • the same thin film was cooled to 77 [K] with liquid nitrogen, the sample for phosphorescence measurement was irradiated with excitation light (300 nm), and phosphorescence was measured using a detector.
  • the emission spectrum after 100 milliseconds after the irradiation with the excitation light was defined as the phosphorescence spectrum.
  • a tangent line was drawn for the rising edge of the phosphorescence spectrum on the short wavelength side, and the wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis was obtained.
  • the value obtained by converting this wavelength value into an energy value using the above conversion formula was defined as ET1 .
  • the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side was drawn as follows. When moving on the spectrum curve from the short wavelength side of the phosphorescence spectrum to the maximum value on the shortest wavelength side of the maximum values of the spectrum, tangents at each point on the curve were considered toward the long wavelength side. This tangent increases in slope as the curve rises (ie, as the vertical axis increases). The tangent line drawn at the point where the value of the slope reaches the maximum value was taken as the tangent line with respect to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • the maximum point having a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the above-mentioned maximum value on the shortest wavelength side, and the value of the gradient closest to the maximum value on the shortest wavelength side is the maximum.
  • the tangent line drawn at the point where the value was taken was taken as the tangent line to the rising edge of the phosphorescent spectrum on the short wavelength side.
  • Examples 4 to 6, Comparative Example 2 Fabrication and evaluation of organic electroluminescence device Each thin film is vacuum-deposited on a glass substrate on which an anode made of indium tin oxide (ITO) having a film thickness of 100 nm is formed. The stacking was performed at a vacuum degree of 1 ⁇ 10 -6 Pa. First, a first hole injection layer made of a first hole injection material is formed on ITO, a second hole injection layer made of a second hole injection material is formed on the first hole injection layer, and hole transport is formed on the second hole injection layer. A hole transport layer made of a material was formed, and an electron blocking layer made of an electron blocking material was further formed on the hole transport layer.
  • ITO indium tin oxide
  • compound 295 and the host material were co-deposited from different vapor deposition sources to form a light emitting layer having a concentration of compound 295 of 30% by weight.
  • a hole blocking layer made of a hole blocking material was formed, an electron transport layer was formed on the hole blocking layer, and an electrode was further formed on the electron transport layer.
  • the organic electroluminescence device of Example 4 was produced.
  • Compound 1174, Compound 2, and Comparative Compound 1 instead of Compound 295, the organic electroluminescence devices of Example 5, Example 6, and Comparative Example 2 were produced by the same procedure.
  • Each of the organic electroluminescence devices of Examples 4 to 6 exhibits high luminous efficiency, a low driving voltage, a long device life (device durability), and high heat resistance. Further, by using other compounds of the present invention, it is possible to provide an organic electroluminescence device having the same effect.
  • the present invention it is possible to provide an excellent light emitting material and an organic light emitting device using the same. Therefore, the present invention has high industrial applicability.

Abstract

A compound represented by general formula below is useful as a light-emitting material. Ar is a hydrogen atom, an aromatic hydrocarbocyclic group, or a nitrogen atom-containing aromatic heterocyclic group; 1-3 of R1 to R4 are carbazole-9-yl groups condensed with a benzofuran ring; 1-3 of R1 to R4 are other donor groups; and the rest are hydrogen atoms.

Description

化合物、発光材料および発光素子Compounds, light emitting materials and light emitting devices
 本発明は、発光材料として有用な化合物とそれを用いた発光素子に関する。 The present invention relates to a compound useful as a light emitting material and a light emitting device using the compound.
 有機エレクトロルミネッセンス素子(有機EL素子)などの発光素子の発光効率を高める研究が盛んに行われている。特に、有機エレクトロルミネッセンス素子を構成する電子輸送材料、ホール輸送材料、発光材料などを新たに開発して組み合わせることにより、発光効率を高める工夫が種々なされてきている。その中には、遅延蛍光材料を利用した有機エレクトロルミネッセンス素子に関する研究も見受けられる。 Research is being actively conducted to improve the luminous efficiency of light emitting elements such as organic electroluminescence elements (organic EL elements). In particular, various measures have been taken to improve the luminous efficiency by newly developing and combining electron transport materials, hole transport materials, light emitting materials and the like constituting organic electroluminescence devices. Among them, research on organic electroluminescence devices using delayed fluorescent materials can be seen.
 遅延蛍光材料は、励起状態において、励起三重項状態から励起一重項状態への逆項間交差を生じた後、その励起一重項状態から基底状態へ戻る際に蛍光を放射する材料である。こうした経路による蛍光は、基底状態から直接生じた励起一重項状態からの蛍光(通常の蛍光)よりも遅れて観測されるため、遅延蛍光と称されている。ここで、例えば、発光性化合物をキャリアの注入により励起した場合、励起一重項状態と励起三重項状態の発生確率は統計的に25%:75%であるため、直接生じた励起一重項状態からの蛍光のみでは、発光効率の向上に限界がある。一方、遅延蛍光材料では、励起一重項状態のみならず、励起三重項状態も上記の逆項間交差を介した経路により蛍光発光に利用することができるため、通常の蛍光材料に比べて高い発光効率が得られることになる。 The delayed fluorescent material is a material that emits fluorescence when returning from the excited singlet state to the ground state after an intersystem crossing from the excited triplet state to the excited singlet state occurs in the excited state. Fluorescence by such a pathway is called delayed fluorescence because it is observed later than the fluorescence from the excited singlet state directly generated from the ground state (normal fluorescence). Here, for example, when a luminescent compound is excited by injection of a carrier, the probability of occurrence of the excited singlet state and the excited triplet state is statistically 25%: 75%, so that the excited singlet state directly generated is used. There is a limit to the improvement of light emission efficiency only by the fluorescence of. On the other hand, in the delayed fluorescent material, not only the excited singlet state but also the excited triplet state can be used for fluorescence emission by the path via the above-mentioned inverse intersystem crossing, so that the emission is higher than that of the ordinary fluorescent material. Efficiency will be obtained.
 このような原理が明らかにされて以降、様々な研究により種々の遅延蛍光材料が発見されるに至っている。しかしながら、遅延蛍光を放射する材料であれば、直ちに発光材料として有用である訳ではない。遅延蛍光材料の中には、逆項間交差が比較的生じにくいものもあり、遅延蛍光の寿命が長いものもある。また、高電流密度領域で励起子が蓄積して発光効率が低下してしまったり、長時間駆動を続けると急速に劣化してしまったりするものもある。したがって、実用性の点で改善の余地がある遅延蛍光材料が極めて多いのが実情である。このため、遅延蛍光材料として知られているベンゾニトリル系化合物においても、課題があることが指摘されている。例えば、下記の構造を有する2CzPNは遅延蛍光を放射する材料であるものの、発光効率が高くないうえ、高電流密度領域での発光効率の低下が著しいという課題を抱えている(非特許文献1参照)。 Since such a principle was clarified, various delayed fluorescent materials have been discovered by various studies. However, any material that emits delayed fluorescence is not immediately useful as a light emitting material. Some delayed fluorescent materials are relatively unlikely to have an inverse intersystem crossing, and some have a long delayed fluorescence lifetime. In addition, excitons may accumulate in the high current density region to reduce the luminous efficiency, or the drive may deteriorate rapidly if the drive is continued for a long time. Therefore, the reality is that there are an extremely large number of delayed fluorescent materials that have room for improvement in terms of practicality. Therefore, it has been pointed out that the benzonitrile compound known as a delayed fluorescent material also has a problem. For example, although 2CzPN having the following structure is a material that emits delayed fluorescence, it has a problem that the luminous efficiency is not high and the luminous efficiency is significantly reduced in a high current density region (see Non-Patent Document 1). ).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 このような課題を抱えていることが指摘されているにもかかわらず、遅延蛍光材料の化学構造と特性との関係については十分な解明がなされているとは言いがたい。このため、発光材料として有用な化合物の化学構造を一般化するのは現状では困難であり、不明な点が多い。 Despite the fact that it has been pointed out that it has such problems, it cannot be said that the relationship between the chemical structure and properties of delayed fluorescent materials has been fully elucidated. Therefore, it is currently difficult to generalize the chemical structure of a compound useful as a light emitting material, and there are many unclear points.
 このような状況下において本発明者らは、発光素子用の発光材料としてより有用な化合物を提供することを目的として研究を重ねた。そして、発光材料としてより有用な化合物の一般式を導きだして一般化することを目的として鋭意検討を進めた。 Under such circumstances, the present inventors have conducted repeated studies for the purpose of providing a more useful compound as a light emitting material for a light emitting device. Then, we proceeded with diligent studies for the purpose of deriving and generalizing the general formulas of compounds that are more useful as luminescent materials.
 上記の目的を達成するために鋭意検討を進めた結果、本発明者らは、ベンゾニトリル誘導体のうち、特定の条件を満たす構造を持つ化合物が発光材料として有用であることを見いだした。本発明は、こうした知見に基づいて提案されたものであり、具体的に、以下の構成を有する。 As a result of diligent studies to achieve the above object, the present inventors have found that among benzonitrile derivatives, a compound having a structure satisfying a specific condition is useful as a light emitting material. The present invention has been proposed based on these findings, and specifically has the following configurations.
[1] 下記一般式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000007
[一般式(1)において、
 Arは、水素原子、置換もしくは無置換の芳香族炭化水素環基、または、環骨格構成原子として窒素原子を含む置換もしくは無置換の芳香族複素環基を表し、
 R~Rのうちの1~3個は、各々独立に、ベンゾフラン環が縮合したカルバゾール-9-イル基D’(ただし水素原子は置換されていてもよい)を表し、
 R~Rのうちの1~3個は、各々独立にドナー性基D(ただし、ベンゾフラン環が縮合したカルバゾール-9-イル基、置換もしくは無置換の芳香族炭化水素環基、および、環骨格構成原子として窒素原子を含む置換もしくは無置換の芳香族複素環基を除く)を表し、
 残りの0~2個のR~Rは水素原子を表す。]
[2] 下記のいずれかの構造を有する、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000008
[3] 下記のいずれかの構造を有する、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000009
[4] 下記のいずれかの構造を有する、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000010
[5] 分子内に存在する複数のD’が同じ構造を有する、[3]または[4]に記載の化合物。
[6] 分子内に存在する複数のDが同じ構造を有する、[2]または[3]に記載の化合物。
[7] D’が、前記ベンゾフラン環のフラン環で前記カルバゾリル-9-イル基に縮合している、[1]~[6]のいずれかに記載の化合物。
[8] D’が下記のいずれかの構造を有する、[6]に記載の化合物。
Figure JPOXMLDOC01-appb-C000011
[上記各構造における水素原子は置換されていてもよい。]
[9] Dが置換もしくは無置換のカルバゾリル-9-イル基(ただしベンゾフラン環が縮合したものを除く)である、[1]~[8]のいずれかに記載の化合物。
[10] Arが水素原子である、[1]~[9]のいずれかに記載の化合物。
[11] R~Rはいずれも水素原子ではない、[1]~[10]のいずれかに記載の化合物。
[12] [1]~[11]のいずれかに記載の化合物からなる発光材料。
[13] [1]~[11]のいずれかに記載の化合物を含むことを特徴とする発光素子。
[14] 前記発光素子が発光層を有しており、前記発光層が前記化合物とホスト材料を含む、[13]に記載の発光素子。
[15] 前記発光素子が発光層を有しており、前記発光層が前記化合物と発光材料を含み、前記発光材料から主として発光する、[13]に記載の発光素子。
[1] A compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000007
[In the general formula (1)
Ar represents a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon ring group, or a substituted or unsubstituted aromatic heterocyclic group containing a nitrogen atom as a ring skeleton constituent atom.
1 to 3 of R 1 to R 4 each independently represent a carbazole-9-yl group D'(although the hydrogen atom may be substituted) in which a benzofuran ring is condensed.
1 to 3 of R 1 to R 4 are each independently a donor group D (however, a carbazole-9-yl group fused with a benzofuran ring, a substituted or unsubstituted aromatic hydrocarbon ring group, and a substituted or unsubstituted aromatic hydrocarbon ring group, and Represents a substituted or unsubstituted aromatic heterocyclic group containing a nitrogen atom as a ring skeleton constituent atom).
The remaining 0 to 2 R 1 to R 4 represent hydrogen atoms. ]
[2] The compound according to [1], which has any of the following structures.
Figure JPOXMLDOC01-appb-C000008
[3] The compound according to [1], which has any of the following structures.
Figure JPOXMLDOC01-appb-C000009
[4] The compound according to [1], which has any of the following structures.
Figure JPOXMLDOC01-appb-C000010
[5] The compound according to [3] or [4], wherein a plurality of D'existing in the molecule have the same structure.
[6] The compound according to [2] or [3], wherein a plurality of Ds present in the molecule have the same structure.
[7] The compound according to any one of [1] to [6], wherein D'is condensed with the carbazolyl-9-yl group in the furan ring of the benzofuran ring.
[8] The compound according to [6], wherein D'has any of the following structures.
Figure JPOXMLDOC01-appb-C000011
[Hydrogen atoms in each of the above structures may be substituted. ]
[9] The compound according to any one of [1] to [8], wherein D is a substituted or unsubstituted carbazolyl-9-yl group (excluding those condensed with a benzofuran ring).
[10] The compound according to any one of [1] to [9], wherein Ar is a hydrogen atom.
[11] The compound according to any one of [1] to [10], wherein none of R 1 to R 4 is a hydrogen atom.
[12] A luminescent material comprising the compound according to any one of [1] to [11].
[13] A light emitting device comprising the compound according to any one of [1] to [11].
[14] The light emitting device according to [13], wherein the light emitting device has a light emitting layer, and the light emitting layer contains the compound and a host material.
[15] The light emitting device according to [13], wherein the light emitting device has a light emitting layer, the light emitting layer contains the compound and the light emitting material, and mainly emits light from the light emitting material.
 本発明の化合物は、発光材料として有用である。また、本発明の化合物の中には遅延蛍光を放射する化合物が含まれる。また、本発明の化合物は有機発光素子の材料としても有用である。 The compound of the present invention is useful as a light emitting material. Further, the compound of the present invention includes a compound that emits delayed fluorescence. The compound of the present invention is also useful as a material for an organic light emitting device.
有機エレクトロルミネッセンス素子の層構成例を示す概略断面図である。It is a schematic cross-sectional view which shows the layer structure example of the organic electroluminescence element.
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本発明に用いられる化合物の分子内に存在する水素原子の同位体種は特に限定されず、例えば分子内の水素原子がすべてHであってもよいし、一部または全部がH(デューテリウムD)であってもよい。例えば、Arがとりうる水素原子はH(デューテリウムD)であってもよい。 Hereinafter, the contents of the present invention will be described in detail. The description of the constituent elements described below may be based on typical embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples. In addition, the numerical range represented by using "-" in this specification means the range including the numerical values before and after "-" as the lower limit value and the upper limit value. Further, the isotope species of hydrogen atoms existing in the molecule of the compound used in the present invention are not particularly limited, and for example, all the hydrogen atoms in the molecule may be 1 H, and some or all of them may be 2 H. (Duterium D) may be used. For example, the hydrogen atom that Ar can take may be 2 H (Duterium D).
[一般式(1)で表される化合物]
Figure JPOXMLDOC01-appb-C000012
[Compound represented by the general formula (1)]
Figure JPOXMLDOC01-appb-C000012
 一般式(1)のArは、水素原子、置換もしくは無置換の芳香族炭化水素環基、または、環骨格構成原子として窒素原子を含む置換もしくは無置換の芳香族複素環基を表す。本発明の好ましい一態様では、Arは水素原子である。また、Arが置換もしくは無置換の芳香族炭化水素環基である態様や、さらに、Arが窒素原子を含む置換もしくは無置換の芳香族複素環基である態様も採用しうる。 Ar in the general formula (1) represents a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon ring group, or a substituted or unsubstituted aromatic heterocyclic group containing a nitrogen atom as a ring skeleton constituent atom. In a preferred embodiment of the invention, Ar is a hydrogen atom. Further, an embodiment in which Ar is a substituted or unsubstituted aromatic hydrocarbon ring group, and further, an embodiment in which Ar is a substituted or unsubstituted aromatic heterocyclic group containing a nitrogen atom can be adopted.
 本発明でいう「芳香族炭化水素環基」とは、結合する環(1つの環)が芳香族炭化水素環である基を意味する。例えば、ベンゼン環の環骨格を構成する1つの炭素原子で結合するフェニル基が含まれる。その結合する芳香族炭化水素環を構成する水素原子は置換されていてもよい。また、結合する芳香族炭化水素環には、1つ以上の環が縮合していてもよい。また、縮合した環にはさらに別の環が縮合していてもよい。縮合する環としては、芳香族炭化水素環、芳香族複素環、脂肪族炭化水素環、脂肪族複素環を挙げることができる。芳香族炭化水素環としてはベンゼン環を挙げることができる。芳香族複素環としては、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ピロール環、ピラゾール環、イミダゾール環を挙げることができる。脂肪族炭化水素環としては、シクロペンタン環、シクロヘキサン環、シクロヘプタン環を挙げることができる。脂肪族複素環としては、ピペリジン環、ピロリジン環、イミダゾリン環を挙げることができる。芳香族炭化水素環を構成する縮合環の具体例として、ナフタレン環、アントラセン環、フェナントレン環、ピラン環、テトラセン環を挙げることができる。また、ヘテロ原子を含む縮合環の具体例として、インドール環、イソインドール環、ベンゾイミダゾール環、ベンゾトリアゾール環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、シンノリン環を挙げることができる。ただし、これらの縮合環の具体例では、ベンゼン環を構成する炭素原子で結合する。
 Arが採りうる置換もしくは無置換の芳香族炭化水素環基の炭素原子数は6~40であることが好ましく、6~30であることがより好ましく、6~20であることがさらに好ましい。結合する環の環骨格構成原子数は6~14であることが好ましく、6~12であることがより好ましく、6であることがさらに好ましい。
The "aromatic hydrocarbon ring group" as used in the present invention means a group in which the ring (one ring) to be bonded is an aromatic hydrocarbon ring. For example, it contains a phenyl group bonded by one carbon atom constituting the ring skeleton of the benzene ring. The hydrogen atoms constituting the bonded aromatic hydrocarbon ring may be substituted. Further, one or more rings may be condensed on the aromatic hydrocarbon ring to be bonded. Further, another ring may be condensed with the condensed ring. Examples of the ring to be condensed include an aromatic hydrocarbon ring, an aromatic heterocycle, an aliphatic hydrocarbon ring, and an aliphatic heterocycle. Examples of the aromatic hydrocarbon ring include a benzene ring. Examples of the aromatic heterocycle include a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, a pyrrole ring, a pyrazole ring, and an imidazole ring. Examples of the aliphatic hydrocarbon ring include a cyclopentane ring, a cyclohexane ring, and a cycloheptane ring. Examples of the aliphatic heterocycle include a piperidine ring, a pyrrolidine ring, and an imidazoline ring. Specific examples of the fused ring constituting the aromatic hydrocarbon ring include a naphthalene ring, an anthracene ring, a phenanthrene ring, a pyran ring, and a tetracene ring. Specific examples of the fused ring containing a hetero atom include an indole ring, an isoindole ring, a benzimidazole ring, a benzotriazole ring, a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxaline ring, and a cinnoline ring. However, in a specific example of these fused rings, they are bonded by carbon atoms constituting the benzene ring.
The number of carbon atoms of the substituted or unsubstituted aromatic hydrocarbon ring group that Ar can take is preferably 6 to 40, more preferably 6 to 30, and even more preferably 6 to 20. The number of ring skeleton constituent atoms of the ring to be bonded is preferably 6 to 14, more preferably 6 to 12, and even more preferably 6.
 本発明でいう「芳香族複素環基」とは、結合する環(1つの環)が芳香族複素環であって、なおかつ、その芳香族複素環の環骨格を構成する1つの炭素原子で結合する基を意味する、例えば、ピリジン環の環骨格を構成する1つの炭素原子で結合するピリジル基が含まれる。R~Rが採りうる芳香族複素環は、結合する環(1つの環)の環骨格構成原子として窒素原子を含む。結合する環には、窒素原子以外のヘテロ原子が環骨格構成原子として含まれていてもよいが、好ましいのは、環骨格構成ヘテロ原子として窒素原子だけを含む場合である。結合する環に含まれるヘテロ原子の数は1~3であることが好ましく、1または2であることがより好ましい。結合する環としては、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ピロール環、ピラゾール環、イミダゾール環を挙げることができる。その結合する環を構成する水素原子は置換されていてもよい。また、1つ以上の環が縮合していてもよい。また、縮合した環にはさらに別の環が縮合していてもよい。縮合する環としては、芳香族炭化水素環、芳香族複素環、脂肪族炭化水素環、脂肪族複素環を挙げることができる。ここでいう芳香族炭化水素環、芳香族複素環、脂肪族炭化水素環および脂肪族複素環の具体例については、上記の「芳香族炭化水素環基」の説明における対応する記載を参照することができる。芳香族複素環を構成する縮合環の具体例として、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、シンノリン環、プテリジン環を挙げることができる。ただし、これらの縮合環の具体例では、複素環の環骨格を構成する炭素原子で結合する。
 Arが採りうる置換もしくは無置換の芳香族複素環基の炭素原子数は3~30であることが好ましく、3~20であることがより好ましく、4~15であることがさらに好ましい。結合する環の環骨格構成原子数は6~14であることが好ましく、6~12であることがより好ましく、6であることがさらに好ましい。
The "aromatic heterocyclic group" as used in the present invention means that the ring (one ring) to be bonded is an aromatic heterocycle and is bonded by one carbon atom constituting the ring skeleton of the aromatic heterocycle. It includes, for example, a pyridyl group bonded at one carbon atom constituting the ring skeleton of a pyridine ring. The aromatic heterocycles that can be taken by R 1 to R 5 include a nitrogen atom as a ring skeleton constituent atom of the ring (one ring) to be bonded. The bonded ring may contain a heteroatom other than the nitrogen atom as a ring-skeleton-constituting atom, but it is preferable that the ring contains only a nitrogen atom as the ring-skeleton-constituting heteroatom. The number of heteroatoms contained in the ring to be bonded is preferably 1 to 3, and more preferably 1 or 2. Examples of the ring to be bonded include a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, a pyrrole ring, a pyrazole ring, and an imidazole ring. The hydrogen atoms constituting the bonded ring may be substituted. Further, one or more rings may be condensed. Further, another ring may be condensed on the condensed ring. Examples of the ring to be condensed include an aromatic hydrocarbon ring, an aromatic heterocycle, an aliphatic hydrocarbon ring, and an aliphatic heterocycle. For specific examples of the aromatic hydrocarbon ring, the aromatic heterocycle, the aliphatic hydrocarbon ring and the aliphatic heterocycle referred to here, refer to the corresponding description in the above description of the "aromatic hydrocarbon ring group". Can be done. Specific examples of the fused ring constituting the aromatic heterocycle include a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxaline ring, a cinnoline ring, and a pteridine ring. However, in a specific example of these fused rings, they are bonded by carbon atoms constituting the ring skeleton of the heterocycle.
The number of carbon atoms of the substituted or unsubstituted aromatic heterocyclic group that Ar can adopt is preferably 3 to 30, more preferably 3 to 20, and even more preferably 4 to 15. The number of ring skeleton constituent atoms of the ring to be bonded is preferably 6 to 14, more preferably 6 to 12, and even more preferably 6.
 Arが採りうる芳香族炭化水素環基と芳香族複素環基は置換されていてもよい。置換基として、アルキル基、アルケニル基、アリール基、ヘテロアリール基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、ヘテロアリールオキシ基、ヘテロアリールチオ基、シアノ基を挙げることができる。これらの置換基は、さらに別の置換基で置換されていてもよい。好ましい置換基の群として、アルキル基、アリール基、アルコキシ基、アルキルチオ基を挙げることができる。
 ここでいう「アルキル基」は、直鎖状、分枝状、環状のいずれであってもよい。また、直鎖部分と環状部分と分枝部分のうちの2種以上が混在していてもよい。アルキル基の炭素数は、例えば1以上、2以上、4以上とすることができる。また、炭素数は30以下、20以下、10以下、6以下、4以下とすることができる。アルキル基の具体例として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、イソヘキシル基、2-エチルヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基、n-ノニル基、イソノニル基、n-デカニル基、イソデカニル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基を挙げることができる。置換基たるアルキル基は、さらにアリール基で置換されていてもよい。
 「アルケニル基」は、直鎖状、分枝状、環状のいずれであってもよい。また、直鎖部分と環状部分と分枝部分のうちの2種以上が混在していてもよい。アルケニル基の炭素数は、例えば2以上、4以上とすることができる。また、炭素数は30以下、20以下、10以下、6以下、4以下とすることができる。アルケニル基の具体例として、エテニル基、n-プロペニル基、イソプロペニル基、n-ブテニル基、イソブテニル基、n-ペンテニル基、イソペンテニル基、n-ヘキセニル基、イソヘキセニル基、2-エチルヘキセニル基を挙げることができる。置換基たるアルケニル基は、さらに置換基で置換されていてもよい。
 「アリール基」および「ヘテロアリール基」は、単環であってもよいし、2つ以上の環が縮合した縮合環であってもよい。縮合環である場合、縮合している環の数は2~6であることが好ましく、例えば2~4の中から選択することができる。環の具体例として、ベンゼン環、ピリジン環、ピリミジン環、トリアジン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、キノリン環、ピラジン環、キノキサリン環、ナフチリジン環を挙げることができる。アリーレン基またはヘテロアリーレン基の具体例として、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、2-ピリジル基、3-ピリジル基、4-ピリジル基を挙げることができる。
 「アルコキシ基」および「アルキルチオ基」のアルキル部分については、上記のアルキル基の説明と具体例を参照することができる。「アリールオキシ基」および「アリールチオ基」のアリール部分については、上記のアリール基の説明と具体例を参照することができる。「ヘテロアリールオキシ基」および「ヘテロアリールチオ基」のヘテロアリール部分については、上記のヘテロアリール基の説明と具体例を参照することができる。
The aromatic hydrocarbon ring group and the aromatic heterocyclic group that Ar can take may be substituted. Examples of the substituent include an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a heteroaryloxy group, a heteroarylthio group and a cyano group. These substituents may be substituted with yet another substituent. Preferred groups of substituents include alkyl groups, aryl groups, alkoxy groups and alkylthio groups.
The "alkyl group" referred to here may be linear, branched or cyclic. Further, two or more of the linear portion, the annular portion and the branched portion may be mixed. The number of carbon atoms of the alkyl group can be, for example, 1 or more, 2 or more, and 4 or more. Further, the number of carbon atoms can be 30 or less, 20 or less, 10 or less, 6 or less, and 4 or less. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, n-hexyl group and isohexyl group. 2-Ethylhexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, n-nonyl group, isononyl group, n-decanyl group, isodecanyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group can be mentioned. can. The alkyl group as a substituent may be further substituted with an aryl group.
The "alkenyl group" may be linear, branched or cyclic. Further, two or more of the linear portion, the annular portion and the branched portion may be mixed. The carbon number of the alkenyl group can be, for example, 2 or more and 4 or more. Further, the number of carbon atoms can be 30 or less, 20 or less, 10 or less, 6 or less, and 4 or less. Specific examples of the alkenyl group include ethenyl group, n-propenyl group, isopropenyl group, n-butenyl group, isobutenyl group, n-pentenyl group, isopentenyl group, n-hexenyl group, isohexenyl group and 2-ethylhexenyl group. Can be mentioned. The alkenyl group as a substituent may be further substituted with a substituent.
The "aryl group" and the "heteroaryl group" may be a monocyclic ring or a condensed ring in which two or more rings are condensed. In the case of fused rings, the number of fused rings is preferably 2 to 6, and can be selected from, for example, 2 to 4. Specific examples of the ring include a benzene ring, a pyridine ring, a pyrimidine ring, a triazine ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a triphenylene ring, a quinoline ring, a pyrazine ring, a quinoxaline ring, and a naphthylidine ring. Specific examples of the arylene group or the heteroarylene group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthrasenyl group, a 2-anthrasenyl group, a 9-anthrasenyl group, a 2-pyridyl group, a 3-pyridyl group, and 4 -Pyridyl groups can be mentioned.
For the alkyl moiety of the "alkoxy group" and the "alkylthio group", the above description and specific examples of the alkyl group can be referred to. For the aryl portion of the "aryloxy group" and the "arylthio group", the above description and specific examples of the aryl group can be referred to. For the heteroaryl portion of the "heteroaryloxy group" and the "heteroarylthio group", the above description and specific examples of the heteroaryl group can be referred to.
 以下において、一般式(1)のArが採ることができる、置換もしくは無置換の芳香族炭化水素環基と、環骨格構成原子として窒素原子を含む置換もしくは無置換の芳香族複素環基の具体例を示す。なお、Ar2~Ar4はトリル基、Ar9は4-メトキシフェニル基、Ar10は4-メチルチオフェニル基、Ar15は2,4,6-トリメチルフェニル基を表す。本発明において構造を標記する場合は、このような要領でメチル基を表示する。また、波線はArが結合する位置を示す。
Figure JPOXMLDOC01-appb-C000013
In the following, specific examples of a substituted or unsubstituted aromatic hydrocarbon ring group that can be adopted by Ar of the general formula (1) and a substituted or unsubstituted aromatic heterocyclic group containing a nitrogen atom as a ring skeleton constituent atom. An example is shown. Ar2 to Ar4 represent a tolyl group, Ar9 represents a 4-methoxyphenyl group, Ar10 represents a 4-methylthiophenyl group, and Ar15 represents a 2,4,6-trimethylphenyl group. When the structure is marked in the present invention, the methyl group is indicated in this manner. The wavy line indicates the position where Ar is combined.
Figure JPOXMLDOC01-appb-C000013
 一般式(1)のR~Rのうちの1~3個は、各々独立に、ベンゾフラン環が縮合したカルバゾール-9-イル基D’(ただし水素原子は置換されていてもよい)を表す。
 R~Rのうちの1個がD’であるとき、RがD’であることが好ましい。また、RがD’であることも好ましい。
 R~Rのうちの2個がD’であるとき、それら2個のD’は互いに同一であることが好ましい。ただし、互いに異なるD’を採用してもよい。2個のD’はRとRであることが好ましい。ただし、RとRとすることもできる。また、RとRとすることもできる。
 R~Rのうちの3個がD’であるとき、それら3個のD’はすべてが同一であることが好ましい。ただし、3個とも異なるD’であってもよく、また、2個が同一で1個が異なるものであってもよい。3個のD’はRとRとRとすることができる。また、RとRとRとすることもできる。
1 to 3 of R 1 to R 4 of the general formula (1) each independently have a carbazole-9-yl group D'condensed with a benzofuran ring (however, the hydrogen atom may be substituted). show.
When one of R 1 to R 4 is D', it is preferable that R 3 is D'. It is also preferable that R 4 is D'.
When two of R 1 to R 4 are D', it is preferable that the two D'are the same as each other. However, different D's may be adopted. The two D's are preferably R 1 and R 4. However, it can also be R 2 and R 4. It can also be R 3 and R 4.
When three of R 1 to R 4 are D', it is preferable that all three D'are the same. However, all three may be different D's, or two may be the same and one may be different. The three D'can be R 1 , R 2 and R 4 . It can also be R 1 , R 2, and R 3.
 D’は、ベンゾフラン環が縮合したカルバゾール-9-イル基であり、好ましくはカルバゾール-9-イル構造を構成する2つのベンゼン環の少なくとも一方にベンゾフラン環が直接縮合した構造を有する基である。カルバゾール-9-イル構造を構成する2つのベンゼン環の両方にベンゾフラン環が直接縮合した基であってもよい。ベンゾフラン環はフラン環でカルバゾリル-9-イル構造のベンゼン環に縮合するものであってもよいし、ベンゾフラン環を構成するベンゼン環でカルバゾリル-9-イル構造のベンゼン環に縮合するものであってもよい。好ましいのは前者である。
 D’のカルバゾリル-9-イル構造には、ベンゾフラン環が1つだけ縮合していてもよいし、2つ以上が縮合していてもよい。2つ以上が縮合しているとき、それらのベンゾフラン環は同一構造であっても、異なる構造であってもよい。また、縮合する環の種類も、同一であっても異なっていてもよい。カルバゾリル-9-イル構造の2つのベンゼン環に縮合するベンゾフラン環は1つずつであるか、2つのベンゼン環の一方だけに1つのベンゾフラン環が縮合していることが好ましい。
 ベンゾフラン環が縮合したカルバゾリル-9-イル基を構成する水素原子は置換されていてもよい。このとき、ベンゾフラン環を構成する水素原子が置換されていてもよいし、カルバゾリル-9-イル構造を構成する水素原子が置換されていてもよい。置換基としては、アルキル基、アルケニル基、アリール基、ヘテロアリール基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、ヘテロアリールオキシ基、ヘテロアリールチオ基、置換アミノ基を挙げることができ、好ましい置換基として、アルキル基、アリール基、置換アミノ基を挙げることができる。ここでいうアルキル基、アルケニル基、アリール基、ヘテロアリール基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、ヘテロアリールオキシ基およびヘテロアリールチオ基の説明と好ましい範囲については、Arにおける置換基の対応する記載を参照することができる。また、上記の置換アミノ基は、アミノ基の窒素原子に結合する置換基が、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基であることが好ましく、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基であることがより好ましい。置換アミノ基は、特に、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のジヘテロアリールアミノ基であることが好ましい。また、窒素原子に結合している2つの基は互いに結合して環状構造を形成していてもよい(例えば置換もしくは無置換のカルバゾール-9-イル基)。
 カルバゾリル-9-イル構造には、ベンゾフラン環以外の環が縮合していてもよい。そのような環は、芳香族炭化水素環、芳香族複素環、脂肪族炭化水素環、脂肪族複素環のいずれであってもよいが、芳香族炭化水素環および脂肪族炭化水素環からなる群より選択される環だけであることが好ましく、芳香族炭化水素環だけであることがより好ましい。また、カルバゾリル-9-イル構造には、ベンゾフラン環以外の環が縮合していないことも好ましい。さらに、ベンゾフラン環が縮合したカルバゾリル-9-イル基は無置換であることも好ましい。
D'is a carbazole-9-yl group fused with a benzofuran ring, preferably a group having a structure in which a benzofuran ring is directly condensed with at least one of two benzene rings constituting the carbazole-9-yl structure. It may be a group in which a benzofuran ring is directly condensed with both of the two benzene rings constituting the carbazole-9-yl structure. The benzofuran ring may be a furan ring that is fused to a benzene ring having a carbazolyl-9-yl structure, or a benzene ring that constitutes a benzofuran ring and is fused to a benzene ring having a carbazolyl-9-yl structure. May be good. The former is preferable.
Only one benzofuran ring may be condensed in the carbazolyl-9-yl structure of D', or two or more may be condensed. When two or more are condensed, their benzofuran rings may have the same structure or different structures. Further, the types of rings to be condensed may be the same or different. It is preferable that one benzofuran ring is condensed into two benzene rings having a carbazolyl-9-yl structure, or one benzofuran ring is condensed into only one of the two benzene rings.
The hydrogen atom constituting the carbazolyl-9-yl group fused with the benzofuran ring may be substituted. At this time, the hydrogen atom constituting the benzofuran ring may be substituted, or the hydrogen atom constituting the carbazolyl-9-yl structure may be substituted. Examples of the substituent include an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a heteroaryloxy group, a heteroarylthio group and a substituted amino group. Preferred substituents include an alkyl group, an aryl group and a substituted amino group. The description and preferable range of the alkyl group, the alkenyl group, the aryl group, the heteroaryl group, the alkoxy group, the alkylthio group, the aryloxy group, the arylthio group, the heteroaryloxy group and the heteroarylthio group are described here as substituents in Ar. The corresponding description of can be referred to. Further, in the above-mentioned substituted amino group, the substituent bonded to the nitrogen atom of the amino group is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted. The heteroaryl group of the above is preferable, and a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group is more preferable. The substituted amino group is particularly preferably a substituted or unsubstituted diarylamino group or a substituted or unsubstituted diheteroarylamino group. Further, the two groups bonded to the nitrogen atom may be bonded to each other to form a cyclic structure (for example, a substituted or unsubstituted carbazole-9-yl group).
A ring other than the benzofuran ring may be condensed in the carbazolyl-9-yl structure. Such a ring may be any of an aromatic hydrocarbon ring, an aromatic heterocycle, an aliphatic hydrocarbon ring, and an aliphatic heterocycle, but is a group consisting of an aromatic hydrocarbon ring and an aliphatic hydrocarbon ring. It is preferable that only the ring is more selected, and more preferably only the aromatic hydrocarbon ring. Further, it is also preferable that no ring other than the benzofuran ring is condensed in the carbazolyl-9-yl structure. Further, it is also preferable that the carbazolyl-9-yl group condensed with the benzofuran ring is unsubstituted.
 以下に置いて、一般式(1)のR~Rが採ることができる、ベンゾフラン環が縮合したカルバゾール-9-イル基D’の具体例を示す。波線はD’が結合する位置を示す。下記のD’1~D’42の中では、D’1~D’30が好ましく、D’1~D’16がより好ましく、D’1~D’6がさらに好ましい。また、下記のD’1~D’42の水素原子が置換基で置換されていてもよい化合物群も好ましい。そのような置換されていてもよい化合物群D’1~D’42の中では、置換されていてもよい化合物群D’1~D’30が好ましく、置換されていてもよい化合物群D’1~D’16がより好ましく、置換されていてもよい化合物群D’1~D’6がさらに好ましい。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Hereinafter, specific examples of the carbazole-9-yl group D'condensed with a benzofuran ring, which can be taken from R 1 to R 4 of the general formula (1), are shown. The wavy line indicates the position where D'combines. Among the following D'1 to D'42, D'1 to D'30 are preferable, D'1 to D'16 are more preferable, and D'1 to D'6 are further preferable. Further, a group of compounds in which the hydrogen atoms of D'1 to D'42 below may be substituted with a substituent is also preferable. Among such optionally substituted compound groups D'1 to D'42, the optionally substituted compound groups D'1 to D'30 are preferable, and the optionally substituted compound group D' 1 to D'16 are more preferable, and compound groups D'1 to D'6 which may be substituted are further preferable.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 上記の具体例以外に、D’1~D’42にメチル基が置換した化合物群、D’1~D’42にエチル基が置換した化合物群、D’1~D’42にイソプロピル基が置換した化合物群、D’1~D’42にtert-ブチル基が置換した化合物群、D’1~D’42にフェニル基が置換した化合物群、D’1~D’42にベンゼン環が縮合した化合物群も例示することができる。 In addition to the above specific examples, D'1 to D'42 are substituted with a methyl group, D'1 to D'42 are substituted with an ethyl group, and D'1 to D'42 are substituted with an isopropyl group. Substituted compounds, D'1 to D'42 substituted with a tert-butyl group, D'1 to D'42 substituted with a phenyl group, and D'1 to D'42 having a benzene ring. A group of condensed compounds can also be exemplified.
 一般式(1)のR~Rのうちの1~3個は、各々独立にドナー性基D(ただし、ベンゾフラン環が縮合したカルバゾール-9-イル基、置換もしくは無置換の芳香族炭化水素環基、および、環骨格構成原子として窒素原子を含む置換もしくは無置換の芳香族複素環基を除く)を表す。
 R~Rのうちの2個がDであるとき、それら2個のDは互いに同一であることが好ましい。ただし、互いに異なるDを採用してもよい。R~Rのうちの3個がDであるとき、それら3個のDはすべてが同一であることが好ましい。ただし、3個とも異なるDであってもよく、また、2個が同一で1個が異なるものであってもよい。
1 to 3 of R 1 to R 4 of the general formula (1) are each independently a donor group D (however, a carbazole-9-yl group fused with a benzofuran ring, a substituted or unsubstituted aromatic hydrocarbon). Represents a hydrogen ring group and a substituted or unsubstituted aromatic heterocyclic group containing a nitrogen atom as a ring skeleton constituent atom).
When two of R 1 to R 4 are D, it is preferable that the two Ds are the same as each other. However, different Ds may be adopted. When three of R 1 to R 4 are D, it is preferable that all three D are the same. However, all three may be different Ds, or two may be the same and one may be different.
 本発明における「ドナー性基」は、ハメットのσp値が負の基である。ここで、「ハメットのσp値」は、L.P.ハメットにより提唱されたものであり、パラ置換ベンゼン誘導体の反応速度または平衡に及ぼす置換基の影響を定量化したものである。具体的には、パラ置換ベンゼン誘導体における置換基と反応速度定数または平衡定数の間に成立する下記式:
      log(k/k0) = ρσp
または
      log(K/K0) = ρσp
における置換基に特有な定数(σp)である。上式において、kは置換基を持たないベンゼン誘導体の速度定数、k0は置換基で置換されたベンゼン誘導体の速度定数、Kは置換基を持たないベンゼン誘導体の平衡定数、K0は置換基で置換されたベンゼン誘導体の平衡定数、ρは反応の種類と条件によって決まる反応定数を表す。本発明における「ハメットのσp値」に関する説明と各置換基の数値については、Hansch,C.et.al.,Chem.Rev.,91,165-195(1991)のσp値に関する記載を参照することができる。ハメットのσp値が負の基は電子供与性(ドナー性)を示し、ハメットのσp値が正の基は電子求引性(アクセプター性)を示す傾向がある。
The "donor group" in the present invention is a group having a negative Hammet's σp value. Here, the “hammet σp value” is L. P. Proposed by Hammett, it quantifies the effect of substituents on the reaction rate or equilibrium of para-substituted benzene derivatives. Specifically, the following equation holds between the substituent in the para-substituted benzene derivative and the reaction rate constant or the equilibrium constant:
log (k / k 0 ) = ρσp
Or log (K / K 0 ) = ρσp
It is a constant (σp) peculiar to the substituent in. In the above equation, k is the rate constant of the benzene derivative having no substituent, k 0 is the rate constant of the benzene derivative substituted with the substituent, K is the equilibrium constant of the benzene derivative having no substituent, and K 0 is the substituent. The equilibrium constant of the benzene derivative substituted with, ρ represents the reaction constant determined by the type and conditions of the reaction. For the description of "Hammet's σp value" and the numerical value of each substituent in the present invention, refer to the description of σp value in Hansch, C.et.al., Chem.Rev., 91,165-195 (1991). can. Groups with a negative Hammett σp value tend to show electron donating properties (donor properties), and groups with a positive Hammett σp value tend to show electron attractor properties (acceptor properties).
 本発明におけるドナー性基は、置換アミノ基を含む基であることが好ましい。ここでいう置換アミノ基の説明と好ましい範囲については、上記のD’における置換アミノ基の説明と好ましい範囲を参照することができる。本発明におけるドナー性基は、置換アミノ基の窒素原子で結合する基であってもよいし、置換アミノ基が結合した基で結合する基であってもよい。置換アミノ基が結合する基は、π共役基であることが好ましい。より好ましいのは、置換アミノ基の窒素原子で結合する基である。
 本発明におけるドナー性基として特に好ましいのは、置換もしくは無置換のカルバゾール-9-イル基である。一般式(1)に存在する1~3個のドナー性基Dは、各々独立に置換もしくは無置換のカルバゾール-9-イル基であることが好ましい。カルバゾール-9-イル基の置換基としては、アルキル基、アルケニル基、アリール基、ヘテロアリール基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、ヘテロアリールオキシ基、ヘテロアリールチオ基、置換アミノ基を挙げることができ、好ましい置換基として、アルキル基、アリール基、置換アミノ基を挙げることができる。ここでいう置換基の説明と好ましい範囲については、D’の置換基の説明と好ましい範囲を参照することができる。また、ここでいう置換アミノ基には置換もしくは無置換のカルバゾリル基が含まれ、特に置換もしくは無置換のカルバゾール-9-イル基や、置換もしくは無置換のカルバゾール-3-イル基が含まれる。
 本発明におけるドナー性基は、水素原子以外の原子数が5以上であることが好ましく、10以上であることが好ましく、13以上であることがさらに好ましい。また、80以下であることが好ましく、60以下であることがより好ましく、40以下であることがさらに好ましい。
The donor group in the present invention is preferably a group containing a substituted amino group. For the description and preferred range of the substituted amino group referred to here, the above description and preferred range of the substituted amino group in D'can be referred to. The donor group in the present invention may be a group bonded with a nitrogen atom of a substituted amino group or a group bonded with a group to which a substituted amino group is bonded. The group to which the substituted amino group is bonded is preferably a π-conjugated group. More preferred are groups bonded at the nitrogen atom of the substituted amino group.
Particularly preferred as the donor group in the present invention is a substituted or unsubstituted carbazole-9-yl group. It is preferable that the 1 to 3 donor groups D present in the general formula (1) are independently substituted or unsubstituted carbazole-9-yl groups. The substituent of the carbazole-9-yl group includes an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a heteroaryloxy group, a heteroarylthio group and a substituted amino. A group can be mentioned, and preferred substituents include an alkyl group, an aryl group, and a substituted amino group. For the description and preferred range of the substituents referred to herein, the description of the substituent of D'and the preferred range can be referred to. Further, the substituted amino group referred to here includes a substituted or unsubstituted carbazolyl group, and particularly includes a substituted or unsubstituted carbazole-9-yl group and a substituted or unsubstituted carbazole-3-yl group.
The donor group in the present invention preferably has 5 or more atoms other than hydrogen atoms, preferably 10 or more, and more preferably 13 or more. Further, it is preferably 80 or less, more preferably 60 or less, and further preferably 40 or less.
 以下に置いて、一般式(1)のR~Rが採ることができるドナー性基Dの具体例を示す。波線はDが結合する位置を示す。下記のD1~D20の中では、D1~D9が好ましく、D1~D4がより好ましい。
Figure JPOXMLDOC01-appb-C000016
Hereinafter, specific examples of the donor group D that can be taken by R 1 to R 4 of the general formula (1) are shown. The wavy line indicates the position where D joins. Among the following D1 to D20, D1 to D9 are preferable, and D1 to D4 are more preferable.
Figure JPOXMLDOC01-appb-C000016
 一般式(1)のR~Rのうち、DでもD’でもないものは水素原子である。水素原子の数は0~2個であり、0または1個であってもよい。本発明の好ましい一態様では、R~Rはいずれも水素原子ではない(水素原子の個数が0である)。 Of R 1 to R 4 of the general formula (1), those that are neither D nor D'are hydrogen atoms. The number of hydrogen atoms is 0 to 2, and may be 0 or 1. In a preferred embodiment of the present invention, none of R 1 to R 4 is a hydrogen atom (the number of hydrogen atoms is 0).
 一般式(1)の中央のベンゼン環に結合するCN、Ar、D、D’のパターンを以下にタイプ1~20として例示する。タイプ1~2はDが3個でD’が1個のパターンであり、タイプ3~6はDが2個でD’が2個のパターンであり、タイプ7~8はDが1個でD’が3個のパターンであり、タイプ9~14はDが2個でD’が1個で水素原子が1個のパターンであり、タイプ15~20はDが1個でD’が2個で水素原子が1個のパターンである。水素原子が重水素原子に置換されたパターンも挙げることができる。タイプ1~20の中では、タイプ1~8が好ましく、タイプ1~6がより好ましい。
Figure JPOXMLDOC01-appb-C000017
The patterns of CN, Ar, D, and D'bonded to the central benzene ring of the general formula (1) are exemplified below as types 1 to 20. Types 1 and 2 have 3 D and 1 D'pattern, types 3 and 6 have 2 D and 2 D'patterns, and types 7 and 8 have 1 D. D'is a pattern with 3 pieces, types 9 to 14 have 2 D's and 1 D'and 1 hydrogen atom, and types 15 to 20 have 1 D and 2'. It is a pattern with one hydrogen atom. A pattern in which a hydrogen atom is replaced with a deuterium atom can also be mentioned. Of the types 1 to 20, types 1 to 8 are preferable, and types 1 to 6 are more preferable.
Figure JPOXMLDOC01-appb-C000017
 本発明の好ましい一態様では、一般式(1)で表される化合物は、炭素原子、水素原子、窒素原子、酸素原子および硫黄原子からなる群より選択される原子だけで構成される。本発明の好ましい一態様では、一般式(1)で表される化合物は、炭素原子、水素原子、窒素原子および酸素原子だけで構成される。 In a preferred embodiment of the present invention, the compound represented by the general formula (1) is composed only of an atom selected from the group consisting of a carbon atom, a hydrogen atom, a nitrogen atom, an oxygen atom and a sulfur atom. In a preferred embodiment of the present invention, the compound represented by the general formula (1) is composed only of a carbon atom, a hydrogen atom, a nitrogen atom and an oxygen atom.
 以下において、一般式(1)で表される化合物の具体例を示す。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Hereinafter, specific examples of the compound represented by the general formula (1) will be shown.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
 一般式(1)で表される化合物の分子量は、例えば一般式(1)で表される化合物を含む有機層を蒸着法により製膜して利用することを意図する場合には、1500以下であることが好ましく、1200以下であることがより好ましく、1000以下であることがさらに好ましく、900以下であることがさらにより好ましい。分子量の下限値は、一般式(1)で表される最小化合物の分子量である。
 一般式(1)で表される化合物は、分子量にかかわらず塗布法で成膜してもよい。塗布法を用いれば、分子量が比較的大きな化合物であっても成膜することが可能である。一般式(1)で表される化合物は、シアノベンゼン系化合物の中では有機溶媒に溶解しやすいという利点がある。このため、一般式(1)で表される化合物は塗布法を適用しやすいうえ、精製して純度を高めやすい。
The molecular weight of the compound represented by the general formula (1) is, for example, 1500 or less when the organic layer containing the compound represented by the general formula (1) is intended to be formed into a film by a vapor deposition method. It is preferably 1200 or less, more preferably 1000 or less, and even more preferably 900 or less. The lower limit of the molecular weight is the molecular weight of the smallest compound represented by the general formula (1).
The compound represented by the general formula (1) may be formed into a film by a coating method regardless of the molecular weight. By using the coating method, it is possible to form a film even if the compound has a relatively large molecular weight. The compound represented by the general formula (1) has an advantage that it is easily dissolved in an organic solvent among the cyanobenzene compounds. Therefore, the compound represented by the general formula (1) is easy to apply the coating method and is easy to purify to increase the purity.
 本発明を応用して、分子内に一般式(1)で表される構造を複数個含む化合物とすることも考えられる。
 例えば、一般式(1)で表される構造中にあらかじめ重合性基を存在させておいて、その重合性基を重合させることによって得られる重合体を、発光材料として用いることが考えられる。具体的には、一般式(1)のR~R、Arのいずれかに重合性官能基を含むモノマーを用意して、これを単独で重合させるか、他のモノマーとともに共重合させることにより、繰り返し単位を有する重合体を得て、その重合体を発光材料として用いることが考えられる。あるいは、一般式(1)で表される構造を有する化合物どうしをカップリングさせることにより、二量体や三量体を得て、それらを発光材料として用いることも考えられる。
It is also conceivable to apply the present invention to obtain a compound containing a plurality of structures represented by the general formula (1) in the molecule.
For example, it is conceivable to use a polymer obtained by pre-existing a polymerizable group in the structure represented by the general formula (1) and polymerizing the polymerizable group as a light emitting material. Specifically, a monomer containing a polymerizable functional group is prepared in any of R 1 to R 4 and Ar of the general formula (1), and this is polymerized alone or copolymerized with another monomer. Therefore, it is conceivable to obtain a polymer having a repeating unit and use the polymer as a light emitting material. Alternatively, it is also conceivable to obtain dimers and trimers by coupling compounds having a structure represented by the general formula (1) to each other and use them as a light emitting material.
 一般式(1)で表される構造を含む繰り返し単位を有する重合体の例として、下記一般式(2)または(3)で表される構造を含む重合体を挙げることができる。
Figure JPOXMLDOC01-appb-C000048
As an example of a polymer having a repeating unit containing a structure represented by the general formula (1), a polymer containing a structure represented by the following general formula (2) or (3) can be mentioned.
Figure JPOXMLDOC01-appb-C000048
 一般式(2)または(3)において、Qは一般式(1)で表される構造を含む基を表し、LおよびLは連結基を表す。連結基の炭素数は、好ましくは0~20であり、より好ましくは1~15であり、さらに好ましくは2~10である。連結基は-X11-L11-で表される構造を有するものであることが好ましい。ここで、X11は酸素原子または硫黄原子を表し、酸素原子であることが好ましい。L11は連結基を表し、置換もしくは無置換のアルキレン基、または置換もしくは無置換のアリーレン基であることが好ましく、炭素数1~10の置換もしくは無置換のアルキレン基、または置換もしくは無置換のフェニレン基であることがより好ましい。
 一般式(2)または(3)において、R101、R102、R103およびR104は、各々独立に置換基を表す。好ましくは、炭素数1~6の置換もしくは無置換のアルキル基、炭素数1~6の置換もしくは無置換のアルコキシ基、ハロゲン原子であり、より好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基、フッ素原子、塩素原子であり、さらに好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基である。
 LおよびLで表される連結基は、Qを構成する一般式(1)のR~R、Arのいずれかに結合することができる。1つのQに対して連結基が2つ以上連結して架橋構造や網目構造を形成していてもよい。
In the general formula (2) or (3), Q represents a group containing the structure represented by the general formula (1), and L 1 and L 2 represent a linking group. The carbon number of the linking group is preferably 0 to 20, more preferably 1 to 15, and even more preferably 2 to 10. And preferably has a structure represented by - linking group -X 11 -L 11. Here, X 11 represents an oxygen atom or a sulfur atom, and is preferably an oxygen atom. L 11 represents a linking group, preferably a substituted or unsubstituted alkylene group, or a substituted or unsubstituted arylene group, and is a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted alkylene group. It is more preferably a phenylene group.
In the general formula (2) or (3), R 101 , R 102 , R 103 and R 104 each independently represent a substituent. It is preferably a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, or a halogen atom, and more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms. , An unsubstituted alkoxy group having 1 to 3 carbon atoms, a fluorine atom and a chlorine atom, and more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms and an unsubstituted alkoxy group having 1 to 3 carbon atoms.
The linking group represented by L 1 and L 2 can be bonded to any of R 1 to R 4 and Ar of the general formula (1) constituting Q. Two or more linking groups may be linked to one Q to form a crosslinked structure or a network structure.
 繰り返し単位の具体的な構造例として、下記式(4)~(7)で表される構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000049
As a specific structural example of the repeating unit, the structures represented by the following equations (4) to (7) can be mentioned.
Figure JPOXMLDOC01-appb-C000049
 これらの式(4)~(7)を含む繰り返し単位を有する重合体は、一般式(1)のR~R、Arのいずれかにヒドロキシ基を導入しておき、それをリンカーとして下記化合物を反応させて重合性基を導入し、その重合性基を重合させることにより合成することができる。
Figure JPOXMLDOC01-appb-C000050
In the polymer having a repeating unit containing these formulas (4) to (7), a hydroxy group is introduced into any of R 1 to R 4 and Ar of the general formula (1), and the polymer is used as a linker as described below. It can be synthesized by reacting a compound to introduce a polymerizable group and polymerizing the polymerizable group.
Figure JPOXMLDOC01-appb-C000050
 分子内に一般式(1)で表される構造を含む重合体は、一般式(1)で表される構造を有する繰り返し単位のみからなる重合体であってもよいし、それ以外の構造を有する繰り返し単位を含む重合体であってもよい。また、重合体の中に含まれる一般式(1)で表される構造を有する繰り返し単位は、単一種であってもよいし、2種以上であってもよい。一般式(1)で表される構造を有さない繰り返し単位としては、通常の共重合に用いられるモノマーから誘導されるものを挙げることができる。例えば、エチレン、スチレンなどのエチレン性不飽和結合を有するモノマーから誘導される繰り返し単位を挙げることができる。 The polymer containing the structure represented by the general formula (1) in the molecule may be a polymer consisting only of repeating units having the structure represented by the general formula (1), or may have other structures. It may be a polymer containing a repeating unit having. Further, the repeating unit having the structure represented by the general formula (1) contained in the polymer may be a single type or two or more types. Examples of the repeating unit having no structure represented by the general formula (1) include those derived from a monomer used for ordinary copolymerization. For example, a repeating unit derived from a monomer having an ethylenically unsaturated bond such as ethylene and styrene can be mentioned.
 ある実施形態では、一般式(1)で表される化合物は発光材料である。
 ある実施形態では、一般式(1)で表される化合物は、遅延蛍光を発することができる化合物である。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、UV領域、可視スペクトルのうち青色、緑色、黄色、オレンジ色、赤色領域(例えば約420nm~約500nm、約500nm~約600nmまたは約600nm~約700nm)または近赤外線領域で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、可視スペクトルのうち赤色またはオレンジ色領域(例えば約620nm~約780nm、約650nm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、可視スペクトルのうちオレンジ色または黄色領域(例えば約570nm~約620nm、約590nm、約570nm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、可視スペクトルのうち緑色領域(例えば約490nm~約575nm、約510nm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、可視スペクトルのうち青色領域(例えば約400nm~約490nm、約475nm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、紫外スペクトル領域(例えば280~400nm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、赤外スペクトル領域(例えば780nm~2μm)で光を発することができる。
In certain embodiments, the compound represented by the general formula (1) is a light emitting material.
In certain embodiments, the compound represented by the general formula (1) is a compound capable of emitting delayed fluorescence.
In one embodiment of the present disclosure, the compound represented by the general formula (1) is in the UV region, the blue, green, yellow, orange, red region of the visible spectrum when excited by thermal or electronic means. It can emit light (eg, about 420 nm to about 500 nm, about 500 nm to about 600 nm or about 600 nm to about 700 nm) or in the near infrared region.
In certain embodiments of the present disclosure, the compound of the general formula (1), when excited by thermal or electronic means, is in the red or orange region of the visible spectrum (eg, from about 620 nm to about 780 nm, about 780 nm). It can emit light at 650 nm).
In certain embodiments of the present disclosure, the compound of the general formula (1), when excited by thermal or electronic means, has an orange or yellow region of the visible spectrum (eg, from about 570 nm to about 620 nm, about 620 nm). It can emit light at 590 nm (about 570 nm).
In certain embodiments of the present disclosure, the compound of the general formula (1), when excited by thermal or electronic means, is in the green region of the visible spectrum (eg, from about 490 nm to about 575 nm, about 510 nm). Can emit light.
In certain embodiments of the present disclosure, the compound of the general formula (1), when excited by thermal or electronic means, is in the blue region of the visible spectrum (eg, from about 400 nm to about 490 nm, about 475 nm). Can emit light.
In certain embodiments of the present disclosure, the compound represented by the general formula (1) can emit light in the ultraviolet spectral region (eg, 280-400 nm) when excited by thermal or electronic means.
In certain embodiments of the present disclosure, the compound represented by the general formula (1) can emit light in the infrared spectral region (eg, 780 nm to 2 μm) when excited by thermal or electronic means.
 小分子の化学物質ライブラリの電子的特性は、公知のab initioによる量子化学計算を用いて算出することができる。例えば、基底として、6-31G*、およびベッケの3パラメータ、Lee-Yang-Parrハイブリッド汎関数として知られている関数群を用いた時間依存的な密度汎関数理論を使用してHartree-Fock方程式(TD-DFT/B3LYP/6-31G*)を解析し、特定の閾値以上のHOMOおよび特定の閾値以下のLUMOを有する分子断片(部分)をスクリーニングすることができ、当該部分の算出された三重項状態は2.75eV超である。
 それにより、例えば-6.5eV以上のHOMOエネルギー(例えばイオン化ポテンシャル)があるときは、供与体部分(「D」)が選抜できる。また例えば、-0.5eV以下のLUMOエネルギー(例えば電子親和力)があるときは、受容体部分(「A」)が選抜できる。ブリッジ部分(「B」)は、例えば受容体と供与体部分を特異的な立体構成に厳しく制限できる強い共役系であることにより、供与体および受容体部分のπ共役系間の重複が生じるのを防止する。
 ある実施形態では、化合物ライブラリは、以下の特性のうちの1つ以上を用いて選別される。
1.特定の波長付近における発光
2.算出された、特定のエネルギー準位より上の三重項状態
3.特定値より下のΔEST
4.特定値より上の量子収率
5.HOMO準位
6.LUMO準位
 ある実施形態では、77Kにおける最低の一重項励起状態と最低の三重項励起状態との差(ΔEST)は、約0.5eV未満、約0.4eV未満、約0.3eV未満、約0.2eV未満または約0.1eV未満である。ある実施形態ではΔEST値は、約0.09eV未満、約0.08eV未満、約0.07eV未満、約0.06eV未満、約0.05eV未満、約0.04eV未満、約0.03eV未満、約0.02eV未満または約0.01eV未満である。
 ある実施形態では、一般式(1)で表される化合物は、25%超の、例えば約30%、約35%、約40%、約45%、約50%、約55%、約60%、約65%、約70%、約75%、約80%、約85%、約90%、約95%またはそれ以上の量子収率を示す。
The electronic properties of small molecule chemical libraries can be calculated using known ab initio quantum chemistry calculations. For example, the Hartree-Fock equation using a time-dependent density functional theory with a set of functions known as the 6-31G * and Becke's three parameters, the Lee-Yang-Parr hybrid functional theory, as the basis. (TD-DFT / B3LYP / 6-31G *) can be analyzed to screen molecular fragments (parts) with HOMO above a specific threshold and LUMO below a specific threshold, and the calculated triplet of that part. The term state is over 2.75 eV.
Thereby, for example, when there is HOMO energy (for example, ionization potential) of −6.5 eV or more, the donor portion (“D”) can be selected. Further, for example, when there is LUMO energy (for example, electron affinity) of −0.5 eV or less, the receptor moiety (“A”) can be selected. The bridge moiety (“B”) is, for example, a strong conjugated system that can severely limit the acceptor and donor moieties to specific conformations, resulting in overlap between the π-conjugated system of the donor and acceptor moieties. To prevent.
In certain embodiments, compound libraries are sorted using one or more of the following properties:
1. 1. Emission near a specific wavelength 2. Calculated triplet state above a specific energy level 3. Delta] E ST value 4 below a certain value. Quantum yield above a specific value 5. HOMO level 6. The LUMO level certain embodiments, the difference between the lowest triplet excited state of the singlet excited state and the lowest in the 77K (ΔE ST) is less than about 0.5 eV, less than about 0.4 eV, less than about 0.3 eV, Less than about 0.2 eV or less than about 0.1 eV. In Delta] E ST value some embodiments, less than about 0.09 eV, less than about 0.08 eV, less than about 0.07 eV, less than about 0.06 eV, less than about 0.05 eV, less than about 0.04 eV, less than about 0.03eV , Less than about 0.02 eV or less than about 0.01 eV.
In certain embodiments, the compound represented by the general formula (1) is in excess of 25%, eg, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%. , About 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95% or higher quantum yields.
[一般式(1)で表される化合物の合成方法]
 一般式(1)で表される化合物は、新規化合物である。
 一般式(1)で表される化合物は、既知の反応を組み合わせることによって合成することができる。例えば、Arが水素原子である化合物の合成は、炭酸カリウムを添加したジメチルホルムアミド(DMF)中で2,3,5,6-テトラフッ化シアノベンゼンにD-Hを反応させ、さらにD’-Hを反応させることにより合成することが可能である。また、D-HとD’-Hの反応順序を逆にして、先にD’-Hを反応させ、次いでD-Hを反応させてもよい。Arが水素原子でない化合物の合成は、出発物質をArで4位が置換された2,3,5,6-テトラフッ化シアノベンゼンに変えることにより行うことができる。反応の具体的な条件や反応手順については、後述の合成例を参考にすることができる。
[Method for synthesizing a compound represented by the general formula (1)]
The compound represented by the general formula (1) is a novel compound.
The compound represented by the general formula (1) can be synthesized by combining known reactions. For example, in the synthesis of a compound in which Ar is a hydrogen atom, DH is reacted with 2,3,5,6-tetrafluorinated cyanobenzene in dimethylformamide (DMF) to which potassium carbonate is added, and then D'-H is further synthesized. Can be synthesized by reacting with. Further, the reaction order of DH and D'H may be reversed, and D'H may be reacted first, and then DH may be reacted. The synthesis of a compound in which Ar is not a hydrogen atom can be carried out by changing the starting material to 2,3,5,6-tetrafluorocyanobenzene substituted with Ar at the 4-position. For specific reaction conditions and reaction procedures, the synthetic examples described below can be referred to.
[一般式(1)で表される化合物を用いた構成物]
 ある実施形態では、一般式(1)で表される化合物と組み合わせ、同化合物を分散させ、同化合物と共有結合し、同化合物をコーティングし、同化合物を担持し、あるいは同化合物と会合する1つ以上の材料(例えば小分子、ポリマー、金属、金属錯体等)と共に用い、固体状のフィルムまたは層を形成させる。例えば、一般式(1)で表される化合物を電気活性材料と組み合わせてフィルムを形成することができる。いくつかの場合、一般式(1)で表される化合物を正孔輸送ポリマーと組み合わせてもよい。いくつかの場合、一般式(1)で表される化合物を電子輸送ポリマーと組み合わせてもよい。いくつかの場合、一般式(1)で表される化合物を正孔輸送ポリマーおよび電子輸送ポリマーと組み合わせてもよい。いくつかの場合、一般式(1)で表される化合物を、正孔輸送部と電子輸送部との両方を有するコポリマーと組み合わせてもよい。以上のような実施形態により、固体状のフィルムまたは層内に形成される電子および/または正孔を、一般式(1)で表される化合物と相互作用させることができる。
[Constituent using a compound represented by the general formula (1)]
In certain embodiments, it is combined with a compound represented by the general formula (1), the compound is dispersed, covalently bonded to the compound, coated with the compound, carried or associated with the compound 1. Used with one or more materials (eg, small molecules, polymers, metals, metal complexes, etc.) to form solid films or layers. For example, the compound represented by the general formula (1) can be combined with an electrically active material to form a film. In some cases, the compound represented by the general formula (1) may be combined with the hole transport polymer. In some cases, the compound represented by the general formula (1) may be combined with the electron transport polymer. In some cases, the compound represented by the general formula (1) may be combined with the hole transport polymer and the electron transport polymer. In some cases, the compound represented by the general formula (1) may be combined with a copolymer having both a hole transport part and an electron transport part. According to the above embodiment, the electrons and / or holes formed in the solid film or layer can interact with the compound represented by the general formula (1).
[フィルムの形成]
 ある実施形態では、一般式(1)で表される本発明の化合物を含むフィルムは、湿式工程で形成することができる。湿式工程では、本発明の化合物を含む組成物を溶解した溶液を面に塗布し、溶媒の除去後にフィルムを形成する。湿式工程として、スピンコート法、スリットコート法、インクジェット法(スプレー法)、グラビア印刷法、オフセット印刷法、フレキソ印刷法を挙げることができるが、これらに限定されるものではない。湿式工程では、本発明の化合物を含む組成物を溶解することができる適切な有機溶媒を選択して用いる。ある実施形態では、組成物に含まれる化合物に、有機溶媒に対する溶解性を上げる置換基(例えばアルキル基)を導入することができる。
 ある実施形態では、本発明の化合物を含むフィルムは、乾式工程で形成することができる。ある実施形態では、乾式工程として真空蒸着法を採用することができる、これに限定されるものではない。真空蒸着法を採用する場合は、フィルムを構成する化合物を個別の蒸着源から共蒸着させてもよいし、化合物を混合した単一の蒸着源から共蒸着させてもよい。単一の蒸着源を用いる場合は、化合物の粉末を混合した混合粉を用いてもよいし、その混合粉を圧縮した圧縮成形体を用いてもよいし、各化合物を加熱溶融して冷却した混合物を用いてもよい。ある実施形態では、単一の蒸着源に含まれる複数の化合物の蒸着速度(重量減少速度)が一致ないしほぼ一致する条件で共蒸着を行うことにより、蒸着源に含まれる複数の化合物の組成比に対応する組成比のフィルムを形成することができる。形成されるフィルムの組成比と同じ組成比で複数の化合物を混合して蒸着源とすれば、所望の組成比を有するフィルムを簡便に形成することができる。ある実施形態では、共蒸着される各化合物が同じ重量減少率になる温度を特定して、その温度を共蒸着時の温度として採用することができる。
[Film formation]
In certain embodiments, the film containing the compound of the present invention represented by the general formula (1) can be formed by a wet step. In the wet step, a solution containing the composition containing the compound of the present invention is applied to the surface, and a film is formed after removing the solvent. Examples of the wet process include, but are not limited to, a spin coating method, a slit coating method, an inkjet method (spray method), a gravure printing method, an offset printing method, and a flexographic printing method. In the wet step, an appropriate organic solvent capable of dissolving the composition containing the compound of the present invention is selected and used. In certain embodiments, a substituent (eg, an alkyl group) that increases the solubility in an organic solvent can be introduced into the compound contained in the composition.
In certain embodiments, the film containing the compound of the invention can be formed in a dry process. In certain embodiments, the vacuum deposition method can be employed as the dry process, without limitation. When the vacuum vapor deposition method is adopted, the compounds constituting the film may be co-deposited from individual vapor deposition sources, or may be co-deposited from a single vapor deposition source in which the compounds are mixed. When a single vapor deposition source is used, a mixed powder in which a powder of the compound is mixed may be used, a compression molded product obtained by compressing the mixed powder may be used, or each compound is heated and melted and cooled. A mixture may be used. In one embodiment, the composition ratio of the plurality of compounds contained in the vapor deposition source is obtained by performing co-evaporation under the condition that the vapor deposition rates (weight reduction rates) of the plurality of compounds contained in a single vapor deposition source are the same or almost the same. It is possible to form a film having a composition ratio corresponding to the above. If a plurality of compounds are mixed at the same composition ratio as the composition ratio of the film to be formed and used as a vapor deposition source, a film having a desired composition ratio can be easily formed. In one embodiment, a temperature at which each compound to be co-deposited has the same weight loss rate can be specified, and that temperature can be adopted as the temperature at the time of co-depositing.
[一般式(1)で表される化合物の使用の例]
有機発光ダイオード:
 本発明の一態様は、有機発光素子の発光材料としての、本発明の一般式(1)で表される化合物の使用に関する。ある実施形態では、本発明の一般式(1)で表される化合物は、有機発光素子の発光層における発光材料として効果的に使用できる。ある実施形態では、一般式(1)で表される化合物は、遅延蛍光を発する遅延蛍光(遅延蛍光体)を含む。ある実施形態では、本発明は一般式(1)で表される構造を有する遅延蛍光体を提供する。ある実施形態では、本発明は遅延蛍光体としての一般式(1)で表される化合物の使用に関する。ある実施形態では、本発明は一般式(1)で表される化合物は、ホスト材料として使用することができ、かつ、1つ以上の発光材料と共に使用することができ、発光材料は蛍光材料、燐光材料またはTADFでよい。ある実施形態では、一般式(1)で表される化合物は、正孔輸送材料として使用することもできる。ある実施形態では、一般式(1)で表される化合物は、電子輸送材料として使用することができる。ある実施形態では、本発明は一般式(1)で表される化合物から遅延蛍光を生じさせる方法に関する。ある実施形態では、化合物を発光材料として含む有機発光素子は、遅延蛍光を発し、高い光放射効率を示す。
 ある実施形態では、発光層は一般式(1)で表される化合物を含み、一般式(1)で表される化合物は、基材と平行に配向される。ある実施形態では、基材はフィルム形成表面である。ある実施形態では、フィルム形成表面に対する一般式(1)で表される化合物の配向は、整列させる化合物によって発せられる光の伝播方向に影響を与えるか、あるいは、当該方向を決定づける。ある実施形態では、一般式(1)で表される化合物によって発される光の伝播方向を整列させることで、発光層からの光抽出効率が改善される。
 本発明の一態様は、有機発光素子に関する。ある実施形態では、有機発光素子は発光層を含む。ある実施形態では、発光層は発光材料として一般式(1)で表される化合物を含む。ある実施形態では、有機発光素子は有機光ルミネッセンス素子(有機PL素子)である。ある実施形態では、有機発光素子は、有機エレクトロルミネッセンス素子(有機EL素子)である。ある実施形態では、一般式(1)で表される化合物は、発光層に含まれる他の発光材料の光放射を(いわゆるアシストドーパントとして)補助する。ある実施形態では、発光層に含まれる一般式(1)で表される化合物は、その最低の励起一重項エネルギー準位にあり、発光層に含まれるホスト材料の最低励起一重項エネルギー準位と発光層に含まれる他の発光材料の最低励起一重項エネルギー準位との間に含まれる。
 ある実施形態では、有機光ルミネッセンス素子は、少なくとも1つの発光層を含む。ある実施形態では、有機エレクトロルミネッセンス素子は、少なくとも陽極、陰極、および前記陽極と前記陰極との間の有機層を含む。ある実施形態では、有機層は、少なくとも発光層を含む。ある実施形態では、有機層は、発光層のみを含む。ある実施形態では、有機層は、発光層に加えて1つ以上の有機層を含む。有機層の例としては、正孔輸送層、正孔注入層、電子障壁層、正孔障壁層、電子注入層、電子輸送層および励起子障壁層が挙げられる。ある実施形態では、正孔輸送層は、正孔注入機能を有する正孔注入輸送層であってもよく、電子輸送層は、電子注入機能を有する電子注入輸送層であってもよい。有機エレクトロルミネッセンス素子の例を図1に示す。
[Example of use of compound represented by general formula (1)]
Organic light emitting diode:
One aspect of the present invention relates to the use of a compound represented by the general formula (1) of the present invention as a light emitting material for an organic light emitting device. In certain embodiments, the compound represented by the general formula (1) of the present invention can be effectively used as a light emitting material in the light emitting layer of the organic light emitting device. In certain embodiments, the compound represented by the general formula (1) comprises delayed fluorescence (delayed fluorescent material) that emits delayed fluorescence. In certain embodiments, the present invention provides a delayed fluorophore having a structure represented by the general formula (1). In certain embodiments, the present invention relates to the use of a compound represented by the general formula (1) as a delayed fluorophore. In certain embodiments, the compound of the present invention is represented by the general formula (1), which can be used as a host material and can be used with one or more light emitting materials, wherein the light emitting material is a fluorescent material. It may be a phosphorescent material or TADF. In certain embodiments, the compound represented by the general formula (1) can also be used as a hole transport material. In certain embodiments, the compound represented by the general formula (1) can be used as an electron transporting material. In certain embodiments, the present invention relates to a method of causing delayed fluorescence from a compound represented by the general formula (1). In certain embodiments, the organic light emitting element containing the compound as a light emitting material emits delayed fluorescence and exhibits high light emission efficiency.
In certain embodiments, the light emitting layer comprises a compound represented by the general formula (1), the compound represented by the general formula (1) being oriented parallel to the substrate. In certain embodiments, the substrate is a film-forming surface. In certain embodiments, the orientation of the compound represented by the general formula (1) with respect to the film-forming surface affects or determines the direction of propagation of the light emitted by the compound to be aligned. In certain embodiments, the efficiency of light extraction from the light emitting layer is improved by aligning the propagation directions of the light emitted by the compound represented by the general formula (1).
One aspect of the present invention relates to an organic light emitting device. In certain embodiments, the organic light emitting device comprises a light emitting layer. In certain embodiments, the light emitting layer comprises a compound represented by the general formula (1) as a light emitting material. In one embodiment, the organic light emitting device is an organic light luminescence device (organic PL element). In certain embodiments, the organic light emitting device is an organic electroluminescence device (organic EL device). In certain embodiments, the compound represented by the general formula (1) assists the light emission of other light emitting materials contained in the light emitting layer (as a so-called assist dopant). In one embodiment, the compound represented by the general formula (1) contained in the light emitting layer is at its lowest excited singlet energy level and with the lowest excited singlet energy level of the host material contained in the light emitting layer. It is included between the lowest excited singlet energy levels of other light emitting materials contained in the light emitting layer.
In certain embodiments, the organic light luminescence device comprises at least one light emitting layer. In certain embodiments, the organic electroluminescence device comprises at least an anode, a cathode, and an organic layer between the anode and the cathode. In certain embodiments, the organic layer comprises at least a light emitting layer. In certain embodiments, the organic layer comprises only a light emitting layer. In certain embodiments, the organic layer comprises one or more organic layers in addition to the light emitting layer. Examples of the organic layer include a hole transport layer, a hole injection layer, an electron barrier layer, a hole barrier layer, an electron injection layer, an electron transport layer and an exciton barrier layer. In certain embodiments, the hole transport layer may be a hole injection transport layer having a hole injection function, and the electron transport layer may be an electron injection transport layer having an electron injection function. An example of an organic electroluminescence device is shown in FIG.
発光層:
 ある実施形態では、発光層は、陽極および陰極からそれぞれ注入された正孔および電子が再結合して励起子を形成する層である。ある実施形態では、層は光を発する。
 ある実施形態では、発光材料のみが発光層として用いられる。ある実施形態では、発光層は発光材料とホスト材料とを含む。ある実施形態では、発光材料は、一般式(1)の1つ以上の化合物である。ある実施形態では、有機エレクトロルミネッセンス素子および有機光ルミネッセンス素子の光放射効率を向上させるため、発光材料において発生する一重項励起子および三重項励起子を、発光材料内に閉じ込める。ある実施形態では、発光層中に発光材料に加えてホスト材料を用いる。ある実施形態では、ホスト材料は有機化合物である。ある実施形態では、有機化合物は励起一重項エネルギーおよび励起三重項エネルギーを有し、その少なくとも1つは、本発明の発光材料のそれらよりも高い。ある実施形態では、本発明の発光材料中で発生する一重項励起子および三重項励起子は、本発明の発光材料の分子中に閉じ込められる。ある実施形態では、一重項および三重項の励起子は、光放射効率を向上させるために十分に閉じ込められる。ある実施形態では、高い光放射効率が未だ得られるにもかかわらず、一重項励起子および三重項励起子は十分に閉じ込められず、すなわち、高い光放射効率を達成できるホスト材料は、特に限定されることなく本発明で使用されうる。ある実施形態では、本発明の素子の発光層中の発光材料において、光放射が生じる。ある実施形態では、放射光は蛍光および遅延蛍光の両方を含む。ある実施形態では、放射光は、ホスト材料からの放射光を含む。ある実施形態では、放射光は、ホスト材料からの放射光からなる。ある実施形態では、放射光は、一般式(1)で表される化合物からの放射光と、ホスト材料からの放射光とを含む。ある実施形態では、TADF分子とホスト材料とが用いられる。ある実施形態では、TADFはアシストドーパントである。
Light emitting layer:
In one embodiment, the light emitting layer is a layer in which holes and electrons injected from the anode and cathode, respectively, recombine to form excitons. In certain embodiments, the layer emits light.
In certain embodiments, only the light emitting material is used as the light emitting layer. In certain embodiments, the light emitting layer comprises a light emitting material and a host material. In certain embodiments, the light emitting material is one or more compounds of the general formula (1). In one embodiment, singlet and triplet exciters generated in a light emitting material are confined in the light emitting material in order to improve the light emission efficiency of the organic electroluminescence element and the organic photoluminescence element. In certain embodiments, a host material is used in addition to the light emitting material in the light emitting layer. In certain embodiments, the host material is an organic compound. In certain embodiments, the organic compound has an excited singlet energy and an excited triplet energy, at least one of which is higher than those of the light emitting materials of the present invention. In certain embodiments, the singlet and triplet excitons generated in the luminescent material of the invention are confined in the molecule of the luminescent material of the invention. In certain embodiments, singlet and triplet excitons are sufficiently confined to improve photoradiation efficiency. In certain embodiments, singlet and triplet excitons are not sufficiently confined, even though high photoradiation efficiency is still obtained, i.e., host materials capable of achieving high photoradiation efficiency are particularly limited. Can be used in the present invention without any need. In certain embodiments, light emission occurs in the light emitting material in the light emitting layer of the device of the present invention. In certain embodiments, the emitted light comprises both fluorescence and delayed fluorescence. In certain embodiments, the radiated light includes radiated light from the host material. In one embodiment, the radiated light consists of synchrotron radiation from the host material. In certain embodiments, the synchrotron radiation includes synchrotron radiation from a compound represented by the general formula (1) and synchrotron radiation from a host material. In certain embodiments, TADF molecules and host materials are used. In certain embodiments, TADF is an assist dopant.
 一般式(1)で表される化合物をアシストドーパントとして用いるとき、発光材料(好ましくは蛍光材料)として様々な化合物を採用することが可能である。そのような発光材料としては、アントラセン誘導体、テトラセン誘導体、ナフタセン誘導体、ピレン誘導体、ペリレン誘導体、クリセン誘導体、ルブレン誘導体、クマリン誘導体、ピラン誘導体、スチルベン誘導体、フルオレン誘導体、アントリル誘導体、ピロメテン誘導体、ターフェニル誘導体、ターフェニレン誘導体、フルオランテン誘導体、アミン誘導体、キナクリドン誘導体、オキサジアゾール誘導体、マロノニトリル誘導体、ピラン誘導体、カルバゾール誘導体、ジュロリジン誘導体、チアゾール誘導体、金属(Al,Zn)を有する誘導体等を用いることが可能である。これらの例示骨格には置換基を有してもよいし、置換基を有していなくてもよい。また、これらの例示骨格どうしを組み合わせてもよい。
 以下において、一般式(1)で表されるアシストドーパントと組み合わせて用いることができる発光材料を例示する。
When the compound represented by the general formula (1) is used as an assist dopant, various compounds can be adopted as a light emitting material (preferably a fluorescent material). Examples of such luminescent materials include anthracene derivatives, tetracene derivatives, naphthacene derivatives, pyrene derivatives, perylene derivatives, chrysene derivatives, rubrene derivatives, coumarin derivatives, pyran derivatives, stylben derivatives, fluorene derivatives, anthryl derivatives, pyrromethene derivatives, and terphenyl derivatives. , Turphenylene derivatives, fluoranthene derivatives, amine derivatives, quinacridone derivatives, oxadiazole derivatives, malononitrile derivatives, pyran derivatives, carbazole derivatives, durolysin derivatives, thiazole derivatives, derivatives having metals (Al, Zn), etc. can be used. be. These exemplary skeletons may or may not have substituents. Further, these exemplary skeletons may be combined with each other.
In the following, a light emitting material that can be used in combination with the assist dopant represented by the general formula (1) will be illustrated.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 また、WO2015/022974号公報の段落0220~0239に記載の化合物も、一般式(1)で表されるアシストドーパントとともに用いる発光材料として、特に好ましく採用することができる。 Further, the compound described in paragraphs 0220 to 0239 of WO2015 / 022974 can also be particularly preferably adopted as a light emitting material used together with the assist dopant represented by the general formula (1).
 ある実施形態では、ホスト材料を用いるとき、発光層に含まれる発光材料としての本発明の化合物の量は、0.1重量%以上である。ある実施形態では、ホスト材料を用いるとき、発光層に含まれる発光材料としての本発明の化合物の量は、1重量%以上である。ある実施形態では、ホスト材料を用いるとき、発光層に含まれる発光材料としての本発明の化合物の量は、50重量%以下である。ある実施形態では、ホスト材料を用いるとき、発光層に含まれる発光材料としての本発明の化合物の量は、20重量%以下である。ある実施形態では、ホスト材料を用いるとき、発光層に含まれる発光材料としての本発明の化合物の量は、10重量%以下である。
 ある実施形態では、発光層のホスト材料は、正孔輸送機能および電子輸送機能を有する有機化合物である。ある実施形態では、発光層のホスト材料は、放射光の波長が増加することを防止する有機化合物である。ある実施形態では、発光層のホスト材料は、高いガラス転移温度を有する有機化合物である。
In certain embodiments, when the host material is used, the amount of the compound of the present invention as the light emitting material contained in the light emitting layer is 0.1% by weight or more. In certain embodiments, when the host material is used, the amount of the compound of the present invention as the light emitting material contained in the light emitting layer is 1% by weight or more. In certain embodiments, when the host material is used, the amount of the compound of the present invention as the light emitting material contained in the light emitting layer is 50% by weight or less. In certain embodiments, when the host material is used, the amount of the compound of the present invention as the light emitting material contained in the light emitting layer is 20% by weight or less. In certain embodiments, when the host material is used, the amount of the compound of the present invention as the light emitting material contained in the light emitting layer is 10% by weight or less.
In certain embodiments, the host material of the light emitting layer is an organic compound having a hole transport function and an electron transport function. In certain embodiments, the host material for the light emitting layer is an organic compound that prevents the wavelength of the synchrotron radiation from increasing. In certain embodiments, the host material for the light emitting layer is an organic compound with a high glass transition temperature.
 いくつかの実施形態では、ホスト材料は以下からなる群から選択される: 
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
 ある実施形態では、発光層は2種類以上の構造が異なるTADF分子を含む。例えば、励起一重項エネルギー準位がホスト材料、第1TADF分子、第2TADF分子の順に高い、これら3種の材料を含む発光層とすることができる。このとき、第1TADF分子と第2TADF分子は、ともに最低励起一重項エネルギー準位と77Kの最低励起三重項エネルギー準位の差ΔESTが0.3eV以下であることが好ましく、0.25eV以下であることがより好ましく、0.2eV以下であることがより好ましく、0.15eV以下であることがより好ましく、0.1eV以下であることがさらに好ましく、0.07eV以下であることがさらにより好ましく、0.05eV以下であることがさらにまた好ましく、0.03eV以下であることがさらになお好ましく、0.01eV以下であることが特に好ましい。発光層における第1TADF分子の含有量は、第2TADF分子の含有量よりも多いことが好ましい。また、発光層におけるホスト材料の含有量は、第2TADF分子の含有量よりも多いことが好ましい。発光層における第1TADF分子の含有量は、ホスト材料の含有量よりも多くてもよいし、少なくてもよいし、同じであってもよい。ある実施形態では、発光層内の組成を、ホスト材料を10~70重量%、第1TADF分子を10~80重量%、第2TADF分子を0.1~30重量%としてもよい。ある実施形態では、発光層内の組成を、ホスト材料を20~45重量%、第1TADF分子を50~75重量%、第2TADF分子を5~20重量%としてもよい。ある実施形態では、第1TADF分子とホスト材料の共蒸着膜(この共蒸着膜における第1TADF分子の含有率=A重量%)の光励起による発光量子収率φPL1(A)と、第2TADF分子とホスト材料の共蒸着膜(この共蒸着膜における第2TADF分子の含有率=A重量%)の光励起による発光量子収率φPL2(A)が、φPL1(A)>φPL2(A)の関係式を満たす。ある実施形態では、第2TADF分子とホスト材料の共蒸着膜(この共蒸着膜における第2TADF分子の含有率=B重量%)の光励起による発光量子収率φPL2(B)と、第2TADF分子の単独膜の光励起による発光量子収率φPL2(100)が、φPL2(B)>φPL2(100)の関係式を満たす。ある実施形態では、発光層は3種類の構造が異なるTADF分子を含むことができる。本発明の化合物は、発光層に含まれる複数のTADF化合物のいずれであってもよい。
 ある実施形態では、発光層は、ホスト材料、アシストドーパント、および発光材料からからなる群より選択される材料で構成することができる。ある実施形態では、発光層は金属元素を含まない。ある実施形態では、発光層は炭素原子、水素原子、窒素原子、酸素原子および硫黄原子からなる群より選択される原子のみから構成される材料で構成することができる。あるいは、発光層は、炭素原子、水素原子、窒素原子および酸素原子からなる群より選択される原子のみから構成される材料で構成することもできる。
 発光層が本発明の化合物以外のTADF材料を含むとき、そのTADF材料は公知の遅延蛍光材料であってよい。好ましい遅延蛍光材料として、WO2013/154064号公報の段落0008~0048および0095~0133、WO2013/011954号公報の段落0007~0047および0073~0085、WO2013/011955号公報の段落0007~0033および0059~0066、WO2013/081088号公報の段落0008~0071および0118~0133、特開2013-256490号公報の段落0009~0046および0093~0134、特開2013-116975号公報の段落0008~0020および0038~0040、WO2013/133359号公報の段落0007~0032および0079~0084、WO2013/161437号公報の段落0008~0054および0101~0121、特開2014-9352号公報の段落0007~0041および0060~0069、特開2014-9224号公報の段落0008~0048および0067~0076、特開2017-119663号公報の段落0013~0025、特開2017-119664号公報の段落0013~0026、特開2017-222623号公報の段落0012~0025、特開2017-226838号公報の段落0010~0050、特開2018-100411号公報の段落0012~0043、WO2018/047853号公報の段落0016~0044に記載される一般式に包含される化合物、特に例示化合物であって、遅延蛍光を放射しうるものが含まれる。また、ここでは、特開2013-253121号公報、WO2013/133359号公報、WO2014/034535号公報、WO2014/115743号公報、WO2014/122895号公報、WO2014/126200号公報、WO2014/136758号公報、WO2014/133121号公報、WO2014/136860号公報、WO2014/196585号公報、WO2014/189122号公報、WO2014/168101号公報、WO2015/008580号公報、WO2014/203840号公報、WO2015/002213号公報、WO2015/016200号公報、WO2015/019725号公報、WO2015/072470号公報、WO2015/108049号公報、WO2015/080182号公報、WO2015/072537号公報、WO2015/080183号公報、特開2015-129240号公報、WO2015/129714号公報、WO2015/129715号公報、WO2015/133501号公報、WO2015/136880号公報、WO2015/137244号公報、WO2015/137202号公報、WO2015/137136号公報、WO2015/146541号公報、WO2015/159541号公報に記載される発光材料であって、遅延蛍光を放射しうるものを好ましく採用することができる。なお、この段落に記載される上記の公報は、本明細書の一部としてここに引用する。
In some embodiments, the host material is selected from the group consisting of:
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
In certain embodiments, the light emitting layer comprises two or more differently structured TADF molecules. For example, a light emitting layer containing these three materials in which the excited singlet energy level is higher in the order of the host material, the first TADF molecule, and the second TADF molecule can be obtained. At this time, the 1TADF molecule with a 2TADF molecule is preferably both a difference Delta] E ST of the lowest excited triplet energy level of the lowest excited singlet energy level and 77K or less 0.3 eV, below 0.25eV It is more preferably 0.2 eV or less, more preferably 0.15 eV or less, further preferably 0.1 eV or less, still more preferably 0.07 eV or less. , 0.05 eV or less, even more preferably 0.03 eV or less, and particularly preferably 0.01 eV or less. The content of the first TADF molecule in the light emitting layer is preferably higher than the content of the second TADF molecule. Further, the content of the host material in the light emitting layer is preferably higher than the content of the second TADF molecule. The content of the first TADF molecule in the light emitting layer may be higher, lower, or the same as the content of the host material. In certain embodiments, the composition in the light emitting layer may be 10 to 70% by weight of the host material, 10 to 80% by weight of the first TADF molecule, and 0.1 to 30% by weight of the second TADF molecule. In certain embodiments, the composition in the light emitting layer may be 20 to 45% by weight of the host material, 50 to 75% by weight of the first TADF molecule, and 5 to 20% by weight of the second TADF molecule. In one embodiment, the emission quantum yield φPL1 (A) by photoexcitation of the co-deposited film of the first TADF molecule and the host material (the content of the first TADF molecule in this co-deposited film = A% by weight), and the second TADF molecule and the host. The emission quantum yield φPL2 (A) due to photoexcitation of the co-deposited film of the material (content of the second TADF molecule in this co-deposited film = A% by weight) satisfies the relational expression of φPL1 (A)> φPL2 (A). In one embodiment, the emission quantum yield φPL2 (B) by photoexcitation of the co-deposited film of the second TADF molecule and the host material (content of the second TADF molecule in this co-deposited film = B wt%) and the second TADF molecule alone. The emission quantum yield φPL2 (100) due to photoexcitation of the film satisfies the relational expression of φPL2 (B)> φPL2 (100). In certain embodiments, the light emitting layer can contain three structurally different TADF molecules. The compound of the present invention may be any of a plurality of TADF compounds contained in the light emitting layer.
In certain embodiments, the light emitting layer can be composed of a material selected from the group consisting of a host material, an assist dopant, and a light emitting material. In certain embodiments, the light emitting layer is free of metallic elements. In certain embodiments, the light emitting layer can be composed of a material composed only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms, oxygen atoms and sulfur atoms. Alternatively, the light emitting layer may be composed of a material composed only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms and oxygen atoms.
When the light emitting layer contains a TADF material other than the compound of the present invention, the TADF material may be a known delayed fluorescent material. Preferred delayed fluorescent materials include paragraphs 0008 to 0048 and 0995 to 0133 of WO2013 / 154064, paragraphs 0007 to 0047 and 0073 to 985 of WO2013 / 011954, and paragraphs 0007 to 0033 and 0059 to 0066 of WO2013 / 01955. , WO 2013/081088, paragraphs 0008 to 0071 and 0118 to 0133, Japanese Patent Laid-Open No. 2013-256490, paragraphs 0009 to 0046 and 093 to 0134, Japanese Patent Laid-Open No. 2013-116975, paragraphs 0008 to 0020 and 0038 to 0040. Paragraphs 0007 to 0032 and 0079 to 0084 of WO2013 / 133359A, paragraphs 0008 to 0054 and 0101 to 0121 of WO2013 / 161437, paragraphs 0007 to 0041 and 0060 to 0069 of JP-A-2014-9352, JP-A-2014. -Paragraphs 0008 to 0048 and 0067 to 0076 of JP-A-9224, paragraphs 0013-0025 of JP-A-2017-119663, paragraphs 0013-0026-0026 of JP-A-2017-119664, paragraphs 0012 of JP-A-2017-22623. -0025, paragraphs 0010 to 0050 of JP-A-2017-226838, paragraphs 0012-0043 of JP-A-2018-1441, paragraphs 0016-0044 of JP-A-2018 / 047853, compounds included in the general formula. In particular, exemplary compounds include those capable of emitting delayed fluorescence. Further, here, Japanese Patent Laid-Open Nos. 2013-253121, WO2013 / 133359, WO2014 / 034535, WO2014 / 115743, WO2014 / 122895, WO2014 / 126200, WO2014 / 136758, WO2014. / 133121, WO2014 / 136860, WO2014 / 196585, WO2014 / 189122, WO2014 / 168101, WO2015 / 008580, WO2014 / 203840, WO2015 / 002213, WO2015 / 016200 Publication No. WO2015 / 019725, WO2015 / 072470, WO2015 / 108049, WO2015 / 080182, WO2015 / 072537, WO2015 / 080183, JP2015-129240, WO2015 / 129714 Publication, WO2015 / 129715, WO2015 / 133501, WO2015 / 136880, WO2015 / 137244, WO2015 / 137202, WO2015 / 137136, WO2015 / 146541, WO2015 / 159541. Among the light emitting materials described in the above, those capable of emitting delayed fluorescence can be preferably adopted. The above publications described in this paragraph are hereby incorporated herein by reference.
 以下において、有機エレクトロルミネッセンス素子の各部材および発光層以外の各層について説明する。 Hereinafter, each member of the organic electroluminescence element and each layer other than the light emitting layer will be described.
基材:
 いくつかの実施形態では、本発明の有機エレクトロルミネッセンス素子は基材により保持され、当該基材は特に限定されず、有機エレクトロルミネッセンス素子で一般的に用いられる、例えばガラス、透明プラスチック、クォーツおよびシリコンにより形成されたいずれかの材料を用いればよい。
Base material:
In some embodiments, the organic electroluminescence device of the present invention is held by a substrate, the substrate is not particularly limited and is commonly used in organic electroluminescence devices, such as glass, clear plastic, quartz and silicon. Any material formed by the above may be used.
陽極:
 いくつかの実施形態では、有機エレクトロルミネッセンス装置の陽極は、金属、合金、導電性化合物またはそれらの組み合わせから製造される。いくつかの実施形態では、前記の金属、合金または導電性化合物は高い仕事関数(4eV以上)を有する。いくつかの実施形態では、前記金属はAuである。いくつかの実施形態では、導電性の透明材料は、CuI、酸化インジウムスズ(ITO)、SnOおよびZnOから選択される。いくつかの実施形態では、IDIXO(In-ZnO)などの、透明な導電性フィルムを形成できるアモルファス材料を使用する。いくつかの実施形態では、前記陽極は薄膜である。いくつかの実施形態では、前記薄膜は蒸着またはスパッタリングにより作製される。いくつかの実施形態では、前記フィルムはフォトリソグラフィー方法によりパターン化される。いくつかの実施形態では、パターンが高精度である必要がない(例えば約100μm以上)場合、当該パターンは、電極材料への蒸着またはスパッタリングに好適な形状のマスクを用いて形成してもよい。いくつかの実施形態では、有機導電性化合物などのコーティング材料を塗布しうるとき、プリント法やコーティング法などの湿式フィルム形成方法が用いられる。いくつかの実施形態では、放射光が陽極を通過するとき、陽極は10%超の透過度を有し、当該陽極は、単位面積あたり数百オーム以下のシート抵抗を有する。いくつかの実施形態では、陽極の厚みは10~1,000nmである。いくつかの実施形態では、陽極の厚みは10~200nmである。いくつかの実施形態では、陽極の厚みは用いる材料に応じて変動する。
anode:
In some embodiments, the anode of an organic electroluminescence device is manufactured from a metal, alloy, conductive compound or a combination thereof. In some embodiments, the metal, alloy or conductive compound has a high work function (4 eV or higher). In some embodiments, the metal is Au. In some embodiments, the conductive transparent material is selected from CuI, indium tin oxide (ITO), SnO 2 and ZnO. In some embodiments, it uses an amorphous material capable of forming such IDIXO (In 2 O 3 -ZnO) , a transparent conductive film. In some embodiments, the anode is a thin film. In some embodiments, the thin film is made by vapor deposition or sputtering. In some embodiments, the film is patterned by a photolithography method. In some embodiments, if the pattern does not need to be highly accurate (eg, about 100 μm or larger), the pattern may be formed using a mask having a shape suitable for vapor deposition or sputtering on the electrode material. In some embodiments, when a coating material such as an organic conductive compound can be applied, a wet film forming method such as a printing method or a coating method is used. In some embodiments, when synchrotron radiation passes through the anode, the anode has a transmittance of greater than 10% and the anode has a sheet resistance of no more than a few hundred ohms per unit area. In some embodiments, the thickness of the anode is 10-1,000 nm. In some embodiments, the thickness of the anode is 10-200 nm. In some embodiments, the thickness of the anode will vary depending on the material used.
陰極:
 いくつかの実施形態では、前記陰極は、低い仕事関数を有する金属(4eV以下)(電子注入金属と称される)、合金、導電性化合物またはその組み合わせなどの電極材料で作製される。いくつかの実施形態では、前記電極材料は、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム-銅混合物、マグネシウム-銀混合物、マグネシウム-アルミニウム混合物、マグネシウム-インジウム混合物、アルミニウム-酸化アルミニウム(Al)混合物、インジウム、リチウム-アルミニウム混合物および希土類元素から選択される。いくつかの実施形態では、電子注入金属と、電子注入金属より高い仕事関数を有する安定な金属である第2の金属との混合物が用いられる。いくつかの実施形態では、前記混合物は、マグネシウム-銀混合物、マグネシウム-アルミニウム混合物、マグネシウム-インジウム混合物、アルミニウム-酸化アルミニウム(Al)混合物、リチウム-アルミニウム混合物およびアルミニウムから選択される。いくつかの実施形態では、前記混合物は電子注入特性および酸化に対する耐性を向上させる。いくつかの実施形態では、陰極は、蒸着またはスパッタリングにより電極材料を薄膜として形成させることによって製造される。いくつかの実施形態では、前記陰極は単位面積当たり数百オーム以下のシート抵抗を有する。いくつかの実施形態では、前記陰極の厚は10nm~5μmである。いくつかの実施形態では、前記陰極の厚は50~200nmである。いくつかの実施形態では、放射光を透過させるため、有機エレクトロルミネッセンス素子の陽極および陰極のいずれか1つは透明または半透明である。いくつかの実施形態では、透明または半透明のエレクトロルミネッセンス素子は光放射輝度を向上させる。
 いくつかの実施形態では、前記陰極を、前記陽極に関して前述した導電性の透明な材料で形成されることにより、透明または半透明の陰極が形成される。いくつかの実施形態では、素子は陽極と陰極とを含むが、いずれも透明または半透明である。
cathode:
In some embodiments, the cathode is made of an electrode material such as a metal with a low work function (4 eV or less) (referred to as an electron-injected metal), an alloy, a conductive compound or a combination thereof. In some embodiments, the electrode material is sodium, sodium-potassium alloy, magnesium, lithium, magnesium-copper mixture, magnesium-silver mixture, magnesium-aluminum mixture, magnesium-indium mixture, aluminum-aluminum oxide (Al 2). O 3 ) Selected from mixtures, indium, lithium-aluminum mixtures and rare earth elements. In some embodiments, a mixture of the electron-injected metal and a second metal, which is a stable metal with a higher work function than the electron-injected metal, is used. In some embodiments, the mixture is selected from a magnesium-silver mixture, a magnesium-aluminum mixture, a magnesium-indium mixture, an aluminum-aluminum oxide (Al 2 O 3 ) mixture, a lithium-aluminum mixture and aluminum. In some embodiments, the mixture improves electron injection properties and resistance to oxidation. In some embodiments, the cathode is manufactured by forming the electrode material as a thin film by vapor deposition or sputtering. In some embodiments, the cathode has a sheet resistance of tens of ohms or less per unit area. In some embodiments, the cathode has a thickness of 10 nm to 5 μm. In some embodiments, the thickness of the cathode is 50-200 nm. In some embodiments, any one of the anode and cathode of the organic electroluminescence element is transparent or translucent in order to transmit synchrotron radiation. In some embodiments, the transparent or translucent electroluminescent device improves the light radiance.
In some embodiments, the cathode is formed of the conductive transparent material described above with respect to the anode to form a transparent or translucent cathode. In some embodiments, the device comprises an anode and a cathode, both of which are transparent or translucent.
注入層:
 注入層は、電極と有機層との間の層である。いくつかの実施形態では、前記注入層は駆動電圧を減少させ、光放射輝度を増強する。いくつかの実施形態では、前記注入層は、正孔注入層と電子注入層とを含む。前記注入層は、陽極と発光層または正孔輸送層との間、並びに陰極と発光層または電子輸送層との間に配置することがきる。いくつかの実施形態では、注入層が存在する。いくつかの実施形態では、注入層が存在しない。
 以下に、正孔注入材料として用いることができる好ましい化合物例を挙げる。
Injection layer:
The injection layer is the layer between the electrode and the organic layer. In some embodiments, the injection layer reduces the drive voltage and enhances the light emission brightness. In some embodiments, the injection layer comprises a hole injection layer and an electron injection layer. The injection layer can be arranged between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer. In some embodiments, an injection layer is present. In some embodiments, there is no injection layer.
The following are examples of preferable compounds that can be used as hole injection materials.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 次に、電子注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000058
Next, examples of preferable compounds that can be used as an electron injection material are given.
Figure JPOXMLDOC01-appb-C000058
障壁層:
 障壁層は、発光層に存在する電荷(電子または正孔)および/または励起子が、発光層の外側に拡散することを阻止できる層である。いくつかの実施形態では、電子障壁層は、発光層と正孔輸送層との間に存在し、電子が発光層を通過して正孔輸送層へ至ることを阻止する。いくつかの実施形態では、正孔障壁層は、発光層と電子輸送層との間に存在し、正孔が発光層を通過して電子輸送層へ至ることを阻止する。いくつかの実施形態では、障壁層は、励起子が発光層の外側に拡散することを阻止する。いくつかの実施形態では、電子障壁層および正孔障壁層は励起子障壁層を構成する。本明細書で用いる用語「電子障壁層」または「励起子障壁層」には、電子障壁層の、および励起子障壁層の機能の両方を有する層が含まれる。
Barrier layer:
The barrier layer is a layer capable of preventing charges (electrons or holes) and / or excitons present in the light emitting layer from diffusing outside the light emitting layer. In some embodiments, the electron barrier layer resides between the light emitting layer and the hole transport layer, preventing electrons from passing through the light emitting layer to the hole transport layer. In some embodiments, the hole barrier layer exists between the light emitting layer and the electron transport layer to prevent holes from passing through the light emitting layer to the electron transport layer. In some embodiments, the barrier layer prevents excitons from diffusing outside the light emitting layer. In some embodiments, the electron barrier layer and the hole barrier layer constitute an exciton barrier layer. As used herein, the term "electron barrier layer" or "exciton barrier layer" includes both an electron barrier layer and a layer having both the functions of an exciton barrier layer.
正孔障壁層:
 正孔障壁層は、電子輸送層として機能する。いくつかの実施形態では、電子の輸送の間、正孔障壁層は正孔が電子輸送層に至ることを阻止する。いくつかの実施形態では、正孔障壁層は、発光層における電子と正孔との再結合の確率を高める。正孔障壁層に用いる材料は、電子輸送層について前述したのと同じ材料であってもよい。
 以下に、正孔障壁層に用いることができる好ましい化合物例を挙げる。
Hole barrier layer:
The hole barrier layer functions as an electron transport layer. In some embodiments, the hole barrier layer prevents holes from reaching the electron transport layer during electron transport. In some embodiments, the hole barrier layer increases the probability of electron-hole recombination in the light emitting layer. The material used for the hole barrier layer may be the same material as described above for the electron transport layer.
The following are examples of preferable compounds that can be used for the hole barrier layer.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
電子障壁層:
 電子障壁層は、正孔を輸送する。いくつかの実施形態では、正孔の輸送の間、電子障壁層は電子が正孔輸送層に至ることを阻止する。いくつかの実施形態では、電子障壁層は、発光層における電子と正孔との再結合の確率を高める。電子障壁層に用いる材料は、正孔輸送層について前述したのと同じ材料であってもよい。
 以下に電子障壁材料として用いることができる好ましい化合物の具体例を挙げる。
Electronic barrier layer:
The electron barrier layer transports holes. In some embodiments, the electron barrier layer blocks electrons from reaching the hole transport layer during hole transport. In some embodiments, the electron barrier layer increases the probability of electron-hole recombination in the light emitting layer. The material used for the electron barrier layer may be the same material as described above for the hole transport layer.
Specific examples of preferable compounds that can be used as an electron barrier material are given below.
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
励起子障壁層:
 励起子障壁層は、発光層における正孔と電子との再結合を通じて生じた励起子が電荷輸送層まで拡散することを阻止する。いくつかの実施形態では、励起子障壁層は、発光層における励起子の有効な閉じ込め(confinement)を可能にする。いくつかの実施形態では、装置の光放射効率が向上する。いくつかの実施形態では、励起子障壁層は、陽極の側と陰極の側のいずれかで、およびその両側の発光層に隣接する。いくつかの実施形態では、励起子障壁層が陽極側に存在するとき、当該層は、正孔輸送層と発光層との間に存在し、当該発光層に隣接してもよい。いくつかの実施形態では、励起子障壁層が陰極側に存在するとき、当該層は、発光層と陰極との間に存在し、当該発光層に隣接してもよい。いくつかの実施形態では、正孔注入層、電子障壁層または同様の層は、陽極と、陽極側の発光層に隣接する励起子障壁層との間に存在する。いくつかの実施形態では、正孔注入層、電子障壁層、正孔障壁層または同様の層は、陰極と、陰極側の発光層に隣接する励起子障壁層との間に存在する。いくつかの実施形態では、励起子障壁層は、励起一重項エネルギーと励起三重項エネルギーを含み、その少なくとも1つが、それぞれ、発光材料の励起一重項エネルギーと励起三重項エネルギーより高い。
Exciton barrier layer:
The exciton barrier layer prevents excitons generated through recombination of holes and electrons in the light emitting layer from diffusing to the charge transport layer. In some embodiments, the exciton barrier layer allows for effective exciton confinement in the light emitting layer. In some embodiments, the light emission efficiency of the device is improved. In some embodiments, the exciton barrier layer is adjacent to the light emitting layers on either the anode side and the cathode side, and on either side of the anode side. In some embodiments, when the exciton barrier layer is present on the anode side, the layer may be present between the hole transport layer and the light emitting layer and adjacent to the light emitting layer. In some embodiments, when the exciton barrier layer is present on the cathode side, the layer may be present between the light emitting layer and the cathode and adjacent to the light emitting layer. In some embodiments, a hole injection layer, an electron barrier layer or a similar layer resides between the anode and the exciton barrier layer adjacent to the light emitting layer on the anode side. In some embodiments, a hole injection layer, an electron barrier layer, a hole barrier layer or a similar layer is present between the cathode and an exciton barrier layer adjacent to the light emitting layer on the cathode side. In some embodiments, the excited element barrier layer comprises an excited singlet energy and an excited triplet energy, at least one of which is higher than the excited singlet energy and the excited triplet energy of the light emitting material, respectively.
正孔輸送層:
 正孔輸送層は、正孔輸送材料を含む。いくつかの実施形態では、正孔輸送層は単層である。いくつかの実施形態では、正孔輸送層は複数の層を有する。
 いくつかの実施形態では、正孔輸送材料は、正孔の注入または輸送特性および電子の障壁特性のうちの1つの特性を有する。いくつかの実施形態では、正孔輸送材料は有機材料である。いくつかの実施形態では、正孔輸送材料は無機材料である。本発明で使用できる公知の正孔輸送材料の例としては、限定されないが、トリアゾール誘導体、オキサジアゾール誘導剤、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導剤、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリルアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導剤、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリンコポリマーおよび導電性ポリマーオリゴマー(特にチオフェンオリゴマー)、またはその組合せが挙げられる。いくつかの実施形態では、正孔輸送材料はポルフィリン化合物、芳香族三級アミン化合物およびスチリルアミン化合物から選択される。いくつかの実施形態では、正孔輸送材料は芳香族三級アミン化合物である。以下に正孔輸送材料として用いることができる好ましい化合物の具体例を挙げる。
Hole transport layer:
The hole transport layer contains a hole transport material. In some embodiments, the hole transport layer is monolayer. In some embodiments, the hole transport layer has multiple layers.
In some embodiments, the hole transport material has one of the hole injection or transport properties and the electron barrier properties. In some embodiments, the hole transport material is an organic material. In some embodiments, the hole transport material is an inorganic material. Examples of known hole transport materials that can be used in the present invention are, but are not limited to, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane inducers, pyrazoline derivatives, pyrazolones. Derivatives, phenylenediamine derivatives, allylamine derivatives, amino-substituted calcon derivatives, oxazole derivatives, styrylanthracene inducers, fluorenone derivatives, hydrazone derivatives, stilben derivatives, silazane derivatives, aniline copolymers and conductive polymer oligomers (particularly thiophene oligomers), or combinations thereof. Can be mentioned. In some embodiments, the hole transport material is selected from porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds. In some embodiments, the hole transport material is an aromatic tertiary amine compound. Specific examples of preferable compounds that can be used as hole transport materials are given below.
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
電子輸送層:
 電子輸送層は、電子輸送材料を含む。いくつかの実施形態では、電子輸送層は単層である。いくつかの実施形態では、電子輸送層は複数の層を有する。
 いくつかの実施形態では、電子輸送材料は、陰極から注入された電子を発光層に輸送する機能さえあればよい。いくつかの実施形態では、電子輸送材料はまた、正孔障壁材料としても機能する。本発明で使用できる電子輸送層の例としては、限定されないが、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フルオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体、オキサジアゾール誘導体、アゾール誘導体、アジン誘導体またはその組合せ、またはそのポリマーが挙げられる。いくつかの実施形態では、電子輸送材料はチアジアゾール誘導剤またはキノキサリン誘導体である。いくつかの実施形態では、電子輸送材料はポリマー材料である。以下に電子輸送材料として用いることができる好ましい化合物の具体例を挙げる。
Electron transport layer:
The electron transport layer contains an electron transport material. In some embodiments, the electron transport layer is a single layer. In some embodiments, the electron transport layer has multiple layers.
In some embodiments, the electron transport material only needs to have the function of transporting the electrons injected from the cathode to the light emitting layer. In some embodiments, the electron transport material also functions as a hole barrier material. Examples of electron transport layers that can be used in the present invention are, but are not limited to, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidene methane derivatives, anthracinodimethanes, antron derivatives, and oxadi. Examples thereof include azole derivatives, azole derivatives, azine derivatives or combinations thereof, or polymers thereof. In some embodiments, the electron transport material is a thiadiazole inducer or a quinoxaline derivative. In some embodiments, the electron transport material is a polymeric material. Specific examples of preferable compounds that can be used as electron transport materials are given below.
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 さらに、各有機層に添加可能な材料として好ましい化合物例を挙げる。例えば、安定化材料として添加すること等が考えられる。 Further, examples of preferable compounds as materials that can be added to each organic layer are given. For example, it may be added as a stabilizing material.
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 有機エレクトロルミネッセンス素子に用いることができる好ましい材料を具体的に例示したが、本発明において用いることができる材料は、以下の例示化合物によって限定的に解釈されることはない。また、特定の機能を有する材料として例示した化合物であっても、その他の機能を有する材料として転用することも可能である。 Although preferred materials that can be used for organic electroluminescence devices have been specifically exemplified, the materials that can be used in the present invention are not limitedly interpreted by the following exemplified compounds. Further, even a compound exemplified as a material having a specific function can be diverted as a material having another function.
デバイス:
 いくつかの実施形態では、発光層はデバイス中に組み込まれる。例えば、デバイスには、OLEDバルブ、OLEDランプ、テレビ用ディスプレイ、コンピューター用モニター、携帯電話およびタブレットが含まれるが、これらに限定されない。
 いくつかの実施形態では、電子デバイスは、陽極、陰極、および当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を有するOLEDを含む。
 いくつかの実施形態では、本願明細書に記載の構成物は、OLEDまたは光電子デバイスなどの、様々な感光性または光活性化デバイスに組み込まれうる。いくつかの実施形態では、前記構成物はデバイス内の電荷移動またはエネルギー移動の促進に、および/または正孔輸送材料として有用でありうる。前記デバイスとしては、例えば有機発光ダイオード(OLED)、有機集積回線(OIC)、有機電界効果トランジスタ(O-FET)、有機薄膜トランジスタ(O-TFT)、有機発光トランジスタ(O-LET)、有機太陽電池(O-SC)、有機光学検出装置、有機光受容体、有機磁場クエンチ(field-quench)装置(O-FQD)、発光燃料電池(LEC)または有機レーザダイオード(O-レーザー)が挙げられる。
device:
In some embodiments, the light emitting layer is incorporated into the device. For example, devices include, but are not limited to, OLED valves, OLED lamps, television displays, computer monitors, mobile phones and tablets.
In some embodiments, the electronic device comprises an OLED having an anode, a cathode, and at least one organic layer comprising a light emitting layer between the anode and the cathode.
In some embodiments, the components described herein can be incorporated into a variety of photosensitive or photoactivating devices, such as OLEDs or optoelectronic devices. In some embodiments, the construct may be useful for facilitating charge transfer or energy transfer within the device and / or as a hole transport material. Examples of the device include an organic light emitting diode (OLED), an organic integrated line (OIC), an organic field effect transistor (O-FET), an organic thin film (O-TFT), an organic light emitting transistor (O-LET), and an organic solar cell. (O-SC), an organic optical detector, an organic photoreceiver, an organic field-quench device (O-FQD), a light emitting fuel cell (LEC) or an organic laser diode (O-laser).
バルブまたはランプ:
 いくつかの実施形態では、電子デバイスは、陽極、陰極、当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を含むOLEDを含む。
 いくつかの実施形態では、デバイスは色彩の異なるOLEDを含む。いくつかの実施形態では、デバイスはOLEDの組合せを含むアレイを含む。いくつかの実施形態では、OLEDの前記組合せは、3色の組合せ(例えばRGB)である。いくつかの実施形態では、OLEDの前記組合せは、赤色でも緑色でも青色でもない色(例えばオレンジ色および黄緑色)の組合せである。いくつかの実施形態では、OLEDの前記組合せは、2色、4色またはそれ以上の色の組合せである。
 いくつかの実施形態では、デバイスは、
 取り付け面を有する第1面とそれと反対の第2面とを有し、少なくとも1つの開口部を画定する回路基板と、
 前記取り付け面上の少なくとも1つのOLEDであって、当該少なくとも1つのOLEDが、陽極、陰極、および当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を含む、発光する構成を有する少なくとも1つのOLEDと、
 回路基板用のハウジングと、
 前記ハウジングの端部に配置された少なくとも1つのコネクターであって、前記ハウジングおよび前記コネクターが照明設備への取付けに適するパッケージを画定する、少なくとも1つのコネクターと、を備えるOLEDライトである。
 いくつかの実施形態では、前記OLEDライトは、複数の方向に光が放射されるように回路基板に取り付けられた複数のOLEDを有する。いくつかの実施形態では、第1方向に発せられた一部の光は偏光されて第2方向に放射される。いくつかの実施形態では、反射器を用いて第1方向に発せられた光を偏光する。
Bulb or lamp:
In some embodiments, the electronic device comprises an OLED comprising an anode, a cathode, and at least one organic layer comprising a light emitting layer between the anode and the cathode.
In some embodiments, the device comprises an OLED of different colors. In some embodiments, the device comprises an array containing a combination of OLEDs. In some embodiments, the combination of OLEDs is a combination of three colors (eg RGB). In some embodiments, the combination of OLEDs is a combination of colors that are neither red nor green nor blue (eg, orange and yellow-green). In some embodiments, the combination of OLEDs is a combination of two colors, four colors or more.
In some embodiments, the device is
A circuit board having a first surface with a mounting surface and a second surface opposite the mounting surface and defining at least one opening.
A configuration in which at least one OLED on the mounting surface, wherein the at least one OLED comprises an anode, a cathode, and at least one organic layer including a light emitting layer between the anode and the cathode. With at least one OLED that has
The housing for the circuit board and
An OLED light comprising at least one connector located at the end of the housing, wherein the housing and the connector define a package suitable for mounting in lighting equipment.
In some embodiments, the OLED light has a plurality of OLEDs mounted on a circuit board such that light is emitted in multiple directions. In some embodiments, some light emitted in the first direction is polarized and emitted in the second direction. In some embodiments, a reflector is used to polarize the light emitted in the first direction.
ディスプレイまたはスクリーン:
 いくつかの実施形態では、本発明の発光層はスクリーンまたはディスプレイにおいて使用できる。いくつかの実施形態では、本発明に係る化合物は、限定されないが真空蒸発、堆積、蒸着または化学蒸着(CVD)などの工程を用いて基材上へ堆積させる。いくつかの実施形態では、前記基材は、独特のアスペクト比のピクセルを提供する2面エッチングにおいて有用なフォトプレート構造である。前記スクリーン(またマスクとも呼ばれる)は、OLEDディスプレイの製造工程で用いられる。対応するアートワークパターンの設計により、垂直方向ではピクセルの間の非常に急な狭いタイバーの、並びに水平方向では大きな広範囲の斜角開口部の配置を可能にする。これにより、TFTバックプレーン上への化学蒸着を最適化しつつ、高解像度ディスプレイに必要とされるピクセルの微細なパターン構成が可能となる。
 ピクセルの内部パターニングにより、水平および垂直方向での様々なアスペクト比の三次元ピクセル開口部を構成することが可能となる。更に、ピクセル領域中の画像化された「ストライプ」またはハーフトーン円の使用は、これらの特定のパターンをアンダーカットし基材から除くまで、特定の領域におけるエッチングが保護される。その時、全てのピクセル領域は同様のエッチング速度で処理されるが、その深さはハーフトーンパターンにより変化する。ハーフトーンパターンのサイズおよび間隔を変更することにより、ピクセル内での保護率が様々異なるエッチングが可能となり、急な垂直斜角を形成するのに必要な局在化された深いエッチングが可能となる。
 蒸着マスク用の好ましい材料はインバーである。インバーは、製鉄所で長い薄型シート状に冷延された金属合金である。インバーは、ニッケルマスクとしてスピンマンドレル上へ電着することができない。蒸着用マスク内に開口領域を形成するための適切かつ低コストの方法は、湿式化学エッチングによる方法である。
 いくつかの実施形態では、スクリーンまたはディスプレイパターンは、基材上のピクセルマトリックスである。いくつかの実施形態では、スクリーンまたはディスプレイパターンは、リソグラフィー(例えばフォトリソグラフィーおよびeビームリソグラフィー)を使用して加工される。いくつかの実施形態では、スクリーンまたはディスプレイパターンは、湿式化学エッチングを使用して加工される。更なる実施形態では、スクリーンまたはディスプレイパターンは、プラズマエッチングを使用して加工される。
Display or screen:
In some embodiments, the light emitting layer of the present invention can be used in a screen or display. In some embodiments, the compounds according to the invention are deposited onto a substrate using steps such as, but not limited to, vacuum evaporation, deposition, vapor deposition or chemical vapor deposition (CVD). In some embodiments, the substrate is a photoplate structure useful in two-sided etching that provides pixels with a unique aspect ratio. The screen (also referred to as a mask) is used in the manufacturing process of an OLED display. The design of the corresponding artwork pattern allows the placement of very steep, narrow tie bars between pixels in the vertical direction, as well as large, wide-ranging bevel openings in the horizontal direction. This enables the fine pattern composition of pixels required for high resolution displays while optimizing chemical vapor deposition on the TFT backplane.
Pixel internal patterning makes it possible to construct 3D pixel openings with different aspect ratios in the horizontal and vertical directions. In addition, the use of imaged "stripe" or halftone circles in the pixel area protects the etching in the particular area until these particular patterns are undercut and removed from the substrate. At that time, all the pixel regions are processed at the same etching rate, but the depth varies depending on the halftone pattern. By changing the size and spacing of the halftone patterns, it is possible to etch with different protection rates within the pixel, allowing for the deep localized etching required to form steep vertical bevels. ..
The preferred material for the vapor deposition mask is Invar. Invar is a metal alloy that is cold-rolled in the form of a long thin sheet at a steel mill. Invar cannot be electrodeposited onto the spin mandrel as a nickel mask. A suitable and low-cost method for forming an opening region in a vapor deposition mask is a wet chemical etching method.
In some embodiments, the screen or display pattern is a pixel matrix on a substrate. In some embodiments, the screen or display pattern is processed using lithography (eg, photolithography and e-beam lithography). In some embodiments, the screen or display pattern is processed using wet chemical etching. In a further embodiment, the screen or display pattern is processed using plasma etching.
デバイスの製造方法:
 OLEDディスプレイは、一般的には、大型のマザーパネルを形成し、次に当該マザーパネルをセルパネル単位で切断することによって製造される。通常は、マザーパネル上の各セルパネルは、ベース基材上に、活性層とソース/ドレイン電極とを有する薄膜トランジスタ(TFT)を形成し、前記TFTに平坦化フィルムを塗布し、ピクセル電極、発光層、対電極およびカプセル化層、を順に経時的に形成し、前記マザーパネルから切断することにより形成される。
 OLEDディスプレイは、一般的には、大型のマザーパネルを形成し、次に当該マザーパネルをセルパネル単位で切断することによって製造される。通常は、マザーパネル上の各セルパネルは、ベース基材上に、活性層とソース/ドレイン電極とを有する薄膜トランジスタ(TFT)を形成し、前記TFTに平坦化フィルムを塗布し、ピクセル電極、発光層、対電極およびカプセル化層、を順に経時的に形成し、前記マザーパネルから切断することにより形成される。
Device manufacturing method:
The OLED display is generally manufactured by forming a large mother panel and then cutting the mother panel in cell panel units. Normally, each cell panel on the mother panel forms a thin film transistor (TFT) having an active layer and a source / drain electrode on a base substrate, a flattening film is applied to the TFT, and a pixel electrode and a light emitting layer are applied. , The counter electrode and the encapsulating layer are formed in order over time, and are formed by cutting from the mother panel.
The OLED display is generally manufactured by forming a large mother panel and then cutting the mother panel in cell panel units. Normally, each cell panel on the mother panel forms a thin film transistor (TFT) having an active layer and a source / drain electrode on a base substrate, a flattening film is applied to the TFT, and a pixel electrode and a light emitting layer are applied. , The counter electrode and the encapsulating layer are formed in order over time, and are formed by cutting from the mother panel.
 本発明の他の態様では、有機発光ダイオード(OLED)ディスプレイの製造方法を提供し、当該方法は、
  マザーパネルのベース基材上に障壁層を形成する工程と、
  前記障壁層上に、セルパネル単位で複数のディスプレイユニットを形成する工程と、
  前記セルパネルのディスプレイユニットのそれぞれの上にカプセル化層を形成する工程と、
  前記セルパネル間のインタフェース部に有機フィルムを塗布する工程と、を含む。
 いくつかの実施形態では、障壁層は、例えばSiNxで形成された無機フィルムであり、障壁層の端部はポリイミドまたはアクリルで形成された有機フィルムで被覆される。いくつかの実施形態では、有機フィルムは、マザーパネルがセルパネル単位で軟らかく切断されるように補助する。
 いくつかの実施形態では、薄膜トランジスタ(TFT)層は、発光層と、ゲート電極と、ソース/ドレイン電極と、を有する。複数のディスプレイユニットの各々は、薄膜トランジスタ(TFT)層と、TFT層上に形成された平坦化フィルムと、平坦化フィルム上に形成された発光ユニットと、を有してもよく、前記インタフェース部に塗布された有機フィルムは、前記平坦化フィルムの材料と同じ材料で形成され、前記平坦化フィルムの形成と同時に形成される。いくつかの実施形態では、前記発光ユニットは、不動態化層と、その間の平坦化フィルムと、発光ユニットを被覆し保護するカプセル化層と、によりTFT層と連結される。前記製造方法のいくつかの実施形態では、前記有機フィルムは、ディスプレイユニットにもカプセル化層にも連結されない。
In another aspect of the invention, a method of manufacturing an organic light emitting diode (OLED) display is provided, wherein the method is:
The process of forming a barrier layer on the base base material of the mother panel,
A step of forming a plurality of display units on a cell panel unit on the barrier layer,
A step of forming an encapsulation layer on each of the display units of the cell panel,
A step of applying an organic film to the interface portion between the cell panels is included.
In some embodiments, the barrier layer is, for example, an inorganic film formed of SiNx, the ends of the barrier layer being coated with an organic film formed of polyimide or acrylic. In some embodiments, the organic film helps the mother panel to be softly cut in cell panel units.
In some embodiments, the thin film transistor (TFT) layer comprises a light emitting layer, a gate electrode, and a source / drain electrode. Each of the plurality of display units may have a thin film transistor (TFT) layer, a flattening film formed on the TFT layer, and a light emitting unit formed on the flattened film, and the interface portion may have a light emitting unit. The applied organic film is formed of the same material as the flattening film, and is formed at the same time as the flattening film is formed. In some embodiments, the light emitting unit is coupled to the TFT layer by a passivation layer, a flattening film in between, and an encapsulating layer that coats and protects the light emitting unit. In some embodiments of the manufacturing method, the organic film is not coupled to either the display unit or the encapsulation layer.
 前記有機フィルムと平坦化フィルムの各々は、ポリイミドおよびアクリルのいずれか1つを含んでもよい。いくつかの実施形態では、前記障壁層は無機フィルムであってもよい。いくつかの実施形態では、前記ベース基材はポリイミドで形成されてもよい。前記方法は更に、ポリイミドで形成されたベース基材の1つの表面に障壁層を形成する前に、当該ベース基材のもう1つの表面にガラス材料で形成されたキャリア基材を取り付ける工程と、インタフェース部に沿った切断の前に、前記キャリア基材をベース基材から分離する工程と、を含んでもよい。いくつかの実施形態では、前記OLEDディスプレイはフレキシブルなディスプレイである。
 いくつかの実施形態では、前記不動態化層は、TFT層の被覆のためにTFT層上に配置された有機フィルムである。いくつかの実施形態では、前記平坦化フィルムは、不動態化層上に形成された有機フィルムである。いくつかの実施形態では、前記平坦化フィルムは、障壁層の端部に形成された有機フィルムと同様、ポリイミドまたはアクリルで形成される。いくつかの実施形態では、OLEDディスプレイの製造の際、前記平坦化フィルムおよび有機フィルムは同時に形成される。いくつかの実施形態では、前記有機フィルムは、障壁層の端部に形成されてもよく、それにより、当該有機フィルムの一部が直接ベース基材と接触し、当該有機フィルムの残りの部分が、障壁層の端部を囲みつつ、障壁層と接触する。
Each of the organic film and the flattening film may contain either polyimide or acrylic. In some embodiments, the barrier layer may be an inorganic film. In some embodiments, the base substrate may be made of polyimide. The method further comprises a step of attaching a carrier substrate made of a glass material to the other surface of the base substrate before forming a barrier layer on one surface of the base substrate made of polyimide. It may include a step of separating the carrier substrate from the base substrate prior to cutting along the interface portion. In some embodiments, the OLED display is a flexible display.
In some embodiments, the passivation layer is an organic film placed on the TFT layer for coating the TFT layer. In some embodiments, the flattening film is an organic film formed on the passivation layer. In some embodiments, the flattening film is made of polyimide or acrylic, similar to the organic film formed at the ends of the barrier layer. In some embodiments, the flattening film and the organic film are formed simultaneously during the manufacture of the OLED display. In some embodiments, the organic film may be formed at the edges of the barrier layer, whereby a portion of the organic film is in direct contact with the base substrate and the rest of the organic film is removed. , Surrounding the edge of the barrier layer and in contact with the barrier layer.
 いくつかの実施形態では、前記発光層は、ピクセル電極と、対電極と、当該ピクセル電極と当該対電極との間に配置された有機発光層と、を有する。いくつかの実施形態では、前記ピクセル電極は、TFT層のソース/ドレイン電極に連結している。
 いくつかの実施形態では、TFT層を通じてピクセル電極に電圧が印加されるとき、ピクセル電極と対電極との間に適切な電圧が形成され、それにより有機発光層が光を放射し、それにより画像が形成される。以下、TFT層と発光ユニットとを有する画像形成ユニットを、ディスプレイユニットと称する。
 いくつかの実施形態では、ディスプレイユニットを被覆し、外部の水分の浸透を防止するカプセル化層は、有機フィルムと無機フィルムとが交互に積層する薄膜状のカプセル化構造に形成されてもよい。いくつかの実施形態では、前記カプセル化層は、複数の薄膜が積層した薄膜状カプセル化構造を有する。いくつかの実施形態では、インタフェース部に塗布される有機フィルムは、複数のディスプレイユニットの各々と間隔を置いて配置される。いくつかの実施形態では、前記有機フィルムは、一部の有機フィルムが直接ベース基材と接触し、有機フィルムの残りの部分が障壁層の端部を囲む一方で障壁層と接触する態様で形成される。
In some embodiments, the light emitting layer has a pixel electrode, a counter electrode, and an organic light emitting layer disposed between the pixel electrode and the counter electrode. In some embodiments, the pixel electrode is connected to a source / drain electrode in the TFT layer.
In some embodiments, when a voltage is applied to the pixel electrode through the TFT layer, an appropriate voltage is formed between the pixel electrode and the counter electrode so that the organic light emitting layer emits light, thereby the image. Is formed. Hereinafter, the image forming unit having the TFT layer and the light emitting unit will be referred to as a display unit.
In some embodiments, the encapsulation layer that covers the display unit and prevents the penetration of external moisture may be formed in a thin film encapsulation structure in which organic films and inorganic films are alternately laminated. In some embodiments, the encapsulation layer has a thin film encapsulation structure in which a plurality of thin films are laminated. In some embodiments, the organic film applied to the interface section is spaced apart from each of the plurality of display units. In some embodiments, the organic film is formed in such a manner that some of the organic films are in direct contact with the base substrate and the rest of the organic film surrounds the edges of the barrier layer while in contact with the barrier layer. Will be done.
 一実施形態では、OLEDディスプレイはフレキシブルであり、ポリイミドで形成された柔軟なベース基材を使用する。いくつかの実施形態では、前記ベース基材はガラス材料で形成されたキャリア基材上に形成され、次に当該キャリア基材が分離される。
 いくつかの実施形態では、障壁層は、キャリア基材の反対側のベース基材の表面に形成される。一実施形態では、前記障壁層は、各セルパネルのサイズに従いパターン化される。例えば、ベース基材がマザーパネルの全ての表面上に形成される一方で、障壁層が各セルパネルのサイズに従い形成され、それにより、セルパネルの障壁層の間のインタフェース部に溝が形成される。各セルパネルは、前記溝に沿って切断できる。
In one embodiment, the OLED display is flexible and uses a flexible base substrate made of polyimide. In some embodiments, the base substrate is formed on a carrier substrate made of a glass material, which is then separated.
In some embodiments, the barrier layer is formed on the surface of the base substrate opposite the carrier substrate. In one embodiment, the barrier layer is patterned according to the size of each cell panel. For example, a base substrate is formed on all surfaces of the mother panel, while a barrier layer is formed according to the size of each cell panel, thereby forming a groove in the interface portion between the barrier layers of the cell panel. Each cell panel can be cut along the groove.
 いくつかの実施形態では、前記の製造方法は、更にインタフェース部に沿って切断する工程を含み、そこでは溝が障壁層に形成され、少なくとも一部の有機フィルムが溝で形成され、当該溝がベース基材に浸透しない。いくつかの実施形態では、各セルパネルのTFT層が形成され、無機フィルムである不動態化層と有機フィルムである平坦化フィルムが、TFT層上に配置され、TFT層を被覆する。例えばポリイミドまたはアクリル製の平坦化フィルムが形成されるのと同時に、インタフェース部の溝は、例えばポリイミドまたはアクリル製の有機フィルムで被覆される。これは、各セルパネルがインタフェース部で溝に沿って切断されるとき、生じた衝撃を有機フィルムに吸収させることによってひびが生じるのを防止する。すなわち、全ての障壁層が有機フィルムなしで完全に露出している場合、各セルパネルがインタフェース部で溝に沿って切断されるとき、生じた衝撃が障壁層に伝達され、それによりひびが生じるリスクが増加する。しかしながら、一実施形態では、障壁層間のインタフェース部の溝が有機フィルムで被覆されて、有機フィルムがなければ障壁層に伝達されうる衝撃を吸収するため、各セルパネルをソフトに切断し、障壁層でひびが生じるのを防止してもよい。一実施形態では、インタフェース部の溝を被覆する有機フィルムおよび平坦化フィルムは、互いに間隔を置いて配置される。例えば、有機フィルムおよび平坦化フィルムが1つの層として相互に接続している場合には、平坦化フィルムと有機フィルムが残っている部分とを通じてディスプレイユニットに外部の水分が浸入するおそれがあるため、有機フィルムおよび平坦化フィルムは、有機フィルムがディスプレイユニットから間隔を置いて配置されるように、相互に間隔を置いて配置される。 In some embodiments, the manufacturing method further comprises the step of cutting along an interface portion, where a groove is formed in the barrier layer, at least a portion of the organic film is formed in the groove, and the groove is formed. Does not penetrate the base substrate. In some embodiments, a TFT layer of each cell panel is formed, and a passivation layer, which is an inorganic film, and a flattening film, which is an organic film, are placed on the TFT layer to cover the TFT layer. At the same time that a polyimide or acrylic flattening film is formed, for example, the groove of the interface portion is covered with an organic film made of polyimide or acrylic, for example. This prevents cracking by allowing the organic film to absorb the impact generated when each cell panel is cut along the groove at the interface section. That is, if all barrier layers are completely exposed without an organic film, there is a risk that when each cell panel is cut along the groove at the interface, the generated impact will be transmitted to the barrier layer, thereby causing cracks. Will increase. However, in one embodiment, the groove of the interface portion between the barrier layers is covered with an organic film to absorb the impact that can be transmitted to the barrier layer without the organic film, so that each cell panel is softly cut and the barrier layer is used. It may be prevented from cracking. In one embodiment, the organic film and the flattening film covering the grooves of the interface portion are arranged at intervals from each other. For example, when the organic film and the flattening film are interconnected as one layer, external moisture may infiltrate into the display unit through the flattening film and the portion where the organic film remains. The organic film and the flattening film are spaced apart from each other so that the organic film is spaced apart from the display unit.
 いくつかの実施形態では、ディスプレイユニットは、発光ユニットの形成により形成され、カプセル化層は、ディスプレイユニットを被覆するためディスプレイユニット上に配置される。これにより、マザーパネルが完全に製造された後、ベース基材を担持するキャリア基材がベース基材から分離される。いくつかの実施形態では、レーザー光線がキャリア基材へ放射されると、キャリア基材は、キャリア基材とベース基材との間の熱膨張率の相違により、ベース基材から分離される。
 いくつかの実施形態では、マザーパネルは、セルパネル単位で切断される。いくつかの実施形態では、マザーパネルは、カッターを用いてセルパネル間のインタフェース部に沿って切断される。いくつかの実施形態では、マザーパネルが沿って切断されるインタフェース部の溝が有機フィルムで被覆されているため、切断の間、当該有機フィルムが衝撃を吸収する。いくつかの実施形態では、切断の間、障壁層でひびが生じるのを防止できる。
 いくつかの実施形態では、前記方法は製品の不良率を減少させ、その品質を安定させる。
 他の態様は、ベース基材上に形成された障壁層と、障壁層上に形成されたディスプレイユニットと、ディスプレイユニット上に形成されたカプセル化層と、障壁層の端部に塗布された有機フィルムと、を有するOLEDディスプレイである。
In some embodiments, the display unit is formed by the formation of a light emitting unit and the encapsulation layer is placed on the display unit to cover the display unit. As a result, after the mother panel is completely manufactured, the carrier base material that supports the base base material is separated from the base base material. In some embodiments, when the laser beam is radiated to the carrier substrate, the carrier substrate is separated from the base substrate due to the difference in the coefficient of thermal expansion between the carrier substrate and the base substrate.
In some embodiments, the mother panel is cut in cell panel units. In some embodiments, the mother panel is cut along the interface between the cell panels using a cutter. In some embodiments, the grooves in the interface section where the mother panel is cut are covered with an organic film so that the organic film absorbs the impact during cutting. In some embodiments, the barrier layer can be prevented from cracking during cutting.
In some embodiments, the method reduces the defective rate of the product and stabilizes its quality.
Another embodiment is a barrier layer formed on a base substrate, a display unit formed on the barrier layer, an encapsulating layer formed on the display unit, and an organic coating applied to the ends of the barrier layer. An OLED display with a film.
 以下に合成例と実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、発光特性の評価は、ソースメータ(ケースレー社製:2400シリーズ)、半導体パラメータ・アナライザ(アジレント・テクノロジー社製:E5273A)、光パワーメータ測定装置(ニューポート社製:1930C)、光学分光器(オーシャンオプティクス社製:USB2000)、分光放射計(トプコン社製:SR-3)およびストリークカメラ(浜松ホトニクス(株)製C4334型)を用いて行った。 The features of the present invention will be described in more detail with reference to synthetic examples and examples below. The materials, treatment contents, treatment procedures, etc. shown below can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limiting by the specific examples shown below. The emission characteristics are evaluated by a source meter (Caseley: 2400 series), a semiconductor parameter analyzer (Agilent Technology: E5273A), an optical power meter measuring device (Newport: 1930C), and an optical spectroscope. (Ocean Optics Co., Ltd .: USB2000), spectroradiometer (Topcon Co., Ltd .: SR-3) and streak camera (Hamamatsu Photonics Co., Ltd. C4334 type) were used.
(合成例1)化合物295の合成
(1-1)中間体1の合成
Figure JPOXMLDOC01-appb-C000070
(Synthesis Example 1) Synthesis of Compound 295 (1-1) Synthesis of Intermediate 1
Figure JPOXMLDOC01-appb-C000070
 窒素気流下、9H-カルバゾール5.35g(32.0mmol)と炭酸カリウム6.22g(45.0mmol)にDMF(80mL)を加え、室温で1時間攪拌した。その反応混合物に2,3,5,6-テトラフルオロベンゾニトリル1.75g(10.0mmol)のDMF溶液(20mL)を加え、60℃で16時間攪拌した。反応溶液を室温に戻し、水を加え、析出物を濾別した。濾上物をメタノールで洗浄し、真空乾燥した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:クロロホルム=1:1)で精製し、薄黄色固体として中間体1を2.48g(4.03mmol,収率40%)得た。
1H NMR (400 MHz, CDCl3, δ): 8.19 (d, J = 7.3 Hz, 2H), 8.07 (d, J = 9.6 Hz, 1H), 7.78-7.72 (m, 4H), 7.58 (t, J= 7.3 Hz, 2H), 7.44-7.40 (m, 4H), 7.18-7.04 (m, 12H)
APCI MSスペクトル分析: C43H25FN4: 理論値616, 観測値617
DMF (80 mL) was added to 5.35 g (32.0 mmol) of 9H-carbazole and 6.22 g (45.0 mmol) of potassium carbonate under a nitrogen stream, and the mixture was stirred at room temperature for 1 hour. To the reaction mixture was added 1.75 g (10.0 mmol) of DMF solution (20 mL) of 2,3,5,6-tetrafluorobenzonitrile and stirred at 60 ° C. for 16 hours. The reaction solution was returned to room temperature, water was added, and the precipitate was filtered off. The filtrate was washed with methanol and vacuum dried. The residue was purified by silica gel column chromatography (hexane: chloroform = 1: 1) to obtain 2.48 g (4.03 mmol, yield 40%) of Intermediate 1 as a pale yellow solid.
1 H NMR (400 MHz, CDCl 3 , δ): 8.19 (d, J = 7.3 Hz, 2H), 8.07 (d, J = 9.6 Hz, 1H), 7.78-7.72 (m, 4H), 7.58 (t, J = 7.3 Hz, 2H), 7.44-7.40 (m, 4H), 7.18-7.04 (m, 12H)
APCI MS Spectrum Analysis: C 43 H 25 FN 4 : Theoretical 616, Observed 617
(1-2)化合物295の合成
Figure JPOXMLDOC01-appb-C000071
(1-2) Synthesis of compound 295
Figure JPOXMLDOC01-appb-C000071
 窒素気流下、12H-[3,2-a]-ベンゾフロカルバゾール1.54g(6.00mmol)と炭酸カリウム0.91g(6.60mmol)にDMF(15mL)を加え、室温で1時間攪拌した。その反応混合物を中間体1(1.85g,3.00mmol)のDMF(15mL)溶液に室温で加え、120℃で12時間攪拌した。反応溶液を室温に戻し、水を加え、析出物を濾別した。濾上物をメタノールで洗浄し、真空乾燥した。粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:トルエン=1:1)で精製し、薄黄色固体として化合物295を2.48g(2.90mmol,収率95%)で得た。
1H NMR (400 MHz, CDCl3, δ): 8.36 (s, 1H), 7.83-7.58 (m, 10H), 7.45-7.32 (m, 5H), 7.20-7.09 (m, 9H), 7.06-6.97 (m, 3H), 6.92-6.88 (m, 2H), 6.84-6.76 (m, 2H), 6.58 (t, J = 7.3 Hz, 1H)
APCI MSスペクトル分析: C61H35N5O 理論値853, 観測値854
DMF (15 mL) was added to 1.54 g (6.00 mmol) of 12H- [3,2-a] -benzoflocarbazole and 0.91 g (6.60 mmol) of potassium carbonate under a nitrogen stream, and the mixture was stirred at room temperature for 1 hour. .. The reaction mixture was added to a solution of Intermediate 1 (1.85 g, 3.00 mmol) in DMF (15 mL) at room temperature and stirred at 120 ° C. for 12 hours. The reaction solution was returned to room temperature, water was added, and the precipitate was filtered off. The filtrate was washed with methanol and vacuum dried. The crude product was purified by silica gel column chromatography (hexane: toluene = 1: 1) to obtain 2.48 g (2.90 mmol, 95% yield) of compound 295 as a pale yellow solid.
1 H NMR (400 MHz, CDCl 3 , δ): 8.36 (s, 1H), 7.83-7.58 (m, 10H), 7.45-7.32 (m, 5H), 7.20-7.09 (m, 9H), 7.06-6.97 (m, 3H), 6.92-6.88 (m, 2H), 6.84-6.76 (m, 2H), 6.58 (t, J = 7.3 Hz, 1H)
APCI MS Spectrum Analysis: C 61 H 35 N 5 O Theoretical Value 853, Observed Value 854
(合成例2)化合物1174の合成
(2-1)中間体2の合成
Figure JPOXMLDOC01-appb-C000072
(Synthesis Example 2) Synthesis of Compound 1174 (2-1) Synthesis of Intermediate 2
Figure JPOXMLDOC01-appb-C000072
 窒素気流下、12H-[3,2-a]-ベンゾフロカルバゾール4.88g(19.0mmol)と炭酸カリウム3.16g(22.8mmol)にDMF(60mL)を加え、室温で1時間攪拌した。その反応混合物に2,3,5,6-テトラフルオロベンゾニトリル1.33g(7.60mmol)のDMF溶液(16mL)を加え、60℃で20時間攪拌した。反応溶液を室温に戻し、水を加え、析出物を濾別した。濾上物をメタノールで洗浄し、真空乾燥した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:トルエン=3:1-3:2)で精製し、薄黄色固体として中間体2を1.50g(2.31mmol,収率30%)で得た。
1H NMR (400 MHz, CDCl3, δ): 8.27 (d, J = 8.2 Hz, 2H), 8.2 (d, J = 7.3 Hz, 2H), 7.73 (t, J = 8.2, 1H), 7.68 (d, J = 8.7 Hz, 2H), 7.65 (d, J = 8.2 Hz, 2H), 7.51 (t, J = 7.3 Hz, 2H), 7.45 (t, J = 7.3 Hz, 2H), 7.36 (t, J = 7.3 Hz, 2H), 7.26(s, 1H), 7.24, (s, 1H), 7.17 (d, J = 8.2 Hz, 2H), 6.83 (t, J= 7.3 Hz, 2H)
ASAP MSスペクトル分析: C43H25FN4: 理論値649.16, 観測値650.33
DMF (60 mL) was added to 4.88 g (19.0 mmol) of 12H- [3,2-a] -benzoflocarbazole and 3.16 g (22.8 mmol) of potassium carbonate under a nitrogen stream, and the mixture was stirred at room temperature for 1 hour. .. A DMF solution (16 mL) of 1.33 g (7.60 mmol) of 2,3,5,6-tetrafluorobenzonitrile was added to the reaction mixture, and the mixture was stirred at 60 ° C. for 20 hours. The reaction solution was returned to room temperature, water was added, and the precipitate was filtered off. The filtrate was washed with methanol and vacuum dried. The residue was purified by silica gel column chromatography (hexane: toluene = 3: 1-3: 2) to obtain 1.50 g (2.31 mmol, yield 30%) of Intermediate 2 as a pale yellow solid.
1 H NMR (400 MHz, CDCl 3 , δ): 8.27 (d, J = 8.2 Hz, 2H), 8.2 (d, J = 7.3 Hz, 2H), 7.73 (t, J = 8.2, 1H), 7.68 ( d, J = 8.7 Hz, 2H), 7.65 (d, J = 8.2 Hz, 2H), 7.51 (t, J = 7.3 Hz, 2H), 7.45 (t, J = 7.3 Hz, 2H), 7.36 (t, J = 7.3 Hz, 2H), 7.26 (s, 1H), 7.24, (s, 1H), 7.17 (d, J = 8.2 Hz, 2H), 6.83 (t, J = 7.3 Hz, 2H)
ASAP MS Spectral Analysis: C 43 H 25 FN 4 : Theoretical 649.16, Observed 650.33
(2-2)化合物1174の合成
Figure JPOXMLDOC01-appb-C000073
(2-2) Synthesis of compound 1174
Figure JPOXMLDOC01-appb-C000073
 窒素気流下、9H-カルバゾール0.96g(5.75mmol)と炭酸カリウム0.95g(6.90mmol)にDMF(15mL)を加え、室温で1時間攪拌した。その反応混合物を中間体2(1.49g,2.30mmol)のDMF(18mL)溶液に室温で加え、120℃で12時間攪拌した。反応溶液を室温に戻し、水を加え、析出物を濾別した。濾上物をメタノールで洗浄し、真空乾燥した。粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:トルエン=7:3)で精製し、薄黄色固体として化合物1174を0.51g(0.54mmol,収率23%)で得た。
1H NMR (400 MHz, CDCl3, δ): 8.40 (s, 1H), 7.82 (d, J = 8.2 Hz, 2H), 7.78-7.73 (m, 6H), 7.69-7.64 (m, 4H), 7.43 (t, J = 7.3 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 7.21-6.99 (m, 13H), 6.94 (t, J = 7.3 Hz, 2H), 6.87 (d, J = 8.2 Hz, 2H), 6.61 (t, J = 8.2 Hz, 2H)
APCI MSスペクトル分析: C67H37N5O2理論値943.29 観測値944.53
DMF (15 mL) was added to 0.96 g (5.75 mmol) of 9H-carbazole and 0.95 g (6.90 mmol) of potassium carbonate under a nitrogen stream, and the mixture was stirred at room temperature for 1 hour. The reaction mixture was added to a solution of Intermediate 2 (1.49 g, 2.30 mmol) in DMF (18 mL) at room temperature and stirred at 120 ° C. for 12 hours. The reaction solution was returned to room temperature, water was added, and the precipitate was filtered off. The filtrate was washed with methanol and vacuum dried. The crude product was purified by silica gel column chromatography (hexane: toluene = 7: 3) to obtain 0.51 g (0.54 mmol, yield 23%) of compound 1174 as a pale yellow solid.
1 H NMR (400 MHz, CDCl 3 , δ): 8.40 (s, 1H), 7.82 (d, J = 8.2 Hz, 2H), 7.78-7.73 (m, 6H), 7.69-7.64 (m, 4H), 7.43 (t, J = 7.3 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 7.21-6.99 (m, 13H), 6.94 (t, J = 7.3 Hz, 2H), 6.87 (d, J) = 8.2 Hz, 2H), 6.61 (t, J = 8.2 Hz, 2H)
APCI MS Spectrum Analysis: C 67 H 37 N 5 O 2 Theoretical Value 943.29 Observed Value 944.53
(合成例3)化合物2の合成
(3-1)中間体3の合成
Figure JPOXMLDOC01-appb-C000074
(Synthesis Example 3) Synthesis of Compound 2 (3-1) Synthesis of Intermediate 3
Figure JPOXMLDOC01-appb-C000074
 窒素気流下、12H-[3,2-a]-ベンゾフロカルバゾール4.12g(16.0mmol)と炭酸カリウム3.32g(24.0mmol)にDMF(150mL)を加え、室温で1時間攪拌した。その反応混合物に2,3,5,6-テトラフルオロベンゾニトリル3.50g(20.0mmol)のDMF溶液50mLを加え、60℃で20時間攪拌した。反応溶液を室温に戻し水を加え、クロロホルムで抽出した。有機層を水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:トルエン=1:1-7:3)で精製し、薄黄色固体として中間体3を1.46g(3.53mmol,収率18%)得た。
1H NMR (400 MHz, CDCl3, δ): 8.24 (d, J = 8.7 Hz, 2H), 8.18 (d, J = 8.2 Hz, 2H), 7.65 (d, J = 8.7 Hz, 1H), 7.63 (d, J = 8.2 Hz, 1H), 7.57 (q, J = 8.2 Hz, 1H), 7.47-7.38 (m, 3H), 7.12 (d, J = 8.2 Hz, 1H), 5.93 (t, J = 8.2 Hz, 1H), 
ASAP MSスペクトル分析: C25H11F3N2O: 理論値412.08, 観測値413.27
DMF (150 mL) was added to 412 g (16.0 mmol) of 12H- [3,2-a] -benzoflocarbazole and 3.32 g (24.0 mmol) of potassium carbonate under a nitrogen stream, and the mixture was stirred at room temperature for 1 hour. .. To the reaction mixture was added 50 mL of a DMF solution of 3.50 g (20.0 mmol) of 2,3,5,6-tetrafluorobenzonitrile and stirred at 60 ° C. for 20 hours. The reaction solution was returned to room temperature, water was added, and the mixture was extracted with chloroform. The organic layer was washed with water, dried over anhydrous magnesium sulfate, and the solvent was distilled off. The residue was purified by silica gel column chromatography (hexane: toluene = 1: 1-7: 3) to obtain 1.46 g (3.53 mmol, yield 18%) of Intermediate 3 as a pale yellow solid.
1 H NMR (400 MHz, CDCl 3 , δ): 8.24 (d, J = 8.7 Hz, 2H), 8.18 (d, J = 8.2 Hz, 2H), 7.65 (d, J = 8.7 Hz, 1H), 7.63 (d, J = 8.2 Hz, 1H), 7.57 (q, J = 8.2 Hz, 1H), 7.47-7.38 (m, 3H), 7.12 (d, J = 8.2 Hz, 1H), 5.93 (t, J = 8.2 Hz, 1H),
ASAP MS Spectral Analysis: C 25 H 11 F 3 N 2 O: Theoretical value 412.08, Observed value 413.27
(3-2)化合物2の合成
Figure JPOXMLDOC01-appb-C000075
(3-2) Synthesis of compound 2
Figure JPOXMLDOC01-appb-C000075
 窒素気流下、9H-カルバゾール1.63g(9.75mmol)と炭酸カリウム1.62g(11.7mmol)にDMF(10mL)を加え、室温で1時間攪拌した。その反応混合物を中間体3(0.80g,1.95mmol)のDMF(10mL)溶液に室温で加え、60℃で2時間攪拌した。続いて100℃に昇温し15時間攪拌した。反応溶液を室温に戻し、水を加え、析出物を濾別した。濾上物をジクロロメタンに溶解させ、メタノールを加え、沈殿物を濾取し、真空乾燥した。粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:トルエン=2:3)で精製し、薄黄色固体として化合物2を1.35g(1.58mmol,収率81%)得た。
1H NMR (400 MHz, CDCl3, δ): 8.46 (s, 1H), 7.87 (d, J= 8.7 Hz, 1H), 7.82-7.66 (m, 8H), 7.61 (t, J = 8.2 Hz, 1H), 7.48 (d, J= 8.2 Hz, 1H), 7.43-7.04 (m, 18H), 6.99 (d, J = 8.2 Hz, 1H), 6.95-6.88 (m,3H), 6.56 (t, J = 8.2 Hz, 1H)
ASAP MSスペクトル分析: C61H35N5O 理論値853.28 観測値854.52
DMF (10 mL) was added to 1.63 g (9.75 mmol) of 9H-carbazole and 1.62 g (11.7 mmol) of potassium carbonate under a nitrogen stream, and the mixture was stirred at room temperature for 1 hour. The reaction mixture was added to a solution of Intermediate 3 (0.80 g, 1.95 mmol) in DMF (10 mL) at room temperature and stirred at 60 ° C. for 2 hours. Subsequently, the temperature was raised to 100 ° C. and the mixture was stirred for 15 hours. The reaction solution was returned to room temperature, water was added, and the precipitate was filtered off. The filtrate was dissolved in dichloromethane, methanol was added, the precipitate was collected by filtration and dried in vacuum. The crude product was purified by silica gel column chromatography (hexane: toluene = 2: 3) to obtain 1.35 g (1.58 mmol, yield 81%) of compound 2 as a pale yellow solid.
1 H NMR (400 MHz, CDCl 3 , δ): 8.46 (s, 1H), 7.87 (d, J = 8.7 Hz, 1H), 7.82-7.66 (m, 8H), 7.61 (t, J = 8.2 Hz, 1H), 7.48 (d, J = 8.2 Hz, 1H), 7.43-7.04 (m, 18H), 6.99 (d, J = 8.2 Hz, 1H), 6.95-6.88 (m, 3H), 6.56 (t, J) = 8.2 Hz, 1H)
ASAP MS Spectrum Analysis: C 61 H 35 N 5 O Theoretical Value 853.28 Observed Value 854.52
(実施例1~3、比較例1)薄膜の作製と評価
 石英基板上に真空蒸着法にて、真空度1×10-3Pa未満の条件にて化合物295を蒸着し、化合物295のみからなる薄膜を100nmの厚さで形成し、実施例1のニート薄膜とした。これとは別に、石英基板上に真空蒸着法にて、真空度1×10-3Pa未満の条件にて化合物295とPYD2CzまたはPPFとを異なる蒸着源から蒸着し、化合物295の濃度が20重量%である薄膜を100nmの厚さで形成し、実施例1のドープ薄膜とした。
 化合物295の代わりに、化合物1174、化合物2、比較化合物1をそれぞれ用いて、実施例2、実施例3、比較例1の薄膜を得た。
 得られた各薄膜に300nm励起光を照射して特性を評価した。ニート薄膜を用いて発光スペクトルを観測し、ピーク波長(λmax)を読み取った。また、ドープ薄膜を用いてフォトルミネッセンス量子効率(PLQY)を測定し、発光の過渡減衰曲線から遅延蛍光の寿命(τd)を得た。さらに、最低励起一重項エネルギー(ES1)と最低励起三重項エネルギー(ET1)を下記の手順により求めて、ES1-ET1を計算することによりΔESTを得た。
(1)最低励起一重項エネルギー(ES1
 薄膜の蛍光スペクトルを常温(300K)で測定した(縦軸:発光強度、横軸:波長)。この発光スペクトルの短波側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値 λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をES1とした。
   換算式:ES1[eV]=1239.85/λedge
(2)最低励起三重項エネルギー(ET1
 同じ薄膜を液体窒素によって77[K]に冷却し、励起光(300nm)を燐光測定用試料に照射し、検出器を用いて燐光を測定した。励起光照射後から100ミリ秒以降の発光を燐光スペクトルとした。この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求めた。この波長値を上記の換算式でエネルギー値に換算した値をET1とした。
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引いた。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考えた。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線を、当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
 なお、スペクトルの最大ピーク強度の10%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
(Examples 1 to 3, Comparative Example 1) Fabrication and evaluation of thin film Compound 295 is vapor-deposited on a quartz substrate by a vacuum vapor deposition method under conditions of a vacuum degree of less than 1 × 10 -3 Pa, and consists of only compound 295. The thin film was formed to have a thickness of 100 nm and used as the neat thin film of Example 1. Separately, compound 295 and PYD2Cz or PPF are deposited from different vapor deposition sources on a quartz substrate by a vacuum vapor deposition method under conditions of a vacuum degree of less than 1 × 10 -3 Pa, and the concentration of compound 295 is 20 weight. A thin film of% was formed to have a thickness of 100 nm and used as a dope thin film of Example 1.
Using compound 1174, compound 2 and comparative compound 1 instead of compound 295, thin films of Example 2, Example 3 and Comparative Example 1 were obtained.
The characteristics of each of the obtained thin films were evaluated by irradiating them with 300 nm excitation light. The emission spectrum was observed using a neat thin film, and the peak wavelength (λ max ) was read. In addition, the photoluminescence quantum efficiency (PLQY) was measured using a doped thin film, and the lifetime of delayed fluorescence (τ d ) was obtained from the transient attenuation curve of light emission. Furthermore, the lowest excited singlet energy (E S1) and the lowest excited triplet energy (E T1) found through the following procedure to obtain a Delta] E ST by calculating E S1 -E T1.
(1) Minimum excitation singlet energy ( ES1 )
The fluorescence spectrum of the thin film was measured at room temperature (300 K) (vertical axis: emission intensity, horizontal axis: wavelength). A tangent line was drawn for the rising edge of the emission spectrum on the short wave side, and the wavelength value λedge [nm] at the intersection of the tangent line and the horizontal axis was obtained. The value obtained by converting this wavelength value into an energy value by the following conversion formula was defined as ES1 .
Conversion formula: E S1 [eV] = 1239.85 / λedge
(2) Minimum excited triplet energy ( ET1 )
The same thin film was cooled to 77 [K] with liquid nitrogen, the sample for phosphorescence measurement was irradiated with excitation light (300 nm), and phosphorescence was measured using a detector. The emission spectrum after 100 milliseconds after the irradiation with the excitation light was defined as the phosphorescence spectrum. A tangent line was drawn for the rising edge of the phosphorescence spectrum on the short wavelength side, and the wavelength value λedge [nm] at the intersection of the tangent line and the horizontal axis was obtained. The value obtained by converting this wavelength value into an energy value using the above conversion formula was defined as ET1 .
The tangent to the rising edge of the phosphorescence spectrum on the short wavelength side was drawn as follows. When moving on the spectrum curve from the short wavelength side of the phosphorescence spectrum to the maximum value on the shortest wavelength side of the maximum values of the spectrum, tangents at each point on the curve were considered toward the long wavelength side. This tangent increases in slope as the curve rises (ie, as the vertical axis increases). The tangent line drawn at the point where the value of the slope reaches the maximum value was taken as the tangent line with respect to the rising edge of the phosphorescence spectrum on the short wavelength side.
The maximum point having a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the above-mentioned maximum value on the shortest wavelength side, and the value of the gradient closest to the maximum value on the shortest wavelength side is the maximum. The tangent line drawn at the point where the value was taken was taken as the tangent line to the rising edge of the phosphorescent spectrum on the short wavelength side.
 実施例1~3と比較例1の各ニート薄膜を用いてピーク波長(λmax)とΔESTを測定し、実施例1~3と比較例1の各2種類のドープ薄膜を用いて遅延蛍光寿命(τd)を測定した。結果を以下の表2に示す。比較例1の薄膜に比べて実施例1~3の薄膜は、いずれもΔESTが小さくて、遅延蛍光寿命(τd)が短かった。 The Delta] E ST and the measured peak wavelength (lambda max) using the neat thin film of Comparative Example 1 and Examples 1-3, delayed fluorescence using each two kinds of doped thin film of Comparative Example 1 and Examples 1-3 The lifetime (τ d ) was measured. The results are shown in Table 2 below. Thin film of Example 1-3 as compared with the thin film of Comparative Example 1, both a small Delta] E ST, delayed fluorescence lifetime (tau d) is short.
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000076
(実施例4~6、比較例2)有機エレクトロルミネッセンス素子の作製と評価
 膜厚100nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基材上に、各薄膜を真空蒸着法にて、真空度1×10-6Paで積層した。まず、ITO上に第1正孔注入材料からなる第1正孔注入層を形成し、その上に第2正孔注入材料からなる第2正孔注入層を形成し、その上に正孔輸送材料からなる正孔輸送層を形成し、さらにその上に電子阻止材料からなる電子阻止層を形成した。その上に、化合物295とホスト材料を異なる蒸着源から共蒸着し、化合物295の濃度が30重量%の発光層を形成した。次に、正孔阻止材料からなる正孔阻止層を形成し、その上に電子輸送層を形成し、さらにその上に電極を形成した。以上の手順により、実施例4の有機エレクトロルミネッセンス素子を作製した。
 また、化合物295のかわりに化合物1174、化合物2、比較化合物1をそれぞれ用いて、同じ手順により実施例5、実施例6、比較例2の各有機エレクトロルミネッセンス素子を作製した。
 実施例4~6の各有機エレクトロルミネッセンス素子は、高い発光効率を示し、駆動電圧が低く、素子寿命(素子耐久性)も長く、耐熱性も高い。
 また、その他の本発明の化合物を用いることによっても、同様の効果を有する有機エレクトロルミネッセンス素子を提供することができる。
(Examples 4 to 6, Comparative Example 2) Fabrication and evaluation of organic electroluminescence device Each thin film is vacuum-deposited on a glass substrate on which an anode made of indium tin oxide (ITO) having a film thickness of 100 nm is formed. The stacking was performed at a vacuum degree of 1 × 10 -6 Pa. First, a first hole injection layer made of a first hole injection material is formed on ITO, a second hole injection layer made of a second hole injection material is formed on the first hole injection layer, and hole transport is formed on the second hole injection layer. A hole transport layer made of a material was formed, and an electron blocking layer made of an electron blocking material was further formed on the hole transport layer. On it, compound 295 and the host material were co-deposited from different vapor deposition sources to form a light emitting layer having a concentration of compound 295 of 30% by weight. Next, a hole blocking layer made of a hole blocking material was formed, an electron transport layer was formed on the hole blocking layer, and an electrode was further formed on the electron transport layer. By the above procedure, the organic electroluminescence device of Example 4 was produced.
Further, using Compound 1174, Compound 2, and Comparative Compound 1 instead of Compound 295, the organic electroluminescence devices of Example 5, Example 6, and Comparative Example 2 were produced by the same procedure.
Each of the organic electroluminescence devices of Examples 4 to 6 exhibits high luminous efficiency, a low driving voltage, a long device life (device durability), and high heat resistance.
Further, by using other compounds of the present invention, it is possible to provide an organic electroluminescence device having the same effect.
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
 本発明によれば、優れた発光材料とそれを用いた有機発光素子を提供することができる。このため、本発明は産業上の利用可能性が高い。 According to the present invention, it is possible to provide an excellent light emitting material and an organic light emitting device using the same. Therefore, the present invention has high industrial applicability.
 1 基材
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 電子輸送層
 7 陰極
1 Base material 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Electron transport layer 7 Cathode

Claims (15)

  1.  下記一般式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)において、
     Arは、水素原子、置換もしくは無置換の芳香族炭化水素環基、または、環骨格構成原子として窒素原子を含む置換もしくは無置換の芳香族複素環基を表し、
     R~Rのうちの1~3個は、各々独立に、ベンゾフラン環が縮合したカルバゾール-9-イル基D’(ただし水素原子は置換されていてもよい)を表し、
     R~Rのうちの1~3個は、各々独立にドナー性基D(ただし、ベンゾフラン環が縮合したカルバゾール-9-イル基、置換もしくは無置換の芳香族炭化水素環基、および、環骨格構成原子として窒素原子を含む置換もしくは無置換の芳香族複素環基を除く)を表し、
     残りの0~2個のR~Rは水素原子を表す。]
    A compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In the general formula (1)
    Ar represents a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon ring group, or a substituted or unsubstituted aromatic heterocyclic group containing a nitrogen atom as a ring skeleton constituent atom.
    1 to 3 of R 1 to R 4 each independently represent a carbazole-9-yl group D'(although the hydrogen atom may be substituted) in which a benzofuran ring is condensed.
    1 to 3 of R 1 to R 4 are each independently a donor group D (however, a carbazole-9-yl group fused with a benzofuran ring, a substituted or unsubstituted aromatic hydrocarbon ring group, and a substituted or unsubstituted aromatic hydrocarbon ring group, and Represents a substituted or unsubstituted aromatic heterocyclic group containing a nitrogen atom as a ring skeleton constituent atom).
    The remaining 0 to 2 R 1 to R 4 represent hydrogen atoms. ]
  2.  下記のいずれかの構造を有する、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
    The compound according to claim 1, which has any of the following structures.
    Figure JPOXMLDOC01-appb-C000002
  3.  下記のいずれかの構造を有する、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    The compound according to claim 1, which has any of the following structures.
    Figure JPOXMLDOC01-appb-C000003
  4.  下記のいずれかの構造を有する、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    The compound according to claim 1, which has any of the following structures.
    Figure JPOXMLDOC01-appb-C000004
  5.  分子内に存在する複数のD’が同じ構造を有する、請求項3または4に記載の化合物。 The compound according to claim 3 or 4, wherein a plurality of D'existing in the molecule have the same structure.
  6.  分子内に存在する複数のDが同じ構造を有する、請求項2または3に記載の化合物。 The compound according to claim 2 or 3, wherein a plurality of Ds existing in the molecule have the same structure.
  7.  D’が、前記ベンゾフラン環のフラン環で前記カルバゾリル-9-イル基に縮合している、請求項1~6のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 6, wherein D'is condensed with the carbazolyl-9-yl group in the furan ring of the benzofuran ring.
  8.  D’が下記のいずれかの構造を有する、請求項6に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005
    [上記各構造における水素原子は置換されていてもよい。]
    The compound according to claim 6, wherein D'has any of the following structures.
    Figure JPOXMLDOC01-appb-C000005
    [Hydrogen atoms in each of the above structures may be substituted. ]
  9.  Dが置換もしくは無置換のカルバゾリル-9-イル基(ただしベンゾフラン環が縮合したものを除く)である、請求項1~8のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 8, wherein D is a substituted or unsubstituted carbazolyl-9-yl group (excluding those condensed with a benzofuran ring).
  10.  Arが水素原子である、請求項1~9のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 9, wherein Ar is a hydrogen atom.
  11.  R~Rはいずれも水素原子ではない、請求項1~10のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 10, wherein none of R 1 to R 4 is a hydrogen atom.
  12.  請求項1~11のいずれか1項に記載の化合物からなる発光材料。 A luminescent material made of the compound according to any one of claims 1 to 11.
  13.  請求項1~11のいずれか1項に記載の化合物を含むことを特徴とする発光素子。 A light emitting device comprising the compound according to any one of claims 1 to 11.
  14.  前記発光素子が発光層を有しており、前記発光層が前記化合物とホスト材料を含む、請求項13に記載の発光素子。 The light emitting element according to claim 13, wherein the light emitting element has a light emitting layer, and the light emitting layer contains the compound and a host material.
  15.  前記発光素子が発光層を有しており、前記発光層が前記化合物と発光材料を含み、前記発光材料から主として発光する、請求項13に記載の発光素子。 The light emitting element according to claim 13, wherein the light emitting element has a light emitting layer, the light emitting layer contains the compound and the light emitting material, and mainly emits light from the light emitting material.
PCT/JP2021/023285 2020-07-08 2021-06-21 Compound, light-emitting material, and light-emitting device WO2022009651A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180046493.0A CN115734996A (en) 2020-07-08 2021-06-21 Compound, light-emitting material, and light-emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020118053 2020-07-08
JP2020-118053 2020-07-08

Publications (1)

Publication Number Publication Date
WO2022009651A1 true WO2022009651A1 (en) 2022-01-13

Family

ID=79552943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023285 WO2022009651A1 (en) 2020-07-08 2021-06-21 Compound, light-emitting material, and light-emitting device

Country Status (2)

Country Link
CN (1) CN115734996A (en)
WO (1) WO2022009651A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170358756A1 (en) * 2016-06-14 2017-12-14 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
WO2018237389A1 (en) * 2017-06-23 2018-12-27 Kyulux Inc. Composition of matter for use in organic light-emitting diodes
CN109651406A (en) * 2019-01-23 2019-04-19 苏州久显新材料有限公司 Hot activation delayed fluorescence compound, luminescent material and organic electroluminescence device
WO2019162332A1 (en) * 2018-02-20 2019-08-29 Cynora Gmbh Organic molecules for optoelectronic devices
US20200168814A1 (en) * 2018-11-27 2020-05-28 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170358756A1 (en) * 2016-06-14 2017-12-14 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
WO2018237389A1 (en) * 2017-06-23 2018-12-27 Kyulux Inc. Composition of matter for use in organic light-emitting diodes
WO2019162332A1 (en) * 2018-02-20 2019-08-29 Cynora Gmbh Organic molecules for optoelectronic devices
US20200168814A1 (en) * 2018-11-27 2020-05-28 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
CN109651406A (en) * 2019-01-23 2019-04-19 苏州久显新材料有限公司 Hot activation delayed fluorescence compound, luminescent material and organic electroluminescence device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUNG, M. ET AL., CHEMISTRY-A EUROPEAN JOURNAL, vol. 26, 24 March 2020 (2020-03-24), pages 4816 - 4821 *
YUN, J. H. ET AL., CHEMICAL ENGINEERING JOURNAL, vol. 400, 18 June 2020 (2020-06-18), DOI: 10.1016/j.cej.2020.125940 *

Also Published As

Publication number Publication date
CN115734996A (en) 2023-03-03

Similar Documents

Publication Publication Date Title
KR102577834B1 (en) Compositions used in organic light emitting diodes
WO2022025248A1 (en) Compound, light-emitting material, and light-emitting element
WO2021157642A1 (en) Host material, composition, and organic electroluminescent element
WO2021235549A1 (en) Compound, light-emitting material, and light-emitting element
WO2022249505A1 (en) Compound, light-emitting material, and light-emitting element
WO2023140130A1 (en) Compound, light-emitting material and organic light-emitting device
WO2022097626A1 (en) Compound, light-emitting material, delayed fluorescence material, and organic light-emitting element
JP7152805B1 (en) Compounds, compositions, host materials, electron barrier materials and organic light-emitting devices
WO2022009651A1 (en) Compound, light-emitting material, and light-emitting device
WO2020090843A1 (en) Charge transport material, compound and organic light emitting element
WO2022254965A1 (en) Compound, light-emitting material, and light-emitting element
WO2022168956A1 (en) Compound, light-emitting material, and organic light-emitting element
WO2023053835A1 (en) Compound, composition, host material, electron barrier material and organic light emitting element
WO2022230574A1 (en) Charge transport material, composition, and organic luminescent element
WO2023166883A1 (en) Compound, light-emitting material and light-emitting element
JP2023056802A (en) Compound, light-emitting material and organic light-emitting device
JP2023032402A (en) Compound, luminescent material, and organic light-emitting element
JP2023056803A (en) Compound, light-emitting material and organic light-emitting device
WO2023140374A1 (en) Compound, light-emitting material and light-emitting element
JP2023132286A (en) Compound, light-emitting material, and light-emitting element
JP2023002879A (en) Compound, light-emitting material, and organic light-emitting element
JP2023056804A (en) Compound, light-emitting material and organic light-emitting device
JP2023092715A (en) Compounds, luminous materials, and luminous elements
JP2023133164A (en) Compound, light-emitting material, and light-emitting element
JP2023002880A (en) Compound, light-emitting material, and organic light-emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21836850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21836850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP