WO2022009620A1 - Dynamo-electric machine - Google Patents

Dynamo-electric machine Download PDF

Info

Publication number
WO2022009620A1
WO2022009620A1 PCT/JP2021/022575 JP2021022575W WO2022009620A1 WO 2022009620 A1 WO2022009620 A1 WO 2022009620A1 JP 2021022575 W JP2021022575 W JP 2021022575W WO 2022009620 A1 WO2022009620 A1 WO 2022009620A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
winding
teeth
armature winding
turns
Prior art date
Application number
PCT/JP2021/022575
Other languages
French (fr)
Japanese (ja)
Inventor
秀紀 加藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020116575A external-priority patent/JP7512720B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022009620A1 publication Critical patent/WO2022009620A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • This disclosure relates to a rotary electric machine.
  • a rotary electric machine having a first armature winding in which a three-phase current is supplied from a first inverter and a second armature winding in which a three-phase current is supplied from a second inverter is known.
  • a current phase difference occurs between the first inverter and the second inverter
  • the electromagnetic field generated in the gap between the rotor and the stator due to the armature winding is spatially unannounced. It will be balanced and torque ripple may occur.
  • the coil body formed by winding the first armature winding and the second armature winding around the teeth and the first armature winding are included. It includes a coil body formed by winding around a tooth and a coil body formed by winding a second armature winding around a tooth, and each coil body is centered on an axial center. Are arranged 2n times rotationally symmetrically.
  • the electromagnetic field generated in the gap between the rotor and the stator can be spatially balanced and torque ripple can be suppressed. Therefore, vibration and noise can be suppressed.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a rotary electric machine capable of suppressing vibration and noise.
  • a first means for solving the above problems is in a rotary electric machine including a field portion having a plurality of magnetic poles having alternating polarities in the circumferential direction and an armature having a multi-phase armature winding.
  • a three-phase current is supplied to the armature winding from the inverter, and the armature is wound around the armature winding of the first phase of the three phases and the armature of the second phase.
  • the child winding is wound less than the number of turns of the armature winding of the first phase, so that the first tooth provided with the coil body of the first phase and the first of the three phases.
  • the armature winding of the phase is wound, and the armature winding of the third phase is wound less than the number of turns of the armature winding of the first phase.
  • the second tooth provided with the one-phase coil body, the armature winding of the first phase of the three phases, and the armature winding of the third phase are wound in the same manner. It has a third tooth to which the coil body of the first phase is provided, and the electromotive force of the partial winding of the first phase provided by winding the armature winding of the first phase around the third tooth. And the phase difference from the electromotive force of the third phase partial winding provided by winding the third phase armature winding around the third tooth is within the range of 52 degrees to 68 degrees in terms of electrical angle. It is set to be.
  • a second means for solving the above problems is in a rotary electric machine provided with a field portion having a plurality of magnetic poles having alternating polarities in the circumferential direction and an armature having a multi-phase armature winding.
  • a three-phase current is supplied to the armature winding from the inverter, and the armature includes the first tooth around which the armature winding of the first phase of the three phases is wound and the three-phase.
  • the armature winding of the first phase is wound, and the armature winding of the second phase is wound less than the number of turns of the armature winding of the first phase.
  • the phase difference between the electromotive force of the wire and the electromotive force of the second phase partial winding provided by winding the second phase armature winding is within the range of 52 degrees to 68 degrees in terms of electrical angle. It is set to be.
  • a third means for solving the above problems is in a rotary electric machine including a field portion having a plurality of magnetic poles having alternating polarities in the circumferential direction and an armature having a multi-phase armature winding.
  • a three-phase current is supplied to the armature winding from the inverter, and the armature includes the first tooth around which the armature winding of the first phase of the three phases is wound and the three-phase.
  • the second teeth around which the armature winding of the first phase is wound, the armature winding of the first phase of the three phases, and the armature winding of the second phase are the same.
  • the third tooth is wound around the third tooth, and the armature winding of the first phase is wound around the third tooth to provide an armature winding of the first phase.
  • the phase difference from the electromotive force of the second phase partial winding provided by winding the second phase armature winding on the tooth is set to be within the range of 52 degrees to 68 degrees in terms of electric angle. Has been done.
  • FIG. 1 is a vertical sectional view showing a motor.
  • FIG. 2 is a cross-sectional view showing a motor.
  • FIG. 3 is a diagram showing the electrical configuration of the control device.
  • FIG. 4 is a diagram showing the arrangement of partial windings.
  • FIG. 5 is a diagram showing a stator winding.
  • FIG. 6 is a diagram showing harmonic components of torque.
  • 7 (a) to 7 (c) are vector diagrams showing the magnetomotive force.
  • FIG. 8 is a diagram showing fluctuations in electromagnetic force.
  • FIG. 9 is a diagram showing the arrangement of the partial windings of the second embodiment.
  • FIG. 10 is a cross-sectional view showing the motor of the second embodiment.
  • FIG. 11 is a diagram showing the arrangement of the partial windings of the third embodiment.
  • FIG. 12 is a cross-sectional view showing the motor of the third embodiment.
  • FIG. 13 is a diagram showing the arrangement of the partial windings of the fourth embodiment.
  • FIG. 14 is a cross-sectional view showing the motor of the fourth embodiment.
  • FIG. 15 is a diagram showing the arrangement of the partial windings of the fifth embodiment.
  • FIG. 16 is a cross-sectional view showing the motor of the fifth embodiment.
  • 17A and 17B are vector diagrams showing the magnetomotive force of the fifth embodiment.
  • FIG. 18 is a diagram showing the arrangement of the partial windings of the sixth embodiment.
  • FIG. 18 is a diagram showing the arrangement of the partial windings of the sixth embodiment.
  • FIG. 19 is a cross-sectional view showing the motor of the sixth embodiment.
  • FIG. 20 is a diagram showing the arrangement of the partial windings of the seventh embodiment.
  • FIG. 21 is a cross-sectional view showing the motor of the seventh embodiment.
  • FIG. 22 is a diagram showing the arrangement of the partial windings of the eighth embodiment.
  • FIG. 23 is a cross-sectional view showing the motor of the eighth embodiment.
  • FIG. 24 is a diagram showing the arrangement of the partial windings of the ninth embodiment.
  • FIG. 25 is a cross-sectional view showing the motor of the ninth embodiment.
  • FIG. 26 is a diagram showing the arrangement of the partial windings of the tenth embodiment.
  • FIG. 27 is a cross-sectional view showing the motor of the tenth embodiment.
  • FIG. 28 is a diagram showing the arrangement of the partial windings of the eleventh embodiment.
  • FIG. 29 is a cross-sectional view showing the motor of the eleventh embodiment.
  • FIG. 30 is a diagram showing the arrangement of the partial windings of the twelfth embodiment.
  • FIG. 31 is a cross-sectional view showing the motor of the twelfth embodiment.
  • FIG. 32 is a diagram showing the position of the leader line.
  • the motor 10 shown in FIG. 1 is a permanent magnet field type synchronous machine, specifically, a permanent magnet field type synchronous machine having a three-phase winding. That is, the motor 10 is a brushless motor.
  • the motor 10 includes a housing 20, a stator 30 fixed to the housing 20, a rotor 40 rotating with respect to the stator 30, and a rotating shaft 11 to which the rotor 40 is fixed.
  • the axial direction means the axial direction of the rotating shaft 11 (indicated by an arrow Y1 in the figure).
  • the radial direction indicates the radial direction of the rotating shaft 11 (indicated by an arrow Y2 in the figure).
  • the circumferential direction indicates the circumferential direction of the rotating shaft 11 (indicated by an arrow Y3 in the figure).
  • the housing 20 is formed in a cylindrical shape, and the stator 30 and the rotor 40 are housed in the housing 20.
  • Bearings 23 and 24 are provided in the housing 20, and the rotating shaft 11 is rotatably supported by the bearings 23 and 24.
  • the axis of the inner peripheral surface of the housing 20 is coaxial with the rotating shaft 11.
  • An angle sensor 12 is provided on the tip end side of the rotating shaft 11.
  • the angle sensor 12 may be a magnetic sensor or a resolver.
  • the stator 30 is provided in a cylindrical shape along the inner circumference of the housing 20 at substantially the center of the housing 20 in the axial direction.
  • the stator 30 is fixed to the inner peripheral surface of the housing 20 with the axis O of the rotating shaft 11 as the center.
  • the stator 30 constitutes a part of a magnetic circuit, and has an annular shape, and the stator core 31 (armature core, armature core, etc.) arranged so as to face each other in the radial direction on the outer peripheral side of the rotor 40. It has a stator core) and a stator winding 32 (armature winding, armature coil) wound around a stator core 31.
  • the stator core 31 includes an annular back yoke 33 and a plurality of teeth T1 to T18 protruding from the back yoke 33 in the radial direction toward the rotation axis 11 and arranged side by side in the circumferential direction.
  • a slot 35 (status lot) is formed between the adjacent teeth T1 to T18.
  • Slots 35 are provided side by side in the circumferential direction in the stator core 31, and the stator windings 32 are wound around the teeth T1 to T18 so that the stator windings 32 are arranged in the slots 35.
  • the number of teeth T1 to T18 is "18”
  • the number of slots 35 is "18”.
  • each of the teeth T1 to T18 is designated by the reference numerals T1 to 18 counterclockwise in the order of arrangement in the circumferential direction.
  • the stator winding 32 is housed and held in the slot 35. Then, the stator winding 32 generates a magnetic flux by being supplied with electric power (AC power).
  • the stator core 31 is an integrated type formed by laminating a plurality of thin plate-shaped magnetic steel plates (core sheets) forming an annular shape in the axial direction of the stator core 31.
  • the steel plate is formed by pressing and punching a strip-shaped electromagnetic steel plate material.
  • the rotor 40 constitutes a part of a magnetic circuit, has one or a plurality of pairs of magnetic poles in the circumferential direction, and is arranged so as to face the stator 30 in the radial direction.
  • the rotor 40 corresponds to a field portion having 14 (that is, 7 magnetic pole pairs) magnetic poles.
  • the rotor 40 includes a rotor core 41 made of a magnetic material and a permanent magnet 42 fixed to the rotor core 41.
  • the rotor 40 is provided with 14 permanent magnets 42 as magnet portions so that the polarities alternate in the circumferential direction, and the rotor 40 is provided along the axial direction with the rotor core 41.
  • a permanent magnet 42 is embedded in the accommodating hole provided therein.
  • the rotor 40 may have a well-known configuration, and may be, for example, an IPM type (Interior Permanent Magnet: embedded magnet type) rotor or an SPM type (Surface Permanent Magnet: surface magnet side) rotor. good. Further, as the rotor 40, a rotor on the field winding side may be adopted. In this embodiment, an IPM type rotor is adopted. A rotary shaft 11 is inserted through the rotor 40 and is fixed to the rotary shaft 11 so as to rotate integrally with the rotary shaft 11 around the rotary shaft 11.
  • IPM type Interior Permanent Magnet: embedded magnet type
  • SPM type Surface Permanent Magnet: surface magnet side
  • a control device 50 is connected to the motor 10.
  • the control device 50 is mainly composed of a microcomputer equipped with a CPU, ROM, RAM, I / O, etc., and the CPU realizes various functions by executing a program stored in the ROM.
  • the various functions may be realized by electronic circuits that are hardware, or at least a part of them may be realized by software, that is, processing executed on a computer.
  • the function of the control device 50 is, for example, a function of converting electric power from the outside (for example, a battery) and supplying it to the motor 10 to generate a driving force. Further, for example, the control device 50 has a function of controlling the motor 10 (current control, etc.) by using the information regarding the rotation angle input from the angle sensor 12.
  • the control device 50 is provided with an inverter circuit 51.
  • the inverter circuit 51 is composed of a full bridge circuit having the same number of upper and lower arms as the number of three phases.
  • the control device 50 controls the current in each phase by turning on / off the switching element provided in each arm.
  • the inverter circuit 51 has a series connection body of an upper arm switch Sp and a lower arm switch Sn as switching elements in three phases consisting of a U phase, a V phase, and a W phase, respectively.
  • a voltage-controlled semiconductor switching element is used as the upper arm switch Sp and the lower arm switch Sn in each phase, and specifically, an IGBT is used.
  • MOSFET may be used. Freewheel diodes (reflux diodes) Dp and Dn are connected in antiparallel to the upper arm switch Sp and the lower arm switch Sn in each phase, respectively.
  • the high potential side terminal (collector) of the upper arm switch Sp of each phase is connected to the positive electrode terminal of the battery. Further, the low potential side terminal (emitter) of the lower arm switch Sn of each phase is connected to the negative electrode terminal (ground) of the battery.
  • the intermediate connection points between the upper arm switch Sp and the lower arm switch Sn of each phase are connected to one end (leader wires A1, B1, C1) of the stator winding 32, respectively.
  • the winding method of the stator winding 32 is configured as follows. Hereinafter, the winding method of the stator winding 32 will be described in detail.
  • the stator winding 32 is classified into U-phase, V-phase, and W-phase stator windings 32 that represent each of the three phases.
  • the U-phase stator winding 32 has 12 partial windings U11-, U12 +, U13-, U14 +, U15-, U16 +, U21 +, U22-, U23 +, U24-. , U25 +, U26-. These U-phase partial windings are connected in series.
  • the V-phase stator winding 32 is composed of 12 partial windings V11-, V12 +, V13-, V14 +, V15-, V16 +, V21 +, V22-, V23 +, V24-, V25 +, V26-. ..
  • the W-phase stator winding 32 is composed of 12 partial windings W11-, W12 +, W13-, W14 +, W15-, W16 +, W21 +, W22-, W23 +, W24-, W25 +, W26-. .. These W-phase partial windings are connected in series.
  • a U-phase partial winding is connected to the leader wire A1
  • a V-phase partial winding is connected to the leader wire B1
  • a W-phase partial winding is connected to the leader wire C1. ..
  • Y connection star connection
  • delta connection may be used.
  • the 36 partial windings are provided by winding the stator winding 32 around each of the teeth T1 to T18.
  • the teeth T1 is provided with a partial winding U12 + and a partial winding V24 ⁇ .
  • the partial winding U12 + has a larger number of turns than the partial winding V24 ⁇ .
  • the partial winding having a large number of turns is simply referred to as a main winding
  • the partial winding having a small number of turns is simply referred to as a slave winding.
  • the partial winding U12 + is the main winding
  • the partial winding V24- is the slave winding.
  • the teeth T2 is provided with a main winding V25 + and a slave winding U13-.
  • the teeth T3 is provided with a partial winding W14 + and a partial winding V26 ⁇ .
  • the number of turns of the partial winding W14 + provided on the teeth T3 is the same as the number of turns of the partial winding V26 ⁇ .
  • these partial windings are referred to as the same winding in order to distinguish them from the main winding and the slave winding.
  • each partial winding provided in the teeth T3 to T18 is as shown in FIGS. 2 and 4.
  • the signs "+” and "-” indicate the direction of the current, that is, the polarity of the magnetomotive force (field) generated by the partial winding.
  • the current flow from the front side to the back side of the paper is "+”
  • the current flow from the back side to the front side is "-”. That is, when a current flows through the stator winding 32, it means that a “+” partial winding and a “ ⁇ ” partial winding generate magnetomotive forces that are opposite in the radial direction.
  • the "+” partial winding and the "-” partial winding have a phase difference in magnetomotive force of 180 degrees in terms of electrical angle.
  • the "+” partial winding and the "-” partial winding can be realized by reversing the winding method.
  • the polarity of the magnetomotive force (field) generated by the coil body is shown.
  • each teeth T1 to T18 two partial windings are arranged at different radial positions.
  • the radial position of the partial winding does not have to be as shown in FIG. 2, and may be replaced.
  • the U-phase coil body Ua + is configured by providing the U-phase main winding U12 + and the V-phase slave winding V24- on the teeth T1.
  • the method of constructing the coil body of each phase by combining the partial windings will be described later.
  • the teeth T10 is provided with the U-phase main winding U15 ⁇ and the V-phase slave winding V21 +, thereby forming the U-phase coil body Ua ⁇ .
  • the U-phase coil body Ub + is configured.
  • the U-phase coil body Ub + is configured to have a predetermined phase difference with respect to the U-phase coil body Ua +.
  • the teeth T5 is provided with the U-phase main winding U22 ⁇ and the W-phase slave winding W16 +, whereby the U-phase coil body Ub ⁇ is configured.
  • the teeth T9 is provided with the U-phase same winding U14 + and the W-phase same winding W26-, so that the U-phase coil body Uc + is configured.
  • the U-phase coil body Uc + is configured to have a predetermined phase difference with respect to the U-phase coil body Ua +.
  • the teeth T18 is provided with the U-phase same winding U11 ⁇ and the W-phase same winding W23 +, whereby the U-phase coil body Uc ⁇ is configured.
  • the U phase corresponds to the first phase and the V phase corresponds to the second phase. It corresponds to the phase, and the W phase corresponds to the third phase.
  • the teeth T1 and T10 correspond to the first teeth
  • the teeth T14 and T5 correspond to the second teeth
  • the teeth T9 and T18 correspond to the third teeth.
  • the V-phase coil body Va + is configured.
  • the V-phase coil body Va + is configured to have a phase difference of 120 degrees with respect to the U-phase coil body Ua +.
  • the teeth T16 is provided with the V-phase main winding V15 ⁇ and the W-phase slave winding W21 +, thereby forming the V-phase coil body Va ⁇ .
  • the V-phase coil body Vb + is configured.
  • the V-phase coil body Vb + is configured to have a phase difference of 120 degrees with respect to the U-phase coil body Ub +.
  • the teeth T11 is provided with the V-phase main winding V22 ⁇ and the U-phase slave winding U16 +, whereby the V-phase coil body Vb ⁇ is configured.
  • the teeth T15 is provided with the V-phase same winding V14 + and the U-phase same winding U26-, so that the V-phase coil body Vc + is configured.
  • the V-phase coil body Vc + is configured to have a phase difference of 120 degrees with respect to the U-phase coil body Uc +.
  • the teeth T6 is provided with the V-phase same winding V11 ⁇ and the U-phase same winding U23 +, whereby the V-phase coil body Vc ⁇ is configured.
  • the V phase corresponds to the first phase and the W phase corresponds to the second phase. It corresponds to the phase, and the U phase corresponds to the third phase.
  • the teeth T7 and T16 correspond to the first teeth
  • the teeth T2 and T11 correspond to the second teeth
  • the teeth T15 and T6 correspond to the third teeth.
  • the W-phase coil body Wa + is configured.
  • the W-phase coil body Wa + is configured to have a phase difference of 240 degrees with respect to the U-phase coil body Ua +.
  • the teeth T4 is provided with the W-phase main winding W15 ⁇ and the U-phase slave winding U21 +, thereby forming the W-phase coil body Wa ⁇ .
  • the W-phase coil body Wb + is configured.
  • the W-phase coil body Wb + is configured to have a phase difference of 240 degrees with respect to the U-phase coil body Ub +.
  • the teeth T17 is provided with the W-phase main winding W22 ⁇ and the V-phase slave winding V16 +, the W-phase coil body Wb ⁇ is configured.
  • the W-phase coil body Wc + is configured by providing the W-phase same winding W14 + and the V-phase same winding V26- on the teeth T3.
  • the W-phase coil body Wc + is configured to have a phase difference of 240 degrees with respect to the U-phase coil body Uc +.
  • the teeth T12 is provided with the W-phase same winding W11 ⁇ and the V-phase same winding V23 +, whereby the W-phase coil body Wc ⁇ is configured.
  • the W phase corresponds to the first phase and the U phase corresponds to the second phase. It corresponds to the phase, and the V phase corresponds to the third phase.
  • the teeth T13 and T4 correspond to the first teeth
  • the teeth T8 and T17 correspond to the second teeth
  • the teeth T3 and T12 correspond to the third teeth.
  • the coil bodies of each phase are arranged twice rotationally symmetrically with the axis of the rotating shaft 11 as the center. That is, even if the coil body is rotated by 180 degrees around the axis, the arrangement order of each coil body is the same.
  • is the phase of the current flowing through the stator winding 32 (based on the phase of the U-phase current supplied from the inverter circuit 51). “ ⁇ ” is a constant and depends on noise and the like.
  • the first term of the mathematical formulas (1) and (2) corresponds to the components based on the coil bodies Ua, Va, Wa (first system), and the second term corresponds to the coil body Ub,
  • the third term corresponds to the component based on the coil bodies Uc, Vc, Wc (third system), and corresponds to the component based on Vb, Wb (second system).
  • Ta is a constant proportional to the number of turns of the coil bodies Ua, Va, and Wa and the maximum value of the current.
  • Tb is a constant proportional to the number of turns of the coil bodies Ub, Vb, and Wb and the maximum value of the current.
  • Tc is a constant proportional to the number of turns of the coil bodies Uc, Vc, and Wc and the maximum value of the current.
  • phase difference " ⁇ 1" with the magnetomotive force of the coil bodies Ub, Vb, Wb with respect to the magnetomotive force of the coil bodies Ua, Va, Wa is set to 20 degrees, and the coil with respect to the magnetomotive force of the coil bodies Ua, Va, Wa. If the phase difference " ⁇ 2" of the magnetomotive forces of the bodies Uc, Vc, and Wc is set to 40 degrees, it can be said that the torque ripple can be suppressed.
  • phase difference " ⁇ 1" is 20 + 180n (n is an integer) degree, and similarly, the formula (3) becomes zero and the sixth harmonic component is cancelled.
  • phase difference " ⁇ 2" is 40 + 180n (n is an integer) degree, and the equation (4) becomes zero, and the 12th harmonic component is cancelled. That is, even if the polarity of each coil body is reversed, it can be canceled in the same manner.
  • the phase difference " ⁇ 1” is preferably 20 + 180n (n is an integer) degree, but may be a value around it (for example, in the range of 15 to 25 degrees), and even in this case, the effect of suppressing torque ripple is obtained. be able to. The same applies to the phase difference “ ⁇ 2”.
  • each coil body is provided so that " ⁇ 1" and “ ⁇ 2" have electric angles of "20 + 180n degrees” and “40 + 180n degrees”, respectively, and the magnetomotive force is about the same. More specifically, in order to form each such coil body, the combination and the number of turns of each partial winding provided in each of the teeth T1 to T18 are set. Hereinafter, a specific description will be given.
  • the magnetomotive force of each partial winding is as shown in the following formulas (11) to (16). be.
  • the magnetomotive force Fu1 of the U-phase partial windings U12 +, U14 +, U16 +, U21 +, U23 +, and U25 + is used.
  • the magnetomotive force Fu2 of the U-phase partial windings U11-, U13-, U15-, U22-, U24-, and U26-in which the polarities are reversed is used.
  • the magnetomotive force Fv1 of the V-phase partial windings V12 +, V14 +, V16 +, V21 +, V23 +, and V25 + is used.
  • the magnetomotive force Fv2 of the V-phase partial windings V11-, V13-, V15-, V22-, V24-, and V26-in which the polarities are reversed is used.
  • the magnetomotive force Fw1 of the W phase partial windings W12 +, W14 +, W16 +, W21 +, W23 +, and W25 + is used.
  • the magnetomotive force Fw2 of the W-phase partial windings W11-, W13-, W15-, W22-, W24-, and W26-in which the polarities are reversed is used.
  • "I” is a constant depending on the maximum value of the alternating current
  • "N” is a constant depending on the number of turns of each partial winding.
  • the teeth T1 are provided with a main winding U12 + and a slave winding V24 ⁇ .
  • the magnetomotive force Fu1 of the main winding U12 + and the magnetomotive force Fv2 of the slave winding V24- have a phase difference of 60 degrees as shown in the equations (11) and (15). More specifically, the slave winding V24 ⁇ has a relationship of ⁇ 60 degrees with respect to the phase of the main winding U12 +.
  • the total of the vector value obtained by multiplying the magnetomotive force Fu1 by 0.88 and the vector value obtained by multiplying the magnetomotive force Fv2 by 0.2 gives the formula (21) and FIG. 7 (a). There is.
  • the number of turns may be set within the range of 3.0 ⁇ Na / Nb ⁇ 6.0.
  • the teeth T14 are provided with a main winding U25 + and a slave winding W13 ⁇ .
  • the magnetomotive force Fu1 of the main winding U25 + and the magnetomotive force Fw2 of the slave winding W13 ⁇ have a phase difference of 60 degrees as shown in the equations (11) and (16). More specifically, the slave winding W13 ⁇ has a relationship of +60 degrees with respect to the phase of the main winding U25 +.
  • the total of the vector value obtained by multiplying the magnetomotive force Fu1 by 0.88 and the vector value obtained by multiplying the magnetomotive force Fw2 by 0.2 gives the following equation (22) and FIG. 7 (b). There is.
  • the number of turns may be set within the range of 3.0 ⁇ Na / Nb ⁇ 6.0.
  • the magnetomotive force Fab1 has the same magnitude (amplitude) as the magnetomotive force Fua1 because it is necessary to balance the amplitude of the magnetomotive force of each coil body. Therefore, the number of turns “Na” of the main winding U25 + constituting the U-phase coil body Ub + is the same as the number of turns “Na” of the main winding U12 + constituting the U-phase coil body Ua +. Similarly, the number of turns "Nb" of the slave winding W13-that constitutes the U-phase coil body Ub + is the same as the number of turns "Nb" of the slave winding V24- that constitutes the U-phase coil body Ua +. ..
  • the main winding U25 + and the slave winding W13 ⁇ form a U-phase coil body Ub + capable of generating a magnetomotive force Hub1. That is, a U-phase coil body Ub + having the same magnetomotive force as the coil body Ua + and having a phase difference “ ⁇ 1” of 20 degrees with respect to the coil body Ua + is configured.
  • the winding method for forming the U-phase coil body Uc + will be described.
  • the teeth T9 are provided with the same winding U14 + and the same winding W26 ⁇ .
  • the magnetomotive force Fu1 of the winding U14 + and the magnetomotive force Fw2 of the winding W26 ⁇ have a phase difference of 60 degrees as shown in the equations (11) and (16). More specifically, the winding W26 ⁇ has a relationship of +60 degrees with respect to the phase of the winding U14 +.
  • the number of turns may be set within the range of 1.4 ⁇ Na / Nc ⁇ 1.8.
  • the magnetomotive force Fua2 of the U-phase coil body Ua-, the magnetomotive force Fva2 of the V-phase coil body Va-, and the magnetomotive force Fwa2 of the W-phase coil body Wa- are shown in equations (34) to (36).
  • is the phase of the current flowing through the stator winding 32 (based on the phase of the U-phase current supplied from the inverter circuit 51).
  • "I” is a constant depending on the maximum value of the alternating current
  • N is the number of turns of the stator winding 32 wound around each of the teeth T1 to T18 (the number of turns of the partial winding). It is a constant that depends on the sum).
  • the magnetomotive force Fub1 of the U-phase coil body Ub +, the magnetomotive force Fvb1 of the V-phase coil body Vb +, and the magnetomotive force Fwb1 of the W-phase coil body Wb + are shown in equations (37) to (39). Can be configured. Further, the magnetomotive force Fub2 of the U-phase coil body Ub-, the magnetomotive force Fvb2 of the V-phase coil body Vb-, and the magnetomotive force Fwb2 of the W-phase coil body Wb- are shown in equations (40) to (42). Can be configured in.
  • ⁇ 1 is the phase difference of the magnetomotive force of the coil body Ub + with respect to the magnetomotive force of the coil body Ua +. That is, when the magnetomotive force of the coil body Ua + is used as a reference, the phase delay of the magnetomotive force of the coil body Ub + is shown.
  • ⁇ 1 is the phase difference of the magnetomotive force of the coil body Vb + with respect to the magnetomotive force of the coil body Va +, and is the phase difference of the magnetomotive force of the coil body Wb + with respect to the magnetomotive force of the coil body Wa +.
  • “ ⁇ 1” of this embodiment is "20" degrees.
  • the magnetomotive force Fuc1 of the U-phase coil body Uc +, the magnetomotive force Fvc1 of the V-phase coil body Vc +, and the magnetomotive force Fwc1 of the W-phase coil body Wc + are shown in the equations (43) to (45). Can be configured. Further, the magnetomotive force Fuc2 of the U-phase coil body Uc-, the magnetomotive force Fvc2 of the V-phase coil body Vc-, and the magnetomotive force Fwc2 of the W-phase coil body Wc- are shown in mathematical formulas (46) to (48). Can be configured as follows.
  • ⁇ 2 is the phase difference of the magnetomotive force of the coil body Uc + with respect to the magnetomotive force of the coil body Ua +. That is, when the magnetomotive force of the coil body Ua + is used as a reference, the phase delay of the magnetomotive force of the coil body Uc + is shown.
  • ⁇ 2 is the phase difference of the magnetomotive force of the coil body Vc + with respect to the magnetomotive force of the coil body Va +, and is the phase difference of the magnetomotive force of the coil body Wc + with respect to the magnetomotive force of the coil body Wa +.
  • “ ⁇ 2” of this embodiment is "40" degrees.
  • the U-phase coil body Ua + is configured by providing the U-phase main winding U12 + and the V-phase slave winding V24- on the teeth T1 as the first teeth. Further, the U-phase coil body Ub + is configured by providing the U-phase main winding U25 + and the W-phase slave winding W13 ⁇ on the teeth T14 as the second teeth. The U-phase coil body Uc + is configured by providing the U-phase same winding U14 + and the W-phase same winding W26- on the teeth T9 as the third tooth.
  • the phase difference between the magnetomotive force Fu1 of the U14 + of the same winding of the U phase and the magnetomotive force Fw2 of the same winding W26- of the W phase is set to be 60 degrees in the electric angle. ..
  • the phase difference between the magnetomotive force Fu1 of the U-phase main winding U12 + and the magnetomotive force Fv2 of the V-phase slave winding V24- is set to be 60 degrees in terms of electrical angle. ..
  • the phase difference between the magnetomotive force Fu1 of the main winding U25 + of the U phase and the magnetomotive force Fw2 of the slave winding W13 ⁇ of the W phase is set to be 60 degrees in terms of electric angle. ..
  • the number of turns of the U-phase main windings U12 + and U25 + is "Na” and the V-phase slave winding V24- and the W-phase slave winding W13-are "Nb", respectively, 3.0.
  • the V-phase coil body and the W-phase coil body are also set in the same manner.
  • each phase difference " ⁇ 1" of the magnetomotive force of the coil bodies Ub, Vb, Wb with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 20 + 180 n degrees.
  • the phase difference " ⁇ 2" of the magnetomotive forces of the coil bodies Uc, Vc, and Wc with respect to the magnetomotive force of the coil bodies Ua, Va, and Wa can be set to 40 + 180 n degrees.
  • the coil bodies of each phase are arranged twice rotationally symmetrically with respect to the axial center of the rotating shaft 11. Therefore, as shown in the formulas (1) to (4), it is possible to cancel the 6th or 12th harmonic component of the torque and suppress the torque ripple.
  • the number of magnetic poles of the motor 10 was set to "14", and the number of slots 35 was set to "18". That is, the number of magnetic poles was (18 ⁇ 4) ⁇ m (m is an integer of 1 or more), and the number of slots was 18 ⁇ m. As a result, the electromagnetic force can be balanced around the axis.
  • FIG. 8A is a diagram showing the relationship between the electromagnetic force generated by each of the teeth T1 to T18 and the mechanical angle of the motor 10.
  • FIG. 8B shows the fluctuation of the electromagnetic force shown in FIG. 8A along the circumferential direction when the rotation axis 11 is centered.
  • U-phase coil bodies Ua ⁇ , Ub ⁇ , and Uc ⁇ are arranged at intervals of about 90 degrees.
  • each of the same windings wound around the teeth T3, T6, T9, T12, T15, and T18 as the third tooth is wound around the tooth next to the third tooth. It is connected to the main winding.
  • the same winding W14 + of the teeth T3 is connected to the main winding W15- of the teeth T4, and the same winding V26-of the teeth T3 is connected to the main winding V25 + of the teeth T2.
  • a part of the configuration of the first embodiment may be changed as follows. Hereinafter, only different parts will be described based on the configuration of the first embodiment.
  • the rotor 40 has 22 magnetic poles (that is, the number of magnetic pole pairs is 11). That is, it has 22 permanent magnets 42.
  • the U-phase stator winding 32 has 12 partial windings U11-, U12 +, U13-, U14 +, U15-, U16 +, U21-, U22 +, U23-, U24 +, U25. -, It is composed of U26 +. These U-phase partial windings are connected in series.
  • the V-phase stator winding 32 is composed of 12 partial windings V11 +, V12-, V13 +, V14-, V15 +, V16-, V21 +, V22-, V23 +, V24-, V25 +, V26-. .. These V-phase partial windings are connected in series.
  • the W-phase stator winding 32 is composed of 12 partial windings W11 +, W12 ⁇ , W13 +, W14 ⁇ , W15 +, W16 ⁇ , W21 ⁇ , W22 +, W23 ⁇ , W24 +, W25 ⁇ , W26 +. .. These W-phase partial windings are connected in series.
  • Y connection star connection
  • delta connection may be used.
  • the U-phase coil body Ua +, Ua-, Ub +, Ub-, Uc +, Uc- is used as the first phase coil body
  • the U phase corresponds to the first phase
  • the V phase corresponds to the first phase
  • the W phase corresponds to the third phase
  • the teeth T1 and T10 correspond to the first teeth
  • the teeth T6 and T15 correspond to the second teeth
  • the teeth T11 and T2 correspond to the third teeth.
  • the V phase corresponds to the first phase and the W phase.
  • the U phase corresponds to the third phase.
  • the teeth T13 and T4 correspond to the first teeth
  • the teeth T18 and T9 correspond to the second teeth
  • the teeth T5 and T14 correspond to the third teeth.
  • the W phase coil body Wa +, Wa ⁇ , Wb +, Wb ⁇ , Wc +, Wc ⁇ when used as the first phase coil body, the W phase corresponds to the first phase and the U phase.
  • the V phase corresponds to the third phase.
  • the teeth T7 and T16 correspond to the first teeth
  • the teeth T12 and T3 correspond to the second teeth
  • the teeth T17 and T8 correspond to the third teeth.
  • the coil bodies of each phase are arranged twice rotationally symmetrically with the axis of the rotating shaft 11 as the center.
  • the phase difference between the magnetomotive force Fu1 of the U-phase same winding U16 + provided in the third tooth T11 and the magnetomotive force Fw2 of the W-phase same winding W21- provided in the teeth T11 is the electric angle. It becomes 60 degrees.
  • the phase difference between the magnetomotive force Fu1 of the U-phase main winding U12 + provided in the first teeth T1 and the magnetomotive force Fv2 of the V-phase slave winding V26- provided in the teeth T1 is the electric angle. It becomes 60 degrees.
  • phase difference between the magnetomotive force Fu1 of the U-phase main winding U22 + provided in the second teeth T6 and the magnetomotive force Fw2 of the W-phase slave winding W14- provided in the teeth T6 is the electric angle. It becomes 60 degrees.
  • V-phase coil body and the W-phase coil body are also set in the same manner. Further, each coil body having a different polarity is also set in the same manner.
  • each phase difference " ⁇ 1" of the magnetomotive force of the coil bodies Ub, Vb, Wb with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 20 + 180 n degrees.
  • the phase difference " ⁇ 2" of the magnetomotive forces of the coil bodies Uc, Vc, and Wc with respect to the magnetomotive force of the coil bodies Ua, Va, and Wa can be set to 40 + 180 n degrees.
  • a part of the configuration of the first embodiment may be changed as follows. Hereinafter, only different parts will be described based on the configuration of the first embodiment.
  • the rotor 40 has 16 magnetic poles (that is, the number of magnetic pole pairs is 8). That is, it has 16 permanent magnets 42.
  • the U-phase stator winding 32 has 12 partial windings U11 +, U12 ⁇ , U13 +, U14 +, U15 ⁇ , U16 +, U21 ⁇ , U22 +, U23 ⁇ , U24 ⁇ , U25 +. , U26-. These U-phase partial windings are connected in series.
  • the V-phase stator winding 32 is composed of 12 partial windings V11 +, V12 ⁇ , V13 +, V14 +, V15 ⁇ , V16 +, V21 ⁇ , V22 +, V23 ⁇ , V24 ⁇ , V25 +, V26 ⁇ . .. These V-phase partial windings are connected in series.
  • the W-phase stator winding 32 is composed of 12 partial windings W11 +, W12 ⁇ , W13 +, W14 +, W15 ⁇ , W16 +, W21 ⁇ , W22 +, W23 ⁇ , W24 ⁇ , W25 +, W26 ⁇ . .. These W-phase partial windings are connected in series.
  • Y connection star connection
  • delta connection may be used.
  • each teeth T1 to T18 are provided in FIGS. 11 and 12.
  • the U phase corresponds to the first phase
  • the V phase corresponds to the second phase
  • the W phase corresponds to the third phase.
  • the teeth T1 and T10 correspond to the first teeth
  • the teeth T9 and T18 correspond to the second teeth
  • the teeth T8 and T17 correspond to the third teeth.
  • the V-phase coil bodies Va +, Vb-, and Vc + are used as the first-phase coil bodies
  • the V-phase corresponds to the first phase
  • the W-phase corresponds to the second phase
  • the U phase corresponds to the third phase.
  • the teeth T4 and T13 correspond to the first teeth
  • the teeth T3 and T12 correspond to the second teeth
  • the teeth T2 and T11 correspond to the third teeth.
  • the W phase coil bodies Wa +, Wb ⁇ , and Wc + are used as the first phase coil bodies
  • the W phase corresponds to the first phase
  • the U phase corresponds to the second phase
  • the V phase corresponds to the third phase.
  • the teeth T7 and T16 correspond to the first teeth
  • the teeth T6 and T15 correspond to the second teeth
  • the teeth T5 and T14 correspond to the third teeth.
  • the coil bodies of each phase are arranged twice rotationally symmetrically with respect to the axis of the rotating shaft 11.
  • the phase difference between the magnetomotive force Fu1 of the same winding U22 + and U25 + of the U phase and the magnetomotive force Fw2 of the same winding W12- and W15- of the W phase is, respectively.
  • the electric angle is 60 degrees.
  • the phase difference between the magnetomotive force Fu1 of the U-phase main windings U12 + and U14 + and the magnetomotive force Fv2 of the V-phase slave windings V21- and V24-is respectively.
  • the electric angle is 60 degrees.
  • the phase difference between the magnetomotive force Fu2 of the main windings U26- and U23- of the U phase and the magnetomotive force Fw1 of the slave windings W16 + and W13 + of the W phase is different, respectively.
  • the electric angle is 60 degrees.
  • the number of turns of the U-phase main windings U12 +, U14 +, U26-, and U23- is set to "Na", respectively, and the V-phase slave windings V21-, V24-, and the W-phase slave windings W16 + and W13 +, respectively.
  • the V-phase coil body and the W-phase coil body are also set in the same manner.
  • each phase difference " ⁇ 1" of the magnetomotive force of the coil bodies Ub, Vb, Wb with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 20 + 180 n degrees.
  • the phase difference " ⁇ 2" of the magnetomotive forces of the coil bodies Uc, Vc, and Wc with respect to the magnetomotive force of the coil bodies Ua, Va, and Wa can be set to 40 + 180 n degrees.
  • each of the same windings wound around the teeth T2, T5, T8, T11, T14, T16 as the third tooth is attached to the tooth arranged next to the third tooth. It is connected to the main winding that is wound.
  • the same winding U12-of the teeth T2 is connected to the main winding U11 + of the teeth T1
  • the same winding V22 + of the teeth T2 is connected to the main winding V23- of the teeth T3.
  • the rotor 40 has 20 magnetic poles (that is, the number of magnetic pole pairs is 10). That is, it has 20 permanent magnets 42.
  • the U-phase stator winding 32 has twelve partial windings U11 +, U12-, U13 +, U14 +, U15-, U16 +, U21-, U22 +, U23-, U24-, U25 +, U26. -Consists of. These U-phase partial windings are connected in series.
  • the V-phase stator winding 32 is composed of 12 partial windings V11 +, V12-, V13 +, V14 +, V15-, V16 +, V21-, V22 +, V23-, V24-, V25 +, V26-. .. These V-phase partial windings are connected in series.
  • the W-phase stator winding 32 is composed of 12 partial windings W11 +, W12 ⁇ , W13 +, W14 +, W15 ⁇ , W16 +, W21 ⁇ , W22 +, W23 ⁇ , W24 ⁇ , W25 +, W26 ⁇ . .. These W-phase partial windings are connected in series.
  • Y connection star connection
  • delta connection may be used.
  • each tooth T1 to T18 36 partial windings are wound around each tooth T1 to T18.
  • the U phase corresponds to the first phase
  • the V phase corresponds to the second phase
  • the W phase Corresponds to the third phase.
  • the teeth T1 and T10 correspond to the first teeth
  • the teeth T2 and T11 correspond to the second teeth
  • the teeth T3 and T12 correspond to the third teeth.
  • the V-phase coil bodies Va +, Vb-, and Vc + are used as the first-phase coil bodies
  • the V-phase corresponds to the first phase
  • the W-phase corresponds to the second phase
  • the U phase corresponds to the third phase.
  • the teeth T7 and T16 correspond to the first teeth
  • the teeth T8 and T17 correspond to the second teeth
  • the teeth T9 and T18 correspond to the third teeth.
  • the W phase coil bodies Wa +, Wb ⁇ , and Wc + are used as the first phase coil bodies
  • the W phase corresponds to the first phase
  • the U phase corresponds to the second phase
  • the V phase corresponds to the third phase
  • the teeth T4 and T13 correspond to the first teeth
  • the teeth T5 and T14 correspond to the second teeth
  • the teeth T6 and T15 correspond to the third teeth.
  • the coil bodies of each phase are arranged twice rotationally symmetrically with respect to the axis of the rotating shaft 11.
  • the phase difference between the magnetomotive force Fu1 of the same winding U25 + and U22 + of the U phase and the magnetomotive force Fw2 of the same winding W12- and W15- of the W phase is, respectively.
  • the electric angle is 60 degrees.
  • the phase difference between the magnetomotive force Fu1 of the main windings U13 + and U16 + of the U phase and the magnetomotive force Fv2 of the slave windings V23- and V26- of the V phase is different, respectively.
  • the electric angle is 60 degrees.
  • the phase difference between the magnetomotive force Fu2 of the main windings U24- and U21- of the U phase and the magnetomotive force Fw1 of the slave windings W14 + and W11 + of the W phase is electric.
  • the angle is 60 degrees.
  • the number of turns of the U-phase main windings U13 +, U16 +, U24-, and U21- is set to "Na", respectively, and the V-phase slave windings V23-, V26-, and the W-phase slave windings W14 + and W11 +, respectively.
  • the V-phase coil body and the W-phase coil body are also set in the same manner.
  • each phase difference " ⁇ 1" of the magnetomotive force of the coil bodies Ub, Vb, Wb with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 20 + 180 n degrees.
  • the phase difference " ⁇ 2" of the magnetomotive forces of the coil bodies Uc, Vc, and Wc with respect to the magnetomotive force of the coil bodies Ua, Va, and Wa can be set to 40 + 180 n degrees.
  • each of the same windings wound around the teeth T3, T6, T9, T12, T15, and T18 as the third tooth is attached to the tooth arranged next to the third tooth. It is connected to the main winding that is wound.
  • the same winding W15-of the teeth T3 is connected to the main winding W16 + of the teeth T4, and the same winding U25 + of the teeth T3 is connected to the main winding U24- of the teeth T2.
  • the U-phase stator winding 32 has 10 partial windings U11 ⁇ , U12 +, U13 ⁇ , U14 +, U15 ⁇ , U16 +, U21 ⁇ ,. It is composed of U22 +, U23 +, and U24-. These U-phase partial windings are connected in series.
  • the V-phase stator winding 32 is composed of 10 partial windings V11 +, V12 ⁇ , V13 +, V14 ⁇ , V15 +, V16 ⁇ , V21 +, V22 ⁇ , V23 ⁇ , V24 +. These V-phase partial windings are connected in series.
  • the W-phase stator winding 32 is composed of 10 partial windings W11 ⁇ , W12 +, W13 ⁇ , W14 +, W15 ⁇ , W16 +, W21 +, W22 ⁇ , W23 ⁇ , W24 +. These W-phase partial windings are connected in series.
  • Y connection star connection
  • delta connection may be used.
  • each teeth T1 to T18 is provided with only the partial winding U12 +.
  • the partial winding may be referred to as a single winding.
  • the main winding V21 + is wound around the teeth T2
  • the slave winding U13- is wound around the teeth T2.
  • the partial windings provided in the teeth T3 to T18 are as shown in FIGS. 15 and 16.
  • the teeth T1 is provided with the U-phase single winding U12 +, the U-phase coil body Ua + is configured. Further, since the teeth T10 is provided with the U-phase single winding U15-, the U-phase coil body Ua- is configured.
  • the teeth T14 is provided with the U-phase main winding U23 + and the W-phase slave winding W13-, the U-phase coil body Ub + is configured. Further, the teeth T5 is provided with the U-phase main winding U21 ⁇ and the W-phase slave winding W16 +, whereby the U-phase coil body Ub ⁇ is configured.
  • the U-phase coil body Uc + is configured.
  • the teeth T18 is provided with the W-phase main winding W24 + and the U-phase slave winding U11-, the U-phase coil body Uc- is configured.
  • the U phase corresponds to the first phase
  • the W phase corresponds to the second phase
  • the teeth T1 and T10 correspond to the first teeth
  • the teeth T14 and T5 correspond to the second teeth
  • the teeth T9 and T18 correspond to the third teeth.
  • the teeth T7 is provided with the V-phase single winding V15 +, the V-phase coil body Va + is configured. Further, since the teeth T16 is provided with the V-phase single winding V12-, the V-phase coil body Va- is configured.
  • the teeth T2 is provided with the V-phase main winding V21 + and the U-phase slave winding U13-, the V-phase coil body Vb + is configured. Further, since the teeth T11 is provided with the V-phase main winding V23- and the U-phase slave winding U16 +, the V-phase coil body Vb- is configured.
  • the teeth T15 is provided with the U-phase main winding U24- and the V-phase slave winding V11 +, so that the V-phase coil body Vc + is configured. Further, since the teeth T6 is provided with the U-phase main winding U22 + and the V-phase slave winding V14-, the V-phase coil body Vc- is configured.
  • the V phase corresponds to the first phase
  • the U phase corresponds to the second phase
  • the teeth T7 and T16 correspond to the first teeth
  • the teeth T2 and T11 correspond to the second teeth
  • the teeth T15 and T6 correspond to the third teeth.
  • the teeth T13 is provided with the W-phase single winding W12 +, the W-phase coil body Wa + is configured. Further, since the teeth T4 is provided with the W-phase single winding W15-, the W-phase coil body Wa- is configured.
  • the teeth T8 is provided with the W-phase main winding W21 + and the V-phase slave winding V16-, the W-phase coil body Wb + is configured. Further, the teeth T17 is provided with the W-phase main winding W23 ⁇ and the V-phase slave winding V13 +, whereby the W-phase coil body Wb ⁇ is configured.
  • the W-phase coil body Wc + is configured.
  • the teeth T12 is provided with the V-phase main winding V24 + and the W-phase slave winding W11 ⁇ , the W-phase coil body Wc ⁇ is configured.
  • the W phase corresponds to the first phase
  • the V phase corresponds to the second phase
  • the teeth T13 and T4 correspond to the first teeth
  • the teeth T8 and T17 correspond to the second teeth
  • the teeth T3 and T12 correspond to the third teeth.
  • the coil bodies of each phase are arranged twice rotationally symmetrically with the axis of the rotating shaft 11 as the center. That is, even if the coil body is rotated by 180 degrees around the axis, the order of arrangement of the coils is the same.
  • the winding method for forming the U-phase coil body Ua + will be described.
  • the teeth T1 are provided with a single winding U12 +.
  • the magnetomotive force Fu1 of the single winding U12 + is as shown in the mathematical formula (11).
  • the magnetomotive force Fu1 of the single winding U12 + corresponds to the magnetomotive force Fu1 of the U-phase coil body Ua +, as shown in FIG. 17 (a).
  • the teeth T14 are provided with a main winding U23 + and a slave winding W13 ⁇ .
  • the magnetomotive force Fu1 of the main winding U23 + and the magnetomotive force Fw2 of the slave winding W13 ⁇ have a phase difference of 60 degrees as shown in the equations (11) and (16). More specifically, the phase of the slave winding W13 ⁇ has a relationship of +60 degrees with respect to the phase of the main winding U23 +.
  • the total of the vector value obtained by multiplying the magnetomotive force Fu1 by 0.74 and the vector value obtained by multiplying the magnetomotive force Fw2 by 0.39 gives the formula (51) and FIG. 17 (b). There is.
  • a U-phase coil body Ub + having the same magnetomotive force of the coil body Ua + and a phase difference " ⁇ 1" of 20 degrees with respect to the coil body Ua + is configured.
  • the teeth T9 are provided with a main winding W22 ⁇ and a slave winding U14 +.
  • the magnetomotive force Fw2 of the main winding W22- and the magnetomotive force Fu1 of the slave winding U14 + have a phase difference of 60 degrees as shown in the equations (11) and (16). More specifically, the phase of the main winding W22 ⁇ has a relationship of +60 degrees with respect to the phase of the slave winding U14 +.
  • the total of the vector value obtained by multiplying the magnetomotive force Fw2 by 0.74 and the vector value obtained by multiplying the magnetomotive force Fu1 by 0.39 gives the formula (52) and FIG. 17 (c). There is.
  • Nf: Ne 11: 6 is set.
  • the number of turns may be set within the range of 1.8 ⁇ Nd / Ne ⁇ 2.0.
  • a U-phase coil body Uc + having the same magnetomotive force of the coil body Ua + and a phase difference " ⁇ 2" of 40 degrees with respect to the coil body Ua + is configured.
  • the magnetomotive force Fua2 of the U-phase coil body Ua- the magnetomotive force Fva2 of the V-phase coil body Va-, and the magnetomotive force Fwa2 of the W-phase coil body Wa- are shown in equations (64) to (66). Can be configured in.
  • the magnetomotive force Fub1 of the U-phase coil body Ub +, the magnetomotive force Fvb1 of the V-phase coil body Vb +, and the magnetomotive force Fwb1 of the W-phase coil body Wb + are shown in equations (67) to (69). Can be configured. Further, the magnetomotive force Fub2 of the U-phase coil body Ub-, the magnetomotive force Fvb2 of the V-phase coil body Vb-, and the magnetomotive force Fwb2 of the W-phase coil body Wb- are shown in the equations (70) to (72). Can be configured in. " ⁇ 1" of this embodiment is "20" degrees.
  • the magnetomotive force Fuc1 of the U-phase coil body Uc +, the magnetomotive force Fvc1 of the V-phase coil body Vc +, and the magnetomotive force Fwc1 of the W-phase coil body Wc + are shown in equations (73) to (75). Can be configured. Further, the magnetomotive force Fuc2 of the U-phase coil body Uc-, the magnetomotive force Fvc2 of the V-phase coil body Vc-, and the magnetomotive force Fwc2 of the W-phase coil body Wc- are shown in equations (76) to (78). Can be configured as follows. " ⁇ 2" of this embodiment is "40" degrees.
  • the teeth T1 as the first teeth are provided with a U-phase coil body Ua + by winding a U-phase single winding U12 +. Further, the U-phase coil body Ub + is provided on the teeth T14 as the second teeth by winding the U-phase main winding U23 + and winding the W-phase slave winding W13-. Be done.
  • a U-phase coil body Uc + is provided in the teeth T9 as the third tooth by winding the main winding W22- of the W phase and winding the slave winding 14+ of the U phase.
  • phase difference between the magnetomotive force Fu1 of the U-phase main winding U23 + provided in the teeth T14 and the magnetomotive force Fw2 of the W-phase slave winding W13- provided in the teeth T14 is 60 degrees in terms of electrical angle. Is set to. Further, the phase difference between the magnetomotive force Fw2 of the main winding W22- of the W phase provided in the teeth T9 and the magnetomotive force Fu1 of the slave winding 14+ of the U phase provided in the teeth T9 is 60 degrees in terms of electric angle. Is set to.
  • the number of turns of the main winding U23 + and the main winding W22- is set to "Nd" and the slave winding W13- and the slave winding 14+ are set to "Ne", respectively, 1.8 ⁇ Nd / Nf ⁇ 2.
  • V-phase coil body and the W-phase coil body are also set in the same manner. Further, each coil body + having different polarities is also set in the same manner.
  • each phase difference " ⁇ 1" of the magnetomotive force of the coil bodies Ub, Vb, Wb with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 20 + 180 n degrees.
  • the phase difference " ⁇ 2" of the magnetomotive forces of the coil bodies Uc, Vc, and Wc with respect to the magnetomotive force of the coil bodies Ua, Va, and Wa can be set to 40 + 180 n degrees.
  • the coil bodies of each phase are arranged twice rotationally symmetrically with respect to the axial center of the rotating shaft 11. Therefore, as shown in the formulas (1) to (4), it is possible to cancel the 6th or 12th harmonic component of the torque and suppress the torque ripple.
  • each winding count is set so that the relationship between the winding count “Nf” of the single winding and the winding count “Nd” of the main winding satisfies the relationship of 1.2 ⁇ Nf / Nd ⁇ 1.5.
  • the number of magnetic poles of the motor 10 was set to "14", and the number of slots 35 was set to "18". That is, the number of magnetic poles was (18 ⁇ 4) ⁇ m (m is an integer of 1 or more), and the number of slots was 18 ⁇ m.
  • the electromagnetic force can be balanced around the axis.
  • each single winding wound around the teeth T1, T4, T7, T10, T13, T16 as the third tooth is attached to the tooth arranged next to the third tooth. It is connected to the slave winding that is wound.
  • the single winding U12 + of the teeth T1 is connected to the slave winding U11- of the teeth T18 and the slave winding U13-of the teeth T2.
  • the main windings are connected to each other.
  • the main winding V21 + of the teeth T2 is connected to the main winding V22- of the teeth T3.
  • the rotor 40 has 22 magnetic poles (that is, the number of magnetic pole pairs is 11). That is, it has 22 permanent magnets 42.
  • the stator winding 32 of each phase is composed of 10 partial windings.
  • the partial windings of each phase are connected in series. One end of these series connectors is connected to the neutral point Q, and the other end is connected to leader wires A1, B1, and C1 connected to the inverter circuit 51, respectively.
  • Y connection star connection
  • delta connection may be used.
  • each teeth T1 to T18 are provided in FIGS. 18 and 19.
  • the U phase corresponds to the first phase
  • the W phase corresponds to the second phase.
  • the teeth T1 and T10 correspond to the first teeth
  • the teeth T6 and T15 correspond to the second teeth
  • the teeth T2 and T11 correspond to the third teeth.
  • the V phase corresponds to the first phase and the U phase is the first phase.
  • the teeth T4 and T13 correspond to the first teeth
  • the teeth T9 and T18 correspond to the second teeth
  • the teeth T5 and T14 correspond to the third teeth.
  • the W phase corresponds to the first phase and the V phase is the first phase.
  • the teeth T7 and T16 correspond to the first teeth
  • the teeth T3 and T12 correspond to the second teeth
  • the teeth T8 and T17 correspond to the third teeth.
  • the coil bodies of each phase are arranged twice rotationally symmetrically with the axis of the rotating shaft 11 as the center. That is, even if the coil body is rotated by 180 degrees around the axis, the order of arrangement of the coils is the same.
  • the second tooth T6 is provided with a main winding U22 + and a slave winding W11-, and the magnetomotive force of the main winding U22 + and the magnetomotive force of the slave winding W11-
  • the phase difference with and from is 60 degrees in terms of electrical angle.
  • the teeth T11 which is the third tooth, is provided with the main winding W21- and the slave winding U16 +, and the phase difference between the magnetomotive force of the main winding W21- and the magnetomotive force of the slave winding U16 + is an electric angle. It becomes 60 degrees.
  • Ne 0.74: 0.39
  • Nd 11: 6 is set.
  • the number of turns may be set within the range of 1.8 ⁇ Nd / Ne ⁇ 2.0.
  • the number of turns of a single winding is "Nf"
  • the magnetomotive force of the coil body Ua + is the same by the same reasoning as in the fifth embodiment, and the position is higher than that of the coil body Ua +.
  • a U-phase coil body Ub + having a phase difference “ ⁇ 1” of 20 degrees is configured.
  • a U-phase coil body Uc + having the same magnetomotive force of the coil body Ua + and having a phase difference “ ⁇ 2” of 40 degrees with respect to the coil body Ua + is configured.
  • the V-phase coil body and the W-phase coil body are also set in the same manner. Further, each coil body having a different polarity is also set in the same manner.
  • each phase difference " ⁇ 1" of the magnetomotive force of the coil bodies Ub, Vb, Wb with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 20 + 180 n degrees.
  • the phase difference " ⁇ 2" of the magnetomotive forces of the coil bodies Uc, Vc, and Wc with respect to the magnetomotive force of the coil bodies Ua, Va, and Wa can be set to 40 + 180 n degrees. Therefore, the same effect as that of the fifth embodiment can be obtained.
  • a part of the configuration of the fifth embodiment may be changed as follows. Hereinafter, only different parts will be described based on the configuration of the fifth embodiment.
  • the rotor 40 has 16 magnetic poles (that is, the number of magnetic pole pairs is 8). That is, it has 16 permanent magnets 42.
  • the stator winding 32 of each phase is composed of 10 partial windings.
  • the partial windings of each phase are connected in series. One end of these series connectors is connected to the neutral point Q, and the other end is connected to leader wires A1, B1, and C1 connected to the inverter circuit 51, respectively.
  • Y connection star connection
  • delta connection may be used.
  • the teeth T1 to T18 as shown in FIGS. 20 and 21.
  • the coil body of each phase is formed.
  • the U phase corresponds to the first phase
  • the W phase corresponds to the second phase.
  • the teeth T1 and T10 correspond to the first teeth
  • the teeth T9 and T18 correspond to the second teeth
  • the teeth T8 and T17 correspond to the third teeth.
  • the V-phase coil bodies Va +, Vb-, and Vc + are used as the first-phase coil bodies
  • the V-phase corresponds to the first phase
  • the U-phase corresponds to the second phase
  • the teeth T4 and T13 correspond to the first teeth
  • the teeth T3 and T12 correspond to the second teeth
  • the teeth T2 and T11 correspond to the third teeth.
  • the W phase coil bodies Wa +, Wb ⁇ , and Wc + are used as the first phase coil bodies
  • the W phase corresponds to the first phase
  • the V phase corresponds to the second phase
  • the teeth T7 and T16 correspond to the first teeth
  • the teeth T6 and T15 correspond to the second teeth
  • the teeth T5 and T14 correspond to the third teeth.
  • the coil bodies of each phase are arranged twice rotationally symmetrically with the axis of the rotating shaft 11 as the center. That is, even if the coil body is rotated by 180 degrees around the axis, the order of arrangement of the coils is the same.
  • the teeth T9 and T18 which are the second teeth, are provided with the main windings U23- and U21- and the slave windings W16 + and W13 +, and the main windings U23- and U21-
  • the phase difference between the magnetomotive force and the magnetomotive force of the slave windings W16 + and W13 + is 60 degrees in terms of electric angle, respectively.
  • teeth T8 and T17 which are the third teeth, are provided with the main windings W22- and 24- and the slave windings U14 + and U11 +, and the magnetomotive force of the main windings W22- and 24- and the slave windings U14 +,
  • the phase difference between the U11 + and the magnetomotive force is 60 degrees in terms of electrical angle.
  • Ne 0.74: 0.39
  • Nd 11: 6 is set.
  • the number of turns may be set within the range of 1.8 ⁇ Nd / Ne ⁇ 2.0.
  • the number of turns of a single winding is "Nf"
  • the magnetomotive force of the coil body Ua + is the same by the same reasoning as in the fifth embodiment, and the position is higher than that of the coil body Ua +.
  • a U-phase coil body Ub ⁇ having a phase difference “ ⁇ 1” of 20 + 180 degrees is configured.
  • a U-phase coil body Uc + having the same magnetomotive force of the coil body Ua + and having a phase difference “ ⁇ 2” of 40 degrees with respect to the coil body Ua + is configured.
  • the V-phase coil body and the W-phase coil body are also set in the same manner.
  • each phase difference " ⁇ 1" of the magnetomotive force of the coil bodies Ub, Vb, Wb with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 20 + 180 n degrees.
  • the phase difference " ⁇ 2" of the magnetomotive forces of the coil bodies Uc, Vc, and Wc with respect to the magnetomotive force of the coil bodies Ua, Va, and Wa can be set to 40 + 180 n degrees. Therefore, the 6th and 12th harmonic components can be suppressed and the torque ripple can be suppressed as in the 5th embodiment.
  • each single winding wound around the teeth T1, T4, T7, T10, T13, and T16 as the first teeth is arranged next to the third teeth. It is connected to the slave winding that is wound around the tooth.
  • the single winding U12 + of the teeth T1 is connected to the slave winding U11 + of the teeth T17 and the slave winding U13 + of the teeth T3.
  • the main windings provided in the teeth T3, T6, T9, T12, T15, and T18 as the second teeth are the teeth T2, T5 as the third teeth arranged two adjacent to the teeth. It is connected to the main windings provided in T8, T11, T14, and T17.
  • the main winding U21- of the teeth T18 is connected to the main winding U22-of the teeth T2.
  • a part of the configuration of the fifth embodiment may be changed as follows. Hereinafter, only different parts will be described based on the configuration of the fifth embodiment.
  • the rotor 40 has 20 magnetic poles (that is, the number of magnetic pole pairs is 8). That is, it has 20 permanent magnets 42.
  • the stator winding 32 of each phase is composed of 10 partial windings.
  • the partial windings of each phase are connected in series. One end of these series connectors is connected to the neutral point Q, and the other end is connected to leader wires A1, B1, and C1 connected to the inverter circuit 51, respectively.
  • Y connection star connection
  • delta connection may be used.
  • the teeth T1 to T18 as shown in FIGS. 22 and 23.
  • the coil body of each phase is formed.
  • the U phase corresponds to the first phase
  • the W phase corresponds to the second phase.
  • the teeth T1 and T10 correspond to the first teeth
  • the teeth T2 and T11 correspond to the second teeth
  • the teeth T3 and T12 correspond to the third teeth.
  • the V-phase coil bodies Va +, Vb-, and Vc + are used as the first-phase coil bodies
  • the V-phase corresponds to the first phase
  • the U-phase corresponds to the second phase
  • the teeth T7 and T16 correspond to the first teeth
  • the teeth T8 and T17 correspond to the second teeth
  • the teeth T9 and T18 correspond to the third teeth.
  • the W phase coil bodies Wa +, Wb ⁇ , and Wc + are used as the first phase coil bodies
  • the W phase corresponds to the first phase
  • the V phase corresponds to the second phase
  • the teeth T4 and T13 correspond to the first teeth
  • the teeth T5 and T14 correspond to the second teeth
  • the teeth T6 and T15 correspond to the third teeth.
  • the coil bodies of each phase are arranged twice rotationally symmetrically with the axis of the rotating shaft 11 as the center. That is, even if the coil body is rotated by 180 degrees around the axis, the order of arrangement of the coils is the same.
  • the teeth T2 and T11 which are the second teeth, are provided with the main windings U22- and U24- and the slave windings W14 + and W11 +, and the magnetomotive force of the main windings U22- and U24- and the slave windings W14 +,
  • the phase difference from the magnetomotive force of W11 + is 60 degrees in terms of electrical angle.
  • the teeth T3 and T12 which are the third teeth, are provided with the main windings W23- and W21- and the slave windings U13 + and U16 +, and the magnetomotive force of the main windings W23- and W21- and the slave windings U13 +,.
  • the phase difference between the U16 + and the magnetomotive force is 60 degrees in terms of electrical angle.
  • Ne 0.74: 0.39
  • Nd 11: 6 is set.
  • the number of turns may be set within the range of 1.8 ⁇ Nd / Ne ⁇ 2.0.
  • the number of turns of a single winding is "Nf"
  • the magnetomotive force of the coil body Ua + is the same by the same reasoning as in the fifth embodiment, and the position is higher than that of the coil body Ua +.
  • a U-phase coil body Ub ⁇ having a phase difference “ ⁇ 1” of 20 + 180 degrees is configured.
  • a U-phase coil body Uc + having the same magnetomotive force of the coil body Ua + and having a phase difference “ ⁇ 2” of 40 degrees with respect to the coil body Ua + is configured.
  • the V-phase coil body and the W-phase coil body are also configured in the same manner.
  • each phase difference " ⁇ 1" of the magnetomotive force of the coil bodies Ub, Vb, Wb with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 20 + 180 n degrees.
  • the phase difference " ⁇ 2" of the magnetomotive forces of the coil bodies Uc, Vc, and Wc with respect to the magnetomotive force of the coil bodies Ua, Va, and Wa can be set to 40 + 180 n degrees. Therefore, the 6th and 12th harmonic components can be suppressed and the torque ripple can be suppressed as in the 5th embodiment.
  • each single winding wound around the teeth T1, T4, T7, T10, T13, and T16 as the first teeth is formed on the teeth arranged next to each other. It is connected to the provided slave winding.
  • the single winding U12 + of the teeth T1 is connected to the slave winding U11 + of the teeth T17 and the slave winding U13 + of the teeth T3.
  • the main windings provided in the teeth T3, T6, T9, T12, T15, and T18 as the third teeth are the teeth T2, T5 as the second teeth arranged two adjacent to the teeth. It is connected to the main windings provided in T8, T11, T14, and T17.
  • the main winding U21- of the teeth T18 is connected to the main winding U22-of the teeth T2.
  • partial windings are arranged for each teeth T1 to T18 to form a coil body of each phase. That is, each slave winding in the first embodiment was omitted, and the main winding was changed to a single winding.
  • the U phase corresponds to the first phase and the W phase corresponds to the first phase.
  • the teeth T1 and T10 correspond to the first teeth
  • the teeth T5 and T14 correspond to the second teeth
  • the teeth T9 and T18 correspond to the third teeth.
  • the V phase corresponds to the first phase and the U phase.
  • the teeth T7 and T16 correspond to the first teeth
  • the teeth T2 and T11 correspond to the second teeth
  • the teeth T6 and T15 correspond to the third teeth.
  • the W phase corresponds to the first phase and the V phase.
  • the teeth T4 and T13 correspond to the first teeth
  • the teeth T8 and T17 correspond to the second teeth
  • the teeth T3 and T12 correspond to the third teeth.
  • the coil bodies of each phase are arranged twice rotationally symmetrically with respect to the axis of the rotating shaft 11.
  • the phase difference between the magnetomotive forces of the two coils provided in the teeth T3, T6, T9, T12, T15, and T18 as the third teeth is set to 60 degrees in terms of electrical angle.
  • each phase difference " ⁇ 2" of the magnetomotive force of the coil bodies Uc, Vc, Wc with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 30 degrees or 210 degrees. Therefore, it is possible to suppress torque ripple as compared with the case where there is no phase difference.
  • the number and arrangement of partial windings can be simplified as compared with the first embodiment.
  • the number of magnetic poles is set to "14" and the number of slots 35 is set to "18". That is, the number of magnetic poles was (18 ⁇ 4) ⁇ m (m is an integer of 1 or more), and the number of slots was 18 ⁇ m. As a result, the electromagnetic force can be balanced around the axis.
  • each of the same windings wound around the teeth T3, T6, T9, T12, T15, and T18 as the third tooth is provided on the tooth next to the third tooth. It is connected to the winding.
  • the crossover for connecting the slots 35 can be shortened, the connection can be facilitated, and the size can be reduced.
  • partial windings are arranged for each teeth T1 to T18 to form a coil body of each phase. That is, each slave winding in the second embodiment was omitted, and the main winding was changed to a single winding.
  • the U phase corresponds to the first phase and the W phase corresponds to the first phase.
  • the V phase corresponds to the first phase and the U phase.
  • the second phase corresponds to the second phase.
  • the W phase corresponds to the first phase and the V phase. Corresponds to the second phase.
  • the coil bodies of each phase are arranged twice rotationally symmetrically about the axis of the rotating shaft 11.
  • the phase difference between the magnetomotive forces of the two coils provided in the teeth T2, T5, T8, T11, T14, and T17 as the third teeth is set to 60 degrees in terms of electrical angle.
  • each phase difference " ⁇ 2" of the magnetomotive force of the coil bodies Uc, Vc, Wc with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 30 degrees or 210 degrees. Therefore, it is possible to suppress torque ripple as compared with the case where there is no phase difference.
  • the number and arrangement of partial windings can be simplified as compared with the second embodiment.
  • the number of magnetic poles is set to "22" and the number of slots 35 is set to "18". That is, the number of magnetic poles was (18 ⁇ 4) ⁇ m (m is an integer of 1 or more), and the number of slots was 18 ⁇ m. As a result, the electromagnetic force can be balanced around the axis.
  • the same windings wound around the teeth T2, T5, T8, T11, T14, and T17 as the third teeth are provided on the teeth next to the teeth. It is connected to a single winding.
  • the crossover for connecting the slots 35 can be shortened, the connection can be facilitated, and the size can be reduced.
  • partial windings are arranged for each teeth T1 to T18 to form a coil body of each phase. That is, each slave winding in the third embodiment was omitted, and the main winding was changed to a single winding.
  • the U-phase coil bodies Ua +, Ub-, and Uc + are used as the first-phase coil bodies
  • the U-phase corresponds to the first phase
  • the W-phase corresponds to the second phase
  • the V-phase corresponds to the first phase
  • the U-phase corresponds to the second phase
  • the W phase corresponds to the first phase
  • the V phase corresponds to the second phase.
  • the coil bodies of each phase are arranged twice rotationally symmetrically about the axis of the rotating shaft 11.
  • the phase difference between the magnetomotive forces of the two coils provided in the teeth T2, T5, T8, T11, T14, and T17 as the third teeth is set to 60 degrees in terms of electrical angle.
  • each phase difference " ⁇ 2" of the magnetomotive force of the coil bodies Uc, Vc, Wc with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 30 degrees or 210 degrees. Therefore, it is possible to suppress torque ripple as compared with the case where there is no phase difference.
  • the number and arrangement of partial windings can be simplified as compared with the third embodiment. Then, as shown in FIGS. 28 and 29, the same windings wound around the teeth T2, T5, T8, T11, T14, and T17 as the third teeth are provided on the teeth next to the teeth. It is connected to a single winding. As a result, at the coil end, the crossover for connecting the slots 35 can be shortened, the connection can be facilitated, and the size can be reduced.
  • a part of the configuration of the fourth embodiment may be changed as follows. Hereinafter, only different parts will be described based on the configuration of the fourth embodiment.
  • partial windings are arranged for each teeth T1 to T18 to form a coil body of each phase. That is, each slave winding in the fourth embodiment was omitted, and the main winding was changed to a single winding.
  • the U-phase coil bodies Ua +, Ub-, and Uc + are used as the first-phase coil bodies
  • the U-phase corresponds to the first phase
  • the W-phase corresponds to the second phase
  • the V-phase corresponds to the first phase
  • the U-phase corresponds to the second phase
  • the W phase corresponds to the first phase
  • the V phase corresponds to the second phase.
  • the coil bodies of each phase are arranged twice rotationally symmetrically with respect to the axial center of the rotating shaft 11.
  • the phase difference between the magnetomotive forces of the two coils provided in the teeth T3, T6, T9, T12, T15, and T18 as the third teeth is set to 60 degrees in terms of electrical angle.
  • each phase difference " ⁇ 2" of the magnetomotive force of the coil bodies Uc, Vc, Wc with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 30 degrees or 210 degrees. Therefore, it is possible to suppress torque ripple as compared with the case where there is no phase difference.
  • each of the same windings wound around the teeth T3, T6, T9, T12, T15, and T18 as the third teeth is provided on the teeth next to the teeth. It is connected to a single winding.
  • the crossover for connecting the slots 35 can be shortened, the connection can be facilitated, and the size can be reduced.
  • the circuit is realized by one inverter circuit 51, but the circuit may be configured by using two inverter circuits.
  • the partial winding U1 * ⁇ , V1 * ⁇ , W1 * ⁇ (“*” is any number from 1 to 6) is connected to the first inverter circuit
  • the partial winding U2 * ⁇ , V2 * ⁇ , W2 * ⁇ (“*” is any number from 1 to 6) may be configured to be connected to the second inverter circuit.
  • leader wires A1, B1, C1, A2, B2, C2 of the stator windings 32 of each phase may be arranged. That is, the leader lines A1, B1, C1, A2, B2, and C2 may be arranged so that their phases are symmetrical with respect to the axis of the rotation axis 11. As a result, the leakage flux generated from the leader lines A1, B1, C1, A2, B2, and C2 can be balanced and canceled, so that the detection error of the angle sensor 12 can be suppressed.
  • the stator windings 32 of each phase have partial windings connected in series, but partial windings may be connected in parallel.
  • the partial windings U1 * ⁇ , V1 * ⁇ , W1 * ⁇ (“*” is any number from 1 to 6) are connected in series, and the partial windings U2 * ⁇ , V2 * ⁇ , W2 * ⁇ (“*” is any number from 1 to 6) may be connected in series, and the series connectors may be connected in parallel.
  • the phase difference between the main winding and the slave winding and the phase difference between the same windings are set to 60 degrees in the electric angle, but the electric angle is in the range of 52 degrees to 68 degrees. It may be set as such.
  • the number of magnetic poles and the number of slots may be changed.
  • the number of magnetic poles in the field portion may be (18 ⁇ 4) ⁇ m (m is an integer of 1 or more), and the number of slots between teeth may be 18 ⁇ m.
  • the number of magnetic poles in the field portion may be (18 ⁇ 2) ⁇ Q (Q is an integer of 1 or more), and the number of slots between teeth may be 18 ⁇ Q.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

In the present invention, a dynamo-electric machine (10) has: first teeth in which a coil of the first of three phases is provided by having an armature winding (32) of the first phase be wound, and having the armature winding of the second of the three phases be wound fewer times than the number of windings of the armature winding of the first phase; second teeth in which the coil of the first phase is provided by having the armature winding of the first phase be wound, and the armature winding of the third of the three phases be wound fewer times than the number of windings of the armature winding of the first phase; and third teeth in which the coil of the first phase is provided by having the armature winding of the first phase and the armature winding of the third phase being wound in the same manner. The phase difference between the magnetomotive force of a partial winding of the first phase provided by having the armature winding of the first phase be wound on the third teeth and the magnetomotive force of a partial winding of the third phase provided by having the armature winding of the third phase be wound on the third teeth is within the range of 52 to 68 degrees in terms of the electrical angle.

Description

回転電機Rotating machine 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年7月6日に出願された日本出願番号2020-116575号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese application number 2020-116575 filed on July 6, 2020, and the contents of the description are incorporated herein by reference.
 本開示は、回転電機に関するものである。 This disclosure relates to a rotary electric machine.
 従来、3相電流が第1のインバータから供給される第1の電機子巻線と、3相電流が第2のインバータから供給される第2の電機子巻線と、を備える回転電機が知られている。このような回転電機では、第1のインバータと第2のインバータとの間で電流位相差が生じると、電機子巻線によって回転子と固定子との間の空隙に生じる電磁場を空間的にアンバランスとなり、トルクリプルが生じる可能性がある。 Conventionally, a rotary electric machine having a first armature winding in which a three-phase current is supplied from a first inverter and a second armature winding in which a three-phase current is supplied from a second inverter is known. Has been done. In such a rotary electric machine, when a current phase difference occurs between the first inverter and the second inverter, the electromagnetic field generated in the gap between the rotor and the stator due to the armature winding is spatially unannounced. It will be balanced and torque ripple may occur.
 このため、特許文献1の回転電機は、第1の電機子巻線及び第2の電機子巻線がティースに巻回されることにより形成されるコイル体と、第1の電機子巻線がティースに巻回されることにより形成されるコイル体と、第2の電機子巻線がティースに巻回されることにより形成されるコイル体と、を備えるとともに、軸心を中心に各コイル体を、2n回回転対称に配置している。 Therefore, in the rotary electric machine of Patent Document 1, the coil body formed by winding the first armature winding and the second armature winding around the teeth and the first armature winding are included. It includes a coil body formed by winding around a tooth and a coil body formed by winding a second armature winding around a tooth, and each coil body is centered on an axial center. Are arranged 2n times rotationally symmetrically.
 これにより、電流位相差が生じた場合であっても、回転子と固定子との間の空隙に生じる電磁場を空間的にバランスさせ、トルクリプルを抑制させることができる。このため、振動や騒音を抑制することができる。 As a result, even when a current phase difference occurs, the electromagnetic field generated in the gap between the rotor and the stator can be spatially balanced and torque ripple can be suppressed. Therefore, vibration and noise can be suppressed.
特許第5905176号公報Japanese Patent No. 5905176
 このような回転電機では、さらなる振動や騒音の抑制が要求されており、その要求に対して未だ技術的な改善の余地があると考えられる。 In such a rotary electric machine, further suppression of vibration and noise is required, and it is considered that there is still room for technical improvement in response to the demand.
 本開示は、上記事情に鑑みてなされたものであり、振動や騒音を抑制することができる回転電機を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a rotary electric machine capable of suppressing vibration and noise.
 上記課題を解決するための第1の手段は、周方向に極性が交互となる複数の磁極を有する界磁部と、多相の電機子巻線を有する電機子と、を備える回転電機において、前記電機子巻線には、インバータから3相の電流が供給され、前記電機子は、前記3相のうち第1相の前記電機子巻線が巻回されるとともに、第2相の前記電機子巻線が、当該第1相の前記電機子巻線の巻回数よりも少なく巻回されることにより、前記第1相のコイル体が設けられる第1ティースと、前記3相のうち第1相の前記電機子巻線が巻回されるとともに、第3相の前記電機子巻線が、当該第1相の前記電機子巻線の巻回数よりも少なく巻回されることにより、前記第1相のコイル体が設けられる第2ティースと、前記3相のうち第1相の前記電機子巻線と、第3相の前記電機子巻線とが、同様に巻回されることにより、前記第1相のコイル体が設けられる第3ティースと、を有し、前記第3ティースに第1相の前記電機子巻線が巻回されて設けられる第1相の部分巻線の起磁力と、当該第3ティースに第3相の前記電機子巻線が巻回されて設けられる第3相の部分巻線の起磁力との位相差が、電気角で52度~68度の範囲内となるように設定されている。 A first means for solving the above problems is in a rotary electric machine including a field portion having a plurality of magnetic poles having alternating polarities in the circumferential direction and an armature having a multi-phase armature winding. A three-phase current is supplied to the armature winding from the inverter, and the armature is wound around the armature winding of the first phase of the three phases and the armature of the second phase. The child winding is wound less than the number of turns of the armature winding of the first phase, so that the first tooth provided with the coil body of the first phase and the first of the three phases. The armature winding of the phase is wound, and the armature winding of the third phase is wound less than the number of turns of the armature winding of the first phase. The second tooth provided with the one-phase coil body, the armature winding of the first phase of the three phases, and the armature winding of the third phase are wound in the same manner. It has a third tooth to which the coil body of the first phase is provided, and the electromotive force of the partial winding of the first phase provided by winding the armature winding of the first phase around the third tooth. And the phase difference from the electromotive force of the third phase partial winding provided by winding the third phase armature winding around the third tooth is within the range of 52 degrees to 68 degrees in terms of electrical angle. It is set to be.
 これにより、高調波成分を打ち消して、トルクリプルを抑制し、振動や騒音を抑制することができる。 This makes it possible to cancel harmonic components, suppress torque ripple, and suppress vibration and noise.
 上記課題を解決するための第2の手段は、周方向に極性が交互となる複数の磁極を有する界磁部と、多相の電機子巻線を有する電機子と、を備える回転電機において、前記電機子巻線には、インバータから3相の電流が供給され、前記電機子は、前記3相のうち第1相の前記電機子巻線が巻回される第1ティースと、前記3相のうち第1相の前記電機子巻線が巻回されるとともに、第2相の前記電機子巻線が、当該第1相の前記電機子巻線の巻回数よりも少なく巻回される第2ティースと、前記3相のうち第2相の前記電機子巻線が巻回されるとともに、第1相の前記電機子巻線が、当該第2相の前記電機子巻線の巻回数よりも少なく巻回される第3ティースと、を有し、前記第2ティース又は前記第3ティースに対して、第1相の前記電機子巻線が巻回されて設けられる第1相の部分巻線の起磁力と、第2相の前記電機子巻線が巻回されて設けられる第2相の部分巻線の起磁力との位相差が、電気角で52度~68度の範囲内となるように設定されている。 A second means for solving the above problems is in a rotary electric machine provided with a field portion having a plurality of magnetic poles having alternating polarities in the circumferential direction and an armature having a multi-phase armature winding. A three-phase current is supplied to the armature winding from the inverter, and the armature includes the first tooth around which the armature winding of the first phase of the three phases is wound and the three-phase. Of these, the armature winding of the first phase is wound, and the armature winding of the second phase is wound less than the number of turns of the armature winding of the first phase. Two teeth and the armature winding of the second phase of the three phases are wound, and the armature winding of the first phase is based on the number of turns of the armature winding of the second phase. It has a third tooth that is wound less, and a partial winding of the first phase provided by winding the armature winding of the first phase with respect to the second tooth or the third tooth. The phase difference between the electromotive force of the wire and the electromotive force of the second phase partial winding provided by winding the second phase armature winding is within the range of 52 degrees to 68 degrees in terms of electrical angle. It is set to be.
 これにより、高調波成分を打ち消して、トルクリプルを抑制し、振動や騒音を抑制することができる。 This makes it possible to cancel harmonic components, suppress torque ripple, and suppress vibration and noise.
 上記課題を解決するための第3の手段は、周方向に極性が交互となる複数の磁極を有する界磁部と、多相の電機子巻線を有する電機子と、を備える回転電機において、前記電機子巻線には、インバータから3相の電流が供給され、前記電機子は、前記3相のうち第1相の前記電機子巻線が巻回される第1ティースと、前記3相のうち第1相の前記電機子巻線が巻回される第2ティースと、前記3相のうち第1相の前記電機子巻線と、第2相の前記電機子巻線とが、同様に巻回される第3ティースと、を有し、前記第3ティースに第1相の前記電機子巻線が巻回されて設けられる第1相の部分巻線の起磁力と、当該第3ティースに第2相の前記電機子巻線が巻回されて設けられる第2相の部分巻線の起磁力との位相差が、電気角で52度~68度の範囲内となるように設定されている。 A third means for solving the above problems is in a rotary electric machine including a field portion having a plurality of magnetic poles having alternating polarities in the circumferential direction and an armature having a multi-phase armature winding. A three-phase current is supplied to the armature winding from the inverter, and the armature includes the first tooth around which the armature winding of the first phase of the three phases is wound and the three-phase. The second teeth around which the armature winding of the first phase is wound, the armature winding of the first phase of the three phases, and the armature winding of the second phase are the same. The third tooth is wound around the third tooth, and the armature winding of the first phase is wound around the third tooth to provide an armature winding of the first phase. The phase difference from the electromotive force of the second phase partial winding provided by winding the second phase armature winding on the tooth is set to be within the range of 52 degrees to 68 degrees in terms of electric angle. Has been done.
 これにより、高調波成分を打ち消して、トルクリプルを抑制し、振動や騒音を抑制することができる。 This makes it possible to cancel harmonic components, suppress torque ripple, and suppress vibration and noise.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、モータを示す縦断面図であり、 図2は、モータを示す横断面図であり、 図3は、制御装置の電気的構成を示す図であり、 図4は、部分巻線の配置を示す図であり、 図5は、固定子巻線を示す図であり、 図6は、トルクの高調波成分を示す図であり、 図7は、(a)~(c)は、起磁力を示すベクトル図であり、 図8は、電磁力の変動を示す図であり、 図9は、第2実施形態の部分巻線の配置を示す図であり、 図10は、第2実施形態のモータを示す横断面図であり、 図11は、第3実施形態の部分巻線の配置を示す図であり、 図12は、第3実施形態のモータを示す横断面図であり、 図13は、第4実施形態の部分巻線の配置を示す図であり、 図14は、第4実施形態のモータを示す横断面図であり、 図15は、第5実施形態の部分巻線の配置を示す図であり、 図16は、第5実施形態のモータを示す横断面図であり、 図17は、第5実施形態の(a)~(c)は、起磁力を示すベクトル図であり、 図18は、第6実施形態の部分巻線の配置を示す図であり、 図19は、第6実施形態のモータを示す横断面図であり、 図20は、第7実施形態の部分巻線の配置を示す図であり、 図21は、第7実施形態のモータを示す横断面図であり、 図22は、第8実施形態の部分巻線の配置を示す図であり、 図23は、第8実施形態のモータを示す横断面図であり、 図24は、第9実施形態の部分巻線の配置を示す図であり、 図25は、第9実施形態のモータを示す横断面図であり、 図26は、第10実施形態の部分巻線の配置を示す図であり、 図27は、第10実施形態のモータを示す横断面図であり、 図28は、第11実施形態の部分巻線の配置を示す図であり、 図29は、第11実施形態のモータを示す横断面図であり、 図30は、第12実施形態の部分巻線の配置を示す図であり、 図31は、第12実施形態のモータを示す横断面図であり、 図32は、引き出し線の位置を示す図である。
The above objectives and other objectives, features and advantages of the present disclosure will be further clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a vertical sectional view showing a motor. FIG. 2 is a cross-sectional view showing a motor. FIG. 3 is a diagram showing the electrical configuration of the control device. FIG. 4 is a diagram showing the arrangement of partial windings. FIG. 5 is a diagram showing a stator winding. FIG. 6 is a diagram showing harmonic components of torque. 7 (a) to 7 (c) are vector diagrams showing the magnetomotive force. FIG. 8 is a diagram showing fluctuations in electromagnetic force. FIG. 9 is a diagram showing the arrangement of the partial windings of the second embodiment. FIG. 10 is a cross-sectional view showing the motor of the second embodiment. FIG. 11 is a diagram showing the arrangement of the partial windings of the third embodiment. FIG. 12 is a cross-sectional view showing the motor of the third embodiment. FIG. 13 is a diagram showing the arrangement of the partial windings of the fourth embodiment. FIG. 14 is a cross-sectional view showing the motor of the fourth embodiment. FIG. 15 is a diagram showing the arrangement of the partial windings of the fifth embodiment. FIG. 16 is a cross-sectional view showing the motor of the fifth embodiment. 17A and 17B are vector diagrams showing the magnetomotive force of the fifth embodiment. FIG. 18 is a diagram showing the arrangement of the partial windings of the sixth embodiment. FIG. 19 is a cross-sectional view showing the motor of the sixth embodiment. FIG. 20 is a diagram showing the arrangement of the partial windings of the seventh embodiment. FIG. 21 is a cross-sectional view showing the motor of the seventh embodiment. FIG. 22 is a diagram showing the arrangement of the partial windings of the eighth embodiment. FIG. 23 is a cross-sectional view showing the motor of the eighth embodiment. FIG. 24 is a diagram showing the arrangement of the partial windings of the ninth embodiment. FIG. 25 is a cross-sectional view showing the motor of the ninth embodiment. FIG. 26 is a diagram showing the arrangement of the partial windings of the tenth embodiment. FIG. 27 is a cross-sectional view showing the motor of the tenth embodiment. FIG. 28 is a diagram showing the arrangement of the partial windings of the eleventh embodiment. FIG. 29 is a cross-sectional view showing the motor of the eleventh embodiment. FIG. 30 is a diagram showing the arrangement of the partial windings of the twelfth embodiment. FIG. 31 is a cross-sectional view showing the motor of the twelfth embodiment. FIG. 32 is a diagram showing the position of the leader line.
 (第1実施形態)
 以下、各実施形態を図面に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。第1実施形態では、回転電機としてのモータ10を例示して説明する。
(First Embodiment)
Hereinafter, each embodiment will be described with reference to the drawings. In each of the following embodiments, the parts that are the same or equal to each other are designated by the same reference numerals, and the description thereof will be used for the parts having the same reference numerals. In the first embodiment, the motor 10 as a rotary electric machine will be illustrated and described.
 図1に示すモータ10は、永久磁石界磁型のものであり、具体的には3相巻線を有する永久磁石界磁型同期機である。つまり、モータ10は、ブラシレスモータである。モータ10は、ハウジング20と、ハウジング20に固定される固定子30と、固定子30に対して回転する回転子40と、回転子40が固定される回転軸11と、を備える。以下、本実施形態において、軸方向とは、回転軸11の軸方向のことを示す(図において矢印Y1で示す)。径方向とは、回転軸11の径方向のことを示す(図において矢印Y2で示す)。周方向とは、回転軸11の周方向のことを示す(図において矢印Y3で示す)。 The motor 10 shown in FIG. 1 is a permanent magnet field type synchronous machine, specifically, a permanent magnet field type synchronous machine having a three-phase winding. That is, the motor 10 is a brushless motor. The motor 10 includes a housing 20, a stator 30 fixed to the housing 20, a rotor 40 rotating with respect to the stator 30, and a rotating shaft 11 to which the rotor 40 is fixed. Hereinafter, in the present embodiment, the axial direction means the axial direction of the rotating shaft 11 (indicated by an arrow Y1 in the figure). The radial direction indicates the radial direction of the rotating shaft 11 (indicated by an arrow Y2 in the figure). The circumferential direction indicates the circumferential direction of the rotating shaft 11 (indicated by an arrow Y3 in the figure).
 ハウジング20は、円筒形状に形成されており、ハウジング20内には、固定子30及び回転子40等が収容されている。ハウジング20には、軸受け23,24が設けられており、この軸受け23,24により回転軸11が回転自在に支持されている。ハウジング20の内周面の軸心は、回転軸11と同軸となっている。回転軸11の先端側には、角度センサ12が設けられている。角度センサ12は、磁気センサでもレゾルバでもよい。 The housing 20 is formed in a cylindrical shape, and the stator 30 and the rotor 40 are housed in the housing 20. Bearings 23 and 24 are provided in the housing 20, and the rotating shaft 11 is rotatably supported by the bearings 23 and 24. The axis of the inner peripheral surface of the housing 20 is coaxial with the rotating shaft 11. An angle sensor 12 is provided on the tip end side of the rotating shaft 11. The angle sensor 12 may be a magnetic sensor or a resolver.
 固定子30は、ハウジング20の軸方向略中央において、ハウジング20の内周に沿って円筒状に設けられている。そして、固定子30は、回転軸11の軸心Oを中心にして、ハウジング20の内周面に固定されている。固定子30は、磁気回路の一部を構成するものであり、円環状をなし回転子40の外周側において径方向に対向して配置される固定子鉄心31(電機子鉄心、電機子コア、ステータコア)と、固定子鉄心31に巻回された固定子巻線32(電機子巻線、アーマチャコイル)とを有している。 The stator 30 is provided in a cylindrical shape along the inner circumference of the housing 20 at substantially the center of the housing 20 in the axial direction. The stator 30 is fixed to the inner peripheral surface of the housing 20 with the axis O of the rotating shaft 11 as the center. The stator 30 constitutes a part of a magnetic circuit, and has an annular shape, and the stator core 31 (armature core, armature core, etc.) arranged so as to face each other in the radial direction on the outer peripheral side of the rotor 40. It has a stator core) and a stator winding 32 (armature winding, armature coil) wound around a stator core 31.
 図2に示すように、固定子鉄心31は、円環状のバックヨーク33と、バックヨーク33から径方向から回転軸11に向かって突出し、周方向に並べて配列された複数のティースT1~T18とを有し、隣り合うティースT1~T18の間にスロット35(ステータスロット)が形成されている。 As shown in FIG. 2, the stator core 31 includes an annular back yoke 33 and a plurality of teeth T1 to T18 protruding from the back yoke 33 in the radial direction toward the rotation axis 11 and arranged side by side in the circumferential direction. A slot 35 (status lot) is formed between the adjacent teeth T1 to T18.
 固定子鉄心31においてスロット35は周方向に並べて設けられ、そのスロット35に固定子巻線32が配置されるように、ティースT1~T18に固定子巻線32が巻回される。本実施形態では、ティースT1~T18の数を「18」とし、スロット35の数を「18」としている。説明の都合上、各ティースT1~T18には、周方向の配列順で反時計回りに符号T1~18を付する。固定子巻線32は、当該スロット35に収容され保持されている。そして、固定子巻線32は、電力(交流電力)が供給されることで磁束を発生する。 Slots 35 are provided side by side in the circumferential direction in the stator core 31, and the stator windings 32 are wound around the teeth T1 to T18 so that the stator windings 32 are arranged in the slots 35. In the present embodiment, the number of teeth T1 to T18 is "18", and the number of slots 35 is "18". For convenience of explanation, each of the teeth T1 to T18 is designated by the reference numerals T1 to 18 counterclockwise in the order of arrangement in the circumferential direction. The stator winding 32 is housed and held in the slot 35. Then, the stator winding 32 generates a magnetic flux by being supplied with electric power (AC power).
 固定子鉄心31は、円環状をなす複数の薄板状の磁性体である鋼板(コアシート)を、固定子鉄心31の軸方向に積層して形成された一体型のものである。鋼板は、帯状の電磁鋼板材をプレス打ち抜きすることで形成される。 The stator core 31 is an integrated type formed by laminating a plurality of thin plate-shaped magnetic steel plates (core sheets) forming an annular shape in the axial direction of the stator core 31. The steel plate is formed by pressing and punching a strip-shaped electromagnetic steel plate material.
 回転子40は、磁気回路の一部を構成するものであり、周方向に1又は複数対の磁極を有し、固定子30に対して径方向に対向するように配置される。本実施形態において、回転子40は、14個の(すなわち、磁極対数が7個となる)磁極を有する界磁部に相当する。回転子40は、磁性体からなる回転子鉄心41と、回転子鉄心41に固定される永久磁石42と、を備える。具体的には、図2に示すように、回転子40は、周方向に極性が交互となるように磁石部としての永久磁石42を14個備えており、回転子鉄心41に軸方向に沿って設けられた収容孔に永久磁石42が埋め込まれている。 The rotor 40 constitutes a part of a magnetic circuit, has one or a plurality of pairs of magnetic poles in the circumferential direction, and is arranged so as to face the stator 30 in the radial direction. In the present embodiment, the rotor 40 corresponds to a field portion having 14 (that is, 7 magnetic pole pairs) magnetic poles. The rotor 40 includes a rotor core 41 made of a magnetic material and a permanent magnet 42 fixed to the rotor core 41. Specifically, as shown in FIG. 2, the rotor 40 is provided with 14 permanent magnets 42 as magnet portions so that the polarities alternate in the circumferential direction, and the rotor 40 is provided along the axial direction with the rotor core 41. A permanent magnet 42 is embedded in the accommodating hole provided therein.
 回転子40は、周知の構成でよく、例えば、IPM型(Interior Permanent Magnet:埋め込み磁石型)の回転子であっても、SPM型(Surface Permanent Magnet:表面磁石側)の回転子であってもよい。また、回転子40として、界磁巻線側の回転子を採用してもよい。本実施形態では、IPM型の回転子を採用している。回転子40には、回転軸11が挿通され、回転軸11を中心にして回転軸11と一体回転するように回転軸11に固定されている。 The rotor 40 may have a well-known configuration, and may be, for example, an IPM type (Interior Permanent Magnet: embedded magnet type) rotor or an SPM type (Surface Permanent Magnet: surface magnet side) rotor. good. Further, as the rotor 40, a rotor on the field winding side may be adopted. In this embodiment, an IPM type rotor is adopted. A rotary shaft 11 is inserted through the rotor 40 and is fixed to the rotary shaft 11 so as to rotate integrally with the rotary shaft 11 around the rotary shaft 11.
 モータ10には、制御装置50が接続されている。制御装置50は、CPU、ROM、RAM及びI/O等を備えたマイクロコンピュータを主体として構成されており、CPUがROMに記憶されているプログラムを実行することにより、各種機能を実現する。なお、各種機能は、ハードウェアである電子回路によって実現されてもよく、あるいは、少なくとも一部をソフトウェア、すなわちコンピュータ上で実行される処理によって実現されてもよい。 A control device 50 is connected to the motor 10. The control device 50 is mainly composed of a microcomputer equipped with a CPU, ROM, RAM, I / O, etc., and the CPU realizes various functions by executing a program stored in the ROM. The various functions may be realized by electronic circuits that are hardware, or at least a part of them may be realized by software, that is, processing executed on a computer.
 制御装置50が備える機能としては、例えば、外部(例えばバッテリ)からの電力を変換し、モータ10に供給して駆動力を発生させる機能を有する。また、例えば、制御装置50は、角度センサ12から入力された回転角度に関する情報を利用して、モータ10の制御(電流制御など)を行う機能を備える。 The function of the control device 50 is, for example, a function of converting electric power from the outside (for example, a battery) and supplying it to the motor 10 to generate a driving force. Further, for example, the control device 50 has a function of controlling the motor 10 (current control, etc.) by using the information regarding the rotation angle input from the angle sensor 12.
 また、制御装置50には、図3に示すように、インバータ回路51が設けられている。インバータ回路51は、3相の相数と同数の上下アームを有するフルブリッジ回路により構成されている。制御装置50は、各アームに設けられたスイッチング素子のオンオフにより、各相における電流を制御する。 Further, as shown in FIG. 3, the control device 50 is provided with an inverter circuit 51. The inverter circuit 51 is composed of a full bridge circuit having the same number of upper and lower arms as the number of three phases. The control device 50 controls the current in each phase by turning on / off the switching element provided in each arm.
 詳しく説明すると、図3に示すように、インバータ回路51は、U相、V相及びW相からなる3相において、スイッチング素子としての上アームスイッチSpと下アームスイッチSnとの直列接続体をそれぞれ備えている。本実施形態では、各相における上アームスイッチSp及び下アームスイッチSnとして、電圧制御形の半導体スイッチング素子を用いており、具体的にはIGBTを用いている。なお、MOSFETを用いてもよい。各相における上アームスイッチSp及び下アームスイッチSnには、それぞれフリーホイールダイオード(還流ダイオード)Dp,Dnが逆並列に接続されている。 More specifically, as shown in FIG. 3, the inverter circuit 51 has a series connection body of an upper arm switch Sp and a lower arm switch Sn as switching elements in three phases consisting of a U phase, a V phase, and a W phase, respectively. I have. In the present embodiment, a voltage-controlled semiconductor switching element is used as the upper arm switch Sp and the lower arm switch Sn in each phase, and specifically, an IGBT is used. In addition, MOSFET may be used. Freewheel diodes (reflux diodes) Dp and Dn are connected in antiparallel to the upper arm switch Sp and the lower arm switch Sn in each phase, respectively.
 各相の上アームスイッチSpの高電位側端子(コレクタ)は、バッテリの正極端子に接続されている。また、各相の下アームスイッチSnの低電位側端子(エミッタ)は、バッテリの負極端子(グランド)に接続されている。各相の上アームスイッチSpと下アームスイッチSnとの間の中間接続点は、それぞれ固定子巻線32の一端(引出線A1,B1,C1)に接続されている。 The high potential side terminal (collector) of the upper arm switch Sp of each phase is connected to the positive electrode terminal of the battery. Further, the low potential side terminal (emitter) of the lower arm switch Sn of each phase is connected to the negative electrode terminal (ground) of the battery. The intermediate connection points between the upper arm switch Sp and the lower arm switch Sn of each phase are connected to one end (leader wires A1, B1, C1) of the stator winding 32, respectively.
 ところで、回転電機では、トルクリプルに基づく騒音や振動が問題となっている。トルクリプルは、主に6次高調波成分又は12次高調波成分が主要成分となるため、これらの抑制することが望ましい。そこで、固定子巻線32の巻回方法を次のように構成した。以下、固定子巻線32の巻回方法について詳しく説明する。 By the way, noise and vibration based on torque ripple are problems in rotary electric machines. Since the 6th harmonic component or the 12th harmonic component is the main component of the torque ripple, it is desirable to suppress these. Therefore, the winding method of the stator winding 32 is configured as follows. Hereinafter, the winding method of the stator winding 32 will be described in detail.
 固定子巻線32は、3相の各相をそれぞれ表すU相、V相、及びW相の固定子巻線32に分類される。図4及び図5に示すように、U相の固定子巻線32は、12個の部分巻線U11-,U12+,U13-,U14+,U15-,U16+,U21+,U22-,U23+,U24-,U25+,U26-により構成されている。これらのU相の部分巻線は、直列に接続されている。V相の固定子巻線32は、12個の部分巻線V11-,V12+,V13-,V14+,V15-,V16+,V21+,V22-,V23+,V24-,V25+,V26-により構成されている。これらのV相の部分巻線は、直列に接続されている。W相の固定子巻線32は、12個の部分巻線W11-,W12+,W13-,W14+,W15-,W16+,W21+,W22-,W23+,W24-,W25+,W26-により構成されている。これらのW相の部分巻線は、直列に接続されている。 The stator winding 32 is classified into U-phase, V-phase, and W-phase stator windings 32 that represent each of the three phases. As shown in FIGS. 4 and 5, the U-phase stator winding 32 has 12 partial windings U11-, U12 +, U13-, U14 +, U15-, U16 +, U21 +, U22-, U23 +, U24-. , U25 +, U26-. These U-phase partial windings are connected in series. The V-phase stator winding 32 is composed of 12 partial windings V11-, V12 +, V13-, V14 +, V15-, V16 +, V21 +, V22-, V23 +, V24-, V25 +, V26-. .. These V-phase partial windings are connected in series. The W-phase stator winding 32 is composed of 12 partial windings W11-, W12 +, W13-, W14 +, W15-, W16 +, W21 +, W22-, W23 +, W24-, W25 +, W26-. .. These W-phase partial windings are connected in series.
 これらの直列接続体は、一端が中性点Qに接続され、他端がインバータ回路51に接続される引出線A1,B1,C1にそれぞれ接続されている。なお、引出線A1には、U相の部分巻線が接続され、引出線B1には、V相の部分巻線が接続され、引出線C1には、W相の部分巻線が接続される。なお、本実施形態の固定子巻線32では、Y結線(スター結線)としているが、デルタ結線としてもよい。 One end of these series connectors is connected to the neutral point Q, and the other end is connected to leader lines A1, B1, and C1 connected to the inverter circuit 51, respectively. A U-phase partial winding is connected to the leader wire A1, a V-phase partial winding is connected to the leader wire B1, and a W-phase partial winding is connected to the leader wire C1. .. In the stator winding 32 of the present embodiment, Y connection (star connection) is used, but delta connection may be used.
 また、36個の部分巻線は、図2及び図4に示すように、各ティースT1~T18に対して固定子巻線32が巻回されることにより設けられている。例えば、ティースT1には、部分巻線U12+と、部分巻線V24-と、が設けられている。ティースT1において、部分巻線U12+は、部分巻線V24-に比較して巻回数が多くなっている。以下では、複数の部分巻線が設けられている各ティースT1~T18において、巻回数が多い部分巻線を単に主巻線と示し、巻回数が少ない部分巻線を単に従巻線と示す場合がある。ティースT1において、部分巻線U12+が主巻線であり、部分巻線V24-が従巻線である。 Further, as shown in FIGS. 2 and 4, the 36 partial windings are provided by winding the stator winding 32 around each of the teeth T1 to T18. For example, the teeth T1 is provided with a partial winding U12 + and a partial winding V24−. In the teeth T1, the partial winding U12 + has a larger number of turns than the partial winding V24−. In the following, in each of the teeth T1 to T18 provided with a plurality of partial windings, the partial winding having a large number of turns is simply referred to as a main winding, and the partial winding having a small number of turns is simply referred to as a slave winding. There is. In the teeth T1, the partial winding U12 + is the main winding, and the partial winding V24- is the slave winding.
 ティースT2には、主巻線V25+が設けられ、従巻線U13-が設けられている。ティースT3には、部分巻線W14+と部分巻線V26-とが設けられている。ティースT3に設けられている部分巻線W14+の巻回数は、部分巻線V26-の巻回数と同じである。以下では、主巻線や従巻線と区別するため、これらの部分巻線を同巻線と示す。以下、ティースT3~T18に設けられている各部分巻線は、図2及び図4に示す通りである。 The teeth T2 is provided with a main winding V25 + and a slave winding U13-. The teeth T3 is provided with a partial winding W14 + and a partial winding V26−. The number of turns of the partial winding W14 + provided on the teeth T3 is the same as the number of turns of the partial winding V26−. In the following, these partial windings are referred to as the same winding in order to distinguish them from the main winding and the slave winding. Hereinafter, each partial winding provided in the teeth T3 to T18 is as shown in FIGS. 2 and 4.
 各部分巻線において、「+」及び「-」の符号は、電流の向き、すなわち、部分巻線により生じる起磁力(界磁)の極性を示す。例えば、本実施形態の図2において、紙面手前側から奥側への電流の流れを「+」とした場合、奥側から手前側への電流の流れが「-」となる。つまり、固定子巻線32に電流が流れた場合、「+」の部分巻線と、「-」の部分巻線とは、径方向に反対となる起磁力が生じることを意味する。「+」の部分巻線と、「-」の部分巻線とは、電気角で180度の起磁力の位相差があるといえる。「+」の部分巻線と、「-」の部分巻線とは、巻き方を反対することにより実現できる。後述するコイル体の場合も同様に、コイル体により生じる起磁力(界磁)の極性を示す。 In each partial winding, the signs "+" and "-" indicate the direction of the current, that is, the polarity of the magnetomotive force (field) generated by the partial winding. For example, in FIG. 2 of the present embodiment, when the current flow from the front side to the back side of the paper is "+", the current flow from the back side to the front side is "-". That is, when a current flows through the stator winding 32, it means that a “+” partial winding and a “−” partial winding generate magnetomotive forces that are opposite in the radial direction. It can be said that the "+" partial winding and the "-" partial winding have a phase difference in magnetomotive force of 180 degrees in terms of electrical angle. The "+" partial winding and the "-" partial winding can be realized by reversing the winding method. Similarly, in the case of the coil body described later, the polarity of the magnetomotive force (field) generated by the coil body is shown.
 なお、各ティースT1~T18には、2個の部分巻線が径方向位置を異ならせて配置されている。部分巻線の径方向位置は、図2に示すとおりである必要はなく、入れ替えてもよい。 In each teeth T1 to T18, two partial windings are arranged at different radial positions. The radial position of the partial winding does not have to be as shown in FIG. 2, and may be replaced.
 そして、図4に示すように、ティースT1に、U相の主巻線U12+と、V相の従巻線V24-とが設けられていることにより、U相のコイル体Ua+が構成される。なお、部分巻線を組み合わせることによる各相のコイル体の構成方法については、後述する。また、ティースT10に、U相の主巻線U15-と、V相の従巻線V21+とが設けられていることにより、U相のコイル体Ua-が構成される。 Then, as shown in FIG. 4, the U-phase coil body Ua + is configured by providing the U-phase main winding U12 + and the V-phase slave winding V24- on the teeth T1. The method of constructing the coil body of each phase by combining the partial windings will be described later. Further, the teeth T10 is provided with the U-phase main winding U15− and the V-phase slave winding V21 +, thereby forming the U-phase coil body Ua−.
 また、ティースT14に、U相の主巻線U25+と、W相の従巻線W13-とが設けられていることにより、U相のコイル体Ub+が構成される。U相のコイル体Ub+は、U相のコイル体Ua+に対して所定の位相差を有するように構成されている。また、ティースT5に、U相の主巻線U22-と、W相の従巻線W16+とが設けられていることにより、U相のコイル体Ub-が構成される。 Further, since the teeth T14 is provided with the U-phase main winding U25 + and the W-phase slave winding W13-, the U-phase coil body Ub + is configured. The U-phase coil body Ub + is configured to have a predetermined phase difference with respect to the U-phase coil body Ua +. Further, the teeth T5 is provided with the U-phase main winding U22− and the W-phase slave winding W16 +, whereby the U-phase coil body Ub− is configured.
 また、ティースT9に、U相の同巻線U14+と、W相の同巻線W26-とが設けられていることにより、U相のコイル体Uc+が構成される。U相のコイル体Uc+は、U相のコイル体Ua+に対して所定の位相差を有するように構成されている。また、ティースT18に、U相の同巻線U11-と、W相の同巻線W23+とが設けられていることにより、U相のコイル体Uc-が構成される。 Further, the teeth T9 is provided with the U-phase same winding U14 + and the W-phase same winding W26-, so that the U-phase coil body Uc + is configured. The U-phase coil body Uc + is configured to have a predetermined phase difference with respect to the U-phase coil body Ua +. Further, the teeth T18 is provided with the U-phase same winding U11− and the W-phase same winding W23 +, whereby the U-phase coil body Uc− is configured.
 本実施形態において、U相のコイル体Ua+,Ua-,Ub+,Ub-,Uc+,Uc-を第1相のコイル体とした場合、U相が第1相に相当し、V相が第2相に相当し、W相が第3相に相当する。この場合、ティースT1,T10が第1ティースに相当し、ティースT14,T5が第2ティースに相当し、ティースT9,T18が第3ティースに相当する。 In the present embodiment, when the U-phase coil bodies Ua +, Ua-, Ub +, Ub-, Uc +, and Uc- are used as the first phase coil bodies, the U phase corresponds to the first phase and the V phase corresponds to the second phase. It corresponds to the phase, and the W phase corresponds to the third phase. In this case, the teeth T1 and T10 correspond to the first teeth, the teeth T14 and T5 correspond to the second teeth, and the teeth T9 and T18 correspond to the third teeth.
 また、ティースT7に、V相の主巻線V12+と、W相の従巻線W24-とが設けられていることにより、V相のコイル体Va+が構成される。V相のコイル体Va+は、U相のコイル体Ua+に対して120度の位相差を有するように構成されている。また、ティースT16に、V相の主巻線V15-と、W相の従巻線W21+とが設けられていることにより、V相のコイル体Va-が構成される。 Further, since the teeth T7 is provided with the V-phase main winding V12 + and the W-phase slave winding W24-, the V-phase coil body Va + is configured. The V-phase coil body Va + is configured to have a phase difference of 120 degrees with respect to the U-phase coil body Ua +. Further, the teeth T16 is provided with the V-phase main winding V15− and the W-phase slave winding W21 +, thereby forming the V-phase coil body Va−.
 また、ティースT2に、V相の主巻線V25+と、U相の従巻線U13-とが設けられていることにより、V相のコイル体Vb+が構成される。V相のコイル体Vb+は、U相のコイル体Ub+に対して120度の位相差を有するように構成されている。また、ティースT11に、V相の主巻線V22-と、U相の従巻線U16+とが設けられていることにより、V相のコイル体Vb-が構成される。 Further, since the teeth T2 is provided with the V-phase main winding V25 + and the U-phase slave winding U13-, the V-phase coil body Vb + is configured. The V-phase coil body Vb + is configured to have a phase difference of 120 degrees with respect to the U-phase coil body Ub +. Further, the teeth T11 is provided with the V-phase main winding V22− and the U-phase slave winding U16 +, whereby the V-phase coil body Vb− is configured.
 また、ティースT15に、V相の同巻線V14+と、U相の同巻線U26-とが設けられていることにより、V相のコイル体Vc+が構成される。V相のコイル体Vc+は、U相のコイル体Uc+に対して120度の位相差を有するように構成されている。また、ティースT6に、V相の同巻線V11-と、U相の同巻線U23+とが設けられていることにより、V相のコイル体Vc-が構成される。 Further, the teeth T15 is provided with the V-phase same winding V14 + and the U-phase same winding U26-, so that the V-phase coil body Vc + is configured. The V-phase coil body Vc + is configured to have a phase difference of 120 degrees with respect to the U-phase coil body Uc +. Further, the teeth T6 is provided with the V-phase same winding V11− and the U-phase same winding U23 +, whereby the V-phase coil body Vc− is configured.
 本実施形態において、V相のコイル体Va+,Va-,Vb+,Vb-,Vc+,Vc-を第1相のコイル体とした場合、V相が第1相に相当し、W相が第2相に相当し、U相が第3相に相当する。この場合、ティースT7,T16が第1ティースに相当し、ティースT2,T11が第2ティースに相当し、ティースT15,T6が第3ティースに相当する。 In the present embodiment, when the V-phase coil bodies Va +, Va-, Vb +, Vb-, Vc +, and Vc- are used as the first phase coil bodies, the V phase corresponds to the first phase and the W phase corresponds to the second phase. It corresponds to the phase, and the U phase corresponds to the third phase. In this case, the teeth T7 and T16 correspond to the first teeth, the teeth T2 and T11 correspond to the second teeth, and the teeth T15 and T6 correspond to the third teeth.
 また、ティースT13に、W相の主巻線W12+と、U相の従巻線U24-とが設けられていることにより、W相のコイル体Wa+が構成される。W相のコイル体Wa+は、U相のコイル体Ua+に対して240度の位相差を有するように構成されている。また、ティースT4に、W相の主巻線W15-と、U相の従巻線U21+とが設けられていることにより、W相のコイル体Wa-が構成される。 Further, since the teeth T13 is provided with the W-phase main winding W12 + and the U-phase slave winding U24-, the W-phase coil body Wa + is configured. The W-phase coil body Wa + is configured to have a phase difference of 240 degrees with respect to the U-phase coil body Ua +. Further, the teeth T4 is provided with the W-phase main winding W15− and the U-phase slave winding U21 +, thereby forming the W-phase coil body Wa−.
 また、ティースT8に、W相の主巻線W25+と、V相の従巻線V13-とが設けられていることにより、W相のコイル体Wb+が構成される。W相のコイル体Wb+は、U相のコイル体Ub+に対して240度の位相差を有するように構成されている。また、ティースT17に、W相の主巻線W22-と、V相の従巻線V16+とが設けられていることにより、W相のコイル体Wb-が構成される。 Further, since the teeth T8 is provided with the W-phase main winding W25 + and the V-phase slave winding V13-, the W-phase coil body Wb + is configured. The W-phase coil body Wb + is configured to have a phase difference of 240 degrees with respect to the U-phase coil body Ub +. Further, since the teeth T17 is provided with the W-phase main winding W22− and the V-phase slave winding V16 +, the W-phase coil body Wb− is configured.
 また、ティースT3に、W相の同巻線W14+と、V相の同巻線V26-とが設けられていることにより、W相のコイル体Wc+が構成される。W相のコイル体Wc+は、U相のコイル体Uc+に対して240度の位相差を有するように構成されている。また、ティースT12に、W相の同巻線W11-と、V相の同巻線V23+とが設けられていることにより、W相のコイル体Wc-が構成される。 Further, the W-phase coil body Wc + is configured by providing the W-phase same winding W14 + and the V-phase same winding V26- on the teeth T3. The W-phase coil body Wc + is configured to have a phase difference of 240 degrees with respect to the U-phase coil body Uc +. Further, the teeth T12 is provided with the W-phase same winding W11− and the V-phase same winding V23 +, whereby the W-phase coil body Wc− is configured.
 本実施形態において、W相のコイル体Wa+,Wa-,Wb+,Wb-,Wc+,Wc-を第1相のコイル体とした場合、W相が第1相に相当し、U相が第2相に相当し、V相が第3相に相当する。そしてこの場合、ティースT13,T4が第1ティースに相当し、ティースT8,T17が第2ティースに相当し、ティースT3,T12が第3ティースに相当する。 In the present embodiment, when the W-phase coil body Wa +, Wa-, Wb +, Wb-, Wc +, Wc- is used as the first phase coil body, the W phase corresponds to the first phase and the U phase corresponds to the second phase. It corresponds to the phase, and the V phase corresponds to the third phase. In this case, the teeth T13 and T4 correspond to the first teeth, the teeth T8 and T17 correspond to the second teeth, and the teeth T3 and T12 correspond to the third teeth.
 図2に示すように、各相のコイル体は、回転軸11の軸心を中心として、2回回転対称に配置されている。つまり、軸心を中心に、機械角で180度回転させても、各コイル体の配置順が同じとなっている。 As shown in FIG. 2, the coil bodies of each phase are arranged twice rotationally symmetrically with the axis of the rotating shaft 11 as the center. That is, even if the coil body is rotated by 180 degrees around the axis, the arrangement order of each coil body is the same.
 ところで、上記のように3相(U相,V相,W相)のコイル体を3系統(a,b,c)で設定する場合、各相におけるトルクの6次高調波成分「Tr6」は、数式(1)により表すことができる。また、各相におけるトルクの12次高調波成分「Tr12」は、数式(2)により表すことができる。 By the way, when the coil body of 3 phases (U phase, V phase, W phase) is set by 3 systems (a, b, c) as described above, the 6th harmonic component "Tr6" of the torque in each phase is , Can be expressed by the mathematical formula (1). Further, the 12th harmonic component "Tr12" of the torque in each phase can be expressed by the mathematical formula (2).
Figure JPOXMLDOC01-appb-M000001
 なお、数式(1),(2)において、「θ」は、固定子巻線32に流れる電流の位相(インバータ回路51から供給されるU相電流の位相を基準とする)である。「α」は定数であり、ノイズなどにより依存する。また、第1実施形態において、数式(1),(2)の第1項は、コイル体Ua,Va,Wa(1系統目)に基づく成分に対応し、第2項は、コイル体Ub,Vb,Wb(2系統目)に基づく成分に対応し、第3項は、コイル体Uc,Vc,Wc(3系統目)に基づく成分に対応する。
Figure JPOXMLDOC01-appb-M000001
In the equations (1) and (2), "θ" is the phase of the current flowing through the stator winding 32 (based on the phase of the U-phase current supplied from the inverter circuit 51). “Α” is a constant and depends on noise and the like. Further, in the first embodiment, the first term of the mathematical formulas (1) and (2) corresponds to the components based on the coil bodies Ua, Va, Wa (first system), and the second term corresponds to the coil body Ub, The third term corresponds to the component based on the coil bodies Uc, Vc, Wc (third system), and corresponds to the component based on Vb, Wb (second system).
 また、数式(1),(2)において、「Ta」は、コイル体Ua,Va,Waの巻回数や電流の最大値に比例する定数である。また、「Tb」は、コイル体Ub,Vb,Wbの巻回数や電流の最大値に比例する定数である。また、「Tc」は、コイル体Uc,Vc,Wcの巻回数や電流の最大値に比例する定数である。 Further, in the mathematical formulas (1) and (2), "Ta" is a constant proportional to the number of turns of the coil bodies Ua, Va, and Wa and the maximum value of the current. Further, "Tb" is a constant proportional to the number of turns of the coil bodies Ub, Vb, and Wb and the maximum value of the current. Further, "Tc" is a constant proportional to the number of turns of the coil bodies Uc, Vc, and Wc and the maximum value of the current.
 ここで、「γ1」と「γ2」がそれぞれ電気角で「20度」と「40度」である場合であって、「Ta」、「Tb」及び「Tc」が同じである場合、数式(3)、(4)及び図6に示すように、トルクの各高調波成分がキャンセルされることがわかる。 Here, when "γ1" and "γ2" are "20 degrees" and "40 degrees" in electrical angle, respectively, and "Ta", "Tb", and "Tc" are the same, the mathematical formula ( As shown in 3), (4) and FIG. 6, it can be seen that each harmonic component of the torque is canceled.
Figure JPOXMLDOC01-appb-M000002
 したがって、コイル体Ua,Va,Waの起磁力に対するコイル体Ub,Vb,Wbの起磁力との各位相差「λ1」を、20度とし、かつ、コイル体Ua,Va,Waの起磁力に対するコイル体Uc,Vc,Wcの起磁力の各位相差「λ2」を、40度とすれば、トルクリプルを抑制することができるといえる。
Figure JPOXMLDOC01-appb-M000002
Therefore, the phase difference "λ1" with the magnetomotive force of the coil bodies Ub, Vb, Wb with respect to the magnetomotive force of the coil bodies Ua, Va, Wa is set to 20 degrees, and the coil with respect to the magnetomotive force of the coil bodies Ua, Va, Wa. If the phase difference "λ2" of the magnetomotive forces of the bodies Uc, Vc, and Wc is set to 40 degrees, it can be said that the torque ripple can be suppressed.
 なお、位相差「λ1」は、20+180n(nは整数)度であって同じように、数式(3)は、ゼロとなり、6次高調波成分がキャンセルされる。同様に、位相差「λ2」は、40+180n(nは整数)度であって同じように、数式(4)は、ゼロとなり、12次高調波成分がキャンセルされる。つまり、各コイル体の極性が反転した場合であっても同様にキャンセル可能となっている。また、位相差「λ1」は、20+180n(nは整数)度であることが望ましいが、その周辺の値(例えば、15~25度の範囲)としてもよく、この場合でもトルクリプルの抑制効果を得ることができる。位相差「λ2」も同様である。 Note that the phase difference "λ1" is 20 + 180n (n is an integer) degree, and similarly, the formula (3) becomes zero and the sixth harmonic component is cancelled. Similarly, the phase difference "λ2" is 40 + 180n (n is an integer) degree, and the equation (4) becomes zero, and the 12th harmonic component is cancelled. That is, even if the polarity of each coil body is reversed, it can be canceled in the same manner. Further, the phase difference "λ1" is preferably 20 + 180n (n is an integer) degree, but may be a value around it (for example, in the range of 15 to 25 degrees), and even in this case, the effect of suppressing torque ripple is obtained. be able to. The same applies to the phase difference “λ2”.
 そこで、本実施形態では、「λ1」と「λ2」がそれぞれ電気角で「20+180n度」と「40+180n度」となり、かつ、起磁力が同程度となるように、各コイル体を設けている。より詳しくは、そのような各コイル体を構成するために、各ティースT1~T18に設けられている各部分巻線の組み合わせ及び巻回数を設定している。以下、具体的に説明する。 Therefore, in the present embodiment, each coil body is provided so that "λ1" and "λ2" have electric angles of "20 + 180n degrees" and "40 + 180n degrees", respectively, and the magnetomotive force is about the same. More specifically, in order to form each such coil body, the combination and the number of turns of each partial winding provided in each of the teeth T1 to T18 are set. Hereinafter, a specific description will be given.
 ここで前提として、1つのインバータ回路51から3相交流電流を固定子巻線32に出力しているため、各部分巻線の起磁力は、以下の数式(11)~(16)のとおりである。なお、U相の部分巻線U12+,U14+,U16+,U21+,U23+,U25+の起磁力Fu1としている。また、極性が反転したU相の部分巻線U11-,U13-,U15-,U22-,U24-,U26-の起磁力Fu2としている。また、V相の部分巻線V12+,V14+,V16+,V21+,V23+,V25+の起磁力Fv1としている。また、極性が反転したV相の部分巻線V11-,V13-,V15-,V22-,V24-,V26-の起磁力Fv2としている。また、W相の部分巻線W12+,W14+,W16+,W21+,W23+,W25+の起磁力Fw1としている。また、極性が反転したW相の部分巻線W11-,W13-,W15-,W22-,W24-,W26-の起磁力Fw2としている。また、「I」は、交流電流の最大値に依存する定数であり、「N」は、各部分巻線の巻回数に依存する定数である。 As a premise here, since one inverter circuit 51 outputs a three-phase alternating current to the stator winding 32, the magnetomotive force of each partial winding is as shown in the following formulas (11) to (16). be. The magnetomotive force Fu1 of the U-phase partial windings U12 +, U14 +, U16 +, U21 +, U23 +, and U25 + is used. Further, the magnetomotive force Fu2 of the U-phase partial windings U11-, U13-, U15-, U22-, U24-, and U26-in which the polarities are reversed is used. Further, the magnetomotive force Fv1 of the V-phase partial windings V12 +, V14 +, V16 +, V21 +, V23 +, and V25 + is used. Further, the magnetomotive force Fv2 of the V-phase partial windings V11-, V13-, V15-, V22-, V24-, and V26-in which the polarities are reversed is used. Further, the magnetomotive force Fw1 of the W phase partial windings W12 +, W14 +, W16 +, W21 +, W23 +, and W25 + is used. Further, the magnetomotive force Fw2 of the W-phase partial windings W11-, W13-, W15-, W22-, W24-, and W26-in which the polarities are reversed is used. Further, "I" is a constant depending on the maximum value of the alternating current, and "N" is a constant depending on the number of turns of each partial winding.
Figure JPOXMLDOC01-appb-M000003
 まず、U相のコイル体Ua+を構成するための巻回方法について説明する。図2、図4に示すように、ティースT1には、主巻線U12+と、従巻線V24-とが設けられている。そして、主巻線U12+の起磁力Fu1と、従巻線V24-の起磁力Fv2は、数式(11)(15)に示すとおり、位相差が60度となっている。より詳しくは、主巻線U12+の位相を基準として、従巻線V24-は、-60度の関係を有している。ここで、起磁力Fu1を0.88倍したベクトル値と、起磁力Fv2を0.2倍したベクトル値とを合算すると、数式(21)及び図7(a)のようになることが分かっている。
Figure JPOXMLDOC01-appb-M000003
First, a winding method for forming the U-phase coil body Ua + will be described. As shown in FIGS. 2 and 4, the teeth T1 are provided with a main winding U12 + and a slave winding V24−. The magnetomotive force Fu1 of the main winding U12 + and the magnetomotive force Fv2 of the slave winding V24- have a phase difference of 60 degrees as shown in the equations (11) and (15). More specifically, the slave winding V24− has a relationship of −60 degrees with respect to the phase of the main winding U12 +. Here, it was found that the total of the vector value obtained by multiplying the magnetomotive force Fu1 by 0.88 and the vector value obtained by multiplying the magnetomotive force Fv2 by 0.2 gives the formula (21) and FIG. 7 (a). There is.
Figure JPOXMLDOC01-appb-M000004
 そこで、主巻線U12+の巻回数「Na」と、従巻線V24-の巻回数「Nb」が上記関係を満たすように、すなわち、Na:Nb=0.88:0.2に近づき、かつ、「Na」及び「Nb」が整数となるように、各巻回数が設定されている。本実施形態では、Na:Nb=9:2となるように設定されている。なお、3.0≦Na/Nb≦6.0の範囲内で巻回数が設定されていてもよい。上記のように巻回数を調整することにより、主巻線U12+と、従巻線V24-とによって、起磁力Fua1を発生可能なU相のコイル体Ua+が構成される。
Figure JPOXMLDOC01-appb-M000004
Therefore, the number of turns "Na" of the main winding U12 + and the number of turns "Nb" of the slave winding V24- satisfy the above relationship, that is, Na: Nb = 0.88: 0.2, and , "Na" and "Nb" are set to be integers. In this embodiment, it is set so that Na: Nb = 9: 2. The number of turns may be set within the range of 3.0 ≦ Na / Nb ≦ 6.0. By adjusting the number of turns as described above, the main winding U12 + and the slave winding V24− form a U-phase coil body Ua + capable of generating a magnetomotive force Fua1.
 次に、U相のコイル体Ub+を構成するための巻回方法について説明する。図2、図4に示すように、ティースT14には、主巻線U25+と、従巻線W13-とが設けられている。そして、主巻線U25+の起磁力Fu1と、従巻線W13-の起磁力Fw2は、数式(11)(16)に示すとおり、位相差が60度となっている。より詳しくは、主巻線U25+の位相を基準として、従巻線W13-は、+60度の関係を有している。ここで、起磁力Fu1を0.88倍したベクトル値と、起磁力Fw2を0.2倍したベクトル値とを合算すると、数式(22)及び図7(b)のようになることが分かっている。 Next, a winding method for forming the U-phase coil body Ub + will be described. As shown in FIGS. 2 and 4, the teeth T14 are provided with a main winding U25 + and a slave winding W13−. The magnetomotive force Fu1 of the main winding U25 + and the magnetomotive force Fw2 of the slave winding W13− have a phase difference of 60 degrees as shown in the equations (11) and (16). More specifically, the slave winding W13− has a relationship of +60 degrees with respect to the phase of the main winding U25 +. Here, it was found that the total of the vector value obtained by multiplying the magnetomotive force Fu1 by 0.88 and the vector value obtained by multiplying the magnetomotive force Fw2 by 0.2 gives the following equation (22) and FIG. 7 (b). There is.
Figure JPOXMLDOC01-appb-M000005
 そこで、主巻線U25+の巻回数「Na」と、従巻線W13-の巻回数「Nb」が上記関係を満たすように、すなわち、Na:Nb=0.88:0.2に近づき、かつ、「Na」及び「Nb」が整数となるように、各巻回数が設定されている。本実施形態では、Na:Nb=9:2となるように設定されている。なお、3.0≦Na/Nb≦6.0の範囲内で巻回数が設定されていてもよい。
Figure JPOXMLDOC01-appb-M000005
Therefore, the number of turns "Na" of the main winding U25 + and the number of turns "Nb" of the slave winding W13- satisfy the above relationship, that is, Na: Nb = 0.88: 0.2, and , "Na" and "Nb" are set to be integers. In this embodiment, it is set so that Na: Nb = 9: 2. The number of turns may be set within the range of 3.0 ≦ Na / Nb ≦ 6.0.
 また、各コイル体の起磁力の振幅のバランスをとる必要上、起磁力Fub1は、起磁力Fua1と同じ大きさ(振幅)であることが望ましい。このため、U相のコイル体Ub+を構成する主巻線U25+の巻回数「Na」は、U相のコイル体Ua+を構成する主巻線U12+の巻回数「Na」と同じ回数である。同様に、U相のコイル体Ub+を構成する従巻線W13-の巻回数「Nb」は、U相のコイル体Ua+を構成する従巻線V24-の巻回数「Nb」と同じ回数である。 Further, it is desirable that the magnetomotive force Fab1 has the same magnitude (amplitude) as the magnetomotive force Fua1 because it is necessary to balance the amplitude of the magnetomotive force of each coil body. Therefore, the number of turns "Na" of the main winding U25 + constituting the U-phase coil body Ub + is the same as the number of turns "Na" of the main winding U12 + constituting the U-phase coil body Ua +. Similarly, the number of turns "Nb" of the slave winding W13-that constitutes the U-phase coil body Ub + is the same as the number of turns "Nb" of the slave winding V24- that constitutes the U-phase coil body Ua +. ..
 上記のように巻回数を調整することにより、主巻線U25+と、従巻線W13-とによって、起磁力Fub1を発生可能なU相のコイル体Ub+が構成される。すなわち、コイル体Ua+と起磁力が同じで、コイル体Ua+に対して位相差「λ1」が20度となるU相のコイル体Ub+が構成される。 By adjusting the number of turns as described above, the main winding U25 + and the slave winding W13− form a U-phase coil body Ub + capable of generating a magnetomotive force Hub1. That is, a U-phase coil body Ub + having the same magnetomotive force as the coil body Ua + and having a phase difference “λ1” of 20 degrees with respect to the coil body Ua + is configured.
 次に、U相のコイル体Uc+を構成するための巻回方法について説明する。図2、図4に示すように、ティースT9には、同巻線U14+と、同巻線W26-とが設けられている。そして、同巻線U14+の起磁力Fu1と、同巻線W26-の起磁力Fw2は、数式(11)(16)に示すとおり、位相差が60度となっている。より詳しくは、同巻線U14+の位相を基準として、同巻線W26-は、+60度の関係を有している。 Next, the winding method for forming the U-phase coil body Uc + will be described. As shown in FIGS. 2 and 4, the teeth T9 are provided with the same winding U14 + and the same winding W26−. The magnetomotive force Fu1 of the winding U14 + and the magnetomotive force Fw2 of the winding W26− have a phase difference of 60 degrees as shown in the equations (11) and (16). More specifically, the winding W26− has a relationship of +60 degrees with respect to the phase of the winding U14 +.
 ここで、起磁力Fu1を0.57倍したベクトル値と、起磁力Fw2を0.57倍したベクトル値とを合算すると、数式(23)及び図7(c)のようになることが分かっている。すなわち、巻回数を調整することにより、同巻線U14+と同巻線W26-とによって、コイル体+Uaに対して位相差「λ2」が40度となるU相のコイル体+Ucが構成される。 Here, it was found that the total of the vector value obtained by multiplying the magnetomotive force Fu1 by 0.57 and the vector value obtained by multiplying the magnetomotive force Fw2 by 0.57 gives the formula (23) and FIG. 7 (c). There is. That is, by adjusting the number of turns, the same winding U14 + and the same winding W26− form a U-phase coil body + Uc in which the phase difference “λ2” is 40 degrees with respect to the coil body + Ua.
Figure JPOXMLDOC01-appb-M000006
 この際、各コイル体の起磁力の振幅のバランスをとる必要上、起磁力Fuc1は、起磁力Fua1と同じ大きさ(振幅)であることが望ましい。このため、U相のコイル体Uc+を構成する同巻線U14+及び同巻線W26-の巻回数「Nc」は、U相のコイル体Ua+を構成する主巻線U12+の巻回数「Na」に対して、Na:Nc=0.88:0.57に近づき、かつ、ともに整数となるように、設定されている。
Figure JPOXMLDOC01-appb-M000006
At this time, it is desirable that the magnetomotive force Fuc1 has the same magnitude (amplitude) as the magnetomotive force Fua1 in order to balance the amplitude of the magnetomotive force of each coil body. Therefore, the number of turns "Nc" of the winding U14 + and the winding W26- constituting the U-phase coil body Uc + is set to the number of turns "Na" of the main winding U12 + constituting the U-phase coil body Ua +. On the other hand, it is set so that it approaches Na: Nc = 0.88: 0.57 and both are integers.
 本実施形態では、Na:Nc=9:6となるように設定されている。つまり、Na:Nb:Nc=9:2:6となるように各部分巻線の巻回数が設定されている。なお、1.4≦Na/Nc≦1.8の範囲内で巻回数が設定されていてもよい。上記のように巻回数を調整することにより、コイル体Ua+と起磁力が同じで、コイル体Ua+に対して位相差「λ2」が40度となるU相のコイル体Uc+が構成される。 In this embodiment, it is set so that Na: Nc = 9: 6. That is, the number of turns of each partial winding is set so that Na: Nb: Nc = 9: 2: 6. The number of turns may be set within the range of 1.4 ≦ Na / Nc ≦ 1.8. By adjusting the number of turns as described above, a U-phase coil body Uc + having the same magnetomotive force as the coil body Ua + and a phase difference “λ2” of 40 degrees with respect to the coil body Ua + is configured.
 同様にして、Na:Nb:Nc=9:2:6となるように、各部分巻線の巻回数が設定されたうえで、各ティースT1~T18に対して、図2及び図4に従って、各部分巻線が設けられている。これにより、U相のコイル体Ua+の起磁力Fua1、V相のコイル体Va+の起磁力Fva1、及びW相のコイル体Wa+の起磁力Fwa1を、数式(31)~(33)に示すように構成することができる。また、U相のコイル体Ua-の起磁力Fua2、V相のコイル体Va-の起磁力Fva2、W相のコイル体Wa-の起磁力Fwa2を、数式(34)~(36)に示すように構成することができる。なお、「θ」は、固定子巻線32に流れる電流の位相(インバータ回路51から供給されるU相電流の位相を基準とする)である。また、「I」は、交流電流の最大値に依存する定数であり、「N」は、各ティースT1~T18に巻回される固定子巻線32の巻回数(部分巻線の巻回数の合計)に依存する定数である。 Similarly, after setting the number of turns of each partial winding so that Na: Nb: Nc = 9: 2: 6, for each teeth T1 to T18, according to FIGS. 2 and 4. Each partial winding is provided. As a result, the magnetomotive force Fua1 of the U-phase coil body Ua +, the magnetomotive force Fva1 of the V-phase coil body Va +, and the magnetomotive force Fwa1 of the W-phase coil body Wa + are shown in the equations (31) to (33). Can be configured. Further, the magnetomotive force Fua2 of the U-phase coil body Ua-, the magnetomotive force Fva2 of the V-phase coil body Va-, and the magnetomotive force Fwa2 of the W-phase coil body Wa- are shown in equations (34) to (36). Can be configured in. Note that "θ" is the phase of the current flowing through the stator winding 32 (based on the phase of the U-phase current supplied from the inverter circuit 51). Further, "I" is a constant depending on the maximum value of the alternating current, and "N" is the number of turns of the stator winding 32 wound around each of the teeth T1 to T18 (the number of turns of the partial winding). It is a constant that depends on the sum).
Figure JPOXMLDOC01-appb-M000007
 同様に、U相のコイル体Ub+の起磁力Fub1、V相のコイル体Vb+の起磁力Fvb1、及びW相のコイル体Wb+の起磁力Fwb1を、数式(37)~(39)に示すように構成することができる。また、U相のコイル体Ub-の起磁力Fub2、V相のコイル体Vb-の起磁力Fvb2、W相のコイル体Wb-の起磁力Fwb2を、数式(40)~(42)に示すように構成することができる。「λ1」は、コイル体Ua+の起磁力に対するコイル体Ub+の起磁力の位相差である。つまり、コイル体Ua+の起磁力を基準とした場合、コイル体Ub+の起磁力の位相の遅れを示す。同様に、「λ1」は、コイル体Va+の起磁力に対するコイル体Vb+の起磁力の位相差であり、コイル体Wa+の起磁力に対するコイル体Wb+の起磁力の位相差である。本実施形態の「λ1」は、「20」度となっている。
Figure JPOXMLDOC01-appb-M000007
Similarly, the magnetomotive force Fub1 of the U-phase coil body Ub +, the magnetomotive force Fvb1 of the V-phase coil body Vb +, and the magnetomotive force Fwb1 of the W-phase coil body Wb + are shown in equations (37) to (39). Can be configured. Further, the magnetomotive force Fub2 of the U-phase coil body Ub-, the magnetomotive force Fvb2 of the V-phase coil body Vb-, and the magnetomotive force Fwb2 of the W-phase coil body Wb- are shown in equations (40) to (42). Can be configured in. “Λ1” is the phase difference of the magnetomotive force of the coil body Ub + with respect to the magnetomotive force of the coil body Ua +. That is, when the magnetomotive force of the coil body Ua + is used as a reference, the phase delay of the magnetomotive force of the coil body Ub + is shown. Similarly, “λ1” is the phase difference of the magnetomotive force of the coil body Vb + with respect to the magnetomotive force of the coil body Va +, and is the phase difference of the magnetomotive force of the coil body Wb + with respect to the magnetomotive force of the coil body Wa +. "Λ1" of this embodiment is "20" degrees.
Figure JPOXMLDOC01-appb-M000008
 同様に、U相のコイル体Uc+の起磁力Fuc1、V相のコイル体Vc+の起磁力Fvc1、及びW相のコイル体Wc+の起磁力Fwc1を、数式(43)~(45)に示すように構成することができる。また、U相のコイル体Uc-の起磁力Fuc2、V相のコイル体Vc-の起磁力Fvc2、及びW相のコイル体Wc-の起磁力Fwc2を、数式(46)~(48)に示すように構成することができる。
Figure JPOXMLDOC01-appb-M000008
Similarly, the magnetomotive force Fuc1 of the U-phase coil body Uc +, the magnetomotive force Fvc1 of the V-phase coil body Vc +, and the magnetomotive force Fwc1 of the W-phase coil body Wc + are shown in the equations (43) to (45). Can be configured. Further, the magnetomotive force Fuc2 of the U-phase coil body Uc-, the magnetomotive force Fvc2 of the V-phase coil body Vc-, and the magnetomotive force Fwc2 of the W-phase coil body Wc- are shown in mathematical formulas (46) to (48). Can be configured as follows.
 「λ2」は、コイル体Ua+の起磁力に対するコイル体Uc+の起磁力の位相差である。つまり、コイル体Ua+の起磁力を基準とした場合、コイル体Uc+の起磁力の位相の遅れを示す。同様に、「λ2」は、コイル体Va+の起磁力に対するコイル体Vc+の起磁力の位相差であり、コイル体Wa+の起磁力に対するコイル体Wc+の起磁力の位相差である。本実施形態の「λ2」は、「40」度となっている。 "Λ2" is the phase difference of the magnetomotive force of the coil body Uc + with respect to the magnetomotive force of the coil body Ua +. That is, when the magnetomotive force of the coil body Ua + is used as a reference, the phase delay of the magnetomotive force of the coil body Uc + is shown. Similarly, “λ2” is the phase difference of the magnetomotive force of the coil body Vc + with respect to the magnetomotive force of the coil body Va +, and is the phase difference of the magnetomotive force of the coil body Wc + with respect to the magnetomotive force of the coil body Wa +. "Λ2" of this embodiment is "40" degrees.
Figure JPOXMLDOC01-appb-M000009
 以上の数式(31)~(48)に示すように、「λ1」と「λ2」がそれぞれ電気角で「20度」と「40度」となり、かつ、起磁力が同程度となるように、各コイル体Uaが構成されることとなる。なお、図において、電気角の欄は、「θ」を基準(ゼロ)とした場合における各相のコイル体の位相差を示すものである。他の実施形態における図面も同様である。
Figure JPOXMLDOC01-appb-M000009
As shown in the above formulas (31) to (48), "λ1" and "λ2" have electric angles of "20 degrees" and "40 degrees", respectively, and the magnetomotive forces are about the same. Each coil body Ua will be configured. In the figure, the column of the electric angle indicates the phase difference of the coil body of each phase when "θ" is used as a reference (zero). The same applies to the drawings in other embodiments.
 以上、第1実施形態の構成によれば、以下の効果を有する。 As described above, according to the configuration of the first embodiment, it has the following effects.
 第1ティースとしてのティースT1に、U相の主巻線U12+と、V相の従巻線V24-とが設けられることにより、U相のコイル体Ua+が構成される。また、第2ティースとしてのティースT14に、U相の主巻線U25+と、W相の従巻線W13-とが設けられることにより、U相のコイル体Ub+が構成される。第3ティースとしてのティースT9に、U相の同巻線U14+と、W相の同巻線W26-とが設けられることにより、U相のコイル体Uc+が構成される。 The U-phase coil body Ua + is configured by providing the U-phase main winding U12 + and the V-phase slave winding V24- on the teeth T1 as the first teeth. Further, the U-phase coil body Ub + is configured by providing the U-phase main winding U25 + and the W-phase slave winding W13− on the teeth T14 as the second teeth. The U-phase coil body Uc + is configured by providing the U-phase same winding U14 + and the W-phase same winding W26- on the teeth T9 as the third tooth.
 そして、ティースT9において、U相の同巻線U14+の起磁力Fu1と、W相の同巻線W26-の起磁力Fw2との位相差が、電気角で60度となるように設定されている。また、ティースT1において、U相の主巻線U12+の起磁力Fu1と、V相の従巻線V24-の起磁力Fv2との位相差が、電気角で60度となるように設定されている。また、ティースT14において、U相の主巻線U25+の起磁力Fu1と、W相の従巻線W13-の起磁力Fw2との位相差が、電気角で60度となるように設定されている。 Then, in the teeth T9, the phase difference between the magnetomotive force Fu1 of the U14 + of the same winding of the U phase and the magnetomotive force Fw2 of the same winding W26- of the W phase is set to be 60 degrees in the electric angle. .. Further, in the teeth T1, the phase difference between the magnetomotive force Fu1 of the U-phase main winding U12 + and the magnetomotive force Fv2 of the V-phase slave winding V24- is set to be 60 degrees in terms of electrical angle. .. Further, in the teeth T14, the phase difference between the magnetomotive force Fu1 of the main winding U25 + of the U phase and the magnetomotive force Fw2 of the slave winding W13− of the W phase is set to be 60 degrees in terms of electric angle. ..
 さらに、U相の主巻線U12+,U25+の巻回数をそれぞれ「Na」とし、V相の従巻線V24-及びW相の従巻線W13-をそれぞれ「Nb」とした場合、3.0≦Na/Nb≦6.0の関係を満たすように、各巻回数が設定されている。より具体的には、Na:Nb=9:2となるように巻回数が設定されている。そして、V相のコイル体や、W相のコイル体も同様に設定されている。 Further, when the number of turns of the U-phase main windings U12 + and U25 + is "Na" and the V-phase slave winding V24- and the W-phase slave winding W13-are "Nb", respectively, 3.0. The number of turns is set so as to satisfy the relationship of ≦ Na / Nb ≦ 6.0. More specifically, the number of turns is set so that Na: Nb = 9: 2. The V-phase coil body and the W-phase coil body are also set in the same manner.
 これにより、コイル体Ua,Va,Waの起磁力に対するコイル体Ub,Vb,Wbの起磁力の各位相差「λ1」を20+180n度とすることができる。また、コイル体Ua,Va,Waの起磁力に対するコイル体Uc,Vc,Wcの起磁力の各位相差「λ2」を、40+180n度とすることができる。そして、図2に示すように、各相のコイル体は、回転軸11の軸心を中心として、2回回転対称に配置されている。したがって、数式(1)~数式(4)に示すように、トルクの6次又は12次高調波成分を打消し、トルクリプルを抑制することが可能となる。 Thereby, each phase difference "λ1" of the magnetomotive force of the coil bodies Ub, Vb, Wb with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 20 + 180 n degrees. Further, the phase difference "λ2" of the magnetomotive forces of the coil bodies Uc, Vc, and Wc with respect to the magnetomotive force of the coil bodies Ua, Va, and Wa can be set to 40 + 180 n degrees. Then, as shown in FIG. 2, the coil bodies of each phase are arranged twice rotationally symmetrically with respect to the axial center of the rotating shaft 11. Therefore, as shown in the formulas (1) to (4), it is possible to cancel the 6th or 12th harmonic component of the torque and suppress the torque ripple.
 各コイル体の起磁力が所定の振幅範囲内(本実施形態では同程度)となるように、各部分巻線の巻回数を設定した。具体的には、主巻線の巻回数「Na」と、同巻線の巻回数「Nc」が1.4≦Na/Nc≦1.8の関係を満たすように、各巻回数が設定されている。具体的には、Na:Nb:Nc=9:2:6となるように巻回数が設定されている。これにより、各コイル体の起磁力の振幅を同程度にすることができ、トルクリプルを抑制することができる。 The number of turns of each partial winding was set so that the magnetomotive force of each coil body was within a predetermined amplitude range (similar in this embodiment). Specifically, the number of turns of each winding is set so that the number of turns "Na" of the main winding and the number of turns "Nc" of the same winding satisfy the relationship of 1.4 ≤ Na / Nc ≤ 1.8. There is. Specifically, the number of turns is set so that Na: Nb: Nc = 9: 2: 6. As a result, the amplitude of the magnetomotive force of each coil body can be made to be about the same, and torque ripple can be suppressed.
 モータ10は、磁極数を「14」とし、スロット35の数を「18」とした。すなわち、磁極数を(18±4)×m(mは1以上の整数)とし、かつ、スロット数を18×mとした。これにより、軸心を中心として、電磁力のバランスを取ることができる。 The number of magnetic poles of the motor 10 was set to "14", and the number of slots 35 was set to "18". That is, the number of magnetic poles was (18 ± 4) × m (m is an integer of 1 or more), and the number of slots was 18 × m. As a result, the electromagnetic force can be balanced around the axis.
 図8に基づいて詳しく説明する。図8(a)は、各ティースT1~T18により発生する電磁力と、モータ10の機械角との関係を示す図である。図8(b)は、回転軸11を中心とした場合において、図8(a)に示す電磁力の変動を周方向に沿って示したものである。 A detailed explanation will be given based on FIG. FIG. 8A is a diagram showing the relationship between the electromagnetic force generated by each of the teeth T1 to T18 and the mechanical angle of the motor 10. FIG. 8B shows the fluctuation of the electromagnetic force shown in FIG. 8A along the circumferential direction when the rotation axis 11 is centered.
 図4に示すように、U相のコイル体Ua±,Ub±,Uc±が約90度間隔で配置されている。V相のコイル体Va±,Vb±,Vc±及びW相のコイル体Wa±,Wb±,Wc±も同様である。このため、図8に示すように、電磁力のバランスが良くなる。したがって、電磁力がどこかに偏ることがなくなり、トルク変動を抑え、振動や騒音を抑制することができる。 As shown in FIG. 4, U-phase coil bodies Ua ±, Ub ±, and Uc ± are arranged at intervals of about 90 degrees. The same applies to the V-phase coil bodies Va ±, Vb ±, Vc ± and the W-phase coil bodies Wa ±, Wb ±, Wc ±. Therefore, as shown in FIG. 8, the balance of the electromagnetic force is improved. Therefore, the electromagnetic force is not biased somewhere, torque fluctuation can be suppressed, and vibration and noise can be suppressed.
 そして、図2や図4に示すように、第3ティースとしてのティースT3,T6,T9,T12,T15,T18に巻回された各同巻線は、第3ティースの隣ティースに巻回されている主巻線と接続されている。例えば、ティースT3の同巻線W14+は、ティースT4の主巻線W15-に接続されており、ティースT3の同巻線V26-は、ティースT2の主巻線V25+に接続されている。これにより、コイルエンドにおいて、スロット35間を接続するための渡り線を短くすることができ、接続が容易となり、また、小型化することが可能となる。 Then, as shown in FIGS. 2 and 4, each of the same windings wound around the teeth T3, T6, T9, T12, T15, and T18 as the third tooth is wound around the tooth next to the third tooth. It is connected to the main winding. For example, the same winding W14 + of the teeth T3 is connected to the main winding W15- of the teeth T4, and the same winding V26-of the teeth T3 is connected to the main winding V25 + of the teeth T2. As a result, at the coil end, the crossover for connecting the slots 35 can be shortened, the connection can be facilitated, and the size can be reduced.
 (第2実施形態)
 第1実施形態の構成の一部を以下のように変更してもよい。以下、第1実施形態の構成を基本として、異なる箇所のみ説明する。
(Second Embodiment)
A part of the configuration of the first embodiment may be changed as follows. Hereinafter, only different parts will be described based on the configuration of the first embodiment.
 第2実施形態において、図9及び図10に示すように、回転子40は、22個の(すなわち、磁極対数が11個となる)磁極を有する。つまり、22個の永久磁石42を有する。 In the second embodiment, as shown in FIGS. 9 and 10, the rotor 40 has 22 magnetic poles (that is, the number of magnetic pole pairs is 11). That is, it has 22 permanent magnets 42.
 また、第2実施形態において、U相の固定子巻線32は、12個の部分巻線U11-,U12+,U13-,U14+,U15-,U16+,U21-,U22+,U23-,U24+,U25-,U26+により構成されている。これらのU相の部分巻線は、直列に接続されている。V相の固定子巻線32は、12個の部分巻線V11+,V12-,V13+,V14-,V15+,V16-,V21+,V22-,V23+,V24-,V25+,V26-により構成されている。これらのV相の部分巻線は、直列に接続されている。W相の固定子巻線32は、12個の部分巻線W11+,W12-,W13+,W14-,W15+,W16-,W21-,W22+,W23-,W24+,W25-,W26+により構成されている。これらのW相の部分巻線は、直列に接続されている。 Further, in the second embodiment, the U-phase stator winding 32 has 12 partial windings U11-, U12 +, U13-, U14 +, U15-, U16 +, U21-, U22 +, U23-, U24 +, U25. -, It is composed of U26 +. These U-phase partial windings are connected in series. The V-phase stator winding 32 is composed of 12 partial windings V11 +, V12-, V13 +, V14-, V15 +, V16-, V21 +, V22-, V23 +, V24-, V25 +, V26-. .. These V-phase partial windings are connected in series. The W-phase stator winding 32 is composed of 12 partial windings W11 +, W12−, W13 +, W14−, W15 +, W16−, W21−, W22 +, W23−, W24 +, W25−, W26 +. .. These W-phase partial windings are connected in series.
 これらの直列接続体は、一端が中性点Qに接続され、他端がインバータ回路51に接続される引出線A1,B1,C1にそれぞれ接続されている。なお、本実施形態の固定子巻線32では、Y結線(スター結線)としているが、デルタ結線としてもよい。 One end of these series connectors is connected to the neutral point Q, and the other end is connected to leader lines A1, B1, and C1 connected to the inverter circuit 51, respectively. In the stator winding 32 of the present embodiment, Y connection (star connection) is used, but delta connection may be used.
 また、36個の部分巻線は、図9及び図10に示すように、各ティースT1~T18に対して固定子巻線32が巻回されることにより、設けられている。第2実施形態において、U相のコイル体Ua+,Ua-,Ub+,Ub-,Uc+,Uc-を第1相のコイル体とした場合、U相が第1相に相当し、V相が第2相に相当し、W相が第3相に相当する。この場合、ティースT1,T10が第1ティースに相当し、ティースT6,T15が第2ティースに相当し、ティースT11,T2が第3ティースに相当する。 Further, as shown in FIGS. 9 and 10, 36 partial windings are provided by winding the stator winding 32 around each of the teeth T1 to T18. In the second embodiment, when the U-phase coil body Ua +, Ua-, Ub +, Ub-, Uc +, Uc- is used as the first phase coil body, the U phase corresponds to the first phase and the V phase corresponds to the first phase. It corresponds to the second phase, and the W phase corresponds to the third phase. In this case, the teeth T1 and T10 correspond to the first teeth, the teeth T6 and T15 correspond to the second teeth, and the teeth T11 and T2 correspond to the third teeth.
 また、第2実施形態において、V相のコイル体Va+,Va-,Vb+,Vb-,Vc+,Vc-を第1相のコイル体とした場合、V相が第1相に相当し、W相が第2相に相当し、U相が第3相に相当する。この場合、ティースT13,T4が第1ティースに相当し、ティースT18,T9が第2ティースに相当し、ティースT5,T14が第3ティースに相当する。 Further, in the second embodiment, when the V-phase coil bodies Va +, Va-, Vb +, Vb-, Vc +, and Vc- are used as the first phase coil bodies, the V phase corresponds to the first phase and the W phase. Corresponds to the second phase, and the U phase corresponds to the third phase. In this case, the teeth T13 and T4 correspond to the first teeth, the teeth T18 and T9 correspond to the second teeth, and the teeth T5 and T14 correspond to the third teeth.
 また、第2実施形態において、W相のコイル体Wa+,Wa-,Wb+,Wb-,Wc+,Wc-を第1相のコイル体とした場合、W相が第1相に相当し、U相が第2相に相当し、V相が第3相に相当する。この場合、ティースT7,T16が第1ティースに相当し、ティースT12,T3が第2ティースに相当し、ティースT17,T8が第3ティースに相当する。 Further, in the second embodiment, when the W phase coil body Wa +, Wa−, Wb +, Wb−, Wc +, Wc− is used as the first phase coil body, the W phase corresponds to the first phase and the U phase. Corresponds to the second phase, and the V phase corresponds to the third phase. In this case, the teeth T7 and T16 correspond to the first teeth, the teeth T12 and T3 correspond to the second teeth, and the teeth T17 and T8 correspond to the third teeth.
 また、図10に示すように、各相のコイル体は、回転軸11の軸心を中心として、2回回転対称に配置されている。 Further, as shown in FIG. 10, the coil bodies of each phase are arranged twice rotationally symmetrically with the axis of the rotating shaft 11 as the center.
 そして、第3ティースであるティースT11に設けられるU相の同巻線U16+の起磁力Fu1と、ティースT11に設けられるW相の同巻線W21-の起磁力Fw2との位相差が、電気角で60度となる。また、第1ティースであるティースT1に設けられるU相の主巻線U12+の起磁力Fu1と、ティースT1に設けられるV相の従巻線V26-の起磁力Fv2との位相差が、電気角で60度となる。また、第2ティースであるティースT6に設けられるU相の主巻線U22+の起磁力Fu1と、ティースT6に設けられるW相の従巻線W14-の起磁力Fw2との位相差が、電気角で60度となる。 The phase difference between the magnetomotive force Fu1 of the U-phase same winding U16 + provided in the third tooth T11 and the magnetomotive force Fw2 of the W-phase same winding W21- provided in the teeth T11 is the electric angle. It becomes 60 degrees. Further, the phase difference between the magnetomotive force Fu1 of the U-phase main winding U12 + provided in the first teeth T1 and the magnetomotive force Fv2 of the V-phase slave winding V26- provided in the teeth T1 is the electric angle. It becomes 60 degrees. Further, the phase difference between the magnetomotive force Fu1 of the U-phase main winding U22 + provided in the second teeth T6 and the magnetomotive force Fw2 of the W-phase slave winding W14- provided in the teeth T6 is the electric angle. It becomes 60 degrees.
 さらに、U相の主巻線U12+とU相の主巻線U22+の巻回数をそれぞれ「Na」とし、V相の従巻線V26-及びW相の従巻線W14-をそれぞれ「Nb」とした場合、3.0≦Na/Nb≦6.0の関係を満たすように、各巻回数が設定されている。より具体的には、Na:Nb=9:2となるように巻回数が設定されている。 Further, the number of turns of the U-phase main winding U12 + and the U-phase main winding U22 + is set to "Na", and the V-phase slave winding V26- and the W-phase slave winding W14-are set to "Nb", respectively. If so, the number of turns is set so as to satisfy the relationship of 3.0 ≦ Na / Nb ≦ 6.0. More specifically, the number of turns is set so that Na: Nb = 9: 2.
 また、主巻線の巻回数「Na」と、同巻線の巻回数「Nc」が1.4≦Na/Nc≦1.8の関係を満たすように、各巻回数が設定されている。具体的には、Na:Nb:Nc=9:2:6となるように巻回数が設定されている。 Further, the number of turns of each winding is set so that the number of turns of the main winding "Na" and the number of turns of the same winding "Nc" satisfy the relationship of 1.4 ≤ Na / Nc ≤ 1.8. Specifically, the number of turns is set so that Na: Nb: Nc = 9: 2: 6.
 そして、V相のコイル体や、W相のコイル体も同様に設定されている。また、極性を異ならせた各コイル体も同様に設定されている。 And the V-phase coil body and the W-phase coil body are also set in the same manner. Further, each coil body having a different polarity is also set in the same manner.
 これにより、コイル体Ua,Va,Waの起磁力に対するコイル体Ub,Vb,Wbの起磁力の各位相差「λ1」を20+180n度とすることができる。また、コイル体Ua,Va,Waの起磁力に対するコイル体Uc,Vc,Wcの起磁力の各位相差「λ2」を、40+180n度とすることができる。 Thereby, each phase difference "λ1" of the magnetomotive force of the coil bodies Ub, Vb, Wb with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 20 + 180 n degrees. Further, the phase difference "λ2" of the magnetomotive forces of the coil bodies Uc, Vc, and Wc with respect to the magnetomotive force of the coil bodies Ua, Va, and Wa can be set to 40 + 180 n degrees.
 したがって、第1実施形態と同様に、数式(1)~数式(4)に示すように、トルクの6次又は12次高調波成分を打消し、トルクリプルを抑制することが可能となる。また、コイル体Ua±~Uc±,Va±~Vc±,Wa±~Wc±の起磁力の振幅を同程度にすることができる。これにより、より効果的にトルクリプルを抑制することができる。また、第2実施形態によれば、第1実施形態と同様の効果を得ることができる。 Therefore, as in the first embodiment, as shown in the formulas (1) to (4), it is possible to cancel the 6th or 12th harmonic component of the torque and suppress the torque ripple. Further, the amplitudes of the magnetomotive forces of the coil bodies Ua ± to Uc ±, Va ± to Vc ±, and Wa ± to Wc ± can be made similar. As a result, torque ripple can be suppressed more effectively. Further, according to the second embodiment, the same effect as that of the first embodiment can be obtained.
 (第3実施形態)
 第1実施形態の構成の一部を以下のように変更してもよい。以下、第1実施形態の構成を基本として、異なる箇所のみ説明する。
(Third Embodiment)
A part of the configuration of the first embodiment may be changed as follows. Hereinafter, only different parts will be described based on the configuration of the first embodiment.
 第3実施形態において、図11及び図12に示すように、回転子40は、16個の(すなわち、磁極対数が8個となる)磁極を有する。つまり、16個の永久磁石42を有する。 In the third embodiment, as shown in FIGS. 11 and 12, the rotor 40 has 16 magnetic poles (that is, the number of magnetic pole pairs is 8). That is, it has 16 permanent magnets 42.
 また、第3実施形態において、U相の固定子巻線32は、12個の部分巻線U11+,U12-,U13+,U14+,U15-,U16+,U21-,U22+,U23-,U24-,U25+,U26-により構成されている。これらのU相の部分巻線は、直列に接続されている。V相の固定子巻線32は、12個の部分巻線V11+,V12-,V13+,V14+,V15-,V16+,V21-,V22+,V23-,V24-,V25+,V26-により構成されている。これらのV相の部分巻線は、直列に接続されている。W相の固定子巻線32は、12個の部分巻線W11+,W12-,W13+,W14+,W15-,W16+,W21-,W22+,W23-,W24-,W25+,W26-により構成されている。これらのW相の部分巻線は、直列に接続されている。 Further, in the third embodiment, the U-phase stator winding 32 has 12 partial windings U11 +, U12−, U13 +, U14 +, U15−, U16 +, U21−, U22 +, U23−, U24−, U25 +. , U26-. These U-phase partial windings are connected in series. The V-phase stator winding 32 is composed of 12 partial windings V11 +, V12−, V13 +, V14 +, V15−, V16 +, V21−, V22 +, V23−, V24−, V25 +, V26−. .. These V-phase partial windings are connected in series. The W-phase stator winding 32 is composed of 12 partial windings W11 +, W12−, W13 +, W14 +, W15−, W16 +, W21−, W22 +, W23−, W24−, W25 +, W26−. .. These W-phase partial windings are connected in series.
 これらの直列接続体は、一端が中性点Qに接続され、他端がインバータ回路51に接続される引出線A1,B1,C1にそれぞれ接続されている。なお、本実施形態の固定子巻線32では、Y結線(スター結線)としているが、デルタ結線としてもよい。 One end of these series connectors is connected to the neutral point Q, and the other end is connected to leader lines A1, B1, and C1 connected to the inverter circuit 51, respectively. In the stator winding 32 of the present embodiment, Y connection (star connection) is used, but delta connection may be used.
 また、36個の部分巻線は、図11及び図12に示すように、各ティースT1~T18に対して設けられている。第3実施形態において、U相のコイル体Ua+,Ub-,Uc+を第1相のコイル体とした場合、U相が第1相に相当し、V相が第2相に相当し、W相が第3相に相当する。この場合、ティースT1,T10が第1ティースに相当し、ティースT9,T18が第2ティースに相当し、ティースT8,T17が第3ティースに相当する。 Further, 36 partial windings are provided for each teeth T1 to T18 as shown in FIGS. 11 and 12. In the third embodiment, when the U-phase coil bodies Ua +, Ub-, and Uc + are the first-phase coil bodies, the U phase corresponds to the first phase, the V phase corresponds to the second phase, and the W phase. Corresponds to the third phase. In this case, the teeth T1 and T10 correspond to the first teeth, the teeth T9 and T18 correspond to the second teeth, and the teeth T8 and T17 correspond to the third teeth.
 また、第3実施形態において、V相のコイル体Va+,Vb-,Vc+を第1相のコイル体とした場合、V相が第1相に相当し、W相が第2相に相当し、U相が第3相に相当する。この場合、ティースT4,T13が第1ティースに相当し、ティースT3,T12が第2ティースに相当し、ティースT2,T11が第3ティースに相当する。 Further, in the third embodiment, when the V-phase coil bodies Va +, Vb-, and Vc + are used as the first-phase coil bodies, the V-phase corresponds to the first phase and the W-phase corresponds to the second phase. The U phase corresponds to the third phase. In this case, the teeth T4 and T13 correspond to the first teeth, the teeth T3 and T12 correspond to the second teeth, and the teeth T2 and T11 correspond to the third teeth.
 また、第3実施形態において、W相のコイル体Wa+,Wb-,Wc+を第1相のコイル体とした場合、W相が第1相に相当し、U相が第2相に相当し、V相が第3相に相当する。この場合、ティースT7,T16が第1ティースに相当し、ティースT6,T15が第2ティースに相当し、ティースT5,T14が第3ティースに相当する。 Further, in the third embodiment, when the W phase coil bodies Wa +, Wb−, and Wc + are used as the first phase coil bodies, the W phase corresponds to the first phase and the U phase corresponds to the second phase. The V phase corresponds to the third phase. In this case, the teeth T7 and T16 correspond to the first teeth, the teeth T6 and T15 correspond to the second teeth, and the teeth T5 and T14 correspond to the third teeth.
 また、図11及び図12に示すように、各相のコイル体は、回転軸11の軸心を中心として、2回回転対称に配置されている。 Further, as shown in FIGS. 11 and 12, the coil bodies of each phase are arranged twice rotationally symmetrically with respect to the axis of the rotating shaft 11.
 そして、第3ティースであるティースT17,T8において、U相の同巻線U22+,U25+の起磁力Fu1と、W相の同巻線W12-,W15-の起磁力Fw2との位相差は、それぞれ電気角で60度となる。また、第1ティースであるティースT1、T10において、U相の主巻線U12+,U14+の起磁力Fu1と、V相の従巻線V21-,V24-の起磁力Fv2との位相差は、それぞれ電気角で60度となる。また、第2ティースであるティースT9,T18において、U相の主巻線U26-,U23-の起磁力Fu2と、W相の従巻線W16+,W13+の起磁力Fw1との位相差は、それぞれ電気角で60度となる。 Then, in the teeth T17 and T8 which are the third teeth, the phase difference between the magnetomotive force Fu1 of the same winding U22 + and U25 + of the U phase and the magnetomotive force Fw2 of the same winding W12- and W15- of the W phase is, respectively. The electric angle is 60 degrees. Further, in the first teeth T1 and T10, the phase difference between the magnetomotive force Fu1 of the U-phase main windings U12 + and U14 + and the magnetomotive force Fv2 of the V-phase slave windings V21- and V24-is, respectively. The electric angle is 60 degrees. Further, in the teeth T9 and T18 which are the second teeth, the phase difference between the magnetomotive force Fu2 of the main windings U26- and U23- of the U phase and the magnetomotive force Fw1 of the slave windings W16 + and W13 + of the W phase is different, respectively. The electric angle is 60 degrees.
 さらに、U相の主巻線U12+,U14+,U26-,U23-の巻回数をそれぞれ「Na」とし、V相の従巻線V21-,V24-及びW相の従巻線W16+,W13+をそれぞれ「Nb」とした場合、3.0≦Na/Nb≦6.0の関係を満たすように、各巻回数が設定されている。より具体的には、Na:Nb=9:2となるように巻回数が設定されている。 Further, the number of turns of the U-phase main windings U12 +, U14 +, U26-, and U23- is set to "Na", respectively, and the V-phase slave windings V21-, V24-, and the W-phase slave windings W16 + and W13 +, respectively. When "Nb" is set, the number of turns is set so as to satisfy the relationship of 3.0≤Na / Nb≤6.0. More specifically, the number of turns is set so that Na: Nb = 9: 2.
 また、主巻線の巻回数「Na」と、同巻線の巻回数「Nc」が1.4≦Na/Nc≦1.8の関係を満たすように、各巻回数が設定されている。具体的には、Na:Nb:Nc=9:2:6となるように巻回数が設定されている。そして、V相のコイル体や、W相のコイル体も同様に設定されている。 Further, the number of turns of each winding is set so that the number of turns of the main winding "Na" and the number of turns of the same winding "Nc" satisfy the relationship of 1.4 ≤ Na / Nc ≤ 1.8. Specifically, the number of turns is set so that Na: Nb: Nc = 9: 2: 6. The V-phase coil body and the W-phase coil body are also set in the same manner.
 これにより、コイル体Ua,Va,Waの起磁力に対するコイル体Ub,Vb,Wbの起磁力の各位相差「λ1」を20+180n度とすることができる。また、コイル体Ua,Va,Waの起磁力に対するコイル体Uc,Vc,Wcの起磁力の各位相差「λ2」を、40+180n度とすることができる。 Thereby, each phase difference "λ1" of the magnetomotive force of the coil bodies Ub, Vb, Wb with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 20 + 180 n degrees. Further, the phase difference "λ2" of the magnetomotive forces of the coil bodies Uc, Vc, and Wc with respect to the magnetomotive force of the coil bodies Ua, Va, and Wa can be set to 40 + 180 n degrees.
 したがって、第1実施形態と同様に、数式(1)~数式(4)に示すように、トルクの6次又は12次高調波成分を打消し、トルクリプルを抑制することが可能となる。また、各コイル体の起磁力の振幅を同程度にすることができる。これにより、より効果的にトルクリプルを抑制することができる。 Therefore, as in the first embodiment, as shown in the formulas (1) to (4), it is possible to cancel the 6th or 12th harmonic component of the torque and suppress the torque ripple. Further, the amplitude of the magnetomotive force of each coil body can be made to be about the same. As a result, torque ripple can be suppressed more effectively.
 図11や図12に示すように、第3ティースとしてのティースT2,T5,T8,T11,T14,T16に巻回された各同巻線は、第3ティースの隣に配置されているティースに巻回されている主巻線と接続されている。例えば、ティースT2の同巻線U12-は、ティースT1の主巻線U11+に接続されており、ティースT2の同巻線V22+は、ティースT3の主巻線V23-に接続されている。これにより、コイルエンドにおいて、スロット35間を接続するための渡り線を短くすることができ、接続が容易となり、また、小型化することが可能となる。 As shown in FIGS. 11 and 12, each of the same windings wound around the teeth T2, T5, T8, T11, T14, T16 as the third tooth is attached to the tooth arranged next to the third tooth. It is connected to the main winding that is wound. For example, the same winding U12-of the teeth T2 is connected to the main winding U11 + of the teeth T1, and the same winding V22 + of the teeth T2 is connected to the main winding V23- of the teeth T3. As a result, at the coil end, the crossover for connecting the slots 35 can be shortened, the connection can be facilitated, and the size can be reduced.
 (第4実施形態)
 第1実施形態の構成の一部を以下のように変更してもよい。以下、第1実施形態の構成を基本として、異なる箇所のみ説明する。
(Fourth Embodiment)
A part of the configuration of the first embodiment may be changed as follows. Hereinafter, only different parts will be described based on the configuration of the first embodiment.
 第4実施形態において、図13及び図14に示すように、回転子40は、20個の(すなわち、磁極対数が10個となる)磁極を有する。つまり、20個の永久磁石42を有する。 In the fourth embodiment, as shown in FIGS. 13 and 14, the rotor 40 has 20 magnetic poles (that is, the number of magnetic pole pairs is 10). That is, it has 20 permanent magnets 42.
 第4実施形態において、U相の固定子巻線32は、12個の部分巻線U11+,U12-,U13+,U14+,U15-,U16+,U21-,U22+,U23-,U24-,U25+,U26-により構成されている。これらのU相の部分巻線は、直列に接続されている。V相の固定子巻線32は、12個の部分巻線V11+,V12-,V13+,V14+,V15-,V16+,V21-,V22+,V23-,V24-,V25+,V26-により構成されている。これらのV相の部分巻線は、直列に接続されている。W相の固定子巻線32は、12個の部分巻線W11+,W12-,W13+,W14+,W15-,W16+,W21-,W22+,W23-,W24-,W25+,W26-により構成されている。これらのW相の部分巻線は、直列に接続されている。 In the fourth embodiment, the U-phase stator winding 32 has twelve partial windings U11 +, U12-, U13 +, U14 +, U15-, U16 +, U21-, U22 +, U23-, U24-, U25 +, U26. -Consists of. These U-phase partial windings are connected in series. The V-phase stator winding 32 is composed of 12 partial windings V11 +, V12-, V13 +, V14 +, V15-, V16 +, V21-, V22 +, V23-, V24-, V25 +, V26-. .. These V-phase partial windings are connected in series. The W-phase stator winding 32 is composed of 12 partial windings W11 +, W12−, W13 +, W14 +, W15−, W16 +, W21−, W22 +, W23−, W24−, W25 +, W26−. .. These W-phase partial windings are connected in series.
 これらの直列接続体は、一端が中性点Qに接続され、他端がインバータ回路51に接続される引出線A1,B1,C1にそれぞれ接続されている。なお、本実施形態の固定子巻線32では、Y結線(スター結線)としているが、デルタ結線としてもよい。 One end of these series connectors is connected to the neutral point Q, and the other end is connected to leader lines A1, B1, and C1 connected to the inverter circuit 51, respectively. In the stator winding 32 of the present embodiment, Y connection (star connection) is used, but delta connection may be used.
 また、36個の部分巻線は、図13及び図14に示すように、各ティースT1~T18に対して巻回されている。第4実施形態において、U相のコイル体Ua+,Ub-,Uc+を第1相のコイル体とした場合、U相が第1相に相当し、V相が第2相に相当し、W相が第3相に相当する。この場合、ティースT1,T10が第1ティースに相当し、ティースT2,T11が第2ティースに相当し、ティースT3,T12が第3ティースに相当する。 Further, as shown in FIGS. 13 and 14, 36 partial windings are wound around each tooth T1 to T18. In the fourth embodiment, when the U-phase coil bodies Ua +, Ub-, and Uc + are the first-phase coil bodies, the U phase corresponds to the first phase, the V phase corresponds to the second phase, and the W phase. Corresponds to the third phase. In this case, the teeth T1 and T10 correspond to the first teeth, the teeth T2 and T11 correspond to the second teeth, and the teeth T3 and T12 correspond to the third teeth.
 また、第4実施形態において、V相のコイル体Va+,Vb-,Vc+を第1相のコイル体とした場合、V相が第1相に相当し、W相が第2相に相当し、U相が第3相に相当する。この場合、ティースT7,T16が第1ティースに相当し、ティースT8,T17が第2ティースに相当し、ティースT9,T18が第3ティースに相当する。 Further, in the fourth embodiment, when the V-phase coil bodies Va +, Vb-, and Vc + are used as the first-phase coil bodies, the V-phase corresponds to the first phase and the W-phase corresponds to the second phase. The U phase corresponds to the third phase. In this case, the teeth T7 and T16 correspond to the first teeth, the teeth T8 and T17 correspond to the second teeth, and the teeth T9 and T18 correspond to the third teeth.
 また、第4実施形態において、W相のコイル体Wa+,Wb-,Wc+を第1相のコイル体とした場合、W相が第1相に相当し、U相が第2相に相当し、V相が第3相に相当する。この場合、ティースT4,T13が第1ティースに相当し、ティースT5,T14が第2ティースに相当し、ティースT6,T15が第3ティースに相当する。 Further, in the fourth embodiment, when the W phase coil bodies Wa +, Wb−, and Wc + are used as the first phase coil bodies, the W phase corresponds to the first phase and the U phase corresponds to the second phase. The V phase corresponds to the third phase. In this case, the teeth T4 and T13 correspond to the first teeth, the teeth T5 and T14 correspond to the second teeth, and the teeth T6 and T15 correspond to the third teeth.
 また、図13及び図14に示すように、各相のコイル体は、回転軸11の軸心を中心として、2回回転対称に配置されている。 Further, as shown in FIGS. 13 and 14, the coil bodies of each phase are arranged twice rotationally symmetrically with respect to the axis of the rotating shaft 11.
 そして、第3ティースであるティースT3,T12において、U相の同巻線U25+,U22+の起磁力Fu1と、W相の同巻線W12-,W15-の起磁力Fw2との位相差は、それぞれ電気角で60度となる。また、第1ティースであるティースT1,T10において、U相の主巻線U13+,U16+の起磁力Fu1と、V相の従巻線V23-,V26-の起磁力Fv2との位相差は、それぞれ電気角で60度となる。また、第2ティースであるティースT2,T11において、U相の主巻線U24-,U21-の起磁力Fu2と、W相の従巻線W14+,W11+の起磁力Fw1との位相差は、電気角で60度となる。 Then, in the teeth T3 and T12 which are the third teeth, the phase difference between the magnetomotive force Fu1 of the same winding U25 + and U22 + of the U phase and the magnetomotive force Fw2 of the same winding W12- and W15- of the W phase is, respectively. The electric angle is 60 degrees. Further, in the first teeth T1 and T10, the phase difference between the magnetomotive force Fu1 of the main windings U13 + and U16 + of the U phase and the magnetomotive force Fv2 of the slave windings V23- and V26- of the V phase is different, respectively. The electric angle is 60 degrees. Further, in the teeth T2 and T11 which are the second teeth, the phase difference between the magnetomotive force Fu2 of the main windings U24- and U21- of the U phase and the magnetomotive force Fw1 of the slave windings W14 + and W11 + of the W phase is electric. The angle is 60 degrees.
 さらに、U相の主巻線U13+,U16+,U24-,U21-の巻回数をそれぞれ「Na」とし、V相の従巻線V23-,V26-及びW相の従巻線W14+,W11+をそれぞれ「Nb」とした場合、3.0≦Na/Nb≦6.0の関係を満たすように、各巻回数が設定されている。より具体的には、Na:Nb=9:2となるように巻回数が設定されている。 Further, the number of turns of the U-phase main windings U13 +, U16 +, U24-, and U21- is set to "Na", respectively, and the V-phase slave windings V23-, V26-, and the W-phase slave windings W14 + and W11 +, respectively. When "Nb" is set, the number of turns is set so as to satisfy the relationship of 3.0≤Na / Nb≤6.0. More specifically, the number of turns is set so that Na: Nb = 9: 2.
 また、主巻線の巻回数「Na」と、同巻線の巻回数「Nc」が1.4≦Na/Nc≦1.8の関係を満たすように、各巻回数が設定されている。具体的には、Na:Nb:Nc=9:2:6となるように巻回数が設定されている。そして、V相のコイル体や、W相のコイル体も同様に設定されている。 Further, the number of turns of each winding is set so that the number of turns of the main winding "Na" and the number of turns of the same winding "Nc" satisfy the relationship of 1.4 ≤ Na / Nc ≤ 1.8. Specifically, the number of turns is set so that Na: Nb: Nc = 9: 2: 6. The V-phase coil body and the W-phase coil body are also set in the same manner.
 これにより、コイル体Ua,Va,Waの起磁力に対するコイル体Ub,Vb,Wbの起磁力の各位相差「λ1」を20+180n度とすることができる。また、コイル体Ua,Va,Waの起磁力に対するコイル体Uc,Vc,Wcの起磁力の各位相差「λ2」を、40+180n度とすることができる。 Thereby, each phase difference "λ1" of the magnetomotive force of the coil bodies Ub, Vb, Wb with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 20 + 180 n degrees. Further, the phase difference "λ2" of the magnetomotive forces of the coil bodies Uc, Vc, and Wc with respect to the magnetomotive force of the coil bodies Ua, Va, and Wa can be set to 40 + 180 n degrees.
 したがって、第1実施形態と同様に、数式(1)~数式(4)に示すように、トルクの6次又は12次高調波成分を打消し、トルクリプルを抑制することが可能となる。また、各コイル体の起磁力の振幅を同程度にすることができる。これにより、より効果的にトルクリプルを抑制することができる。 Therefore, as in the first embodiment, as shown in the formulas (1) to (4), it is possible to cancel the 6th or 12th harmonic component of the torque and suppress the torque ripple. Further, the amplitude of the magnetomotive force of each coil body can be made to be about the same. As a result, torque ripple can be suppressed more effectively.
 図13や図14に示すように、第3ティースとしてのティースT3,T6,T9,T12,T15,T18に巻回された各同巻線は、第3ティースの隣に配置されているティースに巻回されている主巻線と接続されている。例えば、ティースT3の同巻線W15-は、ティースT4の主巻線W16+に接続されており、ティースT3の同巻線U25+は、ティースT2の主巻線U24-に接続されている。これにより、コイルエンドにおいて、スロット35間を接続するための渡り線を短くすることができ、接続が容易となり、また、小型化することが可能となる。 As shown in FIGS. 13 and 14, each of the same windings wound around the teeth T3, T6, T9, T12, T15, and T18 as the third tooth is attached to the tooth arranged next to the third tooth. It is connected to the main winding that is wound. For example, the same winding W15-of the teeth T3 is connected to the main winding W16 + of the teeth T4, and the same winding U25 + of the teeth T3 is connected to the main winding U24- of the teeth T2. As a result, at the coil end, the crossover for connecting the slots 35 can be shortened, the connection can be facilitated, and the size can be reduced.
 (第5実施形態)
 第1実施形態の構成の一部を以下のように変更してもよい。以下、第1実施形態の構成を基本として、異なる箇所のみ説明する。
(Fifth Embodiment)
A part of the configuration of the first embodiment may be changed as follows. Hereinafter, only different parts will be described based on the configuration of the first embodiment.
 図15及び図16に示すように、第5実施形態において、U相の固定子巻線32は、10個の部分巻線U11-,U12+,U13-,U14+,U15-,U16+,U21-,U22+,U23+,U24-により構成されている。これらのU相の部分巻線は、直列に接続されている。V相の固定子巻線32は、10個の部分巻線V11+,V12-,V13+,V14-,V15+,V16-,V21+,V22-,V23-,V24+により構成されている。これらのV相の部分巻線は、直列に接続されている。W相の固定子巻線32は、10個の部分巻線W11-,W12+,W13-,W14+,W15-,W16+,W21+,W22-,W23-,W24+により構成されている。これらのW相の部分巻線は、直列に接続されている。 As shown in FIGS. 15 and 16, in the fifth embodiment, the U-phase stator winding 32 has 10 partial windings U11−, U12 +, U13−, U14 +, U15−, U16 +, U21−,. It is composed of U22 +, U23 +, and U24-. These U-phase partial windings are connected in series. The V-phase stator winding 32 is composed of 10 partial windings V11 +, V12−, V13 +, V14−, V15 +, V16−, V21 +, V22−, V23−, V24 +. These V-phase partial windings are connected in series. The W-phase stator winding 32 is composed of 10 partial windings W11−, W12 +, W13−, W14 +, W15−, W16 +, W21 +, W22−, W23−, W24 +. These W-phase partial windings are connected in series.
 これらの直列接続体は、一端が中性点Qに接続され、他端がインバータ回路51に接続される引出線A1,B1,C1にそれぞれ接続されている。なお、本実施形態の固定子巻線32では、Y結線(スター結線)としているが、デルタ結線としてもよい。 One end of these series connectors is connected to the neutral point Q, and the other end is connected to leader lines A1, B1, and C1 connected to the inverter circuit 51, respectively. In the stator winding 32 of the present embodiment, Y connection (star connection) is used, but delta connection may be used.
 また、30個の部分巻線は、図15及び図16に示すように、各ティースT1~T18に設けられている。例えば、ティースT1には、部分巻線U12+のみが設けられている。以下、1つのティースT1~T18に対して、1相の部分巻線のみが設けられている場合、当該部分巻線を単巻線と示す場合がある。また、ティースT2には、主巻線V21+が巻回され、従巻線U13-が巻回されている。以下、ティースT3~T18に設けられている部分巻線は、図15及び図16に示す通りである。 Further, 30 partial windings are provided in each teeth T1 to T18 as shown in FIGS. 15 and 16. For example, the teeth T1 is provided with only the partial winding U12 +. Hereinafter, when only one phase partial winding is provided for one teeth T1 to T18, the partial winding may be referred to as a single winding. Further, the main winding V21 + is wound around the teeth T2, and the slave winding U13- is wound around the teeth T2. Hereinafter, the partial windings provided in the teeth T3 to T18 are as shown in FIGS. 15 and 16.
 そして、ティースT1に、U相の単巻線U12+が設けられていることにより、U相のコイル体Ua+が構成される。また、ティースT10に、U相の単巻線U15-が設けられていることにより、U相のコイル体Ua-が構成される。 Then, since the teeth T1 is provided with the U-phase single winding U12 +, the U-phase coil body Ua + is configured. Further, since the teeth T10 is provided with the U-phase single winding U15-, the U-phase coil body Ua- is configured.
 また、ティースT14に、U相の主巻線U23+と、W相の従巻線W13-が設けられていることにより、U相のコイル体Ub+が構成される。また、ティースT5に、U相の主巻線U21-と、W相の従巻線W16+が設けられていることにより、U相のコイル体Ub-が構成される。 Further, since the teeth T14 is provided with the U-phase main winding U23 + and the W-phase slave winding W13-, the U-phase coil body Ub + is configured. Further, the teeth T5 is provided with the U-phase main winding U21− and the W-phase slave winding W16 +, whereby the U-phase coil body Ub− is configured.
 また、ティースT9に、W相の主巻線W22-と、U相の従巻線U14+が設けられていることにより、U相のコイル体Uc+が構成される。また、ティースT18に、W相の主巻線W24+と、U相の従巻線U11-が設けられていることにより、U相のコイル体Uc-が構成される。 Further, since the teeth T9 is provided with the W-phase main winding W22- and the U-phase slave winding U14 +, the U-phase coil body Uc + is configured. Further, since the teeth T18 is provided with the W-phase main winding W24 + and the U-phase slave winding U11-, the U-phase coil body Uc- is configured.
 本実施形態において、U相のコイル体Ua+,Ua-,Ub+,Ub-,Uc+,Uc-を第1相のコイル体とした場合、U相が第1相に相当し、W相が第2相に相当する。この場合、ティースT1,T10が第1ティースに相当し、ティースT14,T5が第2ティースに相当し、ティースT9,T18が第3ティースに相当する。 In the present embodiment, when the U-phase coil bodies Ua +, Ua-, Ub +, Ub-, Uc +, and Uc- are used as the first phase coil bodies, the U phase corresponds to the first phase and the W phase corresponds to the second phase. Corresponds to the phase. In this case, the teeth T1 and T10 correspond to the first teeth, the teeth T14 and T5 correspond to the second teeth, and the teeth T9 and T18 correspond to the third teeth.
 また、ティースT7に、V相の単巻線V15+が設けられていることにより、V相のコイル体Va+が構成される。また、ティースT16に、V相の単巻線V12-が設けられていることにより、V相のコイル体Va-が構成される。 Further, since the teeth T7 is provided with the V-phase single winding V15 +, the V-phase coil body Va + is configured. Further, since the teeth T16 is provided with the V-phase single winding V12-, the V-phase coil body Va- is configured.
 また、ティースT2に、V相の主巻線V21+と、U相の従巻線U13-とが設けられていることにより、V相のコイル体Vb+が構成される。また、ティースT11に、V相の主巻線V23-と、U相の従巻線U16+が設けられていることにより、V相のコイル体Vb-が構成される。 Further, since the teeth T2 is provided with the V-phase main winding V21 + and the U-phase slave winding U13-, the V-phase coil body Vb + is configured. Further, since the teeth T11 is provided with the V-phase main winding V23- and the U-phase slave winding U16 +, the V-phase coil body Vb- is configured.
 また、ティースT15に、U相の主巻線U24-と、V相の従巻線V11+とが設けられていることにより、V相のコイル体Vc+が構成される。また、ティースT6に、U相の主巻線U22+と、V相の従巻線V14-とが設けられていることにより、V相のコイル体Vc-が構成される。 Further, the teeth T15 is provided with the U-phase main winding U24- and the V-phase slave winding V11 +, so that the V-phase coil body Vc + is configured. Further, since the teeth T6 is provided with the U-phase main winding U22 + and the V-phase slave winding V14-, the V-phase coil body Vc- is configured.
 本実施形態において、V相のコイル体Va+,Va-,Vb+,Vb-,Vc+,Vc-を第1相のコイル体とした場合、V相が第1相に相当し、U相が第2相に相当する。この場合、ティースT7,T16が第1ティースに相当し、ティースT2,T11が第2ティースに相当し、ティースT15,T6が第3ティースに相当する。 In the present embodiment, when the V-phase coil bodies Va +, Va-, Vb +, Vb-, Vc +, and Vc- are used as the first phase coil bodies, the V phase corresponds to the first phase and the U phase corresponds to the second phase. Corresponds to the phase. In this case, the teeth T7 and T16 correspond to the first teeth, the teeth T2 and T11 correspond to the second teeth, and the teeth T15 and T6 correspond to the third teeth.
 また、ティースT13に、W相の単巻線W12+が設けられていることにより、W相のコイル体Wa+が構成される。また、ティースT4に、W相の単巻線W15-が設けられていることにより、W相のコイル体Wa-が構成される。 Further, since the teeth T13 is provided with the W-phase single winding W12 +, the W-phase coil body Wa + is configured. Further, since the teeth T4 is provided with the W-phase single winding W15-, the W-phase coil body Wa- is configured.
 また、ティースT8に、W相の主巻線W21+と、V相の従巻線V16-とが設けられていることにより、W相のコイル体Wb+が構成される。また、ティースT17に、W相の主巻線W23-と、V相の従巻線V13+とが設けられていることにより、W相のコイル体Wb-が構成される。 Further, since the teeth T8 is provided with the W-phase main winding W21 + and the V-phase slave winding V16-, the W-phase coil body Wb + is configured. Further, the teeth T17 is provided with the W-phase main winding W23− and the V-phase slave winding V13 +, whereby the W-phase coil body Wb− is configured.
 また、ティースT3に、V相の主巻線V22-と、W相の従巻線W14+とが設けられていることにより、W相のコイル体Wc+が構成される。また、ティースT12に、V相の主巻線V24+と、W相の従巻線W11-とが設けられていることにより、W相のコイル体Wc-が構成される。 Further, since the teeth T3 is provided with the V-phase main winding V22- and the W-phase slave winding W14 +, the W-phase coil body Wc + is configured. Further, since the teeth T12 is provided with the V-phase main winding V24 + and the W-phase slave winding W11−, the W-phase coil body Wc− is configured.
 本実施形態において、W相のコイル体Wa+,Wa-,Wb+,Wb-,Wc+,Wc-を第1相のコイル体とした場合、W相が第1相に相当し、V相が第2相に相当する。この場合、ティースT13,T4が第1ティースに相当し、ティースT8,T17が第2ティースに相当し、ティースT3,T12が第3ティースに相当する。 In the present embodiment, when the W-phase coil body Wa +, Wa-, Wb +, Wb-, Wc +, Wc- is used as the first phase coil body, the W phase corresponds to the first phase and the V phase corresponds to the second phase. Corresponds to the phase. In this case, the teeth T13 and T4 correspond to the first teeth, the teeth T8 and T17 correspond to the second teeth, and the teeth T3 and T12 correspond to the third teeth.
 図16に示すように、各相のコイル体は、回転軸11の軸心を中心として、2回回転対称に配置されている。つまり、軸心を中心に、機械角で180度回転させても、コイル体の配置順が同じとなっている。 As shown in FIG. 16, the coil bodies of each phase are arranged twice rotationally symmetrically with the axis of the rotating shaft 11 as the center. That is, even if the coil body is rotated by 180 degrees around the axis, the order of arrangement of the coils is the same.
 次に第5実施形態における各ティースT1~T18に巻回される各部分巻線の組み合わせ及び巻回数について説明する。 Next, the combination of the partial windings wound around the teeth T1 to T18 and the number of windings in the fifth embodiment will be described.
 まず、U相のコイル体Ua+を構成するための巻回方法について説明する。図15、図16に示すように、ティースT1には、単巻線U12+が設けられている。そして、単巻線U12+の起磁力Fu1は、数式(11)に示すとおりである。そして、第5実施形態において、単巻線U12+の起磁力Fu1が、図17(a)に示すように、U相のコイル体Ua+の起磁力Fua1に相当する。 First, the winding method for forming the U-phase coil body Ua + will be described. As shown in FIGS. 15 and 16, the teeth T1 are provided with a single winding U12 +. The magnetomotive force Fu1 of the single winding U12 + is as shown in the mathematical formula (11). Then, in the fifth embodiment, the magnetomotive force Fu1 of the single winding U12 + corresponds to the magnetomotive force Fu1 of the U-phase coil body Ua +, as shown in FIG. 17 (a).
 次に、U相のコイル体Ub+を構成するための巻回方法について説明する。図15、図16に示すように、ティースT14には、主巻線U23+と、従巻線W13-とが設けられている。そして、主巻線U23+の起磁力Fu1と、従巻線W13-の起磁力Fw2は、数式(11)(16)に示すとおり、位相差が60度となっている。より詳しくは、主巻線U23+の位相を基準として、従巻線W13-の位相は、+60度の関係を有している。ここで、起磁力Fu1を0.74倍したベクトル値と、起磁力Fw2を0.39倍したベクトル値とを合算すると、数式(51)及び図17(b)のようになることが分かっている。 Next, a winding method for forming the U-phase coil body Ub + will be described. As shown in FIGS. 15 and 16, the teeth T14 are provided with a main winding U23 + and a slave winding W13−. The magnetomotive force Fu1 of the main winding U23 + and the magnetomotive force Fw2 of the slave winding W13− have a phase difference of 60 degrees as shown in the equations (11) and (16). More specifically, the phase of the slave winding W13− has a relationship of +60 degrees with respect to the phase of the main winding U23 +. Here, it was found that the total of the vector value obtained by multiplying the magnetomotive force Fu1 by 0.74 and the vector value obtained by multiplying the magnetomotive force Fw2 by 0.39 gives the formula (51) and FIG. 17 (b). There is.
Figure JPOXMLDOC01-appb-M000010
 そこで、主巻線U23+の巻回数「Nd」と、従巻線W13-の巻回数「Ne」が上記関係を満たすように、すなわち、Nd:Ne=0.74:0.39に近づき、かつ、「Nd」及び「Ne」が整数となるように、各巻回数が設定されている。本実施形態では、Na:Nb=11:6となるように設定されている。なお、1.8≦Nd/Ne≦2.0の範囲内で巻回数が設定されていてもよい。
Figure JPOXMLDOC01-appb-M000010
Therefore, the number of turns "Nd" of the main winding U23 + and the number of turns "Ne" of the slave winding W13- satisfy the above relationship, that is, Nd: Ne = 0.74: 0.39, and , "Nd" and "Ne" are set to be integers. In this embodiment, it is set so that Na: Nb = 11: 6. The number of turns may be set within the range of 1.8 ≦ Nd / Ne ≦ 2.0.
 また、各コイル体の起磁力の振幅のバランスをとる必要上、起磁力Fub1は、起磁力Fua1と同じ大きさ(振幅)であることが望ましい。このため、U相のコイル体Ua+を構成する単巻線U12+の巻回数「Nf」とした場合、1.2≦Nf/Nd≦1.5の関係を満たすように、各巻回数が設定されている。具体的には、Nd:Ne:Nf=11:6:15となるように、各巻回数が設定されている。 Further, it is desirable that the magnetomotive force Fab1 has the same magnitude (amplitude) as the magnetomotive force Fua1 because it is necessary to balance the amplitude of the magnetomotive force of each coil body. Therefore, when the number of turns of the single winding U12 + constituting the U-phase coil body Ua + is set to "Nf", the number of turns is set so as to satisfy the relationship of 1.2≤Nf / Nd≤1.5. There is. Specifically, the number of turns is set so that Nd: Ne: Nf = 11: 6: 15.
 上記のように巻回数を調整することにより、コイル体Ua+の起磁力が同じで、コイル体Ua+に対して位相差「λ1」が20度となるU相のコイル体Ub+が構成される。 By adjusting the number of turns as described above, a U-phase coil body Ub + having the same magnetomotive force of the coil body Ua + and a phase difference "λ1" of 20 degrees with respect to the coil body Ua + is configured.
 次に、U相のコイル体Uc+を構成するための巻回方法について説明する。図15、図16に示すように、ティースT9には、主巻線W22-と、従巻線U14+とが設けられている。そして、主巻線W22-の起磁力Fw2と、従巻線U14+の起磁力Fu1は、数式(11)(16)に示すとおり、位相差が60度となっている。より詳しくは、従巻線U14+の位相を基準として、主巻線W22-の位相は、+60度の関係を有している。ここで、起磁力Fw2を0.74倍したベクトル値と、起磁力Fu1を0.39倍したベクトル値とを合算すると、数式(52)及び図17(c)のようになることが分かっている。 Next, the winding method for forming the U-phase coil body Uc + will be described. As shown in FIGS. 15 and 16, the teeth T9 are provided with a main winding W22− and a slave winding U14 +. The magnetomotive force Fw2 of the main winding W22- and the magnetomotive force Fu1 of the slave winding U14 + have a phase difference of 60 degrees as shown in the equations (11) and (16). More specifically, the phase of the main winding W22− has a relationship of +60 degrees with respect to the phase of the slave winding U14 +. Here, it was found that the total of the vector value obtained by multiplying the magnetomotive force Fw2 by 0.74 and the vector value obtained by multiplying the magnetomotive force Fu1 by 0.39 gives the formula (52) and FIG. 17 (c). There is.
Figure JPOXMLDOC01-appb-M000011
 そこで、主巻線W22-の巻回数「Nd」と、従巻線U14+の巻回数「Ne」が上記関係を満たすように、すなわち、Nd:Ne=0.74:0.39に近づき、かつ、「Nd」及び「Ne」が整数となるように、各巻回数が設定されている。本実施形態では、Nf:Ne=11:6となるように設定されている。なお、1.8≦Nd/Ne≦2.0の範囲内で巻回数が設定されていてもよい。
Figure JPOXMLDOC01-appb-M000011
Therefore, the number of turns "Nd" of the main winding W22- and the number of turns "Ne" of the slave winding U14 + satisfy the above relationship, that is, Nd: Ne = 0.74: 0.39, and , "Nd" and "Ne" are set to be integers. In this embodiment, Nf: Ne = 11: 6 is set. The number of turns may be set within the range of 1.8 ≦ Nd / Ne ≦ 2.0.
 また、起磁力の振幅のバランスをとる必要上、起磁力Fuc1は、起磁力Fua1と同じ大きさ(振幅)であることが望ましい。このため、U相のコイル体Ua+を構成する単巻線U12+の巻回数「Nf」とした場合、1.2≦Nf/Nd≦1.5の関係を満たすように、各巻回数が設定されている。具体的には、Nd:Ne:Nf=11:6:15となるように、各巻回数が設定されている。 Further, it is desirable that the magnetomotive force Fuc1 has the same magnitude (amplitude) as the magnetomotive force Fua1 because it is necessary to balance the amplitude of the magnetomotive force. Therefore, when the number of turns of the single winding U12 + constituting the U-phase coil body Ua + is set to "Nf", the number of turns is set so as to satisfy the relationship of 1.2≤Nf / Nd≤1.5. There is. Specifically, the number of turns is set so that Nd: Ne: Nf = 11: 6: 15.
 上記のように巻回数を調整することにより、コイル体Ua+の起磁力が同じで、コイル体Ua+に対して位相差「λ2」が40度となるU相のコイル体Uc+が構成される。 By adjusting the number of turns as described above, a U-phase coil body Uc + having the same magnetomotive force of the coil body Ua + and a phase difference "λ2" of 40 degrees with respect to the coil body Ua + is configured.
 同様にして、Nd:Ne:Nf=11:6:15となるように、各部分巻線の巻回数が設定されたうえで、各ティースT1~T18に対して、図15及び図16に従って、各部分巻線が設けられている。これにより、U相のコイル体Ua+の起磁力Fua1、V相のコイル体Va+の起磁力Fva1、及びW相のコイル体Wa+の起磁力Fwa1を、数式(61)~(63)に示すように構成することができる。また、U相のコイル体Ua-の起磁力Fua2、V相のコイル体Va-の起磁力Fva2、W相のコイル体Wa-の起磁力Fwa2を、数式(64)~(66)に示すように構成することができる。 Similarly, after setting the number of turns of each partial winding so that Nd: Ne: Nf = 11: 6: 15, for each teeth T1 to T18, according to FIGS. 15 and 16. Each partial winding is provided. As a result, the magnetomotive force Fua1 of the U-phase coil body Ua +, the magnetomotive force Fva1 of the V-phase coil body Va +, and the magnetomotive force Fwa1 of the W-phase coil body Wa + are shown in the equations (61) to (63). Can be configured. Further, the magnetomotive force Fua2 of the U-phase coil body Ua-, the magnetomotive force Fva2 of the V-phase coil body Va-, and the magnetomotive force Fwa2 of the W-phase coil body Wa- are shown in equations (64) to (66). Can be configured in.
Figure JPOXMLDOC01-appb-M000012
 同様に、U相のコイル体Ub+の起磁力Fub1、V相のコイル体Vb+の起磁力Fvb1、及びW相のコイル体Wb+の起磁力Fwb1を、数式(67)~(69)に示すように構成することができる。また、U相のコイル体Ub-の起磁力Fub2、V相のコイル体Vb-の起磁力Fvb2、W相のコイル体Wb-の起磁力Fwb2を、数式(70)~(72)に示すように構成することができる。本実施形態の「λ1」は、「20」度となっている。
Figure JPOXMLDOC01-appb-M000012
Similarly, the magnetomotive force Fub1 of the U-phase coil body Ub +, the magnetomotive force Fvb1 of the V-phase coil body Vb +, and the magnetomotive force Fwb1 of the W-phase coil body Wb + are shown in equations (67) to (69). Can be configured. Further, the magnetomotive force Fub2 of the U-phase coil body Ub-, the magnetomotive force Fvb2 of the V-phase coil body Vb-, and the magnetomotive force Fwb2 of the W-phase coil body Wb- are shown in the equations (70) to (72). Can be configured in. "Λ1" of this embodiment is "20" degrees.
Figure JPOXMLDOC01-appb-M000013
 同様に、U相のコイル体Uc+の起磁力Fuc1、V相のコイル体Vc+の起磁力Fvc1、及びW相のコイル体Wc+の起磁力Fwc1を、数式(73)~(75)に示すように構成することができる。また、U相のコイル体Uc-の起磁力Fuc2、V相のコイル体Vc-の起磁力Fvc2、及びW相のコイル体Wc-の起磁力Fwc2を、数式(76)~(78)に示すように構成することができる。本実施形態の「λ2」は、「40」度となっている。
Figure JPOXMLDOC01-appb-M000013
Similarly, the magnetomotive force Fuc1 of the U-phase coil body Uc +, the magnetomotive force Fvc1 of the V-phase coil body Vc +, and the magnetomotive force Fwc1 of the W-phase coil body Wc + are shown in equations (73) to (75). Can be configured. Further, the magnetomotive force Fuc2 of the U-phase coil body Uc-, the magnetomotive force Fvc2 of the V-phase coil body Vc-, and the magnetomotive force Fwc2 of the W-phase coil body Wc- are shown in equations (76) to (78). Can be configured as follows. "Λ2" of this embodiment is "40" degrees.
Figure JPOXMLDOC01-appb-M000014
 以上の数式(61)~(78)に示すように、「λ1」と「λ2」がそれぞれ電気角で「20度」と「40度」となり、かつ、起磁力が同程度となるように、各コイル体が設けられることとなる。
Figure JPOXMLDOC01-appb-M000014
As shown in the above formulas (61) to (78), "λ1" and "λ2" have electric angles of "20 degrees" and "40 degrees", respectively, and the magnetomotive forces are about the same. Each coil body will be provided.
 以上、第5実施形態の構成によれば、以下の効果を有する。 As described above, according to the configuration of the fifth embodiment, it has the following effects.
 第1ティースとしてのティースT1には、U相の単巻線U12+が巻回されることにより、U相のコイル体Ua+が設けられる。また、第2ティースとしてのティースT14には、U相の主巻線U23+が巻回されるとともに、W相の従巻線W13-が巻回されることにより、U相のコイル体Ub+が設けられる。第3ティースとしてのティースT9には、W相の主巻線W22-が巻回されるとともに、U相の従巻線14+が巻回されることにより、U相のコイル体Uc+が設けられる。 The teeth T1 as the first teeth are provided with a U-phase coil body Ua + by winding a U-phase single winding U12 +. Further, the U-phase coil body Ub + is provided on the teeth T14 as the second teeth by winding the U-phase main winding U23 + and winding the W-phase slave winding W13-. Be done. A U-phase coil body Uc + is provided in the teeth T9 as the third tooth by winding the main winding W22- of the W phase and winding the slave winding 14+ of the U phase.
 そして、ティースT14に設けられるU相の主巻線U23+の起磁力Fu1と、ティースT14に設けられるW相の従巻線W13-の起磁力Fw2との位相差が、電気角で60度となるように設定されている。また、ティースT9に設けられるW相の主巻線W22-の起磁力Fw2と、ティースT9に設けられるU相の従巻線14+の起磁力Fu1との位相差が、電気角で60度となるように設定されている。 The phase difference between the magnetomotive force Fu1 of the U-phase main winding U23 + provided in the teeth T14 and the magnetomotive force Fw2 of the W-phase slave winding W13- provided in the teeth T14 is 60 degrees in terms of electrical angle. Is set to. Further, the phase difference between the magnetomotive force Fw2 of the main winding W22- of the W phase provided in the teeth T9 and the magnetomotive force Fu1 of the slave winding 14+ of the U phase provided in the teeth T9 is 60 degrees in terms of electric angle. Is set to.
 さらに、主巻線U23+と主巻線W22-の巻回数をそれぞれ「Nd」とし、従巻線W13-及び従巻線14+をそれぞれ「Ne」とした場合、1.8≦Nd/Nf≦2.0の関係を満たすように、各巻回数が設定されている。より具体的には、Nd:Nf=11:6となるように巻回数が設定されている。 Further, when the number of turns of the main winding U23 + and the main winding W22-is set to "Nd" and the slave winding W13- and the slave winding 14+ are set to "Ne", respectively, 1.8 ≦ Nd / Nf ≦ 2. The number of turns is set so as to satisfy the relationship of 0.0. More specifically, the number of turns is set so that Nd: Nf = 11: 6.
 そして、V相のコイル体や、W相のコイル体も同様に設定されている。また、極性を異ならせた各コイル体+も同様に設定されている。 And the V-phase coil body and the W-phase coil body are also set in the same manner. Further, each coil body + having different polarities is also set in the same manner.
 これにより、コイル体Ua,Va,Waの起磁力に対するコイル体Ub,Vb,Wbの起磁力の各位相差「λ1」を20+180n度とすることができる。また、コイル体Ua,Va,Waの起磁力に対するコイル体Uc,Vc,Wcの起磁力の各位相差「λ2」を、40+180n度とすることができる。そして、図16に示すように、各相のコイル体は、回転軸11の軸心を中心として、2回回転対称に配置されている。したがって、数式(1)~数式(4)に示すように、トルクの6次又は12次高調波成分を打消し、トルクリプルを抑制することが可能となる。 Thereby, each phase difference "λ1" of the magnetomotive force of the coil bodies Ub, Vb, Wb with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 20 + 180 n degrees. Further, the phase difference "λ2" of the magnetomotive forces of the coil bodies Uc, Vc, and Wc with respect to the magnetomotive force of the coil bodies Ua, Va, and Wa can be set to 40 + 180 n degrees. Then, as shown in FIG. 16, the coil bodies of each phase are arranged twice rotationally symmetrically with respect to the axial center of the rotating shaft 11. Therefore, as shown in the formulas (1) to (4), it is possible to cancel the 6th or 12th harmonic component of the torque and suppress the torque ripple.
 各コイル体の起磁力が所定の振幅範囲内(本実施形態では同程度)となるように、各部分巻線の巻回数を設定した。具体的には、単巻線の巻回数「Nf」と、主巻線の巻回数「Nd」が1.2≦Nf/Nd≦1.5の関係を満たすように、各巻回数が設定されている。具体的には、Nd:Ne:Nf=11:6:15となるように巻回数が設定されている。これにより、コイル体の起磁力の振幅を同程度にすることができ、トルクリプルを抑制することができる。 The number of turns of each partial winding was set so that the magnetomotive force of each coil body was within a predetermined amplitude range (similar in this embodiment). Specifically, each winding count is set so that the relationship between the winding count “Nf” of the single winding and the winding count “Nd” of the main winding satisfies the relationship of 1.2 ≦ Nf / Nd ≦ 1.5. There is. Specifically, the number of turns is set so that Nd: Ne: Nf = 11: 6: 15. As a result, the amplitude of the magnetomotive force of the coil body can be made to the same level, and torque ripple can be suppressed.
 モータ10は、磁極数を「14」とし、スロット35の数を「18」とした。すなわち、磁極数を(18±4)×m(mは1以上の整数)とし、かつ、スロット数を18×mとした。これにより、第1実施形態に、軸心を中心として、電磁力のバランスを取ることができる。 The number of magnetic poles of the motor 10 was set to "14", and the number of slots 35 was set to "18". That is, the number of magnetic poles was (18 ± 4) × m (m is an integer of 1 or more), and the number of slots was 18 × m. Thereby, in the first embodiment, the electromagnetic force can be balanced around the axis.
 図15や図16に示すように、第3ティースとしてのティースT1,T4,T7,T10,T13,T16に巻回された各単巻線は、第3ティースの隣に配置されているティースに巻回されている従巻線と接続されている。例えば、ティースT1の単巻線U12+は、ティースT18の従巻線U11-と、ティースT2の従巻線U13-に接続されている。また、隣り合うティースにおいて、主巻線同士が接続されている。例えば、ティースT2の主巻線V21+は、ティースT3の主巻線V22-に接続されている。これにより、コイルエンドにおいて、スロット35間を接続するための渡り線を短くすることができ、接続が容易となり、また、小型化することが可能となる。 As shown in FIGS. 15 and 16, each single winding wound around the teeth T1, T4, T7, T10, T13, T16 as the third tooth is attached to the tooth arranged next to the third tooth. It is connected to the slave winding that is wound. For example, the single winding U12 + of the teeth T1 is connected to the slave winding U11- of the teeth T18 and the slave winding U13-of the teeth T2. Further, in adjacent teeth, the main windings are connected to each other. For example, the main winding V21 + of the teeth T2 is connected to the main winding V22- of the teeth T3. As a result, at the coil end, the crossover for connecting the slots 35 can be shortened, the connection can be facilitated, and the size can be reduced.
 (第6実施形態)
 第5実施形態の構成の一部を以下のように変更してもよい。以下、第5実施形態の構成を基本として、異なる箇所のみ説明する。
(Sixth Embodiment)
A part of the configuration of the fifth embodiment may be changed as follows. Hereinafter, only different parts will be described based on the configuration of the fifth embodiment.
 第6実施形態において、図18及び図19に示すように、回転子40は、22個の(すなわち、磁極対数が11個となる)磁極を有する。つまり、22個の永久磁石42を有する。 In the sixth embodiment, as shown in FIGS. 18 and 19, the rotor 40 has 22 magnetic poles (that is, the number of magnetic pole pairs is 11). That is, it has 22 permanent magnets 42.
 図18及び図19に示すように、第6実施形態において、各相の固定子巻線32は、10個の部分巻線により構成されている。各相の部分巻線は、直列に接続されている。これらの直列接続体は、一端が中性点Qに接続され、他端がインバータ回路51に接続される引出線A1,B1,C1にそれぞれ接続されている。なお、本実施形態の固定子巻線32では、Y結線(スター結線)としているが、デルタ結線としてもよい。 As shown in FIGS. 18 and 19, in the sixth embodiment, the stator winding 32 of each phase is composed of 10 partial windings. The partial windings of each phase are connected in series. One end of these series connectors is connected to the neutral point Q, and the other end is connected to leader wires A1, B1, and C1 connected to the inverter circuit 51, respectively. In the stator winding 32 of the present embodiment, Y connection (star connection) is used, but delta connection may be used.
 また、30個の部分巻線は、図18及び図19に示すように、各ティースT1~T18に設けられている。本実施形態において、U相のコイル体Ua+,Ua-,Ub+,Ub-,Uc+,Uc-を第1相のコイル体とした場合、U相が第1相に相当し、W相が第2相に相当する。この場合、ティースT1,T10が第1ティースに相当し、ティースT6,T15が第2ティースに相当し、ティースT2,T11が第3ティースに相当する。 Further, 30 partial windings are provided in each teeth T1 to T18 as shown in FIGS. 18 and 19. In the present embodiment, when the U-phase coil bodies Ua +, Ua-, Ub +, Ub-, Uc +, and Uc- are used as the first phase coil bodies, the U phase corresponds to the first phase and the W phase corresponds to the second phase. Corresponds to the phase. In this case, the teeth T1 and T10 correspond to the first teeth, the teeth T6 and T15 correspond to the second teeth, and the teeth T2 and T11 correspond to the third teeth.
 また、本実施形態において、V相のコイル体Va+,Va-,Vb+,Vb-,Vc+,Vc-を第1相のコイル体とした場合、V相が第1相に相当し、U相が第2相に相当する。この場合、ティースT4,T13が第1ティースに相当し、ティースT9,T18が第2ティースに相当し、ティースT5,T14が第3ティースに相当する。 Further, in the present embodiment, when the V-phase coil bodies Va +, Va-, Vb +, Vb-, Vc +, and Vc- are used as the first phase coil bodies, the V phase corresponds to the first phase and the U phase is the first phase. Corresponds to the second phase. In this case, the teeth T4 and T13 correspond to the first teeth, the teeth T9 and T18 correspond to the second teeth, and the teeth T5 and T14 correspond to the third teeth.
 また、本実施形態において、W相のコイル体Wa+,Wa-,Wb+,Wb-,Wc+,Wc-を第1相のコイル体とした場合、W相が第1相に相当し、V相が第2相に相当する。この場合、ティースT7,T16が第1ティースに相当し、ティースT3,T12が第2ティースに相当し、ティースT8,T17が第3ティースに相当する。 Further, in the present embodiment, when the W-phase coil bodies Wa +, Wa-, Wb +, Wb-, Wc +, and Wc- are used as the first phase coil bodies, the W phase corresponds to the first phase and the V phase is the first phase. Corresponds to the second phase. In this case, the teeth T7 and T16 correspond to the first teeth, the teeth T3 and T12 correspond to the second teeth, and the teeth T8 and T17 correspond to the third teeth.
 図19に示すように、各相のコイル体は、回転軸11の軸心を中心として、2回回転対称に配置されている。つまり、軸心を中心に、機械角で180度回転させても、コイル体の配置順が同じとなっている。 As shown in FIG. 19, the coil bodies of each phase are arranged twice rotationally symmetrically with the axis of the rotating shaft 11 as the center. That is, even if the coil body is rotated by 180 degrees around the axis, the order of arrangement of the coils is the same.
 上記のように構成されることにより、第2ティースであるティースT6には、主巻線U22+と従巻線W11-が設けられ、主巻線U22+の起磁力と従巻線W11-の起磁力との位相差は、電気角で60度となる。また、第3ティースであるティースT11には、主巻線W21-と従巻線U16+が設けられ、主巻線W21-の起磁力と従巻線U16+の起磁力との位相差は、電気角で60度となる。 With the above configuration, the second tooth T6 is provided with a main winding U22 + and a slave winding W11-, and the magnetomotive force of the main winding U22 + and the magnetomotive force of the slave winding W11- The phase difference with and from is 60 degrees in terms of electrical angle. Further, the teeth T11, which is the third tooth, is provided with the main winding W21- and the slave winding U16 +, and the phase difference between the magnetomotive force of the main winding W21- and the magnetomotive force of the slave winding U16 + is an electric angle. It becomes 60 degrees.
 そして、主巻線の巻回数「Nd」と、従巻線の巻回数「Ne」は、Nd:Ne=0.74:0.39に近づき、かつ、「Nd」及び「Ne」が整数となるように、各巻回数が設定されている。本実施形態では、Nd:Ne=11:6となるように設定されている。なお、1.8≦Nd/Ne≦2.0の範囲内で巻回数が設定されていてもよい。 The number of turns of the main winding "Nd" and the number of turns of the slave winding "Ne" approach Nd: Ne = 0.74: 0.39, and "Nd" and "Ne" are integers. The number of turns is set so as to be. In this embodiment, Nd: Ne = 11: 6 is set. The number of turns may be set within the range of 1.8 ≦ Nd / Ne ≦ 2.0.
 また、単巻線の巻回数「Nf」とした場合、1.2≦Nf/Nd≦1.5の関係を満たすように、各巻回数が設定されている。具体的には、Nd:Ne:Nf=11:6:15となるように、各巻回数が設定されている。 Further, when the number of turns of a single winding is "Nf", the number of turns of each is set so as to satisfy the relationship of 1.2 ≦ Nf / Nd ≦ 1.5. Specifically, the number of turns is set so that Nd: Ne: Nf = 11: 6: 15.
 上記のように主巻線と従巻線とを組み合わせ、巻回数を調整することにより、第5実施形態と同様の理屈により、コイル体Ua+の起磁力が同じで、コイル体Ua+に対して位相差「λ1」が20度となるU相のコイル体Ub+が構成される。また、コイル体Ua+の起磁力が同じで、コイル体Ua+に対して位相差「λ2」が40度となるU相のコイル体Uc+が構成される。そして、V相のコイル体や、W相のコイル体も同様に設定されている。また、極性を異ならせた各コイル体も同様に設定されている。 By combining the main winding and the slave winding as described above and adjusting the number of turns, the magnetomotive force of the coil body Ua + is the same by the same reasoning as in the fifth embodiment, and the position is higher than that of the coil body Ua +. A U-phase coil body Ub + having a phase difference “λ1” of 20 degrees is configured. Further, a U-phase coil body Uc + having the same magnetomotive force of the coil body Ua + and having a phase difference “λ2” of 40 degrees with respect to the coil body Ua + is configured. The V-phase coil body and the W-phase coil body are also set in the same manner. Further, each coil body having a different polarity is also set in the same manner.
 これにより、コイル体Ua,Va,Waの起磁力に対するコイル体Ub,Vb,Wbの起磁力の各位相差「λ1」を20+180n度とすることができる。また、コイル体Ua,Va,Waの起磁力に対するコイル体Uc,Vc,Wcの起磁力の各位相差「λ2」を、40+180n度とすることができる。このため、第5実施形態と同様の効果を得ることができる。 Thereby, each phase difference "λ1" of the magnetomotive force of the coil bodies Ub, Vb, Wb with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 20 + 180 n degrees. Further, the phase difference "λ2" of the magnetomotive forces of the coil bodies Uc, Vc, and Wc with respect to the magnetomotive force of the coil bodies Ua, Va, and Wa can be set to 40 + 180 n degrees. Therefore, the same effect as that of the fifth embodiment can be obtained.
 (第7実施形態)
 第5実施形態の構成の一部を以下のように変更してもよい。以下、第5実施形態の構成を基本として、異なる箇所のみ説明する。
(7th Embodiment)
A part of the configuration of the fifth embodiment may be changed as follows. Hereinafter, only different parts will be described based on the configuration of the fifth embodiment.
 第7実施形態において、図20及び図21に示すように、回転子40は、16個の(すなわち、磁極対数が8個となる)磁極を有する。つまり、16個の永久磁石42を有する。 In the seventh embodiment, as shown in FIGS. 20 and 21, the rotor 40 has 16 magnetic poles (that is, the number of magnetic pole pairs is 8). That is, it has 16 permanent magnets 42.
 図20及び図21に示すように、第7実施形態において、各相の固定子巻線32は、10個の部分巻線により構成されている。各相の部分巻線は、直列に接続されている。これらの直列接続体は、一端が中性点Qに接続され、他端がインバータ回路51に接続される引出線A1,B1,C1にそれぞれ接続されている。なお、本実施形態の固定子巻線32では、Y結線(スター結線)としているが、デルタ結線としてもよい。 As shown in FIGS. 20 and 21, in the seventh embodiment, the stator winding 32 of each phase is composed of 10 partial windings. The partial windings of each phase are connected in series. One end of these series connectors is connected to the neutral point Q, and the other end is connected to leader wires A1, B1, and C1 connected to the inverter circuit 51, respectively. In the stator winding 32 of the present embodiment, Y connection (star connection) is used, but delta connection may be used.
 また、30個の部分巻線は、図20及び図21に示すように、各ティースT1~T18に設けられている。これにより、各相のコイル体が構成される。本実施形態において、U相のコイル体Ua+,Ub-,Uc+を第1相のコイル体とした場合、U相が第1相に相当し、W相が第2相に相当する。この場合、ティースT1,T10が第1ティースに相当し、ティースT9,T18が第2ティースに相当し、ティースT8,T17が第3ティースに相当する。 Further, 30 partial windings are provided in the teeth T1 to T18 as shown in FIGS. 20 and 21. As a result, the coil body of each phase is formed. In the present embodiment, when the U-phase coil bodies Ua +, Ub−, and Uc + are used as the first phase coil bodies, the U phase corresponds to the first phase and the W phase corresponds to the second phase. In this case, the teeth T1 and T10 correspond to the first teeth, the teeth T9 and T18 correspond to the second teeth, and the teeth T8 and T17 correspond to the third teeth.
 また、本実施形態において、V相のコイル体Va+,Vb-,Vc+を第1相のコイル体とした場合、V相が第1相に相当し、U相が第2相に相当する。この場合、ティースT4,T13が第1ティースに相当し、ティースT3,T12が第2ティースに相当し、ティースT2,T11が第3ティースに相当する。 Further, in the present embodiment, when the V-phase coil bodies Va +, Vb-, and Vc + are used as the first-phase coil bodies, the V-phase corresponds to the first phase and the U-phase corresponds to the second phase. In this case, the teeth T4 and T13 correspond to the first teeth, the teeth T3 and T12 correspond to the second teeth, and the teeth T2 and T11 correspond to the third teeth.
 また、本実施形態において、W相のコイル体Wa+,Wb-,Wc+を第1相のコイル体とした場合、W相が第1相に相当し、V相が第2相に相当する。この場合、ティースT7,T16が第1ティースに相当し、ティースT6,T15が第2ティースに相当し、ティースT5,T14が第3ティースに相当する。 Further, in the present embodiment, when the W phase coil bodies Wa +, Wb−, and Wc + are used as the first phase coil bodies, the W phase corresponds to the first phase and the V phase corresponds to the second phase. In this case, the teeth T7 and T16 correspond to the first teeth, the teeth T6 and T15 correspond to the second teeth, and the teeth T5 and T14 correspond to the third teeth.
 図21に示すように、各相のコイル体は、回転軸11の軸心を中心として、2回回転対称に配置されている。つまり、軸心を中心に、機械角で180度回転させても、コイル体の配置順が同じとなっている。 As shown in FIG. 21, the coil bodies of each phase are arranged twice rotationally symmetrically with the axis of the rotating shaft 11 as the center. That is, even if the coil body is rotated by 180 degrees around the axis, the order of arrangement of the coils is the same.
 上記のように構成されることにより、第2ティースであるティースT9,T18には、主巻線U23-,U21-と従巻線W16+,W13+が設けられ、主巻線U23-,U21-の起磁力と従巻線W16+,W13+の起磁力との位相差は、それぞれ電気角で60度となる。また、第3ティースであるティースT8,T17には、主巻線W22-,24-と従巻線U14+,U11+が設けられ、主巻線W22-,24-の起磁力と従巻線U14+,U11+の起磁力との位相差は、それぞれ電気角で60度となる。 With the above configuration, the teeth T9 and T18, which are the second teeth, are provided with the main windings U23- and U21- and the slave windings W16 + and W13 +, and the main windings U23- and U21- The phase difference between the magnetomotive force and the magnetomotive force of the slave windings W16 + and W13 + is 60 degrees in terms of electric angle, respectively. Further, the teeth T8 and T17, which are the third teeth, are provided with the main windings W22- and 24- and the slave windings U14 + and U11 +, and the magnetomotive force of the main windings W22- and 24- and the slave windings U14 +, The phase difference between the U11 + and the magnetomotive force is 60 degrees in terms of electrical angle.
 そして、主巻線の巻回数「Nd」と、従巻線の巻回数「Ne」は、Nd:Ne=0.74:0.39に近づき、かつ、「Nd」及び「Ne」が整数となるように、各巻回数が設定されている。本実施形態では、Nd:Ne=11:6となるように設定されている。なお、1.8≦Nd/Ne≦2.0の範囲内で巻回数が設定されていてもよい。 The number of turns of the main winding "Nd" and the number of turns of the slave winding "Ne" approach Nd: Ne = 0.74: 0.39, and "Nd" and "Ne" are integers. The number of turns is set so as to be. In this embodiment, Nd: Ne = 11: 6 is set. The number of turns may be set within the range of 1.8 ≦ Nd / Ne ≦ 2.0.
 また、単巻線の巻回数「Nf」とした場合、1.2≦Nf/Nd≦1.5の関係を満たすように、各巻回数が設定されている。具体的には、Nd:Ne:Nf=11:6:15となるように、各巻回数が設定されている。 Further, when the number of turns of a single winding is "Nf", the number of turns of each is set so as to satisfy the relationship of 1.2 ≦ Nf / Nd ≦ 1.5. Specifically, the number of turns is set so that Nd: Ne: Nf = 11: 6: 15.
 上記のように主巻線と従巻線とを組み合わせ、巻回数を調整することにより、第5実施形態と同様の理屈により、コイル体Ua+の起磁力が同じで、コイル体Ua+に対して位相差「λ1」が20+180度となるU相のコイル体Ub-が構成される。また、コイル体Ua+の起磁力が同じで、コイル体Ua+に対して位相差「λ2」が40度となるU相のコイル体Uc+が構成される。そして、V相のコイル体や、W相のコイル体も同様に設定されている。 By combining the main winding and the slave winding as described above and adjusting the number of turns, the magnetomotive force of the coil body Ua + is the same by the same reasoning as in the fifth embodiment, and the position is higher than that of the coil body Ua +. A U-phase coil body Ub− having a phase difference “λ1” of 20 + 180 degrees is configured. Further, a U-phase coil body Uc + having the same magnetomotive force of the coil body Ua + and having a phase difference “λ2” of 40 degrees with respect to the coil body Ua + is configured. The V-phase coil body and the W-phase coil body are also set in the same manner.
 これにより、コイル体Ua,Va,Waの起磁力に対するコイル体Ub,Vb,Wbの起磁力の各位相差「λ1」を20+180n度とすることができる。また、コイル体Ua,Va,Waの起磁力に対するコイル体Uc,Vc,Wcの起磁力の各位相差「λ2」を、40+180n度とすることができる。このため、第5実施形態と同様に6次及び12次高調波成分を抑制し、トルクリプルを抑制することができる。 Thereby, each phase difference "λ1" of the magnetomotive force of the coil bodies Ub, Vb, Wb with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 20 + 180 n degrees. Further, the phase difference "λ2" of the magnetomotive forces of the coil bodies Uc, Vc, and Wc with respect to the magnetomotive force of the coil bodies Ua, Va, and Wa can be set to 40 + 180 n degrees. Therefore, the 6th and 12th harmonic components can be suppressed and the torque ripple can be suppressed as in the 5th embodiment.
 また、図20や図21に示すように、第1ティースとしてのティースT1,T4,T7,T10,T13,T16に巻回された各単巻線は、第3ティースの2つ隣に配置されているティースに巻回されている従巻線と接続されている。例えば、ティースT1の単巻線U12+は、ティースT17の従巻線U11+と、ティースT3の従巻線U13+に接続されている。 Further, as shown in FIGS. 20 and 21, each single winding wound around the teeth T1, T4, T7, T10, T13, and T16 as the first teeth is arranged next to the third teeth. It is connected to the slave winding that is wound around the tooth. For example, the single winding U12 + of the teeth T1 is connected to the slave winding U11 + of the teeth T17 and the slave winding U13 + of the teeth T3.
 また、第2ティースとしてのティースT3,T6,T9,T12,T15,T18に設けられた各主巻線は、当該ティースの2つ隣に配置されている第3ティースとしてのティースT2,T5,T8,T11,T14,T17に設けられた主巻線と接続されている。例えば、ティースT18の主巻線U21-は、ティースT2の主巻線U22-に接続されている。これにより、コイルエンドにおいて、スロット35間を接続するための渡り線を短くすることができ、接続が容易となり、また、小型化することが可能となる。 Further, the main windings provided in the teeth T3, T6, T9, T12, T15, and T18 as the second teeth are the teeth T2, T5 as the third teeth arranged two adjacent to the teeth. It is connected to the main windings provided in T8, T11, T14, and T17. For example, the main winding U21- of the teeth T18 is connected to the main winding U22-of the teeth T2. As a result, at the coil end, the crossover for connecting the slots 35 can be shortened, the connection can be facilitated, and the size can be reduced.
 (第8実施形態)
 第5実施形態の構成の一部を以下のように変更してもよい。以下、第5実施形態の構成を基本として、異なる箇所のみ説明する。
(8th Embodiment)
A part of the configuration of the fifth embodiment may be changed as follows. Hereinafter, only different parts will be described based on the configuration of the fifth embodiment.
 第8実施形態において、図22及び図23に示すように、回転子40は、20個の(すなわち、磁極対数が8個となる)磁極を有する。つまり、20個の永久磁石42を有する。 In the eighth embodiment, as shown in FIGS. 22 and 23, the rotor 40 has 20 magnetic poles (that is, the number of magnetic pole pairs is 8). That is, it has 20 permanent magnets 42.
 図22及び図23に示すように、第8実施形態において、各相の固定子巻線32は、10個の部分巻線により構成されている。各相の部分巻線は、直列に接続されている。これらの直列接続体は、一端が中性点Qに接続され、他端がインバータ回路51に接続される引出線A1,B1,C1にそれぞれ接続されている。なお、本実施形態の固定子巻線32では、Y結線(スター結線)としているが、デルタ結線としてもよい。 As shown in FIGS. 22 and 23, in the eighth embodiment, the stator winding 32 of each phase is composed of 10 partial windings. The partial windings of each phase are connected in series. One end of these series connectors is connected to the neutral point Q, and the other end is connected to leader wires A1, B1, and C1 connected to the inverter circuit 51, respectively. In the stator winding 32 of the present embodiment, Y connection (star connection) is used, but delta connection may be used.
 また、30個の部分巻線は、図22及び図23に示すように、各ティースT1~T18に設けられている。これにより、各相のコイル体が構成される。本実施形態において、U相のコイル体Ua+,Ub-,Uc+を第1相のコイル体とした場合、U相が第1相に相当し、W相が第2相に相当する。この場合、ティースT1,T10が第1ティースに相当し、ティースT2,T11が第2ティースに相当し、ティースT3,T12が第3ティースに相当する。 Further, 30 partial windings are provided in the teeth T1 to T18 as shown in FIGS. 22 and 23. As a result, the coil body of each phase is formed. In the present embodiment, when the U-phase coil bodies Ua +, Ub−, and Uc + are used as the first phase coil bodies, the U phase corresponds to the first phase and the W phase corresponds to the second phase. In this case, the teeth T1 and T10 correspond to the first teeth, the teeth T2 and T11 correspond to the second teeth, and the teeth T3 and T12 correspond to the third teeth.
 また、本実施形態において、V相のコイル体Va+,Vb-,Vc+を第1相のコイル体とした場合、V相が第1相に相当し、U相が第2相に相当する。この場合、ティースT7,T16が第1ティースに相当し、ティースT8,T17が第2ティースに相当し、ティースT9,T18が第3ティースに相当する。 Further, in the present embodiment, when the V-phase coil bodies Va +, Vb-, and Vc + are used as the first-phase coil bodies, the V-phase corresponds to the first phase and the U-phase corresponds to the second phase. In this case, the teeth T7 and T16 correspond to the first teeth, the teeth T8 and T17 correspond to the second teeth, and the teeth T9 and T18 correspond to the third teeth.
 また、本実施形態において、W相のコイル体Wa+,Wb-,Wc+を第1相のコイル体とした場合、W相が第1相に相当し、V相が第2相に相当する。この場合、ティースT4,T13が第1ティースに相当し、ティースT5,T14が第2ティースに相当し、ティースT6,T15が第3ティースに相当する。 Further, in the present embodiment, when the W phase coil bodies Wa +, Wb−, and Wc + are used as the first phase coil bodies, the W phase corresponds to the first phase and the V phase corresponds to the second phase. In this case, the teeth T4 and T13 correspond to the first teeth, the teeth T5 and T14 correspond to the second teeth, and the teeth T6 and T15 correspond to the third teeth.
 上記のように構成されることにより、図23に示すように、各相のコイル体は、回転軸11の軸心を中心として、2回回転対称に配置されている。つまり、軸心を中心に、機械角で180度回転させても、コイル体の配置順が同じとなっている。 By being configured as described above, as shown in FIG. 23, the coil bodies of each phase are arranged twice rotationally symmetrically with the axis of the rotating shaft 11 as the center. That is, even if the coil body is rotated by 180 degrees around the axis, the order of arrangement of the coils is the same.
 また、第2ティースであるティースT2,T11には、主巻線U22-,U24-と従巻線W14+,W11+が設けられ、主巻線U22-,U24-の起磁力と従巻線W14+,W11+の起磁力との位相差は、それぞれ電気角で60度となる。また、第3ティースであるティースT3,T12には、主巻線W23-,W21-と従巻線U13+,U16+が設けられ、主巻線W23-,W21-の起磁力と従巻線U13+,U16+の起磁力との位相差は、それぞれ電気角で60度となる。 Further, the teeth T2 and T11, which are the second teeth, are provided with the main windings U22- and U24- and the slave windings W14 + and W11 +, and the magnetomotive force of the main windings U22- and U24- and the slave windings W14 +, The phase difference from the magnetomotive force of W11 + is 60 degrees in terms of electrical angle. Further, the teeth T3 and T12, which are the third teeth, are provided with the main windings W23- and W21- and the slave windings U13 + and U16 +, and the magnetomotive force of the main windings W23- and W21- and the slave windings U13 +,. The phase difference between the U16 + and the magnetomotive force is 60 degrees in terms of electrical angle.
 そして、主巻線の巻回数「Nd」と、従巻線の巻回数「Ne」は、Nd:Ne=0.74:0.39に近づき、かつ、「Nd」及び「Ne」が整数となるように、各巻回数が設定されている。本実施形態では、Nd:Ne=11:6となるように設定されている。なお、1.8≦Nd/Ne≦2.0の範囲内で巻回数が設定されていてもよい。 The number of turns of the main winding "Nd" and the number of turns of the slave winding "Ne" approach Nd: Ne = 0.74: 0.39, and "Nd" and "Ne" are integers. The number of turns is set so as to be. In this embodiment, Nd: Ne = 11: 6 is set. The number of turns may be set within the range of 1.8 ≦ Nd / Ne ≦ 2.0.
 また、単巻線の巻回数「Nf」とした場合、1.2≦Nf/Nd≦1.5の関係を満たすように、各巻回数が設定されている。具体的には、Nd:Ne:Nf=11:6:15となるように、各巻回数が設定されている。 Further, when the number of turns of a single winding is "Nf", the number of turns of each is set so as to satisfy the relationship of 1.2 ≦ Nf / Nd ≦ 1.5. Specifically, the number of turns is set so that Nd: Ne: Nf = 11: 6: 15.
 上記のように主巻線と従巻線とを組み合わせ、巻回数を調整することにより、第5実施形態と同様の理屈により、コイル体Ua+の起磁力が同じで、コイル体Ua+に対して位相差「λ1」が20+180度となるU相のコイル体Ub-が構成される。また、コイル体Ua+の起磁力が同じで、コイル体Ua+に対して位相差「λ2」が40度となるU相のコイル体Uc+が構成される。そして、V相のコイル体や、W相のコイル体も同様に構成されている。 By combining the main winding and the slave winding as described above and adjusting the number of turns, the magnetomotive force of the coil body Ua + is the same by the same reasoning as in the fifth embodiment, and the position is higher than that of the coil body Ua +. A U-phase coil body Ub− having a phase difference “λ1” of 20 + 180 degrees is configured. Further, a U-phase coil body Uc + having the same magnetomotive force of the coil body Ua + and having a phase difference “λ2” of 40 degrees with respect to the coil body Ua + is configured. The V-phase coil body and the W-phase coil body are also configured in the same manner.
 これにより、コイル体Ua,Va,Waの起磁力に対するコイル体Ub,Vb,Wbの起磁力の各位相差「λ1」を20+180n度とすることができる。また、コイル体Ua,Va,Waの起磁力に対するコイル体Uc,Vc,Wcの起磁力の各位相差「λ2」を、40+180n度とすることができる。このため、第5実施形態と同様に6次及び12次高調波成分を抑制し、トルクリプルを抑制することができる。 Thereby, each phase difference "λ1" of the magnetomotive force of the coil bodies Ub, Vb, Wb with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 20 + 180 n degrees. Further, the phase difference "λ2" of the magnetomotive forces of the coil bodies Uc, Vc, and Wc with respect to the magnetomotive force of the coil bodies Ua, Va, and Wa can be set to 40 + 180 n degrees. Therefore, the 6th and 12th harmonic components can be suppressed and the torque ripple can be suppressed as in the 5th embodiment.
 また、図22や図23に示すように、第1ティースとしてのティースT1,T4,T7,T10,T13,T16に巻回された各単巻線は、2つ隣に配置されているティースに設けられている従巻線と接続されている。例えば、ティースT1の単巻線U12+は、ティースT17の従巻線U11+と、ティースT3の従巻線U13+に接続されている。 Further, as shown in FIGS. 22 and 23, each single winding wound around the teeth T1, T4, T7, T10, T13, and T16 as the first teeth is formed on the teeth arranged next to each other. It is connected to the provided slave winding. For example, the single winding U12 + of the teeth T1 is connected to the slave winding U11 + of the teeth T17 and the slave winding U13 + of the teeth T3.
 また、第3ティースとしてのティースT3,T6,T9,T12,T15,T18に設けられた各主巻線は、当該ティースの2つ隣に配置されている第2ティースとしてのティースT2,T5,T8,T11,T14,T17に設けられた主巻線と接続されている。例えば、ティースT18の主巻線U21-は、ティースT2の主巻線U22-に接続されている。これにより、コイルエンドにおいて、スロット35間を接続するための渡り線を短くすることができ、接続が容易となり、また、小型化することが可能となる。 Further, the main windings provided in the teeth T3, T6, T9, T12, T15, and T18 as the third teeth are the teeth T2, T5 as the second teeth arranged two adjacent to the teeth. It is connected to the main windings provided in T8, T11, T14, and T17. For example, the main winding U21- of the teeth T18 is connected to the main winding U22-of the teeth T2. As a result, at the coil end, the crossover for connecting the slots 35 can be shortened, the connection can be facilitated, and the size can be reduced.
 (第9実施形態)
 第1実施形態の構成の一部を以下のように変更してもよい。以下、第1実施形態の構成を基本として、異なる箇所のみ説明する。
(9th Embodiment)
A part of the configuration of the first embodiment may be changed as follows. Hereinafter, only different parts will be described based on the configuration of the first embodiment.
 第9実施形態では、図24及び図25に示すように、各ティースT1~T18に対して、部分巻線を配置して、各相のコイル体を構成した。すなわち、第1実施形態における各従巻線を省略し、主巻線を単巻線に変更した。 In the ninth embodiment, as shown in FIGS. 24 and 25, partial windings are arranged for each teeth T1 to T18 to form a coil body of each phase. That is, each slave winding in the first embodiment was omitted, and the main winding was changed to a single winding.
 第9実施形態において、U相のコイル体Ua+,Ua-,Ub+,Ub-,Uc+,Uc-を第1相のコイル体とした場合、U相が第1相に相当し、W相が第2相に相当する。この場合、ティースT1,T10が第1ティースに相当し、ティースT5,T14が第2ティースに相当し、ティースT9,T18が第3ティースに相当する。 In the ninth embodiment, when the U-phase coil body Ua +, Ua-, Ub +, Ub-, Uc +, Uc- is used as the first phase coil body, the U phase corresponds to the first phase and the W phase corresponds to the first phase. Corresponds to two phases. In this case, the teeth T1 and T10 correspond to the first teeth, the teeth T5 and T14 correspond to the second teeth, and the teeth T9 and T18 correspond to the third teeth.
 また、第9実施形態において、V相のコイル体Va+,Va-,Vb+,Vb-,Vc+,Vc-を第1相のコイル体とした場合、V相が第1相に相当し、U相が第2相に相当する。この場合、ティースT7,T16が第1ティースに相当し、ティースT2,T11が第2ティースに相当し、ティースT6,T15が第3ティースに相当する。 Further, in the ninth embodiment, when the V-phase coil bodies Va +, Va-, Vb +, Vb-, Vc +, and Vc- are used as the first phase coil bodies, the V phase corresponds to the first phase and the U phase. Corresponds to the second phase. In this case, the teeth T7 and T16 correspond to the first teeth, the teeth T2 and T11 correspond to the second teeth, and the teeth T6 and T15 correspond to the third teeth.
 また、第9実施形態において、W相のコイル体Wa+,Wa-,Wb+,Wb-,Wc+,Wc-を第1相のコイル体とした場合、W相が第1相に相当し、V相が第2相に相当する。この場合、ティースT4,T13が第1ティースに相当し、ティースT8,T17が第2ティースに相当し、ティースT3,T12が第3ティースに相当する。 Further, in the ninth embodiment, when the W phase coil body Wa +, Wa−, Wb +, Wb−, Wc +, Wc− is used as the first phase coil body, the W phase corresponds to the first phase and the V phase. Corresponds to the second phase. In this case, the teeth T4 and T13 correspond to the first teeth, the teeth T8 and T17 correspond to the second teeth, and the teeth T3 and T12 correspond to the third teeth.
 また、図24及び図25に示すように、各相のコイル体は、回転軸11の軸心を中心として、2回回転対称に配置されている。 Further, as shown in FIGS. 24 and 25, the coil bodies of each phase are arranged twice rotationally symmetrically with respect to the axis of the rotating shaft 11.
 上記構成により、第3ティースとしてのティースT3,T6,T9,T12,T15,T18に設けられる2つの同巻線の起磁力の位相差が、電気角で60度と設定される。そして、単巻線の巻回数「Ng」と、同巻線の巻回数「Nh」が、Ng/Nh=1.73に近い値となるように設定されている。なお、Ng/Nh=1.73である必要はなく、1.5≦Ng/Nh≦2.0の関係を満たすように、各巻回数が設定されていればよい。具体的には、Ng:Nh=16:9となるように巻回数が設定されている。 With the above configuration, the phase difference between the magnetomotive forces of the two coils provided in the teeth T3, T6, T9, T12, T15, and T18 as the third teeth is set to 60 degrees in terms of electrical angle. The number of turns of the single winding "Ng" and the number of turns of the same winding "Nh" are set to be close to Ng / Nh = 1.73. It is not necessary that Ng / Nh = 1.73, and the number of turns may be set so as to satisfy the relationship of 1.5 ≦ Ng / Nh ≦ 2.0. Specifically, the number of turns is set so that Ng: Nh = 16: 9.
 これにより、コイル体Ua,Va,Waの起磁力に対するコイル体Uc,Vc,Wcの起磁力の各位相差「λ2」を、30度又は210度とすることができる。このため、位相差がない場合に比較して、トルクリプルを抑制することが可能となる。 Thereby, each phase difference "λ2" of the magnetomotive force of the coil bodies Uc, Vc, Wc with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 30 degrees or 210 degrees. Therefore, it is possible to suppress torque ripple as compared with the case where there is no phase difference.
 また、第1実施形態に比較して、部分巻線の数及び配置を簡略化することができる。また、モータ10は、磁極数を「14」とし、スロット35の数を「18」とした。すなわち、磁極数を(18±4)×m(mは1以上の整数)とし、かつ、スロット数を18×mとした。これにより、軸心を中心として、電磁力のバランスを取ることができる。 Further, the number and arrangement of partial windings can be simplified as compared with the first embodiment. Further, in the motor 10, the number of magnetic poles is set to "14" and the number of slots 35 is set to "18". That is, the number of magnetic poles was (18 ± 4) × m (m is an integer of 1 or more), and the number of slots was 18 × m. As a result, the electromagnetic force can be balanced around the axis.
 そして、図25に示すように、第3ティースとしてのティースT3,T6,T9,T12,T15,T18に巻回された各同巻線は、第3ティースの隣のティースに設けられている単巻線と接続されている。これにより、コイルエンドにおいて、スロット35間を接続するための渡り線を短くすることができ、接続が容易となり、また、小型化することが可能となる。 Then, as shown in FIG. 25, each of the same windings wound around the teeth T3, T6, T9, T12, T15, and T18 as the third tooth is provided on the tooth next to the third tooth. It is connected to the winding. As a result, at the coil end, the crossover for connecting the slots 35 can be shortened, the connection can be facilitated, and the size can be reduced.
 (第10実施形態)
 第2実施形態の構成の一部を以下のように変更してもよい。以下、第2実施形態の構成を基本として、異なる箇所のみ説明する。
(10th Embodiment)
A part of the configuration of the second embodiment may be changed as follows. Hereinafter, only different parts will be described based on the configuration of the second embodiment.
 第10実施形態では、図26及び図27に示すように、各ティースT1~T18に対して、部分巻線を配置して、各相のコイル体を構成した。すなわち、第2実施形態における各従巻線を省略し、主巻線を単巻線に変更した。 In the tenth embodiment, as shown in FIGS. 26 and 27, partial windings are arranged for each teeth T1 to T18 to form a coil body of each phase. That is, each slave winding in the second embodiment was omitted, and the main winding was changed to a single winding.
 第10実施形態において、U相のコイル体Ua+,Ua-,Ub+,Ub-,Uc+,Uc-を第1相のコイル体とした場合、U相が第1相に相当し、W相が第2相に相当する。また、第10実施形態において、V相のコイル体Va+,Va-,Vb+,Vb-,Vc+,Vc-を第1相のコイル体とした場合、V相が第1相に相当し、U相が第2相に相当する。また、第10実施形態において、W相のコイル体Wa+,Wa-,Wb+,Wb-,Wc+,Wc-を第1相のコイル体とした場合、W相が第1相に相当し、V相が第2相に相当する。 In the tenth embodiment, when the U-phase coil body Ua +, Ua-, Ub +, Ub-, Uc +, Uc- is used as the first phase coil body, the U phase corresponds to the first phase and the W phase corresponds to the first phase. Corresponds to two phases. Further, in the tenth embodiment, when the V-phase coil bodies Va +, Va-, Vb +, Vb-, Vc +, and Vc- are used as the first phase coil bodies, the V phase corresponds to the first phase and the U phase. Corresponds to the second phase. Further, in the tenth embodiment, when the W phase coil body Wa +, Wa−, Wb +, Wb−, Wc +, Wc− is used as the first phase coil body, the W phase corresponds to the first phase and the V phase. Corresponds to the second phase.
 また、図26及び図27に示すように、各相のコイル体は、回転軸11の軸心を中心として、2回回転対称に配置されている。 Further, as shown in FIGS. 26 and 27, the coil bodies of each phase are arranged twice rotationally symmetrically about the axis of the rotating shaft 11.
 上記構成により、第3ティースとしてのティースT2,T5,T8,T11,T14,T17に設けられる2つの同巻線の起磁力の位相差が、電気角で60度と設定される。そして、単巻線の巻回数「Ng」と、同巻線の巻回数「Nh」が、Ng/Nh=1.73に近い値となるように設定されている。なお、Ng/Nh=1.73である必要はなく、1.5≦Ng/Nh≦2.0の関係を満たすように、各巻回数が設定されていればよい。具体的には、Ng:Nh=16:9となるように巻回数が設定されている。 With the above configuration, the phase difference between the magnetomotive forces of the two coils provided in the teeth T2, T5, T8, T11, T14, and T17 as the third teeth is set to 60 degrees in terms of electrical angle. The number of turns of the single winding "Ng" and the number of turns of the same winding "Nh" are set to be close to Ng / Nh = 1.73. It is not necessary that Ng / Nh = 1.73, and the number of turns may be set so as to satisfy the relationship of 1.5 ≦ Ng / Nh ≦ 2.0. Specifically, the number of turns is set so that Ng: Nh = 16: 9.
 これにより、コイル体Ua,Va,Waの起磁力に対するコイル体Uc,Vc,Wcの起磁力の各位相差「λ2」を、30度又は210度とすることができる。このため、位相差がない場合に比較して、トルクリプルを抑制することが可能となる。 Thereby, each phase difference "λ2" of the magnetomotive force of the coil bodies Uc, Vc, Wc with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 30 degrees or 210 degrees. Therefore, it is possible to suppress torque ripple as compared with the case where there is no phase difference.
 また、第2実施形態に比較して、部分巻線の数及び配置を簡略化することができる。また、モータ10は、磁極数を「22」とし、スロット35の数を「18」とした。すなわち、磁極数を(18±4)×m(mは1以上の整数)とし、かつ、スロット数を18×mとした。これにより、軸心を中心として、電磁力のバランスを取ることができる。 Further, the number and arrangement of partial windings can be simplified as compared with the second embodiment. Further, in the motor 10, the number of magnetic poles is set to "22" and the number of slots 35 is set to "18". That is, the number of magnetic poles was (18 ± 4) × m (m is an integer of 1 or more), and the number of slots was 18 × m. As a result, the electromagnetic force can be balanced around the axis.
 そして、図26及び図27に示すように、第3ティースとしてのティースT2,T5,T8,T11,T14,T17に巻回された各同巻線は、当該ティースの隣のティースに設けられている単巻線と接続されている。これにより、コイルエンドにおいて、スロット35間を接続するための渡り線を短くすることができ、接続が容易となり、また、小型化することが可能となる。 Then, as shown in FIGS. 26 and 27, the same windings wound around the teeth T2, T5, T8, T11, T14, and T17 as the third teeth are provided on the teeth next to the teeth. It is connected to a single winding. As a result, at the coil end, the crossover for connecting the slots 35 can be shortened, the connection can be facilitated, and the size can be reduced.
 (第11実施形態)
 第3実施形態の構成の一部を以下のように変更してもよい。以下、第3実施形態の構成を基本として、異なる箇所のみ説明する。
(11th Embodiment)
A part of the configuration of the third embodiment may be changed as follows. Hereinafter, only different parts will be described based on the configuration of the third embodiment.
 第11実施形態では、図28及び図29に示すように、各ティースT1~T18に対して、部分巻線を配置して、各相のコイル体を構成した。すなわち、第3実施形態における各従巻線を省略し、主巻線を単巻線に変更した。 In the eleventh embodiment, as shown in FIGS. 28 and 29, partial windings are arranged for each teeth T1 to T18 to form a coil body of each phase. That is, each slave winding in the third embodiment was omitted, and the main winding was changed to a single winding.
 第11実施形態において、U相のコイル体Ua+,Ub-,Uc+を第1相のコイル体とした場合、U相が第1相に相当し、W相が第2相に相当する。また、第11実施形態において、V相のコイル体Va+,Vb-,Vc+を第1相のコイル体とした場合、V相が第1相に相当し、U相が第2相に相当する。また、第11実施形態において、W相のコイル体Wa+,Wb-,Wc+を第1相のコイル体とした場合、W相が第1相に相当し、V相が第2相に相当する。 In the eleventh embodiment, when the U-phase coil bodies Ua +, Ub-, and Uc + are used as the first-phase coil bodies, the U-phase corresponds to the first phase and the W-phase corresponds to the second phase. Further, in the eleventh embodiment, when the V-phase coil bodies Va +, Vb−, and Vc + are used as the first-phase coil bodies, the V-phase corresponds to the first phase and the U-phase corresponds to the second phase. Further, in the eleventh embodiment, when the W phase coil bodies Wa +, Wb−, and Wc + are used as the first phase coil bodies, the W phase corresponds to the first phase and the V phase corresponds to the second phase.
 また、図28及び図29に示すように、各相のコイル体は、回転軸11の軸心を中心として、2回回転対称に配置されている。 Further, as shown in FIGS. 28 and 29, the coil bodies of each phase are arranged twice rotationally symmetrically about the axis of the rotating shaft 11.
 上記構成により、第3ティースとしてのティースT2,T5,T8,T11,T14,T17に設けられる2つの同巻線の起磁力の位相差が、電気角で60度と設定される。そして、単巻線の巻回数「Ng」と、同巻線の巻回数「Nh」が、Ng/Nh=1.73に近い値となるように設定されている。なお、Ng/Nh=1.73である必要はなく、1.5≦Ng/Nh≦2.0の関係を満たすように、各巻回数が設定されていればよい。具体的には、Ng:Nh=16:9となるように巻回数が設定されている。 With the above configuration, the phase difference between the magnetomotive forces of the two coils provided in the teeth T2, T5, T8, T11, T14, and T17 as the third teeth is set to 60 degrees in terms of electrical angle. The number of turns of the single winding "Ng" and the number of turns of the same winding "Nh" are set to be close to Ng / Nh = 1.73. It is not necessary that Ng / Nh = 1.73, and the number of turns may be set so as to satisfy the relationship of 1.5 ≦ Ng / Nh ≦ 2.0. Specifically, the number of turns is set so that Ng: Nh = 16: 9.
 これにより、コイル体Ua,Va,Waの起磁力に対するコイル体Uc,Vc,Wcの起磁力の各位相差「λ2」を、30度又は210度とすることができる。このため、位相差がない場合に比較して、トルクリプルを抑制することが可能となる。 Thereby, each phase difference "λ2" of the magnetomotive force of the coil bodies Uc, Vc, Wc with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 30 degrees or 210 degrees. Therefore, it is possible to suppress torque ripple as compared with the case where there is no phase difference.
 また、第3実施形態に比較して、部分巻線の数及び配置を簡略化することができる。そして、図28及び図29に示すように、第3ティースとしてのティースT2,T5,T8,T11,T14,T17に巻回された各同巻線は、当該ティースの隣のティースに設けられている単巻線と接続されている。これにより、コイルエンドにおいて、スロット35間を接続するための渡り線を短くすることができ、接続が容易となり、また、小型化することが可能となる。 Further, the number and arrangement of partial windings can be simplified as compared with the third embodiment. Then, as shown in FIGS. 28 and 29, the same windings wound around the teeth T2, T5, T8, T11, T14, and T17 as the third teeth are provided on the teeth next to the teeth. It is connected to a single winding. As a result, at the coil end, the crossover for connecting the slots 35 can be shortened, the connection can be facilitated, and the size can be reduced.
 (第12実施形態)
 第4実施形態の構成の一部を以下のように変更してもよい。以下、第4実施形態の構成を基本として、異なる箇所のみ説明する。
(12th Embodiment)
A part of the configuration of the fourth embodiment may be changed as follows. Hereinafter, only different parts will be described based on the configuration of the fourth embodiment.
 第12実施形態では、図30及び図31に示すように、各ティースT1~T18に対して、部分巻線を配置して、各相のコイル体を構成した。すなわち、第4実施形態における各従巻線を省略し、主巻線を単巻線に変更した。 In the twelfth embodiment, as shown in FIGS. 30 and 31, partial windings are arranged for each teeth T1 to T18 to form a coil body of each phase. That is, each slave winding in the fourth embodiment was omitted, and the main winding was changed to a single winding.
 第12実施形態において、U相のコイル体Ua+,Ub-,Uc+を第1相のコイル体とした場合、U相が第1相に相当し、W相が第2相に相当する。また、第12実施形態において、V相のコイル体Va+,Vb-,Vc+を第1相のコイル体とした場合、V相が第1相に相当し、U相が第2相に相当する。また、第12実施形態において、W相のコイル体Wa+,Wb-,Wc+を第1相のコイル体とした場合、W相が第1相に相当し、V相が第2相に相当する。また、図31に示すように、各相のコイル体は、回転軸11の軸心を中心として、2回回転対称に配置されている。 In the twelfth embodiment, when the U-phase coil bodies Ua +, Ub-, and Uc + are used as the first-phase coil bodies, the U-phase corresponds to the first phase and the W-phase corresponds to the second phase. Further, in the twelfth embodiment, when the V-phase coil bodies Va +, Vb−, and Vc + are used as the first-phase coil bodies, the V-phase corresponds to the first phase and the U-phase corresponds to the second phase. Further, in the twelfth embodiment, when the W phase coil bodies Wa +, Wb−, and Wc + are used as the first phase coil bodies, the W phase corresponds to the first phase and the V phase corresponds to the second phase. Further, as shown in FIG. 31, the coil bodies of each phase are arranged twice rotationally symmetrically with respect to the axial center of the rotating shaft 11.
 上記構成により、第3ティースとしてのティースT3,T6,T9,T12,T15,T18に設けられる2つの同巻線の起磁力の位相差が、電気角で60度と設定される。そして、単巻線の巻回数「Ng」と、同巻線の巻回数「Nh」が、Ng/Nh=1.73に近い値となるように設定されている。なお、Ng/Nh=1.73である必要はなく、1.5≦Ng/Nh≦2.0の関係を満たすように、各巻回数が設定されていればよい。具体的には、Ng:Nh=16:9となるように巻回数が設定されている。 With the above configuration, the phase difference between the magnetomotive forces of the two coils provided in the teeth T3, T6, T9, T12, T15, and T18 as the third teeth is set to 60 degrees in terms of electrical angle. The number of turns of the single winding "Ng" and the number of turns of the same winding "Nh" are set to be close to Ng / Nh = 1.73. It is not necessary that Ng / Nh = 1.73, and the number of turns may be set so as to satisfy the relationship of 1.5 ≦ Ng / Nh ≦ 2.0. Specifically, the number of turns is set so that Ng: Nh = 16: 9.
 これにより、コイル体Ua,Va,Waの起磁力に対するコイル体Uc,Vc,Wcの起磁力の各位相差「λ2」を、30度又は210度とすることができる。このため、位相差がない場合に比較して、トルクリプルを抑制することが可能となる。 Thereby, each phase difference "λ2" of the magnetomotive force of the coil bodies Uc, Vc, Wc with respect to the magnetomotive force of the coil bodies Ua, Va, Wa can be set to 30 degrees or 210 degrees. Therefore, it is possible to suppress torque ripple as compared with the case where there is no phase difference.
 また、第4実施形態に比較して、部分巻線の数及び配置を簡略化することができる。そして、図30及び図31に示すように、第3ティースとしてのティースT3,T6,T9,T12,T15,T18に巻回された各同巻線は、当該ティースの隣のティースに設けられている単巻線と接続されている。これにより、コイルエンドにおいて、スロット35間を接続するための渡り線を短くすることができ、接続が容易となり、また、小型化することが可能となる。 Further, the number and arrangement of partial windings can be simplified as compared with the fourth embodiment. Then, as shown in FIGS. 30 and 31, each of the same windings wound around the teeth T3, T6, T9, T12, T15, and T18 as the third teeth is provided on the teeth next to the teeth. It is connected to a single winding. As a result, at the coil end, the crossover for connecting the slots 35 can be shortened, the connection can be facilitated, and the size can be reduced.
 (他の実施形態)
 ・上記実施形態において、1つのインバータ回路51にて回路を実現したが、2つのインバータ回路を用いて回路を構成してもよい。この場合、例えば、部分巻線U1*±,V1*±,W1*±(「*」は、1~6のいずれかの数)が1つ目のインバータ回路に接続され、部分巻線U2*±,V2*±,W2*±(「*」は、1~6のいずれかの数)が2つ目のインバータ回路に接続されるように構成すればよい。
(Other embodiments)
-In the above embodiment, the circuit is realized by one inverter circuit 51, but the circuit may be configured by using two inverter circuits. In this case, for example, the partial winding U1 * ±, V1 * ±, W1 * ± (“*” is any number from 1 to 6) is connected to the first inverter circuit, and the partial winding U2 * ±, V2 * ±, W2 * ± (“*” is any number from 1 to 6) may be configured to be connected to the second inverter circuit.
 2つのインバータ回路に接続する場合、図32に示すように、各相の固定子巻線32の引出線A1,B1,C1,A2,B2,C2を配置してもよい。すなわち、引出線A1,B1,C1,A2,B2,C2を、回転軸11の軸心を中心として各相が対称となるように配置してもよい。これにより、引出線A1,B1,C1,A2,B2,C2から発生する漏れ磁束をバランスさせ、打ち消すことができるため、角度センサ12の検出誤差を抑制することができる。 When connecting to two inverter circuits, as shown in FIG. 32, leader wires A1, B1, C1, A2, B2, C2 of the stator windings 32 of each phase may be arranged. That is, the leader lines A1, B1, C1, A2, B2, and C2 may be arranged so that their phases are symmetrical with respect to the axis of the rotation axis 11. As a result, the leakage flux generated from the leader lines A1, B1, C1, A2, B2, and C2 can be balanced and canceled, so that the detection error of the angle sensor 12 can be suppressed.
 ・上記実施形態において、各相の固定子巻線32は、部分巻線が直列に接続されていたが、部分巻線が並列に接続されていてもよい。この場合、例えば、部分巻線U1*±,V1*±,W1*±(「*」は、1~6のいずれかの数)を直列に接続し、部分巻線U2*±,V2*±,W2*±(「*」は、1~6のいずれかの数)を直列に接続し、当該直列接続体を並列に接続すればよい。 -In the above embodiment, the stator windings 32 of each phase have partial windings connected in series, but partial windings may be connected in parallel. In this case, for example, the partial windings U1 * ±, V1 * ±, W1 * ± (“*” is any number from 1 to 6) are connected in series, and the partial windings U2 * ±, V2 * ± , W2 * ± (“*” is any number from 1 to 6) may be connected in series, and the series connectors may be connected in parallel.
 ・上記実施形態において、主巻線と従巻線との位相差、及び同巻線同士の位相差を、電気角で60度としていたが、電気角で52度~68度の範囲内となるように設定されていてもよい。 -In the above embodiment, the phase difference between the main winding and the slave winding and the phase difference between the same windings are set to 60 degrees in the electric angle, but the electric angle is in the range of 52 degrees to 68 degrees. It may be set as such.
 ・上記実施形態において、各部分巻線間の渡り線をどのように接続するかは任意に変更してもよい。 -In the above embodiment, how to connect the crossovers between the partial windings may be arbitrarily changed.
 ・上記実施形態において、磁極数、及びスロット数を変更してもよい。例えば、界磁部の磁極数が(18±4)×m(mは1以上の整数)であって、かつ、ティース間のスロット数が18×mであるとしてもよい。また、界磁部の磁極数が(18±2)×Q(Qは1以上の整数)であって、かつ、ティース間のスロット数が18×Qであるとしてもよい。 -In the above embodiment, the number of magnetic poles and the number of slots may be changed. For example, the number of magnetic poles in the field portion may be (18 ± 4) × m (m is an integer of 1 or more), and the number of slots between teeth may be 18 × m. Further, the number of magnetic poles in the field portion may be (18 ± 2) × Q (Q is an integer of 1 or more), and the number of slots between teeth may be 18 × Q.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described in accordance with the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various variations and variations within a uniform range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are within the scope and scope of the present disclosure.

Claims (10)

  1.  周方向に極性が交互となる複数の磁極を有する界磁部(40)と、多相の電機子巻線(32)を有する電機子(30)と、を備える回転電機(10)において、
     前記電機子巻線には、インバータ(51)から3相の電流が供給され、
     前記電機子は、
     前記3相のうち第1相の前記電機子巻線が巻回されるとともに、第2相の前記電機子巻線が、当該第1相の前記電機子巻線の巻回数よりも少なく巻回されることにより、前記第1相のコイル体が設けられる第1ティースと、
     前記3相のうち第1相の前記電機子巻線が巻回されるとともに、第3相の前記電機子巻線が、当該第1相の前記電機子巻線の巻回数よりも少なく巻回されることにより、前記第1相のコイル体が設けられる第2ティースと、
     前記3相のうち第1相の前記電機子巻線と、第3相の前記電機子巻線とが、同様に巻回されることにより、前記第1相のコイル体が設けられる第3ティースと、を有し、
     前記第3ティースに第1相の前記電機子巻線が巻回されて設けられる第1相の部分巻線の起磁力と、当該第3ティースに第3相の前記電機子巻線が巻回されて設けられる第3相の部分巻線の起磁力との位相差が、電気角で52度~68度の範囲内となるように設定されている回転電機。
    In a rotary electric machine (10) including a field portion (40) having a plurality of magnetic poles having alternating polarities in the circumferential direction and an armature (30) having a multi-phase armature winding (32).
    A three-phase current is supplied from the inverter (51) to the armature winding.
    The armature is
    Of the three phases, the armature winding of the first phase is wound, and the armature winding of the second phase is wound less than the number of turns of the armature winding of the first phase. By doing so, the first tooth provided with the coil body of the first phase and
    Of the three phases, the armature winding of the first phase is wound, and the armature winding of the third phase is wound less than the number of turns of the armature winding of the first phase. By doing so, the second tooth provided with the coil body of the first phase and
    A third tooth provided with a coil body of the first phase by winding the armature winding of the first phase and the armature winding of the third phase in the same manner among the three phases. And have,
    The magnetomotive force of the partial winding of the first phase provided by winding the armature winding of the first phase around the third tooth and the armature winding of the third phase wound around the third tooth. A rotary electric machine in which the phase difference from the magnetomotive force of the third phase partial winding provided is set to be within the range of 52 degrees to 68 degrees in terms of electric angle.
  2.  前記第1ティースに第1相の前記電機子巻線が巻回されて設けられる第1相の部分巻線の起磁力と、当該第1ティースに第2相の前記電機子巻線が巻回されて設けられる第2相の部分巻線の起磁力との位相差が、電気角で52度~68度の範囲内となり、かつ、
     前記第2ティースに第1相の前記電機子巻線が巻回されて設けられる第1相の部分巻線の起磁力と、当該第2ティースに第3相の前記電機子巻線が巻回されて設けられる第3相の部分巻線の起磁力との位相差が、電気角で52度~68度の範囲内となるように設定されている請求項1に記載の回転電機。
    The magnetomotive force of the partial winding of the first phase provided by winding the armature winding of the first phase around the first tooth and the armature winding of the second phase wound around the first tooth. The phase difference from the magnetomotive force of the second phase partial winding provided is within the range of 52 degrees to 68 degrees in terms of electrical angle, and
    The magnetomotive force of the partial winding of the first phase provided by winding the armature winding of the first phase around the second tooth and the armature winding of the third phase wound around the second tooth. The rotary electric machine according to claim 1, wherein the phase difference from the magnetomotive force of the third phase partial winding provided is set to be within the range of 52 degrees to 68 degrees in terms of electric angle.
  3.  前記第1ティース及び前記第2ティースに巻回される第1相の前記電機子巻線の巻回数をそれぞれ「Na」とし、前記第1ティースに巻回される第2相の前記電機子巻線の巻回数、並びに前記第2ティースに巻回される第3相の前記電機子巻線の巻回数をそれぞれ「Nb」とした場合、3.0≦Na/Nb≦6.0の関係を満たすように、各巻回数が設定されている請求項1又は2に記載の回転電機。 The number of turns of the armature winding of the first phase wound around the first tooth and the second tooth is set to "Na", respectively, and the armature winding of the second phase wound around the first tooth. When the number of windings of the wire and the number of windings of the armature winding of the third phase wound around the second tooth are "Nb", the relationship of 3.0≤Na / Nb≤6.0 is established. The rotary electric machine according to claim 1 or 2, wherein the number of turns is set so as to satisfy the requirements.
  4.  前記第1ティース及び前記第2ティースに巻回される第1相の前記電機子巻線の巻回数をそれぞれ「Na」とし、前記第3ティースに巻回される第1相の前記電機子巻線の巻回数、並びに前記第3ティースに巻回される第3相の前記電機子巻線の巻回数をそれぞれ「Nc」とした場合、1.4≦Na/Nc≦1.8の関係を満たすように、各巻回数が設定されている請求項1~3のうちいずれか1項に記載の回転電機。 The number of turns of the armature winding of the first phase wound around the first tooth and the second tooth is set to "Na", respectively, and the armature winding of the first phase wound around the third tooth. When the number of windings of the wire and the number of windings of the armature winding of the third phase wound around the third tooth are "Nc", the relationship of 1.4≤Na / Nc≤1.8 is established. The rotary electric machine according to any one of claims 1 to 3, wherein the number of turns is set so as to satisfy the requirements.
  5.  周方向に極性が交互となる複数の磁極を有する界磁部(40)と、多相の電機子巻線(32)を有する電機子(30)と、を備える回転電機(10)において、
     前記電機子巻線には、インバータ(51)から3相の電流が供給され、
     前記電機子は、
     前記3相のうち第1相の前記電機子巻線が巻回される第1ティースと、
     前記3相のうち第1相の前記電機子巻線が巻回されるとともに、第2相の前記電機子巻線が、当該第1相の前記電機子巻線の巻回数よりも少なく巻回される第2ティースと、
     前記3相のうち第2相の前記電機子巻線が巻回されるとともに、第1相の前記電機子巻線が、当該第2相の前記電機子巻線の巻回数よりも少なく巻回される第3ティースと、を有し、
     前記第2ティース又は前記第3ティースに対して、第1相の前記電機子巻線が巻回されて設けられる第1相の部分巻線の起磁力と、第2相の前記電機子巻線が巻回されて設けられる第2相の部分巻線の起磁力との位相差が、電気角で52度~68度の範囲内となるように設定されている回転電機。
    In a rotary electric machine (10) including a field portion (40) having a plurality of magnetic poles having alternating polarities in the circumferential direction and an armature (30) having a multi-phase armature winding (32).
    A three-phase current is supplied from the inverter (51) to the armature winding.
    The armature is
    Of the three phases, the first tooth around which the armature winding of the first phase is wound, and
    Of the three phases, the armature winding of the first phase is wound, and the armature winding of the second phase is wound less than the number of turns of the armature winding of the first phase. The second tooth to be done,
    Of the three phases, the armature winding of the second phase is wound, and the armature winding of the first phase is wound less than the number of turns of the armature winding of the second phase. With a third tooth, which is
    The magnetomotive force of the partial winding of the first phase provided by winding the armature winding of the first phase with respect to the second tooth or the third tooth, and the armature winding of the second phase. A rotary electric machine in which the phase difference from the magnetomotive force of the second phase partial winding provided by winding is set to be within the range of 52 degrees to 68 degrees in terms of electric angle.
  6.  前記第2ティースに巻回される第1相の前記電機子巻線の巻回数と、前記第3ティースに巻回される第2相の前記電機子巻線の巻回数をそれぞれ「Nd」とし、前記第2ティースに巻回される第2相の前記電機子巻線の巻回数と、前記第3ティースに巻回される第1相の前記電機子巻線の巻回数をそれぞれ「Ne」とした場合、1.8≦Nd/Ne≦2.0の関係を満たすように、各巻回数が設定されている請求項5に記載の回転電機。 The number of turns of the armature winding of the first phase wound around the second tooth and the number of turns of the armature winding of the second phase wound around the third tooth are defined as "Nd", respectively. The number of turns of the armature winding of the second phase wound around the second tooth and the number of turns of the armature winding of the first phase wound around the third tooth are "Ne", respectively. The rotary electric machine according to claim 5, wherein the number of turns is set so as to satisfy the relationship of 1.8 ≦ Nd / Ne ≦ 2.0.
  7.  前記第1ティースに巻回される第1相の前記電機子巻線の巻回数を「Nf」とし、前記第2ティースに巻回される第1相の前記電機子巻線の巻回数と、前記第3ティースに巻回される第2相の前記電機子巻線の巻回数をそれぞれ「Nd」とした場合、1.2≦Nf/Nd≦1.5の関係を満たすように、各巻回数が設定されている請求項5又は6に記載の回転電機。 The number of turns of the armature winding of the first phase wound around the first teeth is defined as "Nf", and the number of turns of the armature windings of the first phase wound around the second teeth is defined as "Nf". When the number of turns of the armature winding of the second phase wound around the third tooth is "Nd", the number of turns of each armature so as to satisfy the relationship of 1.2 ≤ Nf / Nd ≤ 1.5. The rotary electric machine according to claim 5 or 6, wherein is set.
  8.  周方向に極性が交互となる複数の磁極を有する界磁部(40)と、多相の電機子巻線(32)を有する電機子(30)と、を備える回転電機(10)において、
     前記電機子巻線には、インバータ(51)から3相の電流が供給され、
     前記電機子は、
     前記3相のうち第1相の前記電機子巻線が巻回される第1ティースと、
     前記3相のうち第1相の前記電機子巻線が巻回される第2ティースと、
     前記3相のうち第1相の前記電機子巻線と、第2相の前記電機子巻線とが、同様に巻回される第3ティースと、を有し、
     前記第3ティースに第1相の前記電機子巻線が巻回されて設けられる第1相の部分巻線の起磁力と、当該第3ティースに第2相の前記電機子巻線が巻回されて設けられる第2相の部分巻線の起磁力との位相差が、電気角で52度~68度の範囲内となるように設定されている回転電機。
    In a rotary electric machine (10) including a field portion (40) having a plurality of magnetic poles having alternating polarities in the circumferential direction and an armature (30) having a multi-phase armature winding (32).
    A three-phase current is supplied from the inverter (51) to the armature winding.
    The armature is
    Of the three phases, the first tooth around which the armature winding of the first phase is wound, and
    Of the three phases, the second tooth around which the armature winding of the first phase is wound, and
    Of the three phases, the armature winding of the first phase and the armature winding of the second phase are similarly wound with a third tooth.
    The magnetomotive force of the partial winding of the first phase provided by winding the armature winding of the first phase around the third tooth and the armature winding of the second phase wound around the third tooth. A rotary electric machine in which the phase difference from the magnetomotive force of the second phase partial winding provided is set to be within the range of 52 degrees to 68 degrees in terms of electric angle.
  9.  前記第1ティース及び前記第2ティースに巻回される第1相の前記電機子巻線の巻回数をそれぞれ「Ng」とし、前記第3ティースに巻回される第1相の前記電機子巻線の巻回数、並びに前記第3ティースに巻回される第2相の前記電機子巻線の巻回数をそれぞれ「Nh」とした場合、1.5≦Ng/Nh≦2.0の関係を満たすように、各巻回数が設定されている請求項8に記載の回転電機。 The number of turns of the armature winding of the first phase wound around the first tooth and the second tooth is set to "Ng", respectively, and the armature winding of the first phase wound around the third tooth. When the number of turns of the wire and the number of turns of the armature winding of the second phase wound around the third tooth are "Nh", the relationship of 1.5 ≤ Ng / Nh ≤ 2.0 is established. The rotary electric machine according to claim 8, wherein the number of turns is set so as to satisfy the requirements.
  10.  前記界磁部の磁極数が(18±4)×m(mは1以上の整数)であって、かつ、前記ティース間のスロット数が18×mである請求項1~9のうちいずれか1項に記載の回転電機。 Any of claims 1 to 9, wherein the number of magnetic poles in the field portion is (18 ± 4) × m (m is an integer of 1 or more), and the number of slots between the teeth is 18 × m. The rotary electric machine according to item 1.
PCT/JP2021/022575 2020-07-06 2021-06-14 Dynamo-electric machine WO2022009620A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-116575 2020-07-06
JP2020116575A JP7512720B2 (en) 2020-07-06 Rotating Electric Machine

Publications (1)

Publication Number Publication Date
WO2022009620A1 true WO2022009620A1 (en) 2022-01-13

Family

ID=79552926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022575 WO2022009620A1 (en) 2020-07-06 2021-06-14 Dynamo-electric machine

Country Status (1)

Country Link
WO (1) WO2022009620A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200127A (en) * 2011-03-10 2012-10-18 Mitsubishi Electric Corp Electric machine and method of manufacturing the same
WO2013080374A1 (en) * 2011-12-02 2013-06-06 三菱電機株式会社 Permanent magnet type concentrated winding motor
WO2017073092A1 (en) * 2015-10-28 2017-05-04 三菱電機株式会社 Rotary electric machine
JP2020178519A (en) * 2019-04-22 2020-10-29 株式会社デンソー Rotary electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200127A (en) * 2011-03-10 2012-10-18 Mitsubishi Electric Corp Electric machine and method of manufacturing the same
WO2013080374A1 (en) * 2011-12-02 2013-06-06 三菱電機株式会社 Permanent magnet type concentrated winding motor
WO2017073092A1 (en) * 2015-10-28 2017-05-04 三菱電機株式会社 Rotary electric machine
JP2020178519A (en) * 2019-04-22 2020-10-29 株式会社デンソー Rotary electric machine

Also Published As

Publication number Publication date
JP2022014306A (en) 2022-01-19

Similar Documents

Publication Publication Date Title
JP7103299B2 (en) Rotating electric machine
US8896178B2 (en) Synchronous electric motor drive system having slit windings
WO2013108680A1 (en) Rotating electric machine, and vehicle equipped with rotating electric machine
JP5893208B2 (en) Multiple multi-phase winding AC motor and electric power steering device
JP2000134891A (en) Synchronous motor and controller therefor
JP4698745B2 (en) Permanent magnet type rotating electric machine
WO2005076440A1 (en) Ipm rotating electric machine
EP3576293B1 (en) Electric drive device and electric power steering device
JP4654819B2 (en) motor
EP2063517A1 (en) Generator
JP2019022299A (en) Drive system of rotary electric machine
JP2016154445A (en) Rotary electric machine, and vehicle with the rotary electric machine
JP7227938B2 (en) Rotating electric machine
JP3117164B2 (en) Permanent magnet rotating electric machine, control method and control device thereof, and electric vehicle using the same
WO2021176493A1 (en) Rotary electric machine apparatus
WO2022009620A1 (en) Dynamo-electric machine
JP7392762B2 (en) rotating electric machine
CN110063018B (en) Field winding type rotating electrical machine
JP7512720B2 (en) Rotating Electric Machine
Hijikata et al. Larger torque production strategy of multi-phase inverter-fed MATRIX motor using air-gap flux density
JP2023057963A (en) Rotary electric machine
US9099912B2 (en) Electromagnetic coupling
JP2007189818A (en) Current control method of synchronous motor
JP2000217290A (en) Electric motor
CN109075683B (en) Permanent magnet type motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837208

Country of ref document: EP

Kind code of ref document: A1