WO2022009397A1 - Metal ion water production container - Google Patents

Metal ion water production container Download PDF

Info

Publication number
WO2022009397A1
WO2022009397A1 PCT/JP2020/026902 JP2020026902W WO2022009397A1 WO 2022009397 A1 WO2022009397 A1 WO 2022009397A1 JP 2020026902 W JP2020026902 W JP 2020026902W WO 2022009397 A1 WO2022009397 A1 WO 2022009397A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
fine particles
container body
resin
water
Prior art date
Application number
PCT/JP2020/026902
Other languages
French (fr)
Japanese (ja)
Inventor
宏紀 長谷川
Original Assignee
株式会社エイエムジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エイエムジー filed Critical 株式会社エイエムジー
Priority to KR1020207031108A priority Critical patent/KR102446239B1/en
Priority to JP2020557349A priority patent/JP6842793B1/en
Priority to PCT/JP2020/026902 priority patent/WO2022009397A1/en
Priority to CN202080029982.0A priority patent/CN115551810A/en
Publication of WO2022009397A1 publication Critical patent/WO2022009397A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Definitions

  • the present invention relates to a metal ionized water generating container for generating metal ionized water.
  • metal ions such as silver ions and copper ions are effective for sterilization and sterilization.
  • Patent Document 1 a container that produces water containing metal ions using a container having silver or copper as an inner coating has been proposed (for example, Patent Document 1).
  • the concentration of silver metal ions eluted by simply pouring ordinary tap water into a container is extremely low.
  • the concentration of metal ions can be increased by adding an acid such as dilute hydrochloric acid, but it is complicated for the user to add an acid such as dilute hydrochloric acid each time the product is used.
  • the present invention provides a metal ionized water generation container capable of easily generating metal ionized water.
  • the container body for storing water and the fine particles of the first metal which is a metal capable of contacting the water stored in the container body and having an effect of reducing bacteria, are dispersed.
  • the main member is formed of a first resin in which fine particles of the first metal, which is a metal having an effect of reducing bacteria, are dispersed.
  • the auxiliary member is composed of a member containing a second metal having a property of generating hydrogen ions in water. Therefore, when water is stored in the container body, the auxiliary member generates hydrogen ions in the water, and the hydrogen ions promote the elution of metal ions from the main member. As a result, the user can easily generate metal ionized water simply by putting water in the container body without using an acid such as dilute sulfuric acid or citric acid.
  • the second invention is, in the configuration of the first invention, the auxiliary member is a metal ionized water generation container formed by dispersing fine particles of the second metal in a second resin.
  • the auxiliary member is formed by dispersing fine particles of the second metal in the second resin, so that the degree of freedom of the structure is large. Therefore, the parts of the metal ionized water generation container can be used as auxiliary parts.
  • a tubular member for sucking water into the pump can be configured as an auxiliary member.
  • the auxiliary member can be configured as a member having a specific gravity equal to that of water, and can be configured as a floating member that floats in the water contained in the container body.
  • the third invention is the configuration of the first invention or the second invention, wherein the main member is formed by dispersing the fine particles of the first metal and the fine particles of ceramic in the first resin. It is a metal ionized water generation container.
  • the inventor of the present invention has found a phenomenon in which the elution amount of copper ions increases by dispersing ceramic fine particles in a resin even if the amount of the first metal contained in the main member is the same.
  • the main member is formed by dispersing the fine particles of the first metal and the fine particles of the ceramic in the first resin, the metal ions having a higher concentration are efficiently formed. Can produce water.
  • the main member is formed by dispersing the first metal fine particles and the ceramic fine particles in the first resin
  • the auxiliary member is the auxiliary member. It is a metal ionized water generation container formed by dispersing the fine particles of the second metal and the fine particles of ceramic in the second resin.
  • the main member is formed by dispersing the fine particles of the first metal and the fine particles of ceramic in the first resin, and the auxiliary member is formed in the second resin by the second. Since the metal fine particles and the ceramic fine particles are dispersed and formed, it is possible to more efficiently generate high-concentration metal ionized water.
  • the main member is the container body, and the inner surface of the container body is an uneven surface having a plurality of convex portions and concave portions. It is a metal ionized water generation container that is formed.
  • the area where the inner surface of the container body is in contact with water can be made larger than that of the case where the inner surface of the container body is a curved surface or a flat surface without unevenness.
  • the reduction effect can be utilized.
  • the sixth invention is a metal ionized water generation container in which fine particles of the first metal are exposed on the surface of the main member in any of the configurations of the first invention to the fifth invention.
  • the metal ions can be effectively eluted into the water.
  • the seventh invention is a metal ionized water generation container in which the first metal is copper or silver in the configuration of either the first invention or the sixth invention. It was
  • the eighth invention is a metal ionized water generation container in which the second metal functions as a photocatalyst in any of the configurations of the first invention to the seventh invention.
  • the container body is a metal ionized water generation container provided with a light introduction unit that introduces light from the outside.
  • electrons can be generated from the second metal by the light introduced into the container body through the light introduction unit.
  • metal ionized water can be easily generated.
  • FIG. 1 It is a figure which shows an example of the use method of a container. It is an enlarged conceptual diagram of the wall of the container which concerns on the 2nd Embodiment of this invention. It is a graph which shows the experimental result. It is an enlarged conceptual diagram of the wall of the suction tube which concerns on 3rd Embodiment of this invention. It is an enlarged conceptual diagram of the wall of the container which concerns on 4th Embodiment of this invention. It is an enlarged conceptual diagram of the wall of the container which concerns on the 5th Embodiment of this invention. It is a schematic diagram which shows the container which concerns on the 6th Embodiment of this invention. It is an enlarged perspective view of a floating member. It is a conceptual diagram which shows the floating state of the floating member in the state which put water in a container body. It is a schematic diagram which shows the container which concerns on the 7th Embodiment of this invention.
  • the expression “vertical direction” is referred to as “vertical direction” with reference to the vertical direction in FIG.
  • the direction connecting the container body 2 and the pump member 10 is the vertical direction.
  • the direction in which the pump member 10 is located is referred to as an upward direction, and the direction in which the container body 2 is located is referred to as a downward direction.
  • the direction perpendicular to the vertical direction is called the "horizontal direction”.
  • FIG. 1 is a side view of the container 100 according to the first embodiment of the present invention.
  • the container 100 is composed of a container body 2 and a pump member 10. The upper end portion of the container body 2 is open, and the pump member 10 is arranged at the upper end portion thereof. Water is stored in the container body 2.
  • the suction tube 6 is arranged inside the container body 2.
  • the suction tube 6 is a cylindrical member.
  • the suction tube 6 is connected to the pump material 10.
  • the container 100 is configured so that the water stored in the container main body 2 can be sucked up and ejected to the outside through the suction tube 6 by the action of the pump member 10.
  • the container 100 is an example of a metal ionized water generation container.
  • the container body 2 is an example of the container body and is also an example of the main member.
  • the suction tube 6 is an example of an auxiliary member.
  • the opening at the upper end of the container body 2 is an example of the light introduction portion.
  • FIG. 2 is a schematic cross-sectional view of the container body 2 cut in the vertical direction.
  • the container body 2 has an inner surface 2a and an outer surface 2b.
  • the space S1 is defined by the inner surface 2a, and water is stored in the space S1.
  • the "water” may be tap water having average properties in Japan. Further, the “water” is not limited to pure water, and may be, for example, water to which an acid such as citric acid is added.
  • FIG. 3 is a schematic cross-sectional view of the suction tube 6 cut in the vertical direction.
  • the suction tube 6 has an inner surface 6a and an outer surface 6b.
  • the space S2 is defined by the inner surface 6a, and water passes through the space S2.
  • the suction tube 6 is arranged at a position where it does not come into contact with the inner surface of the container body 2.
  • the pump member 10 is composed of a known manual pump mechanism.
  • the parts of the pump member 10 are formed by injection molding a resin such as polypropylene (PP), for example.
  • a known pump mechanism is, for example, two check valves or a mechanism similar to a check valve arranged one above the other and pressing the head portion of the pump to discharge water between the two valves and then the head of the pump. By returning the part to its original position, the water inside is sucked up between the two valves.
  • the head portion of the pump member 10 when the user presses the head portion of the pump member 10 from above, a certain amount of water is discharged to the outside from the discharge port, and the head portion is also formed by the urging member provided inside the pump member 10.
  • the pump member 10 When returning to the position of, the water in the container body 2 is sucked from the suction tube 6 in a fixed amount.
  • At least a part of the pump member 10 is made of a light-transmitting resin material, and external light passes through the pump member 10 and the opening at the upper end of the container body 2 and enters the inside of the container body 2. It is configured to be able to.
  • FIG. 4 is an enlarged conceptual diagram of the wall of the container body 2. Specifically, FIG. 4 is an enlarged conceptual diagram of the area A1 of the wall of the container body 2 of FIG.
  • the container body 2 is formed by dispersing copper fine particles 30 in the resin 4. Specifically, the container body 2 is injection-molded by mixing a large number of fine particles 30 of copper and resin 4 and adding an appropriate coupling material such as a silane coupling material and other additives as necessary. It is formed.
  • the resin constituting the container body 2 is preferably a resin having light transmittance. As the type of resin, for example, a polyolefin-based resin such as polypropylene, a polystyrene-based resin, or a polyester-based resin can be used.
  • Copper is an example of the first metal.
  • the first metal may be any metal having an effect of reducing bacteria, and is not limited to copper, and may be, for example, silver or zinc.
  • copper shall include copper and copper oxide.
  • Resin 4 is an example of the first resin.
  • the size of the fine particles 30 is defined as a size sufficiently smaller than the wall thickness W1 of the container body 2.
  • the maximum value (d50) of the particle size distribution of the fine particles 30 is used.
  • the diameter L1 corresponding to d50 is defined as the size of the fine particles 30.
  • the definition of the diameter L1 is the equivalent diameter of a sphere.
  • the diameter L1 is measured using, for example, a laser diffraction type particle size distribution measuring device.
  • the diameter L1 may be an average particle diameter.
  • the diameter L1 of the fine particles 30 is defined in a predetermined range, for example, 10 nanometers (nm) or more and less than 100 nanometers, preferably 10 nanometers or more and less than 80 meters, and more preferably 10 nanometers. It is metric or more and 40 nanometers or less, and more preferably 10 nanometers or more and 20 nanometers or less.
  • the shape of the fine particles 30 is, for example, a sphere.
  • the fine particles 30, for example copper particles of the "copper nanoparticles SFCP series" manufactured by Fukuda Metal Foil Powder Industry Co., Ltd. (20, Nishinoyama Nakatomi-cho, Yamashina-ku, Kyoto) can be used.
  • the fine particles 30 may be cuprous oxide particles having a primary particle size of about 50 nm, which is related to the production of Furukawa Chemicals Co., Ltd. (3-7-196 Ono, Nishiyodogawa-ku, Osaka City, Osaka Prefecture).
  • the thickness W1 of the container body 2 is larger than the diameter L1 of the fine particles 30, and further larger than the fine particles 30 having the maximum particle size in the particle size distribution.
  • the thickness of the container body 2 is, for example, 5 mm (mm).
  • FIG. 5 is an enlarged conceptual diagram of the wall of the suction tube 6.
  • FIG. 5 is an enlarged conceptual diagram of the area A2 of the wall of the suction tube 6 of FIG.
  • the suction tube 6 is composed of a member containing titanium dioxide (TiO 2).
  • TiO 2 titanium dioxide
  • the suction tube 6 is extruded by mixing a large number of fine particles 40 of titanium dioxide and the resin 8 and adding an appropriate coupling material such as a silane coupling material and other additives as necessary. Is formed by.
  • the resin constituting the suction tube 6 is a resin having light transmission after molding.
  • resins such as soft polyethylene, soft polypropylene, soft polyurethane, soft silicone, soft polyetheretherketone, and soft vinyl chloride can be adopted.
  • the resin constituting the suction tube 6 may be the same as or different from that of the container body 2.
  • Titanium dioxide is an example of a second metal.
  • the second metal may be any metal that generates hydrogen ions in water by directly contacting water or via resin 8 without using electrolysis using an external power source such as a battery. Not limited to titanium.
  • the second metal is a metal that functions as a photocatalyst.
  • the metal that functions as a photocatalyst is not limited to titanium dioxide, and for example, tungsten oxide may be used.
  • titanium dioxide which is the second metal, receives light, it generates electrons, and hydrogen ions can be generated in the water stored in the container body 2.
  • Resin 8 is an example of the second resin.
  • the size of the fine particles 40 is defined as a size sufficiently smaller than the wall thickness W2 of the suction tube 6.
  • the method for defining the size of the fine particles 40 is the same as the method for defining the size of the fine particles 30 described above.
  • the diameter L2 of the fine particles 40 is defined in a predetermined range, for example, 10 nanometers (nm) or more and less than 100 nanometers, preferably 10 nanometers or more and less than 80 meters, and more preferably 10 nanometers. It is metric or more and 40 nanometers or less, and more preferably 10 nanometers or more and 20 nanometers or less.
  • the thickness W2 of the suction tube 6 is larger than the diameter L2 of the fine particles 40, and further larger than the fine particles 40 having the largest particle size in the particle size distribution.
  • the thickness W2 of the suction tube 6 is, for example, 1.0 mm (mm).
  • FIG. 9 shows a case where only water is put in the container body 2 without arranging the suction tube 6 and a case where the suction tube 6 is placed in the container body 2 and water is put in based on the confirmation result.
  • the comparison of the generation state of the copper ion in "the present embodiment" is shown.
  • the weight ratio of titanium dioxide in the suction tube 6 is 60% by weight.
  • the weight ratio of the copper fine particles 30 in the container body 2 is 60% by weight.
  • FIG. 9 shows the transition of the copper ion concentration every 24 hours at room temperature.
  • the degree of elution of copper ions is low, and it is less than 20 ppm after 120 days. On the other hand, in the case of this embodiment, it exceeds 30 ppm after 10 days have passed.
  • the action of the suction tube 6 significantly promotes the elution of copper ions from the container body 2.
  • the suction tube 6 is further effective by being configured such that at least a part of the fine particles 40 out of a large number of fine particles 40 is not covered with the resin 8 and is exposed from the resin 8. Electrons can be generated from titanium dioxide.
  • the container body 2 is composed of an upper part (for example, an upper quarter in the vertical direction) and a lower part (for example, a lower quarter in the vertical direction), and the upper part has light transmission.
  • the resin may be configured as a light transmitting portion (light introducing portion) having excellent light transmission without mixing the fine particles 30, and the lower portion may be configured to mix the fine particles 30 as in the present embodiment.
  • FIG. 10 is a diagram showing a usage example of the container 100.
  • the entrance mat 202 is arranged at the entrance / exit of the house 200.
  • the mother 204 sprays the copper ionized water 62 generated by the container 100 onto the entrance mat 202 and soaks it.
  • the effect of the copper ions contained in the copper ion water 62 soaked into the entrance mat 202 causes the shoes of the child 206 to pass. It can reduce bacteria on the bottom and dog's feet.
  • the container body 2A of the second embodiment is formed by dispersing copper fine particles 30 and ceramic fine particles 50 in a resin 4.
  • the ceramic is, for example, alumina or silicon carbide (SiC). Further, the ceramic is preferably a porous ceramic.
  • FIG. 12 as the configuration of the container body 2A, water is poured into the container body 2A in the case where only the copper fine particles 30 are dispersed in the resin 4 and the case where the copper fine particles 30 and the ceramic fine particles 50 are dispersed. The comparison of the degree of elution of copper ion in the case is shown.
  • citric acid water containing 0.01% by weight of citric acid was put.
  • the copper ion was 2.5 ppm or less.
  • it was about 9.0 ppm after 10 days. From this, it can be seen that even if the weight of the copper fine particles 30 in the container body 2A does not change, the elution of copper ions is significantly promoted by adding the ceramic fine particles 50.
  • the suction tube 6A of the third embodiment is formed by dispersing titanium dioxide fine particles 40 and ceramic fine particles 50 in the resin 8.
  • the generation of electrons from the titanium dioxide is promoted as in the effect of promoting the elution of copper ions in the second embodiment. It is possible to generate copper ionized water even more effectively.
  • the inner surface 2a of the container body 2B of the fourth embodiment is formed as an uneven surface having a plurality of convex portions and concave portions. As a result, when water is poured into the container body 2B, the area of the inner surface 2a in contact with the water becomes large, and copper ions can be more effectively eluted.
  • the inner surface 2a of the container body 2C of the fifth embodiment is formed as an uneven surface having a plurality of convex portions and concave portions. Then, a part of the plurality of copper fine particles 30 is exposed to the outside of the inner surface 2a. As a result, when water is put into the container body 2C, the fine particles 30 come into direct contact with the water, and copper ions can be more effectively eluted.
  • a suction tube 6, floating members 20A, 20B and 20C are arranged inside the container body 2D of the sixth embodiment.
  • the suction tube 6 is formed by dispersing titanium dioxide fine particles in the resin.
  • the floating members 20A, 20B and 20C are formed by dispersing copper fine particles 30 in the resin 4, as in the container body 2 of the first embodiment.
  • the floating members 20A, 20B and 20C are examples of main members.
  • the container body 2D is made of only a light-transmitting resin, and does not contain copper fine particles 30. External light passes through the container body 2D and is introduced into the container body 2D.
  • the container body 2D itself is an example of the light introduction unit.
  • the floating member 20A and the like are configured to have a star shape, a heart shape, and a spherical shape, respectively, but the form thereof is not limited to this, and various forms may be adopted. Is possible.
  • the specific gravity of the floating member 20A or the like is substantially equal to the specific gravity of water. Therefore, as shown in FIG. 18, when the water 60 is put into the container body 2, the floating member 20A and the like float in the water. In a state where the water 60 is put in the container body 2, the floating member 20A or the like floats in the water 60 without touching the inner surface of the container body 2.
  • the specific gravity of the floating member 20A or the like is adjusted by setting the weight of the copper fine particles 30 contained in the floating member 20A or the like to a predetermined weight and using a resin having a desired specific gravity. For example, if a resin having a small specific gravity is used, the specific gravity of the floating member 20A or the like becomes small even if the weight of the fine particles 30 does not change.
  • the central portion of the floating member 20A or the like may be composed of only a resin
  • the outer surface portion of the floating member 20A or the like may be composed of a resin in which copper fine particles 30 are dispersed.
  • the copper fine particles 30 may be exposed on the outer surface of the floating member 20A or the like.
  • the suction tube 6 is made of only resin, a part of the floating member 20A and the like is formed by dispersing titanium dioxide fine particles 40 in the resin 8, and the other is copper fine particles 30. May be dispersed in the resin 4 to form the resin 4.
  • the floating member 20A is formed by dispersing titanium dioxide fine particles 40 in the resin 8
  • the floating members 20B and 20C are formed by dispersing copper fine particles 30 in the resin 4.
  • the container body 2E of the seventh embodiment is formed only of a resin having light transmission. External light passes through the container body 2E and is introduced into the container body 2E.
  • the container body 2E itself is an example of the light introduction unit.
  • a suction tube 6 and a disk-shaped member 12 are arranged inside the container body 2E of the sixth embodiment.
  • the suction tube 6 is formed by dispersing titanium dioxide fine particles 40 in the resin 8.
  • the disk-shaped member 12 is fixed to the bottom of the container body 2E.
  • the disk-shaped member 12 is formed by dispersing copper fine particles 30 in the resin 4, as in the container body 2 of the first embodiment.
  • the disk-shaped member 12 is an example of a main member.
  • the metal ionized water generation container of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist of the present invention.
  • each of the above embodiments can be appropriately combined as long as there is no technical contradiction.
  • Pump member 12 Disc-shaped member 20A, 20B, 20C Floating member 30 Copper fine particle 40 Titanium dioxide fine particle 50 Ceramic fine particle 60 Water 62 Copper ionized water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

The present invention provides a metal ion water production container which makes it possible to produce metal ion water easily. The metal ion water production container according to the present invention comprises: a container main body (main member) 2 which is made from a first resin 4 in which fine particles 30 of a first metal that is a metal having an effect of reducing bacteria are dispersed; and an auxiliary member 6 which is a member arranged in the inside of the container main body 2 and containing a second metal having a property of generating hydrogen ions in water upon the contact with the water accommodated in the container main body 2.

Description

金属イオン水生成容器Metal ion water generation container
 本発明は金属イオン水を生成するための金属イオン水生成容器に関する。 The present invention relates to a metal ionized water generating container for generating metal ionized water.
 従来、銀イオンや銅イオンなどの金属イオンが滅菌や殺菌に有効であることが知られている。 Conventionally, it is known that metal ions such as silver ions and copper ions are effective for sterilization and sterilization.
 そして、銀や銅を内側の被膜として有する容器を用いて、金属イオンを含む水を生成する容器が提案されている(例えば、特許文献1)。 Then, a container that produces water containing metal ions using a container having silver or copper as an inner coating has been proposed (for example, Patent Document 1).
特開2013-99919号公報Japanese Unexamined Patent Publication No. 2013-99919
 上述の技術においては、普通の水道水を容器に投入するだけでは溶出する銀金属イオンの濃度は極めて低い。これに対して、希塩酸などの酸を加えることによって、金属イオンの濃度を高くすることができるが、使用者において、使用する度に希塩酸などの酸を加えることは煩雑である。 In the above technology, the concentration of silver metal ions eluted by simply pouring ordinary tap water into a container is extremely low. On the other hand, the concentration of metal ions can be increased by adding an acid such as dilute hydrochloric acid, but it is complicated for the user to add an acid such as dilute hydrochloric acid each time the product is used.
 本発明は、上記を踏まえて、容易に金属イオン水を生成することができる金属イオン水生成容器を提供するものである。 Based on the above, the present invention provides a metal ionized water generation container capable of easily generating metal ionized water.
 第一の発明は、水を格納する容器本体と、前記容器本体内に格納された前記水と接することができ、細菌を低減する効果を有する金属である第一の金属の微粒子が分散した第一の樹脂によって形成される主部材と、前記容器本体の内側に配置され、前記容器本体に格納された前記水と接することによって、前記水に水素イオンを発生させる性質を有する第二の金属を含む部材で構成される補助部材と、を有する金属イオン水生成容器である。 In the first invention, the container body for storing water and the fine particles of the first metal, which is a metal capable of contacting the water stored in the container body and having an effect of reducing bacteria, are dispersed. A second metal having a property of generating hydrogen ions in the water by contacting the main member formed of one resin and the water disposed inside the container body and stored in the container body. It is a metal ionized water generation container having an auxiliary member composed of a member including the member.
 希硫酸やクエン酸などの酸を水に加えることによって、水中に配置した金属銅などの金属からの金属イオンの溶出が促進される事象は知られている。本発明の発明者は、その事象の原因として、水中の水素イオンが作用していることに着眼した。そして、水中に水素イオンを発生させる補助部材を配置することによって、電池などの外部からの電源を要する電気分解を用いることなく、水中に配置した金属銅からの金属イオンの溶出を促進させる技術思想に想到した。第一の発明の構成によれば、主部材は、細菌を低減する効果を有する金属である第一の金属の微粒子が分散した第一の樹脂によって形成される。そして、補助部材は、水に水素イオンを発生させる性質を有する第二の金属を含む部材で構成される。したがって、容器本体に水を格納すると、補助部材が水中に水素イオンを発生させ、その水素イオンが主部材からの金属イオンの溶出を促進する。これにより、使用者は、希硫酸やクエン酸などの酸を使用することなく、容器本体に水を入れるだけで容易に金属イオン水を生成することができる。 It is known that adding an acid such as dilute sulfuric acid or citric acid to water promotes the elution of metal ions from a metal such as metallic copper placed in water. The inventor of the present invention has focused on the action of hydrogen ions in water as the cause of the event. Then, by arranging an auxiliary member that generates hydrogen ions in water, a technical idea that promotes elution of metal ions from metallic copper arranged in water without using electrolysis that requires an external power source such as a battery. I came up with. According to the configuration of the first invention, the main member is formed of a first resin in which fine particles of the first metal, which is a metal having an effect of reducing bacteria, are dispersed. The auxiliary member is composed of a member containing a second metal having a property of generating hydrogen ions in water. Therefore, when water is stored in the container body, the auxiliary member generates hydrogen ions in the water, and the hydrogen ions promote the elution of metal ions from the main member. As a result, the user can easily generate metal ionized water simply by putting water in the container body without using an acid such as dilute sulfuric acid or citric acid.
 第二の発明は、第一の発明の構成において、前記補助部材は、前記第二の金属の微粒子が第二の樹脂に分散されて形成される、金属イオン水生成容器である。 The second invention is, in the configuration of the first invention, the auxiliary member is a metal ionized water generation container formed by dispersing fine particles of the second metal in a second resin.
 第二の発明の構成によれば、補助部材は、第二の金属の微粒子が第二の樹脂に分散されて形成されるから、構造の自由度が大きい。このため、金属イオン水生成容器の部品を補助部品とすることができる。例えば、容器本体の上部にポンプを配置する場合に、ポンプに水を吸い上げるための筒状部材を補助部材として構成することができる。あるいは、補助部材を水と等しい比重の部材として構成し、容器本体に入れられた水の中を浮遊する浮遊部材として構成することができる。 According to the configuration of the second invention, the auxiliary member is formed by dispersing fine particles of the second metal in the second resin, so that the degree of freedom of the structure is large. Therefore, the parts of the metal ionized water generation container can be used as auxiliary parts. For example, when the pump is arranged on the upper part of the container body, a tubular member for sucking water into the pump can be configured as an auxiliary member. Alternatively, the auxiliary member can be configured as a member having a specific gravity equal to that of water, and can be configured as a floating member that floats in the water contained in the container body.
 第三の発明は、第一の発明または第二の発明の構成において、前記主部材は、前記第一の樹脂に、前記第一の金属の微粒子とセラミックの微粒子が分散して形成される、金属イオン水生成容器である。 The third invention is the configuration of the first invention or the second invention, wherein the main member is formed by dispersing the fine particles of the first metal and the fine particles of ceramic in the first resin. It is a metal ionized water generation container.
 本発明の発明者は、主部材に含まれる第一の金属の量が同一であっても、樹脂中にセラミックの微粒子を分散させることによって、銅イオンの溶出量が増加する現象を見出した。この点、第三の発明の構成によれば、主部材は、第一の樹脂に、第一の金属の微粒子とセラミックの微粒子が分散して形成されるから、効率良くより高濃度の金属イオン水を生成することができる。 The inventor of the present invention has found a phenomenon in which the elution amount of copper ions increases by dispersing ceramic fine particles in a resin even if the amount of the first metal contained in the main member is the same. In this regard, according to the configuration of the third invention, since the main member is formed by dispersing the fine particles of the first metal and the fine particles of the ceramic in the first resin, the metal ions having a higher concentration are efficiently formed. Can produce water.
 第四の発明は、第二の発明の構成において、前記主部材は、前記第一の樹脂に、前記第一の金属の微粒子とセラミックの微粒子が分散して形成され、前記補助部材は、前記第二の樹脂に、前記第二の金属の微粒子とセラミックの微粒子が分散して形成される、金属イオン水生成容器である。 In the fourth aspect of the invention, in the configuration of the second invention, the main member is formed by dispersing the first metal fine particles and the ceramic fine particles in the first resin, and the auxiliary member is the auxiliary member. It is a metal ionized water generation container formed by dispersing the fine particles of the second metal and the fine particles of ceramic in the second resin.
 第四の発明の構成によれば、主部材は、第一の樹脂に、第一の金属の微粒子とセラミックの微粒子が分散して形成され、補助部材は、第二の樹脂に、第二の金属の微粒子とセラミックの微粒子が分散して形成されるから、一層効率良くより高濃度の金属イオン水を生成することができる。 According to the configuration of the fourth invention, the main member is formed by dispersing the fine particles of the first metal and the fine particles of ceramic in the first resin, and the auxiliary member is formed in the second resin by the second. Since the metal fine particles and the ceramic fine particles are dispersed and formed, it is possible to more efficiently generate high-concentration metal ionized water.
 第五の発明は、第一の発明乃至第四の発明のいずれかの構成において、前記主部材は前記容器本体であり、前記容器本体の内面は、複数の凸部及び凹部を有する凹凸面として形成されている、金属イオン水生成容器である。 In the fifth aspect of the invention, in any of the configurations of the first invention to the fourth invention, the main member is the container body, and the inner surface of the container body is an uneven surface having a plurality of convex portions and concave portions. It is a metal ionized water generation container that is formed.
 第五の発明の構成によれば、容器本体の内面が凹凸のない曲面または平面である場合に比べて、内面が水と接する面積を大きく構成することができるから、より一層有効に微粒子による細菌低減効果を活用することができる。 According to the configuration of the fifth invention, the area where the inner surface of the container body is in contact with water can be made larger than that of the case where the inner surface of the container body is a curved surface or a flat surface without unevenness. The reduction effect can be utilized.
 第六の発明は、第一の発明乃至第五の発明のいずれかの構成において、前記主部材の表面において、前記第一の金属の微粒子は露出している、金属イオン水生成容器である。 The sixth invention is a metal ionized water generation container in which fine particles of the first metal are exposed on the surface of the main member in any of the configurations of the first invention to the fifth invention.
 第六の発明の構成によれば、第一の金属の微粒子は露出しているから、効果的に水中に金属イオンを溶出させることができる。 According to the configuration of the sixth invention, since the fine particles of the first metal are exposed, the metal ions can be effectively eluted into the water.
 第七の発明は、第一の発明または第六の発明のいずれかの構成において、第一の金属は銅または銀である、金属イオン水生成容器である。  The seventh invention is a metal ionized water generation container in which the first metal is copper or silver in the configuration of either the first invention or the sixth invention. It was
 第八の発明は、第一の発明乃至第七の発明のいずれかの構成において、前記第二の金属は光触媒として機能する金属である、金属イオン水生成容器である。 The eighth invention is a metal ionized water generation container in which the second metal functions as a photocatalyst in any of the configurations of the first invention to the seventh invention.
 第八の発明の構成によれば、第二の金属に光が当たることによって、第二の金属から電子が発生し、これにより、容器本体に格納された水から水素イオンが発生し、容器本体を構成する第一の金属からの金属イオンの溶出が促進される。 According to the configuration of the eighth invention, when the second metal is exposed to light, electrons are generated from the second metal, whereby hydrogen ions are generated from the water stored in the container body, and the container body is generated. Elution of metal ions from the first metal constituting the above is promoted.
 第九の発明は、第八の発明の構成において、前記容器本体は、外部から光を導入する光導入部を備える、金属イオン水生成容器である。 According to the ninth invention, in the configuration of the eighth invention, the container body is a metal ionized water generation container provided with a light introduction unit that introduces light from the outside.
 第九の発明の構成によれば、光導入部を介して容器本体内に導入した光によって、第二の金属から電子を発生させることができる。 According to the configuration of the ninth invention, electrons can be generated from the second metal by the light introduced into the container body through the light introduction unit.
 本発明によれば、容易に金属イオン水を生成することができる。 According to the present invention, metal ionized water can be easily generated.
本発明の第一の実施形態にかかる容器の概略側面図である。It is a schematic side view of the container which concerns on 1st Embodiment of this invention. 容器本体を上下方向に切断した概略断面図である。It is a schematic cross-sectional view which cut the container body in the vertical direction. 吸引チューブを上下方向に切断した概略断面図である。It is a schematic cross-sectional view which cut the suction tube in the vertical direction. 容器本体の壁の拡大概念図である。It is an enlarged conceptual diagram of the wall of the container body. 吸引チューブの壁の拡大概念図である。It is an enlarged conceptual diagram of the wall of a suction tube. 吸引チューブを構成する金属から電子が発生する様子を示す概念図である。It is a conceptual diagram which shows how the electron is generated from the metal which constitutes a suction tube. 水から水素イオンが発生する様子を示す概念図である。It is a conceptual diagram which shows how the hydrogen ion is generated from water. 容器本体から銅イオンが溶出する状態を示す概念図である。It is a conceptual diagram which shows the state which copper ion elutes from a container body. 銅イオンの溶出の状態を示すグラフである。It is a graph which shows the state of elution of copper ion. 容器の使用方法の一例を示す図である。It is a figure which shows an example of the use method of a container. 本発明の第二の実施形態にかかる容器の壁の拡大概念図である。It is an enlarged conceptual diagram of the wall of the container which concerns on the 2nd Embodiment of this invention. 実験結果を示すグラフである。It is a graph which shows the experimental result. 本発明の第三の実施形態にかかる吸引チューブの壁の拡大概念図である。It is an enlarged conceptual diagram of the wall of the suction tube which concerns on 3rd Embodiment of this invention. 本発明の第四の実施形態にかかる容器の壁の拡大概念図である。It is an enlarged conceptual diagram of the wall of the container which concerns on 4th Embodiment of this invention. 本発明の第五の実施形態にかかる容器の壁の拡大概念図である。It is an enlarged conceptual diagram of the wall of the container which concerns on the 5th Embodiment of this invention. 本発明の第六の実施形態にかかる容器を示す概略図である。It is a schematic diagram which shows the container which concerns on the 6th Embodiment of this invention. 浮遊部材の拡大斜視図である。It is an enlarged perspective view of a floating member. 容器本体に水を入れた状態における浮遊部材の浮遊状態を示す概念図である。It is a conceptual diagram which shows the floating state of the floating member in the state which put water in a container body. 本発明の第七の実施形態にかかる容器を示す概略図である。It is a schematic diagram which shows the container which concerns on the 7th Embodiment of this invention.
 以下、図面に基づき本発明の好適な実施形態を説明する。なお、当業者が適宜実施できる構成については説明を省略し、本発明の基本的な構成についてのみ説明する。 Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. The configuration that can be appropriately implemented by those skilled in the art will be omitted, and only the basic configuration of the present invention will be described.
<第一の実施形態>
 本発明の実施形態について以下図面を参照して説明する。なお本明細書で「上下方向」の表現は、図1においての上下を基準として「上下方向」とする。具体的には、容器本体2とポンプ部材10とを結ぶ方向が上下方向である。ポンプ部材10が位置する方向を上方、容器本体2が位置する方向を下方と呼ぶ。そして、上下方向と垂直な方向を「水平方向」と呼ぶ。
<First embodiment>
Embodiments of the present invention will be described below with reference to the drawings. In the present specification, the expression "vertical direction" is referred to as "vertical direction" with reference to the vertical direction in FIG. Specifically, the direction connecting the container body 2 and the pump member 10 is the vertical direction. The direction in which the pump member 10 is located is referred to as an upward direction, and the direction in which the container body 2 is located is referred to as a downward direction. The direction perpendicular to the vertical direction is called the "horizontal direction".
 図1は本発明の第一の実施形態にかかる容器100の側面図である。容器100は、容器本体2とポンプ部材10から構成される。容器本体2の上端部は開口しており、その上端部にポンプ部材10が配置される。容器本体2に水が格納される。容器本体2の内部に吸引チューブ6が配置される。吸引チューブ6は円筒状の部材である。吸引チューブ6はポンプ材10に接続されている。容器100は、ポンプ部材10の作用によって、吸引チューブ6を介して、容器本体2に格納した水を吸い上げて、外部に噴出することができるように構成されている。容器100は金属イオン水生成容器の一例である。容器本体2は容器本体の一例であり、主部材の一例でもある。吸引チューブ6は補助部材の一例である。容器本体2の上端部の開口は、光導入部の一例である。 FIG. 1 is a side view of the container 100 according to the first embodiment of the present invention. The container 100 is composed of a container body 2 and a pump member 10. The upper end portion of the container body 2 is open, and the pump member 10 is arranged at the upper end portion thereof. Water is stored in the container body 2. The suction tube 6 is arranged inside the container body 2. The suction tube 6 is a cylindrical member. The suction tube 6 is connected to the pump material 10. The container 100 is configured so that the water stored in the container main body 2 can be sucked up and ejected to the outside through the suction tube 6 by the action of the pump member 10. The container 100 is an example of a metal ionized water generation container. The container body 2 is an example of the container body and is also an example of the main member. The suction tube 6 is an example of an auxiliary member. The opening at the upper end of the container body 2 is an example of the light introduction portion.
 図2は、容器本体2を上下方向に切断した概略断面図である。容器本体2は、内面2aと外面2bを有する。内面2aによって空間S1が画され、空間S1に水が格納される。なお、「水」は日本国における平均的な性質を有する水道水でよい。また、「水」は、純粋な水に限定されず、例えば、クエン酸等の酸を加えた水であってもよい。 FIG. 2 is a schematic cross-sectional view of the container body 2 cut in the vertical direction. The container body 2 has an inner surface 2a and an outer surface 2b. The space S1 is defined by the inner surface 2a, and water is stored in the space S1. The "water" may be tap water having average properties in Japan. Further, the "water" is not limited to pure water, and may be, for example, water to which an acid such as citric acid is added.
 図3は、吸引チューブ6を上下方向に切断した概略断面図である。吸引チューブ6は、内面6aと外面6bを有する。内面6aによって空間S2が画され、空間S2を水が通過する。吸引チューブ6は、容器本体2の内面と接触しない位置に配置されている。 FIG. 3 is a schematic cross-sectional view of the suction tube 6 cut in the vertical direction. The suction tube 6 has an inner surface 6a and an outer surface 6b. The space S2 is defined by the inner surface 6a, and water passes through the space S2. The suction tube 6 is arranged at a position where it does not come into contact with the inner surface of the container body 2.
 ポンプ部材10は、公知の手動式のポンプ機構で構成する。ポンプ部材10の部品は、例えば、ポリプロピレン(PP)等の樹脂を射出成型することにより構成する。公知のポンプ機構は、例えば、二つの逆止弁もしくは逆止弁に類似の機構を上下に並べ、ポンプの頭部分を押圧することで、両弁の間の水を吐出した後、ポンプの頭部分が元の位置に戻ることで内部の水を両弁の間に吸い上げる構成である。 The pump member 10 is composed of a known manual pump mechanism. The parts of the pump member 10 are formed by injection molding a resin such as polypropylene (PP), for example. A known pump mechanism is, for example, two check valves or a mechanism similar to a check valve arranged one above the other and pressing the head portion of the pump to discharge water between the two valves and then the head of the pump. By returning the part to its original position, the water inside is sucked up between the two valves.
 本実施形態では使用者がポンプ部材10の頭部分を上から押圧することで、吐出口から一定量ずつ水を外部へ吐出し、ポンプ部材10の内部に備えた付勢部材で頭部分がもとの位置に戻るときに、吸引チューブ6から容器本体2内の水を一定量ずつ吸引する。ポンプ部材10の少なくとも一部は、光透過性の樹脂材料で構成されており、外部の光がポンプ部材10、及び、容器本体2の上端部の開口を通過して容器本体2の内部に侵入できるように構成されている。 In the present embodiment, when the user presses the head portion of the pump member 10 from above, a certain amount of water is discharged to the outside from the discharge port, and the head portion is also formed by the urging member provided inside the pump member 10. When returning to the position of, the water in the container body 2 is sucked from the suction tube 6 in a fixed amount. At least a part of the pump member 10 is made of a light-transmitting resin material, and external light passes through the pump member 10 and the opening at the upper end of the container body 2 and enters the inside of the container body 2. It is configured to be able to.
 図4は、容器本体2の壁の拡大概念図である。具体的には、図4は、図2の容器本体2の壁の領域A1の拡大概念図である。容器本体2は、銅の微粒子30が樹脂4に分散することによって形成される。具体的には、容器本体2は、銅の多数の微粒子30と樹脂4を混合し、シランカップリング材など適宜のカップリング材、その他、必要に応じて添加剤を加えて射出成型することによって形成されている。容器本体2を構成する樹脂は、光透過性を有する樹脂が望ましい。樹脂の種類は、例えば、ポリプロピレンなどのポリオレフィン系、ポリスチレン系、ポリエステル系の樹脂を使用することができる。銅は、第一の金属の一例である。なお第一の金属は、細菌を低減する効果を有する金属であればよく、銅に限らず、例えば、銀や亜鉛であってもよい。本明細書において、「銅」は、銅及び酸化銅を含むものとする。樹脂4は第一の樹脂の一例である。 FIG. 4 is an enlarged conceptual diagram of the wall of the container body 2. Specifically, FIG. 4 is an enlarged conceptual diagram of the area A1 of the wall of the container body 2 of FIG. The container body 2 is formed by dispersing copper fine particles 30 in the resin 4. Specifically, the container body 2 is injection-molded by mixing a large number of fine particles 30 of copper and resin 4 and adding an appropriate coupling material such as a silane coupling material and other additives as necessary. It is formed. The resin constituting the container body 2 is preferably a resin having light transmittance. As the type of resin, for example, a polyolefin-based resin such as polypropylene, a polystyrene-based resin, or a polyester-based resin can be used. Copper is an example of the first metal. The first metal may be any metal having an effect of reducing bacteria, and is not limited to copper, and may be, for example, silver or zinc. As used herein, "copper" shall include copper and copper oxide. Resin 4 is an example of the first resin.
 微粒子30の大きさは、容器本体2の壁の厚さW1よりも十分に小さい大きさとして規定される。微粒子30の大きさとして、例えば、微粒子30の粒度分布の極大値(d50)を使用する。d50に相当する直径L1を微粒子30の大きさとする。直径L1の定義は球相当径とする。直径L1は、例えば、レーザ回折式粒度分布測定装置を使用して測定する。なお、本実施形態とは異なり、直径L1は平均粒子径としてもよい。 The size of the fine particles 30 is defined as a size sufficiently smaller than the wall thickness W1 of the container body 2. As the size of the fine particles 30, for example, the maximum value (d50) of the particle size distribution of the fine particles 30 is used. The diameter L1 corresponding to d50 is defined as the size of the fine particles 30. The definition of the diameter L1 is the equivalent diameter of a sphere. The diameter L1 is measured using, for example, a laser diffraction type particle size distribution measuring device. In addition, unlike this embodiment, the diameter L1 may be an average particle diameter.
 微粒子30の直径L1は、所定範囲に規定されており、例えば、10ナノメートル(nm)以上100ナノメートル未満であり、望ましくは、10ナノメートル以上80メートル未満であり、より望ましくは、10ナノメートル以上40ナノメートル以下であり、より望ましくは、10ナノメートル以上20ナノメートル以下である。 The diameter L1 of the fine particles 30 is defined in a predetermined range, for example, 10 nanometers (nm) or more and less than 100 nanometers, preferably 10 nanometers or more and less than 80 meters, and more preferably 10 nanometers. It is metric or more and 40 nanometers or less, and more preferably 10 nanometers or more and 20 nanometers or less.
 微粒子30の形状は、例えば、球形である。微粒子30として、例えば、福田金属箔粉工業株式会社(京都市山科区西野山中臣町20番地)の製造に係る「銅ナノ粒子SFCPシリーズ」の銅粒子を使用することができる。あるいは、微粒子30として、古河ケミカルズ株式会社(大阪府大阪市西淀川区大野三丁目7番196号)の製造に係る50nm程度の一次粒子径を有する亜酸化銅粒子を使用してもよい。 The shape of the fine particles 30 is, for example, a sphere. As the fine particles 30, for example, copper particles of the "copper nanoparticles SFCP series" manufactured by Fukuda Metal Foil Powder Industry Co., Ltd. (20, Nishinoyama Nakatomi-cho, Yamashina-ku, Kyoto) can be used. Alternatively, the fine particles 30 may be cuprous oxide particles having a primary particle size of about 50 nm, which is related to the production of Furukawa Chemicals Co., Ltd. (3-7-196 Ono, Nishiyodogawa-ku, Osaka City, Osaka Prefecture).
 容器本体2の厚さW1は、微粒子30の直径L1よりも大きく、さらに、粒度分布における最大の粒子径の微粒子30よりも大きい。容器本体2の厚さは、例えば、5ミリメートル(mm)である。 The thickness W1 of the container body 2 is larger than the diameter L1 of the fine particles 30, and further larger than the fine particles 30 having the maximum particle size in the particle size distribution. The thickness of the container body 2 is, for example, 5 mm (mm).
 図5は、吸引チューブ6の壁の拡大概念図である。具体的には、図5は、図3の吸引チューブ6の壁の領域A2の拡大概念図である。吸引チューブ6は、二酸化チタン(TiO)を含む部材で構成される。具体的には、吸引チューブ6は、二酸化チタンの多数の微粒子40と樹脂8を混合し、シランカップリング材など適宜のカップリング材、その他、必要に応じて添加剤を加えて押出成型することによって形成されている。吸引チューブ6を構成する樹脂は成形後に光透過性を有する樹脂である。その種類は、例えば、軟質ポリエチレン、軟質ポリプロピレン、軟質ポリウレタン、軟質シリコーン、軟質ポリエーテルエーテルケトン、軟質塩化ビニルなどの樹脂を採用することができる。また、吸引チューブ6を構成する樹脂は、容器本体2と同一であってもよいし、異なってもよい。二酸化チタンは、第二の金属の一例である。なお第二の金属は、電池などの外部の電源を利用する電気分解を用いることなく、水と直接または樹脂8を介して接することによって、水中に水素イオンを発生させる金属であればよく、二酸化チタンに限定されない。また、第二の金属は、光触媒として機能する金属である。光触媒として機能する金属は、二酸化チタンに限定されず、例えば、酸化タングステンを使用してもよい。第二の金属である二酸化チタンが光を受けると電子を発生し、容器本体2に格納された水の中に水素イオンを発生させることができる。樹脂8は第二の樹脂の一例である。 FIG. 5 is an enlarged conceptual diagram of the wall of the suction tube 6. Specifically, FIG. 5 is an enlarged conceptual diagram of the area A2 of the wall of the suction tube 6 of FIG. The suction tube 6 is composed of a member containing titanium dioxide (TiO 2). Specifically, the suction tube 6 is extruded by mixing a large number of fine particles 40 of titanium dioxide and the resin 8 and adding an appropriate coupling material such as a silane coupling material and other additives as necessary. Is formed by. The resin constituting the suction tube 6 is a resin having light transmission after molding. As the type, for example, resins such as soft polyethylene, soft polypropylene, soft polyurethane, soft silicone, soft polyetheretherketone, and soft vinyl chloride can be adopted. Further, the resin constituting the suction tube 6 may be the same as or different from that of the container body 2. Titanium dioxide is an example of a second metal. The second metal may be any metal that generates hydrogen ions in water by directly contacting water or via resin 8 without using electrolysis using an external power source such as a battery. Not limited to titanium. The second metal is a metal that functions as a photocatalyst. The metal that functions as a photocatalyst is not limited to titanium dioxide, and for example, tungsten oxide may be used. When titanium dioxide, which is the second metal, receives light, it generates electrons, and hydrogen ions can be generated in the water stored in the container body 2. Resin 8 is an example of the second resin.
 微粒子40の大きさは、吸引チューブ6の壁の厚さW2よりも十分に小さい大きさとして規定される。微粒子40の大きさの規定方法は、上述の微粒子30の大きさの規定方法と同様である。 The size of the fine particles 40 is defined as a size sufficiently smaller than the wall thickness W2 of the suction tube 6. The method for defining the size of the fine particles 40 is the same as the method for defining the size of the fine particles 30 described above.
 微粒子40の直径L2は、所定範囲に規定されており、例えば、10ナノメートル(nm)以上100ナノメートル未満であり、望ましくは、10ナノメートル以上80メートル未満であり、より望ましくは、10ナノメートル以上40ナノメートル以下であり、より望ましくは、10ナノメートル以上20ナノメートル以下である。 The diameter L2 of the fine particles 40 is defined in a predetermined range, for example, 10 nanometers (nm) or more and less than 100 nanometers, preferably 10 nanometers or more and less than 80 meters, and more preferably 10 nanometers. It is metric or more and 40 nanometers or less, and more preferably 10 nanometers or more and 20 nanometers or less.
 吸引チューブ6の厚さW2は、微粒子40の直径L2よりも大きく、さらに、粒度分布における最大の粒子径の微粒子40よりも大きい。吸引チューブ6の厚さW2は、例えば、1.0ミリメートル(mm)である。 The thickness W2 of the suction tube 6 is larger than the diameter L2 of the fine particles 40, and further larger than the fine particles 40 having the largest particle size in the particle size distribution. The thickness W2 of the suction tube 6 is, for example, 1.0 mm (mm).
 図6乃至図8を参照して、容器本体2に水を格納することによって、外部の電源を使用する電気分解を用いることなく、銅イオン水を生成する過程を概念的に説明する。化学反応式の説明は省略する。図6乃至図8において、ポンプ部材10の記載は省略し、容器本体2と吸引チューブ6を示している。 With reference to FIGS. 6 to 8, the process of generating copper ionized water by storing water in the container body 2 without using electrolysis using an external power source will be conceptually described. The description of the chemical reaction formula is omitted. In FIGS. 6 to 8, the description of the pump member 10 is omitted, and the container body 2 and the suction tube 6 are shown.
 図6に示すように、容器本体2に水60を格納すると、水60は吸引チューブ6と接する。この状態で、吸引チューブ6を形成する二酸化チタンの微粒子40に光(紫外線)が当たると、二酸化チタンから電子eが発生する。続いて、図7に示すように、電子eの作用によって、水60から水素イオンHが発生する。続いて、図8に示すように、水素イオンHによって、容器本体2を形成する銅の微粒子30から銅イオンCu2+の溶出が促進される。これにより、水60は銅イオンを含む銅イオン水62となる。このように、容器本体2に水を入れるだけで、外部の電源を使用する電気分解を利用することなく、容易に銅イオン水が生成される。上記の現象は、本発明の発明者による実験で確認されている。 As shown in FIG. 6, when the water 60 is stored in the container body 2, the water 60 comes into contact with the suction tube 6. In this state, when the fine particles 40 of titanium dioxide forming the suction tube 6 are exposed to light (ultraviolet rays), electrons e are generated from the titanium dioxide. Subsequently, as shown in FIG. 7, hydrogen ion H + is generated from the water 60 by the action of the electron e. Subsequently, as shown in FIG. 8, hydrogen ion H + promotes elution of copper ion Cu 2+ from the copper fine particles 30 forming the container body 2. As a result, the water 60 becomes copper ion water 62 containing copper ions. In this way, copper ion water can be easily generated by simply putting water in the container body 2 without using electrolysis using an external power source. The above phenomenon has been confirmed by experiments by the inventor of the present invention.
 本発明の発明者は、容器本体2に水を入れ、二酸化チタンを含む樹脂で形成した吸引チューブ6を入れた場合に、容器本体2に水だけを入れた場合に比べて、銅イオンの溶出量が大幅に増加する現象を確認した。図9は、当該確認結果を踏まえて、容器本体2に吸引チューブ6を配置せずに水だけを入れた場合と、容器本体に吸引チューブ6を配置して水を入れた場合(以下、「本実施形態」という。)における、銅イオンの発生状況の対比を示す。吸引チューブ6における二酸化チタンの重量比は60重量%である。容器本体2における銅の微粒子30の重量比は60重量%である。図9は、室温において、24時間ごとの銅イオン濃度の推移を示す。 The inventor of the present invention puts water in the container body 2, and when a suction tube 6 made of a resin containing titanium dioxide is put in, copper ions are eluted as compared with the case where only water is put in the container body 2. We confirmed the phenomenon that the amount increased significantly. FIG. 9 shows a case where only water is put in the container body 2 without arranging the suction tube 6 and a case where the suction tube 6 is placed in the container body 2 and water is put in based on the confirmation result. The comparison of the generation state of the copper ion in "the present embodiment") is shown. The weight ratio of titanium dioxide in the suction tube 6 is 60% by weight. The weight ratio of the copper fine particles 30 in the container body 2 is 60% by weight. FIG. 9 shows the transition of the copper ion concentration every 24 hours at room temperature.
 図9に示すように、容器本体2に水を入れただけの場合には、銅イオンの溶出の程度は低く、120日経過時において、20ppm未満である。これに対して、本実施形態の場合には、10日経過時において、30ppmを超えている。このように、吸引チューブ6の作用によって、容器本体2からの銅イオンの溶出が大幅に促進される。なお、本実施形態とは異なり、吸引チューブ6において、多数の微粒子40のうち、少なくとも一部の微粒子40が、樹脂8に覆われず、樹脂8から露出するように構成することによって、一層効果的に二酸化チタンから電子を発生させることができる。また、本実施形態とは異なり、容器本体2を上部(例えば、上下方向における上部の4分1)と下部(例えば、上下方向における下部の4分3)で構成し、上部は光透過性を有する樹脂に微粒子30を混入させずに光透過性に優れる光透過部分(光導入部)として構成し、下部を本実施形態と同様に微粒子30を混入させる構成としてもよい。 As shown in FIG. 9, when only water is put into the container body 2, the degree of elution of copper ions is low, and it is less than 20 ppm after 120 days. On the other hand, in the case of this embodiment, it exceeds 30 ppm after 10 days have passed. As described above, the action of the suction tube 6 significantly promotes the elution of copper ions from the container body 2. In addition, unlike the present embodiment, the suction tube 6 is further effective by being configured such that at least a part of the fine particles 40 out of a large number of fine particles 40 is not covered with the resin 8 and is exposed from the resin 8. Electrons can be generated from titanium dioxide. Further, unlike the present embodiment, the container body 2 is composed of an upper part (for example, an upper quarter in the vertical direction) and a lower part (for example, a lower quarter in the vertical direction), and the upper part has light transmission. The resin may be configured as a light transmitting portion (light introducing portion) having excellent light transmission without mixing the fine particles 30, and the lower portion may be configured to mix the fine particles 30 as in the present embodiment.
 図10は、容器100の使用例を示す図である。例えば、家屋200の出入り口に玄関マット202が配置されている。母親204が、容器100によって生成された銅イオン水62を玄関マット202に吹き付けてしみ込ませておく。外出から帰った子供206や犬208が、家屋200に入る前に玄関マット202を踏んで通過すると、玄関マット202にしみ込んだ銅イオン水62に含まれる銅イオンの効果によって、子供206の靴の底部や犬の足についた細菌を低減させることができる。 FIG. 10 is a diagram showing a usage example of the container 100. For example, the entrance mat 202 is arranged at the entrance / exit of the house 200. The mother 204 sprays the copper ionized water 62 generated by the container 100 onto the entrance mat 202 and soaks it. When a child 206 or a dog 208 returning from going out steps on the entrance mat 202 before entering the house 200, the effect of the copper ions contained in the copper ion water 62 soaked into the entrance mat 202 causes the shoes of the child 206 to pass. It can reduce bacteria on the bottom and dog's feet.
<第二の実施形態>
 次に、図11及び図12を参照して、第二の実施形態について説明する。第一の実施形態と共通する事項は説明を省略し、異なる部分を中心に説明する。
<Second embodiment>
Next, a second embodiment will be described with reference to FIGS. 11 and 12. Items common to the first embodiment will be omitted, and different parts will be mainly described.
 図11に示すように、第二の実施形態の容器本体2Aは、樹脂4に銅の微粒子30とセラミックの微粒子50が分散して形成されている。セラミックは、例えば、アルミナや炭化ケイ素(SiC)である。また、セラミックは、多孔質セラミックが望ましい。 As shown in FIG. 11, the container body 2A of the second embodiment is formed by dispersing copper fine particles 30 and ceramic fine particles 50 in a resin 4. The ceramic is, for example, alumina or silicon carbide (SiC). Further, the ceramic is preferably a porous ceramic.
 図12は、容器本体2Aの構成として、樹脂4に銅の微粒子30のみを分散させた場合と、銅の微粒子30とセラミックの微粒子50を分散させた場合において、容器本体2Aに水をいれた場合の銅イオンの溶出の程度の対比を示す。容器本体2Aには、クエン酸を0.01重量%含むクエン酸水を入れた。容器本体2Aにおいて樹脂4に銅の微粒子30のみを分散させた場合の構成(以下、「構成1」という。)は、重量比で、銅の微粒子:樹脂=10:90である。容器本体2Aにおいて樹脂4に銅の微粒子30とセラミックの微粒子50を分散させた場合の構成(以下、「構成2」という。)は、重量比で、銅の微粒子:セラミックの微粒子:樹脂=10:50:40である。すなわち、構成2は、構成1における樹脂の一部をセラミックの微粒子に置き換えた構成である。
10日経過時において、第一の構成の場合には、銅イオンは2.5ppm以下であった。これに対して、構成2の場合には、10日経過時において、約9.0ppmであった。このことから、容器本体2Aにおける銅の微粒子30の重量が変わらなくても、セラミックの微粒子50を加えることによって、銅イオンの溶出は大幅に促進されることがわかる。
In FIG. 12, as the configuration of the container body 2A, water is poured into the container body 2A in the case where only the copper fine particles 30 are dispersed in the resin 4 and the case where the copper fine particles 30 and the ceramic fine particles 50 are dispersed. The comparison of the degree of elution of copper ion in the case is shown. In the container body 2A, citric acid water containing 0.01% by weight of citric acid was put. In the container body 2A, when only the copper fine particles 30 are dispersed in the resin 4, the configuration (hereinafter referred to as “configuration 1”) is a copper fine particle: resin = 10: 90 in terms of weight ratio. In the container body 2A, when the copper fine particles 30 and the ceramic fine particles 50 are dispersed in the resin 4, the configuration (hereinafter referred to as “configuration 2”) is a weight ratio of copper fine particles: ceramic fine particles: resin = 10. : 50:40. That is, the configuration 2 is a configuration in which a part of the resin in the configuration 1 is replaced with ceramic fine particles.
At the lapse of 10 days, in the case of the first configuration, the copper ion was 2.5 ppm or less. On the other hand, in the case of Configuration 2, it was about 9.0 ppm after 10 days. From this, it can be seen that even if the weight of the copper fine particles 30 in the container body 2A does not change, the elution of copper ions is significantly promoted by adding the ceramic fine particles 50.
 樹脂4に銅の微粒子30とセラミックの微粒子50を分散させることによって、銅イオンの溶出が大幅に促進される理由の一つは、銅イオンが樹脂4を通過する抵抗よりも、セラミックの微粒子50を通過する抵抗、あるいは、セラミックの微粒子50の表面を通過する抵抗の方が小さいことによると考えられる。 One of the reasons why the elution of copper ions is greatly promoted by dispersing the copper fine particles 30 and the ceramic fine particles 50 in the resin 4 is that the ceramic fine particles 50 are more than the resistance of the copper ions to pass through the resin 4. It is considered that the resistance through the ceramic particles 50 or the resistance through the surface of the ceramic fine particles 50 is smaller.
<第三の実施形態>
 次に、図13を参照して、第三の実施形態について説明する。第二の実施形態と共通する事項は説明を省略し、異なる部分を中心に説明する。
<Third embodiment>
Next, a third embodiment will be described with reference to FIG. The matters common to the second embodiment will be omitted, and the different parts will be mainly described.
 図13に示すように、第三の実施形態の吸引チューブ6Aは、樹脂8に二酸化チタンの微粒子40とセラミックの微粒子50が分散して形成されている。 As shown in FIG. 13, the suction tube 6A of the third embodiment is formed by dispersing titanium dioxide fine particles 40 and ceramic fine particles 50 in the resin 8.
 樹脂8に二酸化チタンの微粒子40に加えて、セラミックの微粒子50を分散させることによって、第二の実施形態における銅イオンの溶出の促進の効果と同様に、二酸化チタンからの電子の発生を促進することができ、より一層効果的に銅イオン水を生成することができる。 By dispersing the ceramic fine particles 50 in addition to the titanium dioxide fine particles 40 in the resin 8, the generation of electrons from the titanium dioxide is promoted as in the effect of promoting the elution of copper ions in the second embodiment. It is possible to generate copper ionized water even more effectively.
<第四の実施形態>
 次に、図14を参照して、第四の実施形態について説明する。第二の実施形態及び第三の実施形態と共通する事項は説明を省略し、異なる部分を中心に説明する。
<Fourth Embodiment>
Next, a fourth embodiment will be described with reference to FIG. The matters common to the second embodiment and the third embodiment will be omitted, and different parts will be mainly described.
 図14に示すように、第四の実施形態の容器本体2Bの内面2aは、複数の凸部及び凹部を有する凹凸面として形成されている。これにより、容器本体2Bに水をいれたときに、水と接する内面2aの面積が大きくなり、より効果的に銅イオンを溶出することができる。 As shown in FIG. 14, the inner surface 2a of the container body 2B of the fourth embodiment is formed as an uneven surface having a plurality of convex portions and concave portions. As a result, when water is poured into the container body 2B, the area of the inner surface 2a in contact with the water becomes large, and copper ions can be more effectively eluted.
 <第五の実施形態>
 次に、図15を参照して、第五の実施形態について説明する。第四の実施形態と共通する事項は説明を省略し、異なる部分を中心に説明する。
<Fifth Embodiment>
Next, a fifth embodiment will be described with reference to FIG. The matters common to the fourth embodiment will be omitted, and the different parts will be mainly described.
 図15に示すように、第五の実施形態の容器本体2Cの内面2aは、複数の凸部及び凹部を有する凹凸面として形成されている。そして、複数の銅の微粒子30のうち、一部は、内面2aの外部に露出している。これにより、容器本体2Cに水を入れたときに、微粒子30が直接的に水と接し、より効果的に銅イオンを溶出することができる。 As shown in FIG. 15, the inner surface 2a of the container body 2C of the fifth embodiment is formed as an uneven surface having a plurality of convex portions and concave portions. Then, a part of the plurality of copper fine particles 30 is exposed to the outside of the inner surface 2a. As a result, when water is put into the container body 2C, the fine particles 30 come into direct contact with the water, and copper ions can be more effectively eluted.
 <第六の実施形態>
 次に、図16乃至図18を参照して、第六の実施形態について説明する。第一の実施形態と共通する事項は説明を省略し、異なる部分を中心に説明する。
<Sixth Embodiment>
Next, the sixth embodiment will be described with reference to FIGS. 16 to 18. Items common to the first embodiment will be omitted, and different parts will be mainly described.
 図16に示すように、第六の実施形態の容器本体2Dの内部には、吸引チューブ6、浮遊部材20A,20B及び20Cが配置されている。吸引チューブ6は、第一の実施形態において説明したように、二酸化チタンの微粒子が樹脂に分散して形成されている。浮遊部材20A,20B及び20Cは、第一の実施形態の容器本体2と同様に、銅の微粒子30が樹脂4に分散することによって形成される。浮遊部材20A,20B及び20Cは、主部材の一例である。容器本体2Dは、光透過性を有する樹脂のみで形成されており、銅の微粒子30は含まれていない。外部の光は、容器本体2Dを透過して容器本体2Dの内部に導入される。容器本体2D自体が、光導入部の一例である。 As shown in FIG. 16, a suction tube 6, floating members 20A, 20B and 20C are arranged inside the container body 2D of the sixth embodiment. As described in the first embodiment, the suction tube 6 is formed by dispersing titanium dioxide fine particles in the resin. The floating members 20A, 20B and 20C are formed by dispersing copper fine particles 30 in the resin 4, as in the container body 2 of the first embodiment. The floating members 20A, 20B and 20C are examples of main members. The container body 2D is made of only a light-transmitting resin, and does not contain copper fine particles 30. External light passes through the container body 2D and is introduced into the container body 2D. The container body 2D itself is an example of the light introduction unit.
 図16及び図17に示すように、浮遊部材20A等は、それぞれ、星形、ハート型、及び、球形に構成されているが、その形態はこれに限定されず、さまざまな形態を採用することが可能である。 As shown in FIGS. 16 and 17, the floating member 20A and the like are configured to have a star shape, a heart shape, and a spherical shape, respectively, but the form thereof is not limited to this, and various forms may be adopted. Is possible.
 浮遊部材20A等の比重は、水の比重と実質的に等しく構成されている。このため、図18に示すように、容器本体2に水60が入れられると、浮遊部材20A等は水中を浮遊する。容器本体2に水60がいれられた状態において、浮遊部材20A等は、容器本体2の内面を接することなく水60中を浮遊する。浮遊部材20A等の比重の調整は、浮遊部材20A等に含まれる銅の微粒子30の重量を所定の重量にし、所望の比重を有する樹脂を使用することによって行う。例えば、比重が小さな樹脂を使用すれば、微粒子30の重量が変わらなくても、浮遊部材20A等の比重は小さくなる。なお、本実施形態とは異なり、浮遊部材20A等の中心部を樹脂のみで構成し、浮遊部材20A等の外側の表面部を銅の微粒子30を分散させた樹脂によって構成してもよい。なお、本実施形態とは異なり、浮遊部材20A等の外側の表面に、銅の微粒子30が露出する構成としてもよい。 The specific gravity of the floating member 20A or the like is substantially equal to the specific gravity of water. Therefore, as shown in FIG. 18, when the water 60 is put into the container body 2, the floating member 20A and the like float in the water. In a state where the water 60 is put in the container body 2, the floating member 20A or the like floats in the water 60 without touching the inner surface of the container body 2. The specific gravity of the floating member 20A or the like is adjusted by setting the weight of the copper fine particles 30 contained in the floating member 20A or the like to a predetermined weight and using a resin having a desired specific gravity. For example, if a resin having a small specific gravity is used, the specific gravity of the floating member 20A or the like becomes small even if the weight of the fine particles 30 does not change. In addition, unlike this embodiment, the central portion of the floating member 20A or the like may be composed of only a resin, and the outer surface portion of the floating member 20A or the like may be composed of a resin in which copper fine particles 30 are dispersed. In addition, unlike the present embodiment, the copper fine particles 30 may be exposed on the outer surface of the floating member 20A or the like.
 外部からの光が容器本体2Dを透過し、吸引チューブ6に光が当たると、吸引チューブ6から電子が飛び出し、水60から水素イオンを発生させ、浮遊部材20A等を構成する銅の微粒子30からの銅イオンの溶出を促進する。 When light from the outside passes through the container body 2D and the light hits the suction tube 6, electrons are ejected from the suction tube 6 to generate hydrogen ions from the water 60, and the copper fine particles 30 constituting the floating member 20A and the like are used. Promotes the elution of copper ions.
<変形例>
 第六の実施形態とは異なり、吸引チューブ6を樹脂のみで構成し、浮遊部材20A等のうち、一部を二酸化チタンの微粒子40を樹脂8に分散させて形成し、他を銅の微粒子30を樹脂4に分散させて形成するようにしてもよい。例えば、浮遊部材20Aは、二酸化チタンの微粒子40を樹脂8に分散させて形成し、浮遊部材20B及び20Cは、銅の微粒子30を樹脂4に分散させて形成する。
<Modification example>
Unlike the sixth embodiment, the suction tube 6 is made of only resin, a part of the floating member 20A and the like is formed by dispersing titanium dioxide fine particles 40 in the resin 8, and the other is copper fine particles 30. May be dispersed in the resin 4 to form the resin 4. For example, the floating member 20A is formed by dispersing titanium dioxide fine particles 40 in the resin 8, and the floating members 20B and 20C are formed by dispersing copper fine particles 30 in the resin 4.
 <第七の実施形態>
 次に、図19を参照して、第七の実施形態について説明する。第一の実施形態と共通する事項は説明を省略し、異なる部分を中心に説明する。
<Seventh Embodiment>
Next, a seventh embodiment will be described with reference to FIG. Items common to the first embodiment will be omitted, and different parts will be mainly described.
 第七の実施形態の容器本体2Eは、光透過性を有する樹脂のみで形成されている。外部の光は、容器本体2Eを透過して容器本体2Eの内部に導入される。容器本体2E自体が、光導入部の一例である。 The container body 2E of the seventh embodiment is formed only of a resin having light transmission. External light passes through the container body 2E and is introduced into the container body 2E. The container body 2E itself is an example of the light introduction unit.
 図19に示すように、第六の実施形態の容器本体2Eの内部には、吸引チューブ6、及び、円板状部材12が配置されている。吸引チューブ6は、第一の実施形態において説明したように、二酸化チタンの微粒子40が樹脂8に分散して形成されている。円板状部材12は、容器本体2Eの底部に固定されている。円板状部材12は、第一の実施形態の容器本体2と同様に、銅の微粒子30が樹脂4に分散することによって形成される。円板状部材12は、主部材の一例である。 As shown in FIG. 19, a suction tube 6 and a disk-shaped member 12 are arranged inside the container body 2E of the sixth embodiment. As described in the first embodiment, the suction tube 6 is formed by dispersing titanium dioxide fine particles 40 in the resin 8. The disk-shaped member 12 is fixed to the bottom of the container body 2E. The disk-shaped member 12 is formed by dispersing copper fine particles 30 in the resin 4, as in the container body 2 of the first embodiment. The disk-shaped member 12 is an example of a main member.
 容器本体2Eに水60を入れた状態において、外部からの光が容器本体2Eを透過し、吸引チューブ6に光が当たると、吸引チューブ6から電子が飛び出し、水60から水素イオンを発生させ、円板状部材12を構成する銅の微粒子30からの銅イオンの溶出を促進する。 When water 60 is put in the container body 2E, light from the outside passes through the container body 2E, and when the light hits the suction tube 6, electrons are ejected from the suction tube 6 to generate hydrogen ions from the water 60. It promotes the elution of copper ions from the copper fine particles 30 constituting the disk-shaped member 12.
 なお、本発明の金属イオン水生成容器は、上記実施形態に限らず、本発明の要旨を逸脱しない範囲内において種々変更を加えることができる。また、各上記実施形態は、技術的に矛盾を生じない限り、適宜、組み合わせることができる。 The metal ionized water generation container of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist of the present invention. In addition, each of the above embodiments can be appropriately combined as long as there is no technical contradiction.
100  容器
2,2A,2B,2C,2D,2E 容器本体
6,6A 吸引チューブ
10 ポンプ部材
12 円板状部材
20A,20B,20C 浮遊部材
30 銅の微粒子
40 二酸化チタンの微粒子
50 セラミックの微粒子
60 水
62 銅イオン水
100 Container 2,2A, 2B, 2C, 2D, 2E Container body 6,6A Suction tube 10 Pump member 12 Disc-shaped member 20A, 20B, 20C Floating member 30 Copper fine particle 40 Titanium dioxide fine particle 50 Ceramic fine particle 60 Water 62 Copper ionized water

Claims (9)

  1.  水を格納する容器本体と、
     前記容器本体内に格納された前記水と接することができ、細菌を低減する効果を有する金属である第一の金属の微粒子が分散した第一の樹脂によって形成される主部材と、
     前記容器本体の内側に配置され、前記容器本体に格納された前記水と接することによって、前記水に水素イオンを発生させる性質を有する第二の金属を含む部材で構成される補助部材と、
     を有する金属イオン水生成容器。
    The container body that stores water and
    A main member formed of a first resin in which fine particles of a first metal, which can be in contact with the water stored in the container body and has an effect of reducing bacteria, are dispersed.
    An auxiliary member arranged inside the container body and composed of a member containing a second metal having a property of generating hydrogen ions in the water by coming into contact with the water stored in the container body.
    Metal ionized water generation container with.
  2.  前記補助部材は、前記第二の金属の微粒子が第二の樹脂に分散されて形成される、
    請求項1に記載の金属イオン水生成容器。
    The auxiliary member is formed by dispersing fine particles of the second metal in a second resin.
    The metal ionized water generation container according to claim 1.
  3.  前記主部材は、前記第一の樹脂に、前記第一の金属の微粒子とセラミックの微粒子が分散して形成される、
    請求項1または請求項2に記載の金属イオン水生成容器。
    The main member is formed by dispersing fine particles of the first metal and fine particles of ceramic in the first resin.
    The metal ionized water generation container according to claim 1 or 2.
  4.  前記主部材は、前記第一の樹脂に、前記第一の金属の微粒子とセラミックの微粒子が分散して形成され、
     前記補助部材は、前記第二の樹脂に、前記第二の金属の微粒子とセラミックの微粒子が分散して形成される、
    請求項2に記載の金属イオン水生成容器。
    The main member is formed by dispersing fine particles of the first metal and fine particles of ceramic in the first resin.
    The auxiliary member is formed by dispersing fine particles of the second metal and fine particles of ceramic in the second resin.
    The metal ionized water generation container according to claim 2.
  5.  前記主部材は前記容器本体であり、前記容器本体の内面は、複数の凸部及び凹部を有する凹凸面として形成されている、
    請求項1乃至請求項4のいずれかに記載の金属イオン水生成容器。
    The main member is the container body, and the inner surface of the container body is formed as an uneven surface having a plurality of convex portions and concave portions.
    The metal ionized water generation container according to any one of claims 1 to 4.
  6.  前記主部材の表面において、前記第一の金属の微粒子は露出している、
    請求項1乃至請求項5のいずれかに記載の金属イオン水生成容器。
    On the surface of the main member, the fine particles of the first metal are exposed.
    The metal ionized water generation container according to any one of claims 1 to 5.
  7.  前記第一の金属は銅または銀である、
    請求項1乃至請求項6のいずれかに記載の金属イオン水生成容器。
    The first metal is copper or silver,
    The metal ionized water generation container according to any one of claims 1 to 6.
  8.  前記第二の金属は光触媒として機能する金属である、
    請求項1乃至請求項7のいずれかに記載の金属イオン水生成容器。
    The second metal is a metal that functions as a photocatalyst.
    The metal ionized water generation container according to any one of claims 1 to 7.
  9.  前記容器本体は、外部から光を導入する光導入部を備える、
    請求項8に記載の金属イオン水生成容器。
     
     

     
    The container body includes a light introduction unit that introduces light from the outside.
    The metal ionized water generation container according to claim 8.



PCT/JP2020/026902 2020-07-09 2020-07-09 Metal ion water production container WO2022009397A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207031108A KR102446239B1 (en) 2020-07-09 2020-07-09 Metal Ionized Water Generation Vessel
JP2020557349A JP6842793B1 (en) 2020-07-09 2020-07-09 Metal ion water generation container
PCT/JP2020/026902 WO2022009397A1 (en) 2020-07-09 2020-07-09 Metal ion water production container
CN202080029982.0A CN115551810A (en) 2020-07-09 2020-07-09 Metal ion water generating container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/026902 WO2022009397A1 (en) 2020-07-09 2020-07-09 Metal ion water production container

Publications (1)

Publication Number Publication Date
WO2022009397A1 true WO2022009397A1 (en) 2022-01-13

Family

ID=74860832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026902 WO2022009397A1 (en) 2020-07-09 2020-07-09 Metal ion water production container

Country Status (4)

Country Link
JP (1) JP6842793B1 (en)
KR (1) KR102446239B1 (en)
CN (1) CN115551810A (en)
WO (1) WO2022009397A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09940A (en) * 1995-06-19 1997-01-07 Toyoda Gosei Co Ltd Photocatalytst device and its application device
JPH11267637A (en) * 1998-03-20 1999-10-05 Skt:Kk Sterilization of water in water tank
JP2001114350A (en) * 1999-10-19 2001-04-24 Shinshu Ceramics:Kk Container for beverage
JP2001269573A (en) * 2000-03-24 2001-10-02 Titan Kogyo Kk Photocatalyst particles, method for manufacturing the same and use of photocatalyst particles
JP2003055068A (en) * 2001-03-12 2003-02-26 Kazuko Kimura Binder for coating and photocatalyst support member
JP2005103428A (en) * 2003-09-30 2005-04-21 Asahi:Kk Skin water producing apparatus
JP2005118726A (en) * 2003-10-20 2005-05-12 Matsushita Electric Ind Co Ltd Bacteria elimination method of electrolyte solution and its member
JP2005131611A (en) * 2003-10-31 2005-05-26 Pentel Corp Electrochemical water control method and apparatus
US20080029408A1 (en) * 2004-03-17 2008-02-07 Thorkild Andersen Contact Lens, Container And Insert For Avoiding Infection Of The Eye
JP3154457U (en) * 2008-08-29 2009-10-22 洋二 早川 Spray device using water environment battery
US20190364886A1 (en) * 2018-05-30 2019-12-05 Hamilton Sundstrand Corportation Biocide system with passive dispenser

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0146141B1 (en) * 1994-12-17 1998-08-17 구자홍 Hexagonal water making apparatus for water container
JP3616982B2 (en) * 1997-08-04 2005-02-02 株式会社豊振科学産業所 Water treatment equipment
JP4110279B2 (en) * 2004-02-02 2008-07-02 昭和電工株式会社 Substrate coated with photocatalyst film and method for forming photocatalyst film on substrate
JP4660516B2 (en) * 2007-08-30 2011-03-30 シャープ株式会社 Antibacterial water generator
JP5988476B2 (en) 2011-02-23 2016-09-07 株式会社機能素材大阪 Antibacterial / antifungal metal ion water and cosmetics and fabrics containing the same
US10940664B2 (en) * 2015-12-23 2021-03-09 Silver Future Co., Ltd. Antibacterial product and method of manufacturing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09940A (en) * 1995-06-19 1997-01-07 Toyoda Gosei Co Ltd Photocatalytst device and its application device
JPH11267637A (en) * 1998-03-20 1999-10-05 Skt:Kk Sterilization of water in water tank
JP2001114350A (en) * 1999-10-19 2001-04-24 Shinshu Ceramics:Kk Container for beverage
JP2001269573A (en) * 2000-03-24 2001-10-02 Titan Kogyo Kk Photocatalyst particles, method for manufacturing the same and use of photocatalyst particles
JP2003055068A (en) * 2001-03-12 2003-02-26 Kazuko Kimura Binder for coating and photocatalyst support member
JP2005103428A (en) * 2003-09-30 2005-04-21 Asahi:Kk Skin water producing apparatus
JP2005118726A (en) * 2003-10-20 2005-05-12 Matsushita Electric Ind Co Ltd Bacteria elimination method of electrolyte solution and its member
JP2005131611A (en) * 2003-10-31 2005-05-26 Pentel Corp Electrochemical water control method and apparatus
US20080029408A1 (en) * 2004-03-17 2008-02-07 Thorkild Andersen Contact Lens, Container And Insert For Avoiding Infection Of The Eye
JP3154457U (en) * 2008-08-29 2009-10-22 洋二 早川 Spray device using water environment battery
US20190364886A1 (en) * 2018-05-30 2019-12-05 Hamilton Sundstrand Corportation Biocide system with passive dispenser

Also Published As

Publication number Publication date
KR102446239B1 (en) 2022-09-21
KR20220007497A (en) 2022-01-18
JP6842793B1 (en) 2021-03-17
CN115551810A (en) 2022-12-30
JPWO2022009397A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
Liu et al. Two‐dimensional nanomaterials for photocatalytic water disinfection: recent progress and future challenges
US10449263B2 (en) Devices for disinfection, deodorization, and/or sterilization of objects
CA2747200C (en) Systems and methods for performing the bacterial disinfection of a fluid using point radiation sources
US12084808B2 (en) Self-cleaning coating, self-cleaning fiber, self-cleaning carpet and uses thereof
KR100846882B1 (en) Water ball
WO2022009397A1 (en) Metal ion water production container
KR20090104004A (en) Liquid dispenser or water purification unit with antimicrobial mouthpiece or housing
WO1996014932A1 (en) Photocatalytic functional material and method of production thereof
KR20110063493A (en) Aquatic battery
US20160097132A1 (en) Reusable spray bottle with integrated dispenser
TWI633064B (en) Electrolytic reduction module unit and water purification device
US9809468B1 (en) Water disinfection system using functional mixture, copper foam catalyst, continuous flow, UV radiation, optical pipe
WO1997041069A1 (en) Sink-and-float body for purification and purificator
KR102242135B1 (en) D. Hydrophobic/chalcogenide (boron nitride nano-based), carbon coated metal foam. outside
US6989343B2 (en) Granular photocatalytic material, functional restoration method therefor, and apparatus for decomposing and removing toxic organic matter using the same
KR102591984B1 (en) System of virus sterilization with removing fine dust in ECO-friendly
CN114835209B (en) Electrochemical membrane contact ozone catalytic device based on titanium fiber electrode and water treatment method
JP2009006242A (en) Cartridge for water purifier
JP7045747B1 (en) Liquid container
JP4779106B1 (en) Antibacterial water treatment agent
KR20050103179A (en) Nano silver contain musical instrument for mouthpiece
KR20190023209A (en) Electrolysis apparatus for producing between germicide and detergent
KR200333828Y1 (en) Photocatalytic air cleaner
JP2002210333A (en) Photocatalyst filter
CN207769547U (en) Photocatalyst plate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020557349

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943855

Country of ref document: EP

Kind code of ref document: A1