WO2022009392A1 - Defect inspection device and defect inspection method - Google Patents

Defect inspection device and defect inspection method Download PDF

Info

Publication number
WO2022009392A1
WO2022009392A1 PCT/JP2020/026882 JP2020026882W WO2022009392A1 WO 2022009392 A1 WO2022009392 A1 WO 2022009392A1 JP 2020026882 W JP2020026882 W JP 2020026882W WO 2022009392 A1 WO2022009392 A1 WO 2022009392A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
defect
defect inspection
sample
calibration sample
Prior art date
Application number
PCT/JP2020/026882
Other languages
French (fr)
Japanese (ja)
Inventor
友貴 入
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2020/026882 priority Critical patent/WO2022009392A1/en
Publication of WO2022009392A1 publication Critical patent/WO2022009392A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • the present disclosure relates to a defect inspection device that inspects a defect of a sample by irradiating the sample with light.
  • sample defects In the semiconductor manufacturing process, sample defects (scratches, foreign substances, etc.) have a large effect on the yield, and feeding back the defect inspection information from the defect inspection device to the semiconductor manufacturing process and the manufacturing device is the yield management. is important.
  • the coordinate accuracy of the defect detected by the optical defect inspection device is important when identifying the defect portion, for example, in the semiconductor manufacturing process. Defect coordinate accuracy is also important when observing defects with a review device, classifying defects, and determining pass / fail. In recent years, with the miniaturization of semiconductors, the demand for defect coordinate accuracy has been increasing year by year.
  • Patent Document 1 describes a technique for reducing errors in detected defect coordinates.
  • a sample wafer for coordinate calibration in which a defect whose coordinates are known in advance is formed is irradiated with illumination light, scattered light from the sample wafer is detected, and the image coordinates of the defect on the surface are corrected. Based on the corrected image coordinates, defects on the surface of the object to be inspected are corrected.
  • defects created at known positions are arranged at equal intervals in a grid pattern.
  • This disclosure has been made in view of the above-mentioned problems, and is a defect inspection capable of improving the defect coordinate accuracy by correcting the defect coordinates according to the wafer holding method and the change with time that occurs during operation.
  • the purpose is to provide the device.
  • the defect inspection apparatus acquires the position of the object for each first distance in the first region for the detection signal obtained from the first region on the calibration sample, and obtains the position of the object on the calibration sample. For the detection signal obtained from the second region different from the first region, the position of the object is acquired for each second distance different from the first distance in the second region.
  • the defect coordinate accuracy can be improved. Further, by improving the defect coordinate accuracy, it is expected that the coordinate matching accuracy between the defect inspection device and the defect review device will be improved, and the time of the observation process by the defect review device will be shortened.
  • FIG. It is an overall schematic diagram of the defect inspection apparatus 100 which concerns on Embodiment 1.
  • FIG. It is a figure which shows the flow of the defect inspection in this disclosure. It is a figure which shows the example which the surface of the calibration sample in Embodiment 1 was divided into regions. It is a figure which shows the example which formed the defect on the calibration sample. It is a figure which shows the example of the case where the sample stage 21 is fixed to the central portion of a wafer by back surface adsorption or the like in the region division of the calibration sample in Embodiment 1.
  • FIG. It is a figure which shows the example of the case where the grid size is set according to the operating state of the stage apparatus 20 in the region division of the calibration sample in Embodiment 1.
  • FIG. 5 is a flowchart illustrating a procedure in which the defect inspection device 100 according to the second embodiment diagnoses a sign of abnormality in the device. An example of each map is shown.
  • FIG. 1 is an overall schematic view of the defect inspection device 100 according to the first embodiment of the present disclosure.
  • the defect inspection device 100 inspects the defect of the sample 1 by irradiating the sample 1 moving while rotating with illumination light L1 (L1a and L1b) and scanning the sample 1 spirally or concentrically.
  • L1 illumination light
  • L1a and L1b illumination light
  • Defect inspection system As the sample 1, for example, a disk-shaped wafer (including a wafer at each stage of the semiconductor manufacturing process such as a bare wafer, a wafer with a film, a wafer with a bump, and a wafer with a pattern) is assumed.
  • the defects detected by the defect inspection device 100 are scratches and waviness of the sample 1, foreign matter adhering to the sample 1, and the like.
  • the defect inspection device 100 includes a stage device 20, a lighting detection unit 24, a signal processing unit 16, a storage area unit 17, a sign diagnosis unit 18, a controller 19, and a stage control unit 23.
  • the stage device 20 includes a sample stage 21 and an XZ ⁇ stage.
  • the XZ ⁇ stage has a rotary stage, a straight X stage, and a height direction Z stage.
  • the sample stage 21 is an inspection table that holds the sample 1 horizontally.
  • the sample stage 21 may be a type that holds the sample 1 by adsorbing to the back surface of the sample 1, or a type that holds the sample 1 by fixing only the end of the sample 1 at some points.
  • Scales and encoders that show the position coordinates are placed on each stage.
  • the detected position coordinates (R, ⁇ ) are output to the controller 19.
  • the sensor 25 detects the height of the sample 1 and outputs it to the controller 19.
  • a non-contact displacement sensor such as an optical type or an eddy current type can be used.
  • the size of the warp of the sample 1 can also be measured by the sensor 25.
  • the illumination detection unit 24 includes an irradiation optical system and a detection optical system.
  • the irradiation optical system irradiates the sample 1 with the illumination light L1.
  • the illumination optical system includes a light source 10, mirrors 11a to 11c, irradiation lenses 12 and 26, and an optical element correction mechanism 27.
  • the detection optical system detects the inspection light L2 scattered or reflected in the sample 1.
  • the detection optical system includes a condenser lens 13, a detector 14, and a detection circuit 15.
  • the mirror 11c switches between irradiating the illumination light from the vertical direction (L1b) and irradiating it from diagonally above (L1a).
  • the mirrors 11a and 11b adjust the course of the irradiation light L1 so as to irradiate the irradiation light from diagonally above.
  • the optical element correction mechanism 27 monitors and corrects the optical axis of the irradiation optical system.
  • the lights L1a and L1b emitted from the light source 10 are applied to the sample 1 via the mirrors 11a to 11c and the irradiation lenses 12 and 26.
  • the irradiation light L1 is irradiated in a spiral trajectory from the center of the sample 1 to the outer edge, whereby the entire surface of the sample 1 is inspected.
  • the detection result of the inspection light L2 from the sample 1 is output to the signal processing unit 16 via the condenser lens 13, the detector 14, and the detection circuit 15.
  • the irradiation light may be a locus from the outer edge of the sample 1 toward the center.
  • the signal processing unit 16 generates an inspection result from the detection result by the illumination detection unit 24 and the R ⁇ coordinates input from the controller 19.
  • the inspection results include the position, size, shape, etc. of defects (foreign matter, scratches, etc.).
  • the signal processing unit 16 calculates a correction value from the inspection results for each operation and operating state of the wafer stored in the storage area unit 17.
  • the signal processing unit 16 corrects the detection coordinates of the inspection result by using the correction value, thereby improving the defect detection coordinate accuracy.
  • the storage area unit 17 stores the inspection result and the correction value generated by the signal processing unit 16, and also stores the deviation amount of the defect coordinates. By storing these for each wafer holding method and operating state, the same correction value can be used when the inspection is performed under the same conditions.
  • the sign diagnosis unit 18 detects a sign of an abnormality by monitoring a change in the amount of deviation using the inspection result and the amount of deviation stored in the storage area unit 17, the detection result by each sensor, and the like. The details of the predictive diagnosis unit 18 will be described in the second embodiment.
  • the stage control unit 23 controls the operation of the stage device 20.
  • the stage device 20 can be controlled by controlling a motor driver that drives the drive device of the straight-ahead X stage, a motor driver that drives the drive device of the rotary stage, and the like.
  • a command value for the operation of the stage device 20 is input from the controller 19, the stage control unit 23 drives the drive device in response to the command, whereby the stage device 20 operates.
  • FIG. 2 is a diagram showing the flow of defect inspection in the present disclosure.
  • the FIB device 42 creates a built-in defect on the sample 1.
  • the method of forming the built-in defect is not limited to the method using the FIB device 42.
  • the review device 41 reviews the built-in defect, and the defect inspection device 100 inspects the built-in defect. By matching the defect coordinates in the review device 41 with the defect coordinates in the defect inspection device 100, the correction value of the defect coordinates can be calculated.
  • the defect coordinates detected by the defect inspection device 100 can also be reviewed by the review device 41.
  • FIG. 3 is a diagram showing an example in which the surface of the calibration sample in the first embodiment is divided into regions.
  • the grid regions are all equal in size and the grid is square.
  • the size and shape of the grid region can be arbitrarily specified. Since the data processing time depends on the number of grids, it is desirable to set the number of grids to the minimum necessary.
  • FIG. 4 is a diagram showing an example in which a defect is formed on a calibration sample.
  • the coordinates of the grid points are known.
  • the built-in defect 30 is arranged on the grid point.
  • the built-in defect 30 has a shape, size, and position that can be detected by scattered light. It is desirable to arbitrarily set the size and shape of the built-in defect 30 according to the purpose of use.
  • the built-in defect 30 can be made by using, for example, a focused ion beam (FIB) device or photolithography.
  • the defect inspection device 100 corrects the defect coordinates by using the calibration sample.
  • FIB focused ion beam
  • the grid size and arrangement of the grid points formed on the calibration sample may be changed between the region where the defect coordinates are likely to be displaced between the devices and the other region.
  • Factors that cause defect coordinate deviation include (a) deflection of the wafer itself caused by the rotation of the stage, (b) differences in wafer holding methods such as how to place the wafer on the stage, and (c) difference in the rotation speed of the stage during inspection. , Differences in operating conditions such as laser strength, etc.
  • the shape, size, and position of the built-in defect 30 may be arbitrarily arranged.
  • the arrangement interval of the built-in defects 30 may be changed for each area.
  • the built-in defects 30 are evenly arranged in the entire region in advance, and the distance interval between the grid points when the defect inspection device 100 detects the built-in defects 30 is changed for each region.
  • the grid size and arrangement may be virtually changed for each area.
  • the user may specify the coordinates of each area via the GUI (Graphical User Interface). For example, the following three patterns can be considered.
  • the user specifies the first area on the calibration sample, and the other area on the calibration sample is the second area.
  • the built-in defects 30 to be inspected in advance can be narrowed down, so that the inspection time can be shortened.
  • the points for calculating the correction value can be narrowed down, and the calculation processing time can be shortened. As a result, the inspection time can be shortened.
  • FIG. 5 is a diagram showing an example in which the sample stage 21 is fixed to the central portion of the wafer by back surface adsorption or the like in the region division of the calibration sample in the first embodiment. Since the inspection of the sample 1 is carried out while the stage device 20 is rotating, the outer edge portion of the sample 1 is more likely to have coordinate deviation than the fixed central portion. The unfixed portion also causes warpage due to the wafer itself. Therefore, the fixed portion is defined as the first region, the non-fixed portion is defined as the second region, and the grid size of the first region is larger than the grid size of the second region.
  • the first region can be arbitrarily set according to the size of the central portion of the sample stage 21.
  • FIG. 6 is a diagram showing an example in which the grid size is set according to the operating state of the stage device 20 in the region division of the calibration sample in the first embodiment.
  • the stage device 20 also moves straight while rotating in the ⁇ direction.
  • the second region is a region where the R ⁇ velocity becomes irregular due to the acceleration / deceleration of the stage device 20.
  • the first region is a region where acceleration / deceleration is smaller than that of the second region (ideally, there is no acceleration / deceleration). In the region where acceleration / deceleration is small, the coordinate deviation between the devices is considered to be small, so that the grid size can be increased.
  • the difference in the rotation speed on the surface area of the calibration sample also causes the difference in the laser intensity applied to the calibration sample. Therefore, it can be said that the calibration sample of FIG. 6 takes into consideration the difference in laser intensity caused by the difference in rotation speed in addition to the difference in rotation speed.
  • FIG. 7 is a diagram showing an example in which the sample stage 21 fixes substantially the entire surface of the wafer in the region division of the calibration sample in the first embodiment. Since there are many fixed regions as compared with FIG. 5, the first region is made wider than that of FIG. 5, and the second region is made narrower than that of FIG.
  • FIG. 8 is a diagram showing an example in which the sample stage 21 fixes only the end portion (edge) of the wafer in the region division of the calibration sample in the first embodiment.
  • the wafer tends to bend and the coordinate shift easily occurs in the fixed portion. This is because a force acts between the fixing member and the wafer. Therefore, the grid size is large with most of the wafer including the central portion as the first region, and the grid size is small with the end portion fixing the wafer and the sample stage 21 as the second region.
  • FIG. 9 is a flowchart illustrating a procedure in which the defect inspection device 100 in the first embodiment corrects a coordinate deviation between the devices. Each step of FIG. 9 will be described below.
  • Steps S100 to S101 If the first region and the second region on the calibration sample have already been set, proceed to S102 (S100: Yes), and if not set, for example, the user sets each region on the GUI (S100: No, S101).
  • the defect inspection device 100 inspects (actually measures) the coordinates of the grid points (built-in defects 30) on the calibration sample (S102). As a result, the measured coordinates of the grid points on the calibration sample can be obtained (S103).
  • the signal processing unit 16 compares the actually measured coordinates of the built-in defect 30 with the known coordinates, and calculates the amount of deviation between the two (S104). This deviation amount represents the deviation amount between the known value and the measured value of the grid points on the calibration sample, but it is also the defect deviation amount when the defect is actually measured.
  • the signal processing unit 16 calculates a correction value for correcting the coordinate deviation according to the correlation between the defect deviation amount and each parameter.
  • Each parameter referred to here is a value obtained from each sensor included in the defect inspection device 100, such as an eccentric amount of the calibration sample, a rotation deviation amount of the calibration sample, an optical axis deviation amount, and the like.
  • the amount of eccentricity and the amount of rotational deviation of the calibration sample can be obtained from the sensor that detects the amount of movement of the stage.
  • the amount of optical axis deviation can be obtained from the optical element correction mechanism 27.
  • Step S105 Supplement
  • the signal processing unit 16 corrects the defect coordinates by using the correction value acquired in S105.
  • the correction amount can be determined by the weighted average as shown in FIG. 10 described later, using the distances from the four known grid points around the actually measured defect to the defect.
  • the correction amount may be determined by an appropriate function such as a spline function.
  • FIG. 10 is a diagram illustrating a specific example of the procedure for correcting the defect coordinates in S106.
  • the defect 54 is a defect detected in the inspection process.
  • the grid points 50 to 53 are actually measured grid points.
  • the correction value between the known grid points and the grid points 50 to 53 is calculated in advance.
  • the correction value is also shown for each grid point. For example, the correction value between the grid point 50 and the corresponding known grid point is (x, y).
  • the distance between the defect 54 and each of the grid points 50 to 53 is obtained, and the correction value weighting is determined.
  • the weighted average of the correction values of the grid points 50 to 53 is used as the correction value of the defect 54.
  • the correction value using the weighted average is (x, y) * (1-dx) * (1-dy) + (x, y + 1) * (1-dx) * dy + (x + 1, y) * dx * (1). It can be calculated by ⁇ dy) + (x + 1, y + 1) * dx * dy.
  • the defect inspection device 100 divides the surface region of the calibration sample into a second region where the amount of defect deviation is desired to be strictly detected and a first region where the defect deviation amount does not need to be strictly detected, and is a second region.
  • the built-in defect 30 is detected at intervals shorter than the first region. This makes it possible to accurately detect the coordinate deviation caused by the change with time such as the wafer state in the second region.
  • the built-in defects 30 on the calibration sample may be arranged on different grid sizes in the first region and the second region, and the grid sizes are the same in the first region and the second region.
  • the distance interval for detecting the built-in defect 30 by the signal processing unit 16 may be changed in the arithmetic processing. In the former case, the processing of the signal processing unit 16 can be simplified. In the latter case, the calibration sample can be manufactured more easily than the former.
  • the defect inspection device 100 determines a correction value for correcting the coordinate deviation according to the correlation between the parameter detected by each sensor included in the defect inspection device 100 and the defect deviation amount. .. This is based on the fact that the cause of the coordinate deviation is considered to appear in the detection parameters.
  • the correction value can be appropriately determined according to the operating state of the defect inspection device 100 (including the wafer) at that time. That is, it is possible to determine an appropriate correction value for the change over time in the operating state of the defect inspection device 100.
  • FIG. 11 is a flowchart illustrating a procedure in which the defect inspection device 100 according to the second embodiment of the present disclosure diagnoses a sign of abnormality in the device. This flowchart is carried out by the predictive diagnosis unit 18. The configuration of the defect inspection device 100 is the same as that of the first embodiment. Each step of FIG. 11 will be described below.
  • the predictive diagnosis unit 18 acquires a wafer holding method and a defect deviation amount for each operating state from the storage area unit 17.
  • the deviation amount is acquired in advance by the defect inspection device 100 measuring the calibration sample.
  • the predictive diagnosis unit 18 acquires the amount of deviation of each parameter from the storage area unit 17.
  • the parameters referred to here are the same as the parameters in S105. That is, it is a parameter representing the state of each part of the defect inspection device 100 detected by each sensor included in the defect inspection device 100.
  • the predictive diagnosis unit 18 creates a deviation amount map showing the change with time of the deviation amount.
  • the first map represents the amount of deviation at time 1
  • the second map represents the amount of deviation at time 2.
  • a deviation amount map may be created for each grid point, or one map showing the deviation amount of all grid points may be created. The latter is assumed in FIG. 12, which will be described later.
  • the predictive diagnosis unit 18 also creates a parameter map showing the change over time of the parameters for each parameter.
  • the predictive diagnosis unit 18 predicts the n + 1th shift amount map based on the change with time from the first to the nth slip amount map.
  • the n + 1th sheet can be predicted by using a moving average method or the like.
  • the predictive diagnosis unit 18 also predicts the n + 1th sheet for each parameter map.
  • the predictive diagnosis unit 18 is n + 1 when the deviation amount map of the n + 1th sheet exceeds the threshold value (S204: Yes) and any of the parameter maps of the n + 1th sheet exceeds the threshold value (S205: Yes). It is determined that an abnormality of the defect inspection device 100 may occur at the time corresponding to the first sheet (S206).
  • the predictive diagnosis unit 18 outputs the determination result as a predictive diagnosis result (S207).
  • the output format may be any format such as screen display and data output.
  • the upper limit or the lower limit can be arbitrarily determined in advance. If it deviates from the upper and lower thresholds, that is, if it deviates from the predetermined normal range, it is diagnosed that there is an abnormality sign, and if it is within the upper and lower thresholds, there is no abnormality sign.
  • FIG. 12 shows an example of each map.
  • the n + 1th sheet of the deviation amount map 500 exceeds the threshold value.
  • the n + 1th sheet of the eccentricity map 502 does not exceed the threshold value, but the n + 1th sheet of the optical axis deviation amount map 501 also exceeds the threshold value, so that it is determined to be abnormal.
  • the parameter map can be increased according to the number of parameters stored in the storage area portion 17.
  • the parameters can be increased by installing the corresponding sensor in the defect inspection device 100.
  • an optical axis sensor or a beam stabilizer may be provided to see the amount of laser shake
  • an acceleration sensor may be provided to measure the vibration of the stage
  • a linear scale may be provided to measure the position of the stage.
  • the predictive diagnosis unit 18 feeds back the predictive diagnosis result to the defect inspection device 100. This will reduce the amount of deviation. For example, by monitoring the optical axis deviation with the optical element correction mechanism 27, the optical axis deviation can be corrected.
  • the stage device 20 includes a sensor for detecting the outer circumference of the wafer and an encoder in the ⁇ direction, whereby the amount of eccentricity of the wafer can be detected and corrected.
  • the offset amount may be obtained from the error of the sensor itself, and the defect inspection may be performed including the offset at the time of inspection.
  • the defect position coordinate accuracy at the time of defect detection can be improved. That is, the predictive diagnosis result of FIG. 12 has the significance of predicting the causal parameter that causes the abnormality in the n + 1th sheet, in addition to predicting the abnormality of the defect inspection device 100.
  • the predictive diagnosis unit 18 estimates that the defect inspection device 100 is abnormal at that time and the cause parameter causing the abnormality. can do.
  • the grid shape is not limited to this.
  • the grid shape is arbitrary as long as the difference between the coordinates of the built-in defect 30 at the known grid points on the calibration sample and the coordinates of the built-in defect 30 obtained by actually measuring the calibration sample is corrected.
  • the first region and the second region are set on the calibration sample, but the third and subsequent regions may also be set. Even when the third and subsequent regions are set, the grid sizes of the regions are different from each other.
  • the sample (or calibration sample, the same applies hereinafter) can be inspected by irradiating the sample with light and detecting reflected or scattered light from the sample.
  • the present disclosure may be applied in any case.
  • the signal processing unit 16, the predictive diagnosis unit 18, the controller 19, and the stage control unit 23 can be configured by hardware such as a circuit device that implements these functions, and these functions can be provided. It can also be configured by executing the implemented software by an arithmetic unit.

Abstract

An object of the present disclosure is to provide a defect inspection device that can improve defect coordinate accuracy by correcting defect coordinates according to change over time during a wafer operation. The defect inspection device according to the present disclosure acquires, for a detection signal obtained from a first region on a calibration sample, the position of the object at each first distance in the first region, and acquires, for the detection signal obtained from a second region different from the first region on the calibration sample, the position of the object at each second distance in the second region, the second distance being different from the first distance (See FIG. 5).

Description

欠陥検査装置、欠陥検査方法Defect inspection equipment, defect inspection method
 本開示は、試料に対して光を照射することにより試料が有する欠陥を検査する欠陥検査装置に関する。 The present disclosure relates to a defect inspection device that inspects a defect of a sample by irradiating the sample with light.
 半導体製造工程においては、試料の欠陥(傷や異物など)が歩留まりに対して与える影響が大きく、欠陥検査装置による欠陥検査情報を半導体製造工程および製造装置に対してフィードバックすることが、歩留まり管理において重要である。光学式欠陥検査装置が検出した欠陥の座標精度は、例えば半導体製造工程において、欠陥箇所の特定をする際に重要である。また、欠陥をレビュー装置によって観察し、欠陥を分類し合否判定する際においても、欠陥座標精度は重要である。近年、半導体の微細化にともない、欠陥座標精度の要求は年々高まってきている。 In the semiconductor manufacturing process, sample defects (scratches, foreign substances, etc.) have a large effect on the yield, and feeding back the defect inspection information from the defect inspection device to the semiconductor manufacturing process and the manufacturing device is the yield management. is important. The coordinate accuracy of the defect detected by the optical defect inspection device is important when identifying the defect portion, for example, in the semiconductor manufacturing process. Defect coordinate accuracy is also important when observing defects with a review device, classifying defects, and determining pass / fail. In recent years, with the miniaturization of semiconductors, the demand for defect coordinate accuracy has been increasing year by year.
 特許文献1は、検出欠陥座標の誤差低減を目的とする技術を記載している。同文献においては、あらかじめ座標が既知の欠陥が形成された座標校正用のサンプルウェーハに対して照明光を照射し、サンプルウェーハからの散乱光を検出して表面の欠陥の画像座標を補正し、補正した画像座標に基づいて、被検査体の表面の欠陥を補正する。座標校正用サンプルウェーハには、格子状に等間隔で既知の位置に作り込んだ欠陥を配置している。 Patent Document 1 describes a technique for reducing errors in detected defect coordinates. In the same document, a sample wafer for coordinate calibration in which a defect whose coordinates are known in advance is formed is irradiated with illumination light, scattered light from the sample wafer is detected, and the image coordinates of the defect on the surface are corrected. Based on the corrected image coordinates, defects on the surface of the object to be inspected are corrected. On the sample wafer for coordinate calibration, defects created at known positions are arranged at equal intervals in a grid pattern.
特開2011-075431号公報Japanese Unexamined Patent Publication No. 2011-075431
 光学式欠陥検査装置において、欠陥座標精度向上が要求されている。しかし従来の座標補正においては、(a)ステージの回転によって生じるウェーハ自体のたわみ、(b)ステージへのウェーハの置き方といった保持方法の違い、(c)検査時のステージの回転速度差やレーザの強さといった動作状態の違い、について十分な配慮がなされていなかった。これらの経時変化を配慮した上で欠陥座標を検出しないと、実際の欠陥位置と検査装置が認識した欠陥位置との間に乖離が生じる恐れがあり、レビュー装置においては観察時間の増大につながる。 In the optical defect inspection device, improvement of defect coordinate accuracy is required. However, in the conventional coordinate correction, (a) the deflection of the wafer itself caused by the rotation of the stage, (b) the difference in the holding method such as how to place the wafer on the stage, (c) the difference in the rotation speed of the stage during inspection, and the laser. Sufficient consideration was not given to the difference in operating conditions such as the strength of the wafer. If the defect coordinates are not detected in consideration of these changes over time, there is a possibility that a discrepancy may occur between the actual defect position and the defect position recognized by the inspection device, which leads to an increase in observation time in the review device.
 本開示は、上記のような課題に鑑みてなされたものであり、ウェーハ保持方法や動作中において生じる経時変化に応じて欠陥座標を補正することにより、欠陥座標精度を向上させることができる欠陥検査装置を提供することを目的とする。 This disclosure has been made in view of the above-mentioned problems, and is a defect inspection capable of improving the defect coordinate accuracy by correcting the defect coordinates according to the wafer holding method and the change with time that occurs during operation. The purpose is to provide the device.
 本開示に係る欠陥検査装置は、校正サンプル上の第1領域から得られる検出信号については、前記第1領域内における第1距離ごとに前記オブジェクトの位置を取得し、前記校正サンプル上の前記第1領域とは異なる第2領域から得られる前記検出信号については、前記第2領域内における前記第1距離とは異なる第2距離ごとに前記オブジェクトの位置を取得する。 The defect inspection apparatus according to the present disclosure acquires the position of the object for each first distance in the first region for the detection signal obtained from the first region on the calibration sample, and obtains the position of the object on the calibration sample. For the detection signal obtained from the second region different from the first region, the position of the object is acquired for each second distance different from the first distance in the second region.
 本開示に係る欠陥検査装置によれば、欠陥座標精度を向上させることができる。また、欠陥座標精度が向上することにより、欠陥検査装置と欠陥レビュー装置との間の座標マッチング精度が向上し、欠陥レビュー装置による観察工程の時間を短縮することが期待できる。 According to the defect inspection device according to the present disclosure, the defect coordinate accuracy can be improved. Further, by improving the defect coordinate accuracy, it is expected that the coordinate matching accuracy between the defect inspection device and the defect review device will be improved, and the time of the observation process by the defect review device will be shortened.
実施形態1に係る欠陥検査装置100の全体概略図である。It is an overall schematic diagram of the defect inspection apparatus 100 which concerns on Embodiment 1. FIG. 本開示における欠陥検査の流れを示す図である。It is a figure which shows the flow of the defect inspection in this disclosure. 実施形態1における校正サンプルの表面を領域分割した例を示す図である。It is a figure which shows the example which the surface of the calibration sample in Embodiment 1 was divided into regions. 校正サンプル上に欠陥を形成した例を示す図である。It is a figure which shows the example which formed the defect on the calibration sample. 実施形態1における校正サンプルの領域分割において、試料ステージ21がウェーハの中心部分に対して、裏面吸着などによって固定されている場合の例を示す図である。It is a figure which shows the example of the case where the sample stage 21 is fixed to the central portion of a wafer by back surface adsorption or the like in the region division of the calibration sample in Embodiment 1. FIG. 実施形態1における校正サンプルの領域分割において、ステージ装置20の動作状態に合わせて格子サイズをセットした場合の例を示す図である。It is a figure which shows the example of the case where the grid size is set according to the operating state of the stage apparatus 20 in the region division of the calibration sample in Embodiment 1. FIG. 実施形態1における校正サンプルの領域分割において、試料ステージ21がウェーハの略全面を固定している場合の例を示す図である。It is a figure which shows the example of the case where the sample stage 21 fixes substantially the entire surface of the wafer in the region division of the calibration sample in the first embodiment. 実施形態1における校正サンプルの領域分割において、試料ステージ21がウェーハの端部のみを固定している場合の例を示す図である。It is a figure which shows the example of the case where the sample stage 21 fixes only the end portion of a wafer in the region division of the calibration sample in Embodiment 1. FIG. 実施形態1における欠陥検査装置100が、装置間の座標ずれを補正する手順を説明するフローチャートである。It is a flowchart explaining the procedure which the defect inspection apparatus 100 in Embodiment 1 corrects the coordinate deviation between the apparatus. S106において欠陥座標を補正する手順の具体例を説明する図である。It is a figure explaining the specific example of the procedure of correcting a defect coordinate in S106. 実施形態2に係る欠陥検査装置100が、装置の異常の予兆を診断する手順を説明するフローチャートである。FIG. 5 is a flowchart illustrating a procedure in which the defect inspection device 100 according to the second embodiment diagnoses a sign of abnormality in the device. 各マップの例を示す。An example of each map is shown.
<実施の形態1>
 図1は、本開示の実施形態1に係る欠陥検査装置100の全体概略図である。欠陥検査装置100は、回転しながら移動する試料1に対して照明光L1(L1aとL1b)を照射し、らせん状または同心円状に試料1を走査して試料1の欠陥を検査する、Rθ方式の欠陥検査システムである。試料1としては、例えばウェーハ(ベアウェーハ、膜付きウェーハ、バンプ付きウェーハ、パターン付きウェーハなどの半導体製造プロセスの各段階のウェーハを含む)のような円盤状のものが想定される。欠陥検査装置100が検出する欠陥は、試料1の傷やうねり、試料1に付着した異物、などである。
<Embodiment 1>
FIG. 1 is an overall schematic view of the defect inspection device 100 according to the first embodiment of the present disclosure. The defect inspection device 100 inspects the defect of the sample 1 by irradiating the sample 1 moving while rotating with illumination light L1 (L1a and L1b) and scanning the sample 1 spirally or concentrically. Defect inspection system. As the sample 1, for example, a disk-shaped wafer (including a wafer at each stage of the semiconductor manufacturing process such as a bare wafer, a wafer with a film, a wafer with a bump, and a wafer with a pattern) is assumed. The defects detected by the defect inspection device 100 are scratches and waviness of the sample 1, foreign matter adhering to the sample 1, and the like.
 欠陥検査装置100は、ステージ装置20、照明検出ユニット24、信号処理部16、記憶領域部17、予兆診断部18、コントローラ19、ステージ制御部23、を備える。 The defect inspection device 100 includes a stage device 20, a lighting detection unit 24, a signal processing unit 16, a storage area unit 17, a sign diagnosis unit 18, a controller 19, and a stage control unit 23.
 ステージ装置20は、試料ステージ21とXZθステージを備える。XZθステージは、回転ステージ、直進Xステージ、高さ方向Zステージを有する。試料ステージ21は、試料1を水平に保持する検査台である。試料ステージ21は、試料1の裏面に吸着して試料1を保持するタイプでもよいし、試料1の端のみを何点か固定して試料1を保持するタイプでもよい。それぞれのステージには位置座標が分かるスケールやエンコーダが配置されている。検出した位置座標(R,θ)は、コントローラ19へ出力される。センサ25は、試料1の高さを検出してコントローラ19へ出力する。センサ25としては、光学式や渦電流式などの非接触の変位センサなどを用いることができる。センサ25により試料1の反りの大きさも測定することができる。 The stage device 20 includes a sample stage 21 and an XZθ stage. The XZθ stage has a rotary stage, a straight X stage, and a height direction Z stage. The sample stage 21 is an inspection table that holds the sample 1 horizontally. The sample stage 21 may be a type that holds the sample 1 by adsorbing to the back surface of the sample 1, or a type that holds the sample 1 by fixing only the end of the sample 1 at some points. Scales and encoders that show the position coordinates are placed on each stage. The detected position coordinates (R, θ) are output to the controller 19. The sensor 25 detects the height of the sample 1 and outputs it to the controller 19. As the sensor 25, a non-contact displacement sensor such as an optical type or an eddy current type can be used. The size of the warp of the sample 1 can also be measured by the sensor 25.
 照明検出ユニット24は、照射光学系と検出光学系を備える。照射光学系は、照明光L1を試料1に対して照射する。照明光学系は、光源10、ミラー11a~11c、照射レンズ12および26、光学素子補正機構27を備える。検出光学系は、試料1において散乱または反射した検査光L2を検出する。検出光学系は、集光レンズ13、検出器14、検出回路15を備える。ミラー11cは、照明光を垂直方向(L1b)から照射するか、 斜め上(L1a)から照射するかを切り替える。ミラー11aと11bは、斜め上から照射光を照射するように、照射光L1の進路を調整する。光学素子補正機構27は、照射光学系の光軸をモニタし、補正する。 The illumination detection unit 24 includes an irradiation optical system and a detection optical system. The irradiation optical system irradiates the sample 1 with the illumination light L1. The illumination optical system includes a light source 10, mirrors 11a to 11c, irradiation lenses 12 and 26, and an optical element correction mechanism 27. The detection optical system detects the inspection light L2 scattered or reflected in the sample 1. The detection optical system includes a condenser lens 13, a detector 14, and a detection circuit 15. The mirror 11c switches between irradiating the illumination light from the vertical direction (L1b) and irradiating it from diagonally above (L1a). The mirrors 11a and 11b adjust the course of the irradiation light L1 so as to irradiate the irradiation light from diagonally above. The optical element correction mechanism 27 monitors and corrects the optical axis of the irradiation optical system.
 図1において、光源10から照射された光L1aおよびL1bは、ミラー11a~11c、照射レンズ12および26を介して、試料1に対して照射される。ステージ装置20によって試料1が回転しながら移動することにより、試料1の中心から外縁までらせん状の軌跡を描いて照射光L1が照射され、これにより試料1の全表面が検査される。試料1からの検査光L2は、集光レンズ13、検出器14、検出回路15を介して信号処理部16へ検出結果が出力される。尚、照射光は試料1の外縁から中心へ向かう軌跡でもよい。 In FIG. 1, the lights L1a and L1b emitted from the light source 10 are applied to the sample 1 via the mirrors 11a to 11c and the irradiation lenses 12 and 26. When the sample 1 is rotated and moved by the stage device 20, the irradiation light L1 is irradiated in a spiral trajectory from the center of the sample 1 to the outer edge, whereby the entire surface of the sample 1 is inspected. The detection result of the inspection light L2 from the sample 1 is output to the signal processing unit 16 via the condenser lens 13, the detector 14, and the detection circuit 15. The irradiation light may be a locus from the outer edge of the sample 1 toward the center.
 信号処理部16は、照明検出ユニット24による検出結果とコントローラ19から入力されたRθ座標から検査結果を生成する。検査結果には、欠陥(異物や傷など)の位置、大きさ、形状などが含まれる。信号処理部16は、記憶領域部17に保存されたウェーハの操作や動作状態毎の検査結果から補正値を算出する。信号処理部16は、その補正値を用いて、検査結果の検出座標を補正し、これにより欠陥検出座標精度を向上させる。 The signal processing unit 16 generates an inspection result from the detection result by the illumination detection unit 24 and the Rθ coordinates input from the controller 19. The inspection results include the position, size, shape, etc. of defects (foreign matter, scratches, etc.). The signal processing unit 16 calculates a correction value from the inspection results for each operation and operating state of the wafer stored in the storage area unit 17. The signal processing unit 16 corrects the detection coordinates of the inspection result by using the correction value, thereby improving the defect detection coordinate accuracy.
 記憶領域部17は、信号処理部16が生成した検査結果と補正値を記憶するとともに、欠陥座標のずれ量を保存する。ウェーハの保持方法や動作状態毎にこれらを保存することにより、同条件で検査を実施した場合に、同じ補正値を使用できるようにする。 The storage area unit 17 stores the inspection result and the correction value generated by the signal processing unit 16, and also stores the deviation amount of the defect coordinates. By storing these for each wafer holding method and operating state, the same correction value can be used when the inspection is performed under the same conditions.
 予兆診断部18は、記憶領域部17が格納している検査結果とずれ量、各センサによる検出結果、などを用いて、ずれ量の変化を監視することにより、異常発生の予兆を検出する。予兆診断部18の詳細については実施形態2で説明する。 The sign diagnosis unit 18 detects a sign of an abnormality by monitoring a change in the amount of deviation using the inspection result and the amount of deviation stored in the storage area unit 17, the detection result by each sensor, and the like. The details of the predictive diagnosis unit 18 will be described in the second embodiment.
 ステージ制御部23は、ステージ装置20の動作を制御する。例えば、直進Xステージの駆動装置を駆動させるモータドライバや回転ステージの駆動装置を駆動させるモータドライバなどを制御することにより、ステージ装置20を制御できる。コントローラ19からステージ装置20の動作について指令値が入力されると、ステージ制御部23はその指令に応じて駆動装置を駆動し、これによりステージ装置20が動作する。 The stage control unit 23 controls the operation of the stage device 20. For example, the stage device 20 can be controlled by controlling a motor driver that drives the drive device of the straight-ahead X stage, a motor driver that drives the drive device of the rotary stage, and the like. When a command value for the operation of the stage device 20 is input from the controller 19, the stage control unit 23 drives the drive device in response to the command, whereby the stage device 20 operates.
 図2は、本開示における欠陥検査の流れを示す図である。例えばFIB装置42によって試料1上に作り込み欠陥が形成される。尚、作り込み欠陥の形成方法はFIB装置42による方法に限定されない。レビュー装置41はその作り込み欠陥をレビューし、欠陥検査装置100はその作り込み欠陥を検査する。レビュー装置41における欠陥座標と欠陥検査装置100における欠陥座標を突き合わせることにより、欠陥座標の補正値を算出することができる。欠陥検査装置100が検出した欠陥座標を、レビュー装置41によってレビューすることもできる。 FIG. 2 is a diagram showing the flow of defect inspection in the present disclosure. For example, the FIB device 42 creates a built-in defect on the sample 1. The method of forming the built-in defect is not limited to the method using the FIB device 42. The review device 41 reviews the built-in defect, and the defect inspection device 100 inspects the built-in defect. By matching the defect coordinates in the review device 41 with the defect coordinates in the defect inspection device 100, the correction value of the defect coordinates can be calculated. The defect coordinates detected by the defect inspection device 100 can also be reviewed by the review device 41.
 このように欠陥検査を実施するためには、各装置を跨いで検査を実施し、欠陥位置を確認する必要がある。したがって、作り込み欠陥の数が多いと、欠陥検査装置100における検査、およびレビュー装置41におけるレビュー時間が過大となる。欠陥検査全体の時間を短縮するためには、作り込み欠陥を効率的に形成し、サンプリング間隔を変更し、必要十分なデータを取得する必要がある。 In order to carry out defect inspection in this way, it is necessary to carry out inspection across each device and confirm the defect position. Therefore, if the number of built-in defects is large, the inspection time in the defect inspection device 100 and the review time in the review device 41 become excessive. In order to shorten the time of the entire defect inspection, it is necessary to efficiently form built-in defects, change the sampling interval, and acquire necessary and sufficient data.
 図3は、本実施形態1における校正サンプルの表面を領域分割した例を示す図である。図3の例においては、格子領域の大きさは全て等しく、格子は正方形である。格子領域の大きさと形状は、任意で指定することができる。データ処理時間は格子数に依存するので、格子数は必要最小限に設定することが望ましい。 FIG. 3 is a diagram showing an example in which the surface of the calibration sample in the first embodiment is divided into regions. In the example of FIG. 3, the grid regions are all equal in size and the grid is square. The size and shape of the grid region can be arbitrarily specified. Since the data processing time depends on the number of grids, it is desirable to set the number of grids to the minimum necessary.
 図4は、校正サンプル上に欠陥を形成した例を示す図である。格子点の座標は既知である。格子点上に作りこみ欠陥30を配置している。作り込み欠陥30は、散乱光によって検出可能な形状、サイズ、位置を有する。作りこみ欠陥30の大きさと形状は、使用目的によって任意に設定することが望ましい。作りこみ欠陥30は、例えば集束イオンビーム(FIB)装置やフォトリソグラフィーを用いて作製できる。欠陥検査装置100は、校正サンプルを用いて、欠陥座標を補正する。 FIG. 4 is a diagram showing an example in which a defect is formed on a calibration sample. The coordinates of the grid points are known. The built-in defect 30 is arranged on the grid point. The built-in defect 30 has a shape, size, and position that can be detected by scattered light. It is desirable to arbitrarily set the size and shape of the built-in defect 30 according to the purpose of use. The built-in defect 30 can be made by using, for example, a focused ion beam (FIB) device or photolithography. The defect inspection device 100 corrects the defect coordinates by using the calibration sample.
 装置間における欠陥座標のずれが生じやすい領域とそれ以外の領域との間で、校正サンプル上に形成する格子点の格子サイズや配置を変更してもよい。欠陥座標ずれが生じる要因としては、(a)ステージの回転によって生じるウェーハ自体のたわみ、(b)ステージへのウェーハの置き方といったウェーハ保持方法の違い、(c)検査時のステージの回転速度差、レーザの強さといった動作状態の違い、などがある。校正サンプルの領域分割を変えるにあたり、作りこみ欠陥30の形状、サイズ、位置を任意に配置してもよい。 The grid size and arrangement of the grid points formed on the calibration sample may be changed between the region where the defect coordinates are likely to be displaced between the devices and the other region. Factors that cause defect coordinate deviation include (a) deflection of the wafer itself caused by the rotation of the stage, (b) differences in wafer holding methods such as how to place the wafer on the stage, and (c) difference in the rotation speed of the stage during inspection. , Differences in operating conditions such as laser strength, etc. In changing the region division of the calibration sample, the shape, size, and position of the built-in defect 30 may be arbitrarily arranged.
 作りこみ欠陥30の配置間隔は、領域ごとに変えてもよい。あるいは図4のようにあらかじめ作り込み欠陥30を全領域において均等に配置しておき、欠陥検査装置100が作り込み欠陥30を検出する際の格子点間の距離間隔を領域毎に変えることにより、格子サイズや配置などを領域ごとに仮想的に変えるようにしてもよい。作り込み欠陥30を検出する処理間隔を変える方法として、ユーザがGUI(Graphical User Interface)を介して各領域の座標を指定してもよい。例えば以下の3つのパターンが考えられる。 The arrangement interval of the built-in defects 30 may be changed for each area. Alternatively, as shown in FIG. 4, the built-in defects 30 are evenly arranged in the entire region in advance, and the distance interval between the grid points when the defect inspection device 100 detects the built-in defects 30 is changed for each region. The grid size and arrangement may be virtually changed for each area. As a method of changing the processing interval for detecting the built-in defect 30, the user may specify the coordinates of each area via the GUI (Graphical User Interface). For example, the following three patterns can be considered.
 1つ目:ユーザが校正サンプル上の第1領域を指定し、校正サンプル上のその他領域を第2領域とする。2つ目:ユーザが校正サンプル上の第1領域と第2領域(または各領域の格子サイズ)を個別に指定する。3つ目:作り込み欠陥30を全点検査後、ユーザが校正サンプル上の第1領域と第2領域を指定する。1つ目と2つ目の方法は、あらかじめ検査する作り込み欠陥30を絞ることができるので、検査時間を短縮することができる。3つ目の方法は、全点検査するものの、補正値を算出する点を絞ることができ、演算処理時間を短縮することができるので、結果として、検査時間を短縮することができる。 First: The user specifies the first area on the calibration sample, and the other area on the calibration sample is the second area. Second: The user specifies the first region and the second region (or the grid size of each region) individually on the calibration sample. Third: After inspecting all the built-in defects 30, the user specifies the first region and the second region on the calibration sample. In the first and second methods, the built-in defects 30 to be inspected in advance can be narrowed down, so that the inspection time can be shortened. In the third method, although all points are inspected, the points for calculating the correction value can be narrowed down, and the calculation processing time can be shortened. As a result, the inspection time can be shortened.
 図5は、本実施形態1における校正サンプルの領域分割において、試料ステージ21がウェーハの中心部分に対して、裏面吸着などによって固定されている場合の例を示す図である。試料1の検査はステージ装置20が回転しながら実施されるので、試料1の外縁部分は、固定されている中心部分に比べて座標ずれが生じやすい。固定されていない部分は、ウェーハ自体に起因する反りも発生する。したがって、固定されている部分を第1領域、固定されていない部分を第2領域とし、第1領域の格子サイズは第2領域の格子サイズよりも大きくする。第1領域は、試料ステージ21の中心部分の大きさに合わせて任意に設定することができる。 FIG. 5 is a diagram showing an example in which the sample stage 21 is fixed to the central portion of the wafer by back surface adsorption or the like in the region division of the calibration sample in the first embodiment. Since the inspection of the sample 1 is carried out while the stage device 20 is rotating, the outer edge portion of the sample 1 is more likely to have coordinate deviation than the fixed central portion. The unfixed portion also causes warpage due to the wafer itself. Therefore, the fixed portion is defined as the first region, the non-fixed portion is defined as the second region, and the grid size of the first region is larger than the grid size of the second region. The first region can be arbitrarily set according to the size of the central portion of the sample stage 21.
 図6は、本実施形態1における校正サンプルの領域分割において、ステージ装置20の動作状態に合わせて格子サイズをセットした場合の例を示す図である。ステージ装置20はθ方向に回転しながら、直進移動もする。第2領域は、ステージ装置20が加減速することによってRθ速度が変則的になる領域とする。Rθ速度がより変速的であるほど、ステージにかかる機械的振動等も変速的になりえ、不規則な座標ずれが発生しうる。第1領域は、加減速が第2領域よりも小さい(理想的には加減速がない)領域とする。加減速が小さい領域においては、装置間の座標ずれは小さいと考えられるので、格子サイズを大きくすることができる。 FIG. 6 is a diagram showing an example in which the grid size is set according to the operating state of the stage device 20 in the region division of the calibration sample in the first embodiment. The stage device 20 also moves straight while rotating in the θ direction. The second region is a region where the Rθ velocity becomes irregular due to the acceleration / deceleration of the stage device 20. The more variable the Rθ speed is, the more mechanical vibration or the like applied to the stage can be changed, and irregular coordinate deviations can occur. The first region is a region where acceleration / deceleration is smaller than that of the second region (ideally, there is no acceleration / deceleration). In the region where acceleration / deceleration is small, the coordinate deviation between the devices is considered to be small, so that the grid size can be increased.
 校正サンプルの表面領域上における回転速度の違いは、校正サンプルに対して照射されるレーザ強度の違いも生じさせる。したがって図6の校正サンプルは、回転速度差に加えてこれに起因するレーザ強度差も考慮したものであるといえる。 The difference in the rotation speed on the surface area of the calibration sample also causes the difference in the laser intensity applied to the calibration sample. Therefore, it can be said that the calibration sample of FIG. 6 takes into consideration the difference in laser intensity caused by the difference in rotation speed in addition to the difference in rotation speed.
 図7は、本実施形態1における校正サンプルの領域分割において、試料ステージ21がウェーハの略全面を固定している場合の例を示す図である。図5に比べて、固定されている領域が多いので、第1領域を図5よりも広くとり、第2領域を図5よりも狭くとる。 FIG. 7 is a diagram showing an example in which the sample stage 21 fixes substantially the entire surface of the wafer in the region division of the calibration sample in the first embodiment. Since there are many fixed regions as compared with FIG. 5, the first region is made wider than that of FIG. 5, and the second region is made narrower than that of FIG.
 図8は、本実施形態1における校正サンプルの領域分割において、試料ステージ21がウェーハの端部(エッジ)のみを固定している場合の例を示す図である。端部のみを固定した場合、固定している部分において、ウェーハがたわみ、座標ずれが生じやすい。固定部材とウェーハとの間で力が作用するからである。したがって、ウェーハの中心部分を含む大部分を第1領域として格子サイズを大きくとり、ウェーハと試料ステージ21を固定している端部を第2領域として、格子サイズを小さくとる。 FIG. 8 is a diagram showing an example in which the sample stage 21 fixes only the end portion (edge) of the wafer in the region division of the calibration sample in the first embodiment. When only the end portion is fixed, the wafer tends to bend and the coordinate shift easily occurs in the fixed portion. This is because a force acts between the fixing member and the wafer. Therefore, the grid size is large with most of the wafer including the central portion as the first region, and the grid size is small with the end portion fixing the wafer and the sample stage 21 as the second region.
 図9は、本実施形態1における欠陥検査装置100が、装置間の座標ずれを補正する手順を説明するフローチャートである。以下図9の各ステップを説明する。 FIG. 9 is a flowchart illustrating a procedure in which the defect inspection device 100 in the first embodiment corrects a coordinate deviation between the devices. Each step of FIG. 9 will be described below.
(図9:ステップS100~S101)
 校正サンプル上の第1領域と第2領域を既にセットしている場合はS102へ進み(S100:Yes)、未セットである場合は例えばユーザがGUI上で各領域をセットする(S100:No、S101)。
(FIG. 9: Steps S100 to S101)
If the first region and the second region on the calibration sample have already been set, proceed to S102 (S100: Yes), and if not set, for example, the user sets each region on the GUI (S100: No, S101).
(図9:ステップS102~S104)
 欠陥検査装置100は校正サンプル上の格子点(作り込み欠陥30)の座標を検査(実測)する(S102)。これにより校正サンプル上の格子点の実測座標が得られる(S103)。信号処理部16は、作り込み欠陥30の実測座標と既知座標を比較し、両者間のずれ量を算出する(S104)。このずれ量は、校正サンプル上の格子点の既知値と実測値との間のずれ量を表しているが、欠陥を実測したときの欠陥ずれ量でもある。
(FIG. 9: Steps S102 to S104)
The defect inspection device 100 inspects (actually measures) the coordinates of the grid points (built-in defects 30) on the calibration sample (S102). As a result, the measured coordinates of the grid points on the calibration sample can be obtained (S103). The signal processing unit 16 compares the actually measured coordinates of the built-in defect 30 with the known coordinates, and calculates the amount of deviation between the two (S104). This deviation amount represents the deviation amount between the known value and the measured value of the grid points on the calibration sample, but it is also the defect deviation amount when the defect is actually measured.
(図9:ステップS105)
 信号処理部16は、欠陥ずれ量と各パラメータとの間の相関関係にしたがって、座標ずれを補正するための補正値を算出する。ここでいう各パラメータとは、例えば校正サンプルの偏芯量、校正サンプルの回転ずれ量、光軸ずれ量、などのような、欠陥検査装置100が備える各センサから得られる値である。校正サンプルの偏芯量や回転ずれ量は、ステージの移動量を検出するセンサから取得できる。光軸ずれ量は、光学素子補正機構27から取得できる。
(FIG. 9: Step S105)
The signal processing unit 16 calculates a correction value for correcting the coordinate deviation according to the correlation between the defect deviation amount and each parameter. Each parameter referred to here is a value obtained from each sensor included in the defect inspection device 100, such as an eccentric amount of the calibration sample, a rotation deviation amount of the calibration sample, an optical axis deviation amount, and the like. The amount of eccentricity and the amount of rotational deviation of the calibration sample can be obtained from the sensor that detects the amount of movement of the stage. The amount of optical axis deviation can be obtained from the optical element correction mechanism 27.
(図9:ステップS105:補足)
 欠陥ずれ量を生じさせる要因は、各センサが検出する値において、少なくとも間接的に表れていると考えられる。したがって、欠陥ずれ量/各パラメータ/補正値の間には、相関関係が存在している。この相関関係をあらかじめ取得しておき、実測によって得られた欠陥ずれ量と各パラメータをその相関関係に対して当てはめることにより、これらに対応する補正値を得ることができる。本ステップはこれを実施するためのものである。
(FIG. 9: Step S105: Supplement)
It is considered that the factor that causes the amount of defect deviation appears at least indirectly in the value detected by each sensor. Therefore, there is a correlation between the amount of defect deviation / each parameter / correction value. By acquiring this correlation in advance and applying the defect deviation amount obtained by actual measurement and each parameter to the correlation, a correction value corresponding to these can be obtained. This step is to do this.
(図9:ステップS106)
 信号処理部16は、S105において取得した補正値を用いて、欠陥座標を補正する。具体的には、実測した欠陥周辺の4つの既知格子点から欠陥までの距離を用いて、後述する図10のように加重平均によって補正量を決定することができる。加重平均に代えて、スプライン関数などの適当な関数によって補正量を決定してもよい。
(FIG. 9: step S106)
The signal processing unit 16 corrects the defect coordinates by using the correction value acquired in S105. Specifically, the correction amount can be determined by the weighted average as shown in FIG. 10 described later, using the distances from the four known grid points around the actually measured defect to the defect. Instead of the weighted average, the correction amount may be determined by an appropriate function such as a spline function.
 図10は、S106において欠陥座標を補正する手順の具体例を説明する図である。欠陥54は、検査過程において検出した欠陥である。格子点50~53は実測した格子点である。S105において、既知格子点と格子点50~53との間の補正値があらかじめ算出されている。図10において、格子点ごとにその補正値を併記した。例えば格子点50とこれに対応する既知格子点との間の補正値は(x,y)である。 FIG. 10 is a diagram illustrating a specific example of the procedure for correcting the defect coordinates in S106. The defect 54 is a defect detected in the inspection process. The grid points 50 to 53 are actually measured grid points. In S105, the correction value between the known grid points and the grid points 50 to 53 is calculated in advance. In FIG. 10, the correction value is also shown for each grid point. For example, the correction value between the grid point 50 and the corresponding known grid point is (x, y).
 S106において、欠陥54と格子点50~53それぞれとの間の距離を求め、補正値重みづけを決定する。重みづけの範囲は0<=dx<=1、0<=dy<=1とする。格子点50~53の補正値の加重平均を欠陥54の補正値とする。加重平均を用いた補正値は、(x,y)*(1-dx)*(1-dy)+(x,y+1)*(1-dx)*dy+(x+1,y)*dx*(1-dy)+(x+1,y+1)*dx*dyで求めることができる。 In S106, the distance between the defect 54 and each of the grid points 50 to 53 is obtained, and the correction value weighting is determined. The weighting range is 0 <= dx <= 1 and 0 <= dy <= 1. The weighted average of the correction values of the grid points 50 to 53 is used as the correction value of the defect 54. The correction value using the weighted average is (x, y) * (1-dx) * (1-dy) + (x, y + 1) * (1-dx) * dy + (x + 1, y) * dx * (1). It can be calculated by −dy) + (x + 1, y + 1) * dx * dy.
<実施の形態1:まとめ>
 本実施形態1に係る欠陥検査装置100は、校正サンプルの表面領域を、欠陥ずれ量を厳密に検出したい第2領域と、厳密に検出する必要はない第1領域とに区分し、第2領域においては第1領域よりも短い距離間隔ごとに作り込み欠陥30を検出する。これにより特にウェーハ状態などの経時変化によって生じる座標ずれを第2領域において正確に検出することができる。
<Embodiment 1: Summary>
The defect inspection device 100 according to the first embodiment divides the surface region of the calibration sample into a second region where the amount of defect deviation is desired to be strictly detected and a first region where the defect deviation amount does not need to be strictly detected, and is a second region. In, the built-in defect 30 is detected at intervals shorter than the first region. This makes it possible to accurately detect the coordinate deviation caused by the change with time such as the wafer state in the second region.
 本実施形態1において、校正サンプル上の作り込み欠陥30は、第1領域と第2領域において互いに異なる格子サイズ上に配置してもよいし、格子サイズは第1領域と第2領域において同じにセットしつつ信号処理部16が作り込み欠陥30を検出する距離間隔を演算処理上で変化させてもよい。前者の場合は信号処理部16の処理を簡易化できる。後者の場合は校正サンプルを前者よりも容易に製造できる。 In the first embodiment, the built-in defects 30 on the calibration sample may be arranged on different grid sizes in the first region and the second region, and the grid sizes are the same in the first region and the second region. While setting, the distance interval for detecting the built-in defect 30 by the signal processing unit 16 may be changed in the arithmetic processing. In the former case, the processing of the signal processing unit 16 can be simplified. In the latter case, the calibration sample can be manufactured more easily than the former.
 本実施形態1に係る欠陥検査装置100は、欠陥検査装置100が備える各センサが検出するパラメータと、欠陥ずれ量との間の相関関係にしたがって、座標ずれを補正するための補正値を決定する。これは、座標ずれの原因は検出パラメータにおいて現れていると考えられることに基づく。この手法により、欠陥検査装置100(ウエハを含む)のその時点における動作状態に応じて、補正値を適切に定めることができる。すなわち欠陥検査装置100の動作状態の経時変化に対して適切な補正値を定めることができる。 The defect inspection device 100 according to the first embodiment determines a correction value for correcting the coordinate deviation according to the correlation between the parameter detected by each sensor included in the defect inspection device 100 and the defect deviation amount. .. This is based on the fact that the cause of the coordinate deviation is considered to appear in the detection parameters. By this method, the correction value can be appropriately determined according to the operating state of the defect inspection device 100 (including the wafer) at that time. That is, it is possible to determine an appropriate correction value for the change over time in the operating state of the defect inspection device 100.
<実施の形態2>
 図11は、本開示の実施形態2に係る欠陥検査装置100が、装置の異常の予兆を診断する手順を説明するフローチャートである。本フローチャートは、予兆診断部18が実施する。欠陥検査装置100の構成は実施形態1と同じである。以下図11の各ステップを説明する。
<Embodiment 2>
FIG. 11 is a flowchart illustrating a procedure in which the defect inspection device 100 according to the second embodiment of the present disclosure diagnoses a sign of abnormality in the device. This flowchart is carried out by the predictive diagnosis unit 18. The configuration of the defect inspection device 100 is the same as that of the first embodiment. Each step of FIG. 11 will be described below.
(図11:ステップS200)
 予兆診断部18は、記憶領域部17からウェーハの保持方法や動作状態毎の欠陥ずれ量を取得する。ずれ量は、欠陥検査装置100が校正サンプルを測定することによってあらかじめ取得しておく。
(FIG. 11: Step S200)
The predictive diagnosis unit 18 acquires a wafer holding method and a defect deviation amount for each operating state from the storage area unit 17. The deviation amount is acquired in advance by the defect inspection device 100 measuring the calibration sample.
(図11:ステップS201)
 予兆診断部18は、記憶領域部17から各パラメータのずれ量を取得する。ここでいうパラメータは、S105におけるパラメータと同じものである。すなわち欠陥検査装置100が備える各センサが検出した、欠陥検査装置100の各部の状態を表すパラメータである。
(FIG. 11: Step S201)
The predictive diagnosis unit 18 acquires the amount of deviation of each parameter from the storage area unit 17. The parameters referred to here are the same as the parameters in S105. That is, it is a parameter representing the state of each part of the defect inspection device 100 detected by each sensor included in the defect inspection device 100.
(図11:ステップS202)
 予兆診断部18は、ずれ量の経時変化を表すずれ量マップを作成する。例えば1枚目のマップは時刻1におけるずれ量を表し、2枚目のマップは時刻2におけるずれ量を表す。格子点ごとにずれ量マップを作成してもよいし、全格子点のずれ量を表す1つのマップを作成してもよい。後述する図12においては後者を想定する。予兆診断部18は、パラメータの経時変化を表すパラメータマップも同様に、パラメータごとに作成する。
(FIG. 11: Step S202)
The predictive diagnosis unit 18 creates a deviation amount map showing the change with time of the deviation amount. For example, the first map represents the amount of deviation at time 1, and the second map represents the amount of deviation at time 2. A deviation amount map may be created for each grid point, or one map showing the deviation amount of all grid points may be created. The latter is assumed in FIG. 12, which will be described later. The predictive diagnosis unit 18 also creates a parameter map showing the change over time of the parameters for each parameter.
(図11:ステップS203)
 予兆診断部18は、ずれ量マップの1枚目からn枚目にわたる経時変化に基づき、n+1枚目のずれ量マップを予測する。例えば移動平均法などを用いて、n+1枚目を予測することができる。予兆診断部18は、各パラメータマップについても同様にn+1枚目を予測する。
(FIG. 11: Step S203)
The predictive diagnosis unit 18 predicts the n + 1th shift amount map based on the change with time from the first to the nth slip amount map. For example, the n + 1th sheet can be predicted by using a moving average method or the like. The predictive diagnosis unit 18 also predicts the n + 1th sheet for each parameter map.
(図11:ステップS204~S207)
 予兆診断部18は、n+1枚目のずれ量マップが閾値を超えており(S204:Yes)、かつn+1枚目のいずれかのパラメータマップが閾値を超えている(S205:Yes)場合は、n+1枚目に対応する時刻において欠陥検査装置100の異常が生じる可能性があると判定する(S206)。予兆診断部18は、その判定結果を、予兆診断結果として出力する(S207)。出力形式は、例えば画面表示、データ出力、など任意の形式でよい。
(FIG. 11: Steps S204 to S207)
The predictive diagnosis unit 18 is n + 1 when the deviation amount map of the n + 1th sheet exceeds the threshold value (S204: Yes) and any of the parameter maps of the n + 1th sheet exceeds the threshold value (S205: Yes). It is determined that an abnormality of the defect inspection device 100 may occur at the time corresponding to the first sheet (S206). The predictive diagnosis unit 18 outputs the determination result as a predictive diagnosis result (S207). The output format may be any format such as screen display and data output.
(図11:ステップS204~S205:補足)
 閾値は、あらかじめ任意に上限または下限を決めることができる。上限または下限の閾値を逸脱した場合、すなわちあらかじめ定められた正常範囲から外れた場合は異常予兆があり、上限および下限の閾値以内である場合に異常予兆なし、と診断する。
(FIG. 11: Steps S204 to S205: Supplement)
As for the threshold value, the upper limit or the lower limit can be arbitrarily determined in advance. If it deviates from the upper and lower thresholds, that is, if it deviates from the predetermined normal range, it is diagnosed that there is an abnormality sign, and if it is within the upper and lower thresholds, there is no abnormality sign.
 図12は、各マップの例を示す。図12において、ずれ量マップ500のn+1枚目が閾値を超えた。偏芯量マップ502のn+1枚目は閾値を超えていないが、光軸ずれ量マップ501のn+1枚目も閾値を超えているので、異常と判定する。パラメータマップは記憶領域部17に保存するパラメータの数に応じて増やすことができる。パラメータは対応するセンサを欠陥検査装置100に設置すれば増やすことができる。例えば、レーザのぶれ量を見たい場合は光軸センサやビームスタビライザを設け、ステージの振動を計測したい場合は加速度センサを設け、ステージの位置を計測したい場合はリニアスケールなどを設ければよい。 FIG. 12 shows an example of each map. In FIG. 12, the n + 1th sheet of the deviation amount map 500 exceeds the threshold value. The n + 1th sheet of the eccentricity map 502 does not exceed the threshold value, but the n + 1th sheet of the optical axis deviation amount map 501 also exceeds the threshold value, so that it is determined to be abnormal. The parameter map can be increased according to the number of parameters stored in the storage area portion 17. The parameters can be increased by installing the corresponding sensor in the defect inspection device 100. For example, an optical axis sensor or a beam stabilizer may be provided to see the amount of laser shake, an acceleration sensor may be provided to measure the vibration of the stage, and a linear scale may be provided to measure the position of the stage.
 予兆診断部18は、予兆診断結果を欠陥検査装置100へフィードバックする。これによりずれ量の低減を図る。例えば、光軸ずれを光学素子補正機構27でモニタすることにより、光軸ずれを補正することができる。ステージ装置20は、ウェーハの外周を検出するためのセンサやθ方向のエンコーダを備え、これによりウェーハの偏芯量を検出および補正することができる。 The predictive diagnosis unit 18 feeds back the predictive diagnosis result to the defect inspection device 100. This will reduce the amount of deviation. For example, by monitoring the optical axis deviation with the optical element correction mechanism 27, the optical axis deviation can be corrected. The stage device 20 includes a sensor for detecting the outer circumference of the wafer and an encoder in the θ direction, whereby the amount of eccentricity of the wafer can be detected and corrected.
 これらモニタやセンサは、検査時の補正に用いるが、モニタやセンサ自体が温度ドリフト等により、出力結果に誤差が生じる恐れがある。そこで、予兆診断において異常予兆ありと判定した場合、センサ自体の誤差からオフセット量を求め、検査時にはオフセットを含めて欠陥検査を実施してもよい。それにより、欠陥検出時の欠陥位置座標精度を向上することができる。すなわち図12の予兆診断結果は、欠陥検査装置100の異常を予兆することに加えて、n+1枚目においてその異常をもたらす原因パラメータを予測する意義もある。 These monitors and sensors are used for correction during inspection, but there is a risk that errors will occur in the output results due to temperature drift of the monitors and sensors themselves. Therefore, when it is determined in the sign diagnosis that there is an abnormality sign, the offset amount may be obtained from the error of the sensor itself, and the defect inspection may be performed including the offset at the time of inspection. Thereby, the defect position coordinate accuracy at the time of defect detection can be improved. That is, the predictive diagnosis result of FIG. 12 has the significance of predicting the causal parameter that causes the abnormality in the n + 1th sheet, in addition to predicting the abnormality of the defect inspection device 100.
 同様に予兆診断部18は、n枚目以前においてずれ量とパラメータが閾値を超えている場合は、その時点において欠陥検査装置100が異常であること、およびその異常をもたらしている原因パラメータを推定することができる。 Similarly, if the deviation amount and the parameter exceed the threshold value before the nth sheet, the predictive diagnosis unit 18 estimates that the defect inspection device 100 is abnormal at that time and the cause parameter causing the abnormality. can do.
<本開示の変形例について>
 本開示は、前述した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
<About a modified example of this disclosure>
The present disclosure is not limited to the embodiments described above, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present disclosure in an easy-to-understand manner, and is not necessarily limited to the one including all the configurations described. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 以上の実施形態において、格子点は正四角形状に形成されている例を示したが、格子形状はこれに限るものではない。校正サンプル上の既知の格子点における作り込み欠陥30の座標と、校正サンプルを実測することによって得られる作り込み欠陥30の座標との間の差分を補正する限りにおいて、格子形状は任意である。 In the above embodiment, the example in which the grid points are formed in a regular square shape is shown, but the grid shape is not limited to this. The grid shape is arbitrary as long as the difference between the coordinates of the built-in defect 30 at the known grid points on the calibration sample and the coordinates of the built-in defect 30 obtained by actually measuring the calibration sample is corrected.
 以上の実施形態において、校正サンプル上に第1領域と第2領域をセットすることを説明したが、第3領域以降についてもセットしてもよい。第3領域以降をセットする場合においても、各領域の格子サイズは互いに異なる。 In the above embodiment, it has been described that the first region and the second region are set on the calibration sample, but the third and subsequent regions may also be set. Even when the third and subsequent regions are set, the grid sizes of the regions are different from each other.
 以上の実施形態において、試料(または校正サンプル、以下同じ)は、試料に対して光を照射することにより試料から反射または散乱した光を検出することにより、検査することができる。いずれの場合においても本開示を適用することができる。 In the above embodiments, the sample (or calibration sample, the same applies hereinafter) can be inspected by irradiating the sample with light and detecting reflected or scattered light from the sample. The present disclosure may be applied in any case.
 以上の実施形態において、信号処理部16、予兆診断部18、コントローラ19、およびステージ制御部23は、これらの機能を実装した回路デバイスなどのハードウェアによって構成することもできるし、これらの機能を実装したソフトウェアを演算装置が実行することによって構成することもできる。 In the above embodiment, the signal processing unit 16, the predictive diagnosis unit 18, the controller 19, and the stage control unit 23 can be configured by hardware such as a circuit device that implements these functions, and these functions can be provided. It can also be configured by executing the implemented software by an arithmetic unit.
10:光源
14:検出器
16:信号処理部
20:ステージ装置
21:試料ステージ
25:センサ
100:欠陥検査装置
10: Light source 14: Detector 16: Signal processing unit 20: Stage device 21: Sample stage 25: Sensor 100: Defect inspection device

Claims (15)

  1.  試料に対して光を照射することにより前記試料が有する欠陥を検査する欠陥検査装置であって、
     前記試料を保持するステージ、
     前記試料に対して光を照射する光源、
     前記試料から散乱又は反射された前記光を検出する検出器、
     前記検出器が前記光を検出した結果を表す検出信号を用いて前記欠陥を検査する信号処理部、
     を備え、
     前記信号処理部は、格子点上にオブジェクトが形成された校正サンプルから得た前記光を前記検出器が検出した結果を表す前記検出信号を用いて、前記欠陥の座標を補正するように構成されており、
     前記信号処理部は、前記校正サンプル上の第1領域から得られる前記検出信号については、前記第1領域内における第1距離ごとに前記オブジェクトの位置を取得し、
     前記信号処理部は、前記校正サンプル上の前記第1領域とは異なる第2領域から得られる前記検出信号については、前記第2領域内における前記第1距離とは異なる第2距離ごとに前記オブジェクトの位置を取得する
     ことを特徴とする欠陥検査装置。
    A defect inspection device that inspects defects in a sample by irradiating the sample with light.
    A stage that holds the sample,
    A light source that irradiates the sample with light,
    A detector that detects the light scattered or reflected from the sample,
    A signal processing unit that inspects the defect using a detection signal representing the result of the detector detecting the light.
    Equipped with
    The signal processing unit is configured to correct the coordinates of the defect by using the detection signal representing the result of the detector detecting the light obtained from the calibration sample in which the object is formed on the grid point. And
    The signal processing unit acquires the position of the object for each first distance in the first region for the detection signal obtained from the first region on the calibration sample.
    For the detection signal obtained from the second region different from the first region on the calibration sample, the signal processing unit may use the object for each second distance different from the first distance in the second region. Defect inspection device characterized by acquiring the position of.
  2.  前記第1領域は、前記オブジェクトの座標を検出した結果が実際の前記オブジェクトの座標からずれているずれ量が、前記第2領域よりも小さい位置に配置されている
     ことを特徴とする請求項1記載の欠陥検査装置。
    Claim 1 is characterized in that the first region is arranged at a position where the deviation amount in which the result of detecting the coordinates of the object deviates from the actual coordinates of the object is smaller than that of the second region. The defect inspection device described.
  3.  前記第1領域は、
      前記ステージが回転することによって生じる前記校正サンプルのたわみ、
      前記ステージに対して前記校正サンプルを固定する固定箇所の位置、
      前記ステージが回転したときの前記校正サンプル上における回転速度差、
     のうち少なくともいずれかに起因する前記ずれ量が、前記第2領域よりも小さい位置に配置されている
    ことを特徴とする請求項2記載の欠陥検査装置。
    The first region is
    Deflection of the calibration sample caused by the rotation of the stage,
    The position of the fixing point where the calibration sample is fixed to the stage,
    The difference in rotation speed on the calibration sample when the stage rotates,
    The defect inspection apparatus according to claim 2, wherein the deviation amount caused by at least one of the two is arranged at a position smaller than that of the second region.
  4.  前記第1領域は、前記校正サンプルの表面の中心とその周辺領域に配置されており、
     前記第2領域は、前記校正サンプルの表面のうち前記第1領域を除いた領域である
     ことを特徴とする請求項2記載の欠陥検査装置。
    The first region is arranged in the center of the surface of the calibration sample and the peripheral region thereof.
    The defect inspection apparatus according to claim 2, wherein the second region is a region of the surface of the calibration sample excluding the first region.
  5.  前記第1領域は、前記校正サンプルの表面の中心を囲むように配置されており、
     前記第2領域は、前記校正サンプルの表面のうち前記第1領域によって囲まれる領域、および、前記第1領域の外側の領域である
     ことを特徴とする請求項2記載の欠陥検査装置。
    The first region is arranged so as to surround the center of the surface of the calibration sample.
    The defect inspection apparatus according to claim 2, wherein the second region is a region of the surface of the calibration sample surrounded by the first region and a region outside the first region.
  6.  前記第2領域は、前記ステージに対して前記校正サンプルが固定される箇所の周辺領域であり、
     前記第1領域は、前記校正サンプルの表面のうち前記第2領域を除いた領域である
     ことを特徴とする請求項2記載の欠陥検査装置。
    The second region is a peripheral region where the calibration sample is fixed to the stage.
    The defect inspection apparatus according to claim 2, wherein the first region is a region of the surface of the calibration sample excluding the second region.
  7.  前記第1距離は前記第2距離よりも大きい
     ことを特徴とする請求項2記載の欠陥検査装置。
    The defect inspection apparatus according to claim 2, wherein the first distance is larger than the second distance.
  8.  前記信号処理部は、前記第1領域においては、前記校正サンプル上の格子点の間隔を前記第1距離にセットすることにより、前記第1距離ごとに前記オブジェクトの位置を取得し、
     前記信号処理部は、前記第2領域においては、前記校正サンプル上の格子点の間隔を前記第2距離にセットすることにより、前記第2距離ごとに前記オブジェクトの位置を取得する
     ことを特徴とする請求項2記載の欠陥検査装置。
    In the first region, the signal processing unit acquires the position of the object for each first distance by setting the interval between the grid points on the calibration sample to the first distance.
    The signal processing unit is characterized in that, in the second region, the position of the object is acquired for each second distance by setting the interval between the grid points on the calibration sample to the second distance. 2. The defect inspection device according to claim 2.
  9.  前記第1領域においては、前記第1距離ごとに前記オブジェクトが形成されており、
     前記第2領域においては、前記第2距離ごとに前記オブジェクトが形成されている
     ことを特徴とする請求項1記載の欠陥検査装置。
    In the first region, the object is formed for each first distance.
    The defect inspection apparatus according to claim 1, wherein in the second region, the object is formed for each second distance.
  10.  前記信号処理部は、前記オブジェクトの座標を検出した結果が実際の前記オブジェクトの座標からずれているずれ量を取得し、
     前記欠陥検査装置はさらに、前記ずれ量の原因となるパラメータを検出するセンサを備え、
     前記信号処理部は、前記ずれ量と前記パラメータとの間の相関関係にしたがって、前記欠陥の座標を補正する
     ことを特徴とする請求項1記載の欠陥検査装置。
    The signal processing unit acquires the amount of deviation in which the result of detecting the coordinates of the object deviates from the actual coordinates of the object.
    The defect inspection device further includes a sensor for detecting a parameter causing the deviation amount.
    The defect inspection device according to claim 1, wherein the signal processing unit corrects the coordinates of the defect according to the correlation between the deviation amount and the parameter.
  11.  前記信号処理部は、前記欠陥の座標と、前記欠陥を囲む4つの格子点それぞれの座標との間の差分にしたがって、各前記格子点に対応する補正値を重み付け加算することにより、前記欠陥の座標を補正するための補正値を算出する
     ことを特徴とする請求項1記載の欠陥検査装置。
    The signal processing unit weights and adds the correction value corresponding to each grid point according to the difference between the coordinates of the defect and the coordinates of each of the four grid points surrounding the defect, thereby causing the defect. The defect inspection apparatus according to claim 1, wherein a correction value for correcting the coordinates is calculated.
  12.  前記欠陥検査装置はさらに、前記オブジェクトの座標を検出した結果が実際の前記オブジェクトの座標からずれているずれ量の経時変化にしたがって、前記ずれ量が閾値を超える可能性があるか否かを判定する、予兆診断部を備える
     ことを特徴とする請求項1記載の欠陥検査装置。
    The defect inspection device further determines whether or not the deviation amount may exceed the threshold value according to the time course of the deviation amount in which the result of detecting the coordinates of the object deviates from the actual coordinates of the object. The defect inspection device according to claim 1, further comprising a predictive diagnostic unit.
  13.  前記欠陥検査装置はさらに、前記ずれ量の原因となるパラメータを検出するセンサを備え、
     前記予兆診断部は、前記ずれ量の経時変化を記述したずれ量マップと、前記パラメータの経時変化を記述したパラメータマップとを作成し、
     前記予兆診断部は、前記ずれ量マップにしたがって前記ずれ量が閾値を超える可能性があるか否かを判定し、
     前記予兆診断部は、前記パラメータマップにしたがって前記パラメータが閾値を超える可能性があるか否かを判定し、
     前記予兆診断部は、前記ずれ量が閾値を超える可能性がありかつ前記パラメータが閾値を超える可能性がある場合は、前記欠陥検査装置が異常である旨を報知する
     ことを特徴とする請求項12記載の欠陥検査装置。
    The defect inspection device further includes a sensor for detecting a parameter causing the deviation amount.
    The predictive diagnosis unit creates a deviation amount map describing the change with time of the deviation amount and a parameter map describing the change with time of the parameter.
    The predictive diagnosis unit determines whether or not the deviation amount may exceed the threshold value according to the deviation amount map, and determines whether or not the deviation amount may exceed the threshold value.
    The predictive diagnosis unit determines whether or not the parameter may exceed the threshold value according to the parameter map, and determines whether or not the parameter may exceed the threshold value.
    The claim is characterized in that the predictive diagnosis unit notifies that the defect inspection device is abnormal when the deviation amount may exceed the threshold value and the parameter may exceed the threshold value. 12. The defect inspection device according to 12.
  14.  前記予兆診断部は、前記ずれ量マップが記述している前記ずれ量が前記閾値を超えており、かつ前記パラメータマップが記述している前記パラメータが前記閾値を超えている場合は、前記ずれ量の原因が前記パラメータである旨の推定結果を出力する
     ことを特徴とする請求項13記載の欠陥検査装置。
    When the deviation amount described by the deviation amount map exceeds the threshold value and the parameter described by the parameter map exceeds the threshold value, the predictive diagnostic unit has the deviation amount. 13. The defect inspection apparatus according to claim 13, wherein an estimation result indicating that the cause of the above is the parameter is output.
  15.  試料に対して光を照射することにより前記試料が有する欠陥を検査する欠陥検査方法であって、
     前記試料に対して光を照射するステップ、
     前記試料から散乱又は反射された前記光を検出するステップ、
     前記検出するステップにおいて前記光を検出した結果を表す検出信号を用いて前記欠陥を検査するステップ、
     を有し、
     前記欠陥を検査するステップにおいて、格子点上にオブジェクトが形成された校正サンプルから反射された前記光を前記検出するステップにおいて検出した結果を表す前記検出信号を用いて、前記欠陥の座標を補正し、
     前記欠陥を検査するステップにおいて、前記校正サンプル上の第1領域から得られる前記検出信号については、前記第1領域内における第1距離ごとに前記オブジェクトの位置を取得し、
     前記欠陥を検査するステップにおいて、前記校正サンプル上の前記第1領域とは異なる第2領域から得られる前記検出信号については、前記第2領域内における前記第1距離とは異なる第2距離ごとに前記オブジェクトの位置を取得する
     ことを特徴とする欠陥検査方法。
    It is a defect inspection method for inspecting a defect of the sample by irradiating the sample with light.
    The step of irradiating the sample with light,
    The step of detecting the light scattered or reflected from the sample,
    A step of inspecting the defect using a detection signal representing the result of detecting the light in the detection step.
    Have,
    In the step of inspecting the defect, the coordinates of the defect are corrected by using the detection signal representing the detection result in the step of detecting the light reflected from the calibration sample in which the object is formed on the grid point. ,
    In the step of inspecting the defect, for the detection signal obtained from the first region on the calibration sample, the position of the object is acquired for each first distance in the first region.
    In the step of inspecting the defect, the detection signal obtained from the second region different from the first region on the calibration sample is obtained for each second distance different from the first distance in the second region. A defect inspection method characterized by acquiring the position of the object.
PCT/JP2020/026882 2020-07-09 2020-07-09 Defect inspection device and defect inspection method WO2022009392A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/026882 WO2022009392A1 (en) 2020-07-09 2020-07-09 Defect inspection device and defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/026882 WO2022009392A1 (en) 2020-07-09 2020-07-09 Defect inspection device and defect inspection method

Publications (1)

Publication Number Publication Date
WO2022009392A1 true WO2022009392A1 (en) 2022-01-13

Family

ID=79552337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026882 WO2022009392A1 (en) 2020-07-09 2020-07-09 Defect inspection device and defect inspection method

Country Status (1)

Country Link
WO (1) WO2022009392A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153549A (en) * 1997-11-21 1999-06-08 Topcon Corp Surface inspection method and apparatus using the same
JP2009281836A (en) * 2008-05-21 2009-12-03 Olympus Corp Apparatus and method for substrate observation, control apparatus, and program
JP2013064632A (en) * 2011-09-16 2013-04-11 Nuflare Technology Inc Apparatus for creating positional deviation map, pattern inspection system and method for creating positional deviation map
WO2015153872A1 (en) * 2014-04-02 2015-10-08 Kla-Tencor Corporation A method, system and computer program product for generating high density registration maps for masks
JP2015203659A (en) * 2014-04-16 2015-11-16 株式会社日立ハイテクノロジーズ Inspection device
JP2019042969A (en) * 2017-08-31 2019-03-22 コニカミノルタ株式会社 Image formation apparatus and image formation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153549A (en) * 1997-11-21 1999-06-08 Topcon Corp Surface inspection method and apparatus using the same
JP2009281836A (en) * 2008-05-21 2009-12-03 Olympus Corp Apparatus and method for substrate observation, control apparatus, and program
JP2013064632A (en) * 2011-09-16 2013-04-11 Nuflare Technology Inc Apparatus for creating positional deviation map, pattern inspection system and method for creating positional deviation map
WO2015153872A1 (en) * 2014-04-02 2015-10-08 Kla-Tencor Corporation A method, system and computer program product for generating high density registration maps for masks
JP2015203659A (en) * 2014-04-16 2015-11-16 株式会社日立ハイテクノロジーズ Inspection device
JP2019042969A (en) * 2017-08-31 2019-03-22 コニカミノルタ株式会社 Image formation apparatus and image formation system

Similar Documents

Publication Publication Date Title
JP5331828B2 (en) Charged particle beam equipment
JP5793093B2 (en) Inspection apparatus and inspection method
JP4158384B2 (en) Semiconductor device manufacturing process monitoring method and system
JP3721147B2 (en) Pattern inspection device
WO2007094443A1 (en) Adjusting method, substrate treating method, substrate treating device, exposure device, inspection device, measurement inspection system, treating device, computer system, program, and information recording medium
US9019490B2 (en) Surface-defect inspection device
US8949043B2 (en) Surface inspecting apparatus and method for calibrating same
JP5780936B2 (en) Inspection device
TWI695233B (en) Calculation method, exposure method, storage medium, exposure apparatus, and method of manufacturing article
US20100081096A1 (en) Exposure apparatus and device manufacturing method
WO2022009392A1 (en) Defect inspection device and defect inspection method
JP3677263B2 (en) How to adjust the height position of the sample surface
JP5048558B2 (en) Substrate inspection method and substrate inspection apparatus
US10635005B2 (en) Exposure apparatus, method thereof, and method of manufacturing article
JP2008218259A (en) Inspection method and inspection device
US20180306733A1 (en) Inspection method
JP6121727B2 (en) Scanning electron microscope
US11062172B2 (en) Inspection apparatus and inspection method
KR102546388B1 (en) Photomask Inspection Device and Photomask Inspection Method
CN110941138B (en) Foreign matter inspection device, exposure device, and article manufacturing method
US20150138541A1 (en) Objective lens switching mechanism and inspection apparatus
KR20210138127A (en) Use absolute Z-height values for synergy between tools
JP6293024B2 (en) Sample height detection apparatus and pattern inspection system
KR20220041388A (en) Optical system calibration method
JP2014199692A (en) Disk surface inspection device and disk surface inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP