WO2022009249A1 - Slip ring and electric motor - Google Patents

Slip ring and electric motor Download PDF

Info

Publication number
WO2022009249A1
WO2022009249A1 PCT/JP2020/026316 JP2020026316W WO2022009249A1 WO 2022009249 A1 WO2022009249 A1 WO 2022009249A1 JP 2020026316 W JP2020026316 W JP 2020026316W WO 2022009249 A1 WO2022009249 A1 WO 2022009249A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding
rotating body
stator
rotor
electrode
Prior art date
Application number
PCT/JP2020/026316
Other languages
French (fr)
Japanese (ja)
Inventor
只好 上原
Original Assignee
株式会社創
株式会社アイエムアイ
ユー・ジー・ケイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社創, 株式会社アイエムアイ, ユー・ジー・ケイ株式会社 filed Critical 株式会社創
Priority to PCT/JP2020/026316 priority Critical patent/WO2022009249A1/en
Priority to JP2020560853A priority patent/JP6843365B1/en
Publication of WO2022009249A1 publication Critical patent/WO2022009249A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a slip ring that reduces wear due to rotation as much as possible and an electric motor provided with the slip ring.
  • the present invention (1) A rotating body electrode 62 provided on the rotating body 40 side, a fixed electrode 64 provided on the fixed body 12 side, a bearing 70 for rotatably holding the rotating body 40, and the bearing 70 are configured. Difference between a rolling element 706 that self-revolves with the rotation of the rotating body 40, a transmission member 72 that transmits the revolving motion of the rolling element 706, and a transmission member 72 that is connected to the transmission member 72 and rotates due to the revolving motion of the rolling element 706.
  • the rotating body electrode 62 abuts on one surface and the fixed electrode 64 abuts on the other surface.
  • a slip ring 60a, 60b having an elastic member 66 for pressing the rotating body electrode 62 or the fixed electrode 64 toward the differential rotating portions 74a, 74b with a predetermined force.
  • the sliding insulating portion 78 is located between the sliding conductors 76a and 76b, and the sliding insulating portion 78 is deformed in the elastic region of elasto-plastic deformation and pushed to the sliding conductors 76a and 76b.
  • the slip according to (1) above wherein the pressure is reduced and the sliding conductors 76a and 76b, the rotating body electrode 62 and the fixed electrode 64 are contact-conducted in a critical contact state where the pressing force is extremely small.
  • the above problems are solved by providing the rings 60a and 60b.
  • the differential rotation portion 74a has a disk shape, and the sliding conductor 76a has an arcuate end face and is arranged in a circular shape concentric with the differential rotation portion 74a, and both ends of the sliding conductor 76a are further arranged. The surfaces are exposed flush with each other on both planes of the differential rotation portion 74a.
  • the slip ring according to (2) above wherein the rotating body electrode 62 and the fixed electrode 64 form a ring shape concentric with the differential rotating portion 74a and having a radius substantially the same as that of the sliding conductor 76a.
  • the sliding conductor 76a is made of a conductive carbon plate, and has a noble metal thin film on the contact surface between the rotating body electrode 62 and the sliding conductor 76a of the fixed electrode 64.
  • the above problem is solved by providing the slip ring 60a described above.
  • the differential rotating portion 74b has a cylindrical shape, and the sliding conductor 76b has an arch shape having the same curvature as the differential rotating portion 74b and makes one round in the circumferential direction.
  • the inner peripheral surface and the outer peripheral surface of the sliding conductor 76b are flush with the inner peripheral surface and the outer peripheral surface of the differential rotating portion 74b, and the rotating body electrode 62 has an outer peripheral surface.
  • the fixed electrode 64 has an arch shape having substantially the same curvature as the inner peripheral surface of the sliding conductor 76b, and the fixed electrode 64 has an arch shape in which the inner peripheral surface has substantially the same curvature as the outer peripheral surface of the sliding conductor 76b.
  • the outer peripheral surface of the rotating body electrode 62 is in contact with the inner peripheral surface of the sliding conductor 76b, and the inner peripheral surface of the fixed electrode 64 is in contact with the outer peripheral surface of the sliding conductor 76b to conduct conduction.
  • the above problem is solved by providing the slip ring 60b according to the above (2), which is a feature.
  • the sliding conductor 76b is made of a carbon plate having conductivity, and has a noble metal thin film on the outer peripheral surface of the rotating body electrode 62 and the inner peripheral surface of the fixed electrode 64.
  • the above problem is solved by providing the slip ring 60b of the above.
  • a fixed bearing portion 12 that rotatably supports the rotor 30, a plurality of coils 42 provided on the stator 40 to rotate the rotor 30 by flowing a drive current, and the stator 40 to rotate in the same direction as the rotor 30. It has a stator rotation mechanism 46 that can be held, and When the rotation of the rotor 30 is decelerated, the rotational force of the rotor 30 is converted into the rotation of the stator 40, and the driving current is passed in the state where the stator 40 is rotated, so that the rotational force due to the driving current is obtained.
  • the coil 42 is provided between the stator 40 as a rotating body (40) and the fixed bearing portion 12 as a fixed body (12), and supplies a drive current from the fixed bearing portion 12 side to the coil 42.
  • To 80b which further comprises the slip rings 60a and 60b according to any one of (6) above, thereby solving the above-mentioned problems.
  • the differential rotating portion which is a sliding portion
  • the differential rotating portion is rotated at about 1/2 the rotation speed of the rotating body.
  • the rotation speed of the sliding portion is reduced, and wear of the sliding portion can be reduced.
  • a sliding insulating portion softer than the sliding conductor is positioned between the sliding conductors. As a result, the pressing force on the sliding conductor is received by the sliding insulating portion side, and the pressing force applied to the sliding conductor can be reduced. This makes it possible to further reduce the wear of the sliding conductor, the rotating body electrode, and the fixed electrode.
  • FIG. 1 is a schematic cross-sectional view of the slip ring 60a according to the first aspect of the present invention.
  • 2A and 2B are exploded views of the sliding portion of the slip ring 60a of the first embodiment,
  • FIG. 2A is a diagram showing the rotating body electrode 62 side, and
  • FIG. 2B is a differential rotating portion. It is a figure which shows 74a, and
  • FIG. 2C is a figure which shows the fixed electrode 64 side.
  • FIG. 3 is a schematic cross-sectional view in the lateral direction of the slip ring 60b according to the second aspect of the present invention, and FIG.
  • FIG. 4 is a schematic cross-sectional view taken along the line XX in FIG.
  • FIG. 5 is a schematic exploded perspective view of the sliding portion of the slip ring 60b of the second embodiment.
  • the wiring of the slip rings 60a and 60b to the rotating body electrode 62 and the fixed electrode 64 is shown only in FIGS. 1 and 3, and is omitted in other drawings.
  • a three-pole slip ring 60a, 60b in which three sets of a rotating body electrode 62, a fixed electrode 64, and a sliding conductor 76a, 76b are provided will be described as an example, but the slip rings 60a, 60b will be described.
  • the number of poles is not particularly limited and may be any number.
  • the slip rings 60a and 60b according to the present invention shown in FIGS. 1 to 4 rotate the rotating body electrode 62 provided on the rotating body 40 side, the fixed electrode 64 provided on the fixed body 12 side, and the rotating body 40.
  • the differential rotating portions 74a and 74b that are connected and rotate by the revolving motion of the rolling element 706, and the rotating body electrode 62 provided on the differential rotating unit 74 and abutting on one surface and the fixed electrode 64 abut on the other surface. It has sliding conductors 76a and 76b, and an elastic member 66 that presses the rotating body electrode 62 or the fixed electrode 64 toward the differential rotating portions 74a and 74b with a predetermined force.
  • the elastic member 66 may be provided on the rotating body 40 side to press the rotating body electrode 62, but from the viewpoint of stability, it is preferable to provide the elastic member 66 on the fixed body 12 side and press the fixed electrode 64. Further, elastic members 66 may be provided on both the rotating body electrode 62 and the fixed electrode 64, and the sliding conductors 76a and 76b may be pressed from both sides.
  • a general bearing 70 has an inner ring 702 and an outer ring 704, and a plurality of rolling elements 706 are rotatably inserted between the inner ring 702 and the outer ring 704. Further, the general bearing 70 has a cage 708 (retainer) that keeps the rolling elements 706 at regular intervals so as not to come into contact with each other.
  • the rolling element 706 rotates and at the same time revolves around the axis of the bearing 70. Then, the revolving motion of the rolling element 706 causes the cage 708 to rotate about the axis of the bearing 70.
  • the transmission member 72 of the present invention connects, for example, the cage 708 and the differential rotation portions 74a and 74b, and rotates the differential rotation portions 74a and 74b by the revolution motion of the rolling element 706.
  • the rotation speed of the revolving motion of the rolling element 706 (the rotation speed of the cage 708) is about 1 ⁇ 2 of the rotation speed on the rotation side. That is, in the slip rings 60a and 60b of the present invention, the rotation speed of the differential rotation portions 74a and 74b is about 1 ⁇ 2 of the rotation speed of the rotating body 40.
  • the rotation speed of the differential rotating portions 74a and 74b which are sliding portions, is about 1 ⁇ 2 of that of the rotating body 40. Therefore, it is possible to reduce the wear of the sliding portion as compared with the conventional slip ring.
  • the differential rotation portion 74a of the slip ring 60a of the first embodiment has a disk shape as shown in FIG. 2 (b).
  • a through hole 102 having a diameter larger than that of the rotating shaft may be provided at the center of the differential rotating portion 74a.
  • the sliding conductor 76a of the differential rotation portion 74a has an arcuate shape at both ends and has the same arc pillar shape as the thickness of the differential rotation portion 74a, and is installed in a circular shape concentric with the differential rotation portion 74a. Will be done.
  • a plurality of (four in this example) sliding conductors 76a forming one concentric circle form a one-pole sliding electrode.
  • an electrode hole having the same shape as the sliding conductor 76a is formed in the differential rotating portion 74a, and the sliding conductor 76a is fitted into the electrode hole and installed. preferable.
  • both end faces of the sliding conductor 76a are exposed flush with each other on both planes of the differential rotating portion 74a without any step.
  • the differential rotation portion 74b of the slip ring 60b of the second form has a cylindrical shape as shown in FIG.
  • the sliding conductor 76b provided in the differential rotation portion 74b has an arch shape having the same curvature as the differential rotation portion 74b and has the same thickness as the differential rotation portion 74b, and has the same thickness as the differential rotation portion 74b. Is installed so as to make one round in the circumferential direction. Then, a plurality of (four in this example) sliding conductors 76b that make one round in the circumferential direction form a one-pole sliding electrode.
  • an electrode hole having the same shape as the sliding conductor 76b and penetrating from the inner peripheral surface to the outer peripheral surface is drilled in the differential rotating portion 74b so as to make one round in the circumferential direction. It is preferable to insert the sliding conductor 76b into the electrode hole and install it. As a result, the inner peripheral surface and the outer peripheral surface of the sliding conductor 76b are exposed flush with each other on the inner peripheral surface and the outer peripheral surface of the differential rotating portion 74b without any step.
  • the number of the sliding conductors 76a and 76b is not particularly limited and two. Any number may be used, such as 3 or 6.
  • the portion located between the plurality of sliding conductors 76a and 76b and on the track of the rotating body electrode 62 and the fixed electrode 64 is the sliding insulating portion 78.
  • the positions of the sliding conductors 76a and 76b are aligned and the sliding insulating portions 78 are arranged in a row, but the positions of the sliding conductors 76a and 76b are aligned with each pole.
  • the sliding insulating portions 78 may be positioned at different positions.
  • the sliding conductors 76a and 76b are harder than the sliding insulating portion 78, for example , a member having a pressing force of 0.5 kg / cm 2 or less and a wear amount of almost zero is used. Further, as the sliding conductors 76a and 76b, members that are less likely to cause electrical corrosion (hereinafter referred to as electrolytic corrosion) caused by energization are used. As the material of such sliding conductors 76a and 76b, it is particularly preferable to use a conductive carbon plate (conductive carbon).
  • the sliding insulating portion 78 uses a member having a certain degree of hardness but being softer than the sliding conductors 76a and 76b. As such a material, it is particularly preferable to use a cloth-based phenol resin laminated board (baklite board). Then, when the elastic member 66 presses the fixed electrode 64 against the differential rotating portions 74a and 74b with a pressing force of, for example, 0.5 kg / cm 2 , the sliding insulating portion 78 receives this pressing force and the elastic region of elasto-plastic deformation. It is slightly deformed by, and it receives most of the pressing force and relieves it.
  • a cloth-based phenol resin laminated board baking board
  • the pressing force applied to the sliding conductors 76a and 76b is reduced, and the sliding conductors 76a and 76b are in a critical contact state where the pressing force is extremely small (a state in which contact conduction is performed with almost no pressing force applied).
  • Contact and conduct with the rotating body electrode 62 and the fixed electrode 64 As a result, wear of the sliding conductors 76a and 76b, the rotating body electrode 62, and the fixed electrode 64 can be reduced.
  • the rotating body electrode 62 and the fixed electrode 64 of the slip ring 60a of the first embodiment will be described.
  • the rotating body electrode 62 and the fixed electrode 64 of the slip ring 60a of the first embodiment are concentric with the differential rotating portion 74a and have a radius (arc) of the sliding conductor 76a. It has a ring shape having substantially the same radius as the radius of).
  • the elastic member 66 presses the fixed electrode 64 from the back surface side to the differential rotation portion 74a side with a predetermined pressure.
  • This predetermined pressure is a pressure at which the sliding conductor 76a, the rotating body electrode 62, and the fixed electrode 64 are in contact with each other in a critical contact state.
  • the surface of the rotating body electrode 62 on the differential rotating portion 74a side and one end surface of the sliding conductor 76a are contact-conducted in a critical contact state.
  • the surface of the fixed electrode 64 on the differential rotation portion 74a side and the other end surface of the sliding conductor 76a are contact-conducted in a critical contact state.
  • the rotating body electrode 62 and the fixed electrode 64 of the slip ring 60b of the second form will be described.
  • the rotating body electrode 62 of the slip ring 60b of the second form has an arch shape in which the outer peripheral surface has the same curvature as the inner peripheral surface of the sliding conductor 76b.
  • the fixed electrode 64 has an arch shape in which the inner peripheral surface has the same curvature as the outer peripheral surface of the sliding conductor 76b. Then, the rotating body electrode 62 is inserted into the cylindrical differential rotating portion 74b, and the fixed electrode 64 is arranged on the outer periphery of the differential rotating portion 74b.
  • the elastic member 66 presses the fixed electrode 64 from the outer peripheral side to the differential rotating portion 74a side on the inner peripheral side with a predetermined pressure. Further, at this time, an elastic member may be provided on the rotating body electrode 62 side as well, and the rotating body electrode 62 may be pressed from the inner peripheral side to the differential rotating portion 74a side on the outer peripheral side with a predetermined pressure.
  • the predetermined pressure is a pressure at which the sliding conductor 76b, the rotating body electrode 62, and the fixed electrode 64 are in contact with each other in a critical contact state.
  • the outer peripheral surface of the rotating body electrode 62 is in contact with the inner peripheral surface of the sliding conductor 76b in a critical contact state, and the outer peripheral surface of the sliding conductor 76b is in critical contact with the inner peripheral surface of the fixed electrode 64, respectively.
  • the differential rotating portion 74a of the rotating body electrode 62 indicated by the dots in FIG. 2A.
  • the material for this thin film it is particularly preferable to use silver, which is inexpensive, has high conductivity, and has a relatively high hardness.
  • the noble metal thin film with low electrical resistance disperses the current density on the contact surface with the sliding conductors 76a and 76b, and the presence of the noble metal thin film that is difficult to ionize prevents electrolytic corrosion on the contact surface. Therefore, the wear of the rotating body electrode 62 and the fixed electrode 64 can be further reduced.
  • the rotating body electrode 62 is applied to the differential rotating portion 74a (sliding conductor 76a: carbon plate, sliding insulating portion 78: bakelite plate) of the slip ring 60a of the first embodiment at a pressing force of 0.5 kg / cm 2.
  • the fixed electrode 64 was contact-conducted and the differential rotating portion 74a was rotated for 1000 hr at about 3000 rpm, the amount of wear of the sliding conductors 76a and 76b was 5 ⁇ m or less, and almost no wear was observed.
  • the resistance value between the rotating body electrode 62 and the fixed electrode 64 sandwiching the sliding conductor 76a was 10 m ⁇ or less when the differential rotating portion 74a was stopped, and was maintained at 100 m ⁇ or less even when the differential rotating portion 74a was rotated.
  • the rotating body electrode 62 and the fixed electrode 64 are conductive via the sliding conductors 76a and 76b provided in the differential rotating portions 74a and 74b.
  • the rotating body 40 and the fixed body 12 are electrically connected to each other, and power is supplied and electric signals are transmitted via the slip rings 60a and 60b.
  • the elastic member 66 presses the fixed electrode 64 toward the differential rotation portions 74a and 74b with an appropriate pressing force.
  • the sliding insulating portion 78 is elasto-plastically deformed to receive most of the pressing force, and the rotating body electrode 62 and the fixed electrode 64 and the sliding conductors 76a and 76b are in contact with each other by critical contact where almost no pressing force is applied. Conducts.
  • the rotating body electrode 62 rotates and the rolling element 706 of the bearing 70 revolves on its own, and the revolving motion of the rolling body 706 is transmitted to the differential rotating portions 74a and 74b by the transmission member 72. do.
  • the differential rotation portions 74a and 74b rotate in the same direction as the rotating body 40 at a rotation speed of about 1 ⁇ 2 of the rotating body 40.
  • the sliding conductors 76a and 76b rotate and slide with respect to the fixed electrode 64 at a rotation speed of about 1 ⁇ 2 of the rotating body 40 while maintaining the conduction state with the fixed electrode 64.
  • the rotating body electrode 62 rotates and slides with respect to the sliding conductors 76a and 76b at a rotation speed of about 1/2 of that of the rotating body 40 while maintaining the conduction state with the sliding conductors 76a and 76b.
  • the electrical connection between the rotating body 40 and the fixed body 12 is well maintained, and power supply and electric signal transmission via the slip rings 60a and 60b are continuously performed.
  • the slip rings 60a and 60b according to the present invention since the differential rotating portions 74a and 74b are rotated by about 1/2 of the rotating body 40, the wear of the sliding portion can be reduced by that amount. .. Further, the slip rings 60a and 60b according to the present invention contact and conduct the rotating body electrode 62 and the fixed electrode 64 and the sliding conductors 76a and 76b by critical contact where almost no pressing force is applied. Therefore, the wear of the sliding portion can be further reduced.
  • the slip rings 60a and 60b of the present invention are applied to the motors 80a and 80b described in [Patent Document 1].
  • the slip rings 60a and 60b according to the present invention are not limited to the application to the motors 80a and 80b described in [Patent Document 1], and are not limited to the application to the motors 80a and 80b described in [Patent Document 1].
  • And other well-known rotating bodies are not limited to the motors 80a and 80b described in [Patent Document 1].
  • slip ring 60a of the first form is applied to the electric motor 80a of the first form and the slip ring 60b of the second form is applied to the electric motor 80b of the second form is used.
  • the combination is not particularly limited, and the slip ring 60b of the second form is applied to the electric motor 80a of the first form, and the slip ring 60a of the first form is applied to the electric motor 80b of the second form. It doesn't matter.
  • the electric motors 80a and 80b according to the present invention shown in FIGS. 7 and 8 are located outside the output shaft 10 for transmitting the rotational force to the driven body M, the rotor 30 fixed to the output shaft 10, and the rotor 30.
  • stator rotation mechanism 46 that rotatably holds the stator 40 in the same direction as the rotor 30, a bearing 70 that rotatably supports the stator 40 with respect to the fixed bearing portion 12, and slip rings 60a and 60b of the present invention.
  • the slip rings 60a and 60b of the present invention are provided between the stator 40 as a rotating body (40) and the fixed bearing portion 12 as a fixed body (12), and drive a current from the fixed bearing portion 12 side. It has a function of supplying to the coil 42 provided in the stator 40.
  • the bearing 70 corresponds to the bearing 70 of the slip rings 60a and 60b.
  • the driven body M is a wheel or a deceleration mechanism for rotating the wheel.
  • the rotor 30 (output shaft 10) is rotatably supported by the fixed bearing portion 12, and a reverse rotation preventing means 16 is provided between the rotor 30 (output shaft 10) and the fixed bearing portion 12.
  • a reverse rotation preventing means 16 is provided between the rotor 30 (output shaft 10) and the fixed bearing portion 12.
  • the rotor 30 and the fixed bearing portion 12 are fixed to prevent the rotor 30 from rotating.
  • stator rotation mechanism 46 that holds the stator 40 has a bearing portion 46a such as a well-known bearing that rotatably supports the rotor 30 with respect to the stator 40, and the stator 40 is in the direction opposite to the rotation direction of the rotor 30. It is mainly composed of a reverse rotation preventing means 46b that regulates rotation.
  • a well-known member such as a one-way clutch or an electromagnetic clutch may be used, or a ratchet gear 50 fixed to the fixed bearing portion 12 and a ratchet fixed to the rotor 30 side or the stator 40 side. It has a claw portion 52 urged to the side of the gear 50, and the claw portion 52 slides on the ratchet gear 50 to rotate in the forward rotation, and allows rotation in this direction, and also allows the claw portion to rotate in the reverse direction.
  • the claw portion 52 meshes with the ratchet gear 50 to prevent rotation in this direction, and when the rotor 30 or the stator 40 exceeds a predetermined rotation speed, the claw portion 52 rotates outward due to centrifugal force to separate from the ratchet gear 50. You may use it. In this configuration, when the rotor 30 or the stator 40 is rotating at high speed, the claw portion 52 and the ratchet gear 50 are separated from each other and become non-contact, so that frictional resistance and vibration can be prevented from occurring.
  • the electric machine 80a of the first embodiment shown in FIG. 7 is an electric motor operated by a direct current, has a plurality of coils 42 functioning as armatures on the stator 40 side, and has a field magnet as a field portion on the rotor 30 side. It has a plurality of magnets 32.
  • the coil 42 of the stator 40 is provided with a magnetic core in the winding core, and a plurality of coils 42, for example, 36, are arranged at regular intervals in the circumferential direction.
  • two rotor disks 34 are fixed to the rotor 30 of the motor 80a so as to sandwich the coil 42 on the stator 40 side, and a plurality of field magnets 32 are placed inside the rotor disk 34 to coil the stator 40 side. It is fixed at equal intervals so as to face the magnetic core of 42.
  • the field magnet 32 is a permanent magnet for forming a field magnetic flux with respect to the coil 42 to rotate the rotor 30, so that the adjacent magnetic poles are reversed along the circumferential direction, that is, the N pole and the S pole. Are arranged so as to appear alternately.
  • the field magnet 32 a metal magnet or a sintered magnet may be used, but it is particularly preferable to use a rare earth magnet such as a neodymium magnet having a large magnetic force.
  • a rare earth magnet such as a neodymium magnet having a large magnetic force.
  • six pairs of field magnets 32 are provided so as to sandwich the coils 42, for example.
  • the position information acquisition means 18 for acquiring the relative position of the field magnet 32 with respect to the coil 42 and the rotation speed of the output shaft 10 (rotor 30) are input to the electric motor 80a, and the position information from the position information acquisition means 18 is input. Based on this, a control unit (not shown) that controls the flow direction of the drive current to the coil 42 is provided.
  • the position information acquisition means 18 is not particularly limited, and any known position sensor, a well-known magnetic position detector such as a resolver type angle measuring device, a well-known optical position detector, or the like may be used.
  • the position information acquisition means 18 includes a coil position information acquisition means that acquires the absolute position of the coil 42 and a magnet position information acquisition means that acquires the absolute position of the field magnet 32. May be provided individually, and the control unit or the like may calculate the relative position of the coil 42 from the absolute position of the coil 42 and the absolute position of the field magnet 32.
  • a slit plate 18a that rotates together with the rotor 30 and has an opening formed at a predetermined position, and a light emitting element 18b that is fixed to the stator 40 and installed across the opening of the slit plate 18a.
  • An example of using an optical position detecting means having the light receiving element 18b' is shown.
  • the relative position between the coil 42 and the field magnet 32 is based on the light receiving signal when the light of the light emitting element 18b reaches the light receiving element 18b'through the opening of the slit plate 18a.
  • the control unit performs a rotation operation requested by a higher-level control device or the like based on the relative position of the rotor 30 (field magnet 32) with respect to the stator 40 (coil 42) and the rotation speed of the output shaft 10 (rotor 30).
  • the current value and the flow direction of the drive current flowing down to each coil 42 are controlled so as to perform the above.
  • this drive current is supplied from the fixed bearing portion 12 side to each fixed electrode 64 of the slip ring 60a (60b), and is transmitted to the rotating body electrode 62 on the stator 40 side via the sliding conductor 76a (76b). Ru. Then, the rotor 30 flows down to the coil 42 connected to the rotating body electrode 62, and the rotor 30 rotates at the torque and the rotation speed instructed by the control unit.
  • the electric motor 80b of the second form is an electric motor operated by an alternating current.
  • the rotor 30 of the electric motor 80b has, for example, a rotor core 36 in which an electromagnetic steel sheet is bonded in a cylindrical shape.
  • a plurality of coils 42 having a magnetic core are installed inside the stator 40 facing the rotor core 36 so that the magnetic core faces the rotor core 36 side.
  • the coils 42 corresponding to each of the U-phase, V-phase, and W-phase are arranged in order.
  • the slip ring 60b (60a) transmits alternating currents of U-phase, V-phase, and W-phase from the fixed bearing portion 12 side via the fixed electrode 64, the sliding conductor 76b (76a), and the rotating body electrode 62, and the stator 40. It is supplied to the coil 42 on the side. Then, the alternating currents of the U phase, the V phase, and the W phase supplied via the slip ring 60b (60a) flow down to the respective coils 42 in order, so that the magnetic field formed by the coils 42 rotates, and this rotation occurs. An eddy current flows down the rotor core 36 due to the magnetic field, and a Lorentz force acts to rotate the rotor 30.
  • FIG. 9A is a schematic NT diagram in which the horizontal axis is the rotation speed N of the output shaft 10 and the vertical axis is the torque T of the output shaft 10, and FIG. 9B is a rotor 30.
  • FIG. 9B is a rotor 30.
  • the change in the rotation speed of the stator 40 it is a figure which shows these change schematically by a straight line.
  • the control unit applies a current in the reverse rotation direction to the coil 42 via the slip rings 60a and 60b in a state where the reverse rotation prevention means 16 prevents the reverse rotation of the rotor 30. do.
  • a force acts on the rotor 30 in the reverse rotation direction, but since the reverse rotation of the rotor 30 is prevented as described above, the force generated in the rotor 30 acts as a reaction force and acts on the stator 40. As a result, the stator 40 rotates in the forward direction.
  • the control unit performs the rotor 30.
  • a drive current that causes the rotor 30 to rotate in the forward direction is caused to flow down to the coil 42 via the slip rings 60a and 60b.
  • a DC current that does not interfere with the operation of the motor 80b is superimposed on the drive current via the slip rings 60a and 60b and flows down.
  • the rotor 30 and the stator 40 are magnetically coupled, and the rotor 30 starts rotating in the same direction (forward direction) due to the rotational force of the stator 40.
  • a drive current that rotates the rotor 30 in the forward direction flows down to the coil 42, so that the drive current also causes the rotor 30 to rotate in the forward direction.
  • the rotor 30 rotates at a torque T 0 that is a combination of the torque Tw generated by the supply power Kw of the drive current and the torque generated by the rotational force Ki of the stator 40. Operate.
  • FIG. 9 shows a configuration for limiting a torque T 0 the torque of the rotor 30 in FIG. 9 (a).
  • the rotational force Ki of the stator 40 mainly rotates the rotor 30, and the surplus shown by the broken line in FIG. 9A becomes a current component and is supplemented with the drive current. Therefore, the power supply from the power source can be reduced accordingly.
  • All the supply power Kw can be used for the outputs N and T of the rotor 30.
  • a counter electromotive force Ke is generated, and a loss with respect to the outputs N and T occurs for the first time.
  • the rotation speed Nc of the rotor 30 is the rotation speed Nm of the stator 40. No loss due to the back electromotive force Ke occurs until it exceeds. Therefore, the outputs N and T can be maintained without increasing the supply power Kw in the region where high torque at the initial stage of rotation of the rotor 30 is required.
  • the electric motor 80a according to the present invention, 80b is for using a rotational force Ki of the stator 40 in the rotation of the rotor 30, be rotated operate at high torque T 0 than the torque Tw generated by only conventional supply power Kw can.
  • the torque T 0 is twice the torque Tw
  • the stator does not rotate and rotates only with the supply power Kw. It is possible to obtain an output NT that is four times higher in calculation than a conventional motor in which a loss due to the countercurrent force Ke is generated.
  • the rotational force Ki of the stator 40 acts to rotate the rotor 30 in the same manner as in the previous operation.
  • the electric motors 80a and 80b according to the present invention accumulate the rotational force of the rotor 30 as the rotational force of the stator 40 with the kinetic energy at the time of braking or the like, and the rotational force of the stator 40 at the time of restarting or the like. Is used for the rotation of the rotor 30 with the kinetic energy. Therefore, the energy loss is small, and the kinetic energy of the rotor 30 and the stator 40 can be fully utilized.
  • the slip rings 60a and 60b according to the present invention and the electric motors 80a and 80b provided with the slip rings 60a and 60b are the differential rotating portions 74a, which are sliding portions by utilizing the revolving motion of the bearing 70.
  • the 74b is rotated at about 1/2 the rotation speed of the rotating body 40.
  • the one-pole sliding electrode is composed of a plurality of sliding conductors 76a, 76b, and is slid in the gap between the sliding conductors 76a, 76b.
  • the sliding insulation portion 78 which is softer than the dynamic conductors 76a and 76b, is positioned. As a result, the pressing force on the sliding conductors 76a and 76b is received by the sliding insulating portion 78 side, the pressing force applied to the sliding conductors 76a and 76b is reduced, and the pressing force is extremely small.
  • the conductors 76a and 76b can be contact-conducted with the rotating body electrode 62 and the fixed electrode 64. As a result, the wear of the sliding conductors 76a and 76b, the rotating body electrode 62, and the fixed electrode 64 can be further reduced.
  • the configurations of the slip rings 60a and 60b shown in this example are examples, and the shape, dimensions, mechanism, design, number, etc. of each part may be changed and implemented without departing from the gist of the present invention. It is possible.
  • Output shaft 12 Fixed body (fixed bearing part) 30 Rotor 40 Rotating body (stator) 42 Coil 60a, 60b Slip ring 62 Rotating body electrode 64 Fixed electrode 66 Elastic member 70 Bearing 72 Transmission member 74a, 74b Differential rotating part 76a, 76b Sliding conductor 78 Sliding insulation part 80a, 80b Motor 706 Rolling element M Drive

Abstract

[Problem] Provided are a slip ring in which wear due to rotation is reduced as much as possible and an electric motor equipped with the slip ring. [Solution] The slip ring 60a, 60b and electric motor 80a, 80b rotate, at a rotational speed of about a half of that of a rotating body 40, a differential rotation portion 74a, 74b that is a sliding portion. This reduces the virtual rotational speed of the sliding portion, thereby enabling the reduction in the wear of the sliding portion. Further, the slip ring 60a, 60b and the electric motor 80a, 80b position a sliding insulating portion 78 softer than a sliding conducting body 76a, 76b in the gap of the sliding conducting body 76a, 76b. This allows pressing force against the sliding conducting body 76a, 76b to be received on the sliding insulating portion 78 side, thereby enabling the reduction in the pressing force acting on the sliding conducting body 76a, 76b. This makes it possible to further reduce the wear of the sliding conducting body 76a, 76b, a rotating body electrode 62, and a fixed electrode 64.

Description

スリップリング及び電動機Slip rings and motors
 本発明は、回転による摩耗を極力低減したスリップリング及びそのスリップリングを備えた電動機に関するものである。 The present invention relates to a slip ring that reduces wear due to rotation as much as possible and an electric motor provided with the slip ring.
 近年、二酸化炭素の排出量削減の観点から内燃機関と電動機を併用するハイブリッド車や電気自動車の普及が顕著である。このようなハイブリッド車や電気自動車は電力により車輪を回転する大出力の電動機(モータ)を駆動源として有している。このため、これら電動機に対しては更なる高効率、高出力が要求されている。ここで、本願発明者らは電動機のステータを回転させ、このステータの回転力をロータの回転に用いることで高出力が可能な下記[特許文献1]に記載の発明を行った。 In recent years, from the viewpoint of reducing carbon dioxide emissions, the spread of hybrid vehicles and electric vehicles that use both internal combustion engines and electric motors has been remarkable. Such hybrid vehicles and electric vehicles have a high-power electric motor (motor) that rotates wheels by electric power as a drive source. Therefore, higher efficiency and higher output are required for these motors. Here, the inventors of the present application have made the invention described in the following [Patent Document 1], which enables high output by rotating the stator of the electric motor and using the rotational force of the stator for the rotation of the rotor.
国際公開第2020/075334号パンフレットInternational Publication No. 2020/07534 Pamphlet
 しかしながら、[特許文献1]に記載の電動機はステータも回転する。よって、回転するステータのコイルに駆動電流を流すためには、回転体に対し電気的な接続を維持するスリップリングの使用が必要となる。ただし、特に自動車用の電動機では回転体の回転数も高くなるため、スリップリングの摺動部の摩耗が大きいという問題点がある。本発明は上記事情に鑑みてなされたものであり、回転による摩耗を極力低減したスリップリング及びそのスリップリングを備えた電動機の提供を目的とする。 However, in the motor described in [Patent Document 1], the stator also rotates. Therefore, in order to pass the drive current through the coil of the rotating stator, it is necessary to use a slip ring that maintains an electrical connection to the rotating body. However, especially in an electric motor for an automobile, the number of rotations of the rotating body is high, so that there is a problem that the sliding portion of the slip ring is heavily worn. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a slip ring in which wear due to rotation is reduced as much as possible and an electric motor provided with the slip ring.
 本発明は、
(1)回転体40側に設けられた回転体電極62と、固定体12側に設けられた固定電極64と、前記回転体40を回転可能に保持するベアリング70と、前記ベアリング70を構成し前記回転体40の回転に伴って自公転する転動体706と、前記転動体706の公転運動を伝達する伝達部材72と、前記伝達部材72と接続し前記転動体706の公転運動により回転する差動回転部74a、74bと、前記差動回転部74a、74bに設けられ一方の面に前記回転体電極62が当接し他方の面に前記固定電極64が当接する摺動導電体76a、76bと、前記回転体電極62もしくは前記固定電極64を前記差動回転部74a、74bの側に所定の力で押圧する弾性部材66と、を有することを特徴とするスリップリング60a、60bを提供することにより、上記課題を解決する。
(2)摺動導電体76a、76bの間に摺動絶縁部78が位置し、前記摺動絶縁部78が弾塑性変形の弾性領域で変形して前記摺動導電体76a、76bへの押圧力を低減し、前記摺動導電体76a、76bと前記回転体電極62と前記固定電極64とを押圧力が極めて小さい臨界接触状態で接触導通させることを特徴とする上記(1)記載のスリップリング60a、60bを提供することにより、上記課題を解決する。
(3)差動回転部74aがディスク状を呈し、摺動導電体76aは端面が円弧状であり前記差動回転部74aと同心の円状に配置され、さらに前記摺動導電体76aの両端面が前記差動回転部74aの両平面にそれぞれ面一で露出し、
回転体電極62と固定電極64とが前記差動回転部74aと同心で前記摺動導電体76aと略同一の半径を有するリング状を呈することを特徴とする上記(2)に記載のスリップリング60aを提供することにより、上記課題を解決する。
(4)摺動導電体76aが導電性を有する炭素板で構成され、回転体電極62と固定電極64の前記摺動導電体76aとの接触面に貴金属薄膜を有することを特徴とする上記(3)記載のスリップリング60aを提供することにより、上記課題を解決する。
(5)差動回転部74bが円筒形状を呈するとともに、摺動導電体76bが前記差動回転部74bと同一の曲率のアーチ形状を呈して前記差動回転部74bを周方向に1周するように配置され、さらに前記摺動導電体76bの内周面と外周面とが前記差動回転部74bの内周面と外周面とに面一で露出し、回転体電極62は外周面が前記摺動導電体76bの内周面と略同一の曲率を有するアーチ状を呈し、固定電極64は内周面が前記摺動導電体76bの外周面と略同一の曲率を有するアーチ状を呈し、前記回転体電極62の外周面が前記摺動導電体76bの内周面と接触し、前記固定電極64の内周面が前記摺動導電体76bの外周面と接触して導通することを特徴とする上記(2)に記載のスリップリング60bを提供することにより、上記課題を解決する。
(6)摺動導電体76bが導電性を有する炭素板で構成され、回転体電極62の外周面と固定電極64の内周面とに貴金属薄膜を有することを特徴とする上記(5)記載のスリップリング60bを提供することにより、上記課題を解決する。
(7)被駆動体Mに回転力を伝達する出力軸10と、前記出力軸10に固定したロータ30と、前記ロータ30の外側に位置するステータ40と、前記出力軸10と前記ステータ40とを回転可能に軸支する固定軸受部12と、前記ステータ40に設けられ駆動電流が流れることで前記ロータ30を回転させる複数のコイル42と、前記ステータ40を前記ロータ30と同一の方向に回転可能に保持するステータ回転機構46と、を有し、
前記ロータ30の回転が減速する際に前記ロータ30の回転力を前記ステータ40の回転に変換し、前記ステータ40を回転させた状態で前記駆動電流を流すことで、前記駆動電流による回転力に前記ステータ40の回転力を加えて前記ロータ30を回転させる電動機において、
回転体(40)としての前記ステータ40と固定体(12)としての前記固定軸受部12との間に設けられ、前記固定軸受部12側からの駆動電流を前記コイル42に供給する上記(1)乃至上記(6)のいずれかに記載のスリップリング60a、60bをさらに有することを特徴とする電動機80a、80bを提供することにより、上記課題を解決する。
The present invention
(1) A rotating body electrode 62 provided on the rotating body 40 side, a fixed electrode 64 provided on the fixed body 12 side, a bearing 70 for rotatably holding the rotating body 40, and the bearing 70 are configured. Difference between a rolling element 706 that self-revolves with the rotation of the rotating body 40, a transmission member 72 that transmits the revolving motion of the rolling element 706, and a transmission member 72 that is connected to the transmission member 72 and rotates due to the revolving motion of the rolling element 706. With the dynamic rotating portions 74a and 74b and the sliding conductors 76a and 76b provided on the differential rotating portions 74a and 74b, the rotating body electrode 62 abuts on one surface and the fixed electrode 64 abuts on the other surface. Provided are a slip ring 60a, 60b having an elastic member 66 for pressing the rotating body electrode 62 or the fixed electrode 64 toward the differential rotating portions 74a, 74b with a predetermined force. To solve the above problems.
(2) The sliding insulating portion 78 is located between the sliding conductors 76a and 76b, and the sliding insulating portion 78 is deformed in the elastic region of elasto-plastic deformation and pushed to the sliding conductors 76a and 76b. The slip according to (1) above, wherein the pressure is reduced and the sliding conductors 76a and 76b, the rotating body electrode 62 and the fixed electrode 64 are contact-conducted in a critical contact state where the pressing force is extremely small. The above problems are solved by providing the rings 60a and 60b.
(3) The differential rotation portion 74a has a disk shape, and the sliding conductor 76a has an arcuate end face and is arranged in a circular shape concentric with the differential rotation portion 74a, and both ends of the sliding conductor 76a are further arranged. The surfaces are exposed flush with each other on both planes of the differential rotation portion 74a.
The slip ring according to (2) above, wherein the rotating body electrode 62 and the fixed electrode 64 form a ring shape concentric with the differential rotating portion 74a and having a radius substantially the same as that of the sliding conductor 76a. By providing 60a, the above problem is solved.
(4) The sliding conductor 76a is made of a conductive carbon plate, and has a noble metal thin film on the contact surface between the rotating body electrode 62 and the sliding conductor 76a of the fixed electrode 64. 3) The above problem is solved by providing the slip ring 60a described above.
(5) The differential rotating portion 74b has a cylindrical shape, and the sliding conductor 76b has an arch shape having the same curvature as the differential rotating portion 74b and makes one round in the circumferential direction. Further, the inner peripheral surface and the outer peripheral surface of the sliding conductor 76b are flush with the inner peripheral surface and the outer peripheral surface of the differential rotating portion 74b, and the rotating body electrode 62 has an outer peripheral surface. The fixed electrode 64 has an arch shape having substantially the same curvature as the inner peripheral surface of the sliding conductor 76b, and the fixed electrode 64 has an arch shape in which the inner peripheral surface has substantially the same curvature as the outer peripheral surface of the sliding conductor 76b. The outer peripheral surface of the rotating body electrode 62 is in contact with the inner peripheral surface of the sliding conductor 76b, and the inner peripheral surface of the fixed electrode 64 is in contact with the outer peripheral surface of the sliding conductor 76b to conduct conduction. The above problem is solved by providing the slip ring 60b according to the above (2), which is a feature.
(6) The above-mentioned (5), wherein the sliding conductor 76b is made of a carbon plate having conductivity, and has a noble metal thin film on the outer peripheral surface of the rotating body electrode 62 and the inner peripheral surface of the fixed electrode 64. The above problem is solved by providing the slip ring 60b of the above.
(7) An output shaft 10 that transmits a rotational force to the driven body M, a rotor 30 fixed to the output shaft 10, a stator 40 located outside the rotor 30, the output shaft 10 and the stator 40. A fixed bearing portion 12 that rotatably supports the rotor 30, a plurality of coils 42 provided on the stator 40 to rotate the rotor 30 by flowing a drive current, and the stator 40 to rotate in the same direction as the rotor 30. It has a stator rotation mechanism 46 that can be held, and
When the rotation of the rotor 30 is decelerated, the rotational force of the rotor 30 is converted into the rotation of the stator 40, and the driving current is passed in the state where the stator 40 is rotated, so that the rotational force due to the driving current is obtained. In the electric motor that rotates the rotor 30 by applying the rotational force of the stator 40,
The coil 42 is provided between the stator 40 as a rotating body (40) and the fixed bearing portion 12 as a fixed body (12), and supplies a drive current from the fixed bearing portion 12 side to the coil 42. ) To 80b, which further comprises the slip rings 60a and 60b according to any one of (6) above, thereby solving the above-mentioned problems.
 本発明に係るスリップリング及び電動機は、摺動部である差動回転部を回転体の約1/2の回転数で回転させる。これにより、摺動部分の回転速度が低下し、摺動部の摩耗の低減を図ることができる。また、本発明に係るスリップリング及び電動機は、摺動導電体の間に摺動導電体よりも柔らかい摺動絶縁部を位置させる。これにより、摺動導電体への押圧力は摺動絶縁部側が受けて、摺動導電体に掛かる押圧力が低減することができる。これにより、摺動導電体、回転体電極、固定電極の摩耗をさらに低減することができる。 In the slip ring and the electric motor according to the present invention, the differential rotating portion, which is a sliding portion, is rotated at about 1/2 the rotation speed of the rotating body. As a result, the rotation speed of the sliding portion is reduced, and wear of the sliding portion can be reduced. Further, in the slip ring and the electric motor according to the present invention, a sliding insulating portion softer than the sliding conductor is positioned between the sliding conductors. As a result, the pressing force on the sliding conductor is received by the sliding insulating portion side, and the pressing force applied to the sliding conductor can be reduced. This makes it possible to further reduce the wear of the sliding conductor, the rotating body electrode, and the fixed electrode.
本発明に係る第1の形態のスリップリングの模式的な断面図である。It is a schematic cross-sectional view of the slip ring of the 1st aspect which concerns on this invention. 本発明に係る第1の形態のスリップリングの摺動部の分解図である。It is an exploded view of the sliding part of the slip ring of the 1st aspect which concerns on this invention. 本発明に係る第2の形態のスリップリングの模式的な断面図である。It is a schematic cross-sectional view of the slip ring of the 2nd aspect which concerns on this invention. 本発明に係る第2の形態のスリップリングの模式的なX-X断面図である。It is a schematic XX sectional view of the slip ring of the 2nd aspect which concerns on this invention. 本発明に係る第2の形態のスリップリングの摺動部の分解斜視図である。It is an exploded perspective view of the sliding part of the slip ring of the 2nd aspect which concerns on this invention. 一般的なベアリングの構成を説明する図である。It is a figure explaining the structure of a general bearing. 本発明に係る第1の形態の電動機の模式的な断面図である。It is a schematic cross-sectional view of the electric motor of the 1st aspect which concerns on this invention. 本発明に係る第2の形態の電動機の模式的な断面図である。It is a schematic cross-sectional view of the electric motor of the 2nd aspect which concerns on this invention. 本発明に係る電動機のN-T線図及び回転速度の変化を模式的に示した図である。It is a figure which shows the NT diagram and the change of the rotation speed of the electric motor which concerns on this invention schematically.
 本発明に係るスリップリング及びこのスリップリングを備えた電動機の実施の形態について図面に基づいて説明する。ここで、図1は本発明に係る第1の形態のスリップリング60aの模式的な断面図である。また、図2は第1の形態のスリップリング60aの摺動部分の分解図であり、図2(a)は回転体電極62側を示す図であり、図2(b)は差動回転部74aを示す図であり、図2(c)は固定電極64側を示す図である。また、図3は本発明に係る第2の形態のスリップリング60bの横方向の模式的な断面図であり、図4は図3における模式的なX-X断面図である。また、図5は第2の形態のスリップリング60bの摺動部分の模式的な分解斜視図である。尚、スリップリング60a、60bの回転体電極62、固定電極64に対する配線に関しては図1、図3にのみ図示し、他の図では省略する。また、ここでは回転体電極62、固定電極64、摺動導電体76a、76bがそれぞれ3組ずつ設けられた3極のスリップリング60a、60bを例に説明を行うが、スリップリング60a、60bの極数には特に限定は無く何極としても良い。 An embodiment of a slip ring according to the present invention and an electric motor provided with the slip ring will be described with reference to the drawings. Here, FIG. 1 is a schematic cross-sectional view of the slip ring 60a according to the first aspect of the present invention. 2A and 2B are exploded views of the sliding portion of the slip ring 60a of the first embodiment, FIG. 2A is a diagram showing the rotating body electrode 62 side, and FIG. 2B is a differential rotating portion. It is a figure which shows 74a, and FIG. 2C is a figure which shows the fixed electrode 64 side. Further, FIG. 3 is a schematic cross-sectional view in the lateral direction of the slip ring 60b according to the second aspect of the present invention, and FIG. 4 is a schematic cross-sectional view taken along the line XX in FIG. Further, FIG. 5 is a schematic exploded perspective view of the sliding portion of the slip ring 60b of the second embodiment. The wiring of the slip rings 60a and 60b to the rotating body electrode 62 and the fixed electrode 64 is shown only in FIGS. 1 and 3, and is omitted in other drawings. Further, here, a three- pole slip ring 60a, 60b in which three sets of a rotating body electrode 62, a fixed electrode 64, and a sliding conductor 76a, 76b are provided will be described as an example, but the slip rings 60a, 60b will be described. The number of poles is not particularly limited and may be any number.
 先ず、本発明に係るスリップリング60a、60bに共通する構成を説明する。図1~図4に示す本発明に係るスリップリング60a、60bは、回転体40側に設けられた回転体電極62と、固定体12側に設けられた固定電極64と、回転体40を回転可能に保持するベアリング70と、このベアリング70を構成し回転体40の回転に伴って自公転する転動体706と、この転動体706の公転運動を伝達する伝達部材72と、この伝達部材72と接続し転動体706の公転運動により回転する差動回転部74a、74bと、この差動回転部74に設けられ一方の面に回転体電極62が当接し他方の面に固定電極64が当接する摺動導電体76a、76bと、回転体電極62もしくは固定電極64を差動回転部74a、74bの側に所定の力で押圧する弾性部材66と、を有している。尚、弾性部材66は回転体40側に設け回転体電極62を押圧するようにしても良いが、安定性の観点から固定体12側に設けて固定電極64を押圧することが好ましい。また、回転体電極62、固定電極64の双方に弾性部材66を設け、両側から摺動導電体76a、76bを押圧するようにしても良い。 First, a configuration common to the slip rings 60a and 60b according to the present invention will be described. The slip rings 60a and 60b according to the present invention shown in FIGS. 1 to 4 rotate the rotating body electrode 62 provided on the rotating body 40 side, the fixed electrode 64 provided on the fixed body 12 side, and the rotating body 40. A bearing 70 that can be held, a rolling element 706 that constitutes the bearing 70 and self-revolves with the rotation of the rotating body 40, a transmission member 72 that transmits the revolving motion of the rolling element 706, and the transmission member 72. The differential rotating portions 74a and 74b that are connected and rotate by the revolving motion of the rolling element 706, and the rotating body electrode 62 provided on the differential rotating unit 74 and abutting on one surface and the fixed electrode 64 abut on the other surface. It has sliding conductors 76a and 76b, and an elastic member 66 that presses the rotating body electrode 62 or the fixed electrode 64 toward the differential rotating portions 74a and 74b with a predetermined force. The elastic member 66 may be provided on the rotating body 40 side to press the rotating body electrode 62, but from the viewpoint of stability, it is preferable to provide the elastic member 66 on the fixed body 12 side and press the fixed electrode 64. Further, elastic members 66 may be provided on both the rotating body electrode 62 and the fixed electrode 64, and the sliding conductors 76a and 76b may be pressed from both sides.
 次に、スリップリング60a、60bのベアリング70と伝達部材72に関して説明を行う。先ず、一般的なベアリング70は図6に示すように、内輪702と外輪704とを有しており、この内輪702と外輪704の間に複数の転動体706が回転可能に挿入している。また、一般的なベアリング70は転動体706同士が接触しないように一定の間隔に保つ保持器708(リテーナ)を有する。ここで、例えば内輪702が回転すると、転動体706は自転すると同時にベアリング70の軸心を中心に公転運動する。そして、この転動体706の公転運動により保持器708はベアリング70の軸心を中心に回転する。本願発明の伝達部材72は例えばこの保持器708と差動回転部74a、74bとを繋ぎ、転動体706の公転運動により差動回転部74a、74bを回転させる。尚、一般的なベアリング70では、転動体706の公転運動の回転数(保持器708の回転数)は、回転側の回転数の約1/2となる。即ち、本願発明のスリップリング60a、60bでは差動回転部74a、74bの回転数は回転体40の回転数の約1/2となる。 Next, the bearing 70 of the slip rings 60a and 60b and the transmission member 72 will be described. First, as shown in FIG. 6, a general bearing 70 has an inner ring 702 and an outer ring 704, and a plurality of rolling elements 706 are rotatably inserted between the inner ring 702 and the outer ring 704. Further, the general bearing 70 has a cage 708 (retainer) that keeps the rolling elements 706 at regular intervals so as not to come into contact with each other. Here, for example, when the inner ring 702 rotates, the rolling element 706 rotates and at the same time revolves around the axis of the bearing 70. Then, the revolving motion of the rolling element 706 causes the cage 708 to rotate about the axis of the bearing 70. The transmission member 72 of the present invention connects, for example, the cage 708 and the differential rotation portions 74a and 74b, and rotates the differential rotation portions 74a and 74b by the revolution motion of the rolling element 706. In the general bearing 70, the rotation speed of the revolving motion of the rolling element 706 (the rotation speed of the cage 708) is about ½ of the rotation speed on the rotation side. That is, in the slip rings 60a and 60b of the present invention, the rotation speed of the differential rotation portions 74a and 74b is about ½ of the rotation speed of the rotating body 40.
 ここで、従来のスリップリングは摺動部が回転体40の回転数で回転するため、回転体40の回転数が大きい(回転速度が速い)とその分、摺動部の摩耗も進行する。この点、本発明に係るスリップリング60a、60bは、摺動部である差動回転部74a、74bの回転数が回転体40の約1/2となる。このため、従来のスリップリングよりも摺動部の摩耗を低減することができる。 Here, in the conventional slip ring, since the sliding portion rotates at the rotation speed of the rotating body 40, if the rotation speed of the rotating body 40 is large (the rotation speed is high), the wear of the sliding portion progresses accordingly. In this respect, in the slip rings 60a and 60b according to the present invention, the rotation speed of the differential rotating portions 74a and 74b, which are sliding portions, is about ½ of that of the rotating body 40. Therefore, it is possible to reduce the wear of the sliding portion as compared with the conventional slip ring.
 次に、差動回転部74a、74bに関して説明を行う。先ず、第1の形態のスリップリング60aの差動回転部74aは、図2(b)に示すようにディスク状を呈している。尚、回転体40の回転軸がスリップリング60aを通して外側に貫ける場合には、差動回転部74aの中心に回転軸よりも径の大きな貫通孔102を設けても良い。また、差動回転部74aの摺動導電体76aは、両端面が円弧状で厚みが差動回転部74aの厚みと同じ円弧柱形状を呈し、差動回転部74aと同心の円状に設置される。そして、1つの同心円を形成する複数(本例では4つ)の摺動導電体76aが1極の摺動電極を形成する。尚、摺動導電体76aの固定方法としては、差動回転部74aに摺動導電体76aと同形の電極孔を穿孔し、この電極孔に摺動導電体76aを嵌入して設置することが好ましい。このとき、摺動導電体76aは差動回転部74aと同一の厚みを有するから、摺動導電体76aの両端面は差動回転部74aの両平面に段差なく面一で露出する。 Next, the differential rotation units 74a and 74b will be described. First, the differential rotation portion 74a of the slip ring 60a of the first embodiment has a disk shape as shown in FIG. 2 (b). When the rotating shaft of the rotating body 40 can penetrate outward through the slip ring 60a, a through hole 102 having a diameter larger than that of the rotating shaft may be provided at the center of the differential rotating portion 74a. Further, the sliding conductor 76a of the differential rotation portion 74a has an arcuate shape at both ends and has the same arc pillar shape as the thickness of the differential rotation portion 74a, and is installed in a circular shape concentric with the differential rotation portion 74a. Will be done. Then, a plurality of (four in this example) sliding conductors 76a forming one concentric circle form a one-pole sliding electrode. As a method of fixing the sliding conductor 76a, an electrode hole having the same shape as the sliding conductor 76a is formed in the differential rotating portion 74a, and the sliding conductor 76a is fitted into the electrode hole and installed. preferable. At this time, since the sliding conductor 76a has the same thickness as the differential rotating portion 74a, both end faces of the sliding conductor 76a are exposed flush with each other on both planes of the differential rotating portion 74a without any step.
 また、第2の形態のスリップリング60bの差動回転部74bは、図5に示すように円筒形状を呈している。そして、差動回転部74bに設けられる摺動導電体76bは、差動回転部74bと同一の曲率のアーチ形状を呈するとともに差動回転部74bと同一の厚みを有し、差動回転部74bを周方向に1周するように設置される。そして、周方向に1周した複数(本例では4つ)の摺動導電体76bが1極の摺動電極を形成する。尚、摺動導電体76bの固定方法としては、差動回転部74bに摺動導電体76bと同形で内周面から外周面に貫通した電極孔を周方向に1周するように穿孔し、この電極孔に摺動導電体76bを嵌入して設置することが好ましい。これにより、摺動導電体76bの内周面と外周面とは差動回転部74bの内周面と外周面とに段差なく面一で露出する。 Further, the differential rotation portion 74b of the slip ring 60b of the second form has a cylindrical shape as shown in FIG. The sliding conductor 76b provided in the differential rotation portion 74b has an arch shape having the same curvature as the differential rotation portion 74b and has the same thickness as the differential rotation portion 74b, and has the same thickness as the differential rotation portion 74b. Is installed so as to make one round in the circumferential direction. Then, a plurality of (four in this example) sliding conductors 76b that make one round in the circumferential direction form a one-pole sliding electrode. As a method of fixing the sliding conductor 76b, an electrode hole having the same shape as the sliding conductor 76b and penetrating from the inner peripheral surface to the outer peripheral surface is drilled in the differential rotating portion 74b so as to make one round in the circumferential direction. It is preferable to insert the sliding conductor 76b into the electrode hole and install it. As a result, the inner peripheral surface and the outer peripheral surface of the sliding conductor 76b are exposed flush with each other on the inner peripheral surface and the outer peripheral surface of the differential rotating portion 74b without any step.
 尚、ここでは4つの摺動導電体76a、76bで1極の摺動電極を構成する例を示しているが、この摺動導電体76a、76bの個数に関しては特に限定は無く、2個、3個、6個等、如何なる個数としても良い。そして、これら複数の摺動導電体76a、76bの間で且つ回転体電極62、固定電極64の軌道上に位置する部位が摺動絶縁部78となる。尚、図2(b)、図5では摺動導電体76a、76bの位置を揃え、摺動絶縁部78が一列に並ぶように構成したが、摺動導電体76a、76bの位置を極ごとにずらし、摺動絶縁部78をそれぞれ異なる位置としても良い。 Although an example in which four sliding conductors 76a and 76b form a one-pole sliding electrode is shown here, the number of the sliding conductors 76a and 76b is not particularly limited and two. Any number may be used, such as 3 or 6. The portion located between the plurality of sliding conductors 76a and 76b and on the track of the rotating body electrode 62 and the fixed electrode 64 is the sliding insulating portion 78. In addition, in FIGS. 2B and 5, the positions of the sliding conductors 76a and 76b are aligned and the sliding insulating portions 78 are arranged in a row, but the positions of the sliding conductors 76a and 76b are aligned with each pole. The sliding insulating portions 78 may be positioned at different positions.
 そして、摺動導電体76a、76bは摺動絶縁部78よりも硬い例えば押圧力が0.5kg/cm以下で摩耗量がほぼゼロとなる部材を使用する。また、摺動導電体76a、76bは通電によって生じる電気的な腐食(以後、電食と記述する。)が生じにくい部材を使用する。このような摺動導電体76a、76bの材料としては、導電性を有する炭素板(導電性カーボン)を用いることが特に好ましい。 The sliding conductors 76a and 76b are harder than the sliding insulating portion 78, for example , a member having a pressing force of 0.5 kg / cm 2 or less and a wear amount of almost zero is used. Further, as the sliding conductors 76a and 76b, members that are less likely to cause electrical corrosion (hereinafter referred to as electrolytic corrosion) caused by energization are used. As the material of such sliding conductors 76a and 76b, it is particularly preferable to use a conductive carbon plate (conductive carbon).
 また、摺動絶縁部78はある程度の硬度を有しながら摺動導電体76a、76bよりも柔らかい部材を用いる。このような材料として特に布基材フェノール樹脂積層板(ベークライト板)を用いることが好ましい。そして、弾性部材66が例えば0.5kg/cmの押圧力で固定電極64を差動回転部74a、74bに押圧すると、この押圧力を受けて摺動絶縁部78が弾塑性変形の弾性領域で若干変形し、押圧力のほとんどを受け止めてこれを緩和する。これにより、摺動導電体76a、76bに掛かる押圧力は低減し、摺動導電体76a、76bは押圧力が極めて小さい臨界接触状態(押圧力がほとんど掛からずに接触導通している状態)で回転体電極62、固定電極64と接触導通する。これにより、摺動導電体76a、76b、回転体電極62、固定電極64の摩耗を低減することができる。 Further, the sliding insulating portion 78 uses a member having a certain degree of hardness but being softer than the sliding conductors 76a and 76b. As such a material, it is particularly preferable to use a cloth-based phenol resin laminated board (baklite board). Then, when the elastic member 66 presses the fixed electrode 64 against the differential rotating portions 74a and 74b with a pressing force of, for example, 0.5 kg / cm 2 , the sliding insulating portion 78 receives this pressing force and the elastic region of elasto-plastic deformation. It is slightly deformed by, and it receives most of the pressing force and relieves it. As a result, the pressing force applied to the sliding conductors 76a and 76b is reduced, and the sliding conductors 76a and 76b are in a critical contact state where the pressing force is extremely small (a state in which contact conduction is performed with almost no pressing force applied). Contact and conduct with the rotating body electrode 62 and the fixed electrode 64. As a result, wear of the sliding conductors 76a and 76b, the rotating body electrode 62, and the fixed electrode 64 can be reduced.
 次に、第1の形態のスリップリング60aの回転体電極62と固定電極64に関して説明する。第1の形態のスリップリング60aの回転体電極62と固定電極64は、図2(a)、(c)に示すように、差動回転部74aと同心で摺動導電体76aの半径(円弧の半径)と略同一の半径を有するリング状を呈する。そして、図1に示すように、弾性部材66は固定電極64を裏面側から差動回転部74a側へ所定の圧力で押圧する。この所定の圧力とは、摺動導電体76aと回転体電極62、固定電極64とが臨界接触状態で接触導通する圧力である。これにより、回転体電極62の差動回転部74a側の面と摺動導電体76aの一方の端面とがそれぞれ臨界接触状態で接触導通する。また、固定電極64の差動回転部74a側の面と摺動導電体76aの他方の端面とがそれぞれ臨界接触状態で接触導通する。 Next, the rotating body electrode 62 and the fixed electrode 64 of the slip ring 60a of the first embodiment will be described. As shown in FIGS. 2A and 2C, the rotating body electrode 62 and the fixed electrode 64 of the slip ring 60a of the first embodiment are concentric with the differential rotating portion 74a and have a radius (arc) of the sliding conductor 76a. It has a ring shape having substantially the same radius as the radius of). Then, as shown in FIG. 1, the elastic member 66 presses the fixed electrode 64 from the back surface side to the differential rotation portion 74a side with a predetermined pressure. This predetermined pressure is a pressure at which the sliding conductor 76a, the rotating body electrode 62, and the fixed electrode 64 are in contact with each other in a critical contact state. As a result, the surface of the rotating body electrode 62 on the differential rotating portion 74a side and one end surface of the sliding conductor 76a are contact-conducted in a critical contact state. Further, the surface of the fixed electrode 64 on the differential rotation portion 74a side and the other end surface of the sliding conductor 76a are contact-conducted in a critical contact state.
 次に、第2の形態のスリップリング60bの回転体電極62と固定電極64に関して説明する。先ず、第2の形態のスリップリング60bの回転体電極62は、図4、図5に示すように、外周面が摺動導電体76bの内周面と同一の曲率を有するアーチ状を呈し、また、固定電極64は内周面が摺動導電体76bの外周面と同一の曲率を有するアーチ状を呈する。そして、回転体電極62は円筒状の差動回転部74b内に挿入され、固定電極64は差動回転部74bの外周に配置される。そして、弾性部材66が固定電極64を外周側から内周側の差動回転部74a側へと所定の圧力で押圧する。また、このとき回転体電極62側にも弾性部材を設け、回転体電極62を内周側から外周側の差動回転部74a側へと所定の圧力で押圧するようにしても良い。尚、この所定の圧力とは、摺動導電体76bと回転体電極62、固定電極64とが臨界接触状態で接触導通する圧力である。これにより、回転体電極62の外周面が摺動導電体76bの内周面とそれぞれ臨界接触状態で接触導通し、摺動導電体76bの外周面が固定電極64の内周面とそれぞれ臨界接触状態で接触導通する。 Next, the rotating body electrode 62 and the fixed electrode 64 of the slip ring 60b of the second form will be described. First, as shown in FIGS. 4 and 5, the rotating body electrode 62 of the slip ring 60b of the second form has an arch shape in which the outer peripheral surface has the same curvature as the inner peripheral surface of the sliding conductor 76b. Further, the fixed electrode 64 has an arch shape in which the inner peripheral surface has the same curvature as the outer peripheral surface of the sliding conductor 76b. Then, the rotating body electrode 62 is inserted into the cylindrical differential rotating portion 74b, and the fixed electrode 64 is arranged on the outer periphery of the differential rotating portion 74b. Then, the elastic member 66 presses the fixed electrode 64 from the outer peripheral side to the differential rotating portion 74a side on the inner peripheral side with a predetermined pressure. Further, at this time, an elastic member may be provided on the rotating body electrode 62 side as well, and the rotating body electrode 62 may be pressed from the inner peripheral side to the differential rotating portion 74a side on the outer peripheral side with a predetermined pressure. The predetermined pressure is a pressure at which the sliding conductor 76b, the rotating body electrode 62, and the fixed electrode 64 are in contact with each other in a critical contact state. As a result, the outer peripheral surface of the rotating body electrode 62 is in contact with the inner peripheral surface of the sliding conductor 76b in a critical contact state, and the outer peripheral surface of the sliding conductor 76b is in critical contact with the inner peripheral surface of the fixed electrode 64, respectively. Contact conduction in the state.
 また、回転体電極62、固定電極64の摺動導電体76a、76bとの接触面、即ち、スリップリング60aでは、図2(a)中のドットで示す回転体電極62の差動回転部74a側の平面と、図2(c)中のドットで示す固定電極64の差動回転部74a側の平面、スリップリング60bでは図5中のドットで示す回転体電極62の外周面と固定電極64の内周面にイオン化しにくい貴金属の薄膜をメッキや蒸着等の周知の手法により設けることが好ましい。この薄膜の材料としては、安価で導電性が高く比較的硬度の高い銀を用いることが特に好ましい。そして、この構成では電気抵抗の低い貴金属薄膜により摺動導電体76a、76bとの接触面での電流密度が分散することに加え、イオン化しにくい貴金属薄膜の存在により接触面での電食が防止され、回転体電極62、固定電極64の摩耗をさらに低減することができる。 Further, on the contact surface of the rotating body electrode 62 and the fixed electrode 64 with the sliding conductors 76a and 76b, that is, on the slip ring 60a, the differential rotating portion 74a of the rotating body electrode 62 indicated by the dots in FIG. 2A. The plane on the side and the plane on the differential rotating portion 74a side of the fixed electrode 64 shown by dots in FIG. 2C, and the outer peripheral surface of the rotating body electrode 62 and the fixed electrode 64 shown by dots in FIG. 5 in the slip ring 60b. It is preferable to provide a thin film of a noble metal that is difficult to ionize on the inner peripheral surface of the above by a well-known method such as plating or vapor deposition. As the material for this thin film, it is particularly preferable to use silver, which is inexpensive, has high conductivity, and has a relatively high hardness. In this configuration, the noble metal thin film with low electrical resistance disperses the current density on the contact surface with the sliding conductors 76a and 76b, and the presence of the noble metal thin film that is difficult to ionize prevents electrolytic corrosion on the contact surface. Therefore, the wear of the rotating body electrode 62 and the fixed electrode 64 can be further reduced.
 ここで、第1の形態のスリップリング60aの差動回転部74a(摺動導電体76a:炭素板、摺動絶縁部78:ベークライト板)に押圧力0.5kg/cmで回転体電極62、固定電極64を接触導通させ、差動回転部74aを約3000rpmで1000hr回転させたところ、摺動導電体76a、76bの摩耗量は5μm以下であり、ほとんど摩耗は認められなかった。また、摺動導電体76aを挟んだ回転体電極62と固定電極64との間の抵抗値は差動回転部74aの停止時は10mΩ以下であり、回転時でも100mΩ以下に維持された。 Here, the rotating body electrode 62 is applied to the differential rotating portion 74a (sliding conductor 76a: carbon plate, sliding insulating portion 78: bakelite plate) of the slip ring 60a of the first embodiment at a pressing force of 0.5 kg / cm 2. When the fixed electrode 64 was contact-conducted and the differential rotating portion 74a was rotated for 1000 hr at about 3000 rpm, the amount of wear of the sliding conductors 76a and 76b was 5 μm or less, and almost no wear was observed. Further, the resistance value between the rotating body electrode 62 and the fixed electrode 64 sandwiching the sliding conductor 76a was 10 mΩ or less when the differential rotating portion 74a was stopped, and was maintained at 100 mΩ or less even when the differential rotating portion 74a was rotated.
 次に、本発明に係るスリップリング60a、60bの動作を説明する。先ず、回転体電極62と固定電極64とは差動回転部74a、74bに設けられた摺動導電体76a、76bを介して導通している。これにより、回転体40と固定体12とは電気的に接続し、スリップリング60a、60bを介して電力供給や電気信号の伝達が行われる。尚、この際、弾性部材66が固定電極64を適切な押圧力で差動回転部74a、74b側に押圧する。これにより、摺動絶縁部78が弾塑性変形して押圧力のほとんどを受け止め、回転体電極62、固定電極64と摺動導電体76a、76bとは押圧力がほとんど掛からない臨界接触にて接触導通する。 Next, the operation of the slip rings 60a and 60b according to the present invention will be described. First, the rotating body electrode 62 and the fixed electrode 64 are conductive via the sliding conductors 76a and 76b provided in the differential rotating portions 74a and 74b. As a result, the rotating body 40 and the fixed body 12 are electrically connected to each other, and power is supplied and electric signals are transmitted via the slip rings 60a and 60b. At this time, the elastic member 66 presses the fixed electrode 64 toward the differential rotation portions 74a and 74b with an appropriate pressing force. As a result, the sliding insulating portion 78 is elasto-plastically deformed to receive most of the pressing force, and the rotating body electrode 62 and the fixed electrode 64 and the sliding conductors 76a and 76b are in contact with each other by critical contact where almost no pressing force is applied. Conducts.
 次に、回転体40が回転すると回転体電極62が回転するとともに、ベアリング70の転動体706が自公転し、この転動体706の公転運動は伝達部材72によって差動回転部74a、74bに伝達する。これにより、差動回転部74a、74bは回転体40の約1/2の回転数で回転体40と同一の方向に回転する。これにより、摺動導電体76a、76bは固定電極64との導通状態を維持しながら固定電極64に対して回転体40の約1/2の回転数で回転し摺動する。また、回転体電極62は摺動導電体76a、76bとの導通状態を維持しながら摺動導電体76a、76bに対して回転体40の約1/2の回転数で回転し摺動する。これにより、回転体40と固定体12との間の電気的な接続は良好に維持され、スリップリング60a、60bを介した電力供給や電気信号の伝達が継続して行われる。 Next, when the rotating body 40 rotates, the rotating body electrode 62 rotates and the rolling element 706 of the bearing 70 revolves on its own, and the revolving motion of the rolling body 706 is transmitted to the differential rotating portions 74a and 74b by the transmission member 72. do. As a result, the differential rotation portions 74a and 74b rotate in the same direction as the rotating body 40 at a rotation speed of about ½ of the rotating body 40. As a result, the sliding conductors 76a and 76b rotate and slide with respect to the fixed electrode 64 at a rotation speed of about ½ of the rotating body 40 while maintaining the conduction state with the fixed electrode 64. Further, the rotating body electrode 62 rotates and slides with respect to the sliding conductors 76a and 76b at a rotation speed of about 1/2 of that of the rotating body 40 while maintaining the conduction state with the sliding conductors 76a and 76b. As a result, the electrical connection between the rotating body 40 and the fixed body 12 is well maintained, and power supply and electric signal transmission via the slip rings 60a and 60b are continuously performed.
 このように、本発明に係るスリップリング60a、60bは、差動回転部74a、74bを回転体40の約1/2で回転させるため、その分、摺動部分の摩耗を低減することができる。また、本発明に係るスリップリング60a、60bは、回転体電極62、固定電極64と摺動導電体76a、76bとを押圧力がほとんど掛からない臨界接触にて接触導通させる。このため、摺動部分の摩耗をさらに低減することができる。 As described above, in the slip rings 60a and 60b according to the present invention, since the differential rotating portions 74a and 74b are rotated by about 1/2 of the rotating body 40, the wear of the sliding portion can be reduced by that amount. .. Further, the slip rings 60a and 60b according to the present invention contact and conduct the rotating body electrode 62 and the fixed electrode 64 and the sliding conductors 76a and 76b by critical contact where almost no pressing force is applied. Therefore, the wear of the sliding portion can be further reduced.
 次に、本発明に係る電動機80a、80bに関して説明を行う。尚、本発明に係る電動機80a、80bは、本願発明のスリップリング60a、60bを[特許文献1]に記載の電動機80a、80bに適用したものである。ただし、本発明に係るスリップリング60a、60bは、[特許文献1]に記載の電動機80a、80bへの適用のみに限定される訳ではなく、他の構造の従来の電動機や発電機、回転灯、その他の周知の回転体に適用することができる。また、ここでは第1の形態の電動機80aに第1の形態のスリップリング60aを適用し、第2の形態の電動機80bに第2の形態のスリップリング60bを適用した例を用いているが、特にこの組み合わせに限定される訳ではなく、第1の形態の電動機80aに第2の形態のスリップリング60bを適用し、第2の形態の電動機80bに第1の形態のスリップリング60aを適用しても構わない。 Next, the electric motors 80a and 80b according to the present invention will be described. In the motors 80a and 80b according to the present invention, the slip rings 60a and 60b of the present invention are applied to the motors 80a and 80b described in [Patent Document 1]. However, the slip rings 60a and 60b according to the present invention are not limited to the application to the motors 80a and 80b described in [Patent Document 1], and are not limited to the application to the motors 80a and 80b described in [Patent Document 1]. , And other well-known rotating bodies. Further, although the example in which the slip ring 60a of the first form is applied to the electric motor 80a of the first form and the slip ring 60b of the second form is applied to the electric motor 80b of the second form is used. The combination is not particularly limited, and the slip ring 60b of the second form is applied to the electric motor 80a of the first form, and the slip ring 60a of the first form is applied to the electric motor 80b of the second form. It doesn't matter.
 先ず、本発明に係る電動機80a、80bに共通する構成を説明する。図7、図8に示す本発明に係る電動機80a、80bは、被駆動体Mに回転力を伝達する出力軸10と、この出力軸10に固定したロータ30と、このロータ30の外側に位置するステータ40と、出力軸10とステータ40とを回転可能に軸支する固定軸受部12と、ステータ40に設けられ駆動電流が流れることでロータ30を回転させる複数のコイル42と、ステータ40をロータ30と同一の方向に回転可能に保持するステータ回転機構46と、ステータ40を固定軸受部12に対し回転可能に軸支するベアリング70と、本願発明のスリップリング60a、60bと、を有している。そして、本願発明のスリップリング60a、60bは、回転体(40)としてのステータ40と固定体(12)としての固定軸受部12との間に設けられ、固定軸受部12側からの駆動電流をステータ40に設けられたコイル42に供給する機能を有する。尚、本発明に係る電動機80a、80bでは上記のベアリング70がスリップリング60a、60bのベアリング70に相当する。また、被駆動体Mは本発明に係る電動機80a、80bを電気自動車等の車両に適用する場合には、車輪もしくは車輪を回転させる減速機構等である。 First, a configuration common to the motors 80a and 80b according to the present invention will be described. The electric motors 80a and 80b according to the present invention shown in FIGS. 7 and 8 are located outside the output shaft 10 for transmitting the rotational force to the driven body M, the rotor 30 fixed to the output shaft 10, and the rotor 30. The stator 40, the fixed bearing portion 12 that rotatably supports the output shaft 10 and the stator 40, a plurality of coils 42 provided on the stator 40 to rotate the rotor 30 by flowing a drive current, and the stator 40. It has a stator rotation mechanism 46 that rotatably holds the stator 40 in the same direction as the rotor 30, a bearing 70 that rotatably supports the stator 40 with respect to the fixed bearing portion 12, and slip rings 60a and 60b of the present invention. ing. The slip rings 60a and 60b of the present invention are provided between the stator 40 as a rotating body (40) and the fixed bearing portion 12 as a fixed body (12), and drive a current from the fixed bearing portion 12 side. It has a function of supplying to the coil 42 provided in the stator 40. In the motors 80a and 80b according to the present invention, the bearing 70 corresponds to the bearing 70 of the slip rings 60a and 60b. Further, when the motors 80a and 80b according to the present invention are applied to a vehicle such as an electric vehicle, the driven body M is a wheel or a deceleration mechanism for rotating the wheel.
 そして、ロータ30(出力軸10)は固定軸受部12によって回転可能に軸支されるとともに、ロータ30(出力軸10)と固定軸受部12との間には逆転防止手段16が設けられ、ロータ30の逆方向への回転を規制するとともに、例えば被駆動体Mの停止時等においてはロータ30と固定軸受部12とを固定して、ロータ30の回転を防止する。 The rotor 30 (output shaft 10) is rotatably supported by the fixed bearing portion 12, and a reverse rotation preventing means 16 is provided between the rotor 30 (output shaft 10) and the fixed bearing portion 12. In addition to restricting the rotation of the 30 in the opposite direction, for example, when the driven body M is stopped, the rotor 30 and the fixed bearing portion 12 are fixed to prevent the rotor 30 from rotating.
 また、ステータ40を保持するステータ回転機構46は、ロータ30をステータ40に対し回転可能に軸支する周知のベアリング等の軸受部46aと、ステータ40がロータ30の回転方向とは逆の方向へ回転することを規制する逆転防止手段46bと、で主に構成されている。 Further, the stator rotation mechanism 46 that holds the stator 40 has a bearing portion 46a such as a well-known bearing that rotatably supports the rotor 30 with respect to the stator 40, and the stator 40 is in the direction opposite to the rotation direction of the rotor 30. It is mainly composed of a reverse rotation preventing means 46b that regulates rotation.
 また、逆転防止手段16、46bとしてはワンウェイクラッチや電磁クラッチ等の周知の部材を用いても良いし、固定軸受部12と固定したラチェット歯車50と、ロータ30側もしくはステータ40側と固定しラチェット歯車50の側に付勢された爪部52と、を有し、順方向回転では爪部52がラチェット歯車50上を滑って回転しこの方向の回転を許容するとともに、逆方向回転では爪部52がラチェット歯車50と噛み合ってこの方向の回転を阻止し、さらにロータ30もしくはステータ40が所定の回転速度以上となると爪部52が遠心力により外側に回動してラチェット歯車50から離れるものを用いても良い。この構成では、ロータ30もしくはステータ40が高速回転している場合には、爪部52とラチェット歯車50とが離れて非接触となり、摩擦抵抗や振動の発生を防止することができる。 Further, as the reverse rotation preventing means 16 and 46b, a well-known member such as a one-way clutch or an electromagnetic clutch may be used, or a ratchet gear 50 fixed to the fixed bearing portion 12 and a ratchet fixed to the rotor 30 side or the stator 40 side. It has a claw portion 52 urged to the side of the gear 50, and the claw portion 52 slides on the ratchet gear 50 to rotate in the forward rotation, and allows rotation in this direction, and also allows the claw portion to rotate in the reverse direction. 52 meshes with the ratchet gear 50 to prevent rotation in this direction, and when the rotor 30 or the stator 40 exceeds a predetermined rotation speed, the claw portion 52 rotates outward due to centrifugal force to separate from the ratchet gear 50. You may use it. In this configuration, when the rotor 30 or the stator 40 is rotating at high speed, the claw portion 52 and the ratchet gear 50 are separated from each other and become non-contact, so that frictional resistance and vibration can be prevented from occurring.
 次に、本発明に係る第1の形態の電動機80aの構成に関して説明する。図7に示す第1の形態の電動機80aは、直流電流によって動作する電動機であり、ステータ40側に電機子として機能する複数のコイル42を有し、ロータ30側に界磁部としての界磁マグネット32を複数有している。そして、ステータ40のコイル42は巻芯に磁心を備えており、周方向に一定の間隔をあけて複数、例えば36個配置される。また、電動機80aのロータ30には、ステータ40側のコイル42を挟むように2つのロータ円板34が固定され、このロータ円板34の内側に複数の界磁マグネット32がステータ40側のコイル42の磁心と対向するように等間隔で固定される。尚、この界磁マグネット32はコイル42に対する界磁束を形成してロータ30を回転させるための永久磁石であり、周方向に沿って隣り合う磁極が逆となるように、即ちN極とS極が交互に現れるように配設されている。また、界磁マグネット32としては金属磁石を用いても焼結磁石を用いても良いが、中でも大きな磁力を有するネオジム磁石等の希土類磁石を用いることが特に好ましい。尚、コイル42が36個の場合、界磁マグネット32は例えばコイル42を挟むように6対設けられる。 Next, the configuration of the electric motor 80a according to the first aspect of the present invention will be described. The electric machine 80a of the first embodiment shown in FIG. 7 is an electric motor operated by a direct current, has a plurality of coils 42 functioning as armatures on the stator 40 side, and has a field magnet as a field portion on the rotor 30 side. It has a plurality of magnets 32. The coil 42 of the stator 40 is provided with a magnetic core in the winding core, and a plurality of coils 42, for example, 36, are arranged at regular intervals in the circumferential direction. Further, two rotor disks 34 are fixed to the rotor 30 of the motor 80a so as to sandwich the coil 42 on the stator 40 side, and a plurality of field magnets 32 are placed inside the rotor disk 34 to coil the stator 40 side. It is fixed at equal intervals so as to face the magnetic core of 42. The field magnet 32 is a permanent magnet for forming a field magnetic flux with respect to the coil 42 to rotate the rotor 30, so that the adjacent magnetic poles are reversed along the circumferential direction, that is, the N pole and the S pole. Are arranged so as to appear alternately. Further, as the field magnet 32, a metal magnet or a sintered magnet may be used, but it is particularly preferable to use a rare earth magnet such as a neodymium magnet having a large magnetic force. When the number of coils 42 is 36, six pairs of field magnets 32 are provided so as to sandwich the coils 42, for example.
 また、電動機80aにはコイル42に対する界磁マグネット32の相対位置を取得する位置情報取得手段18と、出力軸10(ロータ30)の回転数が入力するとともに位置情報取得手段18からの位置情報に基づいてコイル42への駆動電流の流下方向を制御する図示しない制御部と、が設けられる。尚、位置情報取得手段18には特に限定は無く、周知の位置センサーやレゾルバ式角度測定器等の周知の磁気式位置検出器、周知の光学式位置検出器など如何なるものを用いても良い。また、位置情報取得手段18は直接的に相対位置を取得するものの他に、コイル42の絶対位置を取得するコイル位置情報取得手段と界磁マグネット32の絶対位置を取得する磁石位置情報取得手段とを個別に設け、制御部等がこれらコイル42の絶対位置と界磁マグネット32の絶対位置とから両者の相対位置を算出するようにしても良い。尚、図7では位置情報取得手段18として、ロータ30とともに回転し所定の位置に開口が形成されたスリット板18aと、ステータ40と固定しスリット板18aの開口を挟んで設置された発光素子18b、受光素子18b’と、を有する光学式の位置検出手段を用いた例を示している。 Further, the position information acquisition means 18 for acquiring the relative position of the field magnet 32 with respect to the coil 42 and the rotation speed of the output shaft 10 (rotor 30) are input to the electric motor 80a, and the position information from the position information acquisition means 18 is input. Based on this, a control unit (not shown) that controls the flow direction of the drive current to the coil 42 is provided. The position information acquisition means 18 is not particularly limited, and any known position sensor, a well-known magnetic position detector such as a resolver type angle measuring device, a well-known optical position detector, or the like may be used. In addition to the one that directly acquires the relative position, the position information acquisition means 18 includes a coil position information acquisition means that acquires the absolute position of the coil 42 and a magnet position information acquisition means that acquires the absolute position of the field magnet 32. May be provided individually, and the control unit or the like may calculate the relative position of the coil 42 from the absolute position of the coil 42 and the absolute position of the field magnet 32. In FIG. 7, as the position information acquisition means 18, a slit plate 18a that rotates together with the rotor 30 and has an opening formed at a predetermined position, and a light emitting element 18b that is fixed to the stator 40 and installed across the opening of the slit plate 18a. An example of using an optical position detecting means having the light receiving element 18b'is shown.
 そして、この光学式の位置情報取得手段18では、発光素子18bの光がスリット板18aの開口を通して受光素子18b’に到達したときの受光信号に基づいてコイル42と界磁マグネット32との相対位置を取得する。そして、制御部はステータ40(コイル42)に対するロータ30(界磁マグネット32)の相対位置と、出力軸10(ロータ30)の回転数に基づいて、上位の制御装置等から要求された回転動作を行うよう各コイル42に流下する駆動電流の電流値および流下方向を制御する。そして、この駆動電流は固定軸受部12側からスリップリング60a(60b)の各固定電極64に供給され、摺動導電体76a(76b)を介してステータ40側の回転体電極62にそれぞれ伝達される。そして、回転体電極62と接続したコイル42にそれぞれ流下し、ロータ30は制御部の指示したトルク及び回転速度で回転動作する。 Then, in this optical position information acquisition means 18, the relative position between the coil 42 and the field magnet 32 is based on the light receiving signal when the light of the light emitting element 18b reaches the light receiving element 18b'through the opening of the slit plate 18a. To get. Then, the control unit performs a rotation operation requested by a higher-level control device or the like based on the relative position of the rotor 30 (field magnet 32) with respect to the stator 40 (coil 42) and the rotation speed of the output shaft 10 (rotor 30). The current value and the flow direction of the drive current flowing down to each coil 42 are controlled so as to perform the above. Then, this drive current is supplied from the fixed bearing portion 12 side to each fixed electrode 64 of the slip ring 60a (60b), and is transmitted to the rotating body electrode 62 on the stator 40 side via the sliding conductor 76a (76b). Ru. Then, the rotor 30 flows down to the coil 42 connected to the rotating body electrode 62, and the rotor 30 rotates at the torque and the rotation speed instructed by the control unit.
 次に、本発明に係る第2の形態の電動機80bの構成に関して説明する。尚、第2の形態の電動機80bは交流電流によって動作する電動機である。先ず、電動機80bのロータ30は例えば電磁鋼板を円筒状に貼り合せたロータ鉄心36を有している。そして、ロータ鉄心36と対向したステータ40の内側には磁心を備えた複数のコイル42が、磁心がロータ鉄心36側を向くように設置されている。そして、例えばU相、V相、W相の3相交流の電動機80bの場合、U相、V相、W相のそれぞれに対応したコイル42が順に配置される。また、スリップリング60b(60a)は固定軸受部12側からのU相、V相、W相の交流電流を固定電極64、摺動導電体76b(76a)、回転体電極62を介してステータ40側のコイル42に供給する。そして、スリップリング60b(60a)を介して供給されたU相、V相、W相の交流電流がそれぞれのコイル42に順に流下することで、コイル42によって形成される磁界が回転し、この回転磁界によってロータ鉄心36に渦電流が流下してローレンツ力が働きロータ30が回転する。 Next, the configuration of the electric motor 80b according to the second aspect of the present invention will be described. The electric motor 80b of the second form is an electric motor operated by an alternating current. First, the rotor 30 of the electric motor 80b has, for example, a rotor core 36 in which an electromagnetic steel sheet is bonded in a cylindrical shape. A plurality of coils 42 having a magnetic core are installed inside the stator 40 facing the rotor core 36 so that the magnetic core faces the rotor core 36 side. Then, for example, in the case of the U-phase, V-phase, and W-phase three-phase alternating current motor 80b, the coils 42 corresponding to each of the U-phase, V-phase, and W-phase are arranged in order. Further, the slip ring 60b (60a) transmits alternating currents of U-phase, V-phase, and W-phase from the fixed bearing portion 12 side via the fixed electrode 64, the sliding conductor 76b (76a), and the rotating body electrode 62, and the stator 40. It is supplied to the coil 42 on the side. Then, the alternating currents of the U phase, the V phase, and the W phase supplied via the slip ring 60b (60a) flow down to the respective coils 42 in order, so that the magnetic field formed by the coils 42 rotates, and this rotation occurs. An eddy current flows down the rotor core 36 due to the magnetic field, and a Lorentz force acts to rotate the rotor 30.
 次に、本発明に係る電動機80a、80bの特徴的な動作を図9を用いて説明する。ここで、図9(a)は横軸を出力軸10の回転数N、縦軸を出力軸10のトルクTとした模式的なN-T線図であり、図9(b)はロータ30、ステータ40の回転速度の変化を説明するためにこれらの変化を直線で模式的に示した図である。 Next, the characteristic operation of the motors 80a and 80b according to the present invention will be described with reference to FIG. Here, FIG. 9A is a schematic NT diagram in which the horizontal axis is the rotation speed N of the output shaft 10 and the vertical axis is the torque T of the output shaft 10, and FIG. 9B is a rotor 30. In order to explain the change in the rotation speed of the stator 40, it is a figure which shows these change schematically by a straight line.
 先ず、電源のオフ状態においては、電動機80a、80bのロータ30、ステータ40はともに停止状態にある(図9(b)中の点0)。次に、電動機80a、80bを起動させると、制御部は逆転防止手段16によってロータ30の逆回転を阻止した状態でコイル42に対し、逆回転方向の電流をスリップリング60a、60bを介して印加する。これにより、ロータ30には逆回転方向に力が働くが、前述のようにロータ30の逆回転は阻止されているから、このロータ30に生じる力は反力となってステータ40に働き、これによりステータ40は順方向に回転する。そして、ステータ40が所定の回転速度となった時点(図9(b)の破線中の点A)で、例えばアクセルを踏むなどの出力軸10への出力要求を行うと、制御部はロータ30の固定を解除するとともにロータ30が順方向に回転するような駆動電流をスリップリング60a、60bを介してコイル42に流下させる。尚、交流の電動機80bでは所定の周波数の交流の駆動電流に加えて、電動機80bの動作を阻害しない程度の直流電流をスリップリング60a、60bを介して駆動電流に重畳して流下させる。これにより、ロータ30とステータ40とは磁気的に結合し、ロータ30はステータ40の回転力によって同一の方向(順方向)に回転を開始する。また、これに加えコイル42にはロータ30を順方向に回転させる駆動電流が流下するから、この駆動電流によっても順方向に回転する。これにより、ロータ30は図9(a)の点Aに示すように、駆動電流の供給電力Kwで生じるトルクTwに加えて、ステータ40の回転力Kiによって生じるトルクが合わさったトルクTで回転動作する。尚、図9(a)ではロータ30のトルクをトルクTで制限する構成を示している。この場合、ロータ30の回転開始時はステータ40の回転力Kiが主となってロータ30を回転させ、図9(a)中の破線で示す余剰分は電流成分となって駆動電流に補填され、その分、電源からの供給電力を低減することができる。 First, when the power is off, the rotors 30 and the stator 40 of the motors 80a and 80b are both stopped (point 0 in FIG. 9B). Next, when the motors 80a and 80b are started, the control unit applies a current in the reverse rotation direction to the coil 42 via the slip rings 60a and 60b in a state where the reverse rotation prevention means 16 prevents the reverse rotation of the rotor 30. do. As a result, a force acts on the rotor 30 in the reverse rotation direction, but since the reverse rotation of the rotor 30 is prevented as described above, the force generated in the rotor 30 acts as a reaction force and acts on the stator 40. As a result, the stator 40 rotates in the forward direction. Then, when the stator 40 reaches a predetermined rotation speed (point A in the broken line in FIG. 9B), when an output request is made to the output shaft 10 such as stepping on the accelerator, the control unit performs the rotor 30. A drive current that causes the rotor 30 to rotate in the forward direction is caused to flow down to the coil 42 via the slip rings 60a and 60b. In the AC motor 80b, in addition to the AC drive current having a predetermined frequency, a DC current that does not interfere with the operation of the motor 80b is superimposed on the drive current via the slip rings 60a and 60b and flows down. As a result, the rotor 30 and the stator 40 are magnetically coupled, and the rotor 30 starts rotating in the same direction (forward direction) due to the rotational force of the stator 40. In addition to this, a drive current that rotates the rotor 30 in the forward direction flows down to the coil 42, so that the drive current also causes the rotor 30 to rotate in the forward direction. As a result, as shown at point A in FIG. 9A, the rotor 30 rotates at a torque T 0 that is a combination of the torque Tw generated by the supply power Kw of the drive current and the torque generated by the rotational force Ki of the stator 40. Operate. Incidentally, shows a configuration for limiting a torque T 0 the torque of the rotor 30 in FIG. 9 (a). In this case, when the rotation of the rotor 30 starts, the rotational force Ki of the stator 40 mainly rotates the rotor 30, and the surplus shown by the broken line in FIG. 9A becomes a current component and is supplemented with the drive current. Therefore, the power supply from the power source can be reduced accordingly.
 そして、このトルクTが印加することによりロータ30は回転を開始する。ここで、トルクTで制限しない場合の回転力Kiによる仮想的なトルクを図9(a)中のトルクT’として示すと、このトルクT’はロータ30の回転に伴って減少し、その分、ステータ40側からの駆動電流の補填量も減少する。また、ステータ40の回転力Kiがロータ30の回転に用いられることで、図9(b)中の破線で示すステータ40の回転速度Nmは減少し、図9(b)中の実線で示すロータ30の回転速度Ncは増加する。そして、ある点Bにおいてステータ40の回転速度Nmとロータ30の回転速度Ncとが等しくなり、その後はロータ30の回転速度Ncがステータ40の回転速度Nmよりも速くなる。尚、図9(a)ではNm=Ncとなる点BがトルクTとなる例を図示している。 Then, when this torque T 0 is applied, the rotor 30 starts to rotate. Here, if the virtual torque due to the rotational force Ki when not limited by the torque T 0 is shown as the torque T'in FIG. 9 (a), this torque T'decreases with the rotation of the rotor 30, and the torque T'is reduced. Therefore, the amount of compensation for the drive current from the stator 40 side is also reduced. Further, since the rotational force Ki of the stator 40 is used for the rotation of the rotor 30, the rotational speed Nm of the stator 40 shown by the broken line in FIG. 9B decreases, and the rotor shown by the solid line in FIG. 9B. The rotation speed Nc of 30 increases. Then, at a certain point B, the rotation speed Nm of the stator 40 and the rotation speed Nc of the rotor 30 become equal to each other, and thereafter, the rotation speed Nc of the rotor 30 becomes faster than the rotation speed Nm of the stator 40. Incidentally, shows an example in which the point B to the FIG. 9 (a) in Nm = Nc becomes torque T 0.
 ここで、ステータが回転しない従来の電動機はロータの回転に伴って直ちに逆起電力Keが生じ、この逆起電力Keはロータの出力N・Tを減少させる。この逆起電力Keはロータのステータに対する角速度ωが増加するにつれ増大する。従って、ステータが固定した従来の電動機では所定の出力N・Tを維持するために逆起電力Keによる損失分を埋める大きな供給電力Kwを必要とする。 Here, in the conventional motor in which the stator does not rotate, a counter electromotive force Ke is immediately generated as the rotor rotates, and this counter electromotive force Ke reduces the output NT of the rotor. This counter electromotive force Ke increases as the angular velocity ω with respect to the rotor stator increases. Therefore, in the conventional motor in which the stator is fixed, a large supply power Kw that compensates for the loss due to the counter electromotive force Ke is required in order to maintain a predetermined output N / T.
 しかしながら、本発明に係る電動機80a、80bではステータ40の回転速度Nmがロータ30の回転速度Ncよりも速いNm>Ncの領域(図9(b)中の点A-点B間の領域)では、ステータ40に対するロータ30の角速度ωは負となり、逆起電力Keは駆動電流を補填する電流を流下させる。これにより、前述のように電源からの供給電力を低減することができる。 However, in the motors 80a and 80b according to the present invention, in the region where the rotation speed Nm of the stator 40 is faster than the rotation speed Nc of the rotor 30 Nm> Nc (the region between points A and B in FIG. 9B). The angular velocity ω of the rotor 30 with respect to the stator 40 becomes negative, and the counter electromotive force Ke causes the current that supplements the drive current to flow down. As a result, the power supplied from the power source can be reduced as described above.
 そして、本発明に係る電動機80a、80bはステータ40の回転速度Nmがロータ30の回転速度Ncと等しくなるNm=Nc(図9(b)中の点B)まで逆起電力Keは発生せず、供給電力Kwを全てロータ30の出力N・Tに用いることができる。そして、ロータ30の回転速度Ncがステータ40の回転速度Nmよりも速くなったNc>Nmの時点で逆起電力Keが生じ、ここで初めて出力N・Tに対する損失が発生する。即ち、ステータが回転しない従来の電動機ではロータの回転開始直後から逆起電力Keによる損失が生じるのに対し、本発明に係る電動機80a、80bではロータ30の回転速度Ncがステータ40の回転速度Nmを超えるまで逆起電力Keによる損失は生じない。このため、ロータ30の回転初期の高トルクが必要な領域で供給電力Kwを増加させることなく、出力N・Tを維持することができる。 In the electric motors 80a and 80b according to the present invention, the counter electromotive force Ke does not occur until Nm = Nc (point B in FIG. 9B) where the rotation speed Nm of the stator 40 becomes equal to the rotation speed Nc of the rotor 30. , All the supply power Kw can be used for the outputs N and T of the rotor 30. Then, when the rotation speed Nc of the rotor 30 becomes faster than the rotation speed Nm of the stator 40 Nc> Nm, a counter electromotive force Ke is generated, and a loss with respect to the outputs N and T occurs for the first time. That is, in the conventional motor in which the stator does not rotate, a loss occurs due to the counter electromotive force Ke immediately after the start of rotation of the rotor, whereas in the motors 80a and 80b according to the present invention, the rotation speed Nc of the rotor 30 is the rotation speed Nm of the stator 40. No loss due to the back electromotive force Ke occurs until it exceeds. Therefore, the outputs N and T can be maintained without increasing the supply power Kw in the region where high torque at the initial stage of rotation of the rotor 30 is required.
 そして、さらにロータ30の回転速度Ncが増大するとステータ40の回転速度Nmが減少し、ステータ40は最終的に停止する(図9(b)中の点C)。このステータ40が停止するまでのNc>Nm>0の領域(図9(b)中の点B-点C間の領域)では、逆起電力Keによる損失は生じるもののステータ40は依然回転状態にあるため、逆起電力Keはステータ40の回転速度Nmの分だけ小さな値となり、ステータが回転しない従来の電動機と比較して発生する逆起電力Keは小さく損失は少ない。そして、電動機80a、80bはステータ40が停止した図9(b)中の点C以降において従来の電動機と同等の挙動を示す。 Then, when the rotation speed Nc of the rotor 30 further increases, the rotation speed Nm of the stator 40 decreases, and the stator 40 finally stops (point C in FIG. 9B). In the region of Nc> Nm> 0 (the region between points B and C in FIG. 9B) until the stator 40 stops, the stator 40 is still in a rotating state although a loss occurs due to the back electromotive force Ke. Therefore, the counter electromotive force Ke becomes a small value by the amount of the rotation speed Nm of the stator 40, and the counter electromotive force Ke generated is small and the loss is small as compared with the conventional electric motor in which the stator does not rotate. Then, the motors 80a and 80b show the same behavior as the conventional motors after the point C in FIG. 9B when the stator 40 is stopped.
 このように、本発明に係る電動機80a、80bはステータ40の回転力Kiをロータ30の回転に用いるため、従来の供給電力Kwのみによって生じるトルクTwよりも高いトルクTで回転動作させることができる。ここで、トルクTをトルクTwの2倍としたときに、ステータ40の回転速度Nmがロータ30の回転速度Ncと等しいNm=Nc点では、ステータが回転せず供給電力Kwのみで回転し逆起電力Keによる損失が生じる従来の電動機と比較して、計算上4倍の出力N・Tを得ることができる。 Thus, the electric motor 80a according to the present invention, 80b is for using a rotational force Ki of the stator 40 in the rotation of the rotor 30, be rotated operate at high torque T 0 than the torque Tw generated by only conventional supply power Kw can. Here, when the torque T 0 is twice the torque Tw, at the point Nm = Nc where the rotation speed Nm of the stator 40 is equal to the rotation speed Nc of the rotor 30, the stator does not rotate and rotates only with the supply power Kw. It is possible to obtain an output NT that is four times higher in calculation than a conventional motor in which a loss due to the countercurrent force Ke is generated.
 次に、電動機80a、80bのロータ30が回転しステータ40が停止した状態で、例えばブレーキを踏むなどの出力軸10(ロータ30)の回転を減速させる要求がなされると、制御部は例えばロータ30の回転を減速させるような駆動電流をスリップリング60a、60bを介してコイル42に流下する。これにより、ロータ30の回転速度が減少すると同時にロータ30とステータ40間には反力が生じ、この反力はステータ40を順方向に回転させる。これにより、ロータ30の回転力はステータ40の回転に変換される。そして、再度、アクセルを踏むなどの出力軸10への順方向回転への出力要求が行われると、先の動作と同様にしてステータ40の回転力Kiがロータ30を回転するように働く。このように、本発明に係る電動機80a、80bは、制動時等にはロータ30の回転力を運動エネルギーのままステータ40の回転力として蓄積し、再始動時等にはこのステータ40の回転力を運動エネルギーのままロータ30の回転に用いる。このため、エネルギー損失が少なく、ロータ30、ステータ40の運動エネルギーを最大限に有効活用することができる。 Next, when the rotor 30 of the motors 80a and 80b is rotated and the stator 40 is stopped, a request is made to decelerate the rotation of the output shaft 10 (rotor 30), for example, by stepping on a brake. A drive current that slows down the rotation of 30 flows down to the coil 42 via the slip rings 60a and 60b. As a result, the rotational speed of the rotor 30 decreases, and at the same time, a reaction force is generated between the rotor 30 and the stator 40, and this reaction force causes the stator 40 to rotate in the forward direction. As a result, the rotational force of the rotor 30 is converted into the rotation of the stator 40. Then, when an output request for forward rotation to the output shaft 10 such as stepping on the accelerator is made again, the rotational force Ki of the stator 40 acts to rotate the rotor 30 in the same manner as in the previous operation. As described above, the electric motors 80a and 80b according to the present invention accumulate the rotational force of the rotor 30 as the rotational force of the stator 40 with the kinetic energy at the time of braking or the like, and the rotational force of the stator 40 at the time of restarting or the like. Is used for the rotation of the rotor 30 with the kinetic energy. Therefore, the energy loss is small, and the kinetic energy of the rotor 30 and the stator 40 can be fully utilized.
 以上のように、本発明に係るスリップリング60a、60b及びこのスリップリング60a、60bを備えた電動機80a、80bは、ベアリング70の公転運動を利用して摺動部である差動回転部74a、74bを回転体40の約1/2の回転数で回転させる。これにより、摺動部分の実質的な回転速度が低下し、摺動部の摩耗の低減を図ることができる。また、本発明に係るスリップリング60a、60b及び電動機80a、80bは、1極の摺動電極を複数の摺動導電体76a、76bで構成し、この摺動導電体76a、76bの間隙に摺動導電体76a、76bよりも柔らかい摺動絶縁部78を位置させる。これにより、摺動導電体76a、76bへの押圧力は摺動絶縁部78側が受けて、摺動導電体76a、76bに掛かる押圧力が低減し、押圧力が極めて小さい臨界接触状態で摺動導電体76a、76bと回転体電極62、固定電極64を接触導通させることができる。これにより、摺動導電体76a、76b、回転体電極62、固定電極64の摩耗をさらに低減することができる。また、回転体電極62と固定電極64の摺動導電体76a、76bとの接触面にイオン化しにくい貴金属薄膜を形成することで、回転体電極62と固定電極64の電食を防止し、電極の摩耗をさらに低減することができる。 As described above, the slip rings 60a and 60b according to the present invention and the electric motors 80a and 80b provided with the slip rings 60a and 60b are the differential rotating portions 74a, which are sliding portions by utilizing the revolving motion of the bearing 70. The 74b is rotated at about 1/2 the rotation speed of the rotating body 40. As a result, the substantial rotation speed of the sliding portion is reduced, and the wear of the sliding portion can be reduced. Further, in the slip rings 60a, 60b and the electric motors 80a, 80b according to the present invention, the one-pole sliding electrode is composed of a plurality of sliding conductors 76a, 76b, and is slid in the gap between the sliding conductors 76a, 76b. The sliding insulation portion 78, which is softer than the dynamic conductors 76a and 76b, is positioned. As a result, the pressing force on the sliding conductors 76a and 76b is received by the sliding insulating portion 78 side, the pressing force applied to the sliding conductors 76a and 76b is reduced, and the pressing force is extremely small. The conductors 76a and 76b can be contact-conducted with the rotating body electrode 62 and the fixed electrode 64. As a result, the wear of the sliding conductors 76a and 76b, the rotating body electrode 62, and the fixed electrode 64 can be further reduced. Further, by forming a noble metal thin film that is difficult to ionize on the contact surface between the rotating body electrode 62 and the sliding conductors 76a and 76b of the fixed electrode 64, electrolytic corrosion of the rotating body electrode 62 and the fixed electrode 64 is prevented, and the electrode Wear can be further reduced.
 尚、本例で示したスリップリング60a、60bの各構成は一例であり、各部の形状、寸法、機構、デザイン、個数等は、本発明の要旨を逸脱しない範囲で変更して実施することが可能である。 The configurations of the slip rings 60a and 60b shown in this example are examples, and the shape, dimensions, mechanism, design, number, etc. of each part may be changed and implemented without departing from the gist of the present invention. It is possible.
      10  出力軸
      12  固定体(固定軸受部)
      30  ロータ
      40  回転体(ステータ)
      42  コイル
      60a、60b スリップリング
      62  回転体電極
      64  固定電極
      66  弾性部材
      70  ベアリング
      72  伝達部材
      74a、74b 差動回転部
      76a、76b 摺動導電体
      78  摺動絶縁部
      80a、80b 電動機
      706 転動体
      M   被駆動体

 
10 Output shaft 12 Fixed body (fixed bearing part)
30 Rotor 40 Rotating body (stator)
42 Coil 60a, 60b Slip ring 62 Rotating body electrode 64 Fixed electrode 66 Elastic member 70 Bearing 72 Transmission member 74a, 74b Differential rotating part 76a, 76b Sliding conductor 78 Sliding insulation part 80a, 80b Motor 706 Rolling element M Drive

Claims (7)

  1. 回転体側に設けられた回転体電極と、固定体側に設けられた固定電極と、
    前記回転体を回転可能に保持するベアリングと、
    前記ベアリングを構成し前記回転体の回転に伴って自公転する転動体と、
    前記転動体の公転運動を伝達する伝達部材と、
    前記伝達部材と接続し前記転動体の公転運動により回転する差動回転部と、
    前記差動回転部に設けられ一方の面に前記回転体電極が当接し他方の面に前記固定電極が当接する摺動導電体と、
    前記回転体電極もしくは前記固定電極を前記差動回転部の側に所定の力で押圧する弾性部材と、を有することを特徴とするスリップリング。
    A rotating body electrode provided on the rotating body side and a fixed electrode provided on the fixed body side,
    A bearing that rotatably holds the rotating body and
    A rolling element that constitutes the bearing and revolves with the rotation of the rotating body, and
    A transmission member that transmits the revolution movement of the rolling element, and
    A differential rotating portion that is connected to the transmission member and rotates by the revolution motion of the rolling element,
    A sliding conductor provided in the differential rotating portion, in which the rotating body electrode abuts on one surface and the fixed electrode abuts on the other surface.
    A slip ring having an elastic member that presses the rotating body electrode or the fixed electrode on the side of the differential rotating portion with a predetermined force.
  2. 摺動導電体の間に摺動絶縁部が位置し、前記摺動絶縁部が弾塑性変形の弾性領域で変形して前記摺動導電体への押圧力を低減し、前記摺動導電体と前記回転体電極と前記固定電極とを押圧力が極めて小さい臨界接触状態で接触導通させることを特徴とする請求項1記載のスリップリング。 A sliding insulating portion is located between the sliding conductors, and the sliding insulating portion is deformed in the elastic region of elasto-plastic deformation to reduce the pressing force on the sliding conductor, and the sliding conductor and the sliding conductor The slip ring according to claim 1, wherein the rotating body electrode and the fixed electrode are contact-conducted in a critical contact state where the pressing force is extremely small.
  3. 差動回転部がディスク状を呈し、摺動導電体は端面が円弧状であり前記差動回転部と同心の円状に配置され、さらに前記摺動導電体の両端面が前記差動回転部の両平面にそれぞれ面一で露出し、
    回転体電極と固定電極とが前記差動回転部と同心で前記摺動導電体と略同一の半径を有するリング状を呈することを特徴とする請求項2に記載のスリップリング。
    The differential rotating portion has a disk shape, and the sliding conductor has an arcuate end face and is arranged in a circular shape concentric with the differential rotating portion. Further, both end faces of the sliding conductor are the differential rotating portion. Exposed flush to both planes,
    The slip ring according to claim 2, wherein the rotating body electrode and the fixed electrode are concentric with the differential rotating portion and have a ring shape having substantially the same radius as the sliding conductor.
  4. 摺動導電体が導電性を有する炭素板で構成され、回転体電極と固定電極の前記摺動導電体との接触面に貴金属薄膜を有することを特徴とする請求項3記載のスリップリング。 The slip ring according to claim 3, wherein the sliding conductor is made of a carbon plate having conductivity, and has a noble metal thin film on the contact surface between the rotating body electrode and the sliding conductor of the fixed electrode.
  5. 差動回転部が円筒形状を呈するとともに、摺動導電体が前記差動回転部と同一の曲率のアーチ形状を呈して前記差動回転部を周方向に1周するように配置され、さらに前記摺動導電体の内周面と外周面とが前記差動回転部の内周面と外周面とに面一で露出し、
    回転体電極は外周面が前記摺動導電体の内周面と略同一の曲率を有するアーチ状を呈し、固定電極は内周面が前記摺動導電体の外周面と略同一の曲率を有するアーチ状を呈し、前記回転体電極の外周面が前記摺動導電体の内周面と接触し、前記固定電極の内周面が前記摺動導電体の外周面と接触して導通することを特徴とする請求項2に記載のスリップリング。
    The differential rotation portion has a cylindrical shape, and the sliding conductor has an arch shape having the same curvature as the differential rotation portion and is arranged so as to make one round in the circumferential direction. The inner peripheral surface and the outer peripheral surface of the sliding conductor are exposed flush with the inner peripheral surface and the outer peripheral surface of the differential rotating portion.
    The outer peripheral surface of the rotating body electrode has an arch shape having substantially the same curvature as the inner peripheral surface of the sliding conductor, and the inner peripheral surface of the fixed electrode has substantially the same curvature as the outer peripheral surface of the sliding conductor. It has an arch shape, and the outer peripheral surface of the rotating body electrode is in contact with the inner peripheral surface of the sliding conductor, and the inner peripheral surface of the fixed electrode is in contact with the outer peripheral surface of the sliding conductor to conduct conduction. The slip ring according to claim 2.
  6. 摺動導電体が導電性を有する炭素板で構成され、回転体電極の外周面と固定電極の内周面とに貴金属薄膜を有することを特徴とする請求項5記載のスリップリング。 The slip ring according to claim 5, wherein the sliding conductor is made of a carbon plate having conductivity, and has a noble metal thin film on the outer peripheral surface of the rotating body electrode and the inner peripheral surface of the fixed electrode.
  7. 被駆動体に回転力を伝達する出力軸と、
    前記出力軸に固定したロータと、
    前記ロータの外側に位置するステータと、
    前記出力軸と前記ステータとを回転可能に軸支する固定軸受部と、
    前記ステータに設けられ駆動電流が流れることで前記ロータを回転させる複数のコイルと、
    前記ステータを前記ロータと同一の方向に回転可能に保持するステータ回転機構と、を有し、
    前記ロータの回転が減速する際に前記ロータの回転力を前記ステータの回転に変換し、
    前記ステータを回転させた状態で前記駆動電流を流すことで、前記駆動電流による回転力に前記ステータの回転力を加えて前記ロータを回転させる電動機において、
    回転体としての前記ステータと固定体としての前記固定軸受部との間に設けられ、前記固定軸受部側からの駆動電流を前記コイルに供給する請求項1乃至請求項6のいずれかに記載のスリップリングをさらに有することを特徴とする電動機。

     
    An output shaft that transmits rotational force to the driven body,
    The rotor fixed to the output shaft and
    The stator located on the outside of the rotor and
    A fixed bearing portion that rotatably supports the output shaft and the stator, and
    A plurality of coils provided in the stator and rotating the rotor by flowing a drive current, and
    It has a stator rotation mechanism that rotatably holds the stator in the same direction as the rotor.
    When the rotation of the rotor is decelerated, the rotational force of the rotor is converted into the rotation of the stator.
    In an electric motor that rotates the rotor by applying the rotational force of the stator to the rotational force of the drive current by passing the drive current in a state where the stator is rotated.
    The invention according to any one of claims 1 to 6, which is provided between the stator as a rotating body and the fixed bearing portion as a fixed body, and supplies a drive current from the fixed bearing portion side to the coil. An electric motor characterized by further having a slip ring.

PCT/JP2020/026316 2020-07-06 2020-07-06 Slip ring and electric motor WO2022009249A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/026316 WO2022009249A1 (en) 2020-07-06 2020-07-06 Slip ring and electric motor
JP2020560853A JP6843365B1 (en) 2020-07-06 2020-07-06 Slip rings and electric motors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/026316 WO2022009249A1 (en) 2020-07-06 2020-07-06 Slip ring and electric motor

Publications (1)

Publication Number Publication Date
WO2022009249A1 true WO2022009249A1 (en) 2022-01-13

Family

ID=74860870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026316 WO2022009249A1 (en) 2020-07-06 2020-07-06 Slip ring and electric motor

Country Status (2)

Country Link
JP (1) JP6843365B1 (en)
WO (1) WO2022009249A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976203U (en) * 1972-10-23 1974-07-02
WO2020075334A1 (en) * 2018-10-09 2020-04-16 株式会社創 Electric motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976203U (en) * 1972-10-23 1974-07-02
WO2020075334A1 (en) * 2018-10-09 2020-04-16 株式会社創 Electric motor

Also Published As

Publication number Publication date
JP6843365B1 (en) 2021-03-17
JPWO2022009249A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP5046923B2 (en) Synchronous motor
US20050194855A1 (en) Axial gap rotating electrical machine
US10855121B2 (en) Rotary electric machine, electric power steering device, and method of manufacturing a rotary electric machine
CN1734894A (en) Axial-gap dynamo-electric machine
JP2016063728A (en) Brushless motor
US8662755B2 (en) Roller bearing device having radial-plane arrangement structure of rotation sensor
CN101779366A (en) Axial gap type motor
JP2005295673A (en) Synchronous brushless motor apparatus
US20070216252A1 (en) Motor/generator
US6703740B2 (en) Brushless motor with reduced rotor inertia
JP6799968B2 (en) Electric linear actuator
EP3525320A1 (en) Axial-gap type motor
JP2007159394A (en) Rotary electric machine for reducing torque ripple
JP2007159394A5 (en)
JPH0956092A (en) Permanent-magnet rotor
JP6710578B2 (en) Electric linear actuator
JP5678550B2 (en) Multi-rotor motor
EP2169803A2 (en) Inner-rotor brushless motor
JP2000125525A (en) Driver for vehicle
WO2022009249A1 (en) Slip ring and electric motor
JP2000050585A (en) Driver for vehicle
EP1835600A2 (en) Motor/generator
JP2008109804A (en) Rotary electric machine
JP3738718B2 (en) Embedded magnet type motor
JP3047798B2 (en) Vehicle drive system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020560853

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944276

Country of ref document: EP

Kind code of ref document: A1