WO2022008958A1 - Instalaciones para parques o campos fotovoltaicos que comprenden plantas automatizadas para pre-ensamblado de series de modulos fotovoltaicos con sistemas de seguidores solares - Google Patents

Instalaciones para parques o campos fotovoltaicos que comprenden plantas automatizadas para pre-ensamblado de series de modulos fotovoltaicos con sistemas de seguidores solares Download PDF

Info

Publication number
WO2022008958A1
WO2022008958A1 PCT/IB2020/056475 IB2020056475W WO2022008958A1 WO 2022008958 A1 WO2022008958 A1 WO 2022008958A1 IB 2020056475 W IB2020056475 W IB 2020056475W WO 2022008958 A1 WO2022008958 A1 WO 2022008958A1
Authority
WO
WIPO (PCT)
Prior art keywords
series
assembly
photovoltaic
modules
viii
Prior art date
Application number
PCT/IB2020/056475
Other languages
English (en)
French (fr)
Inventor
Giuseppe Melis
Original Assignee
Giuseppe Melis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giuseppe Melis filed Critical Giuseppe Melis
Priority to PCT/IB2020/056475 priority Critical patent/WO2022008958A1/es
Publication of WO2022008958A1 publication Critical patent/WO2022008958A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • F24S25/12Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface using posts in combination with upper profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/50Arrangement of stationary mountings or supports for solar heat collector modules comprising elongate non-rigid elements, e.g. straps, wires or ropes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Solar power plants or photovoltaic solar plants can occupy large areas of land and can include thousands of solar panels that require an adequate assembly and maintenance system.
  • Figure 1 shows a configuration mode of the automated plant installation according to the present invention to be installed in a photovoltaic field.
  • Figure 2 shows a collection area for the raw material to set up the photovoltaic field and that can arrive by truck at the site of the automated plant according to the invention.
  • Figure 3 shows a configuration of a processing plant for the residual elements resulting from the unpacking of the elements for the photovoltaic field according to the present invention.
  • Figure 4 shows the pre-assembly zone for series of photovoltaic modules (viii) that are produced in the automated plant (I) according to the present invention.
  • Figure 4.1 shows one of the two steel cables (i) that enter the assembly belt for the assembly of photovoltaic module series (viii) according to the present invention.
  • Figure 4.2 shows a side view of the coils ( ⁇ i) of steel cables (i) located under the assembly belts according to the present invention.
  • Figure 4.3 shows the mobile carriage (iii) with an emerging robotic arm (iv) that has clamps (vii), where each clamp (vii) has a die (vii') through which the steel cable passes ( i).
  • Figure 4.4 shows the configuration of the mobile carriages (iii) on two assembly belts mounting four clamps (vii) at the same time.
  • Figure 4.5 corresponds to a sign view of photovoltaic modules (viii) moving towards the mounting carriage (ix) for subsequent installation in the racks (x).
  • Figure 4.6 corresponds to a view of the mounting carriages (ix) at the time of installation of the modules (viii) on the frame (x).
  • Figure 4.7 is a general view of the assembly carriages (ix) at the moment of starting to move along the floor rails.
  • Figure 4.8 is a view of the transport frame (x) with a series of modules (viii).
  • Figure 5 shows the zone (C) in which the series of photovoltaic modules (viii) can be stored in racks (x) previously manufactured in the pre-assembly zone in the second zone (B) .
  • Figure 6 shows an area that can be outdoors in the third area (C) where the signs of photovoltaic modules (viii) are located between signposts where specially adapted vehicles (14) can make the car by means of hydraulic systems, from the racks (x) in order to transport them to the field.
  • Figures 7 and 8 show how a special vehicle (14) can autonomously load the racks with series of photovoltaic modules (viii) and transport them.
  • Figure 9 shows the configuration of the hydraulic arms (14') of the truck (14) that ensure the stability of the frame (x).
  • Figure 10 illustrates the frame (x) positioned in the assembly area, it also illustrates the discharge of the series of photovoltaic modules through an electric mechanism that activates suction cups for holding and lifting the series ( vii).
  • Figure 11 shows the crane (xii) transporting a series of modules (viii) where the crane (xii) has an electric mechanism with suction cups (xiii) to transport the modules (viii).
  • Figure 11.1 shows the electrical mechanism with suction cups (xiii) just when they are positioned vertically to secure and hoist the module signs (viü).
  • Figure 11.2 shows the electric mechanism with suction cups (xiii) just when the electric mechanism with suction cups (xiii) unsecures a series of photovoltaic modules (viii) on a part of a solar tracker, thanks to a hydraulic or electric actuator ( xiv) which also controls the adhesion of the suction cups.
  • Figure 12 corresponds to a view of the tensioners (v) of the steel cable (i) connected to the anchoring system provided by the tracker attached to its respective post.
  • Figure 13 shows a possible configuration of an automated plant for photovoltaic parks or fields according to the invention, where you can see the collection area of the raw material that arrives at the field with the recycling plant, the plant automated where the pre-assembly process of the photovoltaic module signs is carried out and the storage area of said series ready to be sent to the field for assembly.
  • Figure 14 shows the supervision and control system (for its acronym in English SCADA) oriented to the automated construction and monitoring of photovoltaic parks, it includes the logistics control systems and automated production control of pre-assembly of photovoltaic modules for its assembly in series on site.
  • the present invention is aimed at installations and/or physical and/or computer infrastructure for photovoltaic parks or fields that allow the pre-assembly, assembly and design of photovoltaic modules with solar tracker systems, a system and an automated process for the assembly of tensile structures in a plurality of photovoltaic panel modules, especially systems that allow photovoltaic panel modules to be obtained with or without a frame and that have tensile structures ready to be assembled quickly and safely in the field.
  • the present invention describes an integrated solution of an automated system for pre-assembly, assembly and design of tensile structure for the construction of photovoltaic parks, where the automated process allows the assembly of photovoltaic modules assembled together with steel cables in signs of 2 to 16 modules, preferably in sets of 7 modules in a safe and controlled manner in continuous work, allowing a pre-assembly of signs of modules, also achieving their storage in racks (racks) conditioned for the protection of the modules in order to later be able to be moved efficiently and quickly to the field for assembly.
  • racks racks
  • the present invention is directed to configurations for installations in photovoltaic parks or fields that include automated plants for pre-assembly of signs of photovoltaic modules for solar tracker systems, where the installation It comprises a first raw material collection area with a recycling system for plastic and cardboard material from the unpacking of the elements to be used in the field, a second pre-assembly area, a pre-storage area for the series of modules and a storage area where they are loaded and transported to the field by means of specially adapted vehicles.
  • the present invention refers to a provisional and easily dismountable configuration of an automated plant (I) that can be installed, for example, just at the entrance of the photovoltaic field, where the plant comprises a first zone (A) for unloading and storing solar panels by transport trucks (1) that contain boxes from the factory, which can be unloaded by forklift machines (2) that carry the raw material to the storage (3) of photovoltaic modules.
  • the plastic and cardboard recycling plant (4) processes and recycles the excess material that is released from the unpacking of the solar panels that enter the facilities and whose result is a pallet of recycled material (5) that are placed in vehicles or trucks (6) for the removal of recycled material.
  • the configuration of the plant or installation according to the present invention can be easily disassembled once the construction of a photovoltaic park is finished and assembled or built again in a new photovoltaic field to be built, with which the configuration of facilities, establishments o Infrastructure is reusable and transportable (portable) allowing to reduce costs in the construction of photovoltaic parks.
  • the second zone (B) of the configuration or installation which corresponds to the automated plant itself, is where the pre-assembly of the series of modules (viii) is carried out, as can be seen in figure 4 and it is carried out the automated process according to the present invention, which comprises two stages namely:
  • the first stage is a pre-assembly stage where the plurality of photovoltaic modules is assembled in an automated plant according to the present invention and the second stage consists of the assembly stage of the series of pluralities of tensile structures through mechanical equipment in the field.
  • the process of pre-assembly, assembly and sign design of photovoltaic modules (viii) assembled together with steel cables (i) in signs of 7 or more modules may have pre-stages such as the beginning with the arrival or receipt from trucks transporting photovoltaic modules in boxes from the factory and can be disassembled with special lifting machines for unloading materials. Then through these same or similar machines, the photovoltaic modules are collected.
  • the pre-assembly process begins with the entry of steel cables (i) with a diameter of 8 to 16 mm to the assembly tape (7) of modules in sign (fig. 4.1), these cables (i) will have the distance between yes according to the recommendation of the photovoltaic module manufacturer.
  • the cables (i) on the assembly tape (7) they will be arranged with a sliding machine or mobile carriage (( ⁇ i) the clamps (vii) (fig. 4.3), which will be fixed to the cables (i) mechanical pressure using dice (vii') and will be the anchoring solution between the steel cables (i) and the photovoltaic modules (viii).
  • the arrangement of the clamps (vii) will be two units for each interval of modules (viii)
  • the installation of the closing piece is carried out and the clamps are tightened (vii) (
  • the second stage of the automated process consists of the assembly stage of the series of pluralities of tensed structures of photovoltaic modules (viii) through mechanical equipment in the field, where the assembly stage comprises First, the lifting (fig. 10) of the series of modules (viii) through a crane (xii) (fig. 11) that has at its end a lifting mechanism (xiii) with electrically or hydraulically actuated suction cups and where said mechanism comprises an electric or hydraulic motor (xiv) (fig.
  • the second zone (B) comprises an input conveyor belt (7) for the positioning of photovoltaic modules that are connected to an automated process belt (8) for the assembly of modules in series of seven or more units through steel cables (i) 12 mm thick.
  • figure 4.1 which shows an enlarged view of one of the two steel cables (i) that enter the assembly tape (7) from coils ( ⁇ i) of cable (i) located under the tape (7) (figure 4.2), where its displacement and positioning is carried out through computationally guided heles.
  • the mobile carriage (iii) has an emerging robotic arm (iv) from the upper box of said carriage that contains clamps (vii) for mounting the clamps (vii) on the steel cable (i) at through dice (vii').
  • the mobile carriage (iii) moves on the assembly belts (7 and 8) mounting four clamps (vii) simultaneously for the anchoring of the photovoltaic modules (viii) to the steel cables (i), thus obtaining the series of modules (viii).
  • the series of modules (viii) Once the series of modules (viii) have been obtained, they are moved to an assembly carriage (ix) for the subsequent installation of the modules in a transport frame (x), where the assembly carriage (ix) moves to through wheels on guides positioned in the plant, also automated and where all the aforementioned actions or stages are computer controlled in a control room (figure 14).
  • the frame (x) has a rigid foam surface (x ⁇ ) on its white base with slots for the secure fit of the series of modules (viii).
  • the racks (x) can be arranged near or in the same second area (B) of the photovoltaic park installation of according to the present invention and then be transported to the third zone (C) of the automated installation according to the present invention.
  • FIG 8 shows how the truck (14) loads and lifts the frame (x) where the entire system is automated by the same truck (14), which has hydraulic arms (14') that they ensure the stability of the frame (x) (figure 9).
  • each module (viii) is unloaded by means of a crane ( xii) performing at the same time the assembly on the trackers previously installed in the field.
  • a crane xii
  • the cranes (xii) at their ends have suction cup systems conditioned for the number of series of modules (viii) required and in this way the safe lifting and assembly of the series of modules (viii) is carried out.
  • the configuration of the installation for photovoltaic parks or fields (I) comprises the first (A), second (B) and third (C) zones.
  • the second zone (B) is a covered area with two side entrances for the racks (X) available to house the series of 7 modules (viii), which then come out loaded with them through the output that connects the second zone (B) with the third zone (C).
  • the specialized vehicles or trucks (14) carry the series of modules (viii) located on the racks (x) to the part of the field where they will be installed.
  • the series of modules are located on the posts and the axis horizontal rotary that make up the followers to later be tightened by means of the tensioning terminals located on the sides of the arms supported on each post.
  • the specially conditioned transport included in the installation for photovoltaic parks or fields (I) allows the safe distribution of the photovoltaic modules (viii) through the park in racks (x) and trucks ( 14) with special design for the protection of these components.
  • Another advantage of the installation configuration of photovoltaic parks or fields (I) according to the invention is the easy and quick accommodation of the series of photovoltaic panels (viii) in the structure of the solar trackers on the posts that have Fewer components possible to avoid excessive manual assembly, adjustment, tightening and alignment work.
  • Another advantage of the configuration of the installations for photovoltaic fields (I) in accordance with the present invention is that, as the structures of the modules (viii) are tensioned in series with steel cables (i), they are flexible structures that need to be regulated only at the ends of each series of modules through tensor terminals.
  • the configuration of the installation for photovoltaic parks according to the present invention allows the optimization and efficiency of the assembly of photovoltaic fields since the configuration of the installation for photovoltaic parks includes the assembly of photovoltaic modules in series as of tensile structure with fully mechanical assembly, transport, lifting and assembly equipment without manual action.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

La presente invención está dirigida a instalaciones o establecimientos para parques o campos fotovoltaicos que comprenden una planta automatizada instalada en donde la planta comprende una primera zona (A) de descargue y acopio de paneles fotovoltaicos, una segunda zona (B) de preensamblado de series de módulos de paneles solares y una tercera zona (C) donde se ubican las series de módulos fotovoltaicos (viii) para su posterior transporte al parque fotovoltaico. La invención también está dirigida a un proceso de pre-ensamblado y montaje de series de módulos fotovoltaicos (viii) en series de 7 o más módulos fotovoltaicos en donde el proceso comprende una primera etapa de pre-ensamblado en donde una pluralidad de módulos fotovoltaicos se ensambla en la segunda zona (B) de la planta automatizada en donde los módulos fotovoltaicos (viii) son ensamblados entre sí con cables de acero (i) y una segunda etapa que consiste en el montaje de las series de pluralidades de módulos fotovoltaicos (viii) tensadas a través de equipos mecánicos en campo.

Description

INSTALACIONES PARA PARQUES O CAMPOS FOTOVOLTAICOS QUE COMPRENDEN PLANTAS AUTOMATIZADAS PARA PRE-ENSAMBLADO DE SERIES DE MODULOS FOTOVOLTAICOS CON SISTEMAS DE SEGUIDORES
SOLARES
CAMPO TÉCNICO
[001] La presente tecnología se encuentra enmarcada en las tecnologías alternativas de producción de energía, principalmente, energía solar. Principalmente, a instalaciones, establecimientos o infraestructura física y/o informática para parques o campos fotovoltaicos que comprenden plantas automatizadas para el preensamblado de series de módulos fotovoltaicos que comprenden además plantas recicladoras de plástico y cartón in situ y almacenaje de módulos fotovoltaicos y series de los mismos en bastidores.
ESTADO DE LA TECNICA
[002] Las plantas solares de poder o plantas solares fotovoltaicas pueden ocupar grandes extensiones de terreno y pueden incluir millares de paneles solares que requieren de un sistema adecuado de montaje y mantenimiento.
[003] Existe un problema latente ambiental asociado con las instalaciones de campos fotovoltaicos ya que durante el montaje de dichos campos se genera una gran cantidad de desechos plásticos y de cartón provenientes del desembalaje y armado de las piezas y estructuras que se montan en el campo productor de energía solar. Adicionalmente, los campos fotovoltaicos convencionales requieren de montaje industrial a través de equipo pesado para la instalación de los módulos fotovoltaicos.
[004] En este sentido, existe la necesidad aún no satisfecha de proporcionar instalaciones, establecimientos y/o infraestructura física e informática para parques o campos fotovoltaicos que comprendan una infraestructura robusta para fabricar in situ las series de módulos fotovoltaicos a través de plantas automatizadas i provisionales y portátiles ubicadas en una zona de pre-ensamblado en donde dicha zona se encuentre conectada con una zona de reciclado y zona de acopio o almacenamiento de las series de módulos pre-ensamblados y listos para su montaje en campo.
DESCRIPCIÓN DE LAS FIGURAS
[005] La figura 1 muestra una modalidad de configuración de la instalación para planta automatizada de acuerdo con la presente invención para instalarse en un campo fotovoltaico.
[006] La figura 2 muestra una zona de acopio de la materia prima para montar el campo fotovoltaico y que puede llegar en camiones al sitio de la planta automatizada de acuerdo con la invención.
[007] La figura 3 muestra una configuración de una planta procesadora de los elementos residuales que resultan del desembalaje de los elementos para el campo fotovoltaico de acuerdo con la presente invención.
[008] La figura 4 muestra la zona de pre-ensamblado de series de módulos fotovoltaicos (viii) que se producen en la planta automatizada (I) de acuerdo con la presente invención.
[009] La figura 4.1 muestra uno de los dos cables de acero (i) que ingresan en la cinta de ensamblaje para el montaje de series de módulos fotovoltaicos (viii) de acuerdo con la presente invención.
[010] La figura 4.2 enseña una vista lateral de las bobinas (¡i) de cables de acero (i) ubicadas debajo de las cintas de ensamblaje de acuerdo con la presente invención. [011] La figura 4.3 muestra el carro móvil (iii) con brazo robótico emergente (iv) que tiene abrazaderas (vii), en donde cada abrazadera (vii) tiene un dado (vii’) por el cual pasa el cable de acero (i).
[012] La figura 4.4 enseña la configuración de los carros móviles (iii) sobre dos cintas de ensamblaje montando cuatro abrazaderas (vii) al mismo tiempo.
[013] La figura 4.5 corresponde a una vista de señe de módulos fotovoltaicos (viii) desplazándose hacia el carro de montaje (ix) para su posterior instalación en los bastidores (x).
[014] La figura 4.6 corresponde a una vista de carros de montaje (ix) al momento de instalación de los módulos (viii) sobre el bastidor (x). [015] La figura 4.7 es una vista general de carros de montaje (ix) al momento de inicio del desplazamiento por los rieles del piso.
[016] La figura 4.8 es una vista del bastidor (x) de transporte con una serie de módulos (viii).
[017] La figura 5 muestra la zona (C) en la cual se puede realizar un almacenamiento de las series de módulos fotovoltaicos (viii) en bastidores (x) fabricadas previamente en la zona de pre-ensamblado en la segunda zona (B).
[018] La figura 6 muestra una zona que puede estar al aire libre en la tercera zona (C) donde se ubican entre postes de señalización las señes de módulos fotovoltaicos (viii) en donde los vehículos especialmente adaptados (14) pueden hacer el auto mediante sistemas hidráulicos, de los bastidores (x) a fin de transportarlos al campo.
[019] La figura 7 y 8 muestran la manera como un vehículo especial (14) puede hacer la carga de los bastidores con series de módulos fotovoltaicos (viii) de manera autónoma y su transporte.
[020] La figura 9 muestra la configuración de brazos hidráulicos (14’) del camión (14) que aseguran la estabilidad del bastidor (x).
[021] La figura 10 ¡lustra el bastidor (x) posicionado en el área de montaje, ¡lustra además la descarga de las series de módulos fotovoltaicos a través de un mecanismo eléctrico que acciona ventosas para la sujeción y el izaje de las series (viü).
[022] La figura 11 muestra la grúa (xii) transportando una señe de módulos (viii) en donde la grúa (xii) tiene un mecanismo eléctrico con ventosas (xiii) para transportar los módulos (viii).
[023] La figura 11.1 muestra el mecanismo eléctrico con ventosas (xiii) justo cuando se posicionan de forma vertical para asegurar e ¡zar las señes de módulos (viü).
[024] La figura 11.2 muestra el mecanismo eléctrico con ventosas (xiii) justo cuando el mecanismo eléctrico con ventosas (xiii) desasegura una señe de módulos fotovoltaicos (viii) sobre una parte de un seguidor solar, gracias a un accionador hidráulico o eléctrico (xiv) que también controla la adhesión de las ventosas.
[025] La figura 12 corresponde a una vista de los tensores (v) de cable de acero (i) se conecta al sistema de anclaje que provee el seguidor unido a su respectivo poste. [026] La figura 13 muestra una posible configuración de una planta automatizada para parques o campos fotovoltaicos de acuerdo con la invención, en donde se puede observar la zona de acopio de la materia prima que llega al campo con la planta de reciclaje, la planta automatizada en donde se realiza el proceso de pre- ensamble de las señes de módulos fotovoltaicos y la zona de almacenamiento de dichas series listas para enviar al campo para su montaje.
[027] La figura 14 muestra el Sistema de supervisión y control (de sus siglas en ingles SCADA) orientado a la construcción automatizada y monitoreo de parques fotovoltaicos, comprende los sistemas de control de logística y control de producción automatizada de preensamblado de módulos fotovoltaicos para su montaje en serie en obra.
RESUMEN DE LA INVENCIÓN
[028] La presente invención está dirigida a instalaciones y/o infraestructura física y/o informática para parques o campos fotovoltaicos que permiten el preensamblado, montaje y diseño de módulos fotovoltaicos con sistemas de seguidores solares, a un sistema y a un proceso automatizado para el montaje de estructuras tensadas en pluralidades de módulos de paneles fotovoltaicos, especialmente a sistemas que permitan obtener módulos de paneles fotovoltaicos con o sin marco y que tengan estructuras tensadas listas para montar de manera rápida y segura en campo. Adicionalmente, la presente invención describe una solución integrada de un sistema automatizado de preensamblado, montaje y diseño de estructura tensada para la construcción de parques fotovoltaicos, en donde el proceso automatizado permite el montaje de módulos fotovoltaicos ensamblados entre sí con cables de acero en señes de 2 a 16 módulos, preferiblemente en señes de 7 módulos de una manera segura y controlada en trabajo continuo, permitiendo un pre-ensamble de señes de módulos logrando además su acopio en bastidores (racks) acondicionados para la protección de los módulos a fin de luego poder ser trasladados con eficiencia y rapidez a campo para su montaje. Adicionalmente, la presente invención está dirigida a configuraciones para instalaciones en parques o campos fotovoltaicos que comprenden plantas automatizadas para pre-ensamble de señes de módulos fotovoltaicos para sistemas de seguidores solares, en donde la instalación comprende una primera zona de acopio de la materia prima con un sistema de reciclado de material plástico y cartón provenientes del desembalaje de los elementos que se utilizarán en campo, una segunda zona de pre-ensamblado, una zona de pre-almacenamiento de las series de módulos y una zona de almacenamiento en donde por medio de vehículos especialmente adaptados se realiza la carga y transporte de los mismos hacia el campo.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
[029] En un primer aspecto, la presente invención hace referencia a una configuración de una planta automatizada (I) provisional y fácilmente desmontable que puede ser instalada, por ejemplo, justo a la entrada del campo fotovoltaico, en donde la planta comprende una primera zona (A) de descargue y acopio de paneles solares mediante camiones (1) de transporte que contienen cajas desde la fábrica, las cuales pueden ser descargadas mediante máquinas elevadoras (forklift) (2) que llevan la materia prima al acopio (3) de módulos fotovoltaicos. Como se puede apreciar en la figura 1 , la planta recicladora de plásticos y cartones (4) procesan y reciclan el material sobrante que se desprende el desempacado de los paneles solares que ingresan a las instalaciones y cuyo resultado es pallet de material reciclado (5) que se colocan en vehículos o camiones (6) de retiro del material reciclado. La configuración de la planta o instalación de acuerdo con la presente invención, puede ser fácilmente desmontada una vez se termine la construcción de un parque fotovoltaico y montada o construida nuevamente en un nuevo campo fotovoltaico a construir, con lo cual la configuración de instalaciones, establecimientos o infraestructura es reutilizable y transportable (portátil) permitiendo reducir costos en la construcción de parques fotovoltaicos.
[030] La segunda zona (B) de la configuración o instalación, que corresponde a la planta automatizada en sí, es donde se realiza el preensamblado de la serie de módulos (viii), como se puede apreciar en la figura 4 y se realiza el proceso automatizado de acuerdo con la presente invención, el cual comprende dos etapas a saber: La primera etapa es una etapa de pre-ensamblado en donde la pluralidad de módulos fotovoltaicos se ensambla en una planta automatizada de acuerdo con la presente invención y la segunda etapa consiste en la etapa de montaje de las series de pluralidades de estructuras tensadas a través de equipos mecánicos en campo.
[031] El proceso de preensamblado, montaje y diseño de señes de módulos fotovoltaicos (viii) ensamblados entre sí con cables de acero (i) en señes de 7 o más módulos, puede tener pre-etapas como el inicio con la llegada o recibo de los camiones de transporte de módulos fotovoltaicos en cajas desde la fábrica y pueden ser desmontados con máquinas elevadoras especiales para descarga de materiales. Luego a través de estas mismas máquinas o unas similares se realiza el acopio de los módulos fotovoltaicos. El proceso de preensamblado se inicia con el ingreso de cables (i) de acero con diámetro de 8 a 16 mm a la cinta de ensamblaje (7) de módulos en señe (fig. 4.1), estos cables (i) tendrán la distancia entre sí de acuerdo a la recomendación del fabricante de módulos fotovoltaicos. Posterior al posicionamiento de los cables (i) en la cinta de ensamblaje (7) se dispondrán con una maquina deslizante o carro móvil ((¡¡i) las abrazaderas (vii) (fig. 4.3), las cuales se fijarán a los cables (i) a presión mecánica mediante dados (vii’) y serán la solución de anclaje entre los cables de acero (i) y los módulos fotovoltaicos (viii). La disposición de las abrazaderas (vii) será dos unidades por cada intervalo de módulos (viii). A continuación de que se han anclado todas las abrazaderas (vii) al cable de acero (i), comienzan a desplazarse a través de la cinta (8) y sobre los cables (i) y las abrazaderas (vii) a los módulos fotovoltaicos (viii), los cuales se dispondrán organizadamente de acuerdo con el señado de módulos planificado (de 2 a 16 módulos en señe) y en concordancia con la distribución de las abrazaderas (vii) a través de las cintas (7 y 8). Posterior al posicionamiento de los módulos fotovoltaicos (viii), nuevamente con la maquina deslizante (carro móvil (iii)) se realiza la instalación de la pieza de cierre y aprete de las abrazaderas (vii) (fig. 4.4) para toda la señe de módulos (viii), de este modo los cables (i) y módulos fotovoltaicos (viii) quedan perfectamente unidos y alineados desde la planta automatizada. Finalmente, toda la señe (módulos (viii), Cables (i), abrazaderas (vii), dados (vii’)) se desplazan por la cinta (9) hacia una nueva cinta (10) (fig. 4.5), la cual tiene la finalidad de posicionar la señe de módulos (viii) en bastidores (x) de acopio y transporte para 32 señes de módulos (fig. 4.6).
[032] Una vez pre-ensambladas las series de, por ejemplo, 7 módulos fotovoltaicos (viii), opcionalmente puede haber una etapa intermedia de almacenamiento, en donde a través de una cinta transportadora se ubican las series de 7 módulos sobre un bastidor (x), el cual puede soportar hasta 32 series de 7 módulos, por ejemplo 16 series por cada lado del bastidor (fig. 4.8).
[033] La segunda etapa del proceso automatizado de acuerdo con la presente invención consiste en la etapa de montaje de las series de pluralidades de estructuras tensadas de módulos fotovoltaicos (viii) a través de equipos mecánicos en campo, en donde la etapa de montaje comprende primero el izaje (fig. 10) de la serie de módulos (viii) a través de una grúa (xii) (fig. 11) que tiene en su extremo un mecanismo (xiii) de levante con ventosas accionadas eléctricamente o hidráulicamente y en donde dicho mecanismo comprende un motor eléctrico o hidráulico (xiv) (fig. 11.1 y 11.2) para posicionar vertical, inclinada u horizontalmente la serie de módulos (viii) y en donde el mecanismo (xiii) tiene un número de ventosas igual al número de paneles fotovoltaicos de las series de módulos fotovoltaicos (viii) para el izaje y montaje seguro de las mismas; y segundo, el anclaje y tensado (fig. 12) de los cables de acero (i) a la estructura del seguidor, de esta manera se obtiene el proceso de la invención.
[034] Todo el proceso de preensamblado y montaje de módulos fotovoltaicos (viii) se encuentra sistematizado mediante un Sistema de Supervisión y Control (SCADA) orientado a la construcción automatizada y monitoreo de parques fotovoltaicos, el cual comprende los sistemas de control de logística y control de producción automatizada de preensamblado de módulos fotovoltaicos para su montaje en serie en obra. Además, se incluye la supervisión y control de maquinaria especializada utilizada en la construcción automatizada de obras civiles, eléctricas y electromecánicas para parques fotovoltaicos. La trazabilidad de los procesos de logística, producción y construcción se continúan en la gestión de la operación y mantenimiento de plantas de producción de energía eléctrica. Todas las acciones de los equipos del proceso son accionadas y controladas en tiempo real mediante un sistema informático.
[035] En este orden de ¡deas, la segunda zona (B) comprende una cinta transportadora (7) de entrada para el posicionamiento de módulo fotovoltaicos que se conectan con una cinta (8) de proceso automatizada para el ensamblado de módulos en serie de siete o más unidades a través de cables de acero (i) de 12 mm de espesor. Como se puede apreciar en la figura 4.1 que muestra una vista amplificada de uno de los dos cables de acero (i) que ingresan a la cinta de ensamblaje (7) desde bobinas (¡i) de cable (i) ubicadas debajo de la cinta (7) (figura 4.2), en donde su desplazamiento y posicionado se realiza a través de heles guiados computacionalmente. Sobre dicho cable (i) se encuentra un carro móvil (iii) con brazo robótico emergente (iv) el cual asegura a los extremos del cable (i), los tensores terminales (v) (fig. 4.3). Adicionalmente, el carro móvil (iii) tiene un brazo robótico emergente (iv) desde la caja superior de dicho carro que contiene abrazaderas (clamps) (vii) para el montaje de las abrazaderas (vii) sobre el cable de acero (i) a través de dados (vii’).
[036] De acuerdo con una modalidad preferida de la invención, como se muestra en la figura 4.4, el carro móvil (iii) se desplaza sobre las cintas de ensamblaje (7 y 8) montando cuatro abrazaderas (vii) de manera simultánea para el anclaje de los módulos fotovoltaicos (viii) a los cables de acero (i) obteniéndose de esta manera las series de módulos (viii). Una vez obtenidas las series de módulo (viii), éstos se desplazan hacia un carro de montaje (ix) para la posterior instalación de los módulos en un bastidor (x) de transporte, en donde el carro de montaje (ix) se desplaza a través de ruedas sobre guías posicionadas en la planta, también automatizadas y en donde todas las acciones o etapas anteriormente mencionadas son controladas computacionalmente en una sala de control (figura 14).
[037] El montaje de los módulos (viii) al bastidor (X) se realiza a través de brazos con ventosas que levantan cada uno de los módulos (viii) de manera sincronizada sin afectar la estructura de la serie (figura 4.5 y 4.6). Esta operación de montaje se realiza por ambos lados del bastidor (x) hasta completar 16 unidades de series por cada lado del bastidor (x). Estas etapas se pueden observar en la figura 4.7 en donde se puede apreciar los carros de montaje (ix) al momento del desplazamiento por los heles ubicados en el piso y al mismo tiempo, el posicionamiento y desplazamiento de los brazos con ventosas para el levante de los módulos (viii). [038] En este sentido y como se puede apreciar en la figura 4.8 el bastidor (x) tiene en su base blanca una superficie de espuma rígida (x¡) con ranuras para el encaje seguro de la serie de módulos (viii). Una vez está completada la carga del bastidor (x) con las series de módulos (viii), el bastidor (x) se desplaza a través de rieles ubicados en el piso hacia la zona de acopio de bastidores en la tercera zona (C) de la instalación para parque fotovoltaico de acuerdo con la presente invención (figural numerales 12 y 13).
[039] En una modalidad de la invención, los bastidores (x) pueden estar dispuestos cerca o en la misma segunda zona (B) de la instalación de parque fotovoltaico de acuerdo con la presente invención y luego ser transportados hacia la tercera zona (C) de la instalación automatizada de acuerdo con la presente invención. Como se muestra en las figuras 5, 6 y 7 se observa la tercera zona (C) de acopio de los bastidores (x), carga de los bastidores (x) y el momento de ingresar al área de carga del camión de transporte (figura 7 y figura 1 numeral 14) para su traslado hacia el campo fotovoltaico.
[040] En la figura 8 se puede observar como el camión (14) carga y levanta el bastidor (x) en donde todo el sistema es automatizado por el mismo camión (14), el cual cuenta con brazos hidráulicos (14’) que aseguran la estabilidad del bastidor (x) (figura 9).
[041] Luego que el camión (14) ha transportado el bastidor (x) con los módulos (viii) al campo, el bastidor (x) se posiciona en el área de montaje, cada módulo (viii) es descargado mediante una grúa (xii) realizando al mismo tiempo el montaje sobre los seguidores previamente instalados en campo. Como se puede apreciar en la figura 9 y 10 de este modo se evita cualquier manipulación manual de los módulos (viii). Las grúas (xii) en sus extremos poseen sistemas de ventosas acondicionadas para el número de series de módulos (viii) que se requiera y de este modo se realiza el izaje y montaje seguro de las series de módulos (viii).
[042] Una vez montados los módulos (viii) sobre los seguidores previamente instalados en campo, como se puede observar en la figura 12, los tensores de los cables de acero (i) se anclan al sistema de anclaje que provee el seguidor y su tensado se lleva a cabo posteriormente a través de llaves reguladoras para los torques calculados según el diseño.
[043] En resumen, como se muestra en la figura 13 la configuración de la instalación para parques o campos fotovoltaicos (I) de acuerdo con la presente invención, comprende las zonas primera (A), segunda (B) y tercera (C), en donde la segunda zona (B) es un área cubierta con dos entradas laterales para los bastidores (X) disponibles para alojar las series de 7 módulos (viii), que luego salen cargados con los mismos por la salida que conecta la segunda zona (B) con la tercera zona (C).
[044] Una vez se comienza la construcción del parque fotovoltaico, los vehículos especializados o camiones (14) llevan las series de módulos (viii) ubicados sobre los bastidores (x) hacia la parte del campo donde serán instaladas. Para ello, como se muestra en la figura 10, las series de módulos se ubican sobre los postes y el eje rotatorio horizontal que conforman los seguidores para luego ser tensados por medio de los terminales tensores ubicados a los lados de los brazos sostenidos sobre cada poste.
[045] Las ventajas de la configuración de las instalaciones para parque o campos fotovoltaicos de acuerdo con la invención se basan en la facilidad de poder llevar acabo un pre-ensamble de las series de módulos (viii) en el mismo campo, permitiendo a la vez realizar el reciclado de los materiales de embalaje en la primera zona (A) de la instalación para parque o campo fotovoltaico (I) de acuerdo con la invención con lo cual se logra hacer un aprovechamiento de los materiales de desecho sin que cause impacto a nivel ambiental en el campo donde se instalan las series de módulos fotovoltaicos.
[046] Adicionalmente, como se puede observar en las figuras, se asegura un trabajo continuo en un ambiente seguro y controlado, en donde el proceso totalmente automatizado asegura una fabricación de las series de módulos (viii) de una manera continua y rápida y su almacenamiento en la tercera zona (C) sobre los bastidores (x) proporcionan protección a dichos módulos (viii) que serán luego transportados para su montaje en el campo.
[047] También, el transporte especialmente acondicionado comprendido en la instalación para parques o campos fotovoltaicos (I) de acuerdo con la presente invención permiten la distribución segura de los módulos fotovoltaicos (viii) a través del parque en bastidores (x) y camiones (14) con diseño especial para la protección de estos componentes.
[048] Otra ventaja de la configuración de instalación de parques o campos fotovoltaicos (I) de acuerdo con la invención es la fácil y rápida acomodación de las series de paneles fotovoltaicos (viii) en la estructura de los seguidores solares en los postes que tienen menor cantidad de componentes posibles que permiten evitar el exceso de trabajo manual de montaje, ajustes, apretes y alineamiento.
[049] Otra ventaja de la configuración de las instalaciones para campos fotovoltaicos (I) de acuerdo con la presente invención es que, al ser las estructuras de los módulos (viii) en serie tensadas con cables de acero (i), son estructuras flexibles que requieren ser reguladas solamente en los extremos de cada serie de módulos a través de terminales tensores.
[050] Se tiene proyectado que con la configuración de la instalación de campos fotovoltaicos de acuerdo con la presente invención se puede llegar a un ahorro de hasta el 80% del trabajo manual para la construcción de parques fotovoltaicos y una reducción de hasta el 50% en tiempo en el montaje en las estructuras de seguidores solares.
[051] Por tanto, la configuración de la instalación para parques fotovoltaicos de acuerdo con la presente invención permite la optimización y eficiencia del montaje de campos fotovoltaicos ya que la configuración de la instalación para parque fotovoltaicos comprende el montaje de módulos fotovoltaicos en serie a modo de estructura tensada con equipos de ensamble, transporte, izamiento y montaje totalmente mecánicos sin acción manual.

Claims

REIVINDICACIONES
1. Una instalación (I) para parques fotovoltaicos caracterizada porque comprende una planta automatizada instalada en donde la planta comprende una primera zona (A) de descargue y acopio de paneles fotovoltaicos, una segunda zona (B) de preensamblado de series de módulos de paneles solares y una tercera zona (C) donde se ubican las series de módulos fotovoltaicos (viii) para su posterior transporte al parque fotovoltaico.
2. La instalación (I) para parques fotovoltaicos de acuerdo con la reivindicación 1, caracterizada porque en la primera zona (A) de descargue y acopio de paneles solares recibe mediante camiones (1) de transporte las cajas desde la fábrica y se descargan mediante máquinas elevadoras (forklift) (2) que llevan la materia prima al acopio (3) de módulos fotovoltaicos y comprende además una planta recicladora de plásticos y cartones (4) que procesan y reciclan el material sobrante que se desprende del desempacado de los paneles solares que ingresan a las instalaciones y cuyo resultado es pallet de material reciclado (5) que se colocan en vehículos o camiones (6) de retiro del material reciclado (5).
3. La instalación (I) para parques fotovoltaicos de acuerdo con la reivindicación 1, caracterizada porque en la segunda zona (B) se encuentra una planta automatizada de pre-ensamblado de series de módulos fotovoltaicos (viii), en donde dicha planta automatizada comprende una cinta transportadora (7) de entrada para el posicionamiento de módulo fotovoltaicos que se conectan con una cinta (8) de proceso automatizada para el ensamblado de módulos en serie de siete o más unidades a través de cables de acero (i) que ingresan a la cinta de ensamblaje (7) desde bobinas (¡i) ubicadas debajo de la cinta (7), en donde su desplazamiento y posicionado se realiza a través de rieles guiados computacionalmente y en donde sobre dicho cable (i) se encuentra un carro móvil (i¡¡) con brazo robótico emergente (iv) que asegura a los extremos del cable (i) tensores terminales (v) y dicho carro móvil (iii) desde la caja superior de dicho carro contiene abrazaderas (vii) para su montaje sobre el cable de acero (i) a través de dados (vii’).
4. La instalación (I) para parques fotovoltaicos de acuerdo con la reivindicación 3, caracterizada porque el carro móvil (iii) se desplaza sobre las cintas de ensamblaje (7 y 8) montando cuatro abrazaderas (vii) de manera simultánea para el anclaje de los módulos fotovoltaicos (viii) a los cables de acero (i) para obtener las series de módulos (viii) y en donde las series de módulo (viii) se desplazan hacia un carro de montaje (ix) para la posterior instalación de los módulos en un bastidor (x) de transporte que tiene en su base blanca una superficie de espuma rígida (x¡) con ranuras para el encaje seguro de la serie de módulos (viii) y en donde el carro de montaje (ix) se desplaza a través de ruedas sobre guías posicionadas en el piso.
5. La instalación (I) para parques fotovoltaicos de acuerdo con la reivindicación 3, caracterizada porque el montaje de los módulos (viii) al bastidor (X) se realiza a través de brazos con ventosas que levantan cada uno de los módulos (viii) de manera sincronizada sin afectar la estructura de la serie de módulos (viii).
6. La instalación (I) para parques fotovoltaicos de acuerdo con la reivindicación 3, caracterizada porque el bastidor (x) con las series de módulos (viii), el bastidor (x) se desplaza a través de heles ubicados en el piso hacia la zona de acopio y almacenamiento de bastidores en la tercera zona (C).
7. La instalación (I) para parques fotovoltaicos de acuerdo con la reivindicación 1, caracterizada porque la tercera zona (C) es una zona de acopio y almacenamiento de bastidores (x) en donde se realizar la carga de los mismos mediante camiones de transporte (14) para su traslado hacia el campo fotovoltaico, en donde dichos camiones (14) son autogargantes mediante sistemas hidráulicos y cuentan con brazos hidráulicos (14’) que aseguran la estabilidad de los bastidores (x).
8. Un proceso de pre-ensamblado y montaje de series de módulos fotovoltaicos (viii) en series de 7 o más módulos fotovoltaicos, caracterizado porque comprende una primera etapa de pre-ensamblado en donde una pluralidad de módulos fotovoltaicos se ensambla en la segunda zona (B) de la planta automatizada, en donde los módulos fotovoltaicos (viii) son ensamblados entre sí con cables de acero (i) y una segunda etapa que consiste en el montaje de las series de pluralidades de módulos fotovoltaicos (viii) tensadas a través de equipos mecánicos en campo.
9. El proceso de preensamblado y montaje de series de módulos fotovoltaicos (viii) en series de 7 o más módulos fotovoltaicos de acuerdo con la reivindicación 8, caracterizado porque dicho proceso comprende la pre-etapa de llegada o recibo de camiones de transporte de módulos fotovoltaicos en cajas desde la fábrica, que son desmontados con máquinas elevadoras especiales para descarga de materiales y reciclado del material plástico y de cartón (4) en la primera zona (A) de la instalación (I).
10. El proceso de pre-ensamblado y montaje de series de módulos fotovoltaicos (viii) en series de 7 o más módulos fotovoltaicos de acuerdo con la reivindicación 8, caracterizado porque en la etapa de pre ensamblado se ingresan cables (i) de acero de 8 a 16 mm desde bobinas (¡i) a la cinta de ensamblaje (7) de módulos en serie y se disponen abrazaderas (vii) con una maquina deslizante o carro móvil (iii) que fijan las mismas a dichos cables (i) a presión mecánica mediante dados (vii’) y anclan entre los cables de acero (i) y los módulos fotovoltaicos (viii) y luego de su anclado, las series de módulos se desplazan a través de la cinta (8) y sobre los cables (i) y las abrazaderas (vii) a los módulos fotovoltaicos (viii), los cuales se disponen organizadamente de acuerdo con el seriado de módulos planificado y luego nuevamente con la maquina deslizante (carro móvil (iii)) se realiza la instalación de la pieza de cierre y aprete de las abrazaderas (vii).
11. El proceso de preensamblado y montaje de series de módulos fotovoltaicos (viii) en series de 7 o más módulos fotovoltaicos de acuerdo con la reivindicación 8, caracterizado porque en la segunda etapa, el montaje se hace con un camión autocargante (14) que levanta hidráulicamente el bastidor (x) en la tercera zona (C) y asegura el bastidor (x) con brazos hidráulicos (14’) del camión para su transporte a campo.
12. El proceso de preensamblado y montaje de series de módulos fotovoltaicos (viii) en series de 7 o más módulos fotovoltaicos de acuerdo con la reivindicación 8, caracterizado porque en la segunda etapa el bastidor (x) se posiciona en el área de montaje (Parque) y cada serie (viii) es descargado mediante una grúa de izaje (xii) la cual realiza al mismo tiempo el montaje sobre los seguidores previamente instalados en campo.
13. El proceso de preensamblado y montaje de series de módulos fotovoltaicos (viii) en series de 7 o más módulos fotovoltaicos de acuerdo con la reivindicación 12, caracterizado porque las grúas (xii) en sus extremos tienen un mecanismo (xiii) de levante con ventosas accionadas eléctricamente y en donde dicho mecanismo comprende un motor (xiv) para posicionar vertical, inclinada u horizontalmente la serie de módulos (viii) y en donde el mecanismo (xiii) tiene un número de ventosas igual al número de paneles fotovoltaicos de las series de módulos fotovoltaicos (viii) para el izaje y montaje seguro de las mismas.
14. El proceso de preensamblado y montaje de series de módulos fotovoltaicos (viii) en series de 7 o más módulos fotovoltaicos de acuerdo con la reivindicación 8, caracterizado porque los tensores de los cables de acero (i) se acoplan al sistema de anclaje que provee el seguidor y su tensado se lleva a cabo posteriormente a través de llaves reguladoras.
15. El proceso de preensamblado y montaje de series de módulos fotovoltaicos (viii) en series de 7 o más módulos fotovoltaicos de acuerdo con la reivindicación 8, caracterizado porque todas las acciones de los equipos del proceso son accionadas y controladas en tiempo real mediante un sistema informático.
PCT/IB2020/056475 2020-07-09 2020-07-09 Instalaciones para parques o campos fotovoltaicos que comprenden plantas automatizadas para pre-ensamblado de series de modulos fotovoltaicos con sistemas de seguidores solares WO2022008958A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2020/056475 WO2022008958A1 (es) 2020-07-09 2020-07-09 Instalaciones para parques o campos fotovoltaicos que comprenden plantas automatizadas para pre-ensamblado de series de modulos fotovoltaicos con sistemas de seguidores solares

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2020/056475 WO2022008958A1 (es) 2020-07-09 2020-07-09 Instalaciones para parques o campos fotovoltaicos que comprenden plantas automatizadas para pre-ensamblado de series de modulos fotovoltaicos con sistemas de seguidores solares

Publications (1)

Publication Number Publication Date
WO2022008958A1 true WO2022008958A1 (es) 2022-01-13

Family

ID=79553641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/056475 WO2022008958A1 (es) 2020-07-09 2020-07-09 Instalaciones para parques o campos fotovoltaicos que comprenden plantas automatizadas para pre-ensamblado de series de modulos fotovoltaicos con sistemas de seguidores solares

Country Status (1)

Country Link
WO (1) WO2022008958A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11919149B2 (en) 2020-03-20 2024-03-05 Rosendin Electric, Inc. Autonomous ground vehicle for solar module installation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120027550A1 (en) * 2010-07-29 2012-02-02 John Bellacicco Automated installation system for and method of deployment of photovoltaic solar panels
WO2012167130A2 (en) * 2011-06-02 2012-12-06 Dow Corning Corporation Mobile assembly system for solar modules and method of installing solar modules
US20140360552A1 (en) * 2012-07-19 2014-12-11 Brittmore Group LLC Solar Panel Field Array Support System and Apparatus and Method for Construction Use
CN205681365U (zh) * 2016-04-25 2016-11-09 中兴能源(天津)有限公司 一种柔性支架固定结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120027550A1 (en) * 2010-07-29 2012-02-02 John Bellacicco Automated installation system for and method of deployment of photovoltaic solar panels
WO2012167130A2 (en) * 2011-06-02 2012-12-06 Dow Corning Corporation Mobile assembly system for solar modules and method of installing solar modules
US20140360552A1 (en) * 2012-07-19 2014-12-11 Brittmore Group LLC Solar Panel Field Array Support System and Apparatus and Method for Construction Use
CN205681365U (zh) * 2016-04-25 2016-11-09 中兴能源(天津)有限公司 一种柔性支架固定结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11919149B2 (en) 2020-03-20 2024-03-05 Rosendin Electric, Inc. Autonomous ground vehicle for solar module installation
US11951617B2 (en) 2020-03-20 2024-04-09 Rosendin Electric, Inc. Robotic arm cooperating with an off-road capable base vehicle

Similar Documents

Publication Publication Date Title
US7845121B2 (en) Facility used for the production and/or assembly of goods
US11746758B2 (en) Energy storage and delivery method
US8011098B2 (en) Wind turbine erector
WO2021260450A1 (en) Gravitational electromechanical battery
WO2015198703A1 (ja) ソーラーストリング搬送用コンテナ
WO2013009409A2 (en) Method of installing a solar module assembly
WO2022008958A1 (es) Instalaciones para parques o campos fotovoltaicos que comprenden plantas automatizadas para pre-ensamblado de series de modulos fotovoltaicos con sistemas de seguidores solares
CN212919859U (zh) 一种混凝土预制构件的游牧式立体化生产系统
CN111906517A (zh) 一种屋顶光伏电站的自动化安装系统及其安装方法
CN105438827A (zh) 铁框提升转运机械手
CN213677739U (zh) 一种车载可调式预制墙板的运输装置
CN115384997A (zh) 一种多工位巷道堆垛机
CN210762532U (zh) 一种自动化智能立体仓库
CN113291641A (zh) 一种输电线路抢修塔舱储运输系统集成舱
CN104929378A (zh) 安全高效运输光伏板的自动升降靠梯
CN212600058U (zh) 一种屋顶光伏电站的自动化安装系统
CN215973158U (zh) 一种输电线路抢修塔舱储运输系统集成舱
CN218476977U (zh) 一种用于转运风电机舱罩大型模具的工具
CN215363737U (zh) 物品码垛机
US20240083699A1 (en) Systems and methods for installation of solar panel assemblies
KR101054857B1 (ko) 갠트리의 마스트
CN206735140U (zh) 一种智能化立体仓库堆垛机
CN111894281A (zh) 一种酒店建筑高层施工用的安全卸料平台及使用方法
AU2015215828B2 (en) Transporting of structural elements
CN114655884A (zh) 一种光伏电站组件提升机构及提升系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944303

Country of ref document: EP

Kind code of ref document: A1