WO2022007637A1 - 浓密机风水联动造浆系统及基于该系统的损坏喷嘴定位方法 - Google Patents

浓密机风水联动造浆系统及基于该系统的损坏喷嘴定位方法 Download PDF

Info

Publication number
WO2022007637A1
WO2022007637A1 PCT/CN2021/102022 CN2021102022W WO2022007637A1 WO 2022007637 A1 WO2022007637 A1 WO 2022007637A1 CN 2021102022 W CN2021102022 W CN 2021102022W WO 2022007637 A1 WO2022007637 A1 WO 2022007637A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pipe
branch pipe
pressure
supply branch
Prior art date
Application number
PCT/CN2021/102022
Other languages
English (en)
French (fr)
Inventor
杨纪光
齐兆军
寇云鹏
宋泽普
盛宇航
栾黎明
吴再海
郭加仁
李广波
朱庚杰
荆晓东
贾海波
Original Assignee
山东黄金矿业科技有限公司充填工程实验室分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东黄金矿业科技有限公司充填工程实验室分公司 filed Critical 山东黄金矿业科技有限公司充填工程实验室分公司
Publication of WO2022007637A1 publication Critical patent/WO2022007637A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings

Definitions

  • the invention relates to the technical field of tailings thickening and dewatering technology in the mine filling and mining industry, and in particular relates to a thickener feng shui linkage pulping system, which is mainly used for tailings activation, pulping and sand release in mine filling high-depth cone thickeners; the invention also relates to A method for locating damaged nozzles based on this system.
  • Tailings backfilling technology is a new type of mine backfilling technology developed in the late 1980s and is increasingly widely used in mines.
  • the feature of this technology is that the tailings are used as filling aggregate, which is transported to the underground stope open area in a high concentration state through activation and stirring. This process can fill the classified coarse tailings, classified fine tailings or even all the tailings into the well as filling materials, without the need to build a tailings pond, laying a foundation for waste-free development.
  • the concentration must be adjusted to make it fluidized, that is, the tailings will lose weight and be slurried through the activation medium, so that it can be smoothly discharged from the silo. Internal outflow, this fluidization work is done by high-pressure water and compressed air ejected from the filling nozzle assembly.
  • the nozzle seat of the existing mine filling sand silo is generally installed on the pipeline in the filling silo.
  • the maintenance must be completed in the filling silo. After all the pipelines are exposed, the maintenance personnel can enter the filling silo through the manhole to carry out maintenance. Due to poor ventilation in the silo and no maintenance platform, there are safety hazards such as hypoxia and slipping for maintenance personnel.
  • the maintenance time is long, the auxiliary working hours are high, and the labor intensity of the workers is high.
  • Some mines use external nozzles, but they have the same problem of inconvenient maintenance as built-in nozzles. Specifically, a large number of nozzles with different heights are installed in the same sand silo, and each nozzle has different performance and usage status. During use, some nozzles will no longer have the anti-backflow effect due to factors such as excessive wear, damage to the nozzle components or the falling off of the protective cover, resulting in the backflow of tailings, and the mortar entering the nozzle and the slurry pipe. For this problem, the current practice is to clean up the tailings in the pulping pipe before each pulping.
  • the shortcomings of this measure are: first, it increases the operating procedures and labor, and reduces the work efficiency; second, The failure of the nozzle caused by the damage of the internal components of the nozzle cannot be solved, so the injection point is reduced, which makes the tailings difficult to discharge, the concentration fluctuates, and the flow rate is unstable, and affects the activation quality of the mortar. If the return spring in the nozzle cannot be reset due to failure or fatigue, it is difficult to find it from the surface of the nozzle, and it is necessary to disassemble the nozzles one by one for maintenance, and the workload is very large.
  • the technical problem to be solved by the present invention is to provide a thickener feng shui linkage pulping system and a damaged nozzle positioning method based on the system.
  • First activate the tailings at the bottom of the silo more effectively to avoid hardening and improve pulping.
  • a feng shui linkage pulping system for a thickener includes a filling material silo, the filling material silo includes a cylindrical section and a conical section connected to the lower end of the cylindrical section, and is characterized in that: the cylinder walls of the conical section are different from each other.
  • each group of annular pipes includes an annular water pipe and an annular air pipe; each group of annular pipes is correspondingly connected to a number of feng shui linkage pulping nozzles;
  • the feng shui linkage pulping nozzle includes a nozzle shell , the feng shui linkage slurry making nozzle is installed on the wall of the cone section through the bin wall fixing member, and the nozzle shell passes through the wall of the cone section, one end of the nozzle shell is located inside the wall of the cone section, and the other end is located in the cone section.
  • the hydraulic piston and the tightening bolt pipe, the tightening bolt pipe is installed on the open end of the nozzle housing; the outer end of the tightening bolt pipe is connected with a nozzle connecting piece, the nozzle connecting piece is connected with a bin wall fixing piece; the outer side of the nozzle connecting piece is connected
  • the cavity is connected, and the high-pressure water cavity refers to the cavity where the second compression spring is located; wherein the high-pressure pulping air pipe is a rigid pipe, which passes through the second compression spring and the water piston, and the inner end is connected to the high-pressure air.
  • the tube fixing seat is communicated with the high-pressure air cavity, and the high-pressure air cavity refers to the cavity where the first compression spring is located; the nozzle housing is provided with a high-pressure air spray hole that communicates with the high-pressure air cavity.
  • the annular air duct is respectively connected with the high-pressure pulping air ducts of the several feng shui linkage pulping nozzles for sending high-pressure air into the high-pressure air cavity
  • the annular water pipes are respectively connected to the high-pressure water chambers of the several feng shui linkage pulping nozzles for sending high-pressure water into the high-pressure water chambers;
  • a manual ball valve is also installed on the high-pressure hose to control the water flow and airflow in the high-pressure hose
  • the system also includes a water supply main pipe and an air supply main pipe; the water inlet end of the annular water pipe is connected with a water supply branch pipe, and an electric regulating valve and a check valve are respectively installed on the water supply branch pipe, and the water inlet end of each water supply branch pipe is connected to the water supply main pipe; an electromagnetic flowmeter, a first electric ball valve, a first pressure transmitter and a first check valve are sequentially installed on the water supply
  • the system also includes a discharge water main pipe, and the end of the annular water pipe is connected to the discharge main water pipe through a valve; the system also includes a group connected to the same group
  • the detection branch pipe of the water supply branch pipe and the air supply branch pipe is installed with an electric ball valve.
  • One end of the detection branch pipe is connected to the water supply branch pipe and is located between the electric regulating valve and the check valve, and the other The end is connected to the air supply branch pipe and is located between the electric regulating valve and the check valve.
  • the high-pressure air duct fixing seat is fixed in the nozzle housing, the root of the first compression spring is connected to the inside of the closed end of the nozzle housing, and the root of the second compression spring is connected to the high-pressure air duct fixing seat.
  • Step 1 Open the valves between the three annular water pipes and the discharge main water pipe, and then open the first electric ball valve, the electric control valves on the three water supply branch pipes, and the electric ball valves on the three detection branch pipes in turn. Clear water, indicating that all nozzles are normal, end the test, if the discharge main water pipe is found to be out of mortar, go to the second step;
  • the second step close all the valves opened in the first step, open the first electric ball valve, the electric regulating valve on the first water supply branch pipe, the electric ball valve on the detection branch pipe connected to the water supply branch pipe, and the water supply branch pipe.
  • the third step close all the valves opened in the second step, open the first electric ball valve, the electric regulating valve on the second water supply branch pipe, the electric ball valve on the detection branch pipe connected to the water supply branch pipe, and the water supply branch pipe.
  • Step 4 In the nozzle group with damaged nozzles, open a manual ball valve, close the other manual ball valves, and open the first electric ball valve, the electric regulating valve on the water supply branch pipe corresponding to this group of nozzles, and the water supply branch pipe connected.
  • the positive effect of the present invention is that: the system of the present invention can meet the requirements of underground mine filling, and can meet the requirements of high-depth cone thickener pulping and discharging of full tailings, graded coarse tailings, overflow fine tailings and different grades of tailings. Effectively activate the tailings at the bottom of the warehouse to avoid hardening. After pulping, the high-concentration saturated tailings mortar can be discharged stably and evenly under the pressure of the deposition compaction layer.
  • the thickener has a large sand discharge flow, high filling efficiency, and no material accumulation at the bottom.
  • the damage of the nozzle can be detected conveniently and accurately, and quick and efficient disassembly, replacement or maintenance can be realized outside the warehouse.
  • the invention adds a detection branch pipe connecting the water supply branch pipe and the air supply branch pipe, and the detection of the spring return performance in the high pressure air cavity and the spring return performance in the high pressure water cavity is completed in one operation, and the detection efficiency is improved by a simple structure and method.
  • FIG. 1 is a schematic structural diagram of a system embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the arrangement of the feng shui linkage pulping nozzles in the embodiment of the system of the present invention.
  • FIG. 3 is a schematic diagram of the pipe network structure and working principle of the system embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a feng shui linkage pulping nozzle according to an embodiment of the system of the present invention.
  • FIG. 5 is a schematic diagram of the connection relationship between the annular pipe and the feng shui linkage pulping nozzle according to the embodiment of the system of the present invention.
  • the embodiment of the system of the present invention includes a filling silo 30, and the filling silo 30 includes a cylindrical section and a conical section connected to the lower end of the cylindrical section.
  • Three groups of annular pipes are installed on the cylinder wall at different heights, and each group of annular pipes includes an annular water pipe 26 and an annular air pipe 31 .
  • Each annular water pipe 26 and each annular air pipe 31 are connected with a plurality of feng shui linkage pulping nozzles 29 installed on the cylinder wall of the cone section.
  • the feng shui linkage slurry making nozzle 29 includes a nozzle casing 29-5, one end of the nozzle casing 29-5 is closed, and the other end is open.
  • the bolt tube 29-13 is mounted on the open end of the nozzle housing 29-5.
  • the high-pressure air duct fixing seat 29-10 is fixed in the nozzle housing 29-5, the root of the first compression spring 29-8 is connected to the inside of the closed end of the nozzle housing 29-5, and the root of the second compression spring 29-11 is connected to the inner side of the closed end of the nozzle housing 29-5. on the high-pressure air duct holder 29-10.
  • the nozzle housing 29-5 is provided with a high-pressure air spray hole 29-6 communicating with the high-pressure air cavity where the first compression spring is located, and a high-pressure water spray hole 29-7 communicating with the high-pressure water cavity where the second compression spring is located .
  • the outer end of the fastening bolt pipe 29-13 is connected with a nozzle connecting piece 29-2, the nozzle connecting piece 29-2 is connected with a warehouse wall fixing piece 29-4, and the nozzle connecting piece 29-2 and the warehouse wall fixing piece 29-4 are provided with openings.
  • the pipe 29-14, the annular cavity between the high-pressure pulping air pipe 29-14 and the high-pressure rubber pipe 28 serves as a high-pressure water channel, and the channel communicates with the high-pressure water cavity.
  • the high-pressure pulping air duct 29-14 is a rigid pipe, which passes through the second compression spring 29-11 and the hydraulic piston 29-12, and the inner end is connected to the high-pressure air duct fixing seat 29-10 and is connected to the high-pressure air cavity Connected.
  • the annular air ducts 31 are respectively connected to the high-pressure pulping air ducts 29-14 of the plurality of feng shui linkage pulping nozzles for sending high-pressure air into the high-pressure air cavity.
  • the water pipes 26 are respectively connected to the high-pressure water cavities of the plurality of feng shui linkage pulping nozzles, and are used to send high-pressure water into the high-pressure water cavities.
  • a manual ball valve 27 is also installed on the high-pressure hose 28 for controlling the on-off of the water flow and the air flow in the high-pressure hose 28 .
  • the embodiment of the system of the present invention further includes a water supply main pipe A and an air supply main pipe B.
  • the water inlet end of the annular water pipe 26 is connected with a water supply branch pipe C, and an electric regulating valve and a check valve are installed on the water supply branch pipe C respectively.
  • Valve 5 and third check valve 8 a second electric regulating valve 6 and a fourth check valve 9 are respectively installed on the water supply branch pipe C of the middle group, and a third electric regulating valve is respectively installed on the water supply branch pipe C of the lower group valve 7 and fifth check valve 10.
  • the water inlet end of each water supply branch pipe C is connected to the water supply main pipe A.
  • An electromagnetic flowmeter 1 , a first electric ball valve 2 , a first pressure transmitter 3 and a first check valve 4 are sequentially installed on the water supply main pipe A along the water flow direction.
  • the air inlet end of the annular air duct 31 is connected with an air supply branch pipe D, an electric regulating valve and a check valve are respectively installed on the air supply branch pipe D, and the end of the annular air duct 31 is closed.
  • the fourth electric regulating valve 20 and the sixth check valve 23 are respectively installed on the annular air ducts of the upper group in FIG.
  • a sixth electric regulating valve 22 and an eighth check valve 25 are respectively installed on the lower group of annular air ducts.
  • the air inlet end of each air supply branch pipe D is connected to the air supply main pipe B.
  • a second electric ball valve 17 , a second pressure transmitter 18 and a second check valve 19 are sequentially installed on the air supply main pipe B along the airflow direction.
  • the embodiment of the system of the present invention further includes a discharge water main pipe E, and the end of the annular water pipe 26 is connected to the discharge water main pipe E through a valve.
  • the ends of the annular water pipes in the upper group of Fig. 4 are connected to the discharge main water pipe E through the sixth electric ball valve 14, the annular water pipe ends of the middle group are connected to the discharge main water pipe E through the seventh electric ball valve 15, and the annular water pipes of the lower group are connected to the discharge main water pipe E through the seventh electric ball valve 15.
  • the end of the water pipe is connected to the discharge main water pipe E through the eighth electric ball valve 16 .
  • the embodiment of the system of the present invention also includes a detection branch pipe connecting the water supply branch pipe C and the air supply branch pipe D, one end of the detection branch pipe is connected to the water supply branch pipe C and located between the electric regulating valve and the check valve on the water supply branch pipe C, and the other end is connected to On the air supply branch pipe D and between the electric regulating valve and the check valve on the air supply branch pipe D.
  • a detection branch pipe with a third electric ball valve 11 is connected between the water supply branch pipe C and the air supply branch pipe D in the upper group of FIG.
  • the electric regulating valve 21 and the sixth electric regulating valve 22 make the high-pressure air and high-pressure water balance the mortar in the warehouse.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Nozzles (AREA)

Abstract

一种浓密机风水联动造浆系统及基于该系统的损坏喷嘴(29)定位方法,在锥筒段的筒壁上不同高度位置安装有三组环形管,每一组环形管包括一条环形水管(26)和一条环形风管(31);环形管对应连接风水联动造浆喷嘴(29);环形水管(26)进水端通过供水支管(C)连接供水总管(A);环形风管(31)进风端通过供风支管(D)连接供风总管(B),环形水管(26)末端通过阀门连接排放总水管(E);同一组供水支管(C)和供风支管(D)之间具有检测支管。

Description

浓密机风水联动造浆系统及基于该系统的损坏喷嘴定位方法 技术领域
本发明涉及矿山充填采矿业中的尾砂浓密脱水工艺技术领域,具体涉及一种浓密机风水联动造浆系统,主要用于矿山充填高深锥浓密机内尾砂活化造浆放砂;本发明还涉及基于该系统的损坏喷嘴定位方法。
背景技术
尾砂充填技术是上世纪80年代末发展起来的新型矿山充填技术,在矿山日益得到广泛应用。该技术的特点是以尾砂作为充填骨料,通过活化搅拌,在高浓度状态下输送到地下采场空区。该工艺可将分级粗尾砂、分级细尾砂甚至全部尾砂作为充填料充填至井下,无需建尾矿库,为无废开来奠定了基础。由于尾砂在充填料仓中沉淀为饱和砂,若使其顺利充填,必须进行浓度调节,使之流态化,即通过活化介质使尾砂失重、浆化,以便使其能顺利从料仓内流出,这种流态化工作是由充填喷管组件喷出的高压水和压缩空气来完成的。
现有的矿山充填砂仓的喷管座一般安装在充填料仓内的管路上,维修必须在充填料仓内完成,并且维修前必须将充填料仓内的尾砂清理干净,将喷管和管路全部暴露出来后,维修人员通过检修孔,进入充填料仓内才能进行维修。由于料仓内通风不畅,且无检修平台,存在维修人员缺氧、滑落等安全隐患。维修时间长,辅助工时高,工人劳动强度高。
有部分矿山采用外置喷嘴,但与内置喷嘴存在同样的检修不便问题,具体说,同一砂仓设有高度不等的大量喷嘴,每个喷嘴性能和使用状态各异。使用中会有部分喷嘴因过度磨损、喷嘴构件损坏或者保护套脱落等因素不再具有防倒流功效,导致尾砂倒灌,砂浆进入喷嘴以及造浆管内。这对这一问题,目前的做法是:每次造浆之前清理造浆管内的尾砂,这一措施的不足在于:第一、增加了操作程序和劳动量,降低了工作效率;第二、对于喷嘴内构件损坏导致喷嘴失效等情况仍无法解决,因而出现喷射点减少,造成尾砂放砂困难,浓度波动大,流量不稳定等现象发生,并且影响砂浆活化质量。如果喷嘴中复位弹簧因故障或者因疲劳无法复位,从喷嘴外表难于发现,需要逐个拆卸喷嘴检修,工作量非常巨大。
技术问题
本发明所要解决的技术问题是,提供一种浓密机风水联动造浆系统及基于该系统的损坏喷嘴定位方法,第一、更加有效地对仓底尾砂进行活化,以避免板结,提升造浆浓度、流量的稳定性;第二、解决矿山尾砂充填造浆系统造浆喷嘴易磨损失效不能及时发现和更换难题,能够快速、精准定位损坏的造浆喷嘴,提高检修效率。
技术解决方案
本发明的技术方案如下:
一种浓密机风水联动造浆系统,包括充填料仓,所述的充填料仓包括圆筒段和接于圆筒段下端的锥筒段,其特征在于:在锥筒段的筒壁上不同高度位置安装有三组环形管,每一组环形管包括一条环形水管和一条环形风管;每一组环形管对应连接若干个风水联动造浆喷嘴;所述的风水联动造浆喷嘴包括喷嘴壳体,所述的风水联动造浆喷嘴通过仓壁固定件安装在锥筒段筒壁上,并且喷嘴壳体穿过锥筒段筒壁,喷嘴壳体一端位于锥筒段筒壁内侧另一端位于锥筒段筒壁外侧;所述的喷嘴壳体一端封闭另一端开口,喷嘴壳体内从封闭端至开口端依次设置有第一压缩弹簧、风动活塞、高压风管固定座、第二压缩弹簧、水动活塞和紧固螺栓管,所述紧固螺栓管安装在喷嘴壳体开口端;紧固螺栓管外端连接有喷嘴连接件,喷嘴连接件连接有仓壁固定件;喷嘴连接件外侧连接有高压胶管连接螺纹,高压胶管连接螺纹连接有高压胶管,高压胶管内套有高压造浆风管,高压造浆风管与高压胶管之间的环形腔体作为高压水通道,该通道与高压水腔体相通,所述高压水腔体是指第二压缩弹簧所处的腔体;其中高压造浆风管为刚性管,它穿过第二压缩弹簧和水动活塞、内端连接在高压风管固定座上并与高压风腔体相通,所述高压风腔体是指第一压缩弹簧所处的腔体;喷嘴壳体上开设有与所述的高压风腔体相通的高压风喷孔以及与所述的高压水腔体相通的高压水喷孔;所述的环形风管分别连接所述若干个风水联动造浆喷嘴的高压造浆风管用于将高压风送入高压风腔体,所述环形水管分别连接所述若干个风水联动造浆喷嘴的高压水腔体用于将高压水送入高压水腔体;高压胶管上还安装有手动球阀用于控制高压胶管内水流和气流的通断;所述系统还包括供水总管和供风总管;环形水管的进水端连接有供水支管,供水支管上分别安装有电动调节阀和止回阀,每一条供水支管的进水端均连接所述的供水总管;供水总管上沿水流方向依次安装有电磁流量计、第一电动球阀、第一压力变送器和第一止回阀;环形风管的进风端连接有供风支管,供风支管上分别安装有电动调节阀和止回阀,环形风管的末端封闭,每一条供风支管的进风端均连接所述的供风总管,供风总管上沿气流方向依次安装有第二电动球阀、第二压力变送器和第二止回阀;所述系统还包括排放总水管,环形水管的末端通过阀门连接所述的排放总水管;所述系统还包括连接同一组供水支管和供风支管的检测支管,检测支管上安装有电动球阀,检测支管的一端连接在供水支管上并位于电动调节阀与止回阀之间,另一端连接在供风支管上并位于电动调节阀与止回阀之间。
优选地,所述高压风管固定座固定在喷嘴壳体内,第一压缩弹簧根部连接在喷嘴壳体封闭端内侧,第二压缩弹簧根部连接在高压风管固定座上。
基于所述系统的损坏喷嘴定位方法,其特征在于按照以下步骤进行:
第一步:开启三个环形水管与排放总水管之间的阀门,再依次开启第一电动球阀、三个供水支管上的电动调节阀以及三条检测支管上的电动球阀,如发现排放总水管出清水,说明全部喷嘴正常,结束检测,如发现排放总水管出砂浆,进入第二步;
第二步:关闭第一步所开启的全部阀门,开启第一电动球阀、第一条供水支管上的电动调节阀、该条供水支管所连接的检测支管上的电动球阀以及该条供水支管所连接的环形水管的末端与排放总水管之间的阀门,观察排放总水管出清水还是砂浆,如出砂浆则判断第一条供水支管所对应的第一组喷嘴中存在损坏喷嘴;进入第三步;
第三步:关闭第二步所开启的全部阀门,开启第一电动球阀、第二条供水支管上的电动调节阀、该条供水支管所连接的检测支管上的电动球阀以及该条供水支管所连接的环形水管的末端与排放总水管之间的阀门,观察排放总水管出清水还是砂浆;如出砂浆则判断第二条供水支管所对应的第二组喷嘴中存在损坏喷嘴;如果第二步和第三步排放总水管均出清水,则判断第三条供水支管所对应的第三组喷嘴中存在损坏喷嘴;
第四步:存在损坏喷嘴的喷嘴组中,将某一手动球阀开启、其余手动球阀关闭,并开启第一电动球阀、该组喷嘴对应的供水支管上的电动调节阀、该条供水支管所连接的检测支管上的电动球阀以及该条供水支管所连接的环形水管的末端与排放总水管之间的阀门;在某一个手动球阀开启其余关闭时排放总水管出砂浆,说明该手动球阀对应的喷嘴损坏。
有益效果
本发明的积极效果在于:利用本发明系统能够根据井下矿山充填要求,满足全尾砂、分级粗尾砂、溢流细尾砂和不同级配尾砂的高深锥浓密机造浆放砂,能有效地对仓底尾砂进行活化,避免板结。实现造浆后高浓度饱和尾砂浆在沉积压实层的压力下稳定均匀排放,浓密机放砂流量大,充填效率高,底部不积料。利用本发明的定位方法能够便捷、精确地检测喷嘴损坏情况,实现仓外快速高效拆卸更换或维修。另外,本发明增设连接供水支管和供风支管的检测支管,一次操作完成对高压风腔体内弹簧复位性能和高压水腔体内弹簧复位性能的检测,采用简单的结构和方法提高了检测效率。
附图说明
图1是本发明系统实施例的结构示意图。
图2是本发明系统实施例中风水联动造浆喷嘴的布置示意图。
图3是本发明系统实施例的管网结构及工作原理示意图。
图4是本发明系统实施例风水联动造浆喷嘴的结构示意图。
图5是本发明系统实施例环形管与风水联动造浆喷嘴连接关系示意图。
本发明的实施方式
下面结合附图和具体实施例对本发明作进一步说明。
一、本发明系统的实施例
如图1、图2和图3,本发明系统的实施例包括充填料仓30,所述的充填料仓30包括圆筒段和接于圆筒段下端的锥筒段,在锥筒段的筒壁上不同高度位置安装有三组环形管,每一组环形管包括一条环形水管26和一条环形风管31。每一条环形水管26和每一条环形风管31连接有安装在锥筒段的筒壁上的若干个风水联动造浆喷嘴29。
如图4,风水联动造浆喷嘴29包括喷嘴壳体29-5,所述喷嘴壳体29-5一端封闭,另一端开口,喷嘴壳体29-5内从封闭端至开口端依次设置有第一压缩弹簧29-8、风动活塞29-9、高压风管固定座29-10、第二压缩弹簧29-11、水动活塞29-12和紧固螺栓管29-13,所述紧固螺栓管29-13安装在喷嘴壳体29-5开口端。所述高压风管固定座29-10固定在喷嘴壳体29-5内,第一压缩弹簧29-8根部连接在喷嘴壳体29-5封闭端内侧,第二压缩弹簧29-11根部连接在高压风管固定座29-10上。喷嘴壳体29-5上开设有与第一压缩弹簧所处高压风腔体相通的高压风喷孔29-6以及与第二压缩弹簧所处高压水腔体相通的高压水喷孔29-7。紧固螺栓管29-13外端连接有喷嘴连接件29-2,喷嘴连接件29-2连接有仓壁固定件29-4,喷嘴连接件29-2和仓壁固定件29-4上开设有同轴的螺纹孔29-3,喷嘴连接件29-2外侧连接有高压胶管连接螺纹29-1,高压胶管连接螺纹29-1连接有高压胶管28,高压胶管28内套有高压造浆风管29-14,高压造浆风管29-14与高压胶管28之间的环形腔体作为高压水通道,该通道与高压水腔体相通。其中高压造浆风管29-14为刚性管,它穿过第二压缩弹簧29-11和水动活塞29-12、内端连接在高压风管固定座29-10上并与高压风腔体相通。
如图3和图5,所述的环形风管31分别连接所述若干个风水联动造浆喷嘴的高压造浆风管29-14,用于将高压风送入高压风腔体,所述环形水管26分别连接所述若干个风水联动造浆喷嘴的高压水腔体,用于将高压水送入高压水腔体。
高压胶管28上还安装有手动球阀27用于控制高压胶管28内水流和气流的通断。
如图3,本发明系统的实施例还包括供水总管A和供风总管B。
环形水管26的进水端连接有供水支管C,供水支管C上分别安装有电动调节阀和止回阀,本实施例中,图4上方一组的供水支管C上分别安装有第一电动调节阀5和第三止回阀8,中部一组的供水支管C上分别安装有第二电动调节阀6和第四止回阀9,下方一组的供水支管C上分别安装有第三电动调节阀7和第五止回阀10。每一条供水支管C的进水端均连接所述的供水总管A。供水总管A上沿水流方向依次安装有电磁流量计1、第一电动球阀2、第一压力变送器3和第一止回阀4。环形风管31的进风端连接有供风支管D,供风支管D上分别安装有电动调节阀和止回阀,环形风管31的末端封闭。本实施例中,图4上方一组的环形风管上分别安装有第四电动调节阀20和第六止回阀23,中部一组的环形风管上分别安装有第五电动调节阀21和第七止回阀24,下方一组的环形风管上分别安装有第六电动调节阀22和第八止回阀25。每一条供风支管D的进风端均连接所述的供风总管B。供风总管B上沿气流方向依次安装有第二电动球阀17、第二压力变送器18和第二止回阀19。
本发明系统的实施例还包括排放总水管E,环形水管26的末端通过阀门连接所述的排放总水管E。本实施例中,图4一组上方的环形水管末端通过第六电动球阀14连接排放总水管E,中部一组的环形水管末端通过第七电动球阀15连接排放总水管E,下方一组的环形水管末端通过第八电动球阀16连接排放总水管E。
本发明系统的实施例还包括连接供水支管C和供风支管D的检测支管,检测支管的一端连接在供水支管C上并位于供水支管C上电动调节阀与止回阀之间,另一端连接在供风支管D上并位于供风支管D上电动调节阀与止回阀之间。本实施例中,图4上方一组的供水支管C和供风支管D之间连接有带第三电动球阀11的检测支管,中部一组的的接供水支管C和供风支管D之间连接有带第四电动球阀12的检测支管,下方一组的的接供水支管C和供风支管D之间连接有带第五电动球阀13的检测支管。
二、本发明方法实施例
(一):定位上层、中层和下层喷嘴中下层一个损坏喷嘴的实施例。
(1)、首先开启第六电动球阀14、第七电动球阀15和第八电动球阀16,再依次开启第一电动球阀2、第一电动调节阀5、第二电动调节阀6、第三电动调节阀7、第三电动球阀11、第四电动球阀12和第五电动球阀13,发现排放总水管E出砂浆。
(2)、全部关闭相应阀门,即步骤(1)所有开启的阀门,开启第一电动球阀2,第一电动调节阀5、第三电动球阀11和第六电动球阀14,排放总水管E出清水,说明上层喷嘴正常,关闭第一电动调节阀5、第三电动球阀11和第六电动球阀14。
(3)、开启第二电动调节阀6、第四电动球阀12和第七电动球阀15,排放总水管E出清水,说明中层喷嘴正常,关闭第二电动调节阀6、第四电动球阀12和第七电动球阀15。
(4)、开启第三电动调节阀7、第五电动球阀13和第八电动球阀16,排放总水管E出砂浆,说明下层喷嘴出现损坏,关闭第三电动调节阀7和第五电动球阀13。
(5)、通过下层部分手动球阀开启、其余手动球阀关闭,并开启第三电调节阀7和第五电动球阀13,在某一个手动球阀开启其余关闭时排放总水管E出砂浆,说明该手动球阀对应的喷嘴损坏。对该损坏的喷嘴进行更换。
(二)、造浆实施例。
(1)、放砂前,先开启第一电动球阀2、第一电动调节阀5、第二电动调节阀6和第三电动调节阀7,高压水通过管道、喷嘴进入浓密机内部活化造浆10min。(2)、放砂中,再开启第一电动球阀2,电动球阀17,第四电动调节阀20、第五电动调节阀21和第六电动调节阀22,将高压风通过喷嘴喷入到浓密机内部,联合高压水进行造浆,根据放出的底流砂浆质量浓度情况,控制第一电动调节阀5、第二电动调节阀6和第三电动调节阀7、第四电动调节阀20、第五电动调节阀21和第六电动调节阀22,使高压风、高压水平衡作用于仓内的砂浆。
(3)、停止放砂时,关闭第一电动球阀2、第一电动调节阀5、第二电动调节阀6、第三电动调节阀7、第二电动球阀17,第四电动调节阀20、第五电动调节阀21和第六电动调节阀22,喷嘴内部腔体内形成负压,压缩弹簧复原,活塞回位,自动切断外部砂浆进入喷嘴腔体内,喷嘴孔停止喷水、喷气,砂仓内部停止造浆。

Claims (3)

  1. 一种浓密机风水联动造浆系统,包括充填料仓(30),所述的充填料仓(30)包括圆筒段和接于圆筒段下端的锥筒段,其特征在于:在锥筒段的筒壁上不同高度位置安装有三组环形管,每一组环形管包括一条环形水管(26)和一条环形风管(31);每一组环形管对应连接若干个风水联动造浆喷嘴(29);所述的风水联动造浆喷嘴(29)包括喷嘴壳体(29-5),所述的风水联动造浆喷嘴(29)通过仓壁固定件(29-4)安装在锥筒段筒壁上,并且喷嘴壳体(29-5)穿过锥筒段筒壁,喷嘴壳体(29-5)一端位于锥筒段筒壁内侧另一端位于锥筒段筒壁外侧;所述的喷嘴壳体(29-5)一端封闭另一端开口,喷嘴壳体(29-5)内从封闭端至开口端依次设置有第一压缩弹簧(29-8)、风动活塞(29-9)、高压风管固定座(29-10)、第二压缩弹簧(29-11)、水动活塞(29-12)和紧固螺栓管(29-13),所述紧固螺栓管(29-13)安装在喷嘴壳体(29-5)开口端;紧固螺栓管(29-13)外端连接有喷嘴连接件(29-2),喷嘴连接件(29-2)连接有仓壁固定件(29-4);喷嘴连接件(29-2)外侧连接有高压胶管连接螺纹(29-1),高压胶管连接螺纹(29-1)连接有高压胶管(28),高压胶管(28)内套有高压造浆风管(29-14),高压造浆风管(29-14)与高压胶管(28)之间的环形腔体作为高压水通道,该通道与高压水腔体相通,所述高压水腔体是指第二压缩弹簧所处的腔体;其中高压造浆风管(29-14)为刚性管,它穿过第二压缩弹簧(29-11)和水动活塞(29-12)、内端连接在高压风管固定座(29-10)上并与高压风腔体相通,所述高压风腔体是指第一压缩弹簧所处的腔体;喷嘴壳体(29-5)上开设有与所述的高压风腔体相通的高压风喷孔(29-6)以及与所述的高压水腔体相通的高压水喷孔(29-7);所述的环形风管(31)分别连接所述若干个风水联动造浆喷嘴的高压造浆风管(29-14)用于将高压风送入高压风腔体,所述环形水管(26)分别连接所述若干个风水联动造浆喷嘴的高压水腔体用于将高压水送入高压水腔体;高压胶管(28)上还安装有手动球阀(27)用于控制高压胶管(28)内水流和气流的通断;所述系统还包括供水总管(A)和供风总管(B);环形水管(26)的进水端连接有供水支管(C),供水支管(C)上分别安装有电动调节阀和止回阀,每一条供水支管(C)的进水端均连接所述的供水总管(A);供水总管(A)上沿水流方向依次安装有电磁流量计(1)、第一电动球阀(2)、第一压力变送器(3)和第一止回阀(4);环形风管(31)的进风端连接有供风支管(D),供风支管(D)上分别安装有电动调节阀和止回阀,环形风管(31)的末端封闭,每一条供风支管(D)的进风端均连接所述的供风总管(B),供风总管(B)上沿气流方向依次安装有第二电动球阀(17)、第二压力变送器(18)和第二止回阀(19);所述系统还包括排放总水管(E),环形水管(26)的末端通过阀门连接所述的排放总水管(E);所述系统还包括连接同一组供水支管(C)和供风支管(D)的检测支管,检测支管上安装有电动球阀,检测支管的一端连接在供水支管(C)上并位于电动调节阀与止回阀之间,另一端连接在供风支管(D)上并位于电动调节阀与止回阀之间。
  2. 如权利要求1所述的浓密机风水联动造浆系统,其特征在于:所述高压风管固定座(29-10)固定在喷嘴壳体(29-5)内,第一压缩弹簧(29-8)根部连接在喷嘴壳体(29-5)封闭端内侧,第二压缩弹簧(29-11)根部连接在高压风管固定座(29-10)上。
  3. 基于权利要求1或2所述系统的损坏喷嘴定位方法,其特征在于按照以下步骤进行:
    第一步:开启三个环形水管(26)与排放总水管(E)之间的阀门,再依次开启第一电动球阀(2)、三个供水支管(C)上的电动调节阀以及三条检测支管上的电动球阀,如发现排放总水管(E)出清水,说明全部喷嘴正常,结束检测,如发现排放总水管(E)出砂浆,进入第二步;
    第二步:关闭第一步所开启的全部阀门,开启第一电动球阀(2)、第一条供水支管(C)上的电动调节阀、该条供水支管(C)所连接的检测支管上的电动球阀以及该条供水支管(C)所连接的环形水管(26)的末端与排放总水管(E)之间的阀门,观察排放总水管(E)出清水还是砂浆,如出砂浆则判断第一条供水支管(C)所对应的第一组喷嘴中存在损坏喷嘴;进入第三步;
    第三步:关闭第二步所开启的全部阀门,开启第一电动球阀(2)、第二条供水支管(C)上的电动调节阀、该条供水支管(C)所连接的检测支管上的电动球阀以及该条供水支管(C)所连接的环形水管(26)的末端与排放总水管(E)之间的阀门,观察排放总水管(E)出清水还是砂浆;如出砂浆则判断第二条供水支管(C)所对应的第二组喷嘴中存在损坏喷嘴;如果第二步和第三步排放总水管(E)均出清水,则判断第三条供水支管(C)所对应的第三组喷嘴中存在损坏喷嘴;
    第四步:存在损坏喷嘴的喷嘴组中,将某一手动球阀开启、其余手动球阀关闭,并开启第一电动球阀(2)、该组喷嘴对应的供水支管(C)上的电动调节阀、该条供水支管(C)所连接的检测支管上的电动球阀以及该条供水支管(C)所连接的环形水管(26)的末端与排放总水管(E)之间的阀门;在某一个手动球阀开启其余关闭时排放总水管(E)出砂浆,说明该手动球阀对应的喷嘴损坏。
PCT/CN2021/102022 2020-07-07 2021-06-24 浓密机风水联动造浆系统及基于该系统的损坏喷嘴定位方法 WO2022007637A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010643410.3A CN111749730B (zh) 2020-07-07 2020-07-07 浓密机风水联动造浆系统及基于该系统的损坏喷嘴定位方法
CN202010643410.3 2020-07-07

Publications (1)

Publication Number Publication Date
WO2022007637A1 true WO2022007637A1 (zh) 2022-01-13

Family

ID=72679609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102022 WO2022007637A1 (zh) 2020-07-07 2021-06-24 浓密机风水联动造浆系统及基于该系统的损坏喷嘴定位方法

Country Status (2)

Country Link
CN (1) CN111749730B (zh)
WO (1) WO2022007637A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111749730B (zh) * 2020-07-07 2021-06-11 山东黄金矿业科技有限公司充填工程实验室分公司 浓密机风水联动造浆系统及基于该系统的损坏喷嘴定位方法
CN113513363B (zh) * 2021-08-25 2023-07-25 山金重工有限公司 一种细粒级高浓度尾矿充填浓密装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168352B1 (en) * 1997-01-24 2001-01-02 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Natural Resources Apparatus for producing high density slurry and paste backfills
CN103963162A (zh) * 2014-05-23 2014-08-06 山东华联矿业股份有限公司 立式砂仓造浆装置
CN104696009A (zh) * 2015-03-19 2015-06-10 华唯金属矿产资源高效循环利用国家工程研究中心有限公司 一种防堵塞的矿山充填站的造浆系统及造浆工艺
CN109458216A (zh) * 2018-12-18 2019-03-12 山东华联矿业股份有限公司 用于深锥浓密机的防板结自造浆系统
CN208679484U (zh) * 2018-08-22 2019-04-02 山东黄金矿业股份有限公司 一种立式砂仓高压风水两用造浆喷嘴
CN111749730A (zh) * 2020-07-07 2020-10-09 山东黄金矿业科技有限公司充填工程实验室分公司 浓密机风水联动造浆系统及基于该系统的损坏喷嘴定位方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2260604C (en) * 1998-12-31 2002-11-12 Her Majesty In Right Of Canada As Represented By The Minister Of Natural Resources Apparatus for producing high density slurry and paste backfills

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168352B1 (en) * 1997-01-24 2001-01-02 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Natural Resources Apparatus for producing high density slurry and paste backfills
CN103963162A (zh) * 2014-05-23 2014-08-06 山东华联矿业股份有限公司 立式砂仓造浆装置
CN104696009A (zh) * 2015-03-19 2015-06-10 华唯金属矿产资源高效循环利用国家工程研究中心有限公司 一种防堵塞的矿山充填站的造浆系统及造浆工艺
CN208679484U (zh) * 2018-08-22 2019-04-02 山东黄金矿业股份有限公司 一种立式砂仓高压风水两用造浆喷嘴
CN109458216A (zh) * 2018-12-18 2019-03-12 山东华联矿业股份有限公司 用于深锥浓密机的防板结自造浆系统
CN111749730A (zh) * 2020-07-07 2020-10-09 山东黄金矿业科技有限公司充填工程实验室分公司 浓密机风水联动造浆系统及基于该系统的损坏喷嘴定位方法

Also Published As

Publication number Publication date
CN111749730B (zh) 2021-06-11
CN111749730A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
WO2022007637A1 (zh) 浓密机风水联动造浆系统及基于该系统的损坏喷嘴定位方法
CN201864348U (zh) 一种喷射混凝土管道输送中间补风装置
CN206927269U (zh) 一种用于避免、消除斜溜槽堵塞的气动清堵装置
WO2019200597A1 (zh) 分级降压式钻孔裂隙探测系统及探测方法
CN202321648U (zh) 一种干混砂浆气力输送仓泵
CN102491013A (zh) 一种罐式粉料运输车及其卸料装置
CN108661566A (zh) 一种rjp工艺与mjs工艺通用的钻头及其施工工艺
CN202755984U (zh) 气料混合喷枪
CN212508423U (zh) 一种高深锥浓密机风水联动造浆装置
CN203696786U (zh) 喷砂机用料罐及喷砂机
CN102953736A (zh) 一种新型喷浆机
CN208918473U (zh) 一种rjp工艺与mjs工艺通用的钻头
RU2787972C1 (ru) Система пульпирования с ветрено-водяной спаренной связью для сгустителей и способ обнаружения поврежденных форсунок на основе данной системы
CN104029945B (zh) 圆筒平底形钢筋混凝土料仓的清堵装置
CN209722922U (zh) 一种高低压双面冲桩靴管汇装置
CN202348290U (zh) 一种新型喷浆机
CN106436712B (zh) 一种导向加料管以及应用该导向加料管的喷射系统
CN102295167A (zh) 一种用于负压气力卸船装置上的流态化吸嘴装置
CN110775641B (zh) 一种铜冶炼混合干精矿气力输送装置
CN109763471A (zh) 一种高低压双面冲桩靴管汇装置
CN203877256U (zh) 圆筒平底形钢筋混凝土料仓的清堵装置
CN105673047A (zh) 一种全风动矿井巷道喷涂系统及方法
CN207258423U (zh) 一种适用于聚氯乙烯糊树脂生产的物料缓存装置
CN210660124U (zh) 矿用混凝土喷射装置
CN213863693U (zh) 一种耐磨型物料仓储装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838788

Country of ref document: EP

Kind code of ref document: A1