WO2022007102A1 - 陀螺仪 - Google Patents

陀螺仪 Download PDF

Info

Publication number
WO2022007102A1
WO2022007102A1 PCT/CN2020/108374 CN2020108374W WO2022007102A1 WO 2022007102 A1 WO2022007102 A1 WO 2022007102A1 CN 2020108374 W CN2020108374 W CN 2020108374W WO 2022007102 A1 WO2022007102 A1 WO 2022007102A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
pole piece
gyroscope
ring member
detection
Prior art date
Application number
PCT/CN2020/108374
Other languages
English (en)
French (fr)
Inventor
马昭
占瞻
杨珊
李杨
谭秋喻
洪燕
黎家健
张睿
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022007102A1 publication Critical patent/WO2022007102A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces

Definitions

  • the invention relates to the technical field of gyroscopes, in particular to a gyroscope.
  • Micro mechanical gyroscope namely MEMS (Micro Electron Mechanical systems) gyroscope, which is a typical angular velocity microsensor, has a very wide range of applications in the consumer electronics market due to its advantages of small size, low power consumption and convenient processing. In recent years, with the gradual improvement of the performance of gyroscopes, they are widely used in automotive, industrial, virtual reality and other fields.
  • MEMS Micro Electron Mechanical systems
  • the gyroscope can be divided into two types: linear vibration tuning fork gyroscope and disc gyroscope.
  • the driving mode mode and detection mode mode of the disc gyroscope are degenerate, with high sensitivity and simple structure. Become a more widely used high-performance gyroscope.
  • the disc-shaped gyroscope is limited in structure and space layout, resulting in a low quality factor and a small capacitance that can be accommodated in the structure, which has application limitations.
  • the purpose of the present invention is to disclose a gyroscope with a high quality factor.
  • a gyroscope including a base, a fixing piece, a ring piece and an electrode, the fixing piece is connected with the base; connection; the ring member is suspended on the substrate, the outer contour of the ring member is a positive 8N star, wherein, N is a positive integer; the electrode covers the outer surface of the ring member and is connected to the substrate, the electrode includes a driving electrode and a detection electrode, and the driving The electrode is used for cooperating with the ring member to drive the ring member to vibrate in the first and second directions perpendicular to each other, and the detection electrode is used for cooperating with the ring member to detect that the ring member is 45 degrees along the included angle with the first direction and/ Or vibrate at an angle of 135 degrees with the first direction.
  • the outer surface of the ring member includes a side surface on the side away from the fixing member, and an upper surface and a lower surface adjacent to the side surface and opposite to the side surface, and the electrodes are arranged on the side surface, the upper surface and the lower surface. at least one.
  • the ring member includes a plurality of spokes whose diameters gradually decrease toward the fixing member, the plurality of spokes are connected together in sequence, and the adjacent spokes form a predetermined angle.
  • the ring member further includes a plurality of connecting beams, and opposite ends of the connecting beams are respectively connected to a spoke.
  • the driving electrode further includes a first driving pole piece, the first driving pole piece is arranged at the connection of adjacent spokes, and the cross section of each first driving pole piece is V-shaped;
  • the detection electrode further includes a first detection pole piece. Pole piece, the first detection pole piece is arranged at the connection of adjacent spokes, and the cross section of each first driving pole piece is V-shaped.
  • the driving electrode further includes a first driving pole piece, the first driving pole piece is arranged at the connection of adjacent spokes, and the cross section of each first driving pole piece is U-shaped;
  • the detection electrode further includes a first detection pole piece. Pole piece, the first detection pole piece is arranged at the connection of adjacent spokes, and the cross section of each first driving pole piece is U-shaped.
  • the driving electrode further includes a second driving pole piece, and the second driving pole piece is arranged on the side of the outermost spoke;
  • the detection electrode further includes a second detection pole piece, and the second detection pole piece is arranged on the outermost spoke. the sides of the spokes.
  • the ring member further includes a plurality of connecting beams, and adjacent spokes form gaps and are connected through the connecting beams.
  • the gyroscope disclosed in the present invention by setting the ring member in a wave shape, on the one hand, the wave star-shaped structure has the characteristic of being easily deformed like a spring, the thermal elasticity loss of the wave gyroscope is small, and the wave gyroscope has a very high quality factor.
  • the gyroscope with the wave star structure has a larger surface area than the plane gyroscope, and the upper and lower surfaces and the side surfaces can be used to arrange electrodes, which effectively increases the detection capacitance and improves the sensitivity of the gyroscope.
  • the gyroscope of the wave-shaped structure has higher space utilization rate than the hemispherical gyroscope, and has a smaller etching depth in the longitudinal direction, which effectively reduces the difficulty of process processing compared with the hemispherical gyroscope.
  • FIG. 1 is a schematic structural diagram of a gyroscope provided by the present invention.
  • FIG. 2 is a schematic three-dimensional structure diagram of the ring member and electrodes in the gyroscope provided by the present invention when assembled.
  • FIG. 3 is a schematic diagram of the ring member provided by the present invention shown in FIG. 2 in a vibration mode.
  • FIG. 4 is a schematic diagram of the ring member provided by the present invention shown in FIG. 2 in a detection mode.
  • FIG. 5 is a schematic cross-sectional view of the gyroscope provided by the present invention.
  • FIG. 6 is a schematic cross-sectional view of a second embodiment of a gyroscope provided by the present invention.
  • FIG. 7 is a schematic structural diagram of a third embodiment of a gyroscope provided by the present invention.
  • FIG. 8 is a schematic cross-sectional view of a fourth embodiment of a gyroscope provided by the present invention.
  • FIG. 9 is a schematic cross-sectional view of a fifth embodiment of a gyroscope provided by the present invention.
  • the present invention discloses a gyroscope 100, the gyroscope 100 includes a substrate 1, a fixing member 10, a ring member 20 and an electrode 30.
  • the fixing member 10 is the anchor point of the gyroscope 100 , and the gyroscope 100 is fixed to the substrate 1 through the fixing member 10 .
  • the fixing member 10 is provided with a through hole 12 to provide a deformation space for the annular member 20 during the shrinkage process.
  • the cross section of the ring member 20 in the radial direction is wave-shaped, and the ring member 20 is arranged on the outer side of the fixing member 10 and is connected with the fixing member 10 .
  • the electrode 30 covers the outer surface of the ring member 20, and the electrode 30 includes a driving electrode 301 for cooperating with the ring member 20 to drive the ring member 20 to vibrate along the mutually perpendicular first direction X and the second direction Y, and a driving electrode 301 for cooperating with the ring member 20 to vibrate in the first direction X and the second direction Y. 20 cooperate to detect the detection electrodes 302 of the ring member 20 vibrating in a direction D at an angle of 45 degrees to the first direction and/or a direction M at an angle of 135 degrees from the first direction.
  • the ring member 20 vibrates along the first direction X and the second direction Y under the action of the driving electrode 301 to form a vibration mode.
  • the vibration mode in the first direction X.
  • the angular velocity of the object's rotation produces the resultant Coriolis force F2 along the 45-degree direction D and the 135-degree direction M, and the resultant Coriolis force F2 will force the ring member 20 along the 45-degree directions D and 135 degrees
  • the degree direction M vibrates to form a detection mode.
  • FIG. 3 shows the detection mode of the ring member 20 in the 135 degree direction M.
  • the detection electrode 302 detects the vibration displacement of the ring member 20 along the 45-degree direction D and the 135-degree direction M, and the magnitude of the rotational angular velocity of the object can be obtained through arithmetic processing.
  • the cross-section of the wave star structure is similar to that of a spring, and the wave gyroscope 100 has a small thermoelastic loss and a very high quality factor.
  • the gyroscope 100 with the wave star structure has a larger surface area than the plane gyroscope 100 , and the upper and lower surfaces and the side surfaces can be used to arrange the electrodes 30 , which effectively increases the detection capacitance and improves the sensitivity of the gyroscope 100 .
  • the gyroscope 100 of the wave-shaped structure has a higher space utilization rate, and has a smaller etching depth in the longitudinal direction. Compared with the hemispherical gyroscope 100 , the process processing is effectively reduced. difficulty.
  • the outer contour of the ring member 20 is a positive 8N star, that is, the projection of the ring member 20 on the substrate 1 is a positive 8N star, where N is a positive integer.
  • N is 2, and the outer contour of the ring member 20 is a positive 16-pointed star.
  • N can also be 3, 4, 5, 6, 7, 8, 9 and so on.
  • the outer contour of the ring member 20 is set as a positive N-pointed star, and the corners of the wavy ring member 20 are the corners of the ring member 20, and the star-shaped corners are easily deformed and structured.
  • the symmetrical feature on the one hand, can realize the degeneracy of the driving mode and the detection mode of the gyroscope 100, which conforms to the principle of the Coriolis effect.
  • the star-shaped structure can improve the quality factor of the gyroscope 100 and improve the performance of the gyroscope 100. .
  • the ring member 20 and the fixing member 10 are integrally formed.
  • the annular member 20 and the fixing member 10 are integrally formed using a silicon wafer integrally formed.
  • the silicon wafer can be single crystal silicon or polycrystalline silicon.
  • the ring member 20 includes a plurality of spokes 22 whose diameters gradually decrease toward the fixing member 10 .
  • the spokes 22 are closed loops, and the spokes 22 whose diameters decrease in sequence are connected together to form a wave-shaped ring member 20 .
  • the preset angle can be 30 degrees, 45 degrees, 60 degrees, 90 degrees, 120 degrees, etc. At this time, a V-shaped sharp angle is formed between adjacent spokes 22 .
  • the driving electrode 301 is provided with a plurality of first driving pole pieces 303 each with a V-shaped cross section, and the first driving pole pieces 303 are arranged at the connection of the adjacent spokes 22 .
  • the detection electrode 302 is provided with a plurality of first detection pole pieces 304 , each of which has a V-shaped cross section, and the first detection pole pieces 304 are arranged at the connections of adjacent spokes 22 .
  • the first driving pole piece 303 is spaced from the ring member 20 to form a capacitor with the ring member 20
  • the first detection pole piece 304 is spaced from the ring member 20 to form a capacitor with the ring member 20 .
  • the first driving pole piece 303 drives the ring member 20 to vibrate along the first direction X and the second direction Y, and the size of the capacitance formed between the first detection pole piece 304 and the ring member 20 can be detected and converted into a ring shape.
  • the displacement of the member 20 along the 45-degree axis direction and the /135-degree axis direction is calculated, and then the angular velocity of the object is converted.
  • FIG. 6 is a schematic cross-sectional view of a second embodiment of the gyroscope 100 provided by the present invention.
  • the ring member 20 further includes a plurality of connecting beams 24, and opposite ends of the plurality of connecting beams 24 are respectively connected to the spokes 22. At this time, two adjacent spokes 22 and the connecting beams 24 together form a U-shape. At this time, the stress concentration of the ring member 20 is reduced, which is beneficial to improve the fatigue resistance of the ring member 20 .
  • the section of the first driving pole piece 303 is U-shaped, and the section of the first detection pole piece 304 is U-shaped.
  • the difference between the third embodiment and the second embodiment is that a plurality of spokes 22 form gaps and are connected by connecting beams 24 .
  • the connecting beam 24 is provided with a buffer groove to provide a deformation space for the ring member 20 during the shrinkage process.
  • the number of buffer grooves opened in each connecting beam 24 may be two, three, four, five and so on.
  • the shape of the buffer groove can be square, triangular, circular and so on.
  • FIG. 7 is a schematic cross-sectional view of a third embodiment of the gyroscope 100 provided by the present invention.
  • the driving electrode 301 further includes a second driving pole piece 305, which is arranged on the side of the outermost spoke 22 to form side driving.
  • the advantage of side driving is that the ring member 20 can vibrate in the plane.
  • the detection electrode 302 further includes a second detection pole piece 306 , and the second detection pole piece 306 is disposed on the side surface of the outermost spoke 22 .
  • FIG. 8 is a schematic cross-sectional view of a fourth embodiment of the gyroscope 100 provided by the present invention.
  • the outer surface of the ring member 20 includes a side surface 201 on the side away from the fixing member 10 and an upper surface 202 and a lower surface 203 which are adjacent to the side surface 201 and opposite to each other.
  • the electrodes 30 are arranged on the side surface 201, the upper surface 202 and the lower surface. at least one of the surfaces 203 .
  • the electrodes 30 are disposed on the upper surface 202 of the ring member 20 .
  • the electrode 30 is provided on the side surface 201 of the ring member 20 .
  • the electrodes 30 are provided on the lower surface 203 of the ring member 20 .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

一种陀螺仪(100),其包括基底(1)、固定件(10)、环形件(20)以及电极(30),固定件(10)与基底(1)连接;环形件(20)呈波浪形,环形件(20)设于固定件(10)的外侧且与固定件(10)连接;环形件(20)悬置于基底(1)上,环形件(20)的外轮廓为正8N角星,其中,N为正整数;电极(30)覆盖于环形件(20)的外表面且与基底(1)连接,电极(30)包括驱动电极(301)和检测电极(302),驱动电极(301)用于与环形件(20)共同作用驱动环形件(20)沿相互垂直的第一方向和第二方向振动,检测电极(302)用于与环形件(20)共同作用检测环形件(20)沿与第一方向的夹角呈45度方向和/或与第一方向的夹角呈135度方向振动,该陀螺仪(100)一方面热弹性损失较小,具有极高的品质因数;另一方面有效增大了检测电容,提高了陀螺仪(100)的灵敏度。

Description

陀螺仪 技术领域
本发明涉及陀螺仪技术领域,尤其涉及一种陀螺仪。
背景技术
微机械陀螺仪,即MEMS(Micro Electro Mechanical systems)陀螺仪,是一种典型的角速度微传感器,由于其尺寸小、功耗低和加工方便等优势在消费电子市场有着非常广泛的应用。近年来随着陀螺仪性能的逐步提升,广泛应用于汽车、工业、虚拟现实等领域。
陀螺仪可分为线振动音叉型陀螺仪和圆盘形陀螺仪两类,其中,圆盘形陀螺仪的驱动模态振型和检测模态振型简并,灵敏度高,且结构简单,逐步成为实用较为广泛的高性能陀螺仪。但是,圆盘形陀螺仪受限于结构和空间布局,导致品质因数低,且结构内可够容纳的电容量较小,存在着应用的局限。
因而,有必要提供一种新的陀螺仪以解决上述的问题。
技术问题
本发明的目的公开一种品质因数高的陀螺仪。
技术解决方案
本发明的目的采用如下技术方案实现:一种陀螺仪,包括基底、固定件、环形件以及电极,固定件与基底连接;环形件呈波浪形,环形件设于固定件的外侧且与固定件连接;环形件悬置于基底上,环形件的外轮廓为正8N角星,其中,N为正整数;电极覆盖于环形件的外表面且与基底连接,电极包括驱动电极和检测电极,驱动电极用于与环形件共同作用驱动环形件沿相互垂直的第一方向和第二方向振动,检测电极用于与环形件共同作用检测环形件沿与第一方向的夹角呈45度方向和/或与第一方向的夹角呈135度方向振动。
作为一种改进方式,环形件的外表面包括远离固定件一侧的侧表面及与侧表面相邻且相对设置的上表面和下表面,电极排布于侧表面、上表面和下表面中的至少一个。
作为一种改进方式,环形件包括多个朝向固定件直径依次变小的辐条,多个辐条依次连接在一起,相邻的辐条呈预设角度。
作为一种改进方式,环形件还包括多个连接梁,连接梁的相对两端分别连接一个辐条。
作为一种改进方式,驱动电极还包括第一驱动极片,第一驱动极片设置在相邻辐条的连接处,每个第一驱动极片的截面呈V形;检测电极还包括第一检测极片,第一检测极片设置在相邻辐条的连接处,每个第一驱动极片的截面呈V形。
作为一种改进方式,驱动电极还包括第一驱动极片,第一驱动极片设置在相邻辐条的连接处,每个第一驱动极片的截面呈U形;检测电极还包括第一检测极片,第一检测极片设置在相邻辐条的连接处,每个第一驱动极片的截面呈U形。
作为一种改进方式,驱动电极还包括第二驱动极片,第二驱动极片设置在最外侧的辐条的侧面; 检测电极还包括第二检测极片,第二检测极片设置在最外侧的辐条的侧面。
作为一种改进方式,环形件还包括多个连接梁,相邻的辐条之间形成间隙并通过连接梁连接。
有益效果
本发明公开的陀螺仪,通过设置环形件为波浪形态,一方面波浪星型结构截面类似弹簧易变形的特征,波浪陀螺仪的热弹性损失较小,具有极高的品质因数。另一方面波浪星型结构的陀螺仪相对于平面陀螺仪的表面积大,上下表面以及侧面均可用于布置电极,有效增大了检测电容,提高了陀螺仪的灵敏度。再一方面波浪型结构的陀螺仪相比于半球形陀螺仪,具有更高的空间利用率,在纵向具有更小的刻蚀深度,相比于半球陀螺仪,有效减低了工艺加工难度。
附图说明
图1 为本发明提供的陀螺仪的结构示意图。
图2为本发明提供的陀螺仪中环形件和电极组装时的立体结构示意图。
图3为图2所示的本发明提供的的环形件在振动模态下的示意图。
图4为图2所示的本发明提供的环形件在检测模态下的示意图。
图5为本发明提供的陀螺仪的截面示意图。
图6为本发明提供的陀螺仪的第二实施例的截面示意图。
图7为本发明提供的陀螺仪的第三实施例的结构示意图。
图8为本发明提供的陀螺仪的第四实施例的截面示意图。
图9为本发明提供的陀螺仪的第五实施例的截面示意图。
本发明的实施方式
下面结合附图和实施方式对本发明作进一步说明。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
还需要说明的是,当元件被称为“固定于”或“设置于”另一个元件上时,它可以直接在另一个元件上或者可能同时存在居中元件。当一个元件被称为是“连接”另一个元件,它可以是直接连接另一个元件或者可能同时存在居中元件。
另外,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
请参阅图1至图5,本发明的公开了一种陀螺仪100,该陀螺仪100包括基底1、固定件10、环形件20和电极30。
固定件10为陀螺仪100的锚点,陀螺仪100通过固定件10固定至基底1上。优选地,固定件10开设有通孔12,以在环形件20收缩的过程中,为其提供变形空间。
环形件20在径向上的截面呈波浪形,环形件20设于固定件10的外侧且与固定件10连接。
电极30覆盖于环形件20的外表面,电极30包括用于与环形件20共同作用驱动环形件20沿相互垂直的第一方向X和第二方向Y振动的驱动电极301和用于与环形件20共同作用检测环形件20沿与第一方向的夹角呈45度方向D和/或与第一方向的夹角呈135度方向M振动的检测电极302。
陀螺仪100使用时,物体在没有转动的情况下,环形件20在驱动电极301的作用下沿第一方向X和第二方向Y振动,形成振动模态,图2展示的是环形件20在第一方向X的振动模态。当物体发生转动时,根据哥氏原理,物体转动的角速度产生沿45度方向D和135度方向M的哥氏力合力F2,哥氏力合力F2会迫使环形件20沿45度方向D和135度方向M振动,形成检测模态,图3展示的是环形件20在135度方向M的检测模态。检测电极302通过检测环形件20沿45度方向D和135度方向M的振动位移,经过运算处理即可获得物体转动角速度的大小。
本实施例公开的陀螺仪100,通过设置环形件20为波浪形态,一方面波浪星型结构截面类似弹簧易变形的特征,波浪陀螺仪100的热弹性损失较小,具有极高的品质因数。另一方面波浪星型结构的陀螺仪100相对于平面陀螺仪100的表面积大,上下表面以及侧面均可用于布置电极30,有效增大了检测电容,提高了陀螺仪100的灵敏度。再一方面波浪型结构的陀螺仪100相比于半球形陀螺仪100,具有更高的空间利用率,在纵向具有更小的刻蚀深度,相比于半球陀螺仪100,有效减低了工艺加工难度。
在一可选的实施例中,环形件20的外轮廓为正8N角星,即所述环形件20在基底1上的投影为正8N角星,其中,N为正整数。例如图1所示N为2,环形件20的外轮廓为正16角星。当然,N还可以为3、4、5、6、7、8、9等。
本实施例公开的陀螺仪100,通过设置环形件20的外轮廓为正N角星,波浪形的环形件20的拐角处为环形件20的角部,利用星形的角部容易变形和结构对称的特征,一方面能够实现陀螺仪100驱动模态与检测模态的简并,符合哥氏效应原理,另一方面星形的结构能够提升陀螺仪100的品质因数,提升陀螺仪100的性能。
作为本申请的一种改进方式,环形件20和固定件10为一体成型。优选地,环形件20和固定件10一体成型采用硅晶片一体成型。硅晶片可以是单晶硅或者多晶硅。
环形件20包括多个直径朝向固定件10依次变小的辐条22,辐条22为闭环,直径依次变小的辐条22依次连接在一起形成波浪形的环形件20,相邻的辐条22呈预设角度,预设角度可以是30度、45度、60度、90度、120度等等,此时相邻辐条22之间构成V形尖角。
作为本实施例的一种改进方式,驱动电极301设有多个且每个的截面呈V形的第一驱动极片303,第一驱动极片303设置在相邻辐条22的连接处。检测电极302设有多个且每个的截面呈V形的第一检测极片304,第一检测极片304设置在相邻辐条22的连接处。
需要说明的是,第一驱动极片303与环形件20间隔设置,与环形件20之间形成电容,第一检测极片304与环形件20间隔设置,与环形件20之间形成电容。通过输入交流电从而第一驱动极片303驱动环形件20沿着第一方向X和第二方向Y振动,并且通过第一检测极片304与环形件20之间形成的电容大小可以检测换算出环形件20沿45度轴方向和/135度轴方向的位移,继而换算出物体的角速度。
请参阅图6,图6为本发明提供的陀螺仪100的第二实施例的截面示意图。
环形件20还包括多个连接梁24,多个连接梁24的相对两端分别连接所述辐条22,此时相邻的两辐条22与连接梁24共同构成U形。此时,环形件20的应力的集中度降低,有利于提高环形件20的抗疲劳程度。
作为本实施例的一种改进方式,第一驱动极片303的截面呈U形,第一检测极片304的截面呈U形。
更进一步地,第三实施例与第二实施例的区别在于,多个辐条22之间形成间隙,并通过连接梁24连接。具体地,连接梁24开设有缓冲槽,以在环形件20收缩的过程中,为其提供变形空间。每个连接梁24所开设的缓冲槽的数量可以是两个、三个、四个、五个等等。缓冲槽的形状可以是方形、三角形、圆形等等。
请参阅图2和图7,图7为本发明提供的陀螺仪100的第三实施例的截面示意图。
驱动电极301还包括第二驱动极片305,第二驱动极片305设置在最外侧的辐条22的侧面,形成侧面驱动,侧面驱动的优势在于可保证环形件20在面内振动。检测电极302还包括第二检测极片306,第二检测极片306设置在最外侧的辐条22的侧面。
请参阅图8,图8为本发明提供的陀螺仪100的第四实施例的截面示意图。
环形件20的外表面包括远离固定件10一侧的侧表面201及与侧表面201相邻且相对设置的上表面202和下表面203,电极30排布于侧表面201、上表面202和下表面203中的至少一个。
在图5和图6中,电极30设置在环形件20的上表面202上。在图7中,电极30设置在环形件20的侧表面201上。在图8中,电极30设置在环形件20的下表面203上。
以上的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (8)

  1. 一种陀螺仪,其特征在于,所述陀螺仪包括:
    基底;
    固定件,与所述基底连接;
    环形件,呈波浪形,所述环形件设于所述固定件的外侧且与所述固定件连接;所述环形件悬置于所述基底上,所述环形件的外轮廓为正8N角星,其中,N为正整数;
    电极,覆盖于所述环形件的外表面且与所述基底连接,所述电极包括驱动电极和检测电极,所述驱动电极用于与所述环形件共同作用驱动所述环形件沿相互垂直的第一方向和第二方向振动,所述检测电极用于与所述环形件共同作用检测所述环形件沿与所述第一方向的夹角呈45度方向和/或与所述第一方向的夹角呈135度方向振动。
  2. 根据权利要求1所述的陀螺仪,其特征在于,所述环形件的外表面包括远离所述固定件一侧的侧表面及与所述侧表面相邻且相对设置的上表面和下表面,所述电极排布于所述侧表面、所述上表面和所述下表面中的至少一个。
  3. 根据权利要求1所述的陀螺仪,其特征在于,所述环形件包括多个直径朝向所述固定件依次变小的辐条,所述多个辐条依次连接在一起,相邻的所述辐条呈预设角度。
  4. 根据权利要求3所述的陀螺仪,其特征在于,所述环形件还包括多个连接梁,所述连接梁的相对两端分别连接一个所述辐条。
  5. 根据权利要求3所述的陀螺仪,其特征在于,所述驱动电极还包括第一驱动极片,所述第一驱动极片设置在所述相邻辐条的连接处,每个所述第一驱动极片的截面呈V形;所述检测电极还包括第一检测极片,所述第一检测极片设置在所述相邻辐条的连接处,每个所述第一驱动极片的截面呈V形。
  6. 根据权利要求4所述的陀螺仪,其特征在于,所述驱动电极还包括第一驱动极片,所述第一驱动极片设置在所述相邻辐条的连接处,每个所述第一驱动极片的截面呈U形;所述检测电极还包括第一检测极片,所述第一检测极片设置在所述相邻辐条的连接处,每个所述第一驱动极片的截面呈U形。
  7. 根据权利要求3所述的陀螺仪,其特征在于,所述驱动电极还包括第二驱动极片,所述第二驱动极片设置在最外侧的所述辐条的侧面;所述检测电极还包括第二检测极片,所述第二检测极片设置在最外侧的所述辐条的侧面。
  8. 根据权利要求3所述的陀螺仪,其特征在于,所述环形件还包括多个连接梁,所述相邻的辐条之间形成间隙并通过所述连接梁连接。
PCT/CN2020/108374 2020-07-09 2020-08-11 陀螺仪 WO2022007102A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021339392.1U CN212567415U (zh) 2020-07-09 2020-07-09 陀螺仪
CN202021339392.1 2020-07-09

Publications (1)

Publication Number Publication Date
WO2022007102A1 true WO2022007102A1 (zh) 2022-01-13

Family

ID=74620555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108374 WO2022007102A1 (zh) 2020-07-09 2020-08-11 陀螺仪

Country Status (2)

Country Link
CN (1) CN212567415U (zh)
WO (1) WO2022007102A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050016270A1 (en) * 2003-07-25 2005-01-27 Yi-Ru Chen Vibratory double-axially sensing micro-gyroscope
CN101834065A (zh) * 2010-04-20 2010-09-15 浙江大学 一种可调节微机械器件弹性系数的变面积电容结构
CN103842771A (zh) * 2011-09-21 2014-06-04 特罗尼克斯微系统有限公司 微机电陀螺仪装置
CN104457725A (zh) * 2014-11-14 2015-03-25 司红康 高灵敏度体声波硅微陀螺仪
CN109839104A (zh) * 2019-01-17 2019-06-04 苏州大学 单芯片多敏感单元的中心轴对称mems陀螺仪
CN110998231A (zh) * 2017-08-08 2020-04-10 Hrl实验室有限责任公司 高品质因数mems硅生命之花式振动陀螺仪
CN111156982A (zh) * 2019-12-31 2020-05-15 瑞声科技(南京)有限公司 Mems陀螺仪
CN111156980A (zh) * 2019-12-31 2020-05-15 瑞声科技(南京)有限公司 Mems陀螺仪
CN111156981A (zh) * 2019-12-31 2020-05-15 瑞声科技(南京)有限公司 Mems陀螺仪

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050016270A1 (en) * 2003-07-25 2005-01-27 Yi-Ru Chen Vibratory double-axially sensing micro-gyroscope
CN101834065A (zh) * 2010-04-20 2010-09-15 浙江大学 一种可调节微机械器件弹性系数的变面积电容结构
CN103842771A (zh) * 2011-09-21 2014-06-04 特罗尼克斯微系统有限公司 微机电陀螺仪装置
CN104457725A (zh) * 2014-11-14 2015-03-25 司红康 高灵敏度体声波硅微陀螺仪
CN110998231A (zh) * 2017-08-08 2020-04-10 Hrl实验室有限责任公司 高品质因数mems硅生命之花式振动陀螺仪
CN109839104A (zh) * 2019-01-17 2019-06-04 苏州大学 单芯片多敏感单元的中心轴对称mems陀螺仪
CN111156982A (zh) * 2019-12-31 2020-05-15 瑞声科技(南京)有限公司 Mems陀螺仪
CN111156980A (zh) * 2019-12-31 2020-05-15 瑞声科技(南京)有限公司 Mems陀螺仪
CN111156981A (zh) * 2019-12-31 2020-05-15 瑞声科技(南京)有限公司 Mems陀螺仪

Also Published As

Publication number Publication date
CN212567415U (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
JP4368116B2 (ja) 回転型デカップルドmemsジャイロスコープ
CN105486297B (zh) 一种圆盘多环内s形柔性梁谐振陀螺及其制备方法
CN104931030B (zh) 一种内外环固定式压电驱动多环陀螺及其制备方法
CN111156980A (zh) Mems陀螺仪
CN105371833B (zh) 一种圆盘多环外s形柔性梁谐振陀螺及其制备方法
US20180266821A1 (en) Gyroscope
CN111156982A (zh) Mems陀螺仪
CN104931031A (zh) 一种外缘固定式静电驱动多环陀螺及其制备方法
CN104897145A (zh) 一种外缘固定式压电驱动多环陀螺及其制备方法
CN111156981A (zh) Mems陀螺仪
CN105043369B (zh) 一种外缘固定式激光加工压电驱动多环陀螺及其制备方法
CN105371832B (zh) 一种圆盘多环内双梁孤立圆环谐振陀螺及其制备方法
CN112683256B (zh) Mems陀螺仪
CN112710293B (zh) Mems陀螺仪
WO2022007102A1 (zh) 陀螺仪
WO2022007101A1 (zh) Mems 陀螺仪及电子产品
CN213985134U (zh) 一种mems陀螺仪及电子产品
CN111693036A (zh) 三轴mems陀螺仪
CN213090781U (zh) 一种mems陀螺仪及电子产品
WO2021134668A1 (zh) Mems陀螺仪
WO2021134678A1 (zh) Mems陀螺仪
US11585659B2 (en) MEMS wave gyroscope
WO2021134675A1 (zh) Mems陀螺仪
WO2022007090A1 (zh) 陀螺仪
CN213090780U (zh) 一种mems陀螺仪及电子产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943864

Country of ref document: EP

Kind code of ref document: A1