WO2022005081A1 - Unmanned robot control system for access floor construction - Google Patents

Unmanned robot control system for access floor construction Download PDF

Info

Publication number
WO2022005081A1
WO2022005081A1 PCT/KR2021/007742 KR2021007742W WO2022005081A1 WO 2022005081 A1 WO2022005081 A1 WO 2022005081A1 KR 2021007742 W KR2021007742 W KR 2021007742W WO 2022005081 A1 WO2022005081 A1 WO 2022005081A1
Authority
WO
WIPO (PCT)
Prior art keywords
floor
installation
pad
robot
information
Prior art date
Application number
PCT/KR2021/007742
Other languages
French (fr)
Korean (ko)
Inventor
차맹규
박현일
김희수
임연직
박훈채
김진수
장일규
이지응
최욱진
김동근
Original Assignee
삼성물산 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성물산 주식회사 filed Critical 삼성물산 주식회사
Publication of WO2022005081A1 publication Critical patent/WO2022005081A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1682Dual arm manipulator; Coordination of several manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/024Sectional false floors, e.g. computer floors

Definitions

  • the present invention relates to an unmanned robot control system for access floor construction, and more particularly, using a pad installation robot, a floor installation robot, and a bolting robot having a unique structure for access floor construction, to construct an access floor without providing manpower It relates to an unmanned robot control system for access floor construction.
  • Access floor is a compound word of ACCESS (access, in computer terminology, inserting or extracting information into or out of a computer system) and floor (FLOOR: floor). Accordingly, it is also called a raised floor, a double floor, or an O/A floor.
  • the access floor refers to a raised floor that has been proposed to secure a more comfortable and efficient office space in the information age when the use of computers is increasing.
  • clean or super-clean conditions such as semiconductor fab, TFT-LCD fab or PDP fab, pharmaceutical or food manufacturing plants, or workshops and operating rooms that produce or assemble optical products, printing or precision machinery, etc.
  • fine or ultrafine dust or mist has a profound effect on the quality of the product, so it is strictly blocked from the outside, and temperature and humidity are maintained within a predetermined range through constant temperature and constant humidity control.
  • a clean room with a raised floor is provided to prevent vibration.
  • An access floor means creating another floor by placing a space at a certain height on a flat floor to satisfy the above needs. And it is formed so that the cable can be placed in the space and the floor can be opened and closed as needed for the rearrangement of the cables.
  • an installation frame For the construction of an access floor, it is common to form an installation frame and an operator to form a pad and a floor on the installation frame.
  • the present invention was derived to solve the problem of the conventional access floor construction described above, and an object of the present invention is to allow an automated robot to install a mat and a floor without an operator performing a dangerous floor installation task, thereby causing a workplace safety accident It is to provide an unmanned robot control system for access floor construction that can prevent
  • Another object of the present invention is to reduce the construction cost and shorten the construction period by enabling the floor installation location selection and leveling operation to be quickly performed through the installation of the mat and the floor by the robot. To provide a control system.
  • Another object of the present invention is to provide an unmanned robot control system for access floor construction that can guarantee construction quality above a certain level by constructing most of the access floors using a robot.
  • an unmanned robot for constructing an access floor including an installation frame 10 , a pad 20 attached to the installation frame 10 , and a floor 30 coupled to the pad 20 .
  • the unmanned robot comprises: a pad installation robot (100) for attaching the pad (20) to the installation frame (10); a floor installation robot 200 for mounting the floor 30 on the pad 20; and a bolting robot 300 for coupling the pad 20 and the floor 30 using a coupling means 40; an input unit 610 for receiving construction information 700; a control unit 620 for controlling the unmanned robot; and a sensor unit 630 for generating generation information 800; is provided an unmanned robot control system comprising a.
  • the construction information 700 includes: pad distance information 710 on the distance between the adjacent pads 20 of the plurality of pads 20 installed in the installation frame 10; floor type information 720 on the type of the floor 30 mounted on the pad 20; Pad number information 730 on the number of the pads 20 installed on the installation frame 10 in one row; Floor number information 740 on the number of the floors 30 installed in the installation frame 10 in one row; and the insertion hole number information 750 of the insertion hole 13 into which the coupling means 40 is inserted. It may be an unmanned robot control system comprising a.
  • the generated information 800 includes location information 810 about the location of the unmanned robot generated by the location sensor 631; and distance information 820 on a distance between a plurality of unmanned robots generated by a distance sensor 632; but, the location information 810 includes: a pad installation robot location information 811; Floor installation robot location information (812); and bolting robot position information 813; may be an unmanned robot control system comprising a.
  • control unit 620 includes a pad installation module 621 for controlling the pad installation robot 100; a floor installation module 622 for controlling the floor installation robot 200; and a bolting module 623 for controlling the bolting robot 300; may be an unmanned robot control system comprising a.
  • the pad installation robot 100 includes a first detection sensor 110 for sensing the installation position 11 of the pad 20 on the installation frame 10; a first installation arm 120 for moving the pad 20 to the installation position 11; a first transportation means 130 for moving the first installation arm 120; and an adhesive providing unit 140 that provides an adhesive to the lower surface of the pad 20, wherein the pad installation module 621 derives installation location information 711 using the pad distance information 710,
  • the first detection sensor 110 may be an unmanned robot control system, characterized in that it specifies the installation location 11 based on the installation location information 711.
  • the floor installation robot 200 a transport unit 210 for transporting the floor 30 in a loaded state; and an installation unit 220 for mounting the floor 30 on the transportation unit 210 to the pad 20, wherein the transportation unit 210 is based on the position information 811 of the pad installation robot
  • the transportation unit 210 may be an unmanned robot control system, characterized in that the floor 30 is transported to the vicinity of the installation unit 220 .
  • the installation unit 220 includes a second detection sensor 221 for sensing the mounting position 12 of the floor 30; a second installation arm 222 for moving the floor 30 to the mounting position 12; and a second transportation means (230) for moving the second installation arm (222), wherein the floor installation module (622) receives gripping selection information (721) based on the floor type information (720).
  • the gripping selection information 721 may be an unmanned robot control system, characterized in that it is information about the type of the floor 30 to be gripped by the second installation arm 222 .
  • the bolting robot 300 a third detection sensor 310 for sensing the insertion hole (13); a third installation arm 320 for moving the coupling means 40 to the insertion hole 13; and a third transportation means 330 for moving the third installation arm 320; including, wherein the bolting module 623 is the third detection sensor 310 based on the insertion hole number information 750 It may be an unmanned robot control system, characterized in that deriving the target number information 751 of the insertion hole 13 to be sensed.
  • the construction information 700 includes information 760 of the horizontality range to be maintained by the floor 30 mounted on the pad 20 , but the bolting robot 300 is the floor 30 . It further includes; a level measurement sensor 350 for measuring the level of 760), it may be an unmanned robot control system, characterized in that it derives progress information 761 for determining whether to proceed with the work of the bolting robot 300.
  • a computer-readable recording medium in which a program for executing an access floor construction method is recorded.
  • FIG. 1 is a plan view showing the configuration of an installation frame, a lift facility, and a peripheral slab in an access floor construction process according to an embodiment of the present invention
  • Figure 2 is a detailed view of the first installation arm of the pad installation robot according to an embodiment of the present invention.
  • Figure 3 is a detailed view of the second installation arm of the floor installation robot according to an embodiment of the present invention.
  • Figure 4 is a detailed view of the third installation arm of the bolting robot according to an embodiment of the present invention.
  • FIG 5 is a view showing a state in which the unmanned robot is drawn into the peripheral slab through the elevating means.
  • 6 and 7 are views showing a state in which the unmanned robot is aligned near the installation frame for the construction of the access floor.
  • FIG 8 to 11 are views showing a process in which the pad installation robot adheres the pad to the installation frame.
  • FIGS. 12 to 20 are views illustrating a process in which the floor installation robot mounts the floor on top of the pad.
  • 21 to 22 are views showing a process in which the bolting robot combines the pad and the floor using a coupling means.
  • FIG. 23 is a plan view of a pad used for unmanned construction of an access floor according to an embodiment of the present invention.
  • 24 to 26 are views showing a movement path of an unmanned robot according to an embodiment of the present invention.
  • 27 is a view showing a movement path of the transport unit of the pad installation robot according to an embodiment of the present invention.
  • 29 is a block diagram of a control system according to an embodiment of the present invention.
  • FIG. 30 is a block diagram of a module according to an embodiment of the present invention.
  • FIG. 31 is a functional diagram of a pad installation module according to an embodiment of the present invention.
  • FIG. 32 is a functional diagram of a floor installation module according to an embodiment of the present invention.
  • FIG 33 is a functional diagram of a bolting module according to an embodiment of the present invention.
  • the term "coupling” does not mean only when there is direct physical contact between each component in the contact relationship between each component, but another component is interposed between each component, so that the component is in the other component. It should be used as a concept that encompasses even the cases in which each is in contact.
  • the present invention relates to an unmanned robot control system for access floor construction. Before describing the specific configuration of the control system, an access floor construction method performed by the control system will be described.
  • the access floor constructed by the unmanned robot control system includes an installation frame 10, a pad 20 attached to the installation frame 10, and a floor 30 coupled to the pad 20.
  • the installation frame 10 is a basic frame that allows the floor 30 to be installed spaced apart by a predetermined distance from the bottom, and forms a lower space under the floor 30 to allow installation of various equipment and construction of an air conditioning system. to form
  • the pad 20 is mainly bonded to the installation frame 10 to be installed, and one corner of the floor 30 is mounted on the top. In general, the four corners of the floor 30 are mounted on the upper surface of the pad 20 for construction.
  • the pad 20 includes a mounting part 21 on which the edge of the floor 30 is mounted, a guide part 22 that divides the edge of the neighboring floor 20 , and a bolt coupling the floor 20 and the pad 20 .
  • (41) may include a configuration of the through hole 23 is inserted (FIG. 23).
  • the pad 20 serves to couple the floor 30 to the installation frame 10 and to specify the installation position of the floor 10 .
  • the entire process of installing the pad 20 required for the construction of the access floor, mounting the floor 30 and combining the pad 20 and the floor 30 are performed using an unmanned robot.
  • the access floor construction method using an unmanned robot control system includes the first step (S100) of constructing the installation frame 10 and the peripheral slab 60 formed in the peripheral portion of the installation frame (S100), the peripheral slab 60 ) includes a second step (S200) of locating the unmanned robot and a third step (S300) of the unmanned robot moving along the peripheral slab 60 and coupling the floor 30 to the installation frame 10 .
  • the unmanned robot is an object that constructs an access floor by replacing a manpower, and the unmanned robot is controlled by being connected to the control server 1 through wired or wireless communication.
  • the control server 1 includes a manipulation module for operation and operation of the unmanned robot, and the control server 1 may be mounted on the unmanned robot itself.
  • the unmanned robot in the present invention is a pad installation robot 100 for attaching the pad 20 to the installation frame 10 , a floor installation robot 200 for mounting the floor 30 on the pad 20 , and a pad 20 ) and a bolting robot 300 for coupling the floor 30 with the coupling means 40 ( FIG. 5 ).
  • the pad installation robot 100 is an unmanned robot that attaches the pad 20 to the installation frame 10 ( FIGS. 8 to 11 ), and the installation position 11 of the pad 20 on the installation frame 10 .
  • the first detection sensor 110 for sensing, the first installation arm 120 for moving the pad 20 to the installation position 11, the first transportation means 130 for moving the first installation arm 120, and the pad It may include an adhesive providing unit 140 that provides an adhesive to the lower surface of the 20 (FIG. 2).
  • the first detection sensor 110 includes a configuration such as a vision sensor.
  • the first installation arm 120 is configured to grip the pad 20 and transport it to the installation position 11 , and a first gripper 121 and a first gripper 121 for adsorbing and gripping the pad 20 .
  • the first gripper 121 grips one surface of the pad 20 by vacuum adsorption.
  • the second gripper 122 serves as a safety device surrounding the pad 20 so that the pad 20 adsorbed to the first gripper 121 is not separated from the first installation arm 120 when the pad 20 is detached due to an impact or error.
  • the second gripper 122 includes a first guide portion 122a protruding downward (a) from an end of the first installation arm 120 and a first guide portion 122a extending inwardly from the first guide portion 122a (b). It may include two guide parts (122b).
  • the first guide part 122a may be hinge driven with respect to the first installation arm 120 .
  • the second guide part 122b is hinged toward the inner side b to surround the pad 20 adsorbed to the first gripper 121 .
  • take shape in a state in which the pad 20 is separated from the first gripper 121 , the hinge is driven toward the outside c so that the pad 20 separated from the first gripper 121 is moved from the first installation arm 120 . to allow it to escape.
  • the pad installation robot 100 may further include a body 150 on which the first installation arm 120 is mounted.
  • the adhesive providing unit 140 may be provided on the main body 150 , and a discharge hole 141 through which the adhesive is discharged may be formed in the adhesive providing unit 140 .
  • the first installation arm 120 grips the pad 20 loaded on the pad loading unit 150 to bring the pad 20 into contact with the discharge hole 141 so that the adhesive is applied to the adhesive surface of the pad 20 . .
  • the first installation arm 120 transports the pad 20 so that the adhesive surface of the pad 20 may come into contact with the installation position 11 .
  • the floor installation robot 200 serves to mount the floor 30 on the pad 20 ( FIGS. 12 to 20 ). In general, the edge of the floor 30 is mounted on the mounting portion 21 of the pad 20 .
  • the floor installation robot 200 includes a transport unit 210 that transports the floor 30 in a loaded state and an installation unit 220 that mounts the floor 30 on the transport unit 210 to the pad 20. may be included (FIG. 6).
  • the floor 30 is a large construction material with a high weight, when it is loaded and transported on one unmanned robot, the size of the unmanned robot increases and the construction efficiency may be lowered.
  • a transport unit 210 for loading and transporting the floor 30 is separately provided to perform a role of loading and transporting the floor 30 in the vicinity of the installation unit 220 .
  • the transport unit 210 may transport the floor 30 to the vicinity of the installation unit 220 based on the pad installation robot position information 811 as will be described later.
  • transport unit 210 and the installation unit 220 may be configured as a single unit.
  • the installation unit 220 includes a second detection sensor 221 for sensing the mounting position 12 of the floor 30 , a second installation arm 222 for moving the floor 30 to the mounting position 12 , and a second It may include a second vehicle 230 for moving the installation arm 222 (FIG. 3).
  • the configuration corresponding to the first gripper 121 and the second gripper 122 of the pad installation robot 100 described above is also formed in the second installation arm 222 of the installation unit 220, in this case the installation The object is changed from the pad 20 to the floor 30 .
  • the bolting robot 300 serves to couple the floor 30 mounted on the pad 20 using the coupling means 40 ( FIGS. 21 to 22 ).
  • the bolting robot 300 includes a third detection sensor 310 that senses the insertion hole 13 into which the coupling means 40 is inserted, and a third installation arm that moves the coupling means 40 to the insertion hole 13 . It may include a third vehicle 330 for moving the 320 and the third installation arm 320 (FIG. 4).
  • the coupling means 40 is a bolt 41
  • the insertion hole 13 is formed in the pad 20 and the floor 30 .
  • the bolting robot 300 may include a bolting unit 340 for coupling the bolt 41 to the insertion hole 13 .
  • the unmanned robot including the pad installation robot 100 , the floor installation robot 200 , and the bolting robot 300 may include a position sensor 631 and a distance sensor 632 , respectively.
  • the access floor unmanned construction system includes a plurality of unmanned robots, the position, distance and corresponding positions of the individual unmanned robots through the position sensor 631 and the distance sensor 632 mounted on each unmanned robot It is possible to control the contents of the work to be performed.
  • the manipulation module included in the control server 1 defines the operation contents of the unmanned robot using information generated by the position sensor 631 and the distance sensor 632 of the unmanned robot.
  • the access floor construction method using an unmanned robot includes the first step (S100) of constructing the installation frame 10 and the peripheral slab 60 formed in the peripheral portion of the installation frame (S100), the peripheral slab 60 It may include a second step (S200) of positioning the unmanned robot in the .
  • the unmanned robot installs the floor 30 along a predetermined direction and repeatedly performs the third step (S300) to construct the access floor (FIGS. 24-26).
  • the first step (S100) may include a lifting facility construction step (S110) of constructing an elevator facility 50 that transports the unmanned robot to the peripheral slab 60 level. .
  • the third step (S300) is a pad attachment step (S310) of attaching the pad 20 to the installation frame 10 using the pad installation robot 100, and the pad 20 using the floor installation robot 200.
  • the floor mounting step (S320) of mounting the floor 30 and the pad 20 and the floor 30 using the bolting robot 300 are coupled using the coupling means 40 using the coupling means 40 - the floor coupling step (S330) ) may be included.
  • the pad attaching step (S310) is an adhesive attaching step ( S311) and a pad installation step (S312) of transporting the rear surface of the pad 20 to the upper surface of the installation frame 10 by using the first installation arm 120 .
  • the floor mounting step (S320) is a transport step (S321) of moving the floor 30 to the vicinity of the installation unit 220 using the transport unit 210 and the transport unit 210 using the installation unit 220 It may include a mounting step (S322) of mounting the floor (30) loaded on the pad (20).
  • the mounting step (S322) is a sensing step (S3221) of sensing the mounting position 12 where the floor 30 is to be mounted using the second detection sensor 221 and the transport unit using the second installation arm 222 ( It may include a moving step (S3222) of moving the floor (30) loaded on the 210 to the mounting position (12).
  • the pad-floor coupling step (S330) includes an insertion hole sensing step (S331) of sensing the insertion hole 121 using the third detection sensor 310, and coupling means 40 using the third installation arm 320. It may include a coupling means transfer step (S332) of moving the , to the insertion hole 13, and a bolting step (S333) of coupling the coupling means 40 to the insertion hole 13 using the bolting unit 340.
  • the bolting robot 300 may further include a level measuring sensor 350 for measuring the level of the floor 30 ( FIG. 4 ).
  • the pad-floor coupling step S330 may be performed only when the level A measured by the level measurement sensor 350 is within a predetermined value. Accordingly, the bolting robot 300 performs construction in such a way that the next floor 30 is coupled to the pad 20 while maintaining the horizontality of the floor 30 on which the construction is performed within a predetermined value, so the overall floor 30 It is possible to keep the horizontality within a predetermined error range.
  • the access floor constructed by the access floor construction method according to the present invention has the advantage of securing a high level of horizontality construction quality.
  • the level measuring sensor 350 may be applied to any method capable of measuring a level such as a level sensor.
  • the minimum construction of only the periphery slab 60 formed in the periphery of the elevator facility 50 and the installation frame 10 for the movement of the unmanned robot is performed by inputting manpower, and then the access floor
  • the construction for the formation is performed through an unmanned robot, which increases the efficiency and quality of the access floor construction, and has the effect of remarkably reducing the risk of worker injury or safety accident.
  • the unmanned robot control system includes an input unit 610 for receiving construction information 700 , a control unit 620 for controlling the unmanned robot, and a sensor unit 630 for generating generation information 800 . Including (FIG. 29).
  • the unmanned robot control system according to the present invention is characterized in that the construction of the access floor is performed by the construction information 700 input in advance and the generation information 800 generated by the sensor unit 630 in the construction process.
  • the construction information 700 includes the pad distance information 710 on the distance between the adjacent pads 20 of the plurality of pads 20 installed in the installation frame 10 , and the floor mounted on the pad 20 .
  • floor type information 720 about the type, pad number information 730 about the number of pads 20 installed on the installation frame 10 in one row, installed in the installation frame 10 in one row It may include the number of floors information 740 on the number of the floors 30 and the number of insertion holes information 750 of the insertion hole 13 into which the coupling means 40 is inserted.
  • the generated information 800 includes location information 810 about the location of the unmanned robot generated by the location sensor 631 and distance information 820 about the distance between the plurality of unmanned robots generated by the distance sensor 632 . ) may be included.
  • the location information 810 is information about the location of each unmanned robot, and may include pad installation robot location information 811, floor installation robot location information 812, and bolting robot location information 813 depending on the type of unmanned robot. have.
  • the controller 620 may control the distance and position between the unmanned robots by controlling the transportation means of each unmanned robot using the location information 810 and the distance information 820 .
  • the control unit 620 controls the movement of each unmanned robot based on the information derived by the performing module.
  • the performing module includes a pad installation module 621 for controlling the pad installation robot 100 , a floor installation module 622 for controlling the floor installation robot 200 , and a bolting module for controlling the bolting robot 300 . (623).
  • the pad installation module 621 derives the installation location information 711 using the pad distance information 710 , and the first detection sensor 110 specifies the installation location 11 based on the installation location information 711 . do.
  • the floor installation module 622 derives the gripping selection information 721 based on the floor type information 720, but the gripping selection information 721 is the floor to be gripped by the second installation arm 222 ( 30) corresponds to the type of information.
  • the floor type information 720 may include information on the number of types of floors 30 , floor 30 type information, and the like.
  • the bolting module 623 may derive the target number information 751 of the insertion hole 13 to be sensed by the third detection sensor 310 based on the insertion hole number information 750 .
  • the construction information 700 of the unmanned robot control system may further include horizontality range information 760 to be maintained by the floor 30 mounted on the pad 20 .
  • the bolting module 623 compares the level information 351 generated by the level measurement sensor 350 with the level range information 760 to determine whether to proceed with the operation of the bolting robot 300 ( 761) can be derived.
  • the method of constructing an access floor using an unmanned robot control system may be implemented in the form of a program command that can be executed through various computer means and recorded in a computer readable medium.
  • the computer-readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the medium may be specially designed and configured for the present invention, or may be known and available to those skilled in the art of computer software.
  • Examples of the computer-readable recording medium include magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic such as floppy disks.
  • - includes magneto-optical media, and hardware devices specially configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
  • Examples of program instructions include not only machine language codes such as those generated by a compiler, but also high-level language codes that can be executed by a computer using an interpreter or the like.
  • the hardware devices described above may be configured to operate as one or more software modules to perform the operations of the present invention, and vice versa.

Abstract

The present invention relates to an unmanned robot control system for constructing an access floor comprising: an installation frame (10); a pad (20) attached to the installation frame (10); and a floor (30) coupled to the pad (20), wherein, without performing, by a worker, dangerous floor installation work, an automated robot installs mats and floors so that occurrence of workplace safety accidents may be prevented. According to the present invention, an unmanned robot comprises: a pad installation robot (100) for attaching the pad (20) to the installation frame (10); a floor installation robot (200) for mounting the floor (30) on the pad (20); and a bolting robot (300) for fastening the pad (20) and the floor (30) using a fastening means (40), and the unmanned robot control system comprises: an input unit (610) for receiving construction information (700); a control unit (620) for controlling the unmanned robot; and a sensor unit (630) for generating generated information (800).

Description

액세스플로어 시공용 무인로봇 제어시스템Unmanned robot control system for access floor construction
본 발명은 액세스플로어 시공용 무인로봇 제어시스템에 관한 것으로서, 보다 상세하게는 액세스플로어 시공을 위한 특유의 구조를 갖는 패드 설치로봇, 플로어 설치로봇 및 볼팅 로봇을 이용하여 인력의 제공 없이 액세스플로어를 시공할 수 있도록 한 액세스플로어 시공용 무인로봇 제어시스템에 관한 것이다. The present invention relates to an unmanned robot control system for access floor construction, and more particularly, using a pad installation robot, a floor installation robot, and a bolting robot having a unique structure for access floor construction, to construct an access floor without providing manpower It relates to an unmanned robot control system for access floor construction.
액세스플로어란 액세스(ACCESS: 접근, 컴퓨터용어로는 컴퓨터 시스템에 정보를 넣거나 빼내는 일)와 플로어(FLOOR:마루, 바닥)의 합성어이다. 이에 따라, 이중마루, 이중바닥 또는 오에이 플로어(O/A floor)라고도 한다.Access floor is a compound word of ACCESS (access, in computer terminology, inserting or extracting information into or out of a computer system) and floor (FLOOR: floor). Accordingly, it is also called a raised floor, a double floor, or an O/A floor.
액세스플로어는 컴퓨터의 활용이 증대되는 정보화시대에 보다 쾌적하고 효율적인 사무공간 확보를 위해 제안된 이중마루를 말한다.The access floor refers to a raised floor that has been proposed to secure a more comfortable and efficient office space in the information age when the use of computers is increasing.
일반적으로, 반도체 팹이나 TFT-LCD 팹 또는 PDP 팹, 또는 의약품이나 식품 제조 공장, 또는 광학 제품이나 인쇄 또는 정밀기계 등을 생산 또는 조립하는 작업장 및 수술실 등 청정 또는 초청정(super-clean) 상태를 요하는 곳에서는 미세 또는 초미세 먼지나 미스트(mist) 등은 제품의 품질에 심대한 영향을 미치므로, 외부와 엄밀히 차단함과 아울러, 항온 및 항습 제어를 통하여 온도 및 습도를 소정의 범위 내로 유지하고 진동을 방지하기 위한 올림 바닥(raised floor)의 클린룸이 제공되고 있다.In general, clean or super-clean conditions such as semiconductor fab, TFT-LCD fab or PDP fab, pharmaceutical or food manufacturing plants, or workshops and operating rooms that produce or assemble optical products, printing or precision machinery, etc. In a place where it is required, fine or ultrafine dust or mist has a profound effect on the quality of the product, so it is strictly blocked from the outside, and temperature and humidity are maintained within a predetermined range through constant temperature and constant humidity control. A clean room with a raised floor is provided to prevent vibration.
액세스플로어는 위와 같은 니즈를 만족시키기 위해 평탄한 바닥 위에 일정한 높이의 공간을 두어 바닥을 하나 더 만드는 것을 의미한다. 그리고 그 공간에 케이블을 배치하고 케이블의 재배치를 위해 필요에 따라 바닥을 개폐할 수 있도록 형성되어 있다. An access floor means creating another floor by placing a space at a certain height on a flat floor to satisfy the above needs. And it is formed so that the cable can be placed in the space and the floor can be opened and closed as needed for the rearrangement of the cables.
액세스플로어의 시공을 위해서는 설치 프레임을 형성하고, 작업자가 설치 프레임 상부에 패드 및 플로어를 형성시키는 것이 일반적이다. For the construction of an access floor, it is common to form an installation frame and an operator to form a pad and a floor on the installation frame.
다만, 설치 프레임의 높이가 3 ~ 9m 이르므로, 작업자 낙하사고의 위험이 있어 액세스플로어 시공은 전문 기술인이 기피하는 작업에 해당한다. 이에 따라 숙련된 전문 작업인의 육성이 힘든 실정이다. However, since the height of the installation frame is 3 ~ 9m, there is a risk of an operator falling accident, so access floor construction is a task that professional technicians avoid. Accordingly, it is difficult to nurture skilled professional workers.
또한, 작업자의 안전성 확보를 위해 안전망이나 생명줄을 설치하여야 하므로 안전 확보를 위한 비용 및 시간이 과도하게 소요되고 있다. 더하여, 플로어는 무게가 20kg 정도인 중량물이므로 이를 설치하는 작업자의 근골격게 질환이 상존하고, 중량물인 플로어의 레벨링 작업의 작업 난이도가 매우 높아 전체적인 공정이 장기화 되는 문제가 있다. In addition, since it is necessary to install a safety net or lifeline in order to secure the safety of the workers, the cost and time for securing the safety are excessively required. In addition, since the floor is a heavy object weighing about 20 kg, the musculoskeletal disease of the worker who installs it always exists, and the leveling operation of the floor, which is a heavy object, has a very high level of work difficulty, so that the overall process is prolonged.
본 발명은 상술된 종래의 액세스플로어 시공의 문제를 해결하기 위해 도출된 것으로서, 본 발명의 목적은 작업자가 위험한 플로어 설치 작업을 수행하지 않고 자동화된 로봇이 매트 및 플로어를 설치하도록 하여 작업장 안전사고 발생을 방지할 수 있는 액세스플로어 시공용 무인로봇 제어시스템을 제공하는 것에 있다. The present invention was derived to solve the problem of the conventional access floor construction described above, and an object of the present invention is to allow an automated robot to install a mat and a floor without an operator performing a dangerous floor installation task, thereby causing a workplace safety accident It is to provide an unmanned robot control system for access floor construction that can prevent
본 발명의 다른 목적은 로봇에 의한 매트 및 플로어 설치를 통해 플로어 설치 위치 선정 및 레벨링 작업을 신속하게 수행할 수 있도록 함으로써 공사비용을 절감하고, 공사기간을 단축할 수 있도록 한 액세스플로어 시공용 무인로봇 제어시스템을 제공하는 것에 있다. Another object of the present invention is to reduce the construction cost and shorten the construction period by enabling the floor installation location selection and leveling operation to be quickly performed through the installation of the mat and the floor by the robot. To provide a control system.
본 발명의 또 다른 목적은 로봇을 사용하여 대부분의 액세스플로어를 시공함으로써 일정 수준 이상의 시공품질을 담보할 수 있도록 한 액세스플로어 시공용 무인로봇 제어시스템에 있다. Another object of the present invention is to provide an unmanned robot control system for access floor construction that can guarantee construction quality above a certain level by constructing most of the access floors using a robot.
본 발명의 일 측면에 따르면 설치 프레임(10), 상기 설치 프레임(10)에 부착된 패드(20) 및 상기 패드(20)와 결합되는 플로어(30)를 포함하는 액세스플로어를 시공하는 무인로봇을 제어하는 무인로봇 제어시스템에 있어서, 상기 무인로봇은, 상기 설치 프레임(10)에 상기 패드(20)를 부착하는 패드 설치로봇(100); 상기 패드(20)에 상기 플로어(30)를 거치시키는 플로어 설치로봇(200); 및 상기 패드(20)와 상기 플로어(30)를 결합수단(40)을 이용하여 결합시키는 볼팅 로봇(300);을 포함하고, 시공정보(700)를 입력받는 입력부(610); 상기 무인로봇을 제어하는 제어부(620); 및 생성정보(800)를 생성하는 센서부(630);를 포함하는 것을 특징으로 하는 무인로봇 제어시스템이 제공된다. According to one aspect of the present invention, an unmanned robot for constructing an access floor including an installation frame 10 , a pad 20 attached to the installation frame 10 , and a floor 30 coupled to the pad 20 . In the unmanned robot control system for controlling, the unmanned robot comprises: a pad installation robot (100) for attaching the pad (20) to the installation frame (10); a floor installation robot 200 for mounting the floor 30 on the pad 20; and a bolting robot 300 for coupling the pad 20 and the floor 30 using a coupling means 40; an input unit 610 for receiving construction information 700; a control unit 620 for controlling the unmanned robot; and a sensor unit 630 for generating generation information 800; is provided an unmanned robot control system comprising a.
이 경우 상기 시공정보(700)는 상기 설치 프레임(10)에 설치되는 복수의 상기 패드(20)의 이웃하는 패드(20) 간의 거리에 관한 패드거리정보(710); 상기 패드(20)에 거치되는 상기 플로어(30)의 종류에 관한 플로어종류정보(720); 1열의 상기 설치프레임(10)에 설치되는 상기 패드(20)의 개수에 관한 패드개수정보(730); 1열의 상기 설치프레임(10)에 설치되는 상기 플로어(30)의 개수에 관한 플로어개수정보(740); 및 상기 결합수단(40)이 삽입되는 삽입홀(13)의 삽입홀개수정보(750);를 포함하는 것을 특징으로 하는 무인로봇 제어시스템일 수 있다. In this case, the construction information 700 includes: pad distance information 710 on the distance between the adjacent pads 20 of the plurality of pads 20 installed in the installation frame 10; floor type information 720 on the type of the floor 30 mounted on the pad 20; Pad number information 730 on the number of the pads 20 installed on the installation frame 10 in one row; Floor number information 740 on the number of the floors 30 installed in the installation frame 10 in one row; and the insertion hole number information 750 of the insertion hole 13 into which the coupling means 40 is inserted. It may be an unmanned robot control system comprising a.
또한, 상기 생성정보(800)는, 위치센서(631)에 의해 생성되는 무인로봇의 위치에 관한 위치정보(810); 및 거리센서(632)에 의해 생성되는 복수의 무인로봇 간의 거리에 관한 거리정보(820);을 포함하되, 상기 위치정보(810)는 패드 설치로봇 위치정보(811); 플로어 설치로봇 위치정보(812); 및 볼팅 로봇 위치정보(813);을 포함하는 것을 특징으로 하는 무인로봇 제어시스템일 수 있다. In addition, the generated information 800 includes location information 810 about the location of the unmanned robot generated by the location sensor 631; and distance information 820 on a distance between a plurality of unmanned robots generated by a distance sensor 632; but, the location information 810 includes: a pad installation robot location information 811; Floor installation robot location information (812); and bolting robot position information 813; may be an unmanned robot control system comprising a.
또한, 상기 제어부(620)는 상기 패드 설치로봇(100)의 제어를 위한 패드설치모듈(621); 상기 플로어 설치로봇(200)의 제어를 위한 플로어설치모듈(622); 및 상기 볼팅 로봇(300)의 제어를 위한 볼팅모듈(623);을 포함하는 것을 특징으로 하는 무인로봇 제어시스템일 수 있다. In addition, the control unit 620 includes a pad installation module 621 for controlling the pad installation robot 100; a floor installation module 622 for controlling the floor installation robot 200; and a bolting module 623 for controlling the bolting robot 300; may be an unmanned robot control system comprising a.
또한, 상기 패드 설치로봇(100)은 상기 설치 프레임(10) 상의 상기 패드(20)의 설치위치(11)를 센싱하는 제1 탐지센서(110); 상기 패드(20)를 상기 설치위치(11)까지 이동시키는 제1 설치 암(120); 상기 제1 설치 암(120)을 이동시키는 제1 운송수단(130); 및 상기 패드(20)의 하면에 접착제를 제공하는 접착제 제공부(140)를 포함하되, 상기 패드설치모듈(621)은 상기 패드거리정보(710)를 이용하여 설치위치정보(711)를 도출하며, 상기 제1 탐지센서(110)는 상기 설치위치정보(711)에 기반하여 상기 설치위치(11)를 특정하는 것을 특징으로 하는 무인로봇 제어시스템일 수 있다. In addition, the pad installation robot 100 includes a first detection sensor 110 for sensing the installation position 11 of the pad 20 on the installation frame 10; a first installation arm 120 for moving the pad 20 to the installation position 11; a first transportation means 130 for moving the first installation arm 120; and an adhesive providing unit 140 that provides an adhesive to the lower surface of the pad 20, wherein the pad installation module 621 derives installation location information 711 using the pad distance information 710, , the first detection sensor 110 may be an unmanned robot control system, characterized in that it specifies the installation location 11 based on the installation location information 711.
또한, 상기 플로어 설치로봇(200)은, 상기 플로어(30)를 적재한 상태에서 운송하는 운송유닛(210); 및 상기 운송유닛(210) 상의 상기 플로어(30)를 상기 패드(20)에 거치시키는 설치유닛(220);을 포함하되, 상기 운송유닛(210)은 상기 패드 설치로봇 위치정보(811)에 기반하여 상기 설치유닛(220) 근방까지 상기 플로어(30)를 운송하는 것을 특징으로 하는 무인로봇 제어시스템일 수 있다. In addition, the floor installation robot 200, a transport unit 210 for transporting the floor 30 in a loaded state; and an installation unit 220 for mounting the floor 30 on the transportation unit 210 to the pad 20, wherein the transportation unit 210 is based on the position information 811 of the pad installation robot Thus, it may be an unmanned robot control system, characterized in that the floor 30 is transported to the vicinity of the installation unit 220 .
또한, 상기 설치유닛(220)은 상기 플로어(30)의 거치위치(12)를 센싱하는 제2 탐지센서(221); 상기 플로어(30)를 상기 거치위치(12)까지 이동시키는 제2 설치 암(222); 및 상기 제2 설치 암(222)을 이동시키는 제2 운송수단(230);을 포함하되, 상기 플로어설치모듈(622)은 상기 플로어종류정보(720)를 기반으로 그리핑선택정보(721)를 도출하되, 상기 그리핑선택정보(721)는 상기 제2 설치 암(222)이 그리핑할 상기 플로어(30)의 종류에 관한 정보인 것을 특징으로 하는 무인로봇 제어시스템일 수 있다. In addition, the installation unit 220 includes a second detection sensor 221 for sensing the mounting position 12 of the floor 30; a second installation arm 222 for moving the floor 30 to the mounting position 12; and a second transportation means (230) for moving the second installation arm (222), wherein the floor installation module (622) receives gripping selection information (721) based on the floor type information (720). However, the gripping selection information 721 may be an unmanned robot control system, characterized in that it is information about the type of the floor 30 to be gripped by the second installation arm 222 .
또한 상기 볼팅 로봇(300)은, 상기 삽입홀(13)을 센싱하는 제3 탐지센서(310); 상기 결합수단(40)을 상기 삽입홀(13)까지 이동시키는 제3 설치 암(320); 및 상기 제3 설치 암(320)을 이동시키는 제3 운송수단(330);을 포함하되, 상기 볼팅모듈(623)은 상기 삽입홀개수정보(750)를 기반으로 상기 제3 탐지센서(310)가 센싱할 상기 삽입홀(13)의 대상개수정보(751)를 도출하는 것을 특징으로 하는 무인로봇 제어시스템일 수 있다. In addition, the bolting robot 300, a third detection sensor 310 for sensing the insertion hole (13); a third installation arm 320 for moving the coupling means 40 to the insertion hole 13; and a third transportation means 330 for moving the third installation arm 320; including, wherein the bolting module 623 is the third detection sensor 310 based on the insertion hole number information 750 It may be an unmanned robot control system, characterized in that deriving the target number information 751 of the insertion hole 13 to be sensed.
또한, 상기 시공정보(700)는 상기 패드(20)에 거치된 상기 플로어(30)가 유지해야할 수평도 범위 정보(760);를 더 포함하되, 상기 볼팅 로봇(300)은 상기 플로어(30)의 수평도를 측정하는 수평도 측정센서(350);를 더 포함하고, 상기 볼팅모듈(623)은 상기 수평도 측정센서(350)가 생성하는 수평도정보(351)를 상기 수평도범위정보(760)와 비교하여 상기 볼팅 로봇(300)의 작업진행 여부를 결정하는 진행정보(761)를 도출하는 것을 특징으로 하는 무인로봇 제어시스템일 수 있다. In addition, the construction information 700 includes information 760 of the horizontality range to be maintained by the floor 30 mounted on the pad 20 , but the bolting robot 300 is the floor 30 . It further includes; a level measurement sensor 350 for measuring the level of 760), it may be an unmanned robot control system, characterized in that it derives progress information 761 for determining whether to proceed with the work of the bolting robot 300.
본 발명의 다른 일 측면에 따르면 무인로봇 제어시스템을 이용하여 액세스플로어를 시공하는 방법에 있어서, 상기 설치 프레임(10) 및 상기 설치 프레임 주변부에 형성되는 주변부 슬래브(60)를 시공하는 제1 단계(S100); 상기 주변부 슬래브(60)에 상기 무인로봇을 위치시키는 제2 단계(S200); 및 상기 무인로봇이 상기 주변부 슬래브(60)를 따라 이동하며 상기 플로어(30)를 상기 설치 프레임(10)에 결합시키는 제3 단계(S300);를 포함하는 것을 특징으로 하는 액세스플로어 시공방법이 제공된다. According to another aspect of the present invention, in the method of constructing an access floor using an unmanned robot control system, the first step of constructing the installation frame 10 and the peripheral slab 60 formed in the periphery of the installation frame ( S100); a second step (S200) of positioning the unmanned robot on the peripheral slab (60); and a third step (S300) in which the unmanned robot moves along the peripheral slab (60) and couples the floor (30) to the installation frame (10); do.
본 발명의 또 다른 일 측면에 따르면 액세스플로어 시공방법을 실행하기 위한 프로그램이 기록되어 있는 컴퓨터에서 판독 가능한 기록 매체가 제공된다. According to another aspect of the present invention, there is provided a computer-readable recording medium in which a program for executing an access floor construction method is recorded.
본 발명에 따르면 작업자가 위험한 플로어 설치 작업을 수행하지 않고 자동화된 로봇이 매트 및 플로어를 설치할 수 있도록 하여 작업장 안전사고 발생을 방지할 수 있는 효과가 있다. According to the present invention, there is an effect of preventing the occurrence of safety accidents in the workplace by allowing the automated robot to install the mat and the floor without the worker performing a dangerous floor installation operation.
본 발명에 따르면 로봇에 의한 매트 및 플로어 설치를 통해 플로어 설치 위치 선정 및 레벨링 작업을 신속하게 수행할 수 있도록 함으로써 공사비용을 절감하고, 공사기간을 단축할 수 있는 효과가 있다. According to the present invention, there is an effect of reducing the construction cost and shortening the construction period by allowing the floor installation location selection and leveling operation to be performed quickly through the installation of the mat and the floor by the robot.
본 발명에 따르면 로봇을 사용하여 대부분의 액세스플로어를 시공함으로써 일정 수준 이상의 시공품질을 담보할 수 있는 효과가 있다. According to the present invention, there is an effect that can guarantee the construction quality above a certain level by constructing most of the access floors using a robot.
도 1 은 본 발명의 일 실시예에 따른 액세스플로어 시공 과정에서의 설치 프레임, 승강시설 및 주변부 슬래브의 구성을 나타낸 평면도. 1 is a plan view showing the configuration of an installation frame, a lift facility, and a peripheral slab in an access floor construction process according to an embodiment of the present invention;
도 2는 본 발명의 일 실시예에 따른 패드 설치로봇의 제1 설치 암의 상세도. Figure 2 is a detailed view of the first installation arm of the pad installation robot according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 플로어 설치로봇의 제2 설치 암의 상세도. Figure 3 is a detailed view of the second installation arm of the floor installation robot according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 다른 볼팅 로봇의 제3 설치 암의 상세도. Figure 4 is a detailed view of the third installation arm of the bolting robot according to an embodiment of the present invention.
도 5는 승강수단을 통해 무인로봇이 주변부 슬래브로 인입되는 상태를 나타낸 도면. 5 is a view showing a state in which the unmanned robot is drawn into the peripheral slab through the elevating means.
도 6 및 도 7은 액세스플로어의 시공을 위해 무인로봇이 설치 프레임 근처로 정렬된 상태를 나타낸 도면. 6 and 7 are views showing a state in which the unmanned robot is aligned near the installation frame for the construction of the access floor.
도 8 내지 도 11은 패드 설치로봇이 설치 프레임에 패드를 접착시키는 과정을 나타낸 도면. 8 to 11 are views showing a process in which the pad installation robot adheres the pad to the installation frame.
도 12 내지 도 20은 플로어 설치로봇이 플로어를 패드 상부에 거치시키는 과정을 나타낸 도면. 12 to 20 are views illustrating a process in which the floor installation robot mounts the floor on top of the pad.
도 21 내지 22은 볼팅 로봇이 패드와 플로어를 결합수단을 이용하여 결합시키는 과정을 나타낸 도면. 21 to 22 are views showing a process in which the bolting robot combines the pad and the floor using a coupling means.
도 23은 본 발명의 일 실시예에 따른 액세스플로어 무인 시공에 사용되는 패드의 평면도. 23 is a plan view of a pad used for unmanned construction of an access floor according to an embodiment of the present invention.
도 24 내지 26은 본 발명의 일 실시예에 따른 무인로봇의 이동 경로를 나타낸 도면. 24 to 26 are views showing a movement path of an unmanned robot according to an embodiment of the present invention.
도 27은 본 발명의 일 실시예에 따른 패드 설치로봇 중 운송 유닛의 이동 경로를 나타낸 도면. 27 is a view showing a movement path of the transport unit of the pad installation robot according to an embodiment of the present invention.
도 28은 본 발명의 일 실시예에 따른 액세스플로어 시공방법의 순서도. 28 is a flowchart of an access floor construction method according to an embodiment of the present invention.
도 29는 본 발명의 일 실시예에 따른 제어시스템의 구성도. 29 is a block diagram of a control system according to an embodiment of the present invention.
도 30은 본 발명의 일 실시예에 따른 모듈의 구성도. 30 is a block diagram of a module according to an embodiment of the present invention;
도 31은 본 발명의 일 실시예에 따른 패드설치모듈의 기능도. 31 is a functional diagram of a pad installation module according to an embodiment of the present invention;
도 32는 본 발명의 일 실시예에 따른 플로어설치모듈의 기능도. 32 is a functional diagram of a floor installation module according to an embodiment of the present invention;
도 33은 본 발명의 일 실시예에 따른 볼팅모듈의 기능도. 33 is a functional diagram of a bolting module according to an embodiment of the present invention.
본 발명에 따른 액세스플로어 시공용 무인로봇 제어시스템의 실시예를 첨부도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.An embodiment of an unmanned robot control system for access floor construction according to the present invention will be described in detail with reference to the accompanying drawings. A duplicate description will be omitted.
또한, 이하 사용되는 제1, 제2 등과 같은 용어는 동일 또는 상응하는 구성 요소들을 구별하기 위한 식별 기호에 불과하며, 동일 또는 상응하는 구성 요소들이 제1, 제2 등의 용어에 의하여 한정되는 것은 아니다.In addition, terms such as first, second, etc. used below are merely identification symbols for distinguishing the same or corresponding components, and the same or corresponding components are limited by terms such as first, second, etc. no.
또한, 결합이라 함은, 각 구성 요소 간의 접촉 관계에 있어, 각 구성 요소 간에 물리적으로 직접 접촉되는 경우만을 뜻하는 것이 아니라, 다른 구성이 각 구성 요소 사이에 개재되어, 그 다른 구성에 구성 요소가 각각 접촉되어 있는 경우까지 포괄하는 개념으로 사용하도록 한다.In addition, the term "coupling" does not mean only when there is direct physical contact between each component in the contact relationship between each component, but another component is interposed between each component, so that the component is in the other component. It should be used as a concept that encompasses even the cases in which each is in contact.
본 발명은 액세스플로어 시공용 무인로봇 제어시스템에 관한 것이다. 제어시스템의 구체적인 구성을 설명하기 앞서, 제어시스템에 의해 수행되는 액세스플로어 시공방법에 대해 설명한다. The present invention relates to an unmanned robot control system for access floor construction. Before describing the specific configuration of the control system, an access floor construction method performed by the control system will be described.
본 발명의 일 실시예에 따른 무인로봇 제어시스템에 의해 시공되는 액세스플로어는 설치 프레임(10), 설치 프레임(10)에 부착된 패드(20) 및 패드(20)와 결합되는 플로어(30)를 포함한다. The access floor constructed by the unmanned robot control system according to an embodiment of the present invention includes an installation frame 10, a pad 20 attached to the installation frame 10, and a floor 30 coupled to the pad 20. include
설치 프레임(10)은 저면에서 플로어(30)를 소정의 간격만큼 이격하여 설치될 수 있도록 한 기본 골조로서, 플로어(30) 하부의 하부공간을 형성하여 각종 장비의 설치 및 공조시스템 구축이 가능한 공간을 형성한다. The installation frame 10 is a basic frame that allows the floor 30 to be installed spaced apart by a predetermined distance from the bottom, and forms a lower space under the floor 30 to allow installation of various equipment and construction of an air conditioning system. to form
패드(20)는 설치 프레임(10)에 주로 본딩되어 설치되는 구성으로서, 플로어(30)의 일 모서리가 상부에 거치된다. 일반적으로 플로어(30)의 네 모서리가 패드(20) 상면에 거치되어 시공된다. The pad 20 is mainly bonded to the installation frame 10 to be installed, and one corner of the floor 30 is mounted on the top. In general, the four corners of the floor 30 are mounted on the upper surface of the pad 20 for construction.
패드(20)에는 플로어(30)의 모서리가 거치되는 거치부(21), 이웃하는 플로어(20)의 모서리를 구획하는 가이드부(22) 및 플로어(20)와 패드(20)를 결합시키는 볼트(41)가 삽입되는 관통구멍(23)의 구성을 포함할 수 있다(도 23). The pad 20 includes a mounting part 21 on which the edge of the floor 30 is mounted, a guide part 22 that divides the edge of the neighboring floor 20 , and a bolt coupling the floor 20 and the pad 20 . (41) may include a configuration of the through hole 23 is inserted (FIG. 23).
패드(20)는 플로어(30)를 설치 프레임(10)과 결합시킴과 아울러 플로어(10)의 설치 위치를 특정하는 역할을 수행한다. The pad 20 serves to couple the floor 30 to the installation frame 10 and to specify the installation position of the floor 10 .
다만 인력에 의해 패드(20)를 설치하는 경우에는 플로어(30)의 정확한 레벨링 및 위치 설정이 어려우므로 가 설치 후 다시 플로어(30)를 제거하고 패드(20)을 본딩하는 번거로운 작업을 수행해야 하는 문제가 있다. 이에 따라 액세스플로어의 시공에 많은 시간이 소요됨과 아울러 작업자의 플로어(30)를 두 번씩 설치해야 하므로 안전사고 발생 및 작업자의 신체에 무리가 오는 등의 문제가 야기되고 있다. However, when the pad 20 is installed by manpower, accurate leveling and positioning of the floor 30 is difficult, so after the temporary installation, it is necessary to remove the floor 30 again and perform the cumbersome work of bonding the pad 20. there is a problem. Accordingly, it takes a lot of time to construct the access floor, and since it is necessary to install the worker's floor 30 twice, there are problems such as safety accidents and strain on the worker's body.
이러한 문제의 해결을 위해 본 발명에서는 액세스플로어 시공에 필요한 패드(20)설치, 플로어(30) 거치 및 패드(20)와 플로어(30)의 결합의 전 과정을 무인로봇을 사용해 수행토록 한다. In order to solve this problem, in the present invention, the entire process of installing the pad 20 required for the construction of the access floor, mounting the floor 30 and combining the pad 20 and the floor 30 are performed using an unmanned robot.
본 발명의 일 실시예에 따른 무인로봇 제어시스템을 이용한 액세스플로어 시공방법은 설치 프레임(10) 및 설치 프레임 주변부에 형성되는 주변부 슬래브(60)를 시공하는 제1 단계(S100), 주변부 슬래브(60)에 무인로봇을 위치시키는 제2 단계(S200) 및 무인로봇이 주변부 슬래브(60)를 따라 이동하며 플로어(30)를 상기 설치 프레임(10)에 결합시키는 제3 단계(S300)를 포함한다. The access floor construction method using an unmanned robot control system according to an embodiment of the present invention includes the first step (S100) of constructing the installation frame 10 and the peripheral slab 60 formed in the peripheral portion of the installation frame (S100), the peripheral slab 60 ) includes a second step (S200) of locating the unmanned robot and a third step (S300) of the unmanned robot moving along the peripheral slab 60 and coupling the floor 30 to the installation frame 10 .
본 발명에서의 무인로봇은 인력을 대체하여 액세스플로어를 시공하는 객체이며, 무인로봇은 컨트롤 서버(1)와 유선통신 또는 무선통신으로 연결되어 컨트롤 된다. In the present invention, the unmanned robot is an object that constructs an access floor by replacing a manpower, and the unmanned robot is controlled by being connected to the control server 1 through wired or wireless communication.
컨트롤 서버(1)에는 무인로봇의 운행 및 동작을 위한 조작 모듈이 포함되어 있으며, 컨트롤 서버(1)는 무인로봇 자체에 탑재되는 것도 가능하다. The control server 1 includes a manipulation module for operation and operation of the unmanned robot, and the control server 1 may be mounted on the unmanned robot itself.
본 발명에서의 무인로봇은 설치 프레임(10)에 패드(20)를 부착하는 패드 설치로봇(100), 패드(20)에 플로어(30)를 거치시키는 플로어 설치로봇(200) 및 패드(20)와 플로어(30)를 결합수단(40)을 이용하여 결합시키는 볼팅 로봇(300)을 포함할 수 있다(도 5). The unmanned robot in the present invention is a pad installation robot 100 for attaching the pad 20 to the installation frame 10 , a floor installation robot 200 for mounting the floor 30 on the pad 20 , and a pad 20 ) and a bolting robot 300 for coupling the floor 30 with the coupling means 40 ( FIG. 5 ).
구체적으로 패드 설치로봇(100)은 패드(20)를 설치 프레임(10)에 부착시키는 무인로봇으로서(도 8 내지 도 11), 설치 프레임(10) 상의 패드(20)의 설치위치(11)를 센싱하는 제1 탐지센서(110), 패드(20)를 설치위치(11)까지 이동시키는 제1 설치 암(120), 제1 설치 암(120)을 이동시키는 제1 운송수단(130) 및 패드(20)의 하면에 접착제를 제공하는 접착제 제공부(140)를 포함할 수 있다(도 2).Specifically, the pad installation robot 100 is an unmanned robot that attaches the pad 20 to the installation frame 10 ( FIGS. 8 to 11 ), and the installation position 11 of the pad 20 on the installation frame 10 . The first detection sensor 110 for sensing, the first installation arm 120 for moving the pad 20 to the installation position 11, the first transportation means 130 for moving the first installation arm 120, and the pad It may include an adhesive providing unit 140 that provides an adhesive to the lower surface of the 20 (FIG. 2).
제1 탐지센서(110)는 비젼 센서 등의 구성을 포함한다. The first detection sensor 110 includes a configuration such as a vision sensor.
제1 설치 암(120)은 패드(20)를 그리핑하여 설치위치(11)까지 이송시키는 구성으로서, 패드(20)를 흡착하여 그리핑하기 위한 제1 그리퍼(121) 및 제1 그리퍼(121)에 흡착된 패드(20)의 측면 및 하면을 둘러싸는 제2 그리퍼(122)를 포함할 수 있다. The first installation arm 120 is configured to grip the pad 20 and transport it to the installation position 11 , and a first gripper 121 and a first gripper 121 for adsorbing and gripping the pad 20 . ) may include a second gripper 122 surrounding the side and lower surfaces of the pad 20 adsorbed to the pad 20 .
제1 그리퍼(121)는 진공흡착 방식으로 패드(20)의 일면을 흡착하여 그리핑한다. The first gripper 121 grips one surface of the pad 20 by vacuum adsorption.
제2 그리퍼(122)는 제1 그리퍼(121)에 흡착된 패드(20)가 충격이나 오류로 인하여 분리되는 경우 제1 설치 암(120)에서 이탈되지 않도록 패드(20)를 감싸는 안전장치로서의 역할을 수행한다. The second gripper 122 serves as a safety device surrounding the pad 20 so that the pad 20 adsorbed to the first gripper 121 is not separated from the first installation arm 120 when the pad 20 is detached due to an impact or error. carry out
이를 위해 제2 그리퍼(122)는 제1 설치 암(120)의 단부에서 하향(a) 돌출된 제1 가이드부(122a) 및 제1 가이드부(122a)에서 내측(b)으로 연장되어 형성된 제2 가이드부(122b)를 포함할 수 있다. To this end, the second gripper 122 includes a first guide portion 122a protruding downward (a) from an end of the first installation arm 120 and a first guide portion 122a extending inwardly from the first guide portion 122a (b). It may include two guide parts (122b).
제1 가이드부(122a)는 제1 설치 암(120)에 대하여 힌지구동 될 수 있다. 이 경우 제2 가이드부(122b)는 패드(20)가 제1 그리퍼(121)에 흡착된 상태에서는 내측(b)을 향하여 힌지구동 되어 제1 그리퍼(121)에 흡착된 패드(20)를 감싸는 형태를 취한다. 이와 비교하여 패드(20)가 제1 그리퍼(121)에서 분리된 상태에서는 외측(c)을 향하여 힌지구동 되어 제1 그리퍼(121)에서 분리된 패드(20)가 제1 설치 암(120)에서 이탈될 수 있도록 한다. The first guide part 122a may be hinge driven with respect to the first installation arm 120 . In this case, when the pad 20 is adsorbed to the first gripper 121 , the second guide part 122b is hinged toward the inner side b to surround the pad 20 adsorbed to the first gripper 121 . take shape In comparison, in a state in which the pad 20 is separated from the first gripper 121 , the hinge is driven toward the outside c so that the pad 20 separated from the first gripper 121 is moved from the first installation arm 120 . to allow it to escape.
패드 설치로봇(100)은 제1 설치 암(120)이 장착된 본체(150)를 더 포함할 수 있다. 이 경우 접착제 제공부(140)는 본체(150) 상에 구비되고, 접착제 제공부(140)에는 접착제가 토출되는 토출공(141)이 형성될 수 있다. The pad installation robot 100 may further include a body 150 on which the first installation arm 120 is mounted. In this case, the adhesive providing unit 140 may be provided on the main body 150 , and a discharge hole 141 through which the adhesive is discharged may be formed in the adhesive providing unit 140 .
제1 설치 암(120)은 패드 적재부(150)에 적재된 패드(20)를 그리핑하여 패드(20)의 접착면에 접착제가 발라지도록 토출공(141)에 패드(20)를 접촉시킨다. The first installation arm 120 grips the pad 20 loaded on the pad loading unit 150 to bring the pad 20 into contact with the discharge hole 141 so that the adhesive is applied to the adhesive surface of the pad 20 . .
이후 제1 설치 암(120)는 패드(20)의 접착면이 설치위치(11)에 접촉될 수 있도록 패드(20)를 이송한다. Thereafter, the first installation arm 120 transports the pad 20 so that the adhesive surface of the pad 20 may come into contact with the installation position 11 .
플로어 설치로봇(200)은 플로어(30)를 패드(20)의 상부에 거치시키는 역할을 수행한다(도 12 내지 도20). 일반적으로는 플로어(30)의 모서리를 패드(20)의 거치부(21)에 거치시킨다. The floor installation robot 200 serves to mount the floor 30 on the pad 20 ( FIGS. 12 to 20 ). In general, the edge of the floor 30 is mounted on the mounting portion 21 of the pad 20 .
이를 위해 플로어 설치로봇(200)은 플로어(30)를 적재한 상태에서 운송하는 운송유닛(210) 및 운송유닛(210) 상의 플로어(30)를 패드(20)에 거치시키는 설치유닛(220)을 포함할 수 있다(도 6). To this end, the floor installation robot 200 includes a transport unit 210 that transports the floor 30 in a loaded state and an installation unit 220 that mounts the floor 30 on the transport unit 210 to the pad 20. may be included (FIG. 6).
*플로어(30)는 고중량의 대형 건축자재이므로 하나의 무인로봇에 적재되어 운송되는 경우 무인로봇의 크기가 대형화되어 시공 효율이 낮아질 수 있다. * Since the floor 30 is a large construction material with a high weight, when it is loaded and transported on one unmanned robot, the size of the unmanned robot increases and the construction efficiency may be lowered.
이를 위해 본 발명에서는 플로어(30)를 적재하여 운송하는 운송유닛(210)을 따로 두어 설치유닛(220) 근방에서 플로어(30)를 적재 운송하는 역할을 수행하도록 한다. To this end, in the present invention, a transport unit 210 for loading and transporting the floor 30 is separately provided to perform a role of loading and transporting the floor 30 in the vicinity of the installation unit 220 .
운송유닛(210)은 후술되는 바와 같이 패드 설치로봇 위치정보(811)에 기반하여 설치유닛(220) 근방까지 상기 플로어(30)를 운송할 수 있다. The transport unit 210 may transport the floor 30 to the vicinity of the installation unit 220 based on the pad installation robot position information 811 as will be described later.
물론 상황에 따라서는 운송유닛(210)과 설치유닛(220)은 단일 유닛으로 구성되는 것도 가능하다. Of course, depending on the situation, the transport unit 210 and the installation unit 220 may be configured as a single unit.
설치유닛(220)은 플로어(30)의 거치위치(12)를 센싱하는 제2 탐지센서(221), 플로어(30)를 거치위치(12)까지 이동시키는 제2 설치 암(222) 및 제2 설치 암(222)을 이동시키는 제2 운송수단(230)을 포함할 수 있다(도 3). The installation unit 220 includes a second detection sensor 221 for sensing the mounting position 12 of the floor 30 , a second installation arm 222 for moving the floor 30 to the mounting position 12 , and a second It may include a second vehicle 230 for moving the installation arm 222 (FIG. 3).
상술된 패드 설치로봇(100)의 제1 그리퍼(121), 제2 그리퍼(122)에 대응되는 구성이 설치유닛(220)의 제2 설치 암(222)에도 형성되는 것이 가능하며, 이 경우 설치 대상이 패드(20)에서 플로어(30)로 변경된다. It is possible that the configuration corresponding to the first gripper 121 and the second gripper 122 of the pad installation robot 100 described above is also formed in the second installation arm 222 of the installation unit 220, in this case the installation The object is changed from the pad 20 to the floor 30 .
볼팅 로봇(300)은 패드(20)에 거치된 플로어(30)를 결합수단(40)을 이용하여 결합시키는 역할을 수행한다(도 21 내지 도 22). The bolting robot 300 serves to couple the floor 30 mounted on the pad 20 using the coupling means 40 ( FIGS. 21 to 22 ).
이를 위해 볼팅 로봇(300)은 결합수단(40)이 삽입될 삽입홀(13)을 센싱하는 제3 탐지센서(310), 결합수단(40)을 삽입홀(13)까지 이동시키는 제3 설치 암(320) 및 제3 설치 암(320)을 이동시키는 제3 운송수단(330)을 포함할 수 있다(도 4). To this end, the bolting robot 300 includes a third detection sensor 310 that senses the insertion hole 13 into which the coupling means 40 is inserted, and a third installation arm that moves the coupling means 40 to the insertion hole 13 . It may include a third vehicle 330 for moving the 320 and the third installation arm 320 (FIG. 4).
일반적으로 결합수단(40)은 볼트(41)이며, 삽입홀(13)은 패드(20) 및 상기 플로어(30)에 형성된다. 이 경우 볼팅 로봇(300)은 볼트(41)를 삽입홀(13)에 결합시키는 볼팅부(340)를 포함할 수 있다. In general, the coupling means 40 is a bolt 41 , and the insertion hole 13 is formed in the pad 20 and the floor 30 . In this case, the bolting robot 300 may include a bolting unit 340 for coupling the bolt 41 to the insertion hole 13 .
패드 설치로봇(100), 플로어 설치로봇(200) 및 볼팅 로봇(300)을 포함하는 무인로봇은 각각 위치센서(631) 및 거리센서(632)를 포함할 수 있다. The unmanned robot including the pad installation robot 100 , the floor installation robot 200 , and the bolting robot 300 may include a position sensor 631 and a distance sensor 632 , respectively.
본 발명에 따른 액세스플로어 무인 시공 시스템은 복수의 무인로봇이 포함되어 있으므로, 각각의 무인로봇에 장착된 위치센서(631) 및 거리센서(632)를 통해 개별 무인로봇의 위치, 거리 및 해당 위치에서의 수행하여야 할 작업 내용들을 컨트롤 하는 것이 가능하다. Since the access floor unmanned construction system according to the present invention includes a plurality of unmanned robots, the position, distance and corresponding positions of the individual unmanned robots through the position sensor 631 and the distance sensor 632 mounted on each unmanned robot It is possible to control the contents of the work to be performed.
컨트롤 서버(1)에는 포함된 조작 모듈은 무인로봇의 위치센서(631) 및 거리센서(632)에서 생성되는 정보들을 이용하여 무인로봇의 작동 내용을 정의한다. The manipulation module included in the control server 1 defines the operation contents of the unmanned robot using information generated by the position sensor 631 and the distance sensor 632 of the unmanned robot.
본 발명의 일 실시예에 따른 무인로봇을 이용한 액세스플로어 시공방법은, 설치 프레임(10) 및 설치 프레임 주변부에 형성되는 주변부 슬래브(60)를 시공하는 제1 단계(S100), 주변부 슬래브(60)에 상기 무인로봇을 위치시키는 제2 단계(S200) 및 무인로봇이 주변부 슬래브(60)를 따라 이동하며 플로어(30)를 설치 프레임(10)에 결합시키는 제3 단계(S300)를 포함할 수 있다. The access floor construction method using an unmanned robot according to an embodiment of the present invention includes the first step (S100) of constructing the installation frame 10 and the peripheral slab 60 formed in the peripheral portion of the installation frame (S100), the peripheral slab 60 It may include a second step (S200) of positioning the unmanned robot in the .
무인로봇은 소정의 방향을 따라 플로어(30)를 설치하며 제3 단계(S300)를 반복적으로 수행하여 액세스플로어의 시공을 수행한다(도 24 내지 26). The unmanned robot installs the floor 30 along a predetermined direction and repeatedly performs the third step (S300) to construct the access floor (FIGS. 24-26).
주변부 슬래브(60)가 고층에 형성되는 경우 제1 단계(S100)는 주변부 슬래브(60) 레벨까지 무인로봇을 운송하는 승강시설(50)을 시공하는 승강시설 시공단계(S110)를 포함할 수 있다. When the peripheral slab 60 is formed on a high floor, the first step (S100) may include a lifting facility construction step (S110) of constructing an elevator facility 50 that transports the unmanned robot to the peripheral slab 60 level. .
제3 단계(S300)는 패드 설치로봇(100)을 이용하여 설치 프레임(10)에 패드(20)를 부착시키는 패드 부착단계(S310), 플로어 설치로봇(200)을 이용하여 패드(20)에 플로어(30)를 거치시키는 플로어 거치단계(S320) 및 볼팅 로봇(300)을 이용하여 패드(20)와 상기 플로어(30)를 결합수단(40)을 이용하여 결합시키는 패드-플로어 결합단계(S330)를 포함할 수 있다. The third step (S300) is a pad attachment step (S310) of attaching the pad 20 to the installation frame 10 using the pad installation robot 100, and the pad 20 using the floor installation robot 200. The floor mounting step (S320) of mounting the floor 30 and the pad 20 and the floor 30 using the bolting robot 300 are coupled using the coupling means 40 using the coupling means 40 - the floor coupling step (S330) ) may be included.
이 경우 패드 부착단계(S310)는 제1 설치 암(120)으로 패드(20)를 그리핑하여 접착제 제공부(140)에서 제공되는 접착제가 패드(20)의 배면에 부착되도록 하는 접착제 부착단계(S311) 및 제1 설치 암(120)으로 패드(20)의 배면이 설치 프레임(10)의 상면에 접촉되도록 운송하는 패드 설치단계(S312)를 포함할 수 있다. In this case, the pad attaching step (S310) is an adhesive attaching step ( S311) and a pad installation step (S312) of transporting the rear surface of the pad 20 to the upper surface of the installation frame 10 by using the first installation arm 120 .
또한, 플로어 거치단계(S320)는 운송유닛(210)을 이용하여 플로어(30)를 설치유닛(220) 인근까지 이동시키는 운송단계(S321) 및 설치유닛(220)을 이용하여 운송유닛(210)에 적재된 플로어(30)를 패드(20)에 거치시키는 거치단계(S322)를 포함할 수 있다. In addition, the floor mounting step (S320) is a transport step (S321) of moving the floor 30 to the vicinity of the installation unit 220 using the transport unit 210 and the transport unit 210 using the installation unit 220 It may include a mounting step (S322) of mounting the floor (30) loaded on the pad (20).
거치단계(S322)는 제2 탐지센서(221)를 이용하여 플로어(30)가 거치될 거치위치(12)를 센싱하는 센싱단계(S3221) 및 제2 설치 암(222)을 이용하여 운송유닛(210)에 적재된 플로어(30)를 거치위치(12)까지 이동시키는 이동단계(S3222)를 포함할 수 있다. The mounting step (S322) is a sensing step (S3221) of sensing the mounting position 12 where the floor 30 is to be mounted using the second detection sensor 221 and the transport unit using the second installation arm 222 ( It may include a moving step (S3222) of moving the floor (30) loaded on the 210 to the mounting position (12).
패드-플로어 결합단계(S330)는 제3 탐지센서(310)를 이용하여 삽입홀(121)을 센싱하는 삽입홀 센싱단계(S331), 제3 설치 암(320)을 이용하여 결합수단(40)을 삽입홀(13)까지 이동시키는 결합수단 이송단계(S332) 및 볼팅부(340)를 이용하여 결합수단(40)을 삽입홀(13)에 결합시키는 볼팅단계(S333)를 포함할 수 있다. The pad-floor coupling step (S330) includes an insertion hole sensing step (S331) of sensing the insertion hole 121 using the third detection sensor 310, and coupling means 40 using the third installation arm 320. It may include a coupling means transfer step (S332) of moving the , to the insertion hole 13, and a bolting step (S333) of coupling the coupling means 40 to the insertion hole 13 using the bolting unit 340.
본 발명의 일 실시예에 따른 볼팅 로봇(300)은 플로어(30)의 수평도를 측정하는 수평도 측정센서(350)를 더 포함할 수 있다(도 4). The bolting robot 300 according to an embodiment of the present invention may further include a level measuring sensor 350 for measuring the level of the floor 30 ( FIG. 4 ).
이 경우 패드-플로어 결합단계(S330)는 수평도 측정센서(350)에서 측정된 수평도(A)가 소정의 값 이내인 경우에만 수행될 수 있다. 이에 따라 볼팅 로봇(300)은 시공이 수행된 플로어(30)의 수평도를 소정의 값 이내로 유지시키면서 다음 플로어(30)를 패드(20)에 결합시키는 방식으로 시공을 수행하므로 전체적인 플로어(30)의 수평도를 소정의 오차범위 이내로 유지시키는 것이 가능하다. In this case, the pad-floor coupling step S330 may be performed only when the level A measured by the level measurement sensor 350 is within a predetermined value. Accordingly, the bolting robot 300 performs construction in such a way that the next floor 30 is coupled to the pad 20 while maintaining the horizontality of the floor 30 on which the construction is performed within a predetermined value, so the overall floor 30 It is possible to keep the horizontality within a predetermined error range.
이에 따라 본 발명에 따른 액세스플로어 시공방법으로 시공된 액세스플로어는 높은 수준의 수평도 시공 품질을 확보할 수 있는 장점이 있다. Accordingly, the access floor constructed by the access floor construction method according to the present invention has the advantage of securing a high level of horizontality construction quality.
수평도 측정센서(350)는 수평센서 등의 수평도를 측정 가능한 모든 방식이 적용될 수 있다. The level measuring sensor 350 may be applied to any method capable of measuring a level such as a level sensor.
본 발명에 따른 액세스플로어를 시공하는 방법은 무인로봇의 이동을 위한 승강시설(50) 및 설치 프레임(10) 주변부에 형성된 주변부 슬래브(60)만의 최소 시공을 인력을 투입하여 수행하고, 이후 액세스플로어 형성을 위한 시공은 무인로봇을 통해 수행함으로써 액세스플로어 시공의 효율 및 품질을 높이고, 작업자의 부상이나 안전사고 발생의 우려를 현저하게 감소시킨 효과가 있다. In the method of constructing an access floor according to the present invention, the minimum construction of only the periphery slab 60 formed in the periphery of the elevator facility 50 and the installation frame 10 for the movement of the unmanned robot is performed by inputting manpower, and then the access floor The construction for the formation is performed through an unmanned robot, which increases the efficiency and quality of the access floor construction, and has the effect of remarkably reducing the risk of worker injury or safety accident.
이하 본 발명의 일 실시예에 따른 시공방법의 수행을 위한 액세스플로어 시공용 무인로봇 제어시스템에 대해 설명한다. Hereinafter, an unmanned robot control system for access floor construction for performing a construction method according to an embodiment of the present invention will be described.
본 발명의 일 실시예에 따른 무인로봇 제어시스템은 시공정보(700)를 입력받는 입력부(610), 무인로봇을 제어하는 제어부(620) 및 생성정보(800)를 생성하는 센서부(630)를 포함한다(도 29). The unmanned robot control system according to an embodiment of the present invention includes an input unit 610 for receiving construction information 700 , a control unit 620 for controlling the unmanned robot, and a sensor unit 630 for generating generation information 800 . Including (FIG. 29).
본 발명에 따른 무인로봇 제어시스템은 미리 입력된 시공정보(700)와 시공과정에서 센서부(630)에 의해 생성되는 생성정보(800)에 의해 액세스플로어의 시공이 수행된다는 특징이 있다. The unmanned robot control system according to the present invention is characterized in that the construction of the access floor is performed by the construction information 700 input in advance and the generation information 800 generated by the sensor unit 630 in the construction process.
이 경우 시공정보(700)는 설치 프레임(10)에 설치되는 복수의 상기 패드(20)의 이웃하는 패드(20) 간의 거리에 관한 패드거리정보(710), 패드(20)에 거치되는 상기 플로어(30)의 종류에 관한 플로어종류정보(720), 1열의 상기 설치프레임(10)에 설치되는 패드(20)의 개수에 관한 패드개수정보(730), 1열의 상기 설치프레임(10)에 설치되는 상기 플로어(30)의 개수에 관한 플로어개수정보(740) 및 결합수단(40)이 삽입되는 삽입홀(13)의 삽입홀개수정보(750)를 포함할 수 있다. In this case, the construction information 700 includes the pad distance information 710 on the distance between the adjacent pads 20 of the plurality of pads 20 installed in the installation frame 10 , and the floor mounted on the pad 20 . (30) floor type information 720 about the type, pad number information 730 about the number of pads 20 installed on the installation frame 10 in one row, installed in the installation frame 10 in one row It may include the number of floors information 740 on the number of the floors 30 and the number of insertion holes information 750 of the insertion hole 13 into which the coupling means 40 is inserted.
또한, 생성정보(800)는 위치센서(631)에 의해 생성되는 무인로봇의 위치에 관한 위치정보(810) 및 거리센서(632)에 의해 생성되는 복수의 무인로봇 간의 거리에 관한 거리정보(820)을 포함할 수 있다. 위치정보(810)는 각 무인로봇의 위치에 관한 정보로서 무인로봇의 종류에 따라 패드 설치로봇 위치정보(811), 플로어 설치로봇 위치정보(812) 및 볼팅 로봇 위치정보(813)를 포함할 수 있다. In addition, the generated information 800 includes location information 810 about the location of the unmanned robot generated by the location sensor 631 and distance information 820 about the distance between the plurality of unmanned robots generated by the distance sensor 632 . ) may be included. The location information 810 is information about the location of each unmanned robot, and may include pad installation robot location information 811, floor installation robot location information 812, and bolting robot location information 813 depending on the type of unmanned robot. have.
제어부(620)는 위치정보(810) 및 거리정보(820)를 이용하여 각 무인로봇의 운송수단을 제어함으로써 무인로봇 간의 거리 및 위치를 제어할 수 있다. The controller 620 may control the distance and position between the unmanned robots by controlling the transportation means of each unmanned robot using the location information 810 and the distance information 820 .
제어부(620)는 수행모듈에 의해 도출되는 정보를 기반으로 각 무인로봇의 움직임을 제어한다. The control unit 620 controls the movement of each unmanned robot based on the information derived by the performing module.
이 경우 수행모듈은 패드 설치로봇(100)의 제어를 위한 패드설치모듈(621), 플로어 설치로봇(200)의 제어를 위한 플로어설치모듈(622) 및 볼팅 로봇(300)의 제어를 위한 볼팅모듈(623)을 포함할 수 있다. In this case, the performing module includes a pad installation module 621 for controlling the pad installation robot 100 , a floor installation module 622 for controlling the floor installation robot 200 , and a bolting module for controlling the bolting robot 300 . (623).
패드설치모듈(621)은 패드거리정보(710)를 이용하여 설치위치정보(711)를 도출하며, 제1 탐지센서(110)는 설치위치정보(711)에 기반하여 설치위치(11)를 특정한다. The pad installation module 621 derives the installation location information 711 using the pad distance information 710 , and the first detection sensor 110 specifies the installation location 11 based on the installation location information 711 . do.
또한, 플로어설치모듈(622)은 플로어종류정보(720)를 기반으로 그리핑선택정보(721)를 도출하되, 그리핑선택정보(721)는 제2 설치 암(222)이 그리핑할 플로어(30)의 종류에 관한 정보에 해당한다. In addition, the floor installation module 622 derives the gripping selection information 721 based on the floor type information 720, but the gripping selection information 721 is the floor to be gripped by the second installation arm 222 ( 30) corresponds to the type of information.
플로어종류정보(720)는 플로어(30)의 종류 개수 정보, 플로어(30) 타입 정보 등을 포함할 수 있다. The floor type information 720 may include information on the number of types of floors 30 , floor 30 type information, and the like.
더하여, 볼팅모듈(623)은 삽입홀개수정보(750)를 기반으로 제3 탐지센서(310)가 센싱할 삽입홀(13)의 대상개수정보(751)를 도출할 수 있다. In addition, the bolting module 623 may derive the target number information 751 of the insertion hole 13 to be sensed by the third detection sensor 310 based on the insertion hole number information 750 .
본 발명의 일 실시예에 따른 무인로봇 제어시스템의 시공정보(700)는 패드(20)에 거치된 플로어(30)가 유지해야할 수평도 범위 정보(760)를 더 포함할 수 있다. The construction information 700 of the unmanned robot control system according to an embodiment of the present invention may further include horizontality range information 760 to be maintained by the floor 30 mounted on the pad 20 .
이 경우 볼팅모듈(623)은 수평도 측정센서(350)가 생성하는 수평도정보(351)를 수평도범위정보(760)와 비교하여 볼팅 로봇(300)의 작업진행 여부를 결정하는 진행정보(761)를 도출할 수 있다. In this case, the bolting module 623 compares the level information 351 generated by the level measurement sensor 350 with the level range information 760 to determine whether to proceed with the operation of the bolting robot 300 ( 761) can be derived.
본 발명의 일 실시예에 따른 무인로봇 제어시스템을 이용하여 액세스플로어를 시공하는 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. The method of constructing an access floor using an unmanned robot control system according to an embodiment of the present invention may be implemented in the form of a program command that can be executed through various computer means and recorded in a computer readable medium.
상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. The computer-readable medium may include program instructions, data files, data structures, etc. alone or in combination. The program instructions recorded on the medium may be specially designed and configured for the present invention, or may be known and available to those skilled in the art of computer software. Examples of the computer-readable recording medium include magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic such as floppy disks. - includes magneto-optical media, and hardware devices specially configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.Examples of program instructions include not only machine language codes such as those generated by a compiler, but also high-level language codes that can be executed by a computer using an interpreter or the like. The hardware devices described above may be configured to operate as one or more software modules to perform the operations of the present invention, and vice versa.
이상은 본 발명에 의해 구현될 수 있는 바람직한 실시예의 일부에 관하여 설명한 것에 불과하므로, 주지된 바와 같이 본 발명의 범위는 위의 실시예에 한정되어 해석되어서는 안 될 것이며, 위에서 설명된 본 발명의 기술적 사상과 그 근본을 함께 하는 기술적 사상은 모두 본 발명의 범위에 포함된다고 할 것이다. Since the above has only been described with respect to some of the preferred embodiments that can be implemented by the present invention, as noted, the scope of the present invention should not be construed as being limited to the above embodiments, and It will be said that the technical idea and the technical idea with the root are all included in the scope of the present invention.
본 발명은 액세스플로어 시공과 관련되어 산업상 이용가능성이 인정된다. Industrial applicability of the present invention is recognized in connection with the construction of an access floor.
10 : 설치 프레임10: installation frame
20 : 패드20: pad
30 : 플로어30: floor
100 : 패드 설치로봇100: pad installation robot
200 : 플로어 설치로봇200: floor installation robot
300 : 볼팅 로봇300: bolting robot

Claims (11)

  1. 설치 프레임(10), 상기 설치 프레임(10)에 부착된 패드(20) 및 상기 패드(20)와 결합되는 플로어(30)를 포함하는 액세스플로어를 시공하는 무인로봇을 제어하는 무인로봇 제어시스템에 있어서, In an unmanned robot control system for controlling an unmanned robot for constructing an access floor including an installation frame 10, a pad 20 attached to the installation frame 10, and a floor 30 coupled to the pad 20 in,
    상기 무인로봇은, The unmanned robot is
    상기 설치 프레임(10)에 상기 패드(20)를 부착하는 패드 설치로봇(100); a pad installation robot 100 for attaching the pad 20 to the installation frame 10;
    상기 패드(20)에 상기 플로어(30)를 거치시키는 플로어 설치로봇(200); 및a floor installation robot 200 for mounting the floor 30 on the pad 20; and
    상기 패드(20)와 상기 플로어(30)를 결합수단(40)을 이용하여 결합시키는 볼팅 로봇(300);을 포함하고, A bolting robot 300 for coupling the pad 20 and the floor 30 using a coupling means 40; includes;
    시공정보(700)를 입력받는 입력부(610); an input unit 610 for receiving construction information 700;
    상기 무인로봇을 제어하는 제어부(620); 및a control unit 620 for controlling the unmanned robot; and
    생성정보(800)를 생성하는 센서부(630);를 포함하는 것을 특징으로 하는 무인로봇 제어시스템. An unmanned robot control system comprising a; a sensor unit (630) for generating generation information (800).
  2. 제1항에 있어서, According to claim 1,
    상기 시공정보(700)는The construction information 700 is
    상기 설치 프레임(10)에 설치되는 복수의 상기 패드(20)의 이웃하는 패드(20) 간의 거리에 관한 패드거리정보(710); Pad distance information 710 on the distance between the adjacent pads 20 of the plurality of pads 20 installed in the installation frame 10;
    상기 패드(20)에 거치되는 상기 플로어(30)의 종류에 관한 플로어종류정보(720); floor type information 720 on the type of the floor 30 mounted on the pad 20;
    1열의 상기 설치프레임(10)에 설치되는 상기 패드(20)의 개수에 관한 패드개수정보(730); Pad number information 730 on the number of the pads 20 installed on the installation frame 10 in one row;
    1열의 상기 설치프레임(10)에 설치되는 상기 플로어(30)의 개수에 관한 플로어개수정보(740); 및Floor number information 740 on the number of the floors 30 installed in the installation frame 10 in one row; and
    상기 결합수단(40)이 삽입되는 삽입홀(13)의 삽입홀개수정보(750);를Insertion hole number information 750 of the insertion hole 13 into which the coupling means 40 is inserted;
    포함하는 것을 특징으로 하는 무인로봇 제어시스템. Unmanned robot control system, characterized in that it comprises.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 생성정보(800)는, The generated information 800 is,
    위치센서(631)에 의해 생성되는 무인로봇의 위치에 관한 위치정보(810); 및location information 810 on the location of the unmanned robot generated by the location sensor 631; and
    거리센서(632)에 의해 생성되는 복수의 무인로봇 간의 거리에 관한 거리정보(820);을 포함하되, Distance information 820 on the distance between a plurality of unmanned robots generated by the distance sensor 632; including;
    상기 위치정보(810)는The location information 810 is
    패드 설치로봇 위치정보(811); Pad installation robot location information (811);
    플로어 설치로봇 위치정보(812); 및Floor installation robot location information (812); and
    볼팅 로봇 위치정보(813);을 포함하는 것을 특징으로 하는 무인로봇 제어시스템. Vaulting robot position information (813); Unmanned robot control system comprising a.
  4. 제3항에 있어서, 4. The method of claim 3,
    상기 제어부(620)는 The control unit 620 is
    상기 패드 설치로봇(100)의 제어를 위한 패드설치모듈(621); a pad installation module 621 for controlling the pad installation robot 100;
    상기 플로어 설치로봇(200)의 제어를 위한 플로어설치모듈(622); 및a floor installation module 622 for controlling the floor installation robot 200; and
    상기 볼팅 로봇(300)의 제어를 위한 볼팅모듈(623);을 A bolting module 623 for controlling the bolting robot 300;
    포함하는 것을 특징으로 하는 무인로봇 제어시스템.Unmanned robot control system, characterized in that it comprises.
  5. 제4항에 있어서, 5. The method of claim 4,
    상기 패드 설치로봇(100)은 The pad installation robot 100 is
    상기 설치 프레임(10) 상의 상기 패드(20)의 설치위치(11)를 센싱하는 제1 탐지센서(110); a first detection sensor 110 for sensing the installation position 11 of the pad 20 on the installation frame 10;
    상기 패드(20)를 상기 설치위치(11)까지 이동시키는 제1 설치 암(120); a first installation arm 120 for moving the pad 20 to the installation position 11;
    상기 제1 설치 암(120)을 이동시키는 제1 운송수단(130); 및a first transportation means 130 for moving the first installation arm 120; and
    상기 패드(20)의 하면에 접착제를 제공하는 접착제 제공부(140)를 포함하되, Including an adhesive providing unit 140 for providing an adhesive to the lower surface of the pad 20,
    상기 패드설치모듈(621)은 상기 패드거리정보(710)를 이용하여 설치위치정보(711)를 도출하며, The pad installation module 621 derives the installation location information 711 using the pad distance information 710,
    상기 제1 탐지센서(110)는 상기 설치위치정보(711)에 기반하여 상기 설치위치(11)를 특정하는 것을 특징으로 하는 무인로봇 제어시스템. The first detection sensor 110 is an unmanned robot control system, characterized in that for specifying the installation location (11) based on the installation location information (711).
  6. 제5항에 있어서, 6. The method of claim 5,
    상기 플로어 설치로봇(200)은,The floor installation robot 200,
    상기 플로어(30)를 적재한 상태에서 운송하는 운송유닛(210); 및a transport unit 210 for transporting the floor 30 in a loaded state; and
    상기 운송유닛(210) 상의 상기 플로어(30)를 상기 패드(20)에 거치시키는 설치유닛(220);을 포함하되,An installation unit 220 for mounting the floor 30 on the transport unit 210 to the pad 20; including,
    상기 운송유닛(210)은 상기 패드 설치로봇 위치정보(811)에 기반하여 상기 설치유닛(220) 근방까지 상기 플로어(30)를 운송하는 것을 특징으로 하는 무인로봇 제어시스템. The transport unit (210) is an unmanned robot control system, characterized in that it transports the floor (30) to the vicinity of the installation unit (220) based on the position information (811) of the pad installation robot.
  7. 제6항에 있어서, 7. The method of claim 6,
    상기 설치유닛(220)은 The installation unit 220 is
    상기 플로어(30)의 거치위치(12)를 센싱하는 제2 탐지센서(221); a second detection sensor 221 for sensing the mounting position 12 of the floor 30;
    상기 플로어(30)를 상기 거치위치(12)까지 이동시키는 제2 설치 암(222); 및a second installation arm 222 for moving the floor 30 to the mounting position 12; and
    상기 제2 설치 암(222)을 이동시키는 제2 운송수단(230);을 포함하되, A second transportation means 230 for moving the second installation arm 222; including,
    상기 플로어설치모듈(622)은 상기 플로어종류정보(720)를 기반으로 그리핑선택정보(721)를 도출하되, The floor installation module 622 derives gripping selection information 721 based on the floor type information 720,
    상기 그리핑선택정보(721)는 상기 제2 설치 암(222)이 그리핑할 상기 플로어(30)의 종류에 관한 정보인 것을 특징으로 하는 무인로봇 제어시스템. The gripping selection information (721) is an unmanned robot control system, characterized in that the second installation arm (222) is information about the type of the floor (30) to be gripped.
  8. 제7항에 있어서, 8. The method of claim 7,
    상기 볼팅 로봇(300)은, The bolting robot 300,
    상기 삽입홀(13)을 센싱하는 제3 탐지센서(310); a third detection sensor 310 for sensing the insertion hole 13;
    상기 결합수단(40)을 상기 삽입홀(13)까지 이동시키는 제3 설치 암(320); 및a third installation arm 320 for moving the coupling means 40 to the insertion hole 13; and
    상기 제3 설치 암(320)을 이동시키는 제3 운송수단(330);을 포함하되, A third transportation means (330) for moving the third installation arm (320); including,
    상기 볼팅모듈(623)은 상기 삽입홀개수정보(750)를 기반으로 상기 제3 탐지센서(310)가 센싱할 상기 삽입홀(13)의 대상개수정보(751)를 도출하는 것을 특징으로 하는 무인로봇 제어시스템. The bolting module 623 derives the target number information 751 of the insertion hole 13 to be sensed by the third detection sensor 310 based on the insertion hole number information 750 robot control system.
  9. 제8항에 있어서, 9. The method of claim 8,
    상기 시공정보(700)는 상기 패드(20)에 거치된 상기 플로어(30)가 유지해야할 수평도 범위 정보(760);를 더 포함하되,The construction information 700 includes information 760 of the horizontality range to be maintained by the floor 30 mounted on the pad 20;
    상기 볼팅 로봇(300)은The bolting robot 300 is
    상기 플로어(30)의 수평도를 측정하는 수평도 측정센서(350);를 더 포함하고, It further includes; a level measuring sensor 350 for measuring the level of the floor 30,
    상기 볼팅모듈(623)은 상기 수평도 측정센서(350)가 생성하는 수평도정보(351)를 상기 수평도범위정보(760)와 비교하여 상기 볼팅 로봇(300)의 작업진행 여부를 결정하는 진행정보(761)를 도출하는 것을 특징으로 하는 무인로봇 제어시스템. The bolting module 623 compares the level information 351 generated by the level measurement sensor 350 with the level range information 760 to determine whether to proceed with the operation of the bolting robot 300 . Unmanned robot control system, characterized in that deriving the information (761).
  10. 제9항의 무인로봇 제어시스템을 이용하여 액세스플로어를 시공하는 방법에 있어서, In the method of constructing an access floor using the unmanned robot control system of claim 9,
    상기 설치 프레임(10) 및 상기 설치 프레임 주변부에 형성되는 주변부 슬래브(60)를 시공하는 제1 단계(S100); A first step (S100) of constructing the installation frame 10 and the peripheral slab 60 formed around the installation frame;
    상기 주변부 슬래브(60)에 상기 무인로봇을 위치시키는 제2 단계(S200); 및a second step (S200) of positioning the unmanned robot on the peripheral slab (60); and
    상기 무인로봇이 상기 주변부 슬래브(60)를 따라 이동하며 상기 플로어(30)를 상기 설치 프레임(10)에 결합시키는 제3 단계(S300);를A third step (S300) of the unmanned robot moving along the peripheral slab 60 and coupling the floor 30 to the installation frame 10;
    포함하는 것을 특징으로 하는 액세스플로어 시공방법. Access floor construction method, characterized in that it includes.
  11. 제10항의 액세스플로어 시공방법을 실행하기 위한 프로그램이 기록되어 있는 컴퓨터에서 판독 가능한 기록 매체. A computer-readable recording medium in which a program for executing the access floor construction method of claim 10 is recorded.
PCT/KR2021/007742 2020-06-30 2021-06-21 Unmanned robot control system for access floor construction WO2022005081A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0080275 2020-06-30
KR1020200080275A KR102358794B1 (en) 2020-06-30 2020-06-30 Unmanned robot control system for access floor construction

Publications (1)

Publication Number Publication Date
WO2022005081A1 true WO2022005081A1 (en) 2022-01-06

Family

ID=79316492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007742 WO2022005081A1 (en) 2020-06-30 2021-06-21 Unmanned robot control system for access floor construction

Country Status (2)

Country Link
KR (1) KR102358794B1 (en)
WO (1) WO2022005081A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115205770A (en) * 2022-09-19 2022-10-18 南通长石科技有限公司 Autonomous loading system and method in unmanned loader room

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090887A1 (en) * 2022-10-24 2024-05-02 삼성물산 주식회사 Unmanned access floor construction system including alignment plate and access floor construction method using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396567A (en) * 1989-09-08 1991-04-22 Tokyu Constr Co Ltd Robot for interior finish work
JPH0626205A (en) * 1992-07-10 1994-02-01 Fujitsu Ltd Floor panel attaching and detaching device and floor panel
KR20120087561A (en) * 2011-01-28 2012-08-07 주식회사 에스비테크 Floor supporting structure for clean room and establishing method of access floor using the same
JP2018123645A (en) * 2017-02-03 2018-08-09 積水ハウス株式会社 Ceiling Board Construction Support System
JP2020024519A (en) * 2018-08-06 2020-02-13 積水ハウス株式会社 Program, construction robot and construction system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396567A (en) * 1989-09-08 1991-04-22 Tokyu Constr Co Ltd Robot for interior finish work
JPH0626205A (en) * 1992-07-10 1994-02-01 Fujitsu Ltd Floor panel attaching and detaching device and floor panel
KR20120087561A (en) * 2011-01-28 2012-08-07 주식회사 에스비테크 Floor supporting structure for clean room and establishing method of access floor using the same
JP2018123645A (en) * 2017-02-03 2018-08-09 積水ハウス株式会社 Ceiling Board Construction Support System
JP2020024519A (en) * 2018-08-06 2020-02-13 積水ハウス株式会社 Program, construction robot and construction system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115205770A (en) * 2022-09-19 2022-10-18 南通长石科技有限公司 Autonomous loading system and method in unmanned loader room

Also Published As

Publication number Publication date
KR20220001840A (en) 2022-01-06
KR102358794B1 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
WO2022005081A1 (en) Unmanned robot control system for access floor construction
WO2021118013A1 (en) Crane collision prevention apparatus and method
WO2021015448A1 (en) Apparatus for attaching or detaching commercial vehicle tire hub drum
WO2014196723A1 (en) Height-adjustable rotunda-type boarding bridge
JP4979110B2 (en) Wafer carrier storage system and operation method thereof
WO2016104963A1 (en) Prefabricated pallet
WO2018124462A1 (en) Buffer chamber unit for wafer processing equipment
WO2022005078A1 (en) Method for constructing access floor by using unmanned robot
WO2021256816A1 (en) Unmanned access floor construction system and access floor construction method using same
SI23296A (en) Procedure and device for installation of building envelope elements
WO2024090887A1 (en) Unmanned access floor construction system including alignment plate and access floor construction method using same
WO2014142374A1 (en) Smd reel storing device and smd reel storing method
WO2021251740A1 (en) Bolting gripper, bolt fastening device including same, and bolt fastening method
WO2018226061A1 (en) Automatic attachment changer and boring machine having same
WO2021256602A1 (en) System for assisting mechanization and installation of photovoltaic module, and method using same
WO2022030721A1 (en) Apparatus for separating window glasses and method therefor
CN114535947A (en) Elevator operation device
WO2015005588A1 (en) Dovetail processing apparatus and processing method for horizontally loading wood plate
WO2024071604A1 (en) Automatic vehicle glass installation system and installation method
KR20240057090A (en) Unmanned access floor construction system with alignment plate and access floor construction method using the same
Terada et al. Design and development of a work robot to place ATLAS SCT modules onto barrel cylinders
JP2595207Y2 (en) Tray transport device for IC test equipment
WO2019009440A1 (en) Production equipment having reaction force compensation module and vibration control method using same
WO2023038453A1 (en) Vehicle manufacturing work quality assurance system and method
WO2021187735A1 (en) Saw and placement system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832197

Country of ref document: EP

Kind code of ref document: A1