WO2022004957A1 - Investment advisory method and apparatus therefor - Google Patents

Investment advisory method and apparatus therefor Download PDF

Info

Publication number
WO2022004957A1
WO2022004957A1 PCT/KR2020/015026 KR2020015026W WO2022004957A1 WO 2022004957 A1 WO2022004957 A1 WO 2022004957A1 KR 2020015026 W KR2020015026 W KR 2020015026W WO 2022004957 A1 WO2022004957 A1 WO 2022004957A1
Authority
WO
WIPO (PCT)
Prior art keywords
investment
time series
series data
area
distribution
Prior art date
Application number
PCT/KR2020/015026
Other languages
French (fr)
Korean (ko)
Inventor
김한샘
Original Assignee
유한책임회사 알케미랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유한책임회사 알케미랩 filed Critical 유한책임회사 알케미랩
Publication of WO2022004957A1 publication Critical patent/WO2022004957A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/901Indexing; Data structures therefor; Storage structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/08Insurance

Definitions

  • An embodiment of the present invention relates to an investment advisory method and apparatus for financial assets such as stocks, bonds, and bitcoin, and more particularly, to a method and apparatus for advising investment proportion of financial assets.
  • the technical problem to be achieved by the present invention is to provide a method and an apparatus for advising the best investment weight within the range of future uncertainty inferred by an artificial intelligence model.
  • an example of an investment advisory method includes: learning a predictive model for outputting a forecast price using time series data of financial information; calculating a plurality of predictive values by repeatedly inputting the time series data at the current time into the learned predictive model a predefined number of times; identifying a distribution of the plurality of predictors; and calculating the investment weight based on the ratio of the first area of the upper distribution and the second area of the lower distribution determined based on the current price in the distribution.
  • an example of an investment advisory apparatus includes: a learning unit for learning a predictive model for outputting a predictive price using time series data of financial information; a predictor for calculating a plurality of predictive values by repeatedly inputting the time series data at the current time into the predictive model a predefined number of times; a distribution grasping unit which grasps a distribution of the plurality of predictors; and an investment weighting calculator configured to calculate the investment weight based on the ratio of the first area of the upper distribution to the second area of the lower distribution, which is determined based on the current price in the distribution.
  • a more accurate investment weight can be obtained by using not only time series data of financial information but also augmented data obtained by processing time series data.
  • FIG. 1 is a view showing an example of a schematic structure of an investment advisory system according to an embodiment of the present invention
  • FIG. 2 is a diagram illustrating an example of time series data used for learning a predictive model according to an embodiment of the present invention
  • FIG. 3 is a diagram illustrating an example of a method for learning a predictive model using time series data according to an embodiment of the present invention
  • FIG. 4 is a view showing an example of a predictor obtained using a predictive model according to an embodiment of the present invention
  • FIG. 5 is a diagram illustrating an example of a method of augmenting learning data in order to increase the accuracy of a predictive model according to an embodiment of the present invention
  • FIG. 6 is a diagram illustrating an example of a distribution of predictors obtained through a predictive model according to an embodiment of the present invention
  • FIG. 7 is a view showing an example of a method for calculating the investment weight according to an embodiment of the present invention.
  • FIG. 8 is a view showing an example of a method of correcting the investment weight to the investor balance return according to an embodiment of the present invention
  • FIG. 9 is a flowchart illustrating an example of an investment advisory method according to an embodiment of the present invention.
  • FIG. 10 is a diagram showing the configuration of an example of an investment advisory apparatus according to an embodiment of the present invention.
  • FIG. 1 is a diagram illustrating an example of a schematic structure of an investment advisory system according to an embodiment of the present invention.
  • the investment advisory apparatus 100 may be connected to at least one financial system 110 and at least one user terminal 120 .
  • the financial system 110 is a system that provides information on various financial assets, such as stocks, bonds, futures, and bitcoins.
  • the investment advisory apparatus 100 may collect various financial information through the financial system 110 to generate learning data necessary for learning the predictive model. In another embodiment, the investment advisory apparatus 100 may receive learning data directly from the manager. In this case, the financial system 110 may be omitted.
  • the user terminal 120 may access the investment advisory device 100 to receive advice on investment weight and the like. For example, when the user requests the investment advisory device 100 for advice on the investment weight of a specific stock item through his/her user terminal 120 , the investment advisory device 100 uses the prediction model for the requested stock It can be provided to the user terminal 120 by calculating the investment weight for the.
  • the investment advisory apparatus 100 may be implemented as a general computer, a server, or a cloud system. In another embodiment, the investment advisory apparatus 100 may be implemented as an application and mounted on the user terminal 120 to be performed.
  • FIG. 2 is a diagram illustrating an example of time series data used for learning a predictive model according to an embodiment of the present invention.
  • the time series data 200 for financial information includes at least one item 210 , and each item includes values a 11 to a mn for a plurality of time points 220 .
  • the time series data 200 may include various information items that can directly or indirectly affect the price of a financial asset (eg, stock, bond, bitcoin, etc.) for which the investment weight is to be calculated.
  • time series data for stock A includes various items such as stock index, starting price and closing price, selling/buying status by subject, exchange rate, interest rate, and government bond interest rate, and each item may have values for a certain period of time.
  • the time series data 200 may be directly generated by an administrator and input to the investment advisory apparatus 100 .
  • an administrator can create time series data in Excel format.
  • the investment advisory apparatus 100 may access the financial system 110 and scrape necessary information to automatically generate the time series data 200 .
  • address information eg, URL address
  • type of information to be scraped from the financial system eg, start and close prices for each stock item
  • the time series data 200 for financial information may be used as learning data of the predictive model as it is, or outliers may be removed from the time series data 200 through various conventional pre-processing processes and used as learning data.
  • the financial information time series data 200 of FIG. 2 is used as the learning data.
  • FIG. 3 is a diagram illustrating an example of a method for learning a predictive model using time series data according to an embodiment of the present invention.
  • the prediction model 300 is an artificial intelligence model that receives financial information time series data (x) and outputs the price (ie, predictive price) (y) of a future financial asset based on this.
  • the prediction model 300 may be an artificial intelligence model that outputs a forecast price for stock A.
  • the prediction model 300 may be implemented with various conventional artificial intelligence models, such as convolutional neural networks (CNNs). Also, the predictive model 300 may be trained by an unsupervised learning method.
  • the AI model and the learning method of the AI model itself are already widely known technologies. This embodiment can apply various known AI models and learning methods, and is not limited to a specific AI model or a specific learning method.
  • the investment advisory apparatus 100 may learn a predictive model by repeating the process of inputting time series data of a certain section from the financial information time series data 200 as shown in FIG. 2 .
  • the investment advisory apparatus 100 provides first input data composed of time series data of t 1 to t 10 , second input data composed of time series data of t 2 to t 11 , t Input data composed of time series data in units of 10 intervals, such as third input data composed of time series data of 3 to t 12 intervals, may be input to the prediction model 300 .
  • a section unit constituting the input data may be set in various ways according to an embodiment.
  • the predictive model 300 obtains the first predictive value at time t 11 for the first input data, compares the first predictor with the actual price at time t 11 in the time series data, and adjusts the weights of the artificial intelligence model. process can be performed. By repeating this process for each input data, the predictive model 300 can be learned.
  • FIG. 4 is a diagram illustrating an example of a predictor obtained by using a predictive model according to an embodiment of the present invention.
  • the investment advisory apparatus 100 may input time series data of financial information at the present time into the prediction model 300 to determine the predicted price of financial assets at a future time.
  • the prediction model 300 refers to a model that has been trained using the training data including the time series data of FIG. 2 .
  • the investment advisory device 100 is By inputting the time series data in units of each section into the learned prediction model 300 , it is possible to determine the predictive value.
  • the time series data of the present time is defined as time series data from the present time point to a certain period in the past.
  • 'current time' means the most recent time of time series data input to the prediction model. Therefore, when time series data up to June 1, 2020 is input to the prediction model, the current time is June 1, 2020, and the forecast model outputs the forecast price after June 1, 2020.
  • the investment advisory apparatus 100 may obtain a plurality of forecast prices by repeatedly inputting the time series data of the current time into the prediction model 300 .
  • the investment advisory apparatus 100 may repeatedly input time series data of the current time point t n into the prediction model 300 j times to obtain j predicted values for the time t n+1 time 420 . Since the predictive model 300 does not always output the same predictive value even when time series data of the same current time is repeatedly input, some or all of the j predicted values may be different from each other.
  • the investment advisory apparatus 100 inputs the time series data of the current time point (t n ) to the prediction model 300 and not only the next time point (t n+1 ) but also a certain future section (t n+1 ⁇ t n) +k ) predictors (y 1(n+1) to y j(n+k) ) can be obtained.
  • the prediction model 300 is not only the predictor value at time t n+1 (y 1(n+1) ) but also t n+1 ,.. It is possible to output the predictor value (y 1(n+2) ⁇ y 1(n+k) ) at the time .t n+k.
  • the predictive model 300 may use the previously obtained predictor as input data.
  • the forecasters of t n + 1 time 420 calculated, investors sentence value t n + 1 to input a past time-series data of a period of time including forecasters at the time the predictive model 300 of t n + 2 time predictors can be obtained.
  • FIG. 5 is a diagram illustrating an example of a method of augmenting learning data in order to increase the accuracy of a predictive model according to an embodiment of the present invention.
  • the investment advisory apparatus 100 generates a net graph 500 composed of at least one moving average line based on the time series data 200 as shown in FIG. 2 .
  • the moving averages 510 , 520 , and 530 may be moving averages for various sections, such as a 5-day moving average, a 20-day moving average, or a 60-day moving average.
  • this embodiment shows examples of three different moving average lines 510, 520, and 530 for convenience of explanation, the number of moving average lines may be set in various ways depending on the embodiment.
  • the net graph 500 is one It may consist only of a moving average line.
  • the investment advisory apparatus 100 does not need to obtain a moving average line for all items of the time series data 200 , and items for which a moving average line is obtained from the time series data 200 may be predefined. For example, when the time series data 200 is data related to a specific stock, the investment advisory apparatus 100 may generate a moving average line of various sections with respect to the closing price of the specific stock in the time series data 200 .
  • the investment advisory apparatus 100 determines the distance (550,552,554) between the value (a) of each time point (t 1 ⁇ t n ) of the time series data 200 and each moving average line (510,520,530) and each time point (t 1 ⁇ t n ) Find the slope (560,562,564) of the moving average at .
  • This embodiment shows an example of the distance (550,552,554) between the value 540 of the time series data at time t a and each moving average line (510, 520, 530) and the slope (560, 562, 564) of each moving average line at the time ta a.
  • the investment advisory apparatus 100 generates augmented data including the distance and the slope of the moving average obtained at each time point.
  • the investment advisory apparatus 100 uses the time series data and the augmented data of FIG. 2 as learning data of the prediction model 300 of FIG. 3 together.
  • FIG. 6 is a diagram illustrating an example of a distribution of predictors obtained through a predictive model according to an embodiment of the present invention.
  • the predictor distribution 600 represents the distribution of the cumulative number of prediction values between the minimum predictor value b min and the maximum predictor value b max . 6 shows the shape of the normal distribution for convenience of explanation, but the shape of the distribution of the actual predictor may vary.
  • the investment advisory device 100 identifies the location of the current price 630 in the predicted price distribution 600, and calculates the ratio of the first area 610 of the upper distribution of the current price 630 and the second area 620 of the lower distribution. can figure out For example, if the prediction model 300 is a model for predicting the price of stock A, the current price 630 is the price of stock A at the present time.
  • the investment advisory apparatus 100 may determine a positive investment weight or a negative investment weight based on the ratio of the first area 610 to the second area 620 . For example, if the first area 610 is larger than the second area 620 (that is, (distribution average value b avg ⁇ present price)>0), the investment advisory apparatus 100 sets the first area 610 and A positive investment ratio is calculated in proportion to the ratio of the second area 620 , and on the contrary, if the first area 610 is smaller than the second area 620 (that is, (distribution average value (b avg ) - present price) ⁇ 0), a negative investment weight proportional to the ratio of the first area 610 and the second area 620 may be calculated.
  • a positive investment weighting means increasing the investment weight of financial assets (eg, long position), and a negative investment weighting means reducing the investment weight of financial assets (eg, a short position). do.
  • the investment weight graph shown in FIG. 7 may be used.
  • FIG. 7 is a diagram illustrating an example of a method for calculating an investment weight according to an embodiment of the present invention.
  • the investment advisory apparatus 100 may define a relationship between the ratio of the first area 610 and the second area 620 and the investment weight 730 .
  • the relationship between the ratio of the first area 610 and the second area 620 and the investment weight 730 may be defined as a linear proportional relationship or may be defined as an S-curve relationship. can be defined.
  • the investment advisory apparatus 100 applies the respective ratios of the first area and the second area to the total area in the distribution 600 of FIG. 6 to the win probability and the loss probability of the Kelly formula, respectively, and "investment ratio" (730) versus (distribution average value - present price) (740)" can be obtained.
  • a graph 700 as shown in FIG. 7 can be obtained by multiplying the sigmoid function so that the investment weight exists within a certain range. have.
  • the investment advisory apparatus 100 since the difference between the current price 630 and the distribution average value (b avg ) is l, the investment advisory apparatus 100 is located in the graph 700 of FIG.
  • the investment weight f% (720) can be obtained. If the prediction model 300 is a prediction model for stock A, the investment advisory apparatus 100 may recommend that the investment in stock A be increased by f% 720 from the total investment ratio.
  • the present price 630 in FIG. 6 exists in a place 750 that is separated by l above the distribution average value b avg , (distribution average value-present price) becomes negative and the investment weight -f in the graph of FIG. % (760) is calculated. In this case, the investment advisory apparatus 100 may recommend reducing the investment weight for the stock A from the total investment weight by f%.
  • the investment weight of FIG. 7 is an example of recommending the investment weight without considering the current situation of the investor. For example, if the return on balance of investor A and the return on balance of investor B are different, the advice on investment weight needs to be different accordingly. An example of this is shown in FIG. 8 .
  • FIG. 8 is a diagram illustrating an example of a method of correcting an investment weight by an investor's balance return according to an embodiment of the present invention.
  • the relationship between the balance return 810 and the additional investment weight 820 is defined as a graph 800 .
  • This embodiment considers the additional investment weight 840 only when the investor's balance return 830 is a negative number, and also sets the additional investment weight to be fixed when the balance return 840 is less than a certain level.
  • the graph 800 of this embodiment is only an example for helping understanding, and the relationship between the balance return 810 and the additional investment weight 820 may be defined in various ways according to embodiments.
  • the investment advisory apparatus 100 calculates the additional investment weight 840 corresponding to the balance return 830 of the investor using the graph 800 of FIG. 8 and then corrects the investment weight 730 obtained in FIG. 7 based on this. do.
  • the investment advisory apparatus 100 may calculate and provide the value of “investment ratio * (1 + additional investment ratio)” as the final investment ratio for the investor.
  • FIG. 9 is a flowchart illustrating an example of an investment advisory method according to an embodiment of the present invention.
  • the investment advisory apparatus 100 learns a predictive model using time series data on financial information ( S900 ).
  • An example of time series data used as training data of a predictive model is shown in FIG. 2 .
  • an example of a learning method of a predictive model using time series data is shown in FIG. 3 .
  • the investment advisory apparatus 100 may train the predictive model by using the training data including the time series data of FIG. 2 and the salpin augmented data of FIG. 5 .
  • the prediction model receives time series data and augmented data together.
  • the investment advisory apparatus 100 inputs the time series data of the current time into the predictive model to determine the predictive value of the financial asset (S910). At this time, the investment advisory apparatus 100 calculates a plurality of forecast prices by inputting the time series data of the current time into the prediction model a plurality of times. The investment advisory apparatus 100 may determine the forecast price at various points in the future through the prediction model as shown in FIG. 4 .
  • the investment advisory apparatus 100 identifies the distribution of a plurality of predictors (S920). For example, the investment advisory apparatus 100 may determine the cumulative distribution of the forecast price as shown in FIG. 6 . The investment advisory apparatus 100 calculates the investment weight by using the ratio of the first area of the upper distribution and the second area of the lower distribution, which is determined based on the current price in the distribution of the predicted price (S930). An example of calculating the investment weight is shown in FIG. 7 . As another example, the investment advisory apparatus 100 may calculate an investment weight suitable for the corresponding investor by reflecting the return on the investor's balance, an example of which is shown in FIG. 8 .
  • FIG. 10 is a diagram showing the configuration of an example of an investment advisory apparatus according to an embodiment of the present invention.
  • the investment advisory apparatus 100 includes a learning data generating unit 1000 , a learning unit 1010 , a prediction unit 1020 , a distribution grasping unit 1030 , an investment weight calculation unit 1040 , and a correction unit. (1050).
  • the learning data generating unit 1000 and the correcting unit 1050 may be omitted.
  • the learning data generating unit 1000 generates time series data including at least one item of financial information as learning data.
  • the learning data generation unit 1000 may generate only the time series data of FIG. 2 as learning data or may generate the learning data by combining the augmented data and the time series data of FIG. 5 .
  • the learning unit 1010 learns a predictive model for outputting predictive prices for financial assets by using time series data of financial information. For example, if the learning data consists of augmented data and time series data, the learning unit 1010 may learn the predictive model by inputting the augmented data and time series data together into the predictive model.
  • the predictor 1020 calculates a plurality of predictor values by repeatedly inputting the time series data of the current time into the predictive model a predefined number of times.
  • An example of a method of calculating a predictor is shown in FIG. 4 .
  • the distribution determining unit 1030 grasps the distribution of the plurality of predictors obtained by the predicting unit 1020 .
  • An example of the distribution of predictors is shown in FIG. 6 .
  • the investment weight calculation unit 1040 calculates the investment weight based on the ratio of the first area of the upper distribution and the second area of the lower distribution determined based on the current price in the distribution of the predicted price obtained by the distribution grasping unit 1030 .
  • An example of a method of calculating the investment weight is shown in FIG. 7 .
  • the correction unit 1050 corrects the investment weight by reflecting the additional investment weight corresponding to the return on the balance of the investor based on a predefined relationship between the balance return and the additional investment weight.
  • An example of a method of calculating an investor-customized investment weight according to an investor's balance return is shown in FIG. 8 .
  • the present invention can also be implemented as computer-readable codes on a computer-readable recording medium.
  • the computer-readable recording medium includes all types of recording devices in which data readable by a computer system is stored. Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disk, and optical data storage device.
  • the computer-readable recording medium is distributed in a network-connected computer system so that the computer-readable code can be stored and executed in a distributed manner.

Abstract

Disclosed are an investment advisory method and an apparatus therefor. The investment advisory apparatus: calculates a plurality of predicted prices by training a predictive model that outputs a predicted price by using time series data of financial information, and then repeatedly inputting, a predefined number of times, time series data at a current point in time into the predictive model that has been completely trained; identifies the distribution of the plurality of predicted prices; and calculates an investment weight on the basis of the ratio between a first area of the higher distribution and a second area of the lower distribution that have been identified in the distribution on the basis of a current price.

Description

투자자문방법 및 그 장치Investment advisory method and device
본 발명의 실시 예는 주식이나 채권, 비트코인 등과 같은 금융자산에 대한 투자자문방법 및 그 장치에 관한 것으로, 보다 상세하게는 금융자산의 투자 비중을 자문하는 방법 및 그 장치에 관한 것이다.An embodiment of the present invention relates to an investment advisory method and apparatus for financial assets such as stocks, bonds, and bitcoin, and more particularly, to a method and apparatus for advising investment proportion of financial assets.
일반적으로 주식 등의 투자자문은 노하우를 가진 전문가가 보수를 받고 수익률이 높은 투자종목에 대한 정보를 제공하는 것이다. 최근에는 고도화된 알고리즘과 빅데이터를 통해 투자 전략을 짜주는 로보어드바이저(robo-advisor)가 존재한다. 그러나 일반적인 로보어드바이저의 알고리즘은 파라미터 값의 변화에 따라 성능 및 투자결과에 큰 차이가 발생하므로, 과최적화 편향(overfitting-bias)를 비롯한 다양한 오류를 범할 수 있다. 따라서 파라미터의 영향을 받지 않는 보다 일반적인 형태의 자동화된 투자 알고리즘이 필요하다.In general, investment advice on stocks, etc., is provided by experts with know-how and information on high-yielding investment stocks. Recently, there are robo-advisors that plan investment strategies through advanced algorithms and big data. However, since the general robo-advisor algorithm has a large difference in performance and investment results depending on the change in parameter values, various errors including overfitting-bias can be made. Therefore, there is a need for a more general type of automated investment algorithm that is not affected by parameters.
본 발명이 이루고자 하는 기술적 과제는, 인공지능모델이 추론한 미래 불확실성의 범위 내에서 최선의 투자비중을 자문하는 방법 및 그 장치를 제공하는 데 있다. The technical problem to be achieved by the present invention is to provide a method and an apparatus for advising the best investment weight within the range of future uncertainty inferred by an artificial intelligence model.
상기의 기술적 과제를 달성하기 위한, 본 발명의 실시 예에 따른 투자자문방법의 일 예는, 금융정보의 시계열데이터를 이용하여 예측가를 출력하는 예측모델을 학습시키는 단계; 현 시점의 시계열데이터를 학습 완료된 예측모델에 기 정의된 횟수만큼 반복 입력하여 복수 개의 예측가를 산출하는 단계; 상기 복수 개의 예측가의 분포를 파악하는 단계; 및 상기 분포에서 현재가를 기준으로 파악된 상위 분포의 제1 면적과 하위 분포의 제2 면적의 비를 기초로 투자비중을 산출하는 단계;를 포함한다.In order to achieve the above technical problem, an example of an investment advisory method according to an embodiment of the present invention includes: learning a predictive model for outputting a forecast price using time series data of financial information; calculating a plurality of predictive values by repeatedly inputting the time series data at the current time into the learned predictive model a predefined number of times; identifying a distribution of the plurality of predictors; and calculating the investment weight based on the ratio of the first area of the upper distribution and the second area of the lower distribution determined based on the current price in the distribution.
상기의 기술적 과제를 달성하기 위한, 본 발명의 실시 예에 따른 투자자문장치의 일 예는, 금융정보의 시계열데이터를 이용하여 예측가를 출력하는 예측모델을 학습시키는 학습부; 현 시점의 시계열데이터를 상기 예측모델에 기 정의된 횟수만큼 반복 입력하여 복수 개의 예측가를 산출하는 예측부; 상기 복수 개의 예측가의 분포를 파악하는 분포파악부; 및 상기 분포에서 현재가를 기준으로 파악된 상위 분포의 제1 면적과 하위 분포의 제2 면적의 비를 기초로 투자비중을 산출하는 투자비중산출부;를 포함한다.In order to achieve the above technical problem, an example of an investment advisory apparatus according to an embodiment of the present invention includes: a learning unit for learning a predictive model for outputting a predictive price using time series data of financial information; a predictor for calculating a plurality of predictive values by repeatedly inputting the time series data at the current time into the predictive model a predefined number of times; a distribution grasping unit which grasps a distribution of the plurality of predictors; and an investment weighting calculator configured to calculate the investment weight based on the ratio of the first area of the upper distribution to the second area of the lower distribution, which is determined based on the current price in the distribution.
본 발명의 실시 예에 따르면, 주식, 채권, 비트코인, 선물, 옵션 등 다양한 금융자산의 투자비중을 산출하여 투자자에게 제공할 수 있다. 다른 실시 예로, 금융정보의 시계열데이터 뿐만 아니라 시계열데이터를 가공하여 얻은 증강데이터를 함께 이용하여 보다 정확한 투자비중을 얻을 수 있다. 또 다른 실시 예로, 투자자의 잔고수익률을 반영하여 투자자 맞춤형 투자비중을 자문할 수 있다.According to an embodiment of the present invention, it is possible to calculate the investment weight of various financial assets, such as stocks, bonds, bitcoins, futures, and options, and provide them to investors. In another embodiment, a more accurate investment weight can be obtained by using not only time series data of financial information but also augmented data obtained by processing time series data. In another embodiment, it is possible to advise investors on the proportion of investment tailored to the investor by reflecting the investor's return on the balance.
도 1은 본 발명의 실시 예에 따른 투자자문시스템의 개략적인 구조의 일 예를 도시한 도면,1 is a view showing an example of a schematic structure of an investment advisory system according to an embodiment of the present invention;
도 2는 본 발명의 실시 예에 따른 예측모델의 학습에 사용되는 시계열데이터의 일 예를 도시한 도면,2 is a diagram illustrating an example of time series data used for learning a predictive model according to an embodiment of the present invention;
도 3은 본 발명의 실시 예에 따른 시계열데이터를 이용하여 예측모델을 학습시키는 방법의 일 예를 도시한 도면,3 is a diagram illustrating an example of a method for learning a predictive model using time series data according to an embodiment of the present invention;
도 4는 본 발명의 실시 예에 따른 예측모델를 이용하여 구한 예측가의 일 예를 도시한 도면,4 is a view showing an example of a predictor obtained using a predictive model according to an embodiment of the present invention;
도 5는 본 발명의 실시 예에 따른 예측모델의 정확성을 높이기 위하여 학습데이터를 증강하는 방법의 일 예를 도시한 도면,5 is a diagram illustrating an example of a method of augmenting learning data in order to increase the accuracy of a predictive model according to an embodiment of the present invention;
도 6은 본 발명의 실시 예에 따른 예측모델을 통해 구한 예측가의 분포의 일 예를 도시한 도면,6 is a diagram illustrating an example of a distribution of predictors obtained through a predictive model according to an embodiment of the present invention;
도 7은 본 발명의 실시 예에 따른 투자비중을 산출하는 방법의 일 예를 도시한 도면,7 is a view showing an example of a method for calculating the investment weight according to an embodiment of the present invention;
도 8은 본 발명의 실시 예에 따른 투자비중을 투자자 잔고수익률로 보정하는 방법의 일 예를 도시한 도면,8 is a view showing an example of a method of correcting the investment weight to the investor balance return according to an embodiment of the present invention;
도 9는 본 발명의 실시 예에 따른 투자자문방법의 일 예를 도시한 흐름도, 그리고,9 is a flowchart illustrating an example of an investment advisory method according to an embodiment of the present invention, and;
도 10은 본 발명의 실시 예에 따른 투자자문장치의 일 예의 구성을 도시한 도면이다.10 is a diagram showing the configuration of an example of an investment advisory apparatus according to an embodiment of the present invention.
이하에서, 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 투자자문방법 및 그 장치에 대해 상세히 설명한다.Hereinafter, an investment advisory method and apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시 예에 따른 투자자문시스템의 개략적인 구조의 일 예를 도시한 도면이다.1 is a diagram illustrating an example of a schematic structure of an investment advisory system according to an embodiment of the present invention.
도 1을 참조하면, 투자자문장치(100)는 적어도 하나 이상의 금융시스템(110) 및 적어도 하나 이상의 사용자단말(120)과 연결될 수 있다. Referring to FIG. 1 , the investment advisory apparatus 100 may be connected to at least one financial system 110 and at least one user terminal 120 .
금융시스템(110)은 주식, 채권, 선물, 비트코인 등 다양한 금융자산에 대한 정보를 제공하는 시스템이다. 투자자문장치(100)는 금융시스템(110)을 통해 다양한 금융정보를 수집하여 예측모델의 학습에 필요한 학습데이터를 생성할 수 있다. 다른 실시 예로, 투자자문장치(100)는 관리자로부터 직접 학습데이터를 입력받을 수 있다. 이 경우, 금융시스템(110)은 생략될 수 있다. The financial system 110 is a system that provides information on various financial assets, such as stocks, bonds, futures, and bitcoins. The investment advisory apparatus 100 may collect various financial information through the financial system 110 to generate learning data necessary for learning the predictive model. In another embodiment, the investment advisory apparatus 100 may receive learning data directly from the manager. In this case, the financial system 110 may be omitted.
사용자단말(120)은 투자자문장치(100)에 접속하여 투자비중 등에 대한 자문을 수신할 수 있다. 예를 들어, 사용자가 자신의 사용자단말(120)을 통해 특정 주식 종목에 대한 투자비중의 자문을 투자자문장치(100)에 요청하면, 투자자문장치(100)는 예측모델을 이용하여 요청받은 주식에 대한 투자비중을 산출하여 사용자단말(120)에 제공할 수 있다. The user terminal 120 may access the investment advisory device 100 to receive advice on investment weight and the like. For example, when the user requests the investment advisory device 100 for advice on the investment weight of a specific stock item through his/her user terminal 120 , the investment advisory device 100 uses the prediction model for the requested stock It can be provided to the user terminal 120 by calculating the investment weight for the.
투자자문장치(100)는 일반컴퓨터, 서버 또는 클라우드 시스템 등으로 구현될 수 있다. 다른 실시 예로, 투자자문장치(100)는 애플리케이션으로 구현되어 사용자단말(120)에 탑재되어 수행될 수 있다. The investment advisory apparatus 100 may be implemented as a general computer, a server, or a cloud system. In another embodiment, the investment advisory apparatus 100 may be implemented as an application and mounted on the user terminal 120 to be performed.
도 2는 본 발명의 실시 예에 따른 예측모델의 학습에 사용되는 시계열데이터의 일 예를 도시한 도면이다.2 is a diagram illustrating an example of time series data used for learning a predictive model according to an embodiment of the present invention.
도 2를 참조하면, 금융정보에 대한 시계열데이터(200)는 적어도 하나 이상의 항목(210)을 포함하고, 각 항목에는 복수의 시점(220)에 대한 값(a11~amn)이 존재한다. 시계열데이터(200)는 투자비중을 산출하고자 하는 금융자산(예를 들어, 주식, 채권, 비트코인 등)의 가격에 직접 또는 간접으로 영향을 미칠 수 있는 다양한 정보를 항목으로 포함할 수 있다. 예를 들어, A 주식에 대한 시계열데이터는 주가지수, 시작가 및 종가, 주체별 매도/매수 현황, 환율, 금리, 국공채 금리 등 다양한 항목을 포함하고 각 항목에는 일정기간 동안의 값들이 존재할 수 있다. Referring to FIG. 2 , the time series data 200 for financial information includes at least one item 210 , and each item includes values a 11 to a mn for a plurality of time points 220 . The time series data 200 may include various information items that can directly or indirectly affect the price of a financial asset (eg, stock, bond, bitcoin, etc.) for which the investment weight is to be calculated. For example, time series data for stock A includes various items such as stock index, starting price and closing price, selling/buying status by subject, exchange rate, interest rate, and government bond interest rate, and each item may have values for a certain period of time.
시계열데이터(200)는 관리자가 직접 생성하여 투자자문장치(100)에 입력할 수 있다. 예를 들어, 관리자는 엑셀 형태로 시계열데이터를 생성할 수 있다. 다른 실시 예로, 투자자문장치(100)가 금융시스템(110)에 접속하여 필요한 정보를 스크래핑하여 시계열데이터(200)를 자동으로 생성할 수 있다. 이를 위해, 투자자문장치(100)에는 금융정보가 저장된 금융시스템의 주소 정보(예를 들어, URL 주소)와 금융시스템으로부터 스크래핑할 정보의 종류(예를 들어, 주식 종목별 시작와 종가 등)가 미리 정의되어 있을 수 있다.The time series data 200 may be directly generated by an administrator and input to the investment advisory apparatus 100 . For example, an administrator can create time series data in Excel format. In another embodiment, the investment advisory apparatus 100 may access the financial system 110 and scrape necessary information to automatically generate the time series data 200 . To this end, in the investment advisory apparatus 100, address information (eg, URL address) of the financial system in which financial information is stored and the type of information to be scraped from the financial system (eg, start and close prices for each stock item) are predefined. may have been
금융정보에 대한 시계열데이터(200)를 그대로 예측모델의 학습데이터로 이용하거나 종래의 다양한 전처리 과정을 통해 시계열데이터(200)에서 이상치(outlier)를 제거하여 학습데이터로 이용할 수 있다. 이하에서는 설명의 편의를 위하여 도 2의 금융정보 시계열데이터(200)를 그대로 학습데이터로 이용하는 경우를 가정하여 설명한다.The time series data 200 for financial information may be used as learning data of the predictive model as it is, or outliers may be removed from the time series data 200 through various conventional pre-processing processes and used as learning data. Hereinafter, for convenience of explanation, it is assumed that the financial information time series data 200 of FIG. 2 is used as the learning data.
도 3은 본 발명의 실시 예에 따른 시계열데이터를 이용하여 예측모델을 학습시키는 방법의 일 예를 도시한 도면이다.3 is a diagram illustrating an example of a method for learning a predictive model using time series data according to an embodiment of the present invention.
도 3을 참조하면, 예측모델(300)은 금융정보 시계열데이터(x)를 입력받으면 이를 기초로 미래의 금융자산의 가격(즉, 예측가)(y)를 출력하는 인공지능모델이다. 예를 들어, 도 2가 A 주식에 대한 시계열데이터이면, 예측모델(300)은 A 주식에 대한 예측가를 출력하는 인공지능모델일 수 있다. Referring to FIG. 3 , the prediction model 300 is an artificial intelligence model that receives financial information time series data (x) and outputs the price (ie, predictive price) (y) of a future financial asset based on this. For example, if FIG. 2 is time series data for stock A, the prediction model 300 may be an artificial intelligence model that outputs a forecast price for stock A.
예측모델(300)은 CNN(Convolutional Neural Networks) 등 종래의 다양한 인공지능모델로 구현될 수 있다. 또한 예측모델(300)은 비지도학습(Unsupervised Learing) 방법으로 학습될 수 있다. 인공지능모델과 인공지능모델의 학습 방법 그 자체는 이미 널리 알려진 기술이다. 본 실시 예는 이미 알려진 다양한 인공지능모델과 학습방법을 적용할 수 있으며 특정 인공지능모델이나 특정 학습 방법에 한정되는 것은 아니다.The prediction model 300 may be implemented with various conventional artificial intelligence models, such as convolutional neural networks (CNNs). Also, the predictive model 300 may be trained by an unsupervised learning method. The AI model and the learning method of the AI model itself are already widely known technologies. This embodiment can apply various known AI models and learning methods, and is not limited to a specific AI model or a specific learning method.
투자자문장치(100)는 도 2와 같은 금융정보 시계열데이터(200)에서 일정 구간의 시계열데이터를 입력하는 과정을 반복하여 예측모델을 학습시킬 수 있다. 예를 들어, 도 2를 참조하면, 투자자문장치(100)는 t1~t10 구간의 시계열데이터로 구성된 제1 입력데이터, t2~t11 구간의 시계열데이터로 구성된 제2 입력데이터, t3~t12 구간의 시계열데이터로 구성된 제3 입력데이터 등과 같이 10개 구간 단위의 시계열데이터로 구성된 입력데이터를 예측모델(300)에 입력할 수 있다. 입력데이터를 구성하는 구간 단위는 실시 예에 따라 다양하게 설정할 수 잇다. 예측모델(300)은 제1 입력데이터에 대하여 t11 시점의 제1 예측가를 구하고, 제1 예측가와 시계열데이터에 존재하는 t11 시점의 실제가를 비교하여 인공지능모델의 가중치 등을 조정하는 학습 과정을 수행할 수 있다. 각 입력데이터에 대하여 이러한 과정을 반복 수행하여 예측모델(300)은 학습될 수 있다.The investment advisory apparatus 100 may learn a predictive model by repeating the process of inputting time series data of a certain section from the financial information time series data 200 as shown in FIG. 2 . For example, referring to FIG. 2 , the investment advisory apparatus 100 provides first input data composed of time series data of t 1 to t 10 , second input data composed of time series data of t 2 to t 11 , t Input data composed of time series data in units of 10 intervals, such as third input data composed of time series data of 3 to t 12 intervals, may be input to the prediction model 300 . A section unit constituting the input data may be set in various ways according to an embodiment. The predictive model 300 obtains the first predictive value at time t 11 for the first input data, compares the first predictor with the actual price at time t 11 in the time series data, and adjusts the weights of the artificial intelligence model. process can be performed. By repeating this process for each input data, the predictive model 300 can be learned.
도 4는 본 발명의 실시 예에 따른 예측모델를 이용하여 구한 예측가의 일 예를 도시한 도면이다.4 is a diagram illustrating an example of a predictor obtained by using a predictive model according to an embodiment of the present invention.
도 4를 참조하면, 투자자문장치(100)는 현 시점의 금융정보의 시계열데이터를 예측모델(300)에 입력하여 미래 시점의 금융자산의 예측가를 파악할 수 있다. 여기서 예측모델(300)이라고 함은 도 2의 시계열데이터를 포함하는 학습데이터를 이용하여 학습이 완료된 모델을 의미한다. Referring to FIG. 4 , the investment advisory apparatus 100 may input time series data of financial information at the present time into the prediction model 300 to determine the predicted price of financial assets at a future time. Here, the prediction model 300 refers to a model that has been trained using the training data including the time series data of FIG. 2 .
예를 들어, 도 3에서 든 예와 같이 예측모델(300)이 10개 구간 단위의 시계열데이터를 입력받아 예측가를 출력하는 인공지능모델인 경우에, 투자자문장치(100)는 현 시점부터 과거 10개 구간 단위의 시계열데이터를 학습 완료된 예측모델(300)에 입력하여 예측가를 파악할 수 있다. 이하에서, 현 시점의 시계열데이터라고 함은 현 시점부터 과거 일정 기간까지의 시계열데이터라고 정의한다. 또한 '현 시점'이라고 함은 예측모델에 입력되는 시계열데이터의 가장 최근 시점을 의미한다. 따라서 2020년 6월 1일자까지의 시계열데이터를 예측모델에 입력하는 경우에 현 시점은 2020년 6월 1일이며, 예측모델은 2020년 6월 1일 이후의 예측가를 출력한다. For example, as in the example in FIG. 3 , when the prediction model 300 is an artificial intelligence model that receives time series data in units of 10 sections and outputs a forecast price, the investment advisory device 100 is By inputting the time series data in units of each section into the learned prediction model 300 , it is possible to determine the predictive value. Hereinafter, the time series data of the present time is defined as time series data from the present time point to a certain period in the past. Also, 'current time' means the most recent time of time series data input to the prediction model. Therefore, when time series data up to June 1, 2020 is input to the prediction model, the current time is June 1, 2020, and the forecast model outputs the forecast price after June 1, 2020.
투자자문장치(100)는 현 시점의 시계열데이터를 예측모델(300)에 반복입력하여 예측가를 복수 개 얻을 수 있다. 예를 들어, 투자자문장치(100)는 현 시점(tn)의 시계열데이터를 예측모델(300)에 j번 반복입력하여 tn+1 시점(420)에 대한 j개의 예측값을 얻을 수 있다. 예측모델(300)은 동일한 현 시점의 시계열데이터를 반복하여 입력받아도 항상 동일한 예측가를 출력하는 것이 아니므로 j개의 예측값의 일부 또는 전부는 서로 상이할 수 있다.The investment advisory apparatus 100 may obtain a plurality of forecast prices by repeatedly inputting the time series data of the current time into the prediction model 300 . For example, the investment advisory apparatus 100 may repeatedly input time series data of the current time point t n into the prediction model 300 j times to obtain j predicted values for the time t n+1 time 420 . Since the predictive model 300 does not always output the same predictive value even when time series data of the same current time is repeatedly input, some or all of the j predicted values may be different from each other.
다른 실시 예로, 투자자문장치(100)는 현 시점(tn)의 시계열데이터를 예측모델(300)에 입력하여 다음 시점(tn+1)뿐만 아니라 일정 미래 구간(tn+1~tn+k)의 예측가(y1(n+1)~yj(n+k))를 얻을 수 있다. 예를 들어, 현 시점의 시계열데이터를 예측모델(300)에 입력하면, 예측모델(300)은 tn+1 시점의 예측가(y1(n+1))뿐만 아니라 tn+1,...tn+k 시점의 예측가(y1(n+2)~y1(n+k))를 출력할 수 있다. 현 시점의 시계열데이터를 예측모델(300)에 j번 반복입력하고, 일정 구간(예를 들어, tn+1~tn+k)에 대한 복수의 예측가를 예측모델(300)을 통해 산출하면, 도 4와 같이 j*k개의 예측가를 구할 수 있다. 이때, 예측모델(300)은 이전에 구한 예측가를 입력데이터로 이용할 수 있다. 다시 말해, tn+1 시점(420)의 예측가가 구해지면, 투자자문장치는 tn+1 시점의 예측가를 포함한 일정 기간의 과거 시계열데이터를 예측모델(300)에 입력하여 tn+2 시점의 예측가를 구할 수 있다. In another embodiment, the investment advisory apparatus 100 inputs the time series data of the current time point (t n ) to the prediction model 300 and not only the next time point (t n+1 ) but also a certain future section (t n+1 ~ t n) +k ) predictors (y 1(n+1) to y j(n+k) ) can be obtained. For example, when time series data at the present time is input to the prediction model 300 , the prediction model 300 is not only the predictor value at time t n+1 (y 1(n+1) ) but also t n+1 ,.. It is possible to output the predictor value (y 1(n+2) ~y 1(n+k) ) at the time .t n+k. When the time series data at the present time is repeatedly input to the prediction model 300 j times , and a plurality of predictors for a certain section (eg, t n+1 ~ t n+k ) are calculated through the prediction model 300 , , j*k predictors can be obtained as shown in FIG. 4 . In this case, the predictive model 300 may use the previously obtained predictor as input data. In other words, when the forecasters of t n + 1 time 420 calculated, investors sentence value t n + 1 to input a past time-series data of a period of time including forecasters at the time the predictive model 300 of t n + 2 time predictors can be obtained.
도 5는 본 발명의 실시 예에 따른 예측모델의 정확성을 높이기 위하여 학습데이터를 증강하는 방법의 일 예를 도시한 도면이다. 5 is a diagram illustrating an example of a method of augmenting learning data in order to increase the accuracy of a predictive model according to an embodiment of the present invention.
도 5를 참조하면, 투자자문장치(100)는 도 2와 같은 시계열데이터(200)를 기초로 적어도 하나 이상의 이동평균선으로 구성된 그물 그래프(500)를 생성한다. 이동평균선(510,520,530)은 5일 이동평균선, 20일 이동평균선, 60일 이동평균선 등과 같이 다양한 구간에 대한 이동평균선일 수 있다. 본 실시 예는 설명의 편의를 위하여 세 개의 서로 다른 이동평균선(510,520,530)의 예를 도시하고 있으나 이동평균선의 개수는 실시 예에 따라 다양하게 설정될 수 있으며, 일 예로 그물 그래프(500)는 하나의 이동평균선으로만 구성될 수도 있다. Referring to FIG. 5 , the investment advisory apparatus 100 generates a net graph 500 composed of at least one moving average line based on the time series data 200 as shown in FIG. 2 . The moving averages 510 , 520 , and 530 may be moving averages for various sections, such as a 5-day moving average, a 20-day moving average, or a 60-day moving average. Although this embodiment shows examples of three different moving average lines 510, 520, and 530 for convenience of explanation, the number of moving average lines may be set in various ways depending on the embodiment. As an example, the net graph 500 is one It may consist only of a moving average line.
투자자문장치(100)는 시계열데이터(200)의 모든 항목에 대하여 이동평균선을 구할 필요는 없으며 시계열데이터(200)에서 이동평균선을 구할 대상이 되는 항목은 미리 정의될 수 있다. 예를 들어, 시계열데이터(200)가 특정 주식에 관한 데이터일 경우에, 투자자문장치(100)는 시계열데이터(200)에서 특정 주식의 종가에 대한 다양한 구간의 이동평균선을 생성할 수 있다.The investment advisory apparatus 100 does not need to obtain a moving average line for all items of the time series data 200 , and items for which a moving average line is obtained from the time series data 200 may be predefined. For example, when the time series data 200 is data related to a specific stock, the investment advisory apparatus 100 may generate a moving average line of various sections with respect to the closing price of the specific stock in the time series data 200 .
투자자문장치(100)는 시계열데이터(200)의 각 시점(t1~tn)의 값(a)과 각 이동평균선(510,520,530) 사이의 거리(550,552,554) 및 각 시점(t1~tn)에서의 이동평균선의 기울기(560,562,564)를 구한다. 본 실시 예는 ta 시점의 시게열데이터의 값(540)과 각 이동평균선(510,520,530) 사이의 거리(550,552,554) 및 ta 시점의 각 이동평균선의 기울기(560,562,564)의 예를 도시하고 있다.The investment advisory apparatus 100 determines the distance (550,552,554) between the value (a) of each time point (t 1 ~ t n ) of the time series data 200 and each moving average line (510,520,530) and each time point (t 1 ~t n ) Find the slope (560,562,564) of the moving average at . This embodiment shows an example of the distance (550,552,554) between the value 540 of the time series data at time t a and each moving average line (510, 520, 530) and the slope (560, 562, 564) of each moving average line at the time ta a.
투자자문장치(100)는 각 시점에서 구한 이동평균선의 거리와 기울기를 포함하는 증강데이터를 생성한다. 그리고 투자자문장치(100)는 도 2의 시계열데이터와 증강데이터를 함께 도 3의 예측모델(300)의 학습데이터로 이용한다. The investment advisory apparatus 100 generates augmented data including the distance and the slope of the moving average obtained at each time point. In addition, the investment advisory apparatus 100 uses the time series data and the augmented data of FIG. 2 as learning data of the prediction model 300 of FIG. 3 together.
도 6은 본 발명의 실시 예에 따른 예측모델을 통해 구한 예측가의 분포의 일 예를 도시한 도면이다. 6 is a diagram illustrating an example of a distribution of predictors obtained through a predictive model according to an embodiment of the present invention.
도 6을 참조하면, 예측가 분포(600)는 예측가 최소값(bmin)부터 예측가 최대값(bmax) 사이의 각 예측값의 누적 개수의 분포를 나타낸다. 도 6은 설명의 편의를 위하여 정규분포의 모양을 도시하고 있으나 실제 예측가의 분포 모양은 다양할 수 있다.Referring to FIG. 6 , the predictor distribution 600 represents the distribution of the cumulative number of prediction values between the minimum predictor value b min and the maximum predictor value b max . 6 shows the shape of the normal distribution for convenience of explanation, but the shape of the distribution of the actual predictor may vary.
투자자문장치(100)는 예측가 분포(600)에서 현재가(630)의 위치를 파악하고, 현재가(630)의 상위 분포의 제1 면적(610)과 하위 분포의 제2 면적(620)의 비를 파악할 수 있다. 예를 들어, 예측모델(300)이 A 주식의 가격을 예측하는 모델이라고 하면, 현재가(630)는 현 시점의 A 주식의 가격이다. The investment advisory device 100 identifies the location of the current price 630 in the predicted price distribution 600, and calculates the ratio of the first area 610 of the upper distribution of the current price 630 and the second area 620 of the lower distribution. can figure out For example, if the prediction model 300 is a model for predicting the price of stock A, the current price 630 is the price of stock A at the present time.
투자자문장치(100)는 제1 면적(610)과 제2 면적(620)의 비를 기초로 양의 투자비중 또는 음의 투자비중을 결정할 수 있다. 예를 들어, 제1 면적(610)이 제2 면적(620)보다 크면(즉, (분포평균값(bavg)-현재가)>0), 투자자문장치(100)는 제1 면적(610)과 제2 면적(620)의 비에 비례하는 양의 투자비중을 산출하고, 반대로 제1 면적(610)이 제2 면적(620)보다 작으면(즉, (분포평규값(bavg)-현재가)<0), 제1 면적(610)과 제2 면적(620)의 비에 비례하는 음의 투자비중을 산출할 수 있다. 여기서, 양의 투자비중은 금융자산의 투자비중을 늘리는 것(예를 들어, 롱포지션)을 의미하고, 음의 투자비중은 금융자산의 투자비중을 줄이는 것(예를 들어, 숏포지션)을 의미한다. 제1 면적(610)과 제2 면적(620)의 비에 비례하는 투자비중의 정확한 산출은 도 7과 같은 투자비중 그래프를 이용할 수 있다.The investment advisory apparatus 100 may determine a positive investment weight or a negative investment weight based on the ratio of the first area 610 to the second area 620 . For example, if the first area 610 is larger than the second area 620 (that is, (distribution average value b avg − present price)>0), the investment advisory apparatus 100 sets the first area 610 and A positive investment ratio is calculated in proportion to the ratio of the second area 620 , and on the contrary, if the first area 610 is smaller than the second area 620 (that is, (distribution average value (b avg ) - present price) <0), a negative investment weight proportional to the ratio of the first area 610 and the second area 620 may be calculated. Here, a positive investment weighting means increasing the investment weight of financial assets (eg, long position), and a negative investment weighting means reducing the investment weight of financial assets (eg, a short position). do. For accurate calculation of the investment weight proportional to the ratio of the first area 610 and the second area 620 , the investment weight graph shown in FIG. 7 may be used.
도 7은 본 발명의 실시 예에 따른 투자비중을 산출하는 방법의 일 예를 도시한 도면이다.7 is a diagram illustrating an example of a method for calculating an investment weight according to an embodiment of the present invention.
도 6 및 도 7을 함께 참조하면, 투자자문장치(100)는 제1 면적(610)과 제2 면적(620)의 비와 투자비중(730) 사이의 관계를 정의할 수 있다. 예를 들어, 1 면적(610)과 제2 면적(620)의 비와 투자비중(730) 사이의 관계는 선형 비례관계로 정의되거나 S자 곡선 관계로 정의될 수 있는 등 실시 예에 따라 다양하게 정의될 수 있다.6 and 7 together, the investment advisory apparatus 100 may define a relationship between the ratio of the first area 610 and the second area 620 and the investment weight 730 . For example, the relationship between the ratio of the first area 610 and the second area 620 and the investment weight 730 may be defined as a linear proportional relationship or may be defined as an S-curve relationship. can be defined.
일 실시 예로 투자에 많이 사용되는 켈리(kelly) 공식(f=(bp-q)/b, 여기서, f는 투자비중, p는 승리확률, q는 패배확률, b는 순배당률)을 이용하여 제1 면적(610)과 제2 면적(620)의 비와 투자비중(730) 사이의 관계를 정의할 수 있다. 예를 들어, 투자자문장치(100)는 도 6의 분포(600)에서 전체 면적에 대한 제1 면적과 제2 면적의 각 비율을 켈리 공식의 승리확률과 패배확률에 각각 적용하여, "투자비중(730) 대 (분포평균값-현재가)(740)"의 그래프를 구할 수 있다. 다만, 켈리 공식만으로 그래프를 그릴 경우 하한과 상한이 없이 계속 증가하는 형태의 그래프가 되므로 투자비중이 일정 범위 내에 존재하도록 시그모이드(sigmoid) 함수를 곱하여 도 7과 같은 그래프(700)를 구할 수 있다. In one embodiment, it is calculated using the Kelly formula (f = (bp-q)/b, where f is the investment weight, p is the win probability, q is the loss probability, and b is the net dividend rate), which is often used in investment. A relationship between the ratio of the first area 610 and the second area 620 and the investment weight 730 may be defined. For example, the investment advisory apparatus 100 applies the respective ratios of the first area and the second area to the total area in the distribution 600 of FIG. 6 to the win probability and the loss probability of the Kelly formula, respectively, and "investment ratio" (730) versus (distribution average value - present price) (740)" can be obtained. However, if a graph is drawn using only the Kelly formula, it becomes a graph that continues to increase without a lower limit or an upper limit, so a graph 700 as shown in FIG. 7 can be obtained by multiplying the sigmoid function so that the investment weight exists within a certain range. have.
도 6의 예에서, 현재가(630)와 분포평균값(bavg) 사이의 차이가 ℓ이므로, 투자자문장치(100)는 도 7의 그래프(700)에서 원점으로부터 ℓ만큼 떨어진 위치(710)에 대한 투자비중 f%(720)를 구할 수 있다. 예측모델(300)이 A 주식에 대한 예측모델이라면, 투자자문장치(100)는 전체 투자 비중에서 A 주식에 대한 투자를 f%(720)로 만큼 늘릴 것을 추천할 수 있다. 다른 예로, 도 6에서 현재가(630)가 분포평균값(bavg)의 위쪽으로 ℓ만큼 떨어진 곳(750)에 존재한다면, (분포평균값-현재가)는 음수가 되고 도 7의 그래프에서 투자비중 -f%(760)가 산출된다. 이 경우 투자자문장치(100)는 전체 투자비중에서 A 주식에 대한 투자비중을 f% 만큼 줄일 것을 추천할 수 있다.In the example of FIG. 6 , since the difference between the current price 630 and the distribution average value (b avg ) is ℓ, the investment advisory apparatus 100 is located in the graph 700 of FIG. The investment weight f% (720) can be obtained. If the prediction model 300 is a prediction model for stock A, the investment advisory apparatus 100 may recommend that the investment in stock A be increased by f% 720 from the total investment ratio. As another example, if the present price 630 in FIG. 6 exists in a place 750 that is separated by ℓ above the distribution average value b avg , (distribution average value-present price) becomes negative and the investment weight -f in the graph of FIG. % (760) is calculated. In this case, the investment advisory apparatus 100 may recommend reducing the investment weight for the stock A from the total investment weight by f%.
도 7의 투자비중은 투자자의 현 상황의 고려없이 투자비중을 추천하는 예이다. 예를 들어, A 투자자의 잔고수익률과 B 투자자의 잔고수익률이 다르면 그에 따른 투자비중의 자문도 달라질 필요가 있다. 이에 대한 예가 도 8에 도시되어 잇다.The investment weight of FIG. 7 is an example of recommending the investment weight without considering the current situation of the investor. For example, if the return on balance of investor A and the return on balance of investor B are different, the advice on investment weight needs to be different accordingly. An example of this is shown in FIG. 8 .
도 8은 본 발명의 실시 예에 따른 투자비중을 투자자 잔고수익률로 보정하는 방법의 일 예를 도시한 도면이다.8 is a diagram illustrating an example of a method of correcting an investment weight by an investor's balance return according to an embodiment of the present invention.
도 8을 참조하면, 잔고수익률(810)과 추가투자비중(820) 사이의 관계가 그래프(800)로 정의되어 있다. 본 실시 예는 투자자의 잔고수익률(830)이 음수인 경우에만 추가투자비중(840)을 고려하며, 또한 잔고수익률(840)이 일정 이하이면 추가투자비중이 고정되도록 한다. 본 실시 예의 그래프(800)는 이해를 돕기 위한 하나의 예일 뿐 실시 예에 따라 잔고수익률(810)과 추가투자비중(820) 사이의 관계는 다양하게 정의될 수 있다.Referring to FIG. 8 , the relationship between the balance return 810 and the additional investment weight 820 is defined as a graph 800 . This embodiment considers the additional investment weight 840 only when the investor's balance return 830 is a negative number, and also sets the additional investment weight to be fixed when the balance return 840 is less than a certain level. The graph 800 of this embodiment is only an example for helping understanding, and the relationship between the balance return 810 and the additional investment weight 820 may be defined in various ways according to embodiments.
투자자문장치(100)는 도 8의 그래프(800)를 이용하여 투자자의 잔고수익률(830)에 해당하는 추가투자비중(840)을 구한 후 이를 기초로 도 7에서 구한 투자비중(730)을 보정한다. 예를 들어, 투자자문장치(100)는 "투자비중*(1+추가투자비중)"의 값을 투자자에 대한 최종 투자비중으로 산출하여 제공할 수 있다.The investment advisory apparatus 100 calculates the additional investment weight 840 corresponding to the balance return 830 of the investor using the graph 800 of FIG. 8 and then corrects the investment weight 730 obtained in FIG. 7 based on this. do. For example, the investment advisory apparatus 100 may calculate and provide the value of “investment ratio * (1 + additional investment ratio)” as the final investment ratio for the investor.
도 9는 본 발명의 실시 예에 따른 투자자문방법의 일 예를 도시한 흐름도이다.9 is a flowchart illustrating an example of an investment advisory method according to an embodiment of the present invention.
도 9를 참조하면, 투자자문장치(100)는 금융정보에 대한 시계열데이터를 이용하여 예측모델을 학습시킨다(S900). 예측모델의 학습데이터로 이용되는 시계열데이터의 일 예가 도 2에 도시되어 있다. 또한 시계열데이터를 이용한 예측모델의 학습 방법의 예가 도 3에 도시되어 있다. 다른 실시 예로, 투자자문장치(100)는 도 2의 시계열데이터와 도 5에서 살핀 증강데이터를 포함하는 학습데이터를 이용하여 예측모델을 학습시킬 수 있다. 예를 들어, 도 3에서 예측모델은 시계열데이터와 증강데이터를 함께 입력받는다.Referring to FIG. 9 , the investment advisory apparatus 100 learns a predictive model using time series data on financial information ( S900 ). An example of time series data used as training data of a predictive model is shown in FIG. 2 . Also, an example of a learning method of a predictive model using time series data is shown in FIG. 3 . In another embodiment, the investment advisory apparatus 100 may train the predictive model by using the training data including the time series data of FIG. 2 and the salpin augmented data of FIG. 5 . For example, in FIG. 3 , the prediction model receives time series data and augmented data together.
투자자문장치(100)는 예측모델의 학습이 완료되면, 현 시점의 시계열데이터를 예측모델에 입력하여 금융자산의 예측가를 파악한다(S910). 이때 투자자문장치(100)는 현 시점의 시계열데이터를 복수 번 예측모델에 입력하여 복수 개의 예측가를 산출한다. 투자자문장치(100)는 도 4와 같이 예측모델을 통해 미래의 다양한 시점의 예측가를 파악할 수 있다. When the learning of the predictive model is completed, the investment advisory apparatus 100 inputs the time series data of the current time into the predictive model to determine the predictive value of the financial asset (S910). At this time, the investment advisory apparatus 100 calculates a plurality of forecast prices by inputting the time series data of the current time into the prediction model a plurality of times. The investment advisory apparatus 100 may determine the forecast price at various points in the future through the prediction model as shown in FIG. 4 .
투자자문장치(100)는 복수 개의 예측가의 분포를 파악한다(S920). 예를 들어, 투자자문장치(100)는 도 6과 같이 예측가의 누적 분포를 파악할 수 있다. 투자자문장치(100)는 예측가의 분포에서 현재가를 기준으로 파악된 상위 분포의 제1 면적과 하위 분포의 제2 면적의 비를 이용하여 투자비중을 산출한다(S930). 투자비중을 산출하는 예가 도 7에 도시되어 있다. 다른 예로, 투자자문장치(100)는 투자자의 잔고수익률을 반영하여 해당 투자자에 맞는 투자비중을 산출할 수 있으며, 그 예가 도 8에 도시되어 잇다.The investment advisory apparatus 100 identifies the distribution of a plurality of predictors (S920). For example, the investment advisory apparatus 100 may determine the cumulative distribution of the forecast price as shown in FIG. 6 . The investment advisory apparatus 100 calculates the investment weight by using the ratio of the first area of the upper distribution and the second area of the lower distribution, which is determined based on the current price in the distribution of the predicted price (S930). An example of calculating the investment weight is shown in FIG. 7 . As another example, the investment advisory apparatus 100 may calculate an investment weight suitable for the corresponding investor by reflecting the return on the investor's balance, an example of which is shown in FIG. 8 .
도 10은 본 발명의 실시 예에 따른 투자자문장치의 일 예의 구성을 도시한 도면이다.10 is a diagram showing the configuration of an example of an investment advisory apparatus according to an embodiment of the present invention.
도 10을 참조하면, 투자자문장치(100)는 학습데이터생성부(1000), 학습부(1010), 예측부(1020), 분포파악부(1030), 투자비중산출부(1040) 및 보정부(1050)를 포함한다. 실시 예에 따라 학습데이터생성부(1000) 및 보정부(1050)는 생략될 수 있다.Referring to FIG. 10 , the investment advisory apparatus 100 includes a learning data generating unit 1000 , a learning unit 1010 , a prediction unit 1020 , a distribution grasping unit 1030 , an investment weight calculation unit 1040 , and a correction unit. (1050). According to an embodiment, the learning data generating unit 1000 and the correcting unit 1050 may be omitted.
학습데이터생성부(1000)는 금융정보에 대한 적어도 하나 이상의 항목을 포함하는 시계열데이터를 학습데이터로 생성한다. 일 실시 예로, 학습데이터생성부(1000)는 도 2의 시계열데이터만을 학습데이터로 생성하거나 도 5의 증강데이터와 시계열데이터를 합하여 학습데이터를 생성할 수 있다.The learning data generating unit 1000 generates time series data including at least one item of financial information as learning data. As an embodiment, the learning data generation unit 1000 may generate only the time series data of FIG. 2 as learning data or may generate the learning data by combining the augmented data and the time series data of FIG. 5 .
학습부(1010)는 금융정보의 시계열데이터를 이용하여 금융자산에 대한 예측가를 출력하는 예측모델을 학습시킨다. 예를 들어, 학습데이터가 증강데이터와 시계열데이터로 구성된다면, 학습부(1010)는 증강데이터와 시계열데이터를 예측모델에 함께 입력하여 예측모델을 학습시킬 수 있다. The learning unit 1010 learns a predictive model for outputting predictive prices for financial assets by using time series data of financial information. For example, if the learning data consists of augmented data and time series data, the learning unit 1010 may learn the predictive model by inputting the augmented data and time series data together into the predictive model.
예측부(1020)는 현 시점의 시계열데이터를 예측모델에 기 정의된 횟수만큼 반복 입력하여 복수 개의 예측가를 산출한다. 예측가의 산출방법의 일 예가 도 4에 도시되어 있다.The predictor 1020 calculates a plurality of predictor values by repeatedly inputting the time series data of the current time into the predictive model a predefined number of times. An example of a method of calculating a predictor is shown in FIG. 4 .
분포파악부(1030)는 예측부(1020)에서 구한 복수 개의 예측가의 분포를 파악한다. 예측가의 분포의 일 예가 도 6에 도시되어 있다. The distribution determining unit 1030 grasps the distribution of the plurality of predictors obtained by the predicting unit 1020 . An example of the distribution of predictors is shown in FIG. 6 .
투자비중산출부(1040)는 분포파악부(1030)에서 구한 예측가 분포에서 현재가를 기준으로 파악된 상위 분포의 제1 면적과 하위 분포의 제2 면적의 비를 기초로 투자비중을 산출한다. 투자비중산출 방법의 일 예가 도 7에 도시되어 있다.The investment weight calculation unit 1040 calculates the investment weight based on the ratio of the first area of the upper distribution and the second area of the lower distribution determined based on the current price in the distribution of the predicted price obtained by the distribution grasping unit 1030 . An example of a method of calculating the investment weight is shown in FIG. 7 .
보정부(1050)는 잔고수익률과 추가투자비중 사이의 미리 정의된 관계를 기초로 투자자의 잔고수익률에 해당하는 추가투자비중을 반영하여 상기 투자비중을 보정한다. 투자자 잔고수익률에 따른 투자자 맞춤형 투자비중의 산출 방법의 일 예가 도 8에 도시되어 있다.The correction unit 1050 corrects the investment weight by reflecting the additional investment weight corresponding to the return on the balance of the investor based on a predefined relationship between the balance return and the additional investment weight. An example of a method of calculating an investor-customized investment weight according to an investor's balance return is shown in FIG. 8 .
본 발명은 또한 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광데이터 저장장치 등이 있다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.The present invention can also be implemented as computer-readable codes on a computer-readable recording medium. The computer-readable recording medium includes all types of recording devices in which data readable by a computer system is stored. Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disk, and optical data storage device. In addition, the computer-readable recording medium is distributed in a network-connected computer system so that the computer-readable code can be stored and executed in a distributed manner.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been looked at with respect to preferred embodiments thereof. Those of ordinary skill in the art to which the present invention pertains will understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments are to be considered in an illustrative rather than a restrictive sense. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the scope equivalent thereto should be construed as being included in the present invention.

Claims (8)

  1. 금융정보의 시계열데이터를 이용하여 예측가를 출력하는 예측모델을 학습시키는 단계;training a predictive model that outputs a predictive price using time series data of financial information;
    현 시점의 시계열데이터를 학습 완료된 예측모델에 기 정의된 횟수만큼 반복 입력하여 복수 개의 예측가를 산출하는 단계;calculating a plurality of predictive values by repeatedly inputting the time series data at the current time into the learned predictive model a predefined number of times;
    상기 복수 개의 예측가의 분포를 파악하는 단계; 및identifying a distribution of the plurality of predictors; and
    상기 분포에서 현재가를 기준으로 파악된 상위 분포의 제1 면적과 하위 분포의 제2 면적의 비를 기초로 투자비중을 산출하는 단계;를 포함하는 것을 특징으로 하는 투자자문방법.Calculating the investment weight based on the ratio of the first area of the upper distribution and the second area of the lower distribution determined based on the current price in the distribution;
  2. 제 1항에 있어서, 상기 예측모델을 학습시키는 단계는,The method of claim 1, wherein the training of the predictive model comprises:
    상기 시계열데이터를 기초로 증강데이터를 생성하는 단계; 및generating augmented data based on the time series data; and
    상기 시계열데이터와 상기 증강데이터를 상기 예측모델의 학습데이터로 이용하는 단계;를 포함하고,Including; using the time series data and the augmented data as training data of the predictive model;
    상기 증강데이터를 생성하는 단계는,The step of generating the augmented data comprises:
    상기 시계열데이터를 기초로 적어도 하나 이상의 이동평균선으로 구성된 그물망 그래프를 생성하는 단계;generating a network graph composed of at least one moving average line based on the time series data;
    상기 그물망 그래프에서 시계열데이터의 각 시점의 값과 이동평균선 사이의 거리 및 각 시점에서의 이동평균선의 기울기를 파악하는 단계; 및determining the distance between the value of each time point of the time series data and the moving average line in the mesh graph and the slope of the moving average line at each time point; and
    상기 거리 및 상기 기울기를 포함하는 증강데이터를 생성하는 단계;를 포함하는 것을 특징으로 하는 투자자문방법.An investment advisory method comprising a; generating augmented data including the distance and the inclination.
  3. 제 1항에 있어서, 상기 투자비중을 산출하는 단계는,The method of claim 1, wherein calculating the investment weight comprises:
    상기 제1 면적이 상기 제2 면적보다 크면 상기 제1 면적과 상기 제2 면적의 비에 비례하는 양의 투자비중을 산출하고, 상기 제1 면적이 상기 제2 면적보다 작으면 상기 제1 면적과 상기 제2 면적의 비에 비례하는 음의 투자비중을 산출하는 단계;를 포함하는 것을 특징으로 하는 투자자문방법.If the first area is larger than the second area, a positive investment ratio is calculated in proportion to the ratio of the first area to the second area, and if the first area is smaller than the second area, the first area and Calculating a negative investment weight proportional to the ratio of the second area; Investment advisory method comprising: a.
  4. 제 1항에 있어서, The method of claim 1,
    잔고수익률과 추가투자비중 사이의 미리 정의된 관계를 기초로 투자자의 잔고수익률에 해당하는 추가투자비중을 상기 투자비중을 반영하여 보정하는 단계;를 더 포함하는 것을 특징으로 투자자문방법.The investment advisory method further comprising; correcting the additional investment weight corresponding to the return on balance of the investor based on a predefined relationship between the balance return and the additional investment weight by reflecting the investment weight.
  5. 금융정보의 시계열데이터를 이용하여 예측가를 출력하는 예측모델을 학습시키는 학습부;a learning unit for learning a predictive model that outputs a predictive price using time series data of financial information;
    현 시점의 시계열데이터를 상기 예측모델에 기 정의된 횟수만큼 반복 입력하여 복수 개의 예측가를 산출하는 예측부;a predictor for calculating a plurality of predictive values by repeatedly inputting the time series data at the current time into the predictive model a predefined number of times;
    상기 복수 개의 예측가의 분포를 파악하는 분포파악부; 및a distribution grasping unit which grasps a distribution of the plurality of predictors; and
    상기 분포에서 현재가를 기준으로 파악된 상위 분포의 제1 면적과 하위 분포의 제2 면적의 비를 기초로 투자비중을 산출하는 투자비중산출부;를 포함하는 것을 특징으로 하는 투자자문장치.Investment advisory apparatus comprising: an investment weighting calculator that calculates the investment weight based on the ratio of the first area of the upper distribution and the second area of the lower distribution determined based on the current price in the distribution.
  6. 제 5항에 있어서,6. The method of claim 5,
    시계열데이터를 기초로 적어도 하나 이상의 이동평균선으로 구성된 그물망 그래프를 생성하고, 상기 그물망 그래프에서 시계열데이터의 각 시점의 값과 이동평균선 사이의 거리 및 각 시점에서의 이동평균선의 기울기를 파악한 후, 상기 시계열데이터와 상기 거리 및 상기 기울기를 포함하는 학습데이터를 생성하는 학습데이터생성부;를 더 포함하는 것을 특징으로 하는 투자자문장치.After generating a network graph composed of at least one moving average line based on the time series data, and determining the distance between the value of each time point of the time series data and the moving average line and the slope of the moving average line at each time point in the mesh graph, the time series The investment advisory apparatus further comprising a; a learning data generation unit for generating learning data including data, the distance, and the slope.
  7. 제 5항에 있어서, 6. The method of claim 5,
    잔고수익률과 추가투자비중 사이의 미리 정의된 관계를 기초로 투자자의 잔고수익률에 해당하는 추가투자비중을 상기 투자비중을 반영하여 보정하는 보정부;를 더 포함하는 것을 특징으로 하는 투자자문장치.Investment advisory apparatus further comprising a; a correction unit for correcting the additional investment weight corresponding to the return on balance of the investor based on a predefined relationship between the balance return and the additional investment weight by reflecting the investment weight.
  8. 제 1항에 기재된 방법을 수행하기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.A computer-readable recording medium in which a program for performing the method according to claim 1 is recorded.
PCT/KR2020/015026 2020-07-02 2020-10-30 Investment advisory method and apparatus therefor WO2022004957A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0081686 2020-07-02
KR20200081686 2020-07-02

Publications (1)

Publication Number Publication Date
WO2022004957A1 true WO2022004957A1 (en) 2022-01-06

Family

ID=79316757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015026 WO2022004957A1 (en) 2020-07-02 2020-10-30 Investment advisory method and apparatus therefor

Country Status (1)

Country Link
WO (1) WO2022004957A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090110706A (en) * 2008-04-18 2009-10-22 손용성 A system and method for sharing financial capital
KR20140009640A (en) * 2012-07-12 2014-01-23 (주) 소프트브리지 System for investment analysis and method thereof
KR20170056759A (en) * 2015-11-13 2017-05-24 주식회사 씽크풀 Method for market independent investment and investement system thereof
KR20180048140A (en) * 2016-11-02 2018-05-10 키움증권 주식회사 System and method for providing robo-advisor algorithm using quantitative approach to market view
KR20200061144A (en) * 2018-11-23 2020-06-02 광운대학교 산학협력단 Stocks selection apparatus for constructing stock portfolio and method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090110706A (en) * 2008-04-18 2009-10-22 손용성 A system and method for sharing financial capital
KR20140009640A (en) * 2012-07-12 2014-01-23 (주) 소프트브리지 System for investment analysis and method thereof
KR20170056759A (en) * 2015-11-13 2017-05-24 주식회사 씽크풀 Method for market independent investment and investement system thereof
KR20180048140A (en) * 2016-11-02 2018-05-10 키움증권 주식회사 System and method for providing robo-advisor algorithm using quantitative approach to market view
KR20200061144A (en) * 2018-11-23 2020-06-02 광운대학교 산학협력단 Stocks selection apparatus for constructing stock portfolio and method thereof

Similar Documents

Publication Publication Date Title
CN111695415A (en) Construction method and identification method of image identification model and related equipment
WO1989011684A1 (en) Inference rule determination method and inference apparatus
CN110796542A (en) Financial risk control method, financial risk control device and electronic equipment
CN109101624A (en) Dialog process method, apparatus, electronic equipment and storage medium
CN111178537B (en) Feature extraction model training method and device
WO2022198983A1 (en) Conversation recommendation method and apparatus, electronic device, and storage medium
CN110889759A (en) Credit data determination method, device and storage medium
CN111797320A (en) Data processing method, device, equipment and storage medium
CN112148986A (en) Crowdsourcing-based top-N service re-recommendation method and system
CN114611692A (en) Model training method, electronic device, and storage medium
Hassani et al. Consensus-based decision support model and fusion architecture for dynamic decision making
WO2022004957A1 (en) Investment advisory method and apparatus therefor
CN111461862B (en) Method and device for determining target characteristics for service data
CN116842440A (en) Self-adaptive link switching method, system, equipment and medium based on context awareness
CN111126860A (en) Task allocation method, task allocation device and electronic equipment
Borysenko et al. Intelligent forecasting in multi-criteria decision-making.
WO2018182179A1 (en) Method and apparatus for asset management
CN116055330A (en) Digital twin network slicing method and device based on knowledge graph
CN110717537A (en) Method and device for training user classification model and executing user classification prediction
WO2023155301A1 (en) Answer sequence prediction method based on improved irt structure, and controller and storage medium
CN114764469A (en) Content recommendation method and device, computer equipment and storage medium
JPH05128284A (en) Neuro-processor
CN112104467B (en) Cutover operation risk rating method and device and computing equipment
Prudêncio et al. LearningWeights for linear combination of forecasting methods
CN112632846B (en) Power transmission section limit probability assessment method of power system and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943496

Country of ref document: EP

Kind code of ref document: A1