WO2022004922A1 - 파장 변환으로 인한 시간 지연 없는 멀티 파장 플러그 앤드 플레이 양자 키 분배 방법 및 장치 - Google Patents
파장 변환으로 인한 시간 지연 없는 멀티 파장 플러그 앤드 플레이 양자 키 분배 방법 및 장치 Download PDFInfo
- Publication number
- WO2022004922A1 WO2022004922A1 PCT/KR2020/008684 KR2020008684W WO2022004922A1 WO 2022004922 A1 WO2022004922 A1 WO 2022004922A1 KR 2020008684 W KR2020008684 W KR 2020008684W WO 2022004922 A1 WO2022004922 A1 WO 2022004922A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- path
- pulse train
- wavelength
- communication
- laser diode
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 195
- 238000006243 chemical reaction Methods 0.000 title description 30
- 238000009826 distribution Methods 0.000 title description 10
- 238000004891 communication Methods 0.000 claims abstract description 213
- 230000004044 response Effects 0.000 claims abstract description 19
- 230000015654 memory Effects 0.000 claims description 69
- 230000005540 biological transmission Effects 0.000 claims description 20
- 238000003860 storage Methods 0.000 claims description 18
- 239000013307 optical fiber Substances 0.000 claims description 6
- 230000008569 process Effects 0.000 abstract description 40
- 239000010410 layer Substances 0.000 description 72
- 230000003287 optical effect Effects 0.000 description 63
- 238000005516 engineering process Methods 0.000 description 61
- 238000013528 artificial neural network Methods 0.000 description 53
- 238000013473 artificial intelligence Methods 0.000 description 44
- 230000006870 function Effects 0.000 description 37
- 238000012545 processing Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 17
- 238000012549 training Methods 0.000 description 16
- 238000013135 deep learning Methods 0.000 description 15
- 238000013527 convolutional neural network Methods 0.000 description 14
- 239000000835 fiber Substances 0.000 description 13
- 239000013598 vector Substances 0.000 description 13
- 238000001514 detection method Methods 0.000 description 11
- 238000010801 machine learning Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 230000000306 recurrent effect Effects 0.000 description 10
- 230000006872 improvement Effects 0.000 description 9
- 230000010287 polarization Effects 0.000 description 9
- 230000003190 augmentative effect Effects 0.000 description 8
- 230000010354 integration Effects 0.000 description 7
- 238000007726 management method Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 230000004913 activation Effects 0.000 description 6
- 238000010295 mobile communication Methods 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000007792 addition Methods 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000001934 delay Effects 0.000 description 3
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 241000282412 Homo Species 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000010267 cellular communication Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000012517 data analytics Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000003058 natural language processing Methods 0.000 description 2
- 238000013468 resource allocation Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 239000004984 smart glass Substances 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 102100022734 Acyl carrier protein, mitochondrial Human genes 0.000 description 1
- 101000678845 Homo sapiens Acyl carrier protein, mitochondrial Proteins 0.000 description 1
- 230000027311 M phase Effects 0.000 description 1
- 101150028119 SPD1 gene Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 230000005610 quantum mechanics Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/70—Photonic quantum communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
Definitions
- This specification relates to a quantum communication system.
- a first pulse train is generated in a laser diode of a device, and after the first pulse train passes through a first path and a second path, respectively, the device through a quantum channel
- the key information is determined based on transmission from the to the other device.
- the present specification it is possible to improve the low sifted key rate of quantum key distribution technology using a multi-wavelength light source.
- NG-RAN New Generation Radio Access Network
- 2 illustrates functional partitioning between NG-RAN and 5GC.
- FIG 3 shows an example of a 5G usage scenario to which the technical features of the present specification can be applied.
- FIG. 4 is a diagram illustrating an example of a communication structure that can be provided in a 6G system.
- FIG. 5 schematically shows an example of a perceptron structure.
- FIG. 6 schematically shows an example of a multilayer perceptron structure.
- FIG. 7 schematically illustrates an example of a deep neural network.
- FIG. 8 schematically shows an example of a convolutional neural network.
- FIG. 9 schematically shows an example of a filter operation in a convolutional neural network.
- FIG. 10 schematically illustrates an example of a neural network structure in which a cyclic loop exists.
- FIG. 11 schematically illustrates an example of an operation structure of a recurrent neural network.
- FIG. 13 is a diagram showing an example of THz communication application.
- FIG. 14 is a diagram illustrating an example of an electronic device-based THz wireless communication transceiver.
- FIG. 15 is a diagram illustrating an example of a method of generating an optical device-based THz signal
- FIG. 16 is a diagram illustrating an example of an optical device-based THz wireless communication transceiver.
- FIG. 17 illustrates a structure of a photoinc source-based transmitter
- FIG. 18 illustrates a structure of an optical modulator.
- FIG. 20 schematically illustrates an example of a plug-and-play QKD protocol
- FIG. 21 schematically illustrates an example of a one-to-many quantum cryptographic communication network.
- FIG. 22 schematically shows an example of a two laser diode based plug and play QKD system.
- 25 is a flowchart of a method of transmitting a pulse train through a plurality of paths, according to an embodiment of the present specification.
- FIG. 27 is a flowchart of a method of transmitting a pulse train through a plurality of paths, according to another embodiment of the present specification.
- FIG. 28 schematically shows a situation of a wavelength tuning time problem of a tunable laser and a situation after solving the problem.
- 29 schematically illustrates an example of a wavelength conversion delay time improvement technique of a tunable laser-based QKD using a multi-path and an optical switch.
- 31 schematically shows an example of a wavelength conversion delay time improvement technique of a tunable laser-based QKD using a single delay line and an attenuator.
- 32 schematically illustrates an example of a de-multiplexing technique for solving a delay time problem due to wavelength switching of a tunable filter.
- 34 is a flowchart of a method for transmitting a pulse train through a plurality of paths, performed by Bob Said's apparatus, according to an embodiment of the present specification.
- 35 is a flowchart of a method of transmitting a pulse train through a plurality of paths, performed by Bob Said's apparatus, according to another embodiment of the present specification.
- 36 is an illustration of a block diagram of an apparatus for transmitting a pulse train through a plurality of paths, from the viewpoint of Bob Said's apparatus, according to an embodiment of the present specification.
- FIG. 37 is an illustration of a block diagram of an apparatus for transmitting a pulse train through a plurality of paths, from the viewpoint of Bob Said's apparatus, according to another embodiment of the present specification.
- 38 is an illustration of a block diagram of an apparatus for transmitting a pulse train through a plurality of paths, from the viewpoint of Bob Said's apparatus, according to another embodiment of the present specification.
- Fig. 39 illustrates the communication system 1 applied in this specification.
- 41 shows another example of a wireless device applicable to the present specification.
- a or B (A or B) may mean “only A”, “only B”, or “both A and B”.
- a or B (A or B) may be interpreted as “A and/or B (A and/or B)”.
- A, B or C(A, B or C) herein means “only A”, “only B”, “only C”, or “any and any combination of A, B and C ( any combination of A, B and C)”.
- a slash (/) or a comma (comma) may mean “and/or”.
- A/B may mean “A and/or B”. Accordingly, “A/B” may mean “only A”, “only B”, or “both A and B”.
- A, B, C may mean “A, B, or C”.
- At least one of A and B may mean “only A”, “only B”, or “both A and B”.
- the expression “at least one of A or B” or “at least one of A and/or B” means “at least one It can be interpreted the same as “A and B (at least one of A and B)”.
- At least one of A, B and C means “only A”, “only B”, “only C”, or “A, B and C” any combination of A, B and C”. Also, “at least one of A, B or C” or “at least one of A, B and/or C” means can mean “at least one of A, B and C”.
- parentheses used herein may mean “for example”.
- PDCCH control information
- PDCCH control information
- parentheses used herein may mean “for example”.
- PDCCH control information
- new radio access technology new RAT, NR
- next-generation communication As more and more communication devices require greater communication capacity, there is a need for improved mobile broadband communication compared to a conventional radio access technology (RAT).
- massive MTC massive machine type communications
- massive MTC massive machine type communications
- URLLC Ultra-Reliable and Low Latency Communication
- NG-RAN New Generation Radio Access Network
- the NG-RAN may include a gNB and/or an eNB that provides a UE with user plane and control plane protocol termination.
- 1 illustrates a case in which only gNBs are included.
- the gNB and the eNB are connected to each other through an Xn interface.
- the gNB and the eNB are connected to the 5G Core Network (5GC) through the NG interface. More specifically, it is connected to an access and mobility management function (AMF) through an NG-C interface, and is connected to a user plane function (UPF) through an NG-U interface.
- AMF access and mobility management function
- UPF user plane function
- 2 illustrates functional partitioning between NG-RAN and 5GC.
- the gNB is inter-cell radio resource management (Inter Cell RRM), radio bearer management (RB control), connection mobility control (Connection Mobility Control), radio admission control (Radio Admission Control), measurement setup and provision Functions such as (Measurement configuration & Provision) and dynamic resource allocation may be provided.
- AMF may provide functions such as NAS security, idle state mobility processing, and the like.
- the UPF may provide functions such as mobility anchoring and PDU processing.
- a Session Management Function (SMF) may provide functions such as terminal IP address assignment and PDU session control.
- FIG. 3 shows an example of a 5G usage scenario to which the technical features of the present specification can be applied.
- the 5G usage scenario shown in FIG. 3 is merely exemplary, and the technical features of the present specification may be applied to other 5G usage scenarios not shown in FIG. 3 .
- the three main requirements areas of 5G are (1) enhanced mobile broadband (eMBB) area, (2) massive machine type communication (mMTC) area and ( 3) includes ultra-reliable and low latency communications (URLLC) domains.
- eMBB enhanced mobile broadband
- mMTC massive machine type communication
- URLLC ultra-reliable and low latency communications
- Some use cases may require multiple domains for optimization, while other use cases may focus on only one key performance indicator (KPI).
- KPI key performance indicator
- 5G is to support these various use cases in a flexible and reliable way.
- eMBB focuses on overall improvements in data rates, latency, user density, capacity and coverage of mobile broadband connections. eMBB aims for a throughput of around 10 Gbps. eMBB goes far beyond basic mobile internet access, covering rich interactive work, media and entertainment applications in the cloud or augmented reality. Data is one of the key drivers of 5G, and for the first time in the 5G era, we may not see dedicated voice services. In 5G, voice is simply expected to be processed as an application using the data connection provided by the communication system. The main reasons for the increased amount of traffic are the increase in content size and the increase in the number of applications requiring high data rates. Streaming services (audio and video), interactive video and mobile Internet connections will become more widely used as more devices connect to the Internet.
- Cloud storage and applications are rapidly increasing in mobile communication platforms, which can be applied to both work and entertainment.
- Cloud storage is a special use case that drives the growth of uplink data rates.
- 5G is also used for remote work on the cloud, requiring much lower end-to-end latency to maintain a good user experience when tactile interfaces are used.
- cloud gaming and video streaming are another key factor increasing the demand for mobile broadband capabilities.
- Entertainment is essential on smartphones and tablets anywhere, including in high-mobility environments such as trains, cars and airplanes.
- Another use example is augmented reality for entertainment and information retrieval.
- augmented reality requires very low latency and instantaneous amount of data.
- mMTC is designed to enable communication between a large number of low-cost devices powered by batteries and is intended to support applications such as smart metering, logistics, field and body sensors.
- mMTC is targeting a battery life of 10 years or so and/or a million devices per square kilometer.
- mMTC enables seamless connectivity of embedded sensors in all fields and is one of the most anticipated 5G use cases. Potentially, by 2020, there will be 20.4 billion IoT devices.
- Industrial IoT is one of the areas where 5G will play a major role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
- URLLC is ideal for vehicular communications, industrial control, factory automation, telesurgery, smart grid, and public safety applications by enabling devices and machines to communicate very reliably, with very low latency and with high availability.
- URLLC aims for a delay on the order of 1 ms.
- URLLC includes new services that will transform industries through ultra-reliable/low-latency links such as remote control of critical infrastructure and autonomous vehicles. This level of reliability and latency is essential for smart grid control, industrial automation, robotics, and drone control and coordination.
- 5G could complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of delivering streams rated from hundreds of megabits per second to gigabits per second.
- FTTH fiber-to-the-home
- DOCSIS cable-based broadband
- Such a high speed may be required to deliver TVs with resolutions of 4K or higher (6K, 8K and higher) as well as virtual reality (VR) and augmented reality (AR).
- VR and AR applications almost include immersive sporting events. Certain applications may require special network settings. For VR games, for example, game companies may need to integrate core servers with network operators' edge network servers to minimize latency.
- Automotive is expected to be an important new driving force for 5G, with many use cases for mobile communication to vehicles. For example, entertainment for passengers requires both high capacity and high mobile broadband. The reason is that future users continue to expect high-quality connections regardless of their location and speed.
- Another example of use in the automotive sector is augmented reality dashboards.
- the augmented reality contrast board allows drivers to identify objects in the dark above what they are seeing through the front window.
- the augmented reality dashboard superimposes information to inform the driver about the distance and movement of objects.
- wireless modules will enable communication between vehicles, information exchange between vehicles and supporting infrastructure, and information exchange between automobiles and other connected devices (eg, devices carried by pedestrians).
- Safety systems can lower the risk of accidents by guiding drivers through alternative courses of action to help them drive safer.
- the next step will be remote-controlled vehicles or autonomous vehicles.
- This requires very reliable and very fast communication between different autonomous vehicles and/or between vehicles and infrastructure.
- autonomous vehicles will perform all driving activities, allowing drivers to focus only on traffic anomalies that the vehicle itself cannot discern.
- the technological requirements of autonomous vehicles demand ultra-low latency and ultra-fast reliability to increase traffic safety to unattainable levels for humans.
- Smart cities and smart homes will be embedded with high-density wireless sensor networks.
- a distributed network of intelligent sensors will identify conditions for keeping a city or house cost- and energy-efficient.
- a similar setup can be performed for each household.
- Temperature sensors, window and heating controllers, burglar alarms and appliances are all connected wirelessly. Many of these sensors typically require low data rates, low power and low cost.
- real-time HD video may be required in certain types of devices for surveillance.
- Smart grids use digital information and communication technologies to interconnect these sensors to gather information and act on it. This information can include supplier and consumer behavior, enabling smart grids to improve efficiency, reliability, economics, sustainability of production and distribution of fuels such as electricity in an automated manner.
- the smart grid can also be viewed as another low-latency sensor network.
- the health sector has many applications that can benefit from mobile communications.
- the communication system may support telemedicine providing clinical care from a remote location. This can help reduce barriers to distance and improve access to consistently unavailable health care services in remote rural areas. It is also used to save lives in critical care and emergency situations.
- a wireless sensor network based on mobile communication may provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
- Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with reconfigurable radio links is an attractive opportunity for many industries. Achieving this, however, requires that wireless connections operate with similar delays, reliability and capacity as cables, and that their management is simplified. Low latency and very low error probability are new requirements that need to be connected with 5G.
- Logistics and freight tracking are important use cases for mobile communications that use location-based information systems to enable tracking of inventory and packages from anywhere.
- Logistics and freight tracking use cases typically require low data rates but may require wide range and reliable location information.
- next-generation communication eg. 6G
- 6G next-generation communication
- 6G (wireless) systems have (i) very high data rates per device, (ii) very large number of connected devices, (iii) global connectivity, (iv) very low latency, (v) battery- It aims to reduce energy consumption of battery-free IoT devices, (vi) ultra-reliable connections, and (vii) connected intelligence with machine learning capabilities.
- the vision of the 6G system can be in four aspects: intelligent connectivity, deep connectivity, holographic connectivity, and ubiquitous connectivity, and the 6G system can satisfy the requirements shown in Table 1 below. That is, Table 1 is a table showing an example of the requirements of the 6G system.
- FIG. 4 is a diagram showing an example of a communication structure that can be provided in a 6G system. It is expected to have wireless communication connectivity. URLLC, a key feature of 5G, will become an even more important technology by providing an end-to-end delay of less than 1ms in 6G communication. 6G systems will have much better volumetric spectral efficiencies as opposed to frequently used areal spectral efficiencies. The 6G system can provide very long battery life and advanced battery technology for energy harvesting, so mobile devices will not need to be charged separately in the 6G system. New network characteristics in 6G may be as follows.
- 6G is expected to be integrated with satellites to provide a global mobile population.
- the integration of terrestrial, satellite and public networks into one wireless communication system is very important for 6G.
- the 6G wireless network will deliver power to charge the batteries of devices such as smartphones and sensors. Therefore, wireless information and energy transfer (WIET) will be integrated.
- WIET wireless information and energy transfer
- Small cell networks The idea of small cell networks was introduced to improve the received signal quality as a result of improved throughput, energy efficiency and spectral efficiency in cellular systems. As a result, small cell networks are essential characteristics for communication systems beyond 5G and Beyond 5G (5GB). Accordingly, the 6G communication system also adopts the characteristics of the small cell network.
- Ultra-dense heterogeneous networks will be another important characteristic of 6G communication systems.
- a multi-tier network composed of heterogeneous networks improves overall QoS and reduces costs.
- a backhaul connection is characterized as a high-capacity backhaul network to support high-capacity traffic.
- High-speed fiber optics and free-space optics (FSO) systems may be possible solutions to this problem.
- High-precision localization (or location-based service) through communication is one of the functions of the 6G wireless communication system. Therefore, the radar system will be integrated with the 6G network.
- Softening and virtualization are two important features that underlie the design process in 5GB networks to ensure flexibility, reconfigurability and programmability. In addition, billions of devices can be shared in a shared physical infrastructure.
- AI The most important and newly introduced technology for 6G systems is AI.
- AI was not involved in the 4G system.
- 5G systems will support partial or very limited AI.
- the 6G system will be AI-enabled for full automation.
- Advances in machine learning will create more intelligent networks for real-time communication in 6G.
- Incorporating AI into communications can simplify and enhance real-time data transmission.
- AI can use numerous analytics to determine how complex target tasks are performed. In other words, AI can increase efficiency and reduce processing delays.
- AI can also play an important role in M2M, machine-to-human and human-to-machine communication.
- AI can be a rapid communication in BCI (Brain Computer Interface).
- BCI Brain Computer Interface
- AI-based communication systems can be supported by metamaterials, intelligent structures, intelligent networks, intelligent devices, intelligent cognitive radios, self-sustaining wireless networks, and machine learning.
- AI-based physical layer transmission means applying a signal processing and communication mechanism based on an AI driver rather than a traditional communication framework in a fundamental signal processing and communication mechanism.
- deep learning-based channel coding and decoding, deep learning-based signal estimation and detection, deep learning-based MIMO mechanism, AI-based resource scheduling and It may include an allocation (allocation) and the like.
- Machine learning may be used for channel estimation and channel tracking, and may be used for power allocation, interference cancellation, and the like in a physical layer of a downlink (DL). In addition, machine learning may be used for antenna selection, power control, symbol detection, and the like in a MIMO system.
- DL downlink
- machine learning may be used for antenna selection, power control, symbol detection, and the like in a MIMO system.
- Deep learning-based AI algorithms require large amounts of training data to optimize training parameters.
- a lot of training data is used offline. This is because static training on training data in a specific channel environment may cause a contradiction between dynamic characteristics and diversity of a wireless channel.
- signals of the physical layer of wireless communication are complex signals.
- further research on a neural network for detecting a complex domain signal is needed.
- Machine learning refers to a set of actions that trains a machine to create a machine that can perform tasks that humans can or cannot do.
- Machine learning requires data and a learning model.
- data learning methods can be roughly divided into three types: supervised learning, unsupervised learning, and reinforcement learning.
- Neural network learning is to minimize output errors. Neural network learning repeatedly inputs training data into the neural network, calculates the output and target errors of the neural network for the training data, and backpropagates the neural network error from the output layer of the neural network to the input layer in the direction to reduce the error. ) to update the weight of each node in the neural network.
- Supervised learning uses training data in which the correct answer is labeled in the training data, and in unsupervised learning, the correct answer may not be labeled in the training data. That is, for example, learning data in the case of supervised learning related to data classification may be data in which categories are labeled for each of the training data.
- the labeled training data is input to the neural network, and an error can be calculated by comparing the output (category) of the neural network with the label of the training data.
- the calculated error is back propagated in the reverse direction (ie, from the output layer to the input layer) in the neural network, and the connection weight of each node of each layer of the neural network may be updated according to the back propagation.
- a change amount of the connection weight of each node to be updated may be determined according to a learning rate.
- the computation of the neural network on the input data and the backpropagation of errors can constitute a learning cycle (epoch).
- the learning rate may be applied differently depending on the number of repetitions of the learning cycle of the neural network. For example, in the early stage of learning a neural network, a high learning rate can be used to increase the efficiency by allowing the neural network to quickly obtain a certain level of performance, and in the late learning period, a low learning rate can be used to increase the accuracy.
- the learning method may vary depending on the characteristics of the data. For example, when the purpose of accurately predicting data transmitted from a transmitter in a communication system is at a receiver, it is preferable to perform learning using supervised learning rather than unsupervised learning or reinforcement learning.
- the learning model corresponds to the human brain, and the most basic linear model can be considered. ) is called
- the neural network cord used as a learning method is largely divided into deep neural networks (DNN), convolutional deep neural networks (CNN), and Recurrent Boltzmann Machine (RNN) methods. have.
- DNN deep neural networks
- CNN convolutional deep neural networks
- RNN Recurrent Boltzmann Machine
- An artificial neural network is an example of connecting several perceptrons.
- FIG. 5 schematically shows an example of a perceptron structure.
- the huge artificial neural network structure may extend the simplified perceptron structure shown in FIG. 5 to apply input vectors to different multidimensional perceptrons.
- an input value or an output value is referred to as a node.
- the perceptron structure shown in FIG. 5 can be described as being composed of a total of three layers based on an input value and an output value. Between the 1 st layer and the 2 nd layer (d + 1) pieces perceptron H of dimension, 2 nd layer and the 3 rd layer between, the (H + 1) level perceptron can be expressed as shown in Figure 6 the artificial neural network present the K have.
- FIG. 6 schematically shows an example of a multilayer perceptron structure.
- the layer where the input vector is located is called the input layer
- the layer where the final output value is located is called the output layer
- all the layers located between the input layer and the output layer are called hidden layers.
- three layers are disclosed, but when counting the actual number of artificial neural network layers, the input layer is counted except for the input layer, so it can be viewed as a total of two layers.
- the artificial neural network is constructed by connecting the perceptrons of the basic blocks in two dimensions.
- the aforementioned input layer, hidden layer, and output layer can be jointly applied in various artificial neural network structures such as CNN and RNN to be described later as well as multi-layer perceptron.
- various artificial neural network structures such as CNN and RNN to be described later as well as multi-layer perceptron.
- the artificial neural network becomes deeper, and a machine learning paradigm that uses a sufficiently deep artificial neural network as a learning model is called deep learning.
- an artificial neural network used for deep learning is called a deep neural network (DNN).
- DNN deep neural network
- FIG. 7 schematically illustrates an example of a deep neural network.
- the deep neural network shown in FIG. 7 is a multi-layer perceptron composed of eight hidden layers and eight output layers.
- the multi-layered perceptron structure is referred to as a fully-connected neural network.
- a connection relationship does not exist between nodes located in the same layer, and a connection relationship exists only between nodes located in adjacent layers.
- DNN has a fully connected neural network structure and is composed of a combination of a number of hidden layers and activation functions, so it can be usefully applied to figure out the correlation between input and output.
- the correlation characteristic may mean a joint probability of input/output.
- various artificial neural network structures different from the above-described DNN can be formed depending on how a plurality of perceptrons are connected to each other.
- FIG. 8 schematically shows an example of a convolutional neural network.
- nodes located inside one layer are arranged in a one-dimensional vertical direction.
- w nodes are horizontally and h nodes are arranged in two dimensions (convolutional neural network structure of FIG. 8 ).
- h ⁇ w weights since a weight is added per connection in the connection process from one input node to the hidden layer, a total of h ⁇ w weights must be considered. Since there are h ⁇ w nodes in the input layer, a total of h 2 w 2 weights are needed between two adjacent layers.
- the convolutional neural network of FIG. 8 has a problem in that the number of weights increases exponentially according to the number of connections, so instead of considering the connection of all modes between adjacent layers, it is assumed that a filter with a small size exists in FIG. As in Fig., the weighted sum and activation function calculations are performed on the overlapping filters.
- FIG. 9 schematically shows an example of a filter operation in a convolutional neural network.
- One filter has a weight corresponding to the number corresponding to its size, and weight learning can be performed so that a specific feature on an image can be extracted and output as a factor.
- a 3 ⁇ 3 filter is applied to the upper left 3 ⁇ 3 region of the input layer, and an output value obtained by performing weighted sum and activation function operations on the corresponding node is stored in z 22 .
- the filter performs weight sum and activation function calculations while moving horizontally and vertically at regular intervals while scanning the input layer, and places the output value at the current filter position.
- a calculation method is similar to a convolution operation on an image in the field of computer vision, so a deep neural network with such a structure is called a convolutional neural network (CNN), and a hidden layer generated as a result of a convolution operation is called a convolutional layer.
- a neural network having a plurality of convolutional layers is called a deep convolutional neural network (DCNN).
- the number of weights can be reduced by calculating the weighted sum by including only nodes located in the region covered by the filter in the node where the filter is currently located. Due to this, one filter can be used to focus on features for a local area. Accordingly, CNN can be effectively applied to image data processing in which physical distance in a two-dimensional domain is an important criterion. Meanwhile, in CNN, a plurality of filters may be applied immediately before the convolution layer, and a plurality of output results may be generated through the convolution operation of each filter.
- a structure in which this method is applied to an artificial neural network is called a recurrent neural network structure.
- FIG. 10 schematically illustrates an example of a neural network structure in which a cyclic loop exists.
- a recurrent neural network connects elements (x1(t), x2(t), ,..., xd(t)) of a certain gaze t on a data sequence to a fully connected neural network.
- the weighted sum and activation function are calculated by inputting the hidden vectors (z1(t-1), z2(t-1),..., zH(t-1)) for the immediately preceding time point t-1 during the input process. structure to be applied.
- the reason why the hidden vector is transferred to the next time point in this way is that information in the input vector at previous time points is considered to be accumulated in the hidden vector of the current time point.
- FIG. 11 schematically illustrates an example of an operation structure of a recurrent neural network.
- the recurrent neural network operates in a predetermined time sequence with respect to an input data sequence.
- the hidden vector (z1(1), z2(1),.. .,zH(1)) is input together with the input vector (x1(2),x2(2),...,xd(2)) of the time point 2 and the vector of the hidden layer (z1( 2),z2(2) ,...,zH(2)) are determined. This process is repeatedly performed until time point 2, time point 3, ,,, and time T.
- a deep recurrent neural network when a plurality of hidden layers are arranged in a recurrent neural network, this is called a deep recurrent neural network (DRNN).
- the recurrent neural network is designed to be usefully applied to sequence data (eg, natural language processing).
- Deep Q-Network As a neural network core used as a learning method, in addition to DNN, CNN, and RNN, Restricted Boltzmann Machine (RBM), deep belief networks (DBN), Deep Q-Network and It includes various deep learning techniques such as, and can be applied to fields such as computer vision, voice recognition, natural language processing, and voice/signal processing.
- RBM Restricted Boltzmann Machine
- DNN deep belief networks
- Deep Q-Network includes various deep learning techniques such as, and can be applied to fields such as computer vision, voice recognition, natural language processing, and voice/signal processing.
- AI-based physical layer transmission means applying a signal processing and communication mechanism based on an AI driver rather than a traditional communication framework in a fundamental signal processing and communication mechanism.
- deep learning-based channel coding and decoding, deep learning-based signal estimation and detection, deep learning-based MIMO mechanism, AI-based resource scheduling and It may include an allocation (allocation) and the like.
- the data rate can be increased by increasing the bandwidth. This can be accomplished by using sub-THz communication with a wide bandwidth and applying advanced large-scale MIMO technology.
- THz waves also known as sub-millimeter radiation, typically exhibit a frequency band between 0.1 THz and 10 THz with corresponding wavelengths in the range of 0.03 mm-3 mm.
- the 100GHz-300GHz band range (Sub THz band) is considered a major part of the THz band for cellular communication.
- Sub-THz band Addition to mmWave band increases 6G cellular communication capacity.
- 300GHz-3THz is in the far-infrared (IR) frequency band.
- the 300GHz-3THz band is part of the broadband, but at the edge of the wideband, just behind the RF band. Thus, this 300 GHz-3 THz band shows similarities to RF.
- THz communication The main characteristics of THz communication include (i) widely available bandwidth to support very high data rates, and (ii) high path loss occurring at high frequencies (high directional antennas are indispensable).
- the narrow beamwidth produced by the highly directional antenna reduces interference.
- the small wavelength of the THz signal allows a much larger number of antenna elements to be integrated into devices and BSs operating in this band. This allows the use of advanced adaptive nesting techniques that can overcome range limitations.
- OWC technology is envisioned for 6G communications in addition to RF-based communications for all possible device-to-access networks. These networks connect to network-to-backhaul/fronthaul network connections.
- OWC technology has already been used since the 4G communication system, but will be used more widely to meet the needs of the 6G communication system.
- OWC technologies such as light fidelity, visible light communication, optical camera communication, and FSO communication based on a light band are well known technologies.
- Communication based on optical radio technology can provide very high data rates, low latency and secure communication.
- LiDAR can also be used for ultra-high-resolution 3D mapping in 6G communication based on wide bands.
- FSO The transmitter and receiver characteristics of an FSO system are similar to those of a fiber optic network.
- data transmission in an FSO system is similar to that of a fiber optic system. Therefore, FSO can be a good technology to provide backhaul connectivity in 6G systems along with fiber optic networks.
- FSO supports high-capacity backhaul connections for remote and non-remote areas such as sea, space, underwater, and isolated islands.
- FSO also supports cellular BS connectivity.
- MIMO technology improves, so does the spectral efficiency. Therefore, large-scale MIMO technology will be important in 6G systems. Since the MIMO technology uses multiple paths, a multiplexing technique and a beam generation and operation technique suitable for the THz band should also be considered important so that a data signal can be transmitted through one or more paths.
- Blockchain will become an important technology for managing large amounts of data in future communication systems.
- Blockchain is a form of distributed ledger technology, which is a database distributed across numerous nodes or computing devices. Each node replicates and stores an identical copy of the ledger.
- the blockchain is managed as a peer-to-peer network. It can exist without being managed by a centralized authority or server. Data on the blockchain is collected together and organized into blocks. Blocks are linked together and protected using encryption.
- Blockchain in nature perfectly complements IoT at scale with improved interoperability, security, privacy, reliability and scalability. Therefore, blockchain technology provides several features such as interoperability between devices, traceability of large amounts of data, autonomous interaction of different IoT systems, and large-scale connection stability of 6G communication systems.
- the 6G system integrates terrestrial and public networks to support vertical expansion of user communications.
- 3D BS will be provided via low orbit satellites and UAVs. Adding a new dimension in terms of elevation and associated degrees of freedom makes 3D connections significantly different from traditional 2D networks.
- UAVs Unmanned Aerial Vehicles
- a BS entity is installed in the UAV to provide cellular connectivity.
- UAVs have certain features not found in fixed BS infrastructure, such as easy deployment, strong line-of-sight links, and degrees of freedom with controlled mobility.
- eMBB enhanced Mobile Broadband
- URLLC Universal Mobile Broadband
- mMTC massive Machine Type Communication
- Tight integration of multiple frequencies and heterogeneous communication technologies is very important in 6G systems. As a result, users can seamlessly move from one network to another without having to make any manual configuration on the device. The best network is automatically selected from the available communication technologies. This will break the limitations of the cell concept in wireless communication. Currently, user movement from one cell to another causes too many handovers in high-density networks, causing handover failures, handover delays, data loss and ping-pong effects. 6G cell-free communication will overcome all of this and provide better QoS. Cell-free communication will be achieved through multi-connectivity and multi-tier hybrid technologies and different heterogeneous radios of devices.
- WIET uses the same fields and waves as wireless communication systems.
- the sensor and smartphone will be charged using wireless power transfer during communication.
- WIET is a promising technology for extending the life of battery-charging wireless systems. Therefore, devices without batteries will be supported in 6G communication.
- An autonomous wireless network is a function that can continuously detect dynamically changing environmental conditions and exchange information between different nodes.
- sensing will be tightly integrated with communications to support autonomous systems.
- each access network is connected by backhaul connections such as fiber optic and FSO networks.
- backhaul connections such as fiber optic and FSO networks.
- Beamforming is a signal processing procedure that adjusts an antenna array to transmit a radio signal in a specific direction.
- Beamforming technology has several advantages such as high call-to-noise ratio, interference prevention and rejection, and high network efficiency.
- Hologram beamforming (HBF) is a new beamforming method that is significantly different from MIMO systems because it uses a software-defined antenna. HBF will be a very effective approach for efficient and flexible transmission and reception of signals in multi-antenna communication devices in 6G.
- Big data analytics is a complex process for analyzing various large data sets or big data. This process ensures complete data management by finding information such as hidden data, unknown correlations and customer propensity. Big data is gathered from a variety of sources such as videos, social networks, images and sensors. This technology is widely used to process massive amounts of data in 6G systems.
- the LIS is an artificial surface made of electromagnetic materials, and can change the propagation of incoming and outgoing radio waves.
- LIS can be seen as an extension of massive MIMO, but the array structure and operation mechanism are different from those of massive MIMO.
- LIS has low power consumption in that it operates as a reconfigurable reflector with passive elements, that is, only passively reflects the signal without using an active RF chain.
- each of the passive reflectors of the LIS must independently adjust the phase shift of the incoming signal, it can be advantageous for a wireless communication channel.
- the reflected signal can be gathered at the target receiver to boost the received signal power.
- THz wave is located between RF (Radio Frequency)/millimeter (mm) and infrared bands. Beam focusing may be possible.
- RF Radio Frequency
- mm millimeter
- the frequency band expected to be used for THz wireless communication may be a D-band (110 GHz to 170 GHz) or H-band (220 GHz to 325 GHz) band with low propagation loss due to absorption of molecules in the air.
- THz wireless communication may be applied to wireless cognition, sensing, imaging, wireless communication, THz navigation, and the like.
- FIG. 13 is a diagram showing an example of THz communication application.
- a THz wireless communication scenario may be classified into a macro network, a micro network, and a nanoscale network.
- THz wireless communication can be applied to vehicle-to-vehicle connection and backhaul/fronthaul connection.
- THz wireless communication in micro networks is applied to indoor small cells, fixed point-to-point or multi-point connections such as wireless connections in data centers, and near-field communication such as kiosk downloading.
- Table 2 below is a table showing an example of a technique that can be used in the THz wave.
- THz wireless communication can be classified based on a method for generating and receiving THz.
- the THz generation method can be classified into an optical device or an electronic device-based technology.
- FIG. 14 is a diagram illustrating an example of an electronic device-based THz wireless communication transceiver.
- a method of generating THz using an electronic device includes a method using a semiconductor device such as a Resonant Tunneling Diode (RTD), a method using a local oscillator and a multiplier, and an integrated circuit based on a compound semiconductor HEMT (High Electron Mobility Transistor).
- MMIC Monolithic Microwave Integrated Circuits
- a doubler, tripler, or multiplier is applied to increase the frequency, and it is radiated by the antenna through the sub-harmonic mixer. Since the THz band forms a high frequency, a multiplier is essential.
- the multiplier is a circuit that has an output frequency that is N times that of the input, matches the desired harmonic frequency, and filters out all other frequencies.
- an array antenna or the like may be applied to the antenna of FIG. 14 to implement beamforming.
- IF denotes an intermediate frequency
- tripler denote a multiplier
- PA Power Amplifier PA Power Amplifier
- LNA low noise amplifier PLL a phase lock circuit (Phase) -Locked Loop).
- FIG. 15 is a diagram illustrating an example of a method of generating an optical device-based THz signal
- FIG. 16 is a diagram illustrating an example of an optical device-based THz wireless communication transceiver.
- Optical device-based THz wireless communication technology refers to a method of generating and modulating a THz signal using an optical device.
- the optical element-based THz signal generation technology is a technology that generates a high-speed optical signal using a laser and an optical modulator, and converts it into a THz signal using an ultra-high-speed photodetector.
- it is easier to increase the frequency compared to the technology using only electronic devices, it is possible to generate a high-power signal, and it is possible to obtain a flat response characteristic in a wide frequency band.
- a laser diode, a broadband optical modulator, and a high-speed photodetector are required to generate a THz signal based on an optical device.
- an optical coupler refers to a semiconductor device that uses light waves to transmit electrical signals to provide a coupling with electrical insulation between circuits or systems
- UTC-PD Uni-Traveling Carrier Photo-) Detector
- UTC-PD is one of the photodetectors, which uses electrons as active carriers and reduces the movement time of electrons by bandgap grading.
- UTC-PD is capable of photodetection above 150GHz.
- EDFA Erbium-Doped Fiber Amplifier
- PD Photo Detector
- OSA various optical communication functions (photoelectric It represents an optical module (Optical Sub Aassembly) in which conversion, electro-optical conversion, etc.) are modularized into one component
- DSO represents a digital storage oscilloscope.
- FIGS. 17 and 18 illustrate the structure of the photoelectric converter (or photoelectric converter) will be described with reference to FIGS. 17 and 18 .
- 17 illustrates a structure of a photoinc source-based transmitter
- FIG. 18 illustrates a structure of an optical modulator.
- a phase of a signal may be changed by passing an optical source of a laser through an optical wave guide. At this time, data is loaded by changing electrical characteristics through a microwave contact or the like. Accordingly, an optical modulator output is formed as a modulated waveform.
- the photoelectric modulator (O/E converter) is an optical rectification operation by a nonlinear crystal (nonlinear crystal), photoelectric conversion (O / E conversion) by a photoconductive antenna (photoconductive antenna), a bunch of electrons in the light beam (bunch of) THz pulses can be generated by, for example, emission from relativistic electrons.
- a terahertz pulse (THz pulse) generated in the above manner may have a length in units of femtoseconds to picoseconds.
- An O/E converter performs down conversion by using non-linearity of a device.
- a number of contiguous GHz bands for fixed or mobile service use for the terahertz system are used. likely to use
- available bandwidth may be classified based on oxygen attenuation of 10 ⁇ 2 dB/km in a spectrum up to 1 THz. Accordingly, a framework in which the available bandwidth is composed of several band chunks may be considered.
- the bandwidth (BW) becomes about 20 GHz.
- Effective down conversion from the IR band to the THz band depends on how the nonlinearity of the O/E converter is utilized. That is, in order to down-convert to a desired terahertz band (THz band), the O/E converter having the most ideal non-linearity for transfer to the terahertz band (THz band) is design is required. If an O/E converter that does not fit the target frequency band is used, there is a high possibility that an error may occur with respect to the amplitude and phase of the corresponding pulse.
- a terahertz transmission/reception system may be implemented using one photoelectric converter. Although it depends on the channel environment, as many photoelectric converters as the number of carriers may be required in a far-carrier system. In particular, in the case of a multi-carrier system using several broadbands according to the above-described spectrum usage-related scheme, the phenomenon will become conspicuous. In this regard, a frame structure for the multi-carrier system may be considered.
- the down-frequency-converted signal based on the photoelectric converter may be transmitted in a specific resource region (eg, a specific frame).
- the frequency domain of the specific resource region may include a plurality of chunks. Each chunk may be composed of at least one component carrier (CC).
- a quantum key distribution (QKD) transmitter 1910 may be connected to the QKD receiver 1920 through a public channel and a quantum channel to perform communication.
- QKD quantum key distribution
- the QKD transmitter 1910 may supply the secret key to the encryptor 1930
- the QKD receiver 1920 may also supply the secret key to the decryptor 1940 .
- plain text may be input/output to the encryptor 1930, and the encryptor 1930 may transmit data encrypted with a secret symmetric key to the decryptor 1940 (via an existing communication network).
- plain text may be input/output to the decoder 1940 .
- quantum cryptography communication since the secret key for data encryption is distributed using the principle of quantum mechanics, it may be impossible for an eavesdropper to find out the information of the encryption key. Summarizing this, quantum cryptography communication can have the following properties.
- Plug and Play QKD is a protocol that generates key information through phase encoding, and is an efficient quantum cryptography protocol that does not require the application of additional correction techniques due to its strong resistance to fluctuations in phase and polarization.
- this technique is not a symmetrical structure in which Alice side and Bob side have a light source and a detector, respectively, as can be seen in the configuration diagram of FIG. They can all have an asymmetric structure.
- the plug-and-play QKD system requires only a few optical elements for encoding on the Alice side, so the quantum communication system is a one-to-many quantum cryptography with one Bob side and multiple Alice sides.
- the communication network configuration can be configured with low complexity and low cost.
- a plug-and-play QKD protocol among various protocols of the QKD technology will be described with reference to drawings.
- FIG. 20 schematically illustrates an example of a plug-and-play QKD protocol
- FIG. 21 schematically illustrates an example of a one-to-many quantum cryptographic communication network.
- the basic plug-and-play QKD system can generate an encryption key through the following process.
- a strong laser pulse (1550nm) emitted from the side of the rice is split 50/50 by a beam splitter (BS).
- BS beam splitter
- the two pulses passing through the BS are divided into a short path and a long path having a phase modulator (eg, PM_B) and a delay line (DL), respectively.
- the phase modulator PM_B does not operate.
- DL is used to create a time difference so that the pulses passing through the two paths do not overlap at the same time, and generally has a length of several tens of meters. Expressing this in an expression, it can be as follows.
- Pulses passing through the short and long paths have polarization components perpendicular to each other when passing through a Polarized Beam Splitter (PBS). Therefore, the pulse passing through the short path has the same polarization component as the input pulse even after passing through the PBS, but the pulse passing through the long path has a pulse having a polarization perpendicular to the input pulse after passing through the PBS.
- PBS Polarized Beam Splitter
- a pulse passing through PM_A passes through a storage line (SL).
- SL storage line
- the role of the storage line (SL) is as follows. SL prevents mixing of pulses detected by the detector with key information measured by the detector due to Rayleigh back-scattering.
- Back scattering is caused by the fact that the pulse generated from the laser is partially reflected as it passes through each element, and what is not key information is measured by the detector. Since many errors can occur due to backscattering, it is a factor that greatly degrades the performance of quantum cryptography communication.
- a pulse is generated at 1 MHz (eg 10 ⁇ (-6)(s)
- the transmission speed of light in a wired optical fiber is 2 ⁇ 10 ⁇ 8(m/s)
- the number of keys generated at one time is 125
- the storage line SL can store photons while reciprocating, the actual length may be 12.5 km or more, which is half of 25 km.
- a storage line with a very large length is applied to the Alice side. may be needed
- a pulse that has passed through SL after being reflected from FM generates key information through phase coding in a phase modulator (eg, PM_A).
- the key information according to the phase is shown in Table 3 below.
- phase coding can be performed by applying four different phases ⁇ _A to the second pulse passing through PM_A on the Alice side. Expressing this in an expression, it can be as follows.
- a pulse is emitted into a quantum channel. (At this time, 0.1 photon level can generally be used.)
- the first pulse that enters Bob through the quantum channel passes through a long path and determines the measurement basis by applying two phases ( ⁇ _B) as shown in Table 4 at PM_B.
- the first pulse (traversing the long path) and the second pulse (short path) passing through the two paths of the bobside arrive at the BS at the same time, and at this time, they overlap each other and cause constructive or destructive interference.
- this in an expression it can be as follows.
- the detection result according to the overlapping result is determined between detector 1 and detector 2, and the result can be as shown in Table 5 below.
- the first method is a method of using two lasers having different wavelengths as a light source, which will be described with reference to the drawings as follows.
- FIG. 22 schematically shows an example of a two laser diode based plug and play QKD system.
- the generation wavelengths of lasers 1 and 2 are generated differently as ⁇ _1 (nm) and ⁇ _2 (nm), and one pulse train is first generated in laser 1 with a wavelength of ⁇ _1 (nm), followed by ⁇ _2 (nm) A pulse train having a wavelength is generated by laser 2.
- the existing backscattering pulse problem which occurs when a pulse train having the same wavelength is continuously sent, is because the wavelengths of the front and rear pulse trains are different, so the wavelength that must be received by the optical filter installed just before the detectors SPD1 and SPD2. Since all backscattering pulses other than the signal of have different wavelengths, they can be blocked.
- R_conv1 denotes the shifted key rate in the conventional scheme of Fig. 20
- R_conv2 denotes the shifted key rate of the scheme in Fig. 22 (when two lasers are used).
- R_conv2 causes a slight loss of 10 ⁇ (- ⁇ _f/10) ( ⁇ _f: loss of the filter) due to the addition of the optical filter, but more pulses proportional to the number of additional laser light sources with different wavelengths It can be seen that it can have a higher shifted key rate compared to the existing technique because it can include .
- n_B 10 ⁇ (-L_(Bob/10))
- this method also has problems in that it is difficult to avoid the high cost, volume and weight increase of the Bob side because a larger number of laser diodes must be used compared to the conventional method to improve the key rate.
- a way to solve this is a QKD system based on one tunable laser that can avoid the increase in volume and weight of the bob side.
- a tunable laser is a light source that simultaneously generates multi-wavelength pulses inside, and then generates a pulse of a desired wavelength through an optical band pass filtering process and a process of amplifying the passed wavelength. to be.
- a method is used to generate one pulse train with a wavelength of ⁇ _1 nm, change the generation wavelength of the tunable laser to a desired wavelength ⁇ _2 nm, and then create the next pulse train. Therefore, there is an advantage in that it is not necessary to use several laser diodes to make a multi-wavelength pulse. Therefore, a high shifted key rate can be obtained with only one tunable laser, and the value is as follows.
- wavelength tuning time for tunable laser (Wavelength tuning time for tunable laser)
- Int[f ⁇ t_tn-1]/N represents the ratio of pulses that were not generated by the tunable laser during the wavelength tuning time in one pulse train composed of N pulses
- Int[f ⁇ t_sw-1]/N represents the ratio of signals not detected by the detector because they do not pass through the filter during the wavelength switching time in the tunable optical filter.
- this method can be an efficient method with a high key rate when the wavelength conversion time of the tunable laser and filter is short, but in the case of f ⁇ t_sw»1 or f ⁇ t_tn»1, the key rate due to the wavelength conversion time The losses can be very large.
- the wavelength conversion time is expected to be as long as ms, so the key rate loss due to wavelength conversion is negligible.
- the present specification relates to a cryptographic communication technique through quantum key distribution (QKD) in a quantum secure communication system. More specifically, it relates to an efficient method, apparatus and system for increasing the quantum key transmission rate by applying wavelength conversion to a signal using a tunable laser and a tunable optical filter in a plug-and-play quantum key distribution system among QKD techniques. .
- QKD quantum key distribution
- the tunable laser fails to generate a pulse during the tuning time consumed for conversion to the desired wavelength, and the tunable optical filter fails to pass a signal to the detector.
- the wavelength tuning time (eg, the example of FIG. 23 ) of the tunable laser that occurs when a method of converting the wavelength of the light source to have a different wavelength for every pulse train is applied and the wavelength is periodically converted
- a quantum cryptography key distribution method, apparatus and system that can solve the key rate loss problem due to the switching time (eg, the example of FIG. 24 ) for adjusting the detection wavelength of the optical filter in the process of detecting the detected pulse is configured.
- the tunable laser may generate a pulse train having a first wavelength value and then generate a pulse train having a second wavelength value through a tuning time.
- the tunable laser may generate a pulse train having a second wavelength value and then generate a pulse train having a first wavelength value through a tuning time.
- the tunable laser may generate a pulse train having a first wavelength value and then go through a tuning time again to generate a pulse train having a second wavelength value.
- a laser diode generates a pulse train having a first wavelength value, generates a pulse train having a second wavelength value, and then generates a pulse train having a first wavelength value again
- the laser diode may generate a pulse train having a first wavelength value, a pulse train having a second wavelength value, a pulse train having a third wavelength value, a pulse train having a fourth wavelength value, and the like.
- the tunable optical filter may pass a pulse train having a first wavelength value and then pass a pulse train having a second wavelength value through a switching time.
- the tunable laser may pass the pulse train having the second wavelength value and then pass the pulse train having the first wavelength value through the switching time.
- the tunable laser may pass a pulse train having a first wavelength value and then pass a pulse train having a second wavelength value through a switching time again.
- the tunable filter passes the pulse train having the first wavelength value and then passes the pulse train having the second wavelength value, and then the pulse having the first wavelength value again.
- the tunable optical filter may pass a pulse train having a first wavelength value, a pulse train having a second wavelength value, a pulse train having a third wavelength value, a pulse train having a fourth wavelength value, and the like.
- a key rate improvement technique of a two-way plug-and-play quantum cryptographic communication technique is dealt with.
- a method having a different wavelength for each pulse train is applied through the use of a tunable laser in the pulse generation process for generating key information.
- a solution to the key rate loss problem is presented through two methods.
- the wavelength to pass through the filter can be converted without time delay according to the change time of the input signal wavelength that changes periodically. Suggest an effective way to
- 25 is a flowchart of a method of transmitting a pulse train through a plurality of paths, according to an embodiment of the present specification.
- the device may generate a first pulse train from the laser diode ( S2510 ).
- the laser diode may be a device supporting wavelength tuning as described above.
- the device herein may refer to a device at Bobside described above/described later, and the device may correspond to the QKD receiver in FIG. 19 described above.
- the device may transmit the first pulse train that has passed through each of the first path and the second path to another device through the quantum channel (S2520).
- the second route may include N routes, the N may have a value less than or equal to K, the N and K may be natural numbers, and K may be the maximum number of the second routes.
- the last pulse of the first pulse train may pass through the N paths while the laser diode is tuning the wavelength.
- the length of each of the N paths depends on the length of the first path, the value of which path is the path among the N paths, the time interval between pulses of the laser diode, and the speed of light in the optical fiber. can be determined based on
- the value of K may be determined based on a time interval at which the laser diode tunes a wavelength and a time interval between pulses of the laser diode.
- the second path may include a storage line.
- the first pulse train is branched and passes through the first path and the second path, and the first pulse train passing through the second path is after the first pulse train passing through the first path.
- the first pulse train passing through the second path is after the first pulse train passing through the first path.
- the device detects a second pulse train related to transmission of the first pulse train based on a first tunable filter and a second tunable filter, and each of the first tunable filter and the second tunable filter is
- the first tunable filter and the second tunable filter may be an element supporting variably converting a wavelength that each of the filters passes.
- the first tunable filter passes the second pulse train having a first wavelength, and after the switching time of the second tunable filter, the first tunable filter may allow the second pulse train having a second wavelength to pass therethrough.
- the device described above may be, for example, a device including a QKD receiver (ie, Bob Side) and a decoder, and an example of this may be described with reference to the drawings as follows.
- a QKD receiver ie, Bob Side
- a decoder ie, Bob Side
- the QKD (quantum key distribution) transmitter 2610 may be connected to the QKD receiver 2620 through a public channel and a quantum channel to perform communication.
- the QKD transmitter 2610 may supply the secret key to the encryptor 2630
- the QKD receiver 2620 may also supply the secret key to the decryptor 2640 .
- plain text may be input/output to the encryptor 2630, and the encryptor 2630 may transmit data encrypted with a secret symmetric key to the decrypter 1940 (via an existing communication network).
- plain text may be input/output to the decoder 2640 .
- the encryptor and the decoder can transmit/receive data through a communication network as described above, and the communication network here is, for example, a 3GPP-based communication network (eg, an LTE/LTE-A/NR based communication network), an IEEE-based communication network. It may mean a communication network in
- the encryptor 2630 and the QKD transmitter 2610 may be included in one device 2650
- the decoder 2640 and the QKD receiver 2620 may also be included in one device 2660 .
- FIG. 27 is a flowchart of a method of transmitting a pulse train through a plurality of paths, according to another embodiment of the present specification.
- a device may receive a random access (RA) preamble from another device ( S2710 ).
- the device herein may correspond to a device including a QKD receiver and a decoder, and may mean a device at a Bob side.
- the other device may correspond to the device including the QKD transmitter and the encoder described above, and may mean a device on the Alice side.
- a detailed description thereof is the same as described above and/or will be described later, and thus, repeated description of overlapping content will be omitted for convenience of description.
- the device may transmit a random access response (RAR) to the other device in response to the RA preamble (S2720).
- RAR random access response
- S2720 RA preamble
- the device may perform a radio resource control (RRC) connection procedure with the other device (S2730).
- RRC radio resource control
- the device may receive data from the other device (S2740).
- S2740 A detailed description thereof is the same as described above and/or will be described later, and thus, repeated description of overlapping content will be omitted for convenience of description.
- the device may decrypt the data based on the key information (S2750).
- S2750 the key information
- a detailed description thereof is the same as described above and/or will be described later, and thus, repeated description of overlapping content will be omitted for convenience of description.
- Key information may be determined, and a more specific example thereof will be described later.
- the time delay for preventing back scattering pulses between the current pulse train and the next pulse train composed of N pulses is minimized for the purpose of minimizing
- the long tuning time problem that occurs during the wavelength conversion process of the used tunable laser-based signal pulse generator is dealt with.
- FIG. 28 schematically shows a situation of a wavelength tuning time problem of a tunable laser and a situation after solving the problem.
- a wavelength tuning time is required in the process of converting the generation wavelength from ⁇ _1 to ⁇ _2, and during this time, a pulse of the desired wavelength cannot be generated, so the key rate is lost.
- commercial tunable lasers capable of generating 1550 nm wavelength currently used in wired QKD are generally understood to have a wavelength conversion speed range of nm per second, it can be estimated that the tuning time will consume approximately ms. That is, the wavelength tuning time has a ratio that cannot be ignored compared to the pulse train generation time.
- 29 schematically illustrates an example of a wavelength conversion delay time improvement technique of a tunable laser-based QKD using a multi-path and an optical switch.
- N pulses having a wavelength of ⁇ _i are generated and transmitted to the P1 path (above). At this time, the P2 path (bottom) is maintained in a switched-off state.
- the switch is turned on when the last N-th pulse among the pulses having a wavelength of ⁇ _i is transmitted to the P2 path (below) through the BS.
- Each path has a different length of delay line, and the path difference is constantly increased.
- the maximum number of paths generated by P2 may be as follows.
- the value of K may be determined based on a time interval during which the laser diode tunes a wavelength and a time interval between pulses of the laser diode.
- the length of each of the N paths depends on the length of the first path, the value of which path is the path among the N paths, the time interval between pulses of the laser diode, and the speed of light in the optical fiber. can be determined based on
- length of the first path e.g. P1 path length
- the detector detects the difference in intensity between the pulses passing through the P1 path and the P2 path, and then attenuates the difference in VA and sends it out.
- Another specification technique is a method as shown in the figure below in which a storage line having a length corresponding to the tuning time is configured in parallel with the original path.
- 31 schematically shows an example of a wavelength conversion delay time improvement technique of a tunable laser-based QKD using a single delay line and an attenuator.
- This method is a method to prevent key rate loss by just adding a long single path when the tuning time of the tunable laser is long.
- the tuning time is shorter than the generation time of the pulse train, it is possible to generate a pulse without loss of key rate, so it is possible to secure a tuning time equal to the generation time of the pulse train generated by the tunable laser, and all in the variable attenuator (VA) It has the advantage that the control of VA is simple because it is enough to attenuate the pulse to the same value.
- N pulses having a wavelength of ⁇ _i are generated and then each pulse train is transmitted through two paths P1 and P2.
- Tuning is performed to generate a wavelength of ⁇ _(i+1) in the tunable LD before all of the N+1th pulse to the 2Nth pulse pass through the lower path.
- the detector In the tunable LD-based quantum cryptography communication technique, the detector must detect key information having a different wavelength at each time interval corresponding to the length of the pulse train generated by the tunable LD. The wavelength switching must be continued so that the filter can be positioned so that only the detection wavelength can pass. However, after the signal sequence having the wavelength of ⁇ _i is detected, the signal sequence having the wavelength of ⁇ _(i+1) has to pass through the filter. There is a problem that a signal having a wavelength of (i+1) cannot pass even if it enters.
- 32 schematically illustrates an example of a de-multiplexing technique for solving a delay time problem due to wavelength switching of a tunable filter.
- the easiest way to prevent the key rate loss due to the wavelength conversion time delay of the tunable optical filter is to use two demux and a single photon detector (SPD) that is twice the number of wavelengths k to be used in the tunable LD. to be placed together.
- SPD single photon detector
- a separate SPD and two tunable filters are additionally applied, and at the time when a signal having a wavelength of ⁇ _(i+1) starts to enter, the next through the 1X2 optical switch A method of switching to a path capable of passing a pass wavelength may be used. Since the path switching speed of the current commercial 1X2 optical switch is less than 10ns, it can be made shorter than the time corresponding to the interval between pulses of the signal coming into the SPD, so the time delay due to the optical switch may not occur.
- the wavelength-changed pulse is input after changing the pass wavelength of the optical filter to ⁇ _(i+1), which is the wavelength of the pulse train to be detected next.
- each parameter can be defined as follows.
- n_f fiber transmission coefficient
- n_f 10 ⁇ (- ⁇ _1*L_d/10) ( ⁇ _1: 1550nm fiber loss, 0.2dB/km, L_d: distance)
- n_B Total loss inside bob
- n_sw 10 ⁇ (- ⁇ _f/10), ( ⁇ _filter: the loss of filter)
- 34 is a flowchart of a method for transmitting a pulse train through a plurality of paths, performed by Bob Said's apparatus, according to an embodiment of the present specification.
- the device may generate a first pulse train from the laser diode ( S3410 ).
- S3410 a more specific example of the present embodiment is the same as described above, repeated description of overlapping content will be omitted for convenience of description.
- the device may transmit the first pulse train that has passed through each of the first path and the second path to another device through a quantum channel (S3420).
- a quantum channel S3420
- 35 is a flowchart of a method of transmitting a pulse train through a plurality of paths, performed by Bob Said's apparatus, according to another embodiment of the present specification.
- a device may receive a random access (RA) preamble from another device ( S3510 ).
- RA random access
- the device may transmit a random access response (RAR) to the other device in response to the RA preamble (S3520).
- RAR random access response
- S3520 RA preamble
- the device may perform a radio resource control (RRC) connection procedure with the other device (S3530).
- RRC radio resource control
- the device may receive data from the other device (S3540).
- S3540 the other device
- the device may decrypt the data based on the key information (S3550).
- a first pulse train is generated in a laser diode of the device and the first pulse train is transmitted from the device to the other device through a quantum channel after going through a first path and a second path, respectively
- Key information may be determined, and a more specific example thereof will be described later.
- a more specific example of the present embodiment is the same as described above, repeated description of overlapping content will be omitted for convenience of description.
- the device proposed in the present specification may be as described in the drawings below.
- the device in the drawings below may correspond to a simplified device of the proposal of the present specification described above.
- 36 is an illustration of a block diagram of an apparatus for transmitting a pulse train through a plurality of paths, from the viewpoint of Bob Said's apparatus, according to an embodiment of the present specification.
- a device 3600 may include a laser diode 3610 , a first path 3620 , and a second path 3630 , wherein the device 3600 communicates with another device through a quantum channel 3640 . can be connected
- the device 3600 includes a laser diode 3610 that generates a first pulse train, and a first path 3620 and a second path 3630 , wherein the device 3600 comprises:
- the first pulse train passing through each of the first path 3620 and the second path 3630 may be transmitted to another device through the quantum channel 3640 .
- the device proposed in this specification can be described in relation to the control device as follows.
- FIG. 37 is an illustration of a block diagram of an apparatus for transmitting a pulse train through a plurality of paths, from the viewpoint of Bob Said's apparatus, according to another embodiment of the present specification.
- a device 3700 may include a laser diode 3710 , a first path 3720 , and a second path 3730 , wherein the device 3700 communicates with another device through a quantum channel 3740 . can be connected
- the device 3700 may be controlled by the control device 3750 (e.g. a processor).
- the control device 3750 e.g. a processor
- the processor is configured to control the transceiver to receive a random access (RA) preamble from another device, and to control the transceiver to transmit a random access response (RAR) to the other device in response to the RA preamble configured, configured to perform a radio resource control (RRC) connection procedure with the other device, configured to control the transceiver to receive data from the other device, and configured to decrypt the data based on key information
- RA random access
- RAR random access response
- RRC radio resource control
- the device includes a laser diode, a first path and a second path, wherein a first pulse train is generated in the laser diode of the device and a quantum channel after the first pulse train passes through the first path and the second path, respectively It may be configured to determine the key information based on transmission from the device to the other device through
- random access from another device configured to control the transceiver to receive a preamble, configured to control the transceiver to transmit a random access response (RAR) to the other device in response to the RA preamble, and a radio resource control (RRC) connection with the other device configured to perform a procedure, configured to control the transceiver to receive data from the other device, and to decrypt the data based on key information
- RAR random access response
- RRC radio resource control
- a control device may be included in the device provided herein.
- 38 is an illustration of a block diagram of an apparatus for transmitting a pulse train through a plurality of paths, from the viewpoint of Bob Said's apparatus, according to another embodiment of the present specification.
- a device 3800 may include a laser diode 3810 , a first path 3820 , and a second path 3830 , wherein the device 3800 communicates with another device through a quantum channel 3840 .
- the device 3800 may include a control device 3850 (e.g. a processor).
- Fig. 39 illustrates the communication system 1 applied in this specification.
- the communication system 1 applied to the present specification includes a wireless device, a base station, and a network.
- the wireless device refers to a device that performs communication using a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
- a radio access technology eg, 5G NR (New RAT), LTE (Long Term Evolution)
- the wireless device may include a robot 100a, a vehicle 100b-1, 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, and a home appliance 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400 .
- the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
- the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
- UAV Unmanned Aerial Vehicle
- XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, and include a Head-Mounted Device (HMD), a Head-Up Display (HUD) provided in a vehicle, a television, a smartphone, It may be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
- the portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a laptop computer), and the like.
- Home appliances may include a TV, a refrigerator, a washing machine, and the like.
- the IoT device may include a sensor, a smart meter, and the like.
- the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station/network node to other wireless devices.
- the wireless devices 100a to 100f may be connected to the network 300 through the base station 200 .
- AI Artificial Intelligence
- the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
- the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also communicate directly (e.g. sidelink communication) without passing through the base station/network.
- the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. Vehicle to Vehicle (V2V)/Vehicle to everything (V2X) communication).
- the IoT device eg, sensor
- the IoT device may communicate directly with other IoT devices (eg, sensor) or other wireless devices 100a to 100f.
- Wireless communication/connection 150a, 150b, and 150c may be performed between the wireless devices 100a to 100f/base station 200 and the base station 200/base station 200 .
- the wireless communication/connection includes uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), and communication between base stations 150c (eg relay, IAB (Integrated Access Backhaul)).
- This can be done through technology (eg 5G NR)
- Wireless communication/connection 150a, 150b, 150c allows the wireless device and the base station/radio device, and the base station and the base station to transmit/receive wireless signals to each other.
- the wireless communication/connection 150a, 150b, and 150c may transmit/receive signals through various physical channels.
- various signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
- resource allocation processes etc.
- NR supports a number of numerology (or subcarrier spacing (SCS)) to support various 5G services.
- numerology or subcarrier spacing (SCS)
- SCS subcarrier spacing
- the NR frequency band may be defined as a frequency range of two types (FR1, FR2).
- the numerical value of the frequency range may be changed, for example, the frequency ranges of the two types (FR1, FR2) may be as shown in Table 6 below.
- FR1 may mean "sub 6GHz range”
- FR2 may mean “above 6GHz range”
- mmW millimeter wave
- FR1 may include a band of 410 MHz to 7125 MHz as shown in Table 7 below. That is, FR1 may include a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) or higher. For example, a frequency band of 6GHz (or 5850, 5900, 5925 MHz, etc.) or higher included in FR1 may include an unlicensed band. The unlicensed band may be used for various purposes, for example, for communication for a vehicle (eg, autonomous driving).
- the first wireless device 100 and the second wireless device 200 may transmit/receive wireless signals through various wireless access technologies (eg, LTE, NR).
- ⁇ first wireless device 100, second wireless device 200 ⁇ is ⁇ wireless device 100x, base station 200 ⁇ of FIG. 39 and/or ⁇ wireless device 100x, wireless device 100x) ⁇ can be matched.
- the first wireless device 100 includes one or more processors 102 and one or more memories 104 , and may further include one or more transceivers 106 and/or one or more antennas 108 .
- the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed herein.
- the processor 102 may process information in the memory 104 to generate first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 106 .
- the processor 102 may receive the radio signal including the second information/signal through the transceiver 106 , and then store information obtained from signal processing of the second information/signal in the memory 104 .
- the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102 .
- the memory 104 may provide instructions for performing some or all of the processes controlled by the processor 102 , or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
- the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
- a transceiver 106 may be coupled to the processor 102 and may transmit and/or receive wireless signals via one or more antennas 108 .
- the transceiver 106 may include a transmitter and/or a receiver.
- the transceiver 106 may be used interchangeably with a radio frequency (RF) unit.
- RF radio frequency
- a wireless device may refer to a communication modem/circuit/chip.
- the second wireless device 200 includes one or more processors 202 , one or more memories 204 , and may further include one or more transceivers 206 and/or one or more antennas 208 .
- the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or flow charts disclosed herein.
- the processor 202 may process the information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206 .
- the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 , and then store information obtained from signal processing of the fourth information/signal in the memory 204 .
- the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202 .
- the memory 204 may provide instructions for performing some or all of the processes controlled by the processor 202, or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
- the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
- the transceiver 206 may be coupled to the processor 202 and may transmit and/or receive wireless signals via one or more antennas 208 .
- the transceiver 206 may include a transmitter and/or a receiver.
- the transceiver 206 may be used interchangeably with an RF unit.
- a wireless device may refer to a communication modem/circuit/chip.
- one or more protocol layers may be implemented by one or more processors 102 , 202 .
- one or more processors 102 , 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
- the one or more processors 102, 202 are configured to process one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, function, procedure, proposal, method, and/or operational flowcharts disclosed herein.
- PDUs Protocol Data Units
- SDUs Service Data Units
- One or more processors 102 , 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or flow charts disclosed herein.
- the one or more processors 102 and 202 generate a signal (eg, a baseband signal) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein. , to one or more transceivers 106 and 206 .
- the one or more processors 102 , 202 may receive signals (eg, baseband signals) from one or more transceivers 106 , 206 , and may be described, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein.
- PDUs, SDUs, messages, control information, data, or information may be acquired according to the fields.
- One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
- One or more processors 102 , 202 may be implemented by hardware, firmware, software, or a combination thereof.
- ASICs Application Specific Integrated Circuits
- DSPs Digital Signal Processors
- DSPDs Digital Signal Processing Devices
- PLDs Programmable Logic Devices
- FPGAs Field Programmable Gate Arrays
- firmware or software may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like.
- the descriptions, functions, procedures, suggestions, methods, and/or flow charts disclosed in this document provide that firmware or software configured to perform is contained in one or more processors 102 , 202 , or stored in one or more memories 104 , 204 . It may be driven by the above processors 102 and 202 .
- the descriptions, functions, procedures, proposals, methods, and/or flowcharts of operations disclosed herein may be implemented using firmware or software in the form of code, instructions, and/or a set of instructions.
- One or more memories 104 , 204 may be coupled with one or more processors 102 , 202 , and may store various forms of data, signals, messages, information, programs, code, instructions, and/or instructions.
- the one or more memories 104 and 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
- One or more memories 104 , 204 may be located inside and/or external to one or more processors 102 , 202 . Additionally, one or more memories 104 , 204 may be coupled to one or more processors 102 , 202 through various technologies, such as wired or wireless connections.
- One or more transceivers 106 , 206 may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flowcharts of this document to one or more other devices.
- One or more transceivers 106, 206 may receive user data, control information, radio signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or flow charts, etc. disclosed herein, from one or more other devices. have.
- one or more transceivers 106 , 206 may be coupled to one or more processors 102 , 202 and may transmit and receive wireless signals.
- one or more processors 102 , 202 may control one or more transceivers 106 , 206 to transmit user data, control information, or wireless signals to one or more other devices.
- one or more processors 102 , 202 may control one or more transceivers 106 , 206 to receive user data, control information, or wireless signals from one or more other devices.
- one or more transceivers 106, 206 may be coupled to one or more antennas 108, 208, and the one or more transceivers 106, 206 may be coupled via one or more antennas 108, 208 to the descriptions, functions, and functions disclosed herein. , may be set to transmit and receive user data, control information, radio signals/channels, etc.
- one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
- the one or more transceivers 106, 206 convert the received radio signal/channel, etc. from the RF band signal to process the received user data, control information, radio signal/channel, etc. using the one or more processors 102, 202. It can be converted into a baseband signal.
- One or more transceivers 106 , 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 , 202 from baseband signals to RF band signals.
- one or more transceivers 106 , 206 may include (analog) oscillators and/or filters.
- 41 shows another example of a wireless device applicable to the present specification.
- the wireless device may include at least one processor 102 , 202 , at least one memory 104 , 204 , at least one transceiver 106 , 206 , and one or more antennas 108 , 208 . have.
- FIG. 40 As a difference between the example of the wireless device described above in FIG. 40 and the example of the wireless device in FIG. 41, in FIG. 40, the processors 102 and 202 and the memories 104 and 204 are separated, but in the example of FIG. 41, the processor The point is that memories 104 and 204 are included in (102, 202).
- the specific descriptions of the processors 102 and 202, the memories 104 and 204, the transceivers 106 and 206, and the one or more antennas 108 and 208 are the same as those described above, so to avoid unnecessary repetition of the description, A description of the repeated description will be omitted.
- the signal processing circuit 1000 may include a scrambler 1010 , a modulator 1020 , a layer mapper 1030 , a precoder 1040 , a resource mapper 1050 , and a signal generator 1060 .
- the operations/functions of FIG. 42 may be performed by the processors 102 and 202 and/or the transceivers 106 and 206 of FIG. 40 .
- the hardware elements of FIG. 42 may be implemented in the processors 102 , 202 and/or transceivers 106 , 206 of FIG. 40 .
- blocks 1010 to 1060 may be implemented in the processors 102 and 202 of FIG. 40 .
- blocks 1010 to 1050 may be implemented in the processors 102 and 202 of FIG. 40
- block 1060 may be implemented in the transceivers 106 and 206 of FIG. 40 .
- the codeword may be converted into a wireless signal through the signal processing circuit 1000 of FIG. 42 .
- the codeword is a coded bit sequence of an information block.
- the information block may include a transport block (eg, a UL-SCH transport block, a DL-SCH transport block).
- the radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH).
- the codeword may be converted into a scrambled bit sequence by the scrambler 1010 .
- a scramble sequence used for scrambling is generated based on an initialization value, and the initialization value may include ID information of a wireless device, and the like.
- the scrambled bit sequence may be modulated by a modulator 1020 into a modulation symbol sequence.
- the modulation method may include pi/2-Binary Phase Shift Keying (pi/2-BPSK), m-Phase Shift Keying (m-PSK), m-Quadrature Amplitude Modulation (m-QAM), and the like.
- the complex modulation symbol sequence may be mapped to one or more transport layers by the layer mapper 1030 .
- Modulation symbols of each transport layer may be mapped to corresponding antenna port(s) by the precoder 1040 (precoding).
- the output z of the precoder 1040 may be obtained by multiplying the output y of the layer mapper 1030 by the precoding matrix W of N*M.
- N is the number of antenna ports
- M is the number of transport layers.
- the precoder 1040 may perform precoding after performing transform precoding (eg, DFT transform) on the complex modulation symbols. Also, the precoder 1040 may perform precoding without performing transform precoding.
- the resource mapper 1050 may map modulation symbols of each antenna port to a time-frequency resource.
- the time-frequency resource may include a plurality of symbols (eg, a CP-OFDMA symbol, a DFT-s-OFDMA symbol) in the time domain and a plurality of subcarriers in the frequency domain.
- CP Cyclic Prefix
- DAC Digital-to-Analog Converter
- the signal processing process for the received signal in the wireless device may be configured in reverse of the signal processing process 1010 to 1060 of FIG. 42 .
- the wireless device eg, 100 and 200 in FIG. 40
- the received radio signal may be converted into a baseband signal through a signal restorer.
- the signal restorer may include a frequency downlink converter, an analog-to-digital converter (ADC), a CP remover, and a Fast Fourier Transform (FFT) module.
- ADC analog-to-digital converter
- FFT Fast Fourier Transform
- the baseband signal may be restored to a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a descrambling process.
- the codeword may be restored to the original information block through decoding.
- the signal processing circuit (not shown) for the received signal may include a signal restorer, a resource de-mapper, a post coder, a demodulator, a descrambler, and a decoder.
- the wireless device 43 shows another example of a wireless device applied to the present specification.
- the wireless device may be implemented in various forms according to use-examples/services (refer to FIG. 39 ).
- the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 40 , and various elements, components, units/units, and/or modules ) can be composed of
- the wireless devices 100 and 200 may include a communication unit 110 , a control unit 120 , a memory unit 130 , and an additional element 140 .
- the communication unit may include communication circuitry 112 and transceiver(s) 114 .
- communication circuitry 112 may include one or more processors 102,202 and/or one or more memories 104,204 of FIG. 40 .
- transceiver(s) 114 may include one or more transceivers 106 , 206 and/or one or more antennas 108 , 208 of FIG.
- the control unit 120 is electrically connected to the communication unit 110 , the memory unit 130 , and the additional element 140 , and controls general operations of the wireless device. For example, the controller 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130 . In addition, the control unit 120 transmits information stored in the memory unit 130 to the outside (eg, other communication device) through the communication unit 110 through a wireless/wired interface, or externally (eg, through the communication unit 110 ) Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130 .
- the outside eg, other communication device
- Information received through a wireless/wired interface from another communication device may be stored in the memory unit 130 .
- the additional element 140 may be configured in various ways according to the type of the wireless device.
- the additional element 140 may include at least one of a power unit/battery, an input/output unit (I/O unit), a driving unit, and a computing unit.
- a wireless device may include a robot ( FIGS. 39 and 100a ), a vehicle ( FIGS. 39 , 100b-1 , 100b-2 ), an XR device ( FIGS. 39 and 100c ), a mobile device ( FIGS. 39 and 100d ), and a home appliance. (FIG. 39, 100e), IoT device (FIG.
- the wireless device may be mobile or used in a fixed location depending on the use-example/service.
- various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least some of them may be wirelessly connected through the communication unit 110 .
- the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130 , 140 ) are connected to the communication unit 110 through the communication unit 110 . It can be connected wirelessly.
- each element, component, unit/unit, and/or module within the wireless device 100 , 200 may further include one or more elements.
- the controller 120 may be configured with one or more processor sets.
- control unit 120 may be configured as a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, a memory control processor, and the like.
- memory unit 130 may include random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
- the portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), and a portable computer (eg, a laptop computer).
- a mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
- MS mobile station
- UT user terminal
- MSS mobile subscriber station
- SS subscriber station
- AMS advanced mobile station
- WT wireless terminal
- the portable device 100 includes an antenna unit 108 , a communication unit 110 , a control unit 120 , a memory unit 130 , a power supply unit 140a , an interface unit 140b , and an input/output unit 140c ) may be included.
- the antenna unit 108 may be configured as a part of the communication unit 110 .
- Blocks 110 to 130/140a to 140c respectively correspond to blocks 110 to 130/140 in FIG. 43 .
- the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
- the controller 120 may perform various operations by controlling the components of the portable device 100 .
- the controller 120 may include an application processor (AP).
- the memory unit 130 may store data/parameters/programs/codes/commands necessary for driving the portable device 100 . Also, the memory unit 130 may store input/output data/information.
- the power supply unit 140a supplies power to the portable device 100 and may include a wired/wireless charging circuit, a battery, and the like.
- the interface unit 140b may support a connection between the portable device 100 and other external devices.
- the interface unit 140b may include various ports (eg, an audio input/output port and a video input/output port) for connection with an external device.
- the input/output unit 140c may receive or output image information/signal, audio information/signal, data, and/or information input from a user.
- the input/output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and/or a haptic module.
- the input/output unit 140c obtains information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 130 . can be saved.
- the communication unit 110 may convert the information/signal stored in the memory into a wireless signal, and transmit the converted wireless signal directly to another wireless device or to a base station. Also, after receiving a radio signal from another radio device or base station, the communication unit 110 may restore the received radio signal to original information/signal. After the restored information/signal is stored in the memory unit 130 , it may be output in various forms (eg, text, voice, image, video, haptic) through the input/output unit 140c.
- various forms eg, text, voice, image, video, haptic
- the vehicle or autonomous driving vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, and the like.
- AV aerial vehicle
- the vehicle or autonomous driving vehicle 100 includes an antenna unit 108 , a communication unit 110 , a control unit 120 , a driving unit 140a , a power supply unit 140b , a sensor unit 140c and autonomous driving. It may include a part 140d.
- the antenna unit 108 may be configured as a part of the communication unit 110 .
- Blocks 110/130/140a-140d correspond to blocks 110/130/140 of FIG. 43, respectively.
- the communication unit 110 may transmit/receive signals (eg, data, control signals, etc.) to and from external devices such as other vehicles, base stations (e.g., base stations, roadside units, etc.), servers, and the like.
- the controller 120 may control elements of the vehicle or the autonomous driving vehicle 100 to perform various operations.
- the controller 120 may include an Electronic Control Unit (ECU).
- the driving unit 140a may cause the vehicle or the autonomous driving vehicle 100 to run on the ground.
- the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
- the power supply unit 140b supplies power to the vehicle or the autonomous driving vehicle 100 , and may include a wired/wireless charging circuit, a battery, and the like.
- the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
- the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward movement.
- IMU inertial measurement unit
- a collision sensor a wheel sensor
- a speed sensor a speed sensor
- an inclination sensor a weight sensor
- a heading sensor a position module
- a vehicle forward movement / may include a reverse sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, an illuminance sensor, a pedal position sensor, and the like.
- the autonomous driving unit 140d includes a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and a technology for automatically setting a route when a destination is set. technology can be implemented.
- the communication unit 110 may receive map data, traffic information data, and the like from an external server.
- the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
- the controller 120 may control the driving unit 140a to move the vehicle or the autonomous driving vehicle 100 along the autonomous driving path (eg, speed/direction adjustment) according to the driving plan.
- the communication unit 110 may obtain the latest traffic information data from an external server non/periodically, and may acquire surrounding traffic information data from surrounding vehicles.
- the sensor unit 140c may acquire vehicle state and surrounding environment information.
- the autonomous driving unit 140d may update the autonomous driving route and driving plan based on the newly acquired data/information.
- the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
- the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and may provide the predicted traffic information data to the vehicle or autonomous vehicles.
- the vehicle 46 illustrates a vehicle applied to this specification.
- the vehicle may also be implemented as a means of transportation, a train, an air vehicle, a ship, and the like.
- the vehicle 100 may include a communication unit 110 , a control unit 120 , a memory unit 130 , an input/output unit 140a , and a position measurement unit 140b .
- blocks 110 to 130/140a to 140b correspond to blocks 110 to 130/140 of FIG. X3, respectively.
- the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other vehicles or external devices such as a base station.
- the controller 120 may control components of the vehicle 100 to perform various operations.
- the memory unit 130 may store data/parameters/programs/codes/commands supporting various functions of the vehicle 100 .
- the input/output unit 140a may output an AR/VR object based on information in the memory unit 130 .
- the input/output unit 140a may include a HUD.
- the position measuring unit 140b may acquire position information of the vehicle 100 .
- the location information may include absolute location information of the vehicle 100 , location information within a driving line, acceleration information, location information with a surrounding vehicle, and the like.
- the position measuring unit 140b may include a GPS and various sensors.
- the communication unit 110 of the vehicle 100 may receive map information, traffic information, and the like from an external server and store it in the memory unit 130 .
- the position measuring unit 140b may acquire vehicle position information through GPS and various sensors and store it in the memory unit 130 .
- the controller 120 may generate a virtual object based on map information, traffic information, vehicle location information, and the like, and the input/output unit 140a may display the created virtual object on a window inside the vehicle ( 1410 and 1420 ). Also, the controller 120 may determine whether the vehicle 100 is normally operating within the driving line based on the vehicle location information. When the vehicle 100 deviates from the driving line abnormally, the controller 120 may display a warning on the windshield of the vehicle through the input/output unit 140a.
- control unit 120 may broadcast a warning message regarding driving abnormality to surrounding vehicles through the communication unit 110 .
- control unit 120 may transmit the location information of the vehicle and information on driving/vehicle abnormality to a related organization through the communication unit 110 .
- the XR device may be implemented as an HMD, a head-up display (HUD) provided in a vehicle, a television, a smart phone, a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
- HMD head-up display
- a television a smart phone
- a computer a wearable device
- a home appliance a digital signage
- a vehicle a robot, and the like.
- the XR device 100a may include a communication unit 110 , a control unit 120 , a memory unit 130 , an input/output unit 140a , a sensor unit 140b and a power supply unit 140c .
- blocks 110 to 130/140a to 140c correspond to blocks 110 to 130/140 of FIG. X3, respectively.
- the communication unit 110 may transmit/receive signals (eg, media data, control signals, etc.) to/from external devices such as other wireless devices, portable devices, or media servers.
- Media data may include images, images, and sounds.
- the controller 120 may perform various operations by controlling the components of the XR device 100a.
- the controller 120 may be configured to control and/or perform procedures such as video/image acquisition, (video/image) encoding, and metadata generation and processing.
- the memory unit 130 may store data/parameters/programs/codes/commands necessary for driving the XR device 100a/creating an XR object.
- the input/output unit 140a may obtain control information, data, and the like from the outside, and may output the generated XR object.
- the input/output unit 140a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module.
- the sensor unit 140b may obtain an XR device state, surrounding environment information, user information, and the like.
- the sensor unit 140b may include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. have.
- the power supply unit 140c supplies power to the XR device 100a, and may include a wired/wireless charging circuit, a battery, and the like.
- the memory unit 130 of the XR device 100a may include information (eg, data, etc.) necessary for generating an XR object (eg, AR/VR/MR object).
- the input/output unit 140a may obtain a command to operate the XR device 100a from the user, and the controller 120 may drive the XR device 100a according to the user's driving command. For example, when the user intends to watch a movie or news through the XR device 100a, the controller 120 transmits the content request information to another device (eg, the mobile device 100b) through the communication unit 130 or can be sent to the media server.
- another device eg, the mobile device 100b
- the communication unit 130 may download/stream contents such as movies and news from another device (eg, the portable device 100b) or a media server to the memory unit 130 .
- the controller 120 controls and/or performs procedures such as video/image acquisition, (video/image) encoding, and metadata generation/processing for the content, and is acquired through the input/output unit 140a/sensor unit 140b It is possible to generate/output an XR object based on information about one surrounding space or a real object.
- the XR device 100a is wirelessly connected to the portable device 100b through the communication unit 110 , and the operation of the XR device 100a may be controlled by the portable device 100b.
- the portable device 100b may operate as a controller for the XR device 100a.
- the XR device 100a may obtain 3D location information of the portable device 100b, and then generate and output an XR object corresponding to the portable device 100b.
- Robots can be classified into industrial, medical, home, military, etc. depending on the purpose or field of use.
- the robot 100 may include a communication unit 110 , a control unit 120 , a memory unit 130 , an input/output unit 140a , a sensor unit 140b , and a driving unit 140c .
- blocks 110 to 130/140a to 140c correspond to blocks 110 to 130/140 of FIG. X3, respectively.
- the communication unit 110 may transmit/receive signals (eg, driving information, control signals, etc.) with external devices such as other wireless devices, other robots, or control servers.
- the controller 120 may perform various operations by controlling the components of the robot 100 .
- the memory unit 130 may store data/parameters/programs/codes/commands supporting various functions of the robot 100 .
- the input/output unit 140a may obtain information from the outside of the robot 100 and may output information to the outside of the robot 100 .
- the input/output unit 140a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module.
- the sensor unit 140b may obtain internal information, surrounding environment information, user information, and the like of the robot 100 .
- the sensor unit 140b may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, a radar, and the like.
- the driving unit 140c may perform various physical operations, such as moving a robot joint. In addition, the driving unit 140c may make the robot 100 travel on the ground or fly in the air.
- the driving unit 140c may include an actuator, a motor, a wheel, a brake, a propeller, and the like.
- AI devices include TVs, projectors, smartphones, PCs, laptops, digital broadcasting terminals, tablet PCs, wearable devices, set-top boxes (STBs), radios, washing machines, refrigerators, digital signage, robots, vehicles, etc. It may be implemented in any possible device or the like.
- the AI device 100 includes a communication unit 110 , a control unit 120 , a memory unit 130 , input/output units 140a/140b , a learning processor unit 140c and a sensor unit 140d).
- a communication unit 110 may include Blocks 110-130/140a-140d correspond to blocks 110-130/140 of FIG. X3, respectively.
- the communication unit 110 uses wired/wireless communication technology to communicate with external devices such as other AI devices (eg, FIGS. W1, 100x, 200, 400) or the AI server 200 and wired/wireless signals (eg, sensor information, user input, learning). models, control signals, etc.). To this end, the communication unit 110 may transmit information in the memory unit 130 to an external device or transmit a signal received from the external device to the memory unit 130 .
- external devices such as other AI devices (eg, FIGS. W1, 100x, 200, 400) or the AI server 200 and wired/wireless signals (eg, sensor information, user input, learning). models, control signals, etc.).
- the communication unit 110 may transmit information in the memory unit 130 to an external device or transmit a signal received from the external device to the memory unit 130 .
- the controller 120 may determine at least one executable operation of the AI device 100 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. In addition, the controller 120 may control the components of the AI device 100 to perform the determined operation. For example, the control unit 120 may request, search, receive, or utilize the data of the learning processor unit 140c or the memory unit 130 , and may be predicted or preferred among at least one executable operation. Components of the AI device 100 may be controlled to execute the operation. In addition, the control unit 120 collects history information including user feedback on the operation contents or operation of the AI device 100 and stores it in the memory unit 130 or the learning processor unit 140c, or the AI server ( W1, 400) and the like may be transmitted to an external device. The collected historical information may be used to update the learning model.
- the memory unit 130 may store data supporting various functions of the AI device 100 .
- the memory unit 130 may store data obtained from the input unit 140a , data obtained from the communication unit 110 , output data of the learning processor unit 140c , and data obtained from the sensing unit 140 .
- the memory unit 130 may store control information and/or software codes necessary for the operation/execution of the control unit 120 .
- the input unit 140a may acquire various types of data from the outside of the AI device 100 .
- the input unit 120 may obtain training data for model learning, input data to which the learning model is applied, and the like.
- the input unit 140a may include a camera, a microphone, and/or a user input unit.
- the output unit 140b may generate an output related to sight, hearing, or touch.
- the output unit 140b may include a display unit, a speaker, and/or a haptic module.
- the sensing unit 140 may obtain at least one of internal information of the AI device 100 , surrounding environment information of the AI device 100 , and user information by using various sensors.
- the sensing unit 140 may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. have.
- the learning processor unit 140c may train a model composed of an artificial neural network by using the training data.
- the learning processor unit 140c may perform AI processing together with the learning processor unit of the AI server ( FIGS. W1 and 400 ).
- the learning processor unit 140c may process information received from an external device through the communication unit 110 and/or information stored in the memory unit 130 . Also, the output value of the learning processor unit 140c may be transmitted to an external device through the communication unit 110 and/or stored in the memory unit 130 .
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 명세서는 양자 통신 시스템에서, 장치에 의해 수행되는, 제1 펄스 열을 전송하는 방법에 있어서, 다른 장치로부터 RA(random access) 프리앰블을 수신하고, 상기 RA 프리앰블에 대한 응답으로 상기 다른 장치에게 RAR(random access response)를 전송하고, 상기 다른 장치와 RRC(radio resource control) 연결 절차를 수행하고, 상기 다른 장치로부터 데이터를 수신하고 및 키 정보에 기반하여 상기 데이터를 복호화하되, 상기 장치의 레이저 다이오드에서 제1 펄스 열이 생성되고 및 상기 제1 펄스 열이 제1 경로 및 제2 경로를 각각 거친 후 양자 채널을 통해 상기 장치로부터 상기 다른 장치에게 전송됨에 기반하여, 상기 키 정보가 결정되는 것을 특징으로 하는 방법 및 장치가 제공한다.
Description
본 명세서는 양자 통신 시스템에 관련된다.
퀀텀 컴퓨터의 등장으로 인해, 기존 수학적 복잡도 기반의 암호 체계(예컨대, RSA, AES 등)에 대해 해킹이 가능하게 되었다. 해킹에 대한 방지를 위해, 양자 암호 통신이 제안되고 있다.
한편, 본 명세서에서는 투 웨이 플러그 앤드 플레이 양자 암호통신 기법의 키 레이트 개선 방법 및 이를 이용하는 장치를 제공하고자 한다.
본 명세서의 일 실시예에 따르면, 양자 통신 시스템에서, 장치의 레이저 다이오드에서 제1 펄스 열이 생성되고 및 상기 제1 펄스 열이 제1 경로 및 제2 경로를 각각 거친 후 양자 채널을 통해 상기 장치로부터 상기 다른 장치에게 전송됨에 기반하여, 상기 키 정보가 결정되는 것을 특징으로 하는 방법이 제공될 수 있다.
본 명세서에 따르면, 다파장 광원을 사용하는 양자 키 분배기술의 낮은 sifted key rate를 개선할 수 있다. 아울러, 본 명세서에 따르면, 튜너블 레이저의 튜닝 타임 딜레이와 튜너블 옵티컬 필터의 파장 스위칭 타임 딜레이를 해결할 수 있다.
본 명세서의 구체적인 일례를 통해 얻을 수 있는 효과는 이상에서 나열된 효과로 제한되지 않는다. 예를 들어, 관련된 기술분야의 통상의 지식을 자긴 자(a person having ordinary skill in the related art)가 본 명세서로부터 이해하거나 유도할 수 있는 다양한 기술적 효과가 존재할 수 있다. 이에 따라 본 명세서의 구체적인 효과는 본 명세서에 명시적으로 기재된 것에 제한되지 않고, 본 명세서의 기술적 특징으로부터 이해되거나 유도될 수 있는 다양한 효과를 포함할 수 있다.
도 1은 NR이 적용되는 차세대 무선 접속 네트워크(New Generation Radio Access Network: NG-RAN)의 시스템 구조를 예시한다.
도 2는 NG-RAN과 5GC 간의 기능적 분할을 예시한다.
도 3은 본 명세서의 기술적 특징이 적용될 수 있는 5G 사용 시나리오의 예를 나타낸다.
도 4는 6G 시스템에서 제공 가능한 통신 구조의 일례를 나타낸 도이다.
도 5는 퍼셉트론 구조의 일례를 개략적으로 도시한 것이다.
도 6은 다층 퍼셉트론 구조의 일례를 개략적으로 도시한 것이다.
도 7은 심층 신경망 예시를 개략적으로 도시한 것이다.
도 8은 컨볼루션 신경망의 일례를 개략적으로 도시한 것이다.
도 9는 컨볼루션 신경망에서의 필터 연산의 일례를 개략적으로 도시한 것이다.
도 10은 순환 루프가 존재하는 신경망 구조의 일례를 개략적으로 도시한 것이다.
도 11은 순환 신경망의 동작 구조의 일례를 개략적으로 도시한 것이다.
도 12는 전자기 스펙트럼의 일례를 나타낸다.
도 13은 THz 통신 응용의 일례를 나타낸 도이다.
도 14는 전자소자 기반 THz 무선통신 송수신기의 일례를 나타낸 도이다.
도 15는 광 소자 기반 THz 신호를 생성하는 방법의 일례를 나타낸 도이며, 도 16은 광 소자 기반 THz 무선통신 송수신기의 일례를 나타낸 도이다.
도 17은 광자 소스(Photoinc source) 기반 송신기의 구조를 예시하며, 도 18은 광 변조기(Optical modulator)의 구조를 예시한다.
도 19는 양자 암호 통신의 일례를 개략적으로 도시한 것이다.
도 20은 플러그 앤드 플레이 QKD 프로토콜의 일례를 개략적으로 도시한 것이며, 도 21은 일대 다 양자 암호 통신 네트워크에 대한 일례를 개략적으로 도시한 것이다.
도 22는 두 개의 레이저 다이오드 기반 플러그 앤드 플레이 QKD 시스템의 일례를 개략적으로 도시한 것이다.
도 23은 튜너블 레이저의 파장 변환에 대한 일례를 개략적으로 도시한 것이다.
도 24는 튜너블 옵티컬 필터의 파장 변환에 대한 일례를 개략적으로 도시한 것이다.
도 25는 본 명세서의 일 실시예에 따른, 복수의 경로를 통해 펄스 열을 전송하는 방법의 순서도다.
도 26은 본 명세서의 일 실시예에 따른 장치의 예를 개략적으로 도시한 것이다.
도 27은 본 명세서의 다른 실시예에 따른, 복수의 경로를 통해 펄스 열을 전송하는 방법의 순서도다.
도 28은 튜너블 레이저의 파장 튜닝 타임 문제 상황과 문제 해결 후의 상황을 개략적으로 도시한 것이다.
도 29는 다중 경로와 광학 스위치를 활용한 튜너블 레이저 기반 QKD의 파장 변환 지연시간 개선 기법의 일례를 개략적으로 도시한 것이다.
도 30은 DL_1의 각 경로의 길이의 일례를 개략적으로 도시한 것이다.
도 31은 단일 지연선과 감쇄기를 활용한 튜너블 레이저 기반 QKD의 파장 변환 지연시간 개선 기법의 일례를 개략적으로 도시한 것이다.
도 32는 튜너블 필터의 파장 스위칭으로 인한 딜레이 타임 문제 해결을 위한 디-멀티플렉싱 기법의 일례를 개략적으로 도시한 것이다.
도 33은 튜너블 필터의 파장 스위칭 타임으로 인한 키 레이트 저하 문제와 이에 대한 해결 방안을 개략적으로 도시한 것이다.
도 34는 본 명세서의 일 실시예에 따른, 밥 사이드의 장치에 의해 수행되는, 복수의 경로를 통해 펄스 열을 전송하는 방법의 순서도다.
도 35는 본 명세서의 다른 실시예에 따른, 밥 사이드의 장치에 의해 수행되는, 복수의 경로를 통해 펄스 열을 전송하는 방법의 순서도다.
도 36은 본 명세서의 일 실시예에 따른, 밥 사이드의 장치 관점에서의, 복수의 경로를 통해 펄스 열을 전송하는 장치의 블록도의 예시다.
도 37은 본 명세서의 다른 실시예에 따른, 밥 사이드의 장치 관점에서의, 복수의 경로를 통해 펄스 열을 전송하는 장치의 블록도의 예시다.
도 38은 본 명세서의 또 다른 실시예에 따른, 밥 사이드의 장치 관점에서의, 복수의 경로를 통해 펄스 열을 전송하는 장치의 블록도의 예시다.
도 39는 본 명세서에 적용되는 통신 시스템(1)을 예시한다.
도 40은 본 명세서에 적용될 수 있는 무선 기기를 예시한다.
도 41은 본 명세서에 적용될 수 있는 무선 기기의 다른 예를 도시한다.
도 42는 전송 신호를 위한 신호 처리 회로를 예시한다.
도 43은 본 명세서에 적용되는 무선 기기의 다른 예를 나타낸다.
도 44은 본 명세서에 적용되는 휴대 기기를 예시한다.
도 45는 본 명세서에 적용되는 차량 또는 자율 주행 차량을 예시한다.
도 46은 본 명세서에 적용되는 차량을 예시한다.
도 47는 본 명세서에 적용되는 XR 기기를 예시한다.
도 48는 본 명세서에 적용되는 로봇을 예시한다.
도 49은 본 명세서에 적용되는 AI 기기를 예시한다.
본 명세서에서 "A 또는 B(A or B)"는 "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 달리 표현하면, 본 명세서에서 "A 또는 B(A or B)"는 "A 및/또는 B(A and/or B)"으로 해석될 수 있다. 예를 들어, 본 명세서에서 "A, B 또는 C(A, B or C)"는 "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다.
본 명세서에서 사용되는 슬래쉬(/)나 쉼표(comma)는 "및/또는(and/or)"을 의미할 수 있다. 예를 들어, "A/B"는 "A 및/또는 B"를 의미할 수 있다. 이에 따라 "A/B"는 "오직 A", "오직 B", 또는 "A와 B 모두"를 의미할 수 있다. 예를 들어, "A, B, C"는 "A, B 또는 C"를 의미할 수 있다.
본 명세서에서 "적어도 하나의 A 및 B(at least one of A and B)"는, "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 또한, 본 명세서에서 "적어도 하나의 A 또는 B(at least one of A or B)"나 "적어도 하나의 A 및/또는 B(at least one of A and/or B)"라는 표현은 "적어도 하나의 A 및 B(at least one of A and B)"와 동일하게 해석될 수 있다.
또한, 본 명세서에서 "적어도 하나의 A, B 및 C(at least one of A, B and C)"는, "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다. 또한, "적어도 하나의 A, B 또는 C(at least one of A, B or C)"나 "적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)"는 "적어도 하나의 A, B 및 C(at least one of A, B and C)"를 의미할 수 있다.
또한, 본 명세서에서 사용되는 괄호는 "예를 들어(for example)"를 의미할 수 있다. 구체적으로, "제어 정보(PDCCH)"로 표시된 경우, "제어 정보"의 일례로 "PDCCH"가 제안된 것일 수 있다. 달리 표현하면 본 명세서의 "제어 정보"는 "PDCCH"로 제한(limit)되지 않고, "PDDCH"가 "제어 정보"의 일례로 제안될 것일 수 있다. 또한, "제어 정보(즉, PDCCH)"로 표시된 경우에도, "제어 정보"의 일례로 "PDCCH"가 제안된 것일 수 있다.
본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다.
이하, 새로운 무선 접속 기술(new radio access technology: new RAT, NR)에 대해 설명한다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 무선 접속 기술(radio access technology; RAT)에 비해 향상된 모바일 브로드밴드(mobile broadband) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (massive Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 확장된 모바일 브로드밴드 커뮤니케이션(enhanced mobile broadband communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술의 도입이 논의되고 있으며, 본 명세서에서는 편의상 해당 기술(technology)을 new RAT 또는 NR이라고 부른다.
도 1은 NR이 적용되는 차세대 무선 접속 네트워크(New Generation Radio Access Network: NG-RAN)의 시스템 구조를 예시한다.
도 1을 참조하면, NG-RAN은, 단말에게 사용자 평면 및 제어 평면 프로토콜 종단(termination)을 제공하는 gNB 및/또는 eNB를 포함할 수 있다. 도 1에서는 gNB만을 포함하는 경우를 예시한다. gNB 및 eNB는 상호 간에 Xn 인터페이스로 연결되어 있다. gNB 및 eNB는 5세대 코어 네트워크(5G Core Network: 5GC)와 NG 인터페이스를 통해 연결되어 있다. 보다 구체적으로, AMF(access and mobility management function)과는 NG-C 인터페이스를 통해 연결되고, UPF(user plane function)과는 NG-U 인터페이스를 통해 연결된다.
도 2는 NG-RAN과 5GC 간의 기능적 분할을 예시한다.
도 2를 참조하면, gNB는 인터 셀 간의 무선 자원 관리(Inter Cell RRM), 무선 베어러 관리(RB control), 연결 이동성 제어(Connection Mobility Control), 무선 허용 제어(Radio Admission Control), 측정 설정 및 제공(Measurement configuration & Provision), 동적 자원 할당(dynamic resource allocation) 등의 기능을 제공할 수 있다. AMF는 NAS 보안, 아이들 상태 이동성 처리 등의 기능을 제공할 수 있다. UPF는 이동성 앵커링(Mobility Anchoring), PDU 처리 등의 기능을 제공할 수 있다. SMF(Session Management Function)는 단말 IP 주소 할당, PDU 세션 제어 등의 기능을 제공할 수 있다.
도 3은 본 명세서의 기술적 특징이 적용될 수 있는 5G 사용 시나리오의 예를 나타낸다. 도 3에 도시된 5G 사용 시나리오는 단지 예시적인 것이며, 본 명세서의 기술적 특징은 도 3에 도시되지 않은 다른 5G 사용 시나리오에도 적용될 수 있다.
도 3을 참조하면, 5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역(eMBB; enhanced mobile broadband) 영역, (2) 다량의 머신 타입 통신(mMTC; massive machine type communication) 영역 및 (3) 초-신뢰 및 저 지연 통신(URLLC; ultra-reliable and low latency communications) 영역을 포함한다. 일부 사용 예는 최적화를 위해 다수의 영역을 요구할 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표(KPI; key performance indicator)에만 포커싱 할 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.
eMBB는 데이터 속도, 지연, 사용자 밀도, 모바일 광대역 접속의 용량 및 커버리지의 전반적인 향상에 중점을 둔다. eMBB는 10Gbps 정도의 처리량을 목표로 한다. eMBB는 기본적인 모바일 인터넷 접속을 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것으로 기대된다. 증가된 트래픽 양의 주요 원인은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스(오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 애플리케이션은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성을 필요로 한다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드 상의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트에서 예를 들면, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하여 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.
mMTC는 배터리에 의해 구동되는 다량의 저비용 장치 간의 통신을 가능하게 하기 위하여 설계되며, 스마트 계량, 물류, 현장 및 신체 센서와 같은 애플리케이션을 지원하기 위한 것이다. mMTC는 10년 정도의 배터리 및/또는 1km2 당 백만 개 정도의 장치를 목표로 한다. mMTC는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있게 하며, 가장 많이 예상되는 5G 사용 예 중 하나이다. 잠재적으로 2020년까지 IoT 장치들은 204억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.
URLLC는 장치 및 기계가 매우 신뢰성 있고 매우 낮은 지연 및 높은 가용성으로 통신할 수 있도록 함으로써 차량 통신, 산업 제어, 공장 자동화, 원격 수술, 스마트 그리드 및 공공 안전 애플리케이션에 이상적이다. URLLC는 1ms의 정도의 지연을 목표로 한다. URLLC는 주요 인프라의 원격 제어 및 자율 주행 차량과 같은 초 신뢰/지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.
다음으로, 도 3의 삼각형 안에 포함된 다수의 사용 예에 대해 보다 구체적으로 살펴본다.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH(fiber-to-the-home) 및 케이블 기반 광대역(또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실(VR; virtual reality)과 증강 현실(AR; augmented reality) 뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는 데에 요구될 수 있다. VR 및 AR 애플리케이션은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 애플리케이션은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사가 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예와 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 높은 용량과 높은 모바일 광대역을 동시에 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 사용 예는 증강 현실 대시보드이다. 운전자는 증강 현실 대비보드를 통해 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별할 수 있다. 증강 현실 대시보드는 물체의 거리와 움직임에 대해 운전자에게 알려줄 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 장치(예를 들어, 보행자에 의해 수반되는 장치) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스를 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종 차량 또는 자율 주행 차량이 될 것이다. 이는 서로 다른 자율 주행 차량 사이 및/또는 자동차와 인프라 사이에서 매우 신뢰성이 있고 매우 빠른 통신을 요구한다. 미래에, 자율 주행 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자율 주행 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.
스마트 사회로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드 될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지 효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품은 모두 무선으로 연결된다. 이러한 센서 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용을 요구한다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서를 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 애플리케이션을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는 데에 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터에 대한 원격 모니터링 및 센서를 제공할 수 있다.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것을 요구한다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.
물류 및 화물 추적은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요할 수 있다.
이하, 본 명세서의 실시예에 적용될 수 있는 차세대 통신(예컨대, 6G)의 예시들에 대해 설명하도록 한다.
<6G 시스템 일반>
6G (무선통신) 시스템은 (i) 디바이스 당 매우 높은 데이터 속도, (ii) 매우 많은 수의 연결된 디바이스들, (iii) 글로벌 연결성(global connectivity), (iv) 매우 낮은 지연, (v) 배터리-프리(battery-free) IoT 디바이스들의 에너지 소비를 낮추고, (vi) 초고신뢰성 연결, (vii) 머신 러닝 능력을 가지는 연결된 지능 등에 목적이 있다. 6G 시스템의 비젼은 intelligent connectivity, deep connectivity, holographic connectivity, ubiquitous connectivity와 같은 4가지 측면일 수 있으며, 6G 시스템은 아래 표 1과 같은 요구 사항을 만족시킬 수 있다. 즉, 표 1은 6G 시스템의 요구 사항의 일례를 나타낸 표이다.
Per device peak data rate | 1 Tbps |
E2E latency | 1 ms |
Maximum spectral efficiency | 100bps/Hz |
Mobility support | Up to 1000km/hr |
Satellite integration | Fully |
AI | Fully |
Autonomous vehicle | Fully |
XR | Fully |
Haptic Communication | Fully |
6G 시스템은 Enhanced mobile broadband (eMBB), Ultra-reliable low latency communications (URLLC), massive machine-type communication (mMTC), AI integrated communication, Tactile internet, High throughput, High network capacity, High energy efficiency, Low backhaul and access network congestion, Enhanced data security와 같은 핵심 요소(key factor)들을 가질 수 있다.도 4는 6G 시스템에서 제공 가능한 통신 구조의 일례를 나타낸 도이다.6G 시스템은 5G 무선통신 시스템보다 50배 더 높은 동시 무선통신 연결성을 가질 것으로 예상된다. 5G의 key feature인 URLLC는 6G 통신에서 1ms보다 적은 단-대-단(end-to-end) 지연을 제공함으로써 보다 더 주요한 기술이 될 것이다. 6G 시스템은 자주 사용되는 영역 스펙트럼 효율과 달리 체적 스펙트럼 효율이 훨씬 우수할 것이다. 6G 시스템은 매우 긴 배터리 수명과 에너지 수확을 위한 고급 배터리 기술을 제공할 수 있어, 6G 시스템에서 모바일 디바이스들은 별도로 충전될 필요가 없을 것이다. 6G에서 새로운 네트워크 특성들은 다음과 같을 수 있다.
- 위성 통합 네트워크(Satellites integrated network): 글로벌 모바일 집단을 제공하기 위해 6G는 위성과 통합될 것으로 예상된다. 지상파, 위성 및 공중 네트워크를 하나의 무선통신 시스템으로 통합은 6G에 매우 중요하다.
- 연결된 인텔리전스(Connected intelligence): 이전 세대의 무선 통신 시스템과 달리 6G는 혁신적이며, "연결된 사물”에서 "연결된 지능"으로 무선 진화가 업데이트될 것이다. AI는 통신 절차의 각 단계(또는 후술할 신호 처리의 각 절차)에서 적용될 수 있다.
- 무선 정보 및 에너지 전달의 완벽한 통합(Seamless integration wireless information and energy transfer): 6G 무선 네트워크는 스마트폰들과 센서들과 같이 디바이스들의 배터리를 충전하기 위해 전력을 전달할 것이다. 그러므로, 무선 정보 및 에너지 전송 (WIET)은 통합될 것이다.
- 유비쿼터스 슈퍼 3D 연결(Ubiquitous super 3D connectivity): 드론 및 매우 낮은 지구 궤도 위성의 네트워크 및 핵심 네트워크 기능에 접속은 6G 유비쿼터스에서 슈퍼 3D 연결을 만들 것이다.
위와 같은 6G의 새로운 네트워크 특성들에서 몇 가지 일반적인 요구 사항은 다음과 같을 수 있다.
- 스몰 셀 네트워크(small cell networks): 스몰 셀 네트워크의 아이디어는 셀룰러 시스템에서 처리량, 에너지 효율 및 스펙트럼 효율 향상의 결과로 수신 신호 품질을 향상시키기 위해 도입되었다. 결과적으로, 스몰 셀 네트워크는 5G 및 비욘드 5G (5GB) 이상의 통신 시스템에 필수적인 특성이다. 따라서, 6G 통신 시스템 역시 스몰 셀 네트워크의 특성을 채택한다.
- 초 고밀도 이기종 네트워크(Ultra-dense heterogeneous network): 초 고밀도 이기종 네트워크들은 6G 통신 시스템의 또 다른 중요한 특성이 될 것이다. 이기종 네트워크로 구성된 멀티-티어 네트워크는 전체 QoS를 개선하고 비용을 줄인다.
- 대용량 백홀(High-capacity backhaul): 백홀 연결은 대용량 트래픽을 지원하기 위해 대용량 백홀 네트워크로 특징 지어진다. 고속 광섬유 및 자유 공간 광학 (FSO) 시스템이 이 문제에 대한 가능한 솔루션일 수 있다.
- 모바일 기술과 통합된 레이더 기술: 통신을 통한 고정밀 지역화(또는 위치 기반 서비스)는 6G 무선통신 시스템의 기능 중 하나이다. 따라서, 레이더 시스템은 6G 네트워크와 통합될 것이다.
- 소프트화 및 가상화(Softwarization and virtualization): 소프트화 및 가상화는 유연성, 재구성성 및 프로그래밍 가능성을 보장하기 위해 5GB 네트워크에서 설계 프로세스의 기초가 되는 두 가지 중요한 기능이다. 또한, 공유 물리적 인프라에서 수십억 개의 장치가 공유될 수 있다.
<6G 시스템의 핵심 구현 기술>
인공 지능(Artificial Intelligence)
6G 시스템에 가장 중요하며, 새로 도입될 기술은 AI이다. 4G 시스템에는 AI가 관여하지 않았다. 5G 시스템은 부분 또는 매우 제한된 AI를 지원할 것이다. 그러나, 6G 시스템은 완전히 자동화를 위해 AI가 지원될 것이다. 머신 러닝의 발전은 6G에서 실시간 통신을 위해 보다 지능적인 네트워크를 만들 것이다. 통신에 AI를 도입하면 실시간 데이터 전송이 간소화되고 향상될 수 있다. AI는 수많은 분석을 사용하여 복잡한 대상 작업이 수행되는 방식을 결정할 수 있다. 즉, AI는 효율성을 높이고 처리 지연을 줄일 수 있다.
핸드 오버, 네트워크 선택, 자원 스케쥴링과 같은 시간 소모적인 작업은 AI를 사용함으로써 즉시 수행될 수 있다. AI는 M2M, 기계-대-인간 및 인간-대-기계 통신에서도 중요한 역할을 할 수 있다. 또한, AI는 BCI(Brain Computer Interface)에서 신속한 통신이 될 수 있다. AI 기반 통신 시스템은 메타 물질, 지능형 구조, 지능형 네트워크, 지능형 장치, 지능형 인지 라디오(radio), 자체 유지 무선 네트워크 및 머신 러닝에 의해 지원될 수 있다.
최근에는 AI를 무선 통신 시스템과 통합하려고 하는 시도들이 나타나고 있으나, 이는 application layer, network layer 특히, 딥러닝을 wireless resource management and allocation 분야에 집중되어 왔다. 그러나, 이러한 연구는 점점 MAC layer 와 Physical layer로 발전하고 있으며, 특히 물리계층에서 딥러닝을 무선 전송(wireless transmission)과 결합하고자 하는 시도들이 나타나고 있다. AI 기반의 물리계층 전송은, 근본적인 신호 처리 및 통신 메커니즘에 있어서, 전통적인 통신 프레임워크가 아니라 AI 드라이버에 기초한 신호 처리 및 통신 메커니즘을 적용하는 것을 의미한다. 예를 들어, 딥러닝 기반의 채널 코딩 및 디코딩(channel coding and decoding), 딥러닝 기반의 신호 추정(estimation) 및 검출(detection), 딥러닝 기반의 MIMO mechanism, AI 기반의 자원 스케줄링(scheduling) 및 할당(allocation) 등을 포함할 수 있다.
머신 러닝은 채널 추정 및 채널 트래킹을 위해 사용될 수 있으며, DL(downlink)의 물리 계층(physical layer)에서 전력 할당(power allocation), 간섭 제거 (interference cancellation) 등에 사용될 수 있다. 또한, 머신 러닝은 MIMO 시스템에서 안테나 선택, 전력 제어(power control), 심볼 검출(symbol detection) 등에도 사용될 수 있다.
그러나 물리계층에서의 전송을 위한 DNN의 적용은 아래와 같은 문제점이 있을 수 있다.
딥러닝 기반의 AI 알고리즘은 훈련 파라미터를 최적화하기 위해 수많은 훈련 데이터가 필요하다. 그러나 특정 채널 환경에서의 데이터를 훈련 데이터로 획득하는데 있어서의 한계로 인해, 오프라인 상에서 많은 훈련 데이터를 사용한다. 이는 특정 채널 환경에서 훈련 데이터에 대한 정적 훈련(static training)은, 무선 채널의 동적 특성 및 다이버시티(diversity) 사이에 모순(contradiction)이 생길 수 있다.
또한, 현재 딥러닝은 주로 실제 신호(real signal)을 대상으로 한다. 그러나, 무선 통신의 물리 계층의 신호들은 복소 신호(complex signal)이다. 무선 통신 신호의 특성을 매칭시키기 위해 복소 도메인 신호의 검출하는 신경망(neural network)에 대한 연구가 더 필요하다.
이하, 머신 러닝에 대해 보다 구체적으로 살펴본다.
머신 러닝은 사람이 할 수 있거나 혹은 하기 어려운 작업을 대신해낼 수 있는 기계를 만들어내기 위해 기계를 학습시키는 일련의 동작을 의미한다. 머신 러닝을 위해서는 데이터와 러닝 모델이 필요하다. 머신 러닝에서 데이터의 학습 방법은 크게 3가지 즉, 지도 학습(supervised learning), 비지도 학습(unsupervised learning) 그리고 강화 학습(reinforcement learning)으로 구분될 수 있다.
신경망 학습은 출력의 오류를 최소화하기 위한 것이다. 신경망 학습은 반복적으로 학습 데이터를 신경망에 입력시키고 학습 데이터에 대한 신경망의 출력과 타겟의 에러를 계산하고, 에러를 줄이기 위한 방향으로 신경망의 에러를 신경망의 출력 레이어에서부터 입력 레이어 방향으로 역전파(backpropagation) 하여 신경망의 각 노드의 가중치를 업데이트하는 과정이다.
지도 학습은 학습 데이터에 정답이 라벨링된 학습 데이터를 사용하며 비지도 학습은 학습 데이터에 정답이 라벨링되어 있지 않을 수 있다. 즉, 예를 들어 데이터 분류에 관한 지도 학습의 경우의 학습 데이터는 학습 데이터 각각에 카테고리가 라벨링된 데이터 일 수 있다. 라벨링된 학습 데이터가 신경망에 입력되고 신경망의 출력(카테고리)과 학습 데이터의 라벨을 비교하여 오차(error)가 계산될 수 있다. 계산된 오차는 신경망에서 역방향(즉, 출력 레이어에서 입력 레이어 방향)으로 역전파 되며, 역전파에 따라 신경망의 각 레이어의 각 노드들의 연결 가중치가 업데이트 될 수 있다. 업데이트 되는 각 노드의 연결 가중치는 학습률(learing rate)에 따라 변화량이 결정될 수 있다. 입력 데이터에 대한 신경망의 계산과 에러의 역전파는 학습 사이클(epoch)을 구성할 수 있다. 학습률은 신경망의 학습 사이클의 반복 횟수에 따라 상이하게 적용될 수 있다. 예를 들어, 신경망의 학습 초기에는 높은 학습률을 사용하여 신경망이 빠르게 일정 수준의 성능을 확보하도록 하여 효율성을 높이고, 학습 후기에는 낮은 학습률을 사용하여 정확도를 높일 수 있다
데이터의 특징에 따라 학습 방법은 달라질 수 있다. 예를 들어, 통신 시스템 상에서 송신단에서 전송한 데이터를 수신단에서 정확하게 예측하는 것을 목적으로 하는 경우, 비지도 학습 또는 강화 학습 보다는 지도 학습을 이용하여 학습을 수행하는 것이 바람직하다.
러닝 모델은 인간의 뇌에 해당하는 것으로서, 가장 기본적인 선형 모델을 생각할 수 있으나, 인공 신경망(artificial neural networks)와 같은 복잡성이 높은 신경망 구조를 러닝 모델로 사용하는 머신 러닝의 패러다임을 딥러닝(deep learning)이라 한다.
학습(learning) 방식으로 사용하는 신경망 코어(neural network cord)는 크게 심층 신경망(DNN, deep neural networks), 합성곱 신경망(CNN, convolutional deep neural networks), 순환 신경망(RNN, Recurrent Boltzmann Machine) 방식이 있다.
인공 신경망(artificial neural network)은 여러 개의 퍼셉트론을 연결한 예시이다.
도 5는 퍼셉트론 구조의 일례를 개략적으로 도시한 것이다.
도 5를 참조하면, 입력 벡터 x=(x1,x2,...,xd) 가 입력되면 각 성분에 가중치(W1,W2,...,Wd)를 곱하고, 그 결과를 모두 합산한 후, 활성함수 σ(·) 를 적용하는 전체 과정을 퍼셉트론(perceptron)이라 한다. 거대한 인공 신경망 구조는 도 5에 도시한 단순화된 퍼셉트론 구조를 확장하여 입력벡터를 서로 다른 다 차원의 퍼셉트론에 적용할 수도 있다. 설명의 편의를 위해 입력값 또는 출력값을 노드(node)라 칭한다.
한편, 도 5에 도시된 퍼셉트론 구조는 입력값, 출력값을 기준으로 총 3개의 층(layer)로 구성되는 것으로 설명할 수 있다. 1st layer와 2nd layer 사이에는 (d+1) 차원의 퍼셉트론 H개, 2nd layer와 3rd layer 사이에는 (H+1)차원 퍼셉트론이 K 개 존재하는 인공신경망을 도 6과 같이 표현할 수 있다.
도 6은 다층 퍼셉트론 구조의 일례를 개략적으로 도시한 것이다.
입력벡터가 위치하는 층을 입력층(input layer), 최종 출력값이 위치하는 층을 출력층(output layer), 입력층과 출력층 사이에 위치하는 모든 층을 은닉층(hidden layer)라 한다. 도 6의 예시는 3개의 층이 개시되나, 실제 인공신경망 층의 개수를 카운트할 때는 입력층을 제외하고 카운트하므로 총 2개의 층으로 볼 수 있다. 인공신경망은 기본 블록의 퍼셉트론을 2차원적으로 연결되어 구성된다.
전술한 입력층, 은닉층, 출력층은 다층 퍼셉트론 뿐 아니라 후술할 CNN, RNN 등 다양한 인공신경망 구조에서 공동적으로 적용될 수 있다. 은닉층의 개수가 많아질수록 인공신경망이 깊어진 것이며, 충분히 깊어진 인공신경망을 러닝모델로 사용하는 머신러닝 패러다임을 딥러닝(Deep Learning)이라 한다. 또한 딥러닝을 위해 사용하는 인공신경망을 심층 신경망(DNN: Deep neural network)라 한다.
도 7은 심층 신경망 예시를 개략적으로 도시한 것이다.
도 7에 도시된 심층 신경망은 은닉층+출력층이 8개로 구성된 다층 퍼셉트론이다. 상기 다층 퍼셉트론 구조를 완전 연결 신경망(fully-connected neural network)이라 표현한다. 완전 연결 신경망은 서로 같은 층에 위치하는 노드 간에는 연결 관계가 존재하지 않으며, 인접한 층에 위치한 노드들 간에만 연결 관계가 존재한다. DNN은 완전 연결 신경망 구조를 가지고 다수의 은닉층과 활성함수들의 조합으로 구성되어 입력과 출력 사이의 상관관계 특성을 파악하는데 유용하게 적용될 수 있다. 여기서 상관관계 특성은 입출력의 결합확률(joint probability)을 의미할 수 있다.
한편, 복수의 퍼셉트론을 서로 어떻게 연결하느냐에 따라 전술한 DNN과 다른 다양한 인공 신경망 구조를 형성할 수 있다.
도 8은 컨볼루션 신경망의 일례를 개략적으로 도시한 것이다.
DNN은 하나의 층 내부에 위치한 노드들이 1차원적의 세로 방향으로 배치되어 있다. 그러나, 도 8은 노드들이 2차원적으로 가로 w개, 세로 h개의 노드가 배치할 경우를 가정할 수 있다(도 8의 컨볼루션 신경망 구조). 이 경우, 하나의 입력노드에서 은닉층으로 이어지는 연결과정에서 연결 하나당 가중치가 부가되므로 총 hХw 개의 가중치를 고려해야한다. 입력층에 hХw 개의 노드가 존재하므로 인접한 두 층 사이에는 총 h2w2 개의 가중치가 필요하다.
도 8의 컨볼루션 신경망은 연결개수에 따라 가중치의 개수가 기하급수적으로 증가하는 문제가 있어 인접한 층 간의 모든 모드의 연결을 고려하는 대신, 크기가 작은 필터(filter)가 존재하는 것으로 가정하여 도 9에서와 같이 필터가 겹치는 부분에 대해서는 가중합 및 활성함수 연산을 수행하도록 한다.
도 9는 컨볼루션 신경망에서의 필터 연산의 일례를 개략적으로 도시한 것이다.
하나의 필터는 그 크기만큼의 개수에 해당하는 가중치를 가지며, 이미지 상의 어느 특정한 특징을 요인으로 추출하여 출력할 수 있도록 가중치의 학습이 이루어질 수 있다. 도 9에서는 3Х3 크기의 필터가 입력층의 가장 좌측 상단 3Х3 영역에 적용되고, 해당 노드에 대한 가중합 및 활성함수 연산을 수행한 결과 출력값을 z22에 저장한다.
상기 필터는 입력층을 스캔하면서 가로, 세로 일정 간격만큼 이동하면서 가중합 및 활성함수 연산을 수행하고 그 출력값을 현재 필터의 위치에 위치시킨다. 이러한 연산 방식은 컴퓨터 비전(computer vision) 분야에서 이미지에 대한 컨볼루션(convolution) 연산과 유사하여 이러한 구조의 심층 신경망을 컨볼루션 신경망(CNN: convolutional neural network)라 하고, 컨볼루션 연산 결과 생성되는 은닉층을 컨볼루션 층(convolutional layer)라 한다. 또한, 복수의 컨볼루션 층이 존재하는 신경망을 심층 컨볼루션 신경망(DCNN: Deep convolutional)이라 한다.
컨볼루션 층에서는 현재 필터가 위치한 노드에서, 상기 필터가 커버하는 영역에 위치한 노드만을 포괄하여 가중합을 계산함으로써, 가중치의 개수를 줄여줄 수 있다. 이로 인해, 하나의 필터가 로컬(local) 영역에 대한 특징에 집중하도록 이용될 수 있다. 이에 따라 CNN은 2차원 영역 상의 물리적 거리가 중요한 판단 기준이 되는 이미지 데이터 처리에 효과적으로 적용될 수 있다. 한편, CNN은 컨볼루션 층의 직전에 복수의 필터가 적용될 수 있으며, 각 필터의 컨볼루션 연산을 통해 복수의 출력 결과를 생성할 수도 있다.
한편, 데이터 속성에 따라 시퀀스(sequence) 특성이 중요한 데이터들이 있을 수 있다. 이러한 시퀀스 데이터들의 길이 가변성, 선후 관계를 고려하여 데이터 시퀀스 상의 원소를 매 시점(timestep) 마다 하나씩 입력하고, 특정 시점에 출력된 은닉층의 출력 벡터(은닉 벡터)를, 시퀀스 상의 바로 다음 원소와 함께 입력하는 방식을 인공 신경망에 적용한 구조를 순환 신경망 구조라 한다.
도 10은 순환 루프가 존재하는 신경망 구조의 일례를 개략적으로 도시한 것이다.
도 10을 참조하면, 순환 신경망(RNN: recurrent neural netwok)은 데이터 시퀀스 상의 어느 시선 t의 원소 (x1(t), x2(t), ,..., xd(t))를 완전 연결 신경망에 입력하는 과정에서, 바로 이전 시점 t-1은 은닉 벡터 (z1(t-1), z2(t-1),..., zH(t-1))을 함께 입력하여 가중합 및 활성함수를 적용하는 구조이다. 이와 같이 은닉 벡터를 다음 시점으로 전달하는 이유는 앞선 시점들에서의 입력 벡터속 정보들이 현재 시점의 은닉 벡터에 누적된 것으로 간주하기 때문이다.
도 11은 순환 신경망의 동작 구조의 일례를 개략적으로 도시한 것이다.
도 11을 참조하면, 순환 신경망은 입력되는 데이터 시퀀스에 대하여 소정의 시점 순서대로 동작한다.
시점 1에서의 입력 벡터 (x1(t), x2(t), ,..., xd(t))가 순환 신경망에 입력되었을 때의 은닉 벡터 (z1(1),z2(1),...,zH(1))가 시점 2의 입력 벡터 (x1(2),x2(2),...,xd(2))와 함께 입력되어 가중합 및 활성 함수를 통해 은닉층의 벡터 (z1(2),z2(2) ,...,zH(2))를 결정한다. 이러한 과정은 시점 2, 시점 3, ,,, 시점 T 까지 반복적으로 수행된다.
한편, 순환 신경망 내에서 복수의 은닉층이 배치될 경우, 이를 심층 순환 신경망(DRNN: Deep recurrent neural network)라 한다. 순환 신경망은 시퀀스 데이터(예를 들어, 자연어 처리(natural language processing)에 유용하게 적용되도록 설계되어 있다.
학습(learning) 방식으로 사용하는 신경망 코어로서 DNN, CNN, RNN 외에 제한 볼츠만 머신(RBM, Restricted Boltzmann Machine), 심층 신뢰 신경망(DBN, deep belief networks), 심층 Q-네트워크(Deep Q-Network)와 같은 다양한 딥 러닝 기법들을 포함하며, 컴퓨터비젼, 음성인식, 자연어처리, 음성/신호처리 등의 분야에 적용될 수 있다.
최근에는 AI를 무선 통신 시스템과 통합하려고 하는 시도들이 나타나고 있으나, 이는 application layer, network layer 특히, 딥러닝을 wireless resource management and allocation 분야에 집중되어 왔다. 그러나, 이러한 연구는 점점 MAC layer 와 Physical layer로 발전하고 있으며, 특히 물리계층에서 딥러닝을 무선 전송(wireless transmission)과 결합하고자 하는 시도들이 나타나고 있다. AI 기반의 물리계층 전송은, 근본적인 신호 처리 및 통신 메커니즘에 있어서, 전통적인 통신 프레임워크가 아니라 AI 드라이버에 기초한 신호 처리 및 통신 메커니즘을 적용하는 것을 의미한다. 예를 들어, 딥러닝 기반의 채널 코딩 및 디코딩(channel coding and decoding), 딥러닝 기반의 신호 추정(estimation) 및 검출(detection), 딥러닝 기반의 MIMO mechanism, AI 기반의 자원 스케줄링(scheduling) 및 할당(allocation) 등을 포함할 수 있다.
THz(Terahertz) 통신
데이터 전송률은 대역폭을 늘려 높일 수 있다. 이것은 넓은 대역폭으로 sub-THz 통신을 사용하고, 진보된 대규모 MIMO 기술을 적용하여 수행될 수 있다. 밀리미터 이하의 방사선으로도 알려진 THz파는 일반적으로 0.03mm-3mm 범위의 해당 파장을 가진 0.1THz와 10THz 사이의 주파수 대역을 나타낸다. 100GHz-300GHz 대역 범위(Sub THz 대역)는 셀룰러 통신을 위한 THz 대역의 주요 부분으로 간주된다. Sub-THz 대역 mmWave 대역 에 추가하면 6G 셀룰러 통신 용량은 늘어난다.. 정의된 THz 대역 중 300GHz-3THz는 원적외선 (IR) 주파수 대역에 있다. 300GHz-3THz 대역은 광 대역의 일부이지만 광 대역의 경계에 있으며, RF 대역 바로 뒤에 있다. 따라서, 이 300 GHz-3 THz 대역은 RF와 유사성을 나타낸다.
도 12는 전자기 스펙트럼의 일례를 나타낸다.
THz 통신의 주요 특성은 (i) 매우 높은 데이터 전송률을 지원하기 위해 광범위하게 사용 가능한 대역폭, (ii) 고주파에서 발생하는 높은 경로 손실 (고 지향성 안테나는 필수 불가결)을 포함한다. 높은 지향성 안테나에서 생성된 좁은 빔 폭은 간섭을 줄인다. THz 신호의 작은 파장은 훨씬 더 많은 수의 안테나 소자가 이 대역에서 동작하는 장치 및 BS에 통합될 수 있게 한다. 이를 통해 범위 제한을 극복할 수 있는 고급 적응형 배열 기술을 사용할 수 있다.
광 무선 기술 (Optical wireless technology)
OWC 기술은 가능한 모든 장치-대-액세스 네트워크를 위한 RF 기반 통신 외에도 6G 통신을 위해 계획되었다. 이러한 네트워크는 네트워크-대-백홀/프론트홀 네트워크 연결에 접속한다. OWC 기술은 4G 통신 시스템 이후 이미 사용되고 있으나 6G 통신 시스템의 요구를 충족시키기 위해 더 널리 사용될 것이다. 광 충실도(light fidelity), 가시광 통신, 광 카메라 통신 및 광 대역에 기초한 FSO 통신과 같은 OWC 기술은 이미 잘 알려진 기술이다. 광 무선 기술 기반의 통신은 매우 높은 데이터 속도, 낮은 지연 시간 및 안전한 통신을 제공할 수 있다. LiDAR 또한 광 대역을 기반으로 6G 통신에서 초 고해상도 3D 매핑을 위해 이용될 수 있다.
FSO 백홀 네트워크
FSO 시스템의 송신기 및 수신기 특성은 광섬유 네트워크의 특성과 유사하다. 따라서, FSO 시스템의 데이터 전송은 광섬유 시스템과 비슷하다. 따라서, FSO는 광섬유 네트워크와 함께 6G 시스템에서 백홀 연결을 제공하는 좋은 기술이 될 수 있다. FSO를 사용하면, 10,000km 이상의 거리에서도 매우 장거리 통신이 가능하다. FSO는 바다, 우주, 수중, 고립된 섬과 같은 원격 및 비원격 지역을 위한 대용량 백홀 연결을 지원한다. FSO는 셀룰러 BS 연결도 지원한다.
대규모 MIMO 기술
스펙트럼 효율을 향상시키는 핵심 기술 중 하나는 MIMO 기술을 적용하는 것이다. MIMO 기술이 향상되면 스펙트럼 효율도 향상된다. 따라서, 6G 시스템에서 대규모 MIMO 기술이 중요할 것이다. MIMO 기술은 다중 경로를 이용하기 때문에 데이터 신호가 하나 이상의 경로로 전송될 수 있도록 다중화 기술 및 THz 대역에 적합한 빔 생성 및 운영 기술도 중요하게 고려되어야 한다.
블록 체인
블록 체인은 미래의 통신 시스템에서 대량의 데이터를 관리하는 중요한 기술이 될 것이다. 블록 체인은 분산 원장 기술의 한 형태로서, 분산 원장은 수많은 노드 또는 컴퓨팅 장치에 분산되어 있는 데이터베이스이다. 각 노드는 동일한 원장 사본을 복제하고 저장한다. 블록 체인은 P2P 네트워크로 관리된다. 중앙 집중식 기관이나 서버에서 관리하지 않고 존재할 수 있다. 블록 체인의 데이터는 함께 수집되어 블록으로 구성된다. 블록은 서로 연결되고 암호화를 사용하여 보호된다. 블록 체인은 본질적으로 향상된 상호 운용성(interoperability), 보안, 개인 정보 보호, 안정성 및 확장성을 통해 대규모 IoT를 완벽하게 보완한다. 따라서, 블록 체인 기술은 장치 간 상호 운용성, 대용량 데이터 추적성, 다른 IoT 시스템의 자율적 상호 작용 및 6G 통신 시스템의 대규모 연결 안정성과 같은 여러 기능을 제공한다.
3D 네트워킹
6G 시스템은 지상 및 공중 네트워크를 통합하여 수직 확장의 사용자 통신을 지원한다. 3D BS는 저궤도 위성 및 UAV를 통해 제공될 것이다. 고도 및 관련 자유도 측면에서 새로운 차원을 추가하면 3D 연결이 기존 2D 네트워크와 상당히 다르다.
양자 커뮤니케이션
6G 네트워크의 맥락에서 네트워크의 감독되지 않은 강화 학습이 유망하다. 지도 학습 방식은 6G에서 생성된 방대한 양의 데이터에 레이블을 지정할 수 없다. 비지도 학습에는 라벨링이 필요하지 않다. 따라서, 이 기술은 복잡한 네트워크의 표현을 자율적으로 구축하는 데 사용할 수 있다. 강화 학습과 비지도 학습을 결합하면 진정한 자율적인 방식으로 네트워크를 운영할 수 있다.
무인 항공기
UAV(Unmanned Aerial Vehicle) 또는 드론은 6G 무선 통신에서 중요한 요소가 될 것이다. 대부분의 경우, UAV 기술을 사용하여 고속 데이터 무선 연결이 제공된다. BS 엔티티는 셀룰러 연결을 제공하기 위해 UAV에 설치된다. UAV는 쉬운 배치, 강력한 가시선 링크 및 이동성이 제어되는 자유도와 같은 고정 BS 인프라에서 볼 수 없는 특정 기능을 가지고 있다. 천재 지변 등의 긴급 상황 동안, 지상 통신 인프라의 배치는 경제적으로 실현 가능하지 않으며, 때로는 휘발성 환경에서 서비스를 제공할 수 없다. UAV는 이러한 상황을 쉽게 처리할 수 있다. UAV는 무선 통신 분야의 새로운 패러다임이 될 것이다. 이 기술은 eMBB, URLLC 및 mMTC 인 무선 네트워크의 세 가지 기본 요구 사항을 용이하게 한다. UAV는 또한, 네트워크 연결성 향상, 화재 감지, 재난 응급 서비스, 보안 및 감시, 오염 모니터링, 주차 모니터링, 사고 모니터링 등과 같은 여러 가지 목적을 지원할 수 있다. 따라서, UAV 기술은 6G 통신에 가장 중요한 기술 중 하나로 인식되고 있다.
셀-프리 통신(Cell-free Communication)
여러 주파수와 이기종 통신 기술의 긴밀한 통합은 6G 시스템에서 매우 중요하다. 결과적으로, 사용자는 디바이스에서 어떤 수동 구성을 만들 필요 없이 네트워크에서 다른 네트워크로 원활하게 이동할 수 있다. 사용 가능한 통신 기술에서 최상의 네트워크가 자동으로 선택된다. 이것은 무선 통신에서 셀 개념의 한계를 깨뜨릴 것이다. 현재, 하나의 셀에서 다른 셀로의 사용자 이동은 고밀도 네트워크에서 너무 많은 핸드 오버를 야기하고, 핸드 오버 실패, 핸드 오버 지연, 데이터 손실 및 핑퐁 효과를 야기한다. 6G 셀-프리 통신은 이 모든 것을 극복하고 더 나은 QoS를 제공할 것이다. 셀-프리 통신은 멀티 커넥티비티 및 멀티-티어 하이브리드 기술과 장치의 서로 다른 이기종 라디오를 통해 달성될 것이다.
무선 정보 및 에너지 전송 통합
WIET은 무선 통신 시스템과 같이 동일한 필드와 웨이브(wave)를 사용한다. 특히, 센서와 스마트폰은 통신 중 무선 전력 전송을 사용하여 충전될 것이다. WIET은 배터리 충전 무선 시스템의 수명을 연장하기 위한 유망한 기술이다. 따라서, 배터리가 없는 장치는 6G 통신에서 지원될 것이다.
센싱과 커뮤니케이션의 통합
자율 무선 네트워크는 동적으로 변화하는 환경 상태를 지속적으로 감지하고 서로 다른 노드간에 정보를 교환할 수 있는 기능이다. 6G에서, 감지는 자율 시스템을 지원하기 위해 통신과 긴밀하게 통합될 것이다.
액세스 백홀 네트워크의 통합
6G에서 액세스 네트워크의 밀도는 엄청날 것이다. 각 액세스 네트워크는 광섬유와 FSO 네트워크와 같은 백홀 연결로 연결된다. 매우 많은 수의 액세스 네트워크들에 대처하기 위해, 액세스 및 백홀 네트워크 사이에 긴밀한 통합이 있을 것이다.
홀로그램 빔 포밍
빔 포밍은 특정 방향으로 무선 신호를 전송하기 위해 안테나 배열을 조정하는 신호 처리 절차이다. 스마트 안테나 또는 진보된 안테나 시스템의 하위 집합이다. 빔 포밍 기술은 높은 호 대잡음비, 간섭 방지 및 거부, 높은 네트워크 효율과 같은 몇 가지 장점이 있다. 홀로그램 빔 포밍 (HBF)은 소프트웨어-정의된 안테나를 사용하기 때문에 MIMO 시스템과 상당히 다른 새로운 빔 포밍 방법이다. HBF는 6G에서 다중 안테나 통신 장치에서 신호의 효율적이고 유연한 전송 및 수신을 위해 매우 효과적인 접근 방식이 될 것이다.
빅 데이터 분석
빅 데이터 분석은 다양한 대규모 데이터 세트 또는 빅 데이터를 분석하기 위한 복잡한 프로세스이다. 이 프로세스는 숨겨진 데이터, 알 수 없는 상관 관계 및 고객 성향과 같은 정보를 찾아 완벽한 데이터 관리를 보장한다. 빅 데이터는 비디오, 소셜 네트워크, 이미지 및 센서와 같은 다양한 소스에서 수집된다. 이 기술은 6G 시스템에서 방대한 데이터를 처리하는 데 널리 사용된다.
Large Intelligent Surface(LIS)
THz 대역 신호의 경우 직진성이 강하여 방해물로 인한 음영 지역이 많이 생길 수 있는데, 이러한 음영 지역 근처에 LIS 설치함으로써 통신 권역을 확대하고 통신 안정성 강화 및 추가적인 부가 서비스가 가능한 LIS 기술이 중요하게 된다. LIS는 전자기 물질(electromagnetic materials)로 만들어진 인공 표면(artificial surface)이고, 들어오는 무선파와 나가는 무선파의 전파(propagation)을 변경시킬 수 있다. LIS는 massive MIMO의 확장으로 보여질 수 있으나, massive MIMO와 서로 다른 array 구조 및 동작 메커니즘이 다르다. 또한, LIS는 수동 엘리먼트(passive elements)를 가진 재구성 가능한 리플렉터(reflector)로서 동작하는 점 즉, 활성(active) RF chain을 사용하지 않고 신호를 수동적으로만 반사(reflect)하는 점에서 낮은 전력 소비를 가지는 장점이 있다. 또한, LIS의 수동적인 리플렉터 각각은 입사되는 신호의 위상 편이를 독립적으로 조절해야 하기 때문에, 무선 통신 채널에 유리할 수 있다. LIS 컨트롤러를 통해 위상 편이를 적절히 조절함으로써, 반사된 신호는 수신된 신호 전력을 부스트(boost)하기 위해 타겟 수신기에서 모여질 수 있다.
<테라헤르츠(THz) 무선통신 일반>
THz 무선통신은 대략 0.1~10THz(1THz=1012Hz)의 진동수를 가지는 THz파를 이용하여 무선통신을 이용하는 것으로, 100GHz 이상의 매우 높은 캐리어 주파수를 사용하는 테라헤르츠(THz) 대역 무선통신을 의미할 수 있다. THz파는 RF(Radio Frequency)/밀리미터(mm)와 적외선 대역 사이에 위치하며, (i) 가시광/적외선에 비해 비금속/비분극성 물질을 잘 투과하며 RF/밀리미터파에 비해 파장이 짧아 높은 직진성을 가지며 빔 집속이 가능할 수 있다. 또한, THz파의 광자 에너지는 수 meV에 불과하기 때문에 인체에 무해한 특성이 있다. THz 무선통신에 이용될 것으로 기대되는 주파수 대역은 공기 중 분자 흡수에 의한 전파 손실이 작은 D-밴드(110GHz~170GHz) 혹은 H-밴드(220GHz~325GHz) 대역일 수 있다. THz 무선통신에 대한 표준화 논의는 3GPP 이외에도 IEEE 802.15 THz working group을 중심으로 논의되고 있으며, IEEE 802.15의 Task Group (TG3d, TG3e)에서 발행되는 표준문서는 본 명세서에서 설명되는 내용을 구체화하거나 보충할 수 있다. THz 무선통신은 무선 인식(wireless cognition), 센싱(sensing), 이미징(imaging), 무선 통신(wireless), THz 네비게이션(navigation) 등에 응용될 수 있다.
도 13은 THz 통신 응용의 일례를 나타낸 도이다.
도 13에 도시된 바와 같이, THz 무선통신 시나리오는 매크로 네트워크(macro network), 마이크로 네트워크(micro network), 나노스케일 네트워크(nanoscale network)로 분류될 수 있다. 매크로 네트워크에서 THz 무선통신은 vehicle-to-vehicle 연결 및 backhaul/fronthaul 연결에 응용될 수 있다. 마이크로 네트워크에서 THz 무선통신은 인도어 스몰 셀(small cell), 데이터 센터에서 무선 연결과 같은 고정된 point-to-point 또는 multi-point 연결, 키오스크 다운로딩과 같은 근거리 통신(near-field communication)에 응용될 수 있다.
아래 표 2는 THz 파에서 이용될 수 있는 기술의 일례를 나타낸 표이다.
Transceivers Device | Available immature: UTC-PD, RTD and SBD |
Modulation and coding | Low order modulation techniques (OOK, QPSK), LDPC, Reed Soloman, Hamming, Polar, Turbo |
Antenna | Omni and Directional, phased array with low number of antenna elements |
Bandwidth | 69GHz (or 23 GHz) at 300GHz |
Channel models | Partially |
Data rate | 100Gbps |
Outdoor deployment | No |
Free space loss | High |
Coverage | Low |
Radio Measurements | 300GHz indoor |
Device size | Few micrometers |
THz 무선통신은 THz 발생 및 수신을 위한 방법을 기준으로 분류할 수 있다. THz 발생 방법은 광 소자 또는 전자소자 기반 기술로 분류할 수 있다.
도 14는 전자소자 기반 THz 무선통신 송수신기의 일례를 나타낸 도이다.
전자 소자를 이용하여 THz를 발생시키는 방법은 공명 터널링 다이오드(RTD: Resonant Tunneling Diode)와 같은 반도체 소자를 이용하는 방법, 국부 발진기와 체배기를 이용하는 방법, 화합물 반도체 HEMT(High Electron Mobility Transistor) 기반의 집적회로를 이용한 MMIC (Monolithic Microwave Integrated Circuits) 방법, Si-CMOS 기반의 집적회로를 이용하는 방법 등이 있다. 도 14의 경우, 주파수를 높이기 위해 체배기(doubler, tripler, multiplier)가 적용되었고, 서브하모닉 믹서를 지나 안테나에 의해 방사된다. THz 대역은 높은 주파수를 형성하므로, 체배기가 필수적이다. 여기서, 체배기는 입력 대비 N배의 출력 주파수를 갖게 하는 회로이며, 원하는 하모닉 주파수에 정합시키고, 나머지 모든 주파수는 걸러낸다. 그리고, 도 14의 안테나에 배열 안테나 등이 적용되어 빔포밍이 구현될 수도 있다. 도 14에서, IF는 중간 주파수(intermediate frequency)를 나타내며, tripler, multipler는 체배기를 나타내며, PA 전력 증폭기(Power Amplifier)를 나타내며, LNA는 저잡음 증폭기(low noise amplifier), PLL은 위상동기회로(Phase-Locked Loop)를 나타낸다.
도 15는 광 소자 기반 THz 신호를 생성하는 방법의 일례를 나타낸 도이며, 도 16은 광 소자 기반 THz 무선통신 송수신기의 일례를 나타낸 도이다.
광 소자 기반 THz 무선통신 기술은 광소자를 이용하여 THz 신호를 발생 및 변조하는 방법을 말한다. 광 소자 기반 THz 신호 생성 기술은 레이저와 광변조기 등을 이용하여 초고속 광신호를 생성하고, 이를 초고속 광검출기를 이용하여 THz 신호로 변환하는 기술이다. 이 기술은 전자 소자만을 이용하는 기술에 비해 주파수를 증가시키기가 용이하고, 높은 전력의 신호 생성이 가능하며, 넓은 주파수 대역에서 평탄한 응답 특성을 얻을 수 있다. 광소자 기반 THz 신호 생성을 위해서는 도 15에 도시된 바와 같이, 레이저 다이오드, 광대역 광변조기, 초고속 광검출기가 필요하다. 도 15의 경우, 파장이 다른 두 레이저의 빛 신호를 합파하여 레이저 간의 파장 차이에 해당하는 THz 신호를 생성하는 것이다. 도 15에서, 광 커플러(Optical Coupler)는 회로 또는 시스템 간의 전기적 절연과의 결합을 제공하기 위해 광파를 사용하여 전기신호를 전송하도록 하는 반도체 디바이스를 의미하며, UTC-PD(Uni-Travelling Carrier Photo-Detector)은 광 검출기의 하나로서, 능동 캐리어(active carrier)로 전자를 사용하며 밴드갭 그레이딩(Bandgap Grading)으로 전자의 이동 시간을 감소시킨 소자이다. UTC-PD는 150GHz 이상에서 광검출이 가능하다. 도 16에서, EDFA(Erbium-Doped Fiber Amplifier)는 어븀이 첨가된 광섬유 증폭기를 나타내며, PD(Photo Detector)는 광신호를 전기신호로 변환할 수 있는 반도체 디바이스를 나타내며, OSA는 각종 광통신 기능(광전 변환, 전광 변환 등)을 하나의 부품으로 모듈화시킨 광모듈(Optical Sub Aassembly)를 나타내며, DSO는 디지털 스토리지 오실로스코프(digital storage oscilloscope)를 나타낸다.
도 17 및 도 18을 참조하여 광전 변환기(또는 광전 컨버터)의 구조를 설명한다. 도 17은 광자 소스(Photoinc source) 기반 송신기의 구조를 예시하며, 도 18은 광 변조기(Optical modulator)의 구조를 예시한다.
일반적으로 레이저(Laser)의 광학 소스(Optical source)를 광파 가이드(Optical wave guide)를 통과시켜 신호의 위상(phase)등을 변화시킬 수 있다. 이때, 마이크로파 컨택트(Microwave contact) 등을 통해 전기적 특성을 변화시킴으로써 데이터를 싣게 된다. 따라서, 광학 변조기 출력(Optical modulator output)은 변조된(modulated) 형태의 파형으로 형성된다. 광전 변조기(O/E converter)는 비선형 크리스탈(nonlinear crystal)에 의한 광학 정류(optical rectification) 동작, 광전도 안테나(photoconductive antenna)에 의한 광전 변환(O/E conversion), 광속의 전자 다발(bunch of relativistic electrons)로부터의 방출(emission) 등에 따라 THz 펄스를 생성할 수 있다. 상기와 같은 방식으로 발생한 테라헤르츠 펄스(THz pulse)는 펨토 세컨드(femto second)부터 피코 세컨드(pico second)의 단위의 길이를 가질 수 있다. 광전 변환기(O/E converter)는 소자의 비선형성(non-linearity)을 이용하여, 하향 변환(Down conversion)을 수행한다.
테라헤르츠 스펙트럼의 용도(THz spectrum usage)를 고려할 때, 테라헤르츠 시스템을 위해서 고정된(fixed) 또는 모바일 서비스(mobile service) 용도로써 여러 개의 연속적인 기가헤르츠(contiguous GHz)의 대역들(bands)을 사용할 가능성이 높다. 아웃도어(outdoor) 시나리오 기준에 의하면, 1THz까지의 스펙트럼에서 산소 감쇠(Oxygen attenuation) 10^2 dB/km를 기준으로 가용 대역폭(Bandwidth)이 분류될 수 있다. 이에 따라 상기 가용 대역폭이 여러 개의 밴드 청크(band chunk)들로 구성되는 프레임워크(framework)가 고려될 수 있다. 상기 프레임워크의 일 예시로 하나의 캐리어(carrier)에 대해 테라헤르츠 펄스(THz pulse)의 길이를 50ps로 설정한다면, 대역폭(BW)은 약 20GHz가 된다.
적외선 대역(IR band)에서 테라헤르츠 대역(THz band)으로의 효과적인 하향 변환(Down conversion)은 광전 컨버터(O/E converter)의 비선형성(nonlinearity)을 어떻게 활용하는가에 달려 있다. 즉, 원하는 테라헤르츠 대역(THz band)으로 하향 변환(down conversion)하기 위해서는 해당 테라헤르츠 대역(THz band)에 옮기기에 가장 이상적인 비선형성(non-linearity)을 갖는 광전 변환기(O/E converter)의 설계가 요구된다. 만일 타겟으로 하는 주파수 대역에 맞지 않는 광전 변환기(O/E converter)를 사용하는 경우, 해당 펄스(pulse)의 크기(amplitude), 위상(phase)에 대하여 오류(error)가 발생할 가능성이 높다.
단일 캐리어(single carrier) 시스템에서는 광전 변환기 1개를 이용하여 테라헤르츠 송수신 시스템이 구현될 수 있다. 채널 환경에 따라 달라지지만 멀리 캐리어(Multi carrier) 시스템에서는 캐리어 수만큼 광전 변환기가 요구될 수 있다. 특히 전술한 스펙트럼 용도와 관련된 계획에 따라 여러 개의 광대역들을 이용하는 멀티 캐리어 시스템인 경우, 그 현상이 두드러지게 될 것이다. 이와 관련하여 상기 멀티 캐리어 시스템을 위한 프레임 구조가 고려될 수 있다. 광전 변환기를 기반으로 하향 주파수 변환된 신호는 특정 자원 영역(예: 특정 프레임)에서 전송될 수 있다. 상기 특정 자원 영역의 주파수 영역은 복수의 청크(chunk)들을 포함할 수 있다. 각 청크(chunk)는 적어도 하나의 컴포넌트 캐리어(CC)로 구성될 수 있다.
<양자 암호 통신>
도 19는 양자 암호 통신의 일례를 개략적으로 도시한 것이다.
도 19에 따르면, QKD(quantum key distribution) 송신부(1910)는 QKD 수신부(1920)와 퍼블릭 채널(public channel) 및 양자 채널(quantum channel)로써 연결되어 통신을 수행할 수 있다.
이때, QKD 송신부(1910)는 암호화기(1930)에게 비밀 키를 공급할 수 있으며, QKD 수신부(1920)도 복호화기(1940)에게 비밀 키를 공급할 수 있다. 여기서, 암호화기(1930)에는 플레인 텍스트(plain text)가 입/출력될 수 있으며, 암호화기(1930)는 복호화기(1940)와 (기존 통신망을 통해) 비밀 대칭 키로 암호화된 데이터를 전송할 수 있다. 아울러, 복호화기(1940)에도 플레인 텍스트가 입/출력될 수 있다.
양자 암호 통신에 따르면, 데이터 암호용 비밀 키를 양자 역학 원리를 이용하여 분배하므로 도청자가 암호 키의 정보를 알아내는 것은 불가능할 수 있다. 이를 정리하면, 양자 암호 통신은 아래와 같은 성질을 지닐 수 있다.
- 양자 정보의 복사 불가능성: 양자통신 채널로 지나가는 양자 정보를 복사하는 것은 불가능
- 양자 측정의 비가역성(단일 광자를 한번 측정한 상태는 원래의 상태가 아닐 수 있음): 인터셉트(Intercept) 및 재송신(resend) 어택(attack) 불가
아울러, 양자 암호 통신에서는 양자(Quantum) 비트(Bit) 에러(Error) 레이트(Rate)를 키 전송 시 마다 확인하여 도청 여부를 확인할 수 있다.
이하, (양방향(two way)) 플러그 앤드 플레이 QKD 시스템의 기본 구조와, 레이저 광원의 파장 변환을 통해 키 레이트를 개선하는 내용 및 문제점에 대해서 설명하도록 한다.
플러그 앤드 플레이(Plug and Play) QKD는 위상(Phase) 인코딩을 통하여 키 정보를 생성하는 프로토콜이며, 위상과 편광의 변동에 내성이 강하여 추가적인 보정 기법의 적용이 필요하지 않은 효율적인 양자 암호 프로토콜이다.
또한 이 기법은 아래 도 20의 구성도에서 볼 수 있는 것처럼 앨리스(Alice) 사이드(side)와 밥(Bob) 사이드가 각각 광원과 검출기를 가지고 있는 대칭적 구조가 아니라, 밥 사이드에서 광원과 검출기를 모두 가지고 있는 비 대칭적 구조를 가질 수 있다.
이러한 구조적인 특징으로 인해, 플러그 앤드 플레이 QKD 시스템은 앨리스 사이드에는 인코딩(encoding)에 필요한 몇 가지 광학 소자만이 존재하면 되므로, 양자 통신 시스템은 밥 사이드 하나와 다수의 앨리스 사이드를 가지는 일대 다 양자 암호통신 네트워크 구성을 낮은 복잡도와 저비용으로 구성될 수 있다. 이하, QKD 기술의 다양한 프로토콜 중 플러그 앤드 플레이 QKD 프로토콜에 대하여 도면을 통해 기술한다.
도 20은 플러그 앤드 플레이 QKD 프로토콜의 일례를 개략적으로 도시한 것이며, 도 21은 일대 다 양자 암호 통신 네트워크에 대한 일례를 개략적으로 도시한 것이다.
도 20 및 도 21에 따르면, 기본적인 플러그 앤드 플레이 QKD 시스템은 다음과 같은 과정을 통해 암호 키를 생성할 수 있다.
1) 밥 쪽에서 방출되는 강한 레이저 펄스(1550nm)는 BS(Beam splitter)에 의해 50/50으로 분할된다. 이를 식으로 표현하면 아래와 같을 수 있다.
[식 1]
2) BS를 통과한 두 펄스는 각각 짧은 경로와 페이즈 모듈레이터(Phase modulator)(예컨대, PM_B)와 DL(delay line)을 갖는 긴 경로를 통과하는 것으로 나뉘어진다. 이 때, 위상 변조기 PM_B는 동작하지 않는다. 그리고 DL은 두 경로를 통과한 펄스가 동시에 겹치지 않도록 시간 차이를 만들어주기 위해 사용되며 일반적으로 수십 미터 정도의 길이를 가진다. 이를 식으로 표현하면 아래와 같을 수 있다.
[식 2]
3) 짧은 경로와 긴 경로를 통과한 펄스는 PBS(Polarized Beam Splitter)를 통과할 때 서로 수직한 편광 성분을 가지게 된다. 따라서 짧은 경로를 통과한 펄스는 PBS를 통과한 후에도 입력 펄스와 동일한 편광 성분을 가지지만, 긴 경로를 통과한 펄스는 PBS를 지난 후 입력 펄스와 수직인 편광을 가지는 펄스를 가진다. 이를 식으로 표현하면 아래와 같을 수 있다.
[식 3]
4) PBS를 지나온 두 펄스는 시간의 차이를 두고 양자 채널을 통과하여 앨리스 쪽으로 이동한다.
5) 채널을 통해 들어온 펄스는 감쇠기(Attenuator)와 페이즈 모듈레이터(예컨대, PM_A)를 통과하는데 이때는 둘 다 아무런 동작을 하지 않는다.
6) PM_A를 통과한 펄스(pulse)는 스토리지 라인(Storage line; SL)을 지난다. 이 때, SL(Storage line)의 역할은 다음과 같다. SL은 레일리(Rayleigh) 백(back)-스캐터링(scattering)으로 인해 검출기에서 검출되는 펄스와 검출기에서 측정되는 key 정보를 포함한 펄스가 섞이는 것을 막아준다.
또한 PM_A에서 밥에서 앨리스로 들어오는 펄스로부터 발생하는 백 스캐터링 펄스와 앨리스에서 FM를 지나서 돌아 나오는 펄스가 섞이지 않도록 구분하기 위한 역할을 한다.
백 스캐터링은 레이저에서 발생된 펄스가 각 소자를 지나면서 일부 반사되는 것에 의해 키 정보가 아닌 것이 디텍터(detector)에서 측정됨으로써 발생하며, 특히 양방향 왕복 구조의 통신 구조에서는 광 펄스가 진행할 때 생기는 레일리 백스캐터링으로 인해 에러가 많이 발생할 수 있으므로 양자 암호 통신의 성능을 크게 저하시키는 요인이 된다.
플러그 앤드 플레이 QKD 프로토콜에서 단일 광자 검출기의 효율이 n_d, 펄스의 폭이 δ일 때, 레일리 백 스캐터링의 영향은 밥 사이드에서 초당 생성되는 광자의 수 P_in 과 이 중 레일리 백 스캐터링이 발생하는 수 P_rayleigh의 관계에 의해 다음과 같은 식처럼 나타낼 수 있다.
[식 4]
여기서 P_in은 P_in=f_laser·n_b (f_laser: 펄스 반복(repetition) 레이트, n_b: 밥 사이드에서의 전체 로스 팩터)로 정의되며, α는 1550nm의 섬유(fiber) 로스(loss)인 0.21dB/km, L은 앨리스와 밥 사이의 섬유 의 길이, β는 레일리 백 스캐터링 계수(coefficient)를 의미한다. 따라서 P_in이 클수록 레일리 백 스캐터링의 영향은 크다는 것을 알 수 있다. 따라서 이 문제를 해결하기 위해서는 밥 사이드에서 생성한 펄스 열을 저장해 놓을 수 있을 정도의 긴 길이를 가진 스토리지 라인이 필요할 수 있다.
예를 들어 펄스를 1MHz로 생성(e.g. 10^(-6)(s))하고 유선 광섬유에서 빛의 전송속도 2×10^8(m/s), 한번에 발생하는 키의 개수가 125개라고 가정하면 총 2×(10^8(m/s))×10^(-6)(s)×125=25km의 스토리지 라인이 필요할 수 있다. 이때, 스토리지 라인(SL)은 왕복하면서 광자를 저장할 수 있으므로 실제 길이는 25km의 절반인 12.5km이상이면 가능할 수 있다. 이처럼 현재의 플러그 앤드 플레이 QKD 기법에서는 앨리스 쪽에 굉장히 큰 길이를 가지는 스토리지 라인을 적용하고 있으므로 향후 일대 다 양자 암호 기술 등 에 다양한 영역에 이 기술을 적용하기 위해서는 SL의 길이 최소화를 통한 앨리스 사이드의 경량화가 필요할 수 있다.
7) FM(Faraday Mirror)에서는 밥 쪽에서 PBS를 통과하면서 나온 펄스의 편광을 반사 후 다시 90도 변경시킨다. (패러데이 미러(Faraday Mirror)의 역할: 입사 편광을 이와 수직한 편광으로 바꾸어서 밥 쪽으로 펄스가 다시 들어갈 때 짧은 경로로 나온 펄스는 PBS에 의해 긴 경로로 들어가도록 하고 긴 경로로 나온 펄스는 짧은 경로로 들어가도록 만들어 준다. 따라서 진행할 때와 반사되어 돌아올 때 편광이 서로 수직이므로 광섬유상에서 광 펄스가 겪는 복 굴절이 서로 상쇄되어 안정적인 시스템 구축이 가능할 수 있다.) 이를 식으로 표현하면 아래와 같을 수 있다.
[식 5]
8) FM에서 반사된 후 SL을 통과한 펄스는 페이즈 모듈레이터(예컨대, PM_A)에서 위상 코딩을 통해 키 정보를 생성한다. 위상에 따른 키 정보는 다음 표 3과 같다.
페이즈(phase) | 키 값(key value) |
0 (-) | 0 |
π/2 (\) | 0 |
π (|) | 1 |
3π/2 (/) | 1 |
앨리스측의 PM_A를 통과하는 두 번째 펄스에 앞서 설명한 바와 같이 4가지 서로 다른 위상(θ_A)을 인가하여 위상 코딩을 수행할 수 있다. 이를 식으로 표현하면 아래와 같을 수 있다.
[식 6]
9) 광 신호의 세기를 감쇠기를 사용하여 단일 광자 수준으로 낮춘 후 양자 채널(channel)로 펄스를 내보낸다. (이 때, 0.1 광자 레벨을 일반적으로 사용할 수 있다.)
10) PBS에서 양자 채널로 나갈 때의 펄스와 양자 채널에서 PBS로 들어올 때의 펄스는 FM에 의해 편광상태가 반대이다. 따라서 밥에서 채널로 나갈 때 긴 경로와 짧은 경로를 지나는 두 펄스는 채널에서 밥으로 되돌아올 때 나갈 때와 반대 경로를 지나게 된다. 이를 식으로 표현하면 아래와 같을 수 있다.
[식 7]
11) 양자 채널을 거쳐 밥 측으로 들어오는 첫 번째 펄스는 긴 경로를 지나며 PM_B에서 표 4와 같은 두 가지 위상(θ_B)을 인가하여 측정 베이시스(Basis)를 결정한다.
페이즈(phase) | 베이시스 값(basis value) |
0 | + |
π/2 | X |
이를 식으로 표현하면 아래와 같을 수 있다.
[식 8]
12) 밥 사이드의 두 경로를 지난 첫 번째 펄스(긴 경로 통과)와 두 번째 펄스(짧은 경로)는 동시에 BS에 도착하는데 이 때 서로 중첩되어 보강 또는 상쇄 간섭을 한다. 이를 식으로 표현하면 아래와 같을 수 있다.
[식 9]
13) 중첩된 결과에 따른 검출(detection) 결과는 디텍터 1과 2 중 어디서 측정될지 결정되며 그 결과는 아래 표 5와 같을 수 있다.
밥(bob)/앨리스(alice) | 0(0, -) | π/2(0, \) | π(1, |) | 3π/2(1, /) |
0, + | 1 | 2 | ||
π/2, X | 1 | 2 |
하지만 기존의 투 웨이 플러그 앤드 플레이(two way Plug and Play) QKD 기법에서는 백 스캐터링 펄스(back scattering pulse)의 발생을 최소화하기 위해 하나의 펄스 열(pulse train)이 검출기로 검출한 후에 다음 펄스 열이 전송되는 구조를 가지므로 키 레이트(key rate) 손실이 크다.
따라서 키 레이트 손실 문제를 개선하기 위해서 다음 2가지 방식을 고려해 볼 수 있다. 첫 번째 방법은 서로 다른 파장을 가지는 두 개의 레이저(laser)를 광원으로 사용하는 방식이며, 이를 도면을 통해 설명하면 아래와 같다.
도 22는 두 개의 레이저 다이오드 기반 플러그 앤드 플레이 QKD 시스템의 일례를 개략적으로 도시한 것이다.
이 방식에서는 레이저 1과 2의 생성 파장을 λ_1(nm)와 λ_2(nm)로 다르게 생성하여 먼저 레이저 1에서 하나의 펄스 열을 λ_1(nm)의 파장으로 생성한 후, 뒤이어 λ_2(nm)의 파장을 가지는 펄스 열을 레이저 2에서 생성한다.
동일 파장을 가지는 펄스 열을 연속해서 보내는 경우 발생하는 기존의 백 스캐터링 펄스 문제는 앞 뒤 펄스 열의 파장을 다르게 했기 때문에 검출기 SPD1과 2의 직전에 설치된 옵티컬(optical) 필터(filter)에서 받아야 하는 파장의 신호를 제외한 나머지 백 스캐터링 펄스(backscattering pulse)는 모두 다른 파장을 가지므로 차단시킬 수 있다.
이 방식에서는 따라서 tunable laser에서 생성하는 다른 파장을 가지는 광 신호의 개수를 증가시키면 더 높은 키 레이트를 가지는 QKD 시스템(system)을 만들 수 있음을 보였으며 그 개선 효과는 아래 식으로 표현할 수 있다. R_conv1은 그림 20의 기존 기법에서의 시프트된(sifted) 키 레이트를 의미하며, R_conv2은 그림 22의 기법의 시프트된(sifted) 키 레이트(2개 레이저 사용할 경우)를 나타낸다. R_conv2의 기법은 옵티컬 필터의 추가로 인한 약간의 로스(loss)인 10^(-α_f/10) (α_f: 필터의 로스)가 발생하지만 다른 파장을 가지는 레이저 광원의 추가 개수와 비례하는 더 많은 펄스를 포함할 수 있으므로 기존 기법에 비해 더 높은 시프트된(sifted) 키 레이트를 가질 수 있음을 알 수 있다.
[식 10]
[식 11]
여기서, 위 식에서의 각 변수들은 아래와 같을 수 있다.
- L_Channel: 채널 길이(channel length),
- L_SL: 스토리지 라인 길이(storage line length),
- f: 펄스 반복 레이트(pulse repetition rate),
- μ: 평균 포톤 개수(mean photon number),
- n_f: 섬유 전송 계수(fibre transmission coefficient), (e.g. n_f=10^(-α_1*L_(channel/10)), α_1: 1550nm 섬유 로스, 0.2dB/km),
- n_B: 밥 내부에서의 전체 로스(Total loss inside Bob), (e.g. n_B=10^(-L_(Bob/10))),
- n_D: SPD의 감지 효율(Detection efficiency of SPD)
하지만 이 방식 또한 키 레이트 개선을 위해 기존에 비해 더 많은 개수의 레이저 다이오드(diode)를 사용해야 하므로 밥(Bob) 사이드(side)의 고비용, 부피 및 무게 증가를 피하기 어렵다는 문제점이 있다.
이를 해결하기 위한 방법은 밥 사이드의 부피 및 무게 증가를 피할 수 있는 하나의 튜너블(tunable) 레이저를 기반으로 한 QKD 시스템이다.
튜너블 레이저는 내부에서 다 파장 펄스를 동시에 생성한 후, 옵티컬 밴드(band) 패스(pass) 필터링(filtering) 과정과 통과된 파장을 증폭하는 과정을 통해 원하는 파장의 펄스(pulse)를 생성시키는 광원이다.
따라서 이 방식에서는 하나의 펄스 열을 λ_1nm의 파장으로 생성한 후, 튜너블 레이저의 생성 파장을 원하는 파장 λ_2nm로 변경시킨 후 다음 펄스 열을 만드는 방식을 사용한다. 따라서 다 파장의 펄스를 만들기 위해 여러 개의 레이저 다이오드를 사용할 필요가 없다는 장점을 가진다. 따라서 하나의 튜너블 레이저만으로도 높은 시프트된(sifted) 키 레이트를 얻을 수 있으며 그 값은 다음과 같다.
[식 12]
여기서, 위 식에서의 각 변수들은 아래와 같을 수 있다.
- t_sw: 튜너블 필터 스위칭 타임(Tunable filter switching time),
- t_tn: 튜너블 레이저에 대한 파장 튜닝 타임(Wavelength tuning time for tunable laser),
- N: 펄스의 개수(the number of pulses) = 2*f*L_s/v_g,
- L_s: 스토리지 라인의 길이(length of storage line),
- v_g = 2×10^8 (m/s),
- Int[x]: m≥x를 만족하는 최소 정수 값
위의 식 R_conv3에서와 같이 튜너블 레이저를 사용하면 QKD 시스템의 백 스캐터링 펄스로 인한 키 레이트 손실 문제는 해결 가능하다. 하지만 파장의 변환 가능 범위가 넓지 않고, 튜너블 레이저와 튜너블 옵티컬 필터의 파장 변환에 많은 시간이 소모된다는 문제점이 존재한다.
위 식에서 Int[f·t_tn-1]/N는 N개의 펄스로 구성된 하나의 펄스 열에서 파장 튜닝(tuning) 타임(time) 동안 튜너블 레이저에서 생성하지 못한 펄스의 비율을 나타내며, Int[f·t_sw-1]/N는 튜너블 옵티컬 필터에서 파장 스위칭(switching) 타임 동안 필터를 통과하지 못하여 디텍터(detector)에서 검출되지 않은 시그널(signal)의 비율을 나타낸다.
따라서 이 방식은 튜너블 레이저와 필터의 파장 변환에 걸리는 시간이 짧을 경우에는 높은 키 레이트를 가지는 효율적인 방법이 될 수 있지만 f·t_sw≫1거나 f·t_tn≫1경우에는 파장 변환 시간으로 인한 키 레이트 손실이 매우 클 수 있다.
또한 실제 현재 상용 모델로 사용되고 있는 튜너블 레이저와 튜너블 필터의 튜닝 스피드(speed)가 대부분 최대 수십 nm/s인 것으로 보아 파장 변환 시간이 ms 정도로 길 것으로 예상되므로 파장 변환으로 인한 키 레이트 손실은 무시할 수 없다.
이하, 본 명세서에 대해 설명한다.
본 명세서는 양자 암호 통신(quantum secure communication) 시스템 중 양자 키 분배(QKD)를 통한 암호 통신 기법에 관한 것이다. 보다 구체적으로는, QKD 기법 중 플러그 앤드 플레이 양자 키 분배 시스템에 튜너블 레이저와 튜너블 옵티컬 필터를 이용하여 신호에 파장 변환을 적용하는 것을 통해 양자 키 전송률을 높이는 효율적인 방법, 장치 및 시스템에 관한 것이다.
특히 본 명세서에서는 튜너블 레이저와 옵티컬 필터의 파장 변환 시 원하는 파장으로의 변환에 소모되는 튜닝 시간 동안 튜너블 레이저에서 펄스 생성을 하지 못하고, 튜너블 옵티컬 필터에서 검출기로 신호를 통과시키지 못하여 발생하는 키 레이트 손실 문제를 해결하는 방법을 제시한다.
본 명세서에서는 상기의 종래 튜너블 레이저 기반(based) 플러그 앤드 플레이 양자 키 분배 기술이 가진 문제점인 낮은 키 레이트의 개선 방안을 다룬다. 이를 해결하기 위하여 본 명세서에서는 매 펄스 열마다 다른 파장을 가지도록 광원의 파장을 변환하는 방식을 적용할 때 발생하는 튜너블 레이저의 파장 튜닝 타임(예컨대, 도 23의 예시)과 주기적으로 파장이 변환된 펄스를 검출하는 과정에서 옵티컬 필터의 검출 파장 조정을 위한 스위칭 타임(예컨대, 도 24의 예시)으로 인한 키 레이트 손실 문제를 해결할 수 있는 양자 암호 키 분배 방법, 장치 및 시스템을 구성한다.
도 23은 튜너블 레이저의 파장 변환에 대한 일례를 개략적으로 도시한 것이다.
도 23에 따르면, 튜너블 레이저(레이저 다이오드)는 제1 파장 값을 가지는 펄스 열을 생성하다가 튜닝 타임을 거쳐 제2 파장 값을 가지는 펄스 열을 생성할 수 있다. 마찬가지로, 튜너블 레이저는 제2 파장 값을 가지는 펄스 열을 생성하다가 튜닝 타임을 거쳐 제1 파장 값을 가지는 펄스 열을 생성할 수 있다. 또한, 튜너블 레이저는 제1 파장 값을 가지는 펄스 열을 생성하다가 다시 튜닝 타임을 거쳐 제2 파장 값을 가지는 펄스 열을 생성할 수 있다.
여기서 위 과정은 반복될 수 있으며, 도면에서는 편의를 위해 레이저 다이오드가 제1 파장 값을 가지는 펄스 열을 생성하다가 제2 파장 값을 가지는 펄스 열을 생성 후 다시 제1 파장 값을 가지는 펄스 열을 생성하는 것을 도시했으나, 이는 어디까지나 예시적인 경우에 불과하다. 즉, 레이저 다이오드는 제1 파장 값을 가지는 펄스 열, 제2 파장 값을 가지는 펄스 열, 제3 파장 값을 가지는 펄스 열, 제4 파장 값을 가지는 펄스 열 등을 생성할 수도 있다.
도 24는 튜너블 옵티컬 필터의 파장 변환에 대한 일례를 개략적으로 도시한 것이다.
도 24에 따르면, 튜너블 옵티컬 필터는 제1 파장 값을 가지는 펄스 열을 통과시키다가 스위칭 타임을 거쳐 제2 파장 값을 가지는 펄스 열을 통과시킬 수 있다. 마찬가지로, 튜너블 레이저는 제2 파장 값을 가지는 펄스 열을 통과시키다가 스위칭 타임을 거쳐 제1 파장 값을 가지는 펄스 열을 통과시킬 수 있다. 또한, 튜너블 레이저는 제1 파장 값을 가지는 펄스 열을 통과시키다가 다시 스위칭 타임을 거쳐 제2 파장 값을 가지는 펄스 열을 통과시킬 수 있다.
여기서 위 과정은 반복될 수 있으며, 도면에서는 편의를 위해 튜너블 필터가 제1 파장 값을 가지는 펄스 열을 통과시키다가 제2 파장 값을 가지는 펄스 열을 통과시킨 후 다시 제1 파장 값을 가지는 펄스 열을 통과시키는 것을 도시했으나, 이는 어디까지나 예시적인 경우에 불과하다. 즉, 튜너블 옵티컬 필터는 제1 파장 값을 가지는 펄스 열, 제2 파장 값을 가지는 펄스 열, 제3 파장 값을 가지는 펄스 열, 제4 파장 값을 가지는 펄스 열 등을 통과시킬 수도 있다.
이에, 본 명세서에서는 투 웨이 플러그 앤드 플레이 양자 암호통신 기법의 키 레이트 개선 기법을 다룬다. 이를 위해서 우선 첫 번째로 키 정보 생성을 위한 펄스 생성 과정에서 튜너블 레이저의 사용을 통해 각 펄스 열마다 다른 파장을 가지는 방식을 적용하고, 이 방식의 적용 시 파장 변환 시간 동안 펄스를 생성할 수 없어서 발생하는 키 레이트 손실 문제의 해결 방안을 2가지 방법을 통해 제시한다. 또한 키 정보 검출 과정에서 검출기 직전에 위치시켜 백 스캐터링 펄스의 차단을 위해 사용하는 튜너블 옵티컬 필터에서 주기적으로 변화하는 입력 신호 파장의 변화 시간에 맞추어 시간 지연 없이 필터에서 통과시킬 파장을 변환 할 수 있는 효과적인 방법을 제안한다.
이하, 본 명세서의 예시에 대한 보다 원활한 이해를 위해, 도면을 통해 본 명세서의 개시에 대해 설명하도록 한다. 이하의 도면은 본 명세서의 구체적인 일례를 설명하기 위해 작성되었다. 도면에 기재된 구체적인 장치의 명칭이나 구체적인 신호/메시지/필드의 명칭은 예시적으로 제시된 것이므로, 본 명세서의 기술적 특징이 이하의 도면에 사용된 구체적인 명칭에 제한되지 않는다.
도 25는 본 명세서의 일 실시예에 따른, 복수의 경로를 통해 펄스 열을 전송하는 방법의 순서도다.
도 25에 따르면, 장치는 레이저 다이오드에서 제1 펄스 열을 생성할 수 있다(S2510). 여기서, 상기 레이저 다이오드는 앞서 설명했던 바와 같이, 파장을 튜닝하는 것을 지원하는 소자일 수 있다.
여기서의 장치는 전술한/후술할 밥 사이드에서의 장치를 의미할 수 있으며, 장치는 앞서 설명했던 도 19에서의 QKD 수신부에 해당할 수도 있다.
장치에서의 레이저 다이오드가 제1 펄스열을 생성하는 보다 구체적인 예는, 설명의 편의를 위해 후술하도록 한다.
장치는 제1 경로 및 제2 경로 각각을 통과한 상기 제1 펄스 열을 양자 채널을 통해 다른 장치에게 전송할 수 있다(S2520).
일례로, 상기 제2 경로는 N개의 경로를 포함하고, 상기 N은 K보다 작거나 같은 값을 가지고, 상기 N 및 상기 K는 자연수이고, 상기 K는 상기 제2 경로의 최대 개수일 수 있다.
여기서 예컨대, 상기 레이저 다이오드가 파장을 튜닝하는 시간 동안 상기 제1 펄스 열의 마지막 펄스가 상기 N개의 경로를 통과할 수 있다.
여기서 예컨대, 상기 N개의 경로 각각의 길이는 상기 제1 경로의 길이, 상기 경로가 상기 N개의 경로 중 몇 번째 경로인지에 대한 값, 상기 레이저 다이오드의 펄스 간 시간 간격 및 광섬유에서의 빛의 속도에 기반하여 결정될 수 있다.
여기서 예컨대, 상기 K의 값은 상기 레이저 다이오드가 파장을 튜닝하는 시간 및 상기 레이저 다이오드의 펄스 간 시간 간격에 기반하여 결정될 수 있다.
한편 일례로, 상기 제2 경로는 스토리지 라인을 포함할 수 있다.
여기서 예컨대, 상기 제1 펄스 열은 분기되어 상기 제1 경로 및 상기 제2 경로를 거치고, 상기 제2 경로를 거친 상기 제1 펄스 열은, 상기 제1 경로를 거친 제1 펄스 열 이후에 상기 장치의 빔 스플리터에서 합류할 수 있다.
일례로, 상기 장치는 상기 제1 펄스 열의 전송에 관련된 제2 펄스 열을 제1 튜너블 필터 및 제2 튜너블 필터에 기반하여 감지하고, 상기 제1 튜너블 필터 및 제2 튜너블 필터 각각은 상기 제1 튜너블 필터 및 제2 튜너블 필터 각각이 통과시키는 파장을 가변적으로 변환하는 것을 지원하는 소자일 수 있다.
여기서 예컨대, 상기 제2 튜너블 필터의 스위칭 타임 동안 상기 제1 튜너블 필터는 제1 파장을 가지는 상기 제2 펄스 열을 통과시키고, 상기 제2 튜너블 필터의 스위칭 타임 이후 상기 제1 튜너블 필터는 제2 파장을 가지는 상기 제2 펄스열을 통과시킬 수 있다.
앞서 설명한 실시예/예시들의 경우, 설명의 편의를 위해 구체적인 예시들은 후술하도록 한다.
한편, 앞서 설명했던 장치는, 예컨대, QKD 수신부(즉, 밥 사이드) 및 복호화기가 포함된 장치일 수도 있으며, 이에 대한 예시를 도면을 통해 설명하면 아래와 같을 수 있다.
도 26은 본 명세서의 일 실시예에 따른 장치의 예를 개략적으로 도시한 것이다.
도 26에 따르면, QKD(quantum key distribution) 송신부(2610)는 QKD 수신부(2620)와 퍼블릭 채널(public channel) 및 양자 채널(quantum channel)로써 연결되어 통신을 수행할 수 있다.
이때, QKD 송신부(2610)는 암호화기(2630)에게 비밀 키를 공급할 수 있으며, QKD 수신부(2620)도 복호화기(2640)에게 비밀 키를 공급할 수 있다. 여기서, 암호화기(2630)에는 플레인 텍스트(plain text)가 입/출력될 수 있으며, 암호화기(2630)는 복호화기(1940)와 (기존 통신망을 통해) 비밀 대칭 키로 암호화된 데이터를 전송할 수 있다. 아울러, 복호화기(2640)에도 플레인 텍스트가 입/출력될 수 있다.
여기서, 암호화기 및 복호화기는 앞서 설명한 바와 같이 통신망을 통해 데이터를 송/수신할 수 있으며, 여기서의 통신망은 예컨대, 3GPP 계열에서의 통신망(예컨대, LTE/LTE-A/NR 기반 통신망), IEEE 계열에서의 통신망 등을 의미할 수도 있다.
한편, 암호화기(2630) 및 QKD 송신부(2610)는 하나의 장치(2650)에 포함될 수 있으며, 복호화기(2640) 및 QKD 수신부(2620) 또한 하나의 장치(2660)에 포함될 수 있다.
이하, 하나의 장치에 QKD 수신부 및 복호화기가 포함된 경우에 대한 통신 방법의 일 실시예에 대해 도면을 통해 개략적으로 설명해보도록 한다.
도 27은 본 명세서의 다른 실시예에 따른, 복수의 경로를 통해 펄스 열을 전송하는 방법의 순서도다.
도 27에 따르면, 장치는 다른 장치로부터 RA(random access) 프리앰블을 수신할 수 있다(S2710). 여기서의 장치는 앞서 설명했던 바와 같이 QKD 수신부 및 복호화기를 포함한 장치에 해당할 수 있고, 일종의 밥 사이드에서의 장치를 의미할 수 있다. 아울러, 다른 장치는 앞서 설명했던 QKD 전송부 및 부호화기를 포함한 장치에 해당할 수 있고, 일종의 앨리스 사이드에서의 장치를 의미할 수 있다. 이에 대한 구체적인 설명은 앞서 설명한 바 및/또는 후술할 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복설명은 생략하도록 한다.
장치는 상기 RA 프리앰블에 대한 응답으로 상기 다른 장치에게 RAR(random access response)를 전송할 수 있다(S2720). 이에 대한 구체적인 설명은 앞서 설명한 바 및/또는 후술할 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복설명은 생략하도록 한다.
장치는 상기 다른 장치와 RRC(radio resource control) 연결 절차를 수행할 수 있다(S2730). 이에 대한 구체적인 설명은 앞서 설명한 바 및/또는 후술할 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복설명은 생략하도록 한다.
장치는 상기 다른 장치로부터 데이터를 수신할 수 있다(S2740). 이에 대한 구체적인 설명은 앞서 설명한 바 및/또는 후술할 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복설명은 생략하도록 한다.
장치는 키 정보에 기반하여 상기 데이터를 복호화할 수 있다(S2750). 이에 대한 구체적인 설명은 앞서 설명한 바 및/또는 후술할 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복설명은 생략하도록 한다.
여기서, 상기 장치의 레이저 다이오드에서 제1 펄스 열이 생성되고 및 상기 제1 펄스 열이 제1 경로 및 제2 경로를 각각 거친 후 양자 채널을 통해 상기 장치로부터 상기 다른 장치에게 전송됨에 기반하여, 상기 키 정보가 결정될 수 있으며, 이에 대한 보다 구체적인 예는 후술하도록 한다.
이하, 본 명세서의 실시예에 대해 보다 구체적으로 설명하도록 한다.
1.
튜너블
레이저 다이오드 기반 신호 생성 부분에서의 키
레이트
개선 기법
1-1.
N개의
다중 경로와
옵티컬
스위치를 사용하는 방법
상기 명세서에서는 투 웨이(two-way) 플러그 앤드 플레이 양자 암호 통신 시스템에서 N개의 펄스로 구성된 현재의 펄스 열과 다음 펄스 열 사이의 백 스캐터링 펄스 발생을 막기 위한 타임 딜레이(delay)를 최소화할 목적으로 사용되는 튜너블 레이저 기반 신호 펄스 생성 부의 파장 변환 과정에서 발생하는 긴 튜닝 타임 문제를 다룬다.
도 28은 튜너블 레이저의 파장 튜닝 타임 문제 상황과 문제 해결 후의 상황을 개략적으로 도시한 것이다.
기존 튜너블 레이저 기반의 광원 생성 기법에서는 도 28에서 볼 수 있듯이 λ_1에서 λ_2로의 생성 파장 변환 과정에서 파장(wavelength) 튜닝 타임이 필요하며 이 시간 동안은 원하는 파장의 펄스를 생성하지 못하므로 키 레이트 손실을 가져오게 된다. 현재 유선 QKD에서 사용되는 1550nm파장을 발생시킬 수 있는 상용 튜너블 레이저가 일반적으로 초당 nm단위의 파장 변환 속도 범위를 가지는 것으로 파악되므로 튜닝 타임은 대략 ms 단위의 시간이 소모될 것이라고 추정할 수 있다. 즉 파장 튜닝 시간은 펄스 열의 생성 시간에 비해 무시할 수 없는 비율을 가진다.
따라서 이로 인해 발생하는 키 레이트 저하 문제를 해결하기 위하여 본 특허에서는 우선 k개의 다중 경로와 옵티컬 스위치를 사용하여 파장 튜닝 타임 동안 펄스를 추가 생성하는 방법을 통해 키 레이트를 개선하는 방법을 제안하였으며, 전체적인 명세서 기법의 구성은 아래 도면과 같다.
도 29는 다중 경로와 광학 스위치를 활용한 튜너블 레이저 기반 QKD의 파장 변환 지연시간 개선 기법의 일례를 개략적으로 도시한 것이다.
본 명세서에서는 P1경로로 튜너블 LD의 펄스가 통과된 후 P2의 경로로 펄스가 진행되며, 세부적인 신호 생성 과정은 다음과 같다.
(1) 튜너블 LD에서 λ_i의 파장 가지는 N개의 펄스 생성 후 P1 경로(위)로 전송한다. 이 때, P2 경로(아래)는 스위치 오프(off) 상태로 유지된다.
(2) 뒤이어 튜너블 LD에서 λ_(i+1)의 파장 생성을 위한 파장 튜닝 타임 동안은 P1 경로로 통과되는 펄스는 없다.
튜너블 LD에서 λ_i에서 λ_(i+1)의 파장으로 변환하는 동안 P2의 경로를 통해 다음 과정이 순서대로 진행된다.
(2-1) λ_i의 파장을 가지는 펄스 중 마지막 N 번째 펄스가 BS를 지나 P2경로(아래)로 전송되는 시점에 스위치 온(on)을 시킨다.
(2-2) 옵티컬 스위치를 지난 펄스는 1:k 커플러(coupler)를 통해 k개의 경로로 분배되어 들어간다
(2-3) 각 경로는 서로 다른 길이의 딜레이(delay) line을 가지고, 경로차이는 일정하게 증가 시킨다.
(이 때, 각 경로로 들어간 펄스간에 기존 펄스와 동일한 시차 발생시킨다.)
이 때, P2에서 생성하는 최대 경로 개수는 아래 식과 같을 수 있다.
[식 13]
즉, 상기 K의 값은 상기 레이저 다이오드가 파장을 튜닝하는 시간 및 상기 레이저 다이오드의 펄스 간 시간 간격에 기반하여 결정될 수 있다.
또한 DL_1의 각 경로의 길이를 도면을 통해 설명하면 아래와 같을 수 있다.
도 30은 DL_1의 각 경로의 길이의 일례를 개략적으로 도시한 것이다.
도 30에 따르면, N개의 경로 각각의 길이는 제1 경로의 길이, 상기 경로가 상기 N개의 경로 중 몇 번째 경로인지에 대한 값, 상기 레이저 다이오드의 펄스 간 시간 간격 및 광섬유에서의 빛의 속도에 기반하여 결정될 수 있다.
도면에서의 각 파라미터는 아래와 같을 수 있다.
- c: 섬유에서의 빛의 속도(the speed of light in fibre) = 2×10^8 (m/s),
- h: 제1 경로의 길이(e.g. P1 경로 길이)
(2-4) k:1 커플러를 통해 순차적으로 각 경로의 길이에 따라 k개의 펄스가 튜너블 LD의 파장 변환 시간 동안 출력된다.
(2-5) 디텍터에서 P1경로와 P2 경로를 통과한 펄스의 세기 차이를 검출한 후, 그 값에 해당하는 차이만큼을 VA에서 감쇄시켜 내보낸다.
본 방식의 경우, 레이저의 튜닝 타임에 해당하는 최소 경로의 개수만 생성하면 되므로 특히 튜닝 타임이 길지 않을 경우에 작은 크기의 DL_1만으로도 구성이 가능하다.
1-2.
싱글(Single) 스토리지 라인과 감쇠기를 사용하는 방법
또 다른 명세서 기법은 튜닝 타임에 해당하는 길이의 스토리지(storage) 라인을 원래의 경로와 병렬로 구성한 아래 도면과 같은 방법이다.
도 31은 단일 지연선과 감쇄기를 활용한 튜너블 레이저 기반 QKD의 파장 변환 지연시간 개선 기법의 일례를 개략적으로 도시한 것이다.
이 방법은 튜너블 레이저의 튜닝 타임이 긴 경우에 길이가 긴 단일 경로를 추가하는 것만으로 키 레이트 손실을 막을 수 있는 방법이다. 본 명세서 기법은 튜닝 타임이 펄스 열의 생성시간보다 짧으면 키 레이트 손실 없이 펄스 생성 가능하므로 튜너블 레이저에서 생성한 펄스 열의 생성 시간만큼의 튜닝 타임 확보 할 수 있고, 가변 감쇠기(variable attenuator; VA)에서 모든 펄스를 동일한 값으로 감쇠시키면 되므로 VA의 컨트롤이 간단하다는 이점을 가진다.
본 명세서 기법에서 신호 생성을 위한 세부적인 과정은 다음과 같다.
(1) 튜너블 LD에서 λ_i의 파장 가지는 N개의 펄스 생성 후 P1과 P2 두 경로로 각 펄스 열을 전송한다.
(2) 가변 감쇠기를 통과하는 쪽에서는 아래 위 경로를 통과한 펄스가 동일한 파워를 가지고 전송되도록 위쪽 경로를 지나는 신호의 세기를 아래쪽 경로의 로스만큼 감쇄시킨다.
(3) 스토리지 라인(SL)을 통과하는 쪽에서는 위쪽의 경로로 N개의 펄스가 통과된 후에 뒤이어 아래쪽에서 나오는 k개의 펄스 길이에 해당하는 길이의 SL을 사용하며 그 길이는 다음 식과 같이 나타낼 수 있다.
[식 14]
(4) N+1번째 펄스부터 2N번째 펄스가 아래쪽 경로로 모두 통과되기 전에 튜너블 LD에서 λ_(i+1)의 파장 생성을 위한 튜닝을 시행한다.
(5) 2N+1번째 펄스부터는 λ_(i+1)의 파장을 가진 펄스를 튜너블 LD에서 생성 후 위의 (2)~(4)번 과정을 반복 수행한다.
2.
튜너블
레이저 다이오드 기반 신호 검출 부분에서의 키
레이트
개선 기법 - 두 개의 추가
디텍터와
튜너블
옵티컬
필터를 사용하는 방법
튜너블 LD 기반의 양자 암호 통신 기법에서는 튜너블 LD에서 생성하는 펄스 열의 길이에 해당하는 시간 간격마다 다른 파장을 가지는 키 정보를 검출기에서 검출해야 하므로 단일 광자 검출기(SPD1, 2) 직전에 튜너블 옵티컬 필터를 위치시켜 검출 파장만을 통과시킬 수 있도록 파장 스위칭을 계속 수행해야 한다. 하지만 λ_i의 파장을 가지는 신호열이 검출(detection)된 후에 뒤이어 λ_(i+1)의 파장을 가지는 신호열이 필터를 통과해야 하는데 이를 위해서는 튜너블 필터의 파장 변환 시간이 필요하기 때문에 이 시간 동안은 λ_(i+1)의 파장을 가지는 신호가 들어와도 통과 못 시키는 문제가 발생한다.
따라서 본 명세서에서는 이로 인한 키 레이트 손실을 최소화하기 위해 필터의 스위칭 타임 동안에도 검출기를 통한 검출이 가능한 방법을 제시한다.
도 32는 튜너블 필터의 파장 스위칭으로 인한 딜레이 타임 문제 해결을 위한 디-멀티플렉싱 기법의 일례를 개략적으로 도시한 것이다.
튜너블 옵티컬 필터의 파장 변환 시간 지연으로 인한 키 레이트 손실을 막을 수 있는 가장 쉬운 방법은 2개의 Demux와 튜너블 LD에서 사용할 파장의 개수 k의 두 배에 해당하는 단일 광자 검출기(SPD)를 도면과 같이 배치하는 것이다. 이를 통해 입력되는 신호의 파장에 따라 Demux의 정해진 경로의 단일 광자 검출기에서 신호를 검출하면 되므로 다 파장 신호 사용으로 인한 키 레이트 손실을 막을 수 있다.
하지만 이 방식은 양자 채널의 길이가 길수록 더 많은 파장 변환을 적용해야 하므로 밥 사이드에 추가 레이저의 개수 증가와 컨트롤 부분의 복잡도 증가 등으로 인한 부피, 비용 등의 한계를 가진다.
도 33은 튜너블 필터의 파장 스위칭 타임으로 인한 키 레이트 저하 문제와 이에 대한 해결 방안을 개략적으로 도시한 것이다.
도 33에 따르면, 위 문제를 해결하기 위해, 별도의 SPD와 튜너블 필터를 2개씩 더 적용하여, λ_(i+1)의 파장을 가진 신호가 들어오기 시작하는 시점에 1X2 옵티컬 스위치를 통해 다음 통과 파장을 통과시킬 수 있는 경로로 스위칭하는 방법이 사용될 수 있다. 현재 상용 1X2 옵티컬 스위치의 경로 스위칭 스피드가 10ns이하인 것이 존재하기 때문에, SPD로 들어오는 신호의 펄스 간 간격에 해당하는 시간보다 짧게 만들 수 있으므로 옵티컬 스위치로 인한 시간 지연은 발생하지 않을 수 있다.
따라서 λ_i의 파장을 가지는 펄스 열이 SPD에서 측정되고 있는 동안, 다른 SPD에서는 옵티컬 필터의 통과 파장을 다음에 검출될 펄스 열의 파장인 λ_(i+1)로 변경시킨 후 파장 변경된 펄스가 입력되는 타이밍에 옵티컬 스위치의 경로를 변환시켜 주면 필터의 스위칭 타임으로 인한 키 레이트 저하 문제는 극복하는 것이 가능하다.
본 명세서에 따르면, 아래와 같은 기대 효과가 있다.
본 명세서에서는 기존 플러그 앤드 플레이 양자 암호 통신 기법의 문제점이었던 낮은 시프트된(sifted) 키 레이트를 개선할 수 있는 효율적인 방법을 제시하였다. 이를 위해서 광원의 파장을 변환시킬 수 있는 튜너블 레이저를 사용하는 방법을 제시하였으며, 이 과정에서 발생할 수 있는 2가지 문제인 튜너블 레이저의 튜닝 타임 딜레이와 튜너블 옵티컬 필터의 파장 스위칭 타임 딜레이를 해결할 수 있는 방법을 제안하였다.
본 기법에서는 위의 두 가지 문제로 인해 발생하는 기존 튜너블 레이저 기반 기법의 시프트된(sifted) 키 레이트 손실 비율에 해당하는 아래 식만큼의 키 레이트 손실을 제거하여 시프트된(sifted) 키 레이트를 높일 수 있다.
[식 15]
(1) 기존 튜너블 LD 기반 플러그 앤드 플레이 QKD 기법의 시프트된(sifted) 키 레이트(=R_c)
[식 16]
위 식에서, 각 파라미터는 아래와 같이 정의될 수 있다.
- f: 펄스 반복 률(pulse repetition rate)
- μ: 평균 포톤 개수(mean photon number)(근사 값 0.1)
- n_f: 섬유 전송 계수(fibre transmission coefficient), n_f=10^(-α_1*L_d/10) (α_1: 1550nm fibre 로스, 0.2dB/km, L_d: distance)
- n_B: 밥 내에서의 전체 로스(Total loss inside bob), n_B=10^(-L_Bob/10)
- n_D: SPD의 감지 효율(Detection efficiency of SPD)
- α_filter: 필터의 로스(the loss of the filter)(dB)
- t_sw: 튜너블 필터 스위칭 타임(Tunable filter switching time)
- t_tn: 튜너블 레이저에 대한 파장 튜닝 타임(Wavelength tuning time for tunable laser)
- N: 펄스들의 개수(the number of pulses)=2f*L_s/v_g (L_s: length of 스토리지 라인, v_g=2×10^8 (m/s))
(2) 본 명세서 기법의 시프트된(sifted) 키 레이트(=R_prop)
[식 17]
- 옵티컬 필터 계수(optical filter coefficient): n_sw=10^(-α_f/10), (α_filter: the loss of filter)
한편, 앞서 설명했던 실시예들을 여러 가지 관점에서 다시 설명하면, 아래와 같을 수 있다.
이하, 본 명세서의 예시에 대한 보다 원활한 이해를 위해, 도면을 통해 본 명세서의 개시에 대해 설명하도록 한다. 이하의 도면은 본 명세서의 구체적인 일례를 설명하기 위해 작성되었다. 도면에 기재된 구체적인 장치의 명칭이나 구체적인 신호/메시지/필드의 명칭은 예시적으로 제시된 것이므로, 본 명세서의 기술적 특징이 이하의 도면에 사용된 구체적인 명칭에 제한되지 않는다.
도 34는 본 명세서의 일 실시예에 따른, 밥 사이드의 장치에 의해 수행되는, 복수의 경로를 통해 펄스 열을 전송하는 방법의 순서도다.
도 34에 따르면, 장치는 레이저 다이오드에서 제1 펄스 열을 생성할 수 있다(S3410). 여기서, 본 실시예에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복서술은 생략하도록 한다.
장치는 제1 경로 및 제2 경로 각각을 통과한 상기 제1 펄스 열을 양자 채널을 통해 다른 장치에게 전송할 수 있다(S3420). 여기서, 본 실시예에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복서술은 생략하도록 한다.
도 35는 본 명세서의 다른 실시예에 따른, 밥 사이드의 장치에 의해 수행되는, 복수의 경로를 통해 펄스 열을 전송하는 방법의 순서도다.
도 35에 따르면, 장치는 다른 장치로부터 RA(random access) 프리앰블을 수신할 수 있다(S3510). 여기서, 본 실시예에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복서술은 생략하도록 한다.
장치는 상기 RA 프리앰블에 대한 응답으로 상기 다른 장치에게 RAR(random access response)를 전송할 수 있다(S3520). 여기서, 본 실시예에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복서술은 생략하도록 한다.
장치는 상기 다른 장치와 RRC(radio resource control) 연결 절차를 수행할 수 있다(S3530). 여기서, 본 실시예에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복서술은 생략하도록 한다.
장치는 상기 다른 장치로부터 데이터를 수신할 수 있다(S3540). 여기서, 본 실시예에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복서술은 생략하도록 한다.
장치는 키 정보에 기반하여 상기 데이터를 복호화할 수 있다(S3550). 여기서, 상기 장치의 레이저 다이오드에서 제1 펄스 열이 생성되고 및 상기 제1 펄스 열이 제1 경로 및 제2 경로를 각각 거친 후 양자 채널을 통해 상기 장치로부터 상기 다른 장치에게 전송됨에 기반하여, 상기 키 정보가 결정될 수 있으며, 이에 대한 보다 구체적인 예는 후술하도록 한다. 여기서, 본 실시예에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복서술은 생략하도록 한다.
한편, 본 명세서에서 제안하는 장치는, 아래 도면의 설명과 같을 수 있다. 아래 도면에서의 장치는, 앞서 설명했던 본 명세서의 제안을 간략화 한 장치에 해당할 수 있다.
이하, 본 명세서의 예시에 대한 보다 원활한 이해를 위해, 도면을 통해 본 명세서의 개시에 대해 설명하도록 한다. 이하의 도면은 본 명세서의 구체적인 일례를 설명하기 위해 작성되었다. 도면에 기재된 구체적인 장치의 명칭이나 구체적인 신호/메시지/필드의 명칭은 예시적으로 제시된 것이므로, 본 명세서의 기술적 특징이 이하의 도면에 사용된 구체적인 명칭에 제한되지 않는다.
도 36은 본 명세서의 일 실시예에 따른, 밥 사이드의 장치 관점에서의, 복수의 경로를 통해 펄스 열을 전송하는 장치의 블록도의 예시다.
도 36에 따르면, 장치(3600)는 레이저 다이오드(3610), 제1 경로(3620), 제2 경로(3630)을 포함할 수 있으며, 장치(3600)는 양자채널(3640)을 통해 다른 장치와 연결될 수 있다.
여기서, 앞서 설명했던 바와 같이, 장치(3600)는, 제1 펄스 열을 생성하는 레이저 다이오드(3610) 및 제1 경로(3620) 및 제2 경로(3630)를 포함하되, 상기 장치(3600)는 상기 제1 경로(3620) 및 상기 제2 경로(3630) 각각을 통과한 상기 제1 펄스 열을 양자 채널(3640)을 통해 다른 장치에게 전송할 수 있다.
여기서, 본 실시예에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복서술은 생략하도록 한다.
본 명세서에서 제안하는 장치는, 아래와 같이 제어 장치와 관련하여 설명할 수 있다.
도 37은 본 명세서의 다른 실시예에 따른, 밥 사이드의 장치 관점에서의, 복수의 경로를 통해 펄스 열을 전송하는 장치의 블록도의 예시다.
도 37에 따르면, 장치(3700)는 레이저 다이오드(3710), 제1 경로(3720), 제2 경로(3730)을 포함할 수 있으며, 장치(3700)는 양자채널(3740)을 통해 다른 장치와 연결될 수 있다.
한편, 장치(3700)는 제어 장치(3750)(e.g. 프로세서)에 의해 제어될 수 있다.
예컨대, 상기 프로세서는, 다른 장치로부터 RA(random access) 프리앰블을 수신하게 트랜시버를 제어하도록 설정되고, 상기 RA 프리앰블에 대한 응답으로 상기 다른 장치에게 RAR(random access response)를 전송하게 상기 트랜시버를 제어하도록 설정되고, 상기 다른 장치와 RRC(radio resource control) 연결 절차를 수행하도록 설정되고, 상기 다른 장치로부터 데이터를 수신하도록 상기 트랜시버를 제어하게 설정되고 및 키 정보에 기반하여 상기 데이터를 복호화하도록 설정되되, 상기 장치는 레이저 다이오드, 제1 경로 및 제2 경로를 포함하고, 상기 장치의 레이저 다이오드에서 제1 펄스 열이 생성되고 및 상기 제1 펄스 열이 제1 경로 및 제2 경로를 각각 거친 후 양자 채널을 통해 상기 장치로부터 상기 다른 장치에게 전송됨에 기반하여, 상기 키 정보가 결정되도록 설정될 수 있다.
한편 예컨대, 적어도 하나의 프로세서(processor)에 의해 실행되는 것에 기반하는 명령어(instruction)를 포함하는 적어도 하나의 컴퓨터로 읽을 수 있는 기록매체(computer readable medium)에 있어서, 다른 장치로부터 RA(random access) 프리앰블을 수신하게 트랜시버를 제어하도록 설정되고, 상기 RA 프리앰블에 대한 응답으로 상기 다른 장치에게 RAR(random access response)를 전송하게 상기 트랜시버를 제어하도록 설정되고, 상기 다른 장치와 RRC(radio resource control) 연결 절차를 수행하도록 설정되고, 상기 다른 장치로부터 데이터를 수신하도록 상기 트랜시버를 제어하게 설정되고 및 키 정보에 기반하여 상기 데이터를 복호화하도록 설정되되, 장치의 레이저 다이오드에서 제1 펄스 열이 생성되고 및 상기 제1 펄스 열이 제1 경로 및 제2 경로를 각각 거친 후 양자 채널을 통해 상기 장치로부터 상기 다른 장치에게 전송됨에 기반하여, 상기 키 정보가 결정되도록 설정되는 것을 특징으로 하는 기록매체가 제공될 수 있다.
다른 예시로, 본 명세서에서 제공하는 장치 내에, 제어 장치가 포함될 수도 있다.
도 38은 본 명세서의 또 다른 실시예에 따른, 밥 사이드의 장치 관점에서의, 복수의 경로를 통해 펄스 열을 전송하는 장치의 블록도의 예시다.
도 38에 따르면, 장치(3800)는 레이저 다이오드(3810), 제1 경로(3820), 제2 경로(3830)을 포함할 수 있으며, 장치(3800)는 양자채널(3840)을 통해 다른 장치와 연결될 수 있다. 아울러, 위 장치(3800)는 제어 장치(3850)(e.g. 프로세서)를 포함할 수도 있다.
여기서, 본 실시예에 대한 보다 구체적인 예는 앞서 설명한 바와 같기에, 설명의 편의를 위해 중복되는 내용의 반복서술은 생략하도록 한다.
도 39는 본 명세서에 적용되는 통신 시스템(1)을 예시한다.
도 39를 참조하면, 본 명세서에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 명세서의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
한편, NR은 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머롤로지(numerology)(또는 subcarrier spacing(SCS))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
NR 주파수 밴드(frequency band)는 두 가지 타입(type)(FR1, FR2)의 주파수 범위(frequency range)로 정의될 수 있다. 주파수 범위의 수치는 변경될 수 있으며, 예를 들어, 두 가지 type(FR1, FR2)의 주파수 범위는 하기 표 6과 같을 수 있다. 설명의 편의를 위해 NR 시스템에서 사용되는 주파수 범위 중 FR1은 "sub 6GHz range"를 의미할 수 있고, FR2는 "above 6GHz range"를 의미할 수 있고 밀리미터 웨이브(millimeter wave, mmW)로 불릴 수 있다.
Frequency Range designation | Corresponding frequency range | Subcarrier Spacing |
FR1 | 450MHz - 6000MHz | 15, 30, 60kHz |
FR2 | 24250MHz - 52600MHz | 60, 120, 240kHz |
상술한 바와 같이, NR 시스템의 주파수 범위의 수치는 변경될 수 있다. 예를 들어, FR1은 하기 표 7과 같이 410MHz 내지 7125MHz의 대역을 포함할 수 있다. 즉, FR1은 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역을 포함할 수 있다. 예를 들어, FR1 내에서 포함되는 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역은 비면허 대역(unlicensed band)을 포함할 수 있다. 비면허 대역은 다양한 용도로 사용될 수 있고, 예를 들어 차량을 위한 통신(예를 들어, 자율주행)을 위해 사용될 수 있다.
Frequency Range designation | Corresponding frequency range | Subcarrier Spacing |
FR1 | 410MHz - 7125MHz | 15, 30, 60kHz |
FR2 | 24250MHz - 52600MHz | 60, 120, 240kHz |
이하에서는, 본 명세서가 적용되는 무선 기기의 예에 대해 설명한다.
도 40은 본 명세서에 적용될 수 있는 무선 기기를 예시한다.
도 40을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 39의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시되 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 명세서에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 명세서에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 41은 본 명세서에 적용될 수 있는 무선 기기의 다른 예를 도시한다.
도 41에 따르면, 무선 장치는 적어도 하나의 프로세서(102, 202), 적어도 하나의 메모리(104, 204), 적어도 하나의 트랜시버(106, 206), 하나 이상의 안테나(108, 208)를 포함할 수 있다.
앞서 도 40에서 설명한 무선 장치의 예시와, 도 41에서의 무선 장치의 예시의 차이로써, 도 40는 프로세서(102, 202)와 메모리(104, 204)가 분리되어 있으나, 도 41의 예시에서는 프로세서(102, 202)에 메모리(104, 204)가 포함되어 있다는 점이다.
여기서, 프로세서(102, 202), 메모리(104, 204), 트랜시버(106, 206), 하나 이상의 안테나(108, 208)에 대한 구체적인 설명은 앞서 설명한 바와 같기에, 불필요한 기재의 반복을 피하기 위해, 반복되는 설명의 기재는 생략하도록 한다.
이하에서는, 본 명세서가 적용되는 신호 처리 회로의 예를 설명한다.
도 42는 전송 신호를 위한 신호 처리 회로를 예시한다.
도 42를 참조하면, 신호 처리 회로(1000)는 스크램블러(1010), 변조기(1020), 레이어 매퍼(1030), 프리코더(1040), 자원 매퍼(1050), 신호 생성기(1060)를 포함할 수 있다. 이로 제한되는 것은 아니지만, 도 42의 동작/기능은 도 40의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 수행될 수 있다. 도 42의 하드웨어 요소는 도 40의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 구현될 수 있다. 예를 들어, 블록 1010~1060은 도 40의 프로세서(102, 202)에서 구현될 수 있다. 또한, 블록 1010~1050은 도 40의 프로세서(102, 202)에서 구현되고, 블록 1060은 도 40의 송수신기(106, 206)에서 구현될 수 있다.
코드워드는 도 42의 신호 처리 회로(1000)를 거쳐 무선 신호로 변환될 수 있다. 여기서, 코드워드는 정보블록의 부호화된 비트 시퀀스이다. 정보블록은 전송블록(예, UL-SCH 전송블록, DL-SCH 전송블록)을 포함할 수 있다. 무선 신호는 다양한 물리 채널(예, PUSCH, PDSCH)을 통해 전송될 수 있다.
구체적으로, 코드워드는 스크램블러(1010)에 의해 스크램블된 비트 시퀀스로 변환될 수 있다. 스크램블에 사용되는 스크램블 시퀀스는 초기화 값에 기반하여 생성되며, 초기화 값은 무선 기기의 ID 정보 등이 포함될 수 있다. 스크램블된 비트 시퀀스는 변조기(1020)에 의해 변조 심볼 시퀀스로 변조될 수 있다. 변조 방식은 pi/2-BPSK(pi/2-Binary Phase Shift Keying), m-PSK(m-Phase Shift Keying), m-QAM(m-Quadrature Amplitude Modulation) 등을 포함할 수 있다. 복소 변조 심볼 시퀀스는 레이어 매퍼(1030)에 의해 하나 이상의 전송 레이어로 매핑될 수 있다. 각 전송 레이어의 변조 심볼들은 프리코더(1040)에 의해 해당 안테나 포트(들)로 매핑될 수 있다(프리코딩). 프리코더(1040)의 출력 z는 레이어 매퍼(1030)의 출력 y를 N*M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 전송 레이어의 개수이다. 여기서, 프리코더(1040)는 복소 변조 심볼들에 대한 트랜스폼(transform) 프리코딩(예, DFT 변환)을 수행한 이후에 프리코딩을 수행할 수 있다. 또한, 프리코더(1040)는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수 있다.
자원 매퍼(1050)는 각 안테나 포트의 변조 심볼들을 시간-주파수 자원에 매핑할 수 있다. 시간-주파수 자원은 시간 도메인에서 복수의 심볼(예, CP-OFDMA 심볼, DFT-s-OFDMA 심볼)을 포함하고, 주파수 도메인에서 복수의 부반송파를 포함할 수 있다. 신호 생성기(1060)는 매핑된 변조 심볼들로부터 무선 신호를 생성하며, 생성된 무선 신호는 각 안테나를 통해 다른 기기로 전송될 수 있다. 이를 위해, 신호 생성기(1060)는 IFFT(Inverse Fast Fourier Transform) 모듈 및 CP(Cyclic Prefix) 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.
무선 기기에서 수신 신호를 위한 신호 처리 과정은 도 42의 신호 처리 과정(1010~1060)의 역으로 구성될 수 있다. 예를 들어, 무선 기기(예, 도 40의 100, 200)는 안테나 포트/송수신기를 통해 외부로부터 무선 신호를 수신할 수 있다. 수신된 무선 신호는 신호 복원기를 통해 베이스밴드 신호로 변환될 수 있다. 이를 위해, 신호 복원기는 주파수 하향 변환기(frequency downlink converter), ADC(analog-to-digital converter), CP 제거기, FFT(Fast Fourier Transform) 모듈을 포함할 수 있다. 이후, 베이스밴드 신호는 자원 디-매퍼 과정, 포스트코딩(postcoding) 과정, 복조 과정 및 디-스크램블 과정을 거쳐 코드워드로 복원될 수 있다. 코드워드는 복호(decoding)를 거쳐 원래의 정보블록으로 복원될 수 있다. 따라서, 수신 신호를 위한 신호 처리 회로(미도시)는 신호 복원기, 자원 디-매퍼, 포스트코더, 복조기, 디-스크램블러 및 복호기를 포함할 수 있다.
이하에서는, 본 명세서가 적용되는 무선 기기 활용 예에 대해 설명한다.
도 43은 본 명세서에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 39 참조).
도 43을 참조하면, 무선 기기(100, 200)는 도 40의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 40의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 40의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 39, 100a), 차량(도 39, 100b-1, 100b-2), XR 기기(도 39, 100c), 휴대 기기(도 39, 100d), 가전(도 39, 100e), IoT 기기(도 39, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 39, 400), 기지국(도 39, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 43에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
이하, 도 43의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.
도 44는 본 명세서에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 44를 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 43의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
도 45는 본 명세서에 적용되는 차량 또는 자율 주행 차량을 예시한다.
차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 45를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 43의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
도 46은 본 명세서에 적용되는 차량을 예시한다. 차량은 운송수단, 기차, 비행체, 선박 등으로도 구현될 수 있다.
도 46을 참조하면, 차량(100)은 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a) 및 위치 측정부(140b)를 포함할 수 있다. 여기서, 블록 110~130/140a~140b는 각각 도 X3의 블록 110~130/140에 대응한다.
통신부(110)는 다른 차량, 또는 기지국 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(130)는 차량(100)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 메모리부(130) 내의 정보에 기반하여 AR/VR 오브젝트를 출력할 수 있다. 입출력부(140a)는 HUD를 포함할 수 있다. 위치 측정부(140b)는 차량(100)의 위치 정보를 획득할 수 있다. 위치 정보는 차량(100)의 절대 위치 정보, 주행선 내에서의 위치 정보, 가속도 정보, 주변 차량과의 위치 정보 등을 포함할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서들을 포함할 수 있다.
일 예로, 차량(100)의 통신부(110)는 외부 서버로부터 지도 정보, 교통 정보 등을 수신하여 메모리부(130)에 저장할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서를 통하여 차량 위치 정보를 획득하여 메모리부(130)에 저장할 수 있다. 제어부(120)는 지도 정보, 교통 정보 및 차량 위치 정보 등에 기반하여 가상 오브젝트를 생성하고, 입출력부(140a)는 생성된 가상 오브젝트를 차량 내 유리창에 표시할 수 있다(1410, 1420). 또한, 제어부(120)는 차량 위치 정보에 기반하여 차량(100)이 주행선 내에서 정상적으로 운행되고 있는지 판단할 수 있다. 차량(100)이 주행선을 비정상적으로 벗어나는 경우, 제어부(120)는 입출력부(140a)를 통해 차량 내 유리창에 경고를 표시할 수 있다. 또한, 제어부(120)는 통신부(110)를 통해 주변 차량들에게 주행 이상에 관한 경고 메세지를 방송할 수 있다. 상황에 따라, 제어부(120)는 통신부(110)를 통해 관계 기관에게 차량의 위치 정보와, 주행/차량 이상에 관한 정보를 전송할 수 있다.
도 47은 본 명세서에 적용되는 XR 기기를 예시한다. XR 기기는 HMD, 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등으로 구현될 수 있다.
도 47을 참조하면, XR 기기(100a)는 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a), 센서부(140b) 및 전원공급부(140c)를 포함할 수 있다. 여기서, 블록 110~130/140a~140c은 각각 도 X3의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 휴대 기기, 또는 미디어 서버 등의 외부 기기들과 신호(예, 미디어 데이터, 제어 신호 등)를 송수신할 수 있다. 미디어 데이터는 영상, 이미지, 소리 등을 포함할 수 있다. 제어부(120)는 XR 기기(100a)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 예를 들어, 제어부(120)는 비디오/이미지 획득, (비디오/이미지) 인코딩, 메타데이터 생성 및 처리 등의 절차를 제어 및/또는 수행하도록 구성될 수 있다. 메모리부(130)는 XR 기기(100a)의 구동/XR 오브젝트의 생성에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 외부로부터 제어 정보, 데이터 등을 획득하며, 생성된 XR 오브젝트를 출력할 수 있다. 입출력부(140a)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센서부(140b)는 XR 기기 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140b)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰 및/또는 레이더 등을 포함할 수 있다. 전원공급부(140c)는 XR 기기(100a)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다.
일 예로, XR 기기(100a)의 메모리부(130)는 XR 오브젝트(예, AR/VR/MR 오브젝트)의 생성에 필요한 정보(예, 데이터 등)를 포함할 수 있다. 입출력부(140a)는 사용자로부터 XR 기기(100a)를 조작하는 명령을 회득할 수 있으며, 제어부(120)는 사용자의 구동 명령에 따라 XR 기기(100a)를 구동시킬 수 있다. 예를 들어, 사용자가 XR 기기(100a)를 통해 영화, 뉴스 등을 시청하려고 하는 경우, 제어부(120)는 통신부(130)를 통해 컨텐츠 요청 정보를 다른 기기(예, 휴대 기기(100b)) 또는 미디어 서버에 전송할 수 있다. 통신부(130)는 다른 기기(예, 휴대 기기(100b)) 또는 미디어 서버로부터 영화, 뉴스 등의 컨텐츠를 메모리부(130)로 다운로드/스트리밍 받을 수 있다. 제어부(120)는 컨텐츠에 대해 비디오/이미지 획득, (비디오/이미지) 인코딩, 메타데이터 생성/처리 등의 절차를 제어 및/또는 수행하며, 입출력부(140a)/센서부(140b)를 통해 획득한 주변 공간 또는 현실 오브젝트에 대한 정보에 기반하여 XR 오브젝트를 생성/출력할 수 있다.
또한, XR 기기(100a)는 통신부(110)를 통해 휴대 기기(100b)와 무선으로 연결되며, XR 기기(100a)의 동작은 휴대 기기(100b)에 의해 제어될 수 있다. 예를 들어, 휴대 기기(100b)는 XR 기기(100a)에 대한 콘트롤러로 동작할 수 있다. 이를 위해, XR 기기(100a)는 휴대 기기(100b)의 3차원 위치 정보를 획득한 뒤, 휴대 기기(100b)에 대응하는 XR 개체를 생성하여 출력할 수 있다.
도 48은 본 명세서에 적용되는 로봇을 예시한다. 로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류될 수 있다.
도 48을 참조하면, 로봇(100)은 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a), 센서부(140b) 및 구동부(140c)를 포함할 수 있다. 여기서, 블록 110~130/140a~140c은 각각 도 X3의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 다른 로봇, 또는 제어 서버 등의 외부 기기들과 신호(예, 구동 정보, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 로봇(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(130)는 로봇(100)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 로봇(100)의 외부로부터 정보를 획득하며, 로봇(100)의 외부로 정보를 출력할 수 있다. 입출력부(140a)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센서부(140b)는 로봇(100)의 내부 정보, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140b)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰, 레이더 등을 포함할 수 있다. 구동부(140c)는 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 구동부(140c)는 로봇(100)을 지상에서 주행하거나 공중에서 비행하게 할 수 있다. 구동부(140c)는 액츄에이터, 모터, 바퀴, 브레이크, 프로펠러 등을 포함할 수 있다.
도 49는 본 명세서에 적용되는 AI 기기를 예시한다.
AI 기기는 TV, 프로젝터, 스마트폰, PC, 노트북, 디지털방송용 단말기, 태블릿 PC, 웨어러블 장치, 셋톱박스(STB), 라디오, 세탁기, 냉장고, 디지털 사이니지, 로봇, 차량 등과 같은, 고정형 기기 또는 이동 가능한 기기 등으로 구현될 수 있다.
도 49를 참조하면, AI 기기(100)는 통신부(110), 제어부(120), 메모리부(130), 입/출력부(140a/140b), 러닝 프로세서부(140c) 및 센서부(140d)를 포함할 수 있다. 블록 110~130/140a~140d는 각각 도 X3의 블록 110~130/140에 대응한다.
통신부(110)는 유무선 통신 기술을 이용하여 다른 AI 기기(예, 도 W1, 100x, 200, 400)나 AI 서버(200) 등의 외부 기기들과 유무선 신호(예, 센서 정보, 사용자 입력, 학습 모델, 제어 신호 등)를 송수신할 수 있다. 이를 위해, 통신부(110)는 메모리부(130) 내의 정보를 외부 기기로 전송하거나, 외부 기기로부터 수신된 신호를 메모리부(130)로 전달할 수 있다.
제어부(120)는 데이터 분석 알고리즘 또는 머신 러닝 알고리즘을 사용하여 결정되거나 생성된 정보에 기초하여, AI 기기(100)의 적어도 하나의 실행 가능한 동작을 결정할 수 있다. 그리고, 제어부(120)는 AI 기기(100)의 구성 요소들을 제어하여 결정된 동작을 수행할 수 있다. 예를 들어, 제어부(120)는 러닝 프로세서부(140c) 또는 메모리부(130)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 적어도 하나의 실행 가능한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 AI 기기(100)의 구성 요소들을 제어할 수 있다. 또한, 제어부(120)는 AI 장치(100)의 동작 내용이나 동작에 대한 사용자의 피드백 등을 포함하는 이력 정보를 수집하여 메모리부(130) 또는 러닝 프로세서부(140c)에 저장하거나, AI 서버(도 W1, 400) 등의 외부 장치에 전송할 수 있다. 수집된 이력 정보는 학습 모델을 갱신하는데 이용될 수 있다.
메모리부(130)는 AI 기기(100)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 예를 들어, 메모리부(130)는 입력부(140a)로부터 얻은 데이터, 통신부(110)로부터 얻은 데이터, 러닝 프로세서부(140c)의 출력 데이터, 및 센싱부(140)로부터 얻은 데이터를 저장할 수 있다. 또한, 메모리부(130)는 제어부(120)의 동작/실행에 필요한 제어 정보 및/또는 소프트웨어 코드를 저장할 수 있다.
입력부(140a)는 AI 기기(100)의 외부로부터 다양한 종류의 데이터를 획득할 수 있다. 예를 들어, 입력부(120)는 모델 학습을 위한 학습 데이터, 및 학습 모델이 적용될 입력 데이터 등을 획득할 수 있다. 입력부(140a)는 카메라, 마이크로폰 및/또는 사용자 입력부 등을 포함할 수 있다. 출력부(140b)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시킬 수 있다. 출력부(140b)는 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센싱부(140)는 다양한 센서들을 이용하여 AI 기기(100)의 내부 정보, AI 기기(100)의 주변 환경 정보 및 사용자 정보 중 적어도 하나를 얻을 수 있다. 센싱부(140)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰 및/또는 레이더 등을 포함할 수 있다.
러닝 프로세서부(140c)는 학습 데이터를 이용하여 인공 신경망으로 구성된 모델을 학습시킬 수 있다. 러닝 프로세서부(140c)는 AI 서버(도 W1, 400)의 러닝 프로세서부와 함께 AI 프로세싱을 수행할 수 있다. 러닝 프로세서부(140c)는 통신부(110)를 통해 외부 기기로부터 수신된 정보, 및/또는 메모리부(130)에 저장된 정보를 처리할 수 있다. 또한, 러닝 프로세서부(140c)의 출력 값은 통신부(110)를 통해 외부 기기로 전송되거나/되고, 메모리부(130)에 저장될 수 있다.
본 명세서에 기재된 청구항들은 다양한 방식으로 조합될 수 있다. 예를 들어, 본 명세서의 방법 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다. 또한, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다.
Claims (15)
- 양자 통신 시스템에서, 장치에 의해 수행되는, 제1 펄스 열을 전송하는 방법에 있어서,다른 장치로부터 RA(random access) 프리앰블을 수신하고;상기 RA 프리앰블에 대한 응답으로 상기 다른 장치에게 RAR(random access response)를 전송하고;상기 다른 장치와 RRC(radio resource control) 연결 절차를 수행하고;상기 다른 장치로부터 데이터를 수신하고; 및키 정보에 기반하여 상기 데이터를 복호화하되,상기 장치의 레이저 다이오드에서 제1 펄스 열이 생성되고 및 상기 제1 펄스 열이 제1 경로 및 제2 경로를 각각 거친 후 양자 채널을 통해 상기 장치로부터 상기 다른 장치에게 전송됨에 기반하여, 상기 키 정보가 결정되는 것을 특징으로 하는 방법.
- 제1항에 있어서, 상기 레이저 다이오드는 파장을 튜닝하는 것을 지원하는 소자인 것을 특징으로 하는 방법.
- 제1항에 있어서, 상기 제2 경로는 N개의 경로를 포함하고,상기 N은 K보다 작거나 같은 값을 가지고,상기 N 및 상기 K는 자연수이고,상기 K는 상기 제2 경로의 최대 개수인 것을 특징으로 하는 방법.
- 제3항에 있어서, 상기 레이저 다이오드가 파장을 튜닝하는 시간 동안 상기 제1 펄스 열의 마지막 펄스가 상기 N개의 경로를 통과하는 것을 특징으로 하는 방법.
- 제4항에 있어서, 상기 N개의 경로 각각의 길이는 상기 제1 경로의 길이, 상기 경로가 상기 N개의 경로 중 몇 번째 경로인지에 대한 값, 상기 레이저 다이오드의 펄스 간 시간 간격 및 광섬유에서의 빛의 속도에 기반하여 결정되는 것을 특징으로 하는 방법.
- 제3항에 있어서, 상기 K의 값은 상기 레이저 다이오드가 파장을 튜닝하는 시간 및 상기 레이저 다이오드의 펄스 간 시간 간격에 기반하여 결정되는 것을 특징으로 하는 방법.
- 제1항에 있어서, 상기 제2 경로는 스토리지 라인을 포함하는 것을 특징으로 하는 방법.
- 제7항에 있어서, 상기 제1 펄스 열은 분기되어 상기 제1 경로 및 상기 제2 경로를 거치고,상기 제2 경로를 거친 상기 제1 펄스 열은, 상기 제1 경로를 거친 제1 펄스 열 이후에 상기 장치의 빔 스플리터에서 합류하는 것을 특징으로 하는 방법.
- 제1항에 있어서, 상기 장치는 상기 제1 펄스 열의 전송에 관련된 제2 펄스 열을 제1 튜너블 필터 및 제2 튜너블 필터에 기반하여 감지하고,상기 제1 튜너블 필터 및 제2 튜너블 필터 각각은 상기 제1 튜너블 필터 및 제2 튜너블 필터 각각이 통과시키는 파장을 가변적으로 변환하는 것을 지원하는 소자인 것을 특징으로 하는 방법.
- 제9항에 있어서, 상기 제2 튜너블 필터의 스위칭 타임 동안 상기 제1 튜너블 필터는 제1 파장을 가지는 상기 제2 펄스 열을 통과시키고,상기 제2 튜너블 필터의 스위칭 타임 이후 상기 제1 튜너블 필터는 제2 파장을 가지는 상기 제2 펄스열을 통과시키는 것을 특징으로 하는 방법.
- 양자 통신 시스템에서, 장치에 의해 수행되는, 제1 펄스 열을 전송하는 방법에 있어서,레이저 다이오드에서 제1 펄스 열을 생성하고; 및제1 경로 및 제2 경로 각각을 통과한 상기 제1 펄스 열을 양자 채널을 통해 다른 장치에게 전송하는 것을 특징으로 하는 방법.
- 장치는,트랜시버;적어도 하나의 메모리; 및상기 적어도 하나의 메모리 및 상기 트랜시버와 동작 가능하게 결합된 적어도 하나의 프로세서를 포함하되, 상기 프로세서는,다른 장치로부터 RA(random access) 프리앰블을 수신하게 상기 트랜시버를 제어하도록 설정되고;상기 RA 프리앰블에 대한 응답으로 상기 다른 장치에게 RAR(random access response)를 전송하게 상기 트랜시버를 제어하도록 설정되고;상기 다른 장치와 RRC(radio resource control) 연결 절차를 수행하도록 설정되고;상기 다른 장치로부터 데이터를 수신하도록 상기 트랜시버를 제어하게 설정되고; 및키 정보에 기반하여 상기 데이터를 복호화하도록 설정되되,상기 장치는 레이저 다이오드, 제1 경로 및 제2 경로를 포함하고,상기 장치의 레이저 다이오드에서 제1 펄스 열이 생성되고 및 상기 제1 펄스 열이 제1 경로 및 제2 경로를 각각 거친 후 양자 채널을 통해 상기 장치로부터 상기 다른 장치에게 전송됨에 기반하여, 상기 키 정보가 결정되도록 설정되는 것을 특징으로 하는 장치.
- 장치는,적어도 하나의 메모리; 및상기 적어도 하나의 메모리와 동작 가능하게 결합된 적어도 하나의 프로세서를 포함하되, 상기 프로세서는,다른 장치로부터 RA(random access) 프리앰블을 수신하게 상기 트랜시버를 제어하도록 설정되고;상기 RA 프리앰블에 대한 응답으로 상기 다른 장치에게 RAR(random access response)를 전송하게 상기 트랜시버를 제어하도록 설정되고;상기 다른 장치와 RRC(radio resource control) 연결 절차를 수행하도록 설정되고;상기 다른 장치로부터 데이터를 수신하도록 상기 트랜시버를 제어하게 설정되고; 및키 정보에 기반하여 상기 데이터를 복호화하도록 설정되되,상기 장치는 레이저 다이오드, 제1 경로 및 제2 경로를 포함하고,상기 장치의 레이저 다이오드에서 제1 펄스 열이 생성되고 및 상기 제1 펄스 열이 제1 경로 및 제2 경로를 각각 거친 후 양자 채널을 통해 상기 장치로부터 상기 다른 장치에게 전송됨에 기반하여, 상기 키 정보가 결정되도록 설정되는 것을 특징으로 하는 장치.
- 적어도 하나의 프로세서(processor)에 의해 실행되는 것에 기반하는 명령어(instruction)를 포함하는 적어도 하나의 컴퓨터로 읽을 수 있는 기록매체(computer readable medium)에 있어서,다른 장치로부터 RA(random access) 프리앰블을 수신하게 트랜시버를 제어하도록 설정되고;상기 RA 프리앰블에 대한 응답으로 상기 다른 장치에게 RAR(random access response)를 전송하게 상기 트랜시버를 제어하도록 설정되고;상기 다른 장치와 RRC(radio resource control) 연결 절차를 수행하도록 설정되고;상기 다른 장치로부터 데이터를 수신하도록 상기 트랜시버를 제어하게 설정되고; 및키 정보에 기반하여 상기 데이터를 복호화하도록 설정되되,장치의 레이저 다이오드에서 제1 펄스 열이 생성되고 및 상기 제1 펄스 열이 제1 경로 및 제2 경로를 각각 거친 후 양자 채널을 통해 상기 장치로부터 상기 다른 장치에게 전송됨에 기반하여, 상기 키 정보가 결정되도록 설정되는 것을 특징으로 하는 기록매체.
- 장치는,제1 펄스 열을 생성하는 레이저 다이오드; 및제1 경로 및 제2 경로를 포함하되,상기 장치는 상기 제1 경로 및 상기 제2 경로 각각을 통과한 상기 제1 펄스 열을 양자 채널을 통해 다른 장치에게 전송하는 것을 특징으로 하는 장치.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2020/008684 WO2022004922A1 (ko) | 2020-07-02 | 2020-07-02 | 파장 변환으로 인한 시간 지연 없는 멀티 파장 플러그 앤드 플레이 양자 키 분배 방법 및 장치 |
KR1020237000140A KR20230031282A (ko) | 2020-07-02 | 2020-07-02 | 파장 변환으로 인한 시간 지연 없는 멀티 파장 플러그 앤드 플레이 양자 키 분배 방법 및 장치 |
US18/003,955 US20230283384A1 (en) | 2020-07-02 | 2020-07-02 | Method and device for multi-wavelength plug-and-play quantum key distribution without time delay due to wavelength conversion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2020/008684 WO2022004922A1 (ko) | 2020-07-02 | 2020-07-02 | 파장 변환으로 인한 시간 지연 없는 멀티 파장 플러그 앤드 플레이 양자 키 분배 방법 및 장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022004922A1 true WO2022004922A1 (ko) | 2022-01-06 |
Family
ID=79315366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/008684 WO2022004922A1 (ko) | 2020-07-02 | 2020-07-02 | 파장 변환으로 인한 시간 지연 없는 멀티 파장 플러그 앤드 플레이 양자 키 분배 방법 및 장치 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230283384A1 (ko) |
KR (1) | KR20230031282A (ko) |
WO (1) | WO2022004922A1 (ko) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150341974A1 (en) * | 2012-12-31 | 2015-11-26 | Zte Corporation | Wireless communications method, user equipment, network device, and system |
US20170010420A1 (en) * | 2015-07-07 | 2017-01-12 | Huawei Technologies Co., Ltd. | Apparatus and method for tuning optical components |
KR20190053837A (ko) * | 2017-01-16 | 2019-05-20 | 사우스 차이나 노멀 유니버시티 | 위상 편광 다 자유도 변조 양자키분배 네트워크 시스템 및 방법 |
-
2020
- 2020-07-02 WO PCT/KR2020/008684 patent/WO2022004922A1/ko active Application Filing
- 2020-07-02 US US18/003,955 patent/US20230283384A1/en active Pending
- 2020-07-02 KR KR1020237000140A patent/KR20230031282A/ko unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150341974A1 (en) * | 2012-12-31 | 2015-11-26 | Zte Corporation | Wireless communications method, user equipment, network device, and system |
US20170010420A1 (en) * | 2015-07-07 | 2017-01-12 | Huawei Technologies Co., Ltd. | Apparatus and method for tuning optical components |
KR20190053837A (ko) * | 2017-01-16 | 2019-05-20 | 사우스 차이나 노멀 유니버시티 | 위상 편광 다 자유도 변조 양자키분배 네트워크 시스템 및 방법 |
Non-Patent Citations (2)
Title |
---|
BYUNG KWON PARK; MIN KI WOO; YONG-SU KIM; YOUNG-WOOK CHO; SUNG MOON; SANG-WOOK HAN: "User-independent optical path length compensation scheme with sub-ns timing resolution for 1xN quantum key distribution network system", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 3 January 2020 (2020-01-03), 201 Olin Library Cornell University Ithaca, NY 14853 , XP081571254 * |
WEI KE-JIN, MA HAI-QIANG, LI RUI-XUE, ZHU WU, LIU HONG-WEI, ZHANG YONG, JIAO RONG-ZHEN: "Analysis of Faraday Mirror in Auto-Compensating Quantum Key Distribution", CHINESE PHYSICS LETTERS, INSTITUTE OF PHYSICS PUBLISHING, BRISTOL, GB, vol. 32, no. 8, 1 August 2015 (2015-08-01), GB , pages 080303, XP055885027, ISSN: 0256-307X, DOI: 10.1088/0256-307X/32/8/080303 * |
Also Published As
Publication number | Publication date |
---|---|
KR20230031282A (ko) | 2023-03-07 |
US20230283384A1 (en) | 2023-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021246538A1 (ko) | 패스트 빔 스티어링 시스템 기반 주파수 그래디언트 메타서페이스 장치 및 이에 대한 방법 | |
WO2022019352A1 (ko) | 무선 통신 시스템에서 단말 및 기지국의 신호 송수신 방법 및 장치 | |
WO2021251511A1 (ko) | 무선 통신 시스템에서 고주파 대역의 상향링크 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2022045378A1 (ko) | 최대 비트 그룹 및 이차원 패리티에 기반한 양자 비트 에러 율 추정 방법 및 장치 | |
WO2022145548A1 (ko) | 연합 러닝에 대한 데이터 분할 기반 모듈레이션 방법 및 장치 | |
WO2022025315A1 (ko) | 유효 스캔 레인지에서 연속 빔 스캐닝에 대한 페이즈 컨트롤 장치 및 이에 대한 방법 | |
WO2021241779A1 (ko) | Owc를 위한 주파수 그래디언트 메타서페이스 기반 패스트 빔 스티어링 전송 방법 및 장치 | |
WO2022039303A1 (ko) | Thz 대역을 지원하는 무선 통신 시스템에서 안테나의 빔을 생성하기 위한 방법 및 이를 위한 장치 | |
WO2022054985A1 (ko) | 무선 통신 시스템에서 단말 및 기지국의 신호 송수신 방법 및 장치 | |
WO2022025321A1 (ko) | 통신 장치의 신호 랜덤화 방법 및 장치 | |
WO2022014732A1 (ko) | 무선 통신 시스템에서 연합 학습을 수행하기 위한 방법 및 장치 | |
WO2021235563A1 (ko) | 다중 경로 및 파장 분할에 기반한 플러그 앤드 플레이 퀀텀 키 분배 방법 및 상기 방법을 이용하는 장치 | |
WO2022054992A1 (ko) | 플러그 앤드 플레이 퀀텀 키 분배 시스템에서 패러데이 회전 거울의 편광 왜곡 보정 방법 및 장치 | |
WO2022004921A1 (ko) | 플러그 앤드 플레이 퀀텀 키 분배 시스템에서 패러데이 회전 거울의 편광 왜곡 보정 방법 및 장치 | |
WO2022119021A1 (ko) | Ai mimo에 대한 러닝 클래스 기반 시스템 적응 방법 및 장치 | |
WO2022059814A1 (ko) | 4d 빔포밍에 대한 주파수 콤브 전력 제어 장치 및 이에 대한 방법 | |
WO2022045402A1 (ko) | 무선 통신 시스템에서 단말 및 기지국의 신호 송수신 방법 및 장치 | |
WO2022039287A1 (ko) | 무선 통신 시스템에서 단말 및 기지국의 신호 송수신 방법 및 장치 | |
WO2022097774A1 (ko) | 무선 통신 시스템에서 단말 및 기지국의 피드백 수행 방법 및 장치 | |
WO2022080534A1 (ko) | 디지털 aircomp 시그널링 | |
WO2022025306A1 (ko) | 의사 랜덤 시퀀스에 기반한 연합 학습 수행 방법 및 장치 | |
WO2022014728A1 (ko) | 무선 통신 시스템에서 단말 및 기지국의 채널 코딩 수행 방법 및 장치 | |
WO2022054980A1 (ko) | 무선 통신 시스템에서 사용 가능한 뉴럴 네트워크 인코더 구조 및 인코딩 방법 | |
WO2022045377A1 (ko) | 무선 통신 시스템에서 단말 및 기지국의 신호 송수신 방법 및 장치 | |
WO2022004922A1 (ko) | 파장 변환으로 인한 시간 지연 없는 멀티 파장 플러그 앤드 플레이 양자 키 분배 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20943703 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20943703 Country of ref document: EP Kind code of ref document: A1 |