WO2022004691A1 - Gas barrier resin composition, molded body, film or sheet, packaging material, film or sheet for industrial uses, heat molded container, cup shaped container, tray shaped container, blow molded container, fuel container, bottle container, tube, multilayer pipe and paper container - Google Patents

Gas barrier resin composition, molded body, film or sheet, packaging material, film or sheet for industrial uses, heat molded container, cup shaped container, tray shaped container, blow molded container, fuel container, bottle container, tube, multilayer pipe and paper container Download PDF

Info

Publication number
WO2022004691A1
WO2022004691A1 PCT/JP2021/024450 JP2021024450W WO2022004691A1 WO 2022004691 A1 WO2022004691 A1 WO 2022004691A1 JP 2021024450 W JP2021024450 W JP 2021024450W WO 2022004691 A1 WO2022004691 A1 WO 2022004691A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
gas barrier
resin composition
barrier resin
layer
Prior art date
Application number
PCT/JP2021/024450
Other languages
French (fr)
Japanese (ja)
Inventor
正和 中谷
瑞子 尾下
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2022534017A priority Critical patent/JPWO2022004691A1/ja
Publication of WO2022004691A1 publication Critical patent/WO2022004691A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to a gas barrier resin composition, a molded body, a film or sheet, a packaging material, an industrial film or sheet, a thermoformed container, a cup-shaped container, a tray-shaped container, a blow molded container, a fuel container, a bottle container, a tube, and a multilayer. Regarding pipes and paper containers.
  • Gas barrier materials using resins with excellent ability to block gases such as oxygen are widely used in various applications such as containers, films, sheets, and pipes.
  • resin having excellent gas barrier properties polyamide, polyester, polyvinylidene chloride, acrylonitrile copolymer, polyvinylidene fluoride, polychlorotrifluoroethylene, ethylene-vinyl ester copolymer sakenized product and the like are known.
  • Patent Document 1 describes an invention of a multilayer plastic container having at least one gas barrier resin layer selected from polyamide, polyester, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, fluorine-containing resin and silicone resin. ..
  • Patent Document 2 states that conventional film materials such as biomass-derived polyolefins do not have sufficient qualities such as adhesion, processability, and durability, and a biomass-derived resin for improving such points. Described is an invention of a resin film comprising a biomass-derived resin layer having a specific composition including.
  • Patent Document 3 states that a film in which a petroleum-derived resin is replaced with a biomass-derived resin may have reduced impact resistance and the like, and a biomass-derived biomass polyethylene for improving such a point.
  • the present invention describes the invention of a laminated film having an intermediate layer containing polyethylene derived from fossil fuel and a propylene-based block copolymer resin.
  • Patent Document 4 describes an invention relating to a laminate having a layer made of a carbon-neutral polyester resin film using biomass ethylene glycol, and an ethylene-vinyl ester copolymer saken product is exemplified as a gas barrier resin.
  • this ethylene-vinyl ester copolymer saken product is shown as a resin made of a raw material derived from fossil fuel.
  • a laminate of Patent Document 4 is limited as a bioplastic because a biomass-derived resin and a fossil fuel-derived resin coexist.
  • gas barrier resins synthesized using biomass-derived raw materials will be commercialized.
  • the performance of the biomass-derived synthetic resin may be inferior to that of the fossil fuel-derived synthetic resin. Therefore, when the conventional fossil fuel-derived gas barrier resin is replaced with the biomass-derived gas barrier resin, There is concern that the most important gas barrier properties and molding processability will deteriorate. Therefore, it is desired to develop a biomass-derived resin having excellent gas barrier properties and molding processability comparable to those of fossil fuel-derived resins.
  • the present invention has been made based on the above circumstances, and an object thereof is a gas barrier having high gas barrier properties and molding processability comparable to those derived from fossil fuels while using raw materials derived from biomass.
  • the present inventor has synthesized an ethylene-vinyl ester copolymer saken product, which is a kind of gas barrier resin, using a raw material derived from biomass as a monomer and a raw material derived from fossil fuel as a monomer. It has been found that it has a high gas barrier property and molding processability comparable to those of the conventional one having the same structure, and the present invention has been completed.
  • the gas barrier resin composition according to any one of [1] to [5], which comprises the ester copolymer saponified product (Y); [7] The mass ratio (X / Y) of the ethylene-vinyl ester copolymer saponified product (X) and the ethylene-vinyl ester copolymer saken product (Y) is 60/40 or more and 95/5 or less. , [6] gas barrier resin composition; [8] The difference in melting point (XY) between the ethylene-vinyl ester copolymer saken product (X) and the ethylene-vinyl ester copolymer saken product (Y) is 15 ° C. or higher [6].
  • gas barrier resin composition of [7]; [9] The gas barrier resin composition according to any one of [1] to [8], which contains carboxylic acid in an amount of 30 ppm or more and 1000 ppm or less in terms of carboxylic acid root; [10] The gas barrier resin composition according to any one of [1] to [9], which contains 1 ppm or more and 1000 ppm or less of metal ions; [11] The gas barrier resin composition according to any one of [1] to [10], which comprises 1 ppm or more and 200 ppm or less of a phosphoric acid compound in terms of phosphorus atom.
  • a gas barrier resin composition having high gas barrier properties and molding processability comparable to those derived from fossil fuels while using a raw material derived from biomass, and a molded product using this gas barrier resin composition.
  • a film or sheet, a packaging material, an industrial film or sheet, a heat-molded container, a cup-shaped container, a tray-shaped container, a blow-molded container, a fuel container, a bottle container, a tube, a multi-layer pipe and a paper container can be provided.
  • FIG. 1 is a schematic perspective view showing a cup-shaped container according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the cup-shaped container of FIG.
  • FIG. 3 is a schematic diagram for explaining a method for manufacturing the cup-shaped container of FIG. 4 (A) to 4 (D) are schematic views for explaining a method for manufacturing the cup-shaped container of FIG. 1.
  • the gas barrier resin composition of the present invention contains an ethylene-vinyl ester copolymer saken compound (ethylene-vinyl alcohol copolymer; hereinafter also referred to as "EVOH”), and is an ethylene which is a raw material (raw material monomer) of the above-mentioned EVOH.
  • the vinyl ester is derived from biomass (hereinafter, EVOH whose raw material is derived from biomass, which is contained in the gas barrier resin composition of the present invention is also referred to as "EVOH derived from biomass”), is a gas barrier resin composition. Since the gas barrier resin composition uses a raw material derived from biomass, the environmental load is extremely low.
  • EVOH is selected and used as the gas barrier resin, and even when EVOH is synthesized using a raw material derived from biomass, it is the same as that synthesized only from the raw material derived from fossil fuel. It can exhibit high gas barrier properties and molding processability equivalent to EVOH of the structure.
  • EVOH having the same structure means EVOH having the same degree of polymerization, content ratio of each structural unit, presence / absence of denaturation, degree of saponification, and the like.
  • the biobase degree is an index showing the ratio of biomass-derived raw materials, and in the present specification, it is the biobase carbon content obtained by measuring the concentration of radioactive carbon (14 C) by an accelerator mass spectrometer (AMS). ..
  • the degree of biobase can be specifically measured according to the method described in ASTM D6866-18.
  • Biomass is a resource that is an organic substance derived from animals and plants, excluding fossil fuels (fossil resources). Biomass may be a resource that is an organic matter derived from plants.
  • the gas barrier resin composition of the present invention can also be used to track its own products by utilizing the concentration of radiocarbon (14 C).
  • Organisms take up and contain a certain amount of radiocarbon (14 C) in the atmosphere during their activity, but when the activity is stopped, the uptake of new 14 C stops and the ratio of 14 C to total carbon decreases.
  • isotope sorting occurs when plants fix carbon, and the ratio of 14 C to total carbon differs depending on the plant species. It is known that the ratio of 14 C to total carbon varies depending on the place of origin and age, and a raw material having a ratio of 14 C to total carbon can be obtained depending on the biomass used as a raw material.
  • EVOH is used in a wide range of applications, and it is the supplier's responsibility to supply high-quality products to the market. There is also a need for a way to distinguish between our own products and those of other companies for branding.
  • EVOH used in the gas barrier layer of a commercially available packaging container is formed into a packaging container by thermoforming, but the ethylene-vinyl ester copolymer saken product is a gel insoluble in a solvent due to the thermal history received during thermoforming. May form. Therefore, even if the packaging container is collected, the EVOH used is extracted with a solvent, and the molecular weight is to be measured, it is often difficult to accurately measure the molecular weight. Therefore, it is not possible to determine whether or not it is EVOH of the company only by analyzing the molded product.
  • EVOH is used in films, sheets, containers, etc. as a packaging material for foods, pharmaceuticals, industrial chemicals, pesticides, etc. through many distribution channels. It is also used in fuel tanks for automobiles and other vehicles, tube materials for tires, agricultural films, geomembranes, cushioning materials for shoes, etc., taking advantage of its barrier properties, heat retention properties, stain resistance, and the like. When these materials in which EVOH is used are further discarded, it is difficult to determine from which factory and which production line the such resin and the packaging container after use thereof are manufactured. In addition, it is difficult to conduct a quality survey of the company's products during or after use, and to track the environmental impact after disposal and the degradability into the ground.
  • a method of adding a tracer substance to EVOH can be considered.
  • the addition of a tracer may cause an increase in cost and a decrease in EVOH performance.
  • being able to track in-house products using the concentration of radiocarbon (14 C) can be said to be a very useful effect.
  • the gas barrier resin composition of the present invention is a resin composition having a function of suppressing gas permeation.
  • the upper limit of the oxygen permeation rate of the gas barrier resin composition of the present invention measured according to the method described in JIS K 7126-2 (isopressure method; 2006) under 20 ° C.-65% RH conditions is 100 mL / 20 ⁇ m /.
  • (m 2 ⁇ day ⁇ atm) are preferred, more preferably 50mL ⁇ 20 ⁇ m / (m 2 ⁇ day ⁇ atm), 10mL ⁇ 20 ⁇ m / (m 2 ⁇ day ⁇ atm), 1mL ⁇ 20 ⁇ m / (m 2 ⁇ day ⁇ atm), or 0.5mL ⁇ 20 ⁇ m / (m 2 ⁇ day ⁇ atm) it is more preferred.
  • biomass-derived EVOH contained in the gas barrier resin composition of the present invention is an EVOH in which ethylene and vinyl esters, which are raw material monomers, are derived from biomass. Since the biomass-derived EVOH contains a biomass-derived raw material, the biobase degree of the gas barrier resin composition of the present invention can be increased and the environmental load can be reduced.
  • Biomass-derived EVOH is obtained by saponification of a copolymer of biomass-derived ethylene and vinyl ester.
  • the production and saponification of an ethylene-vinyl ester copolymer as a precursor of biomass-derived EVOH can be carried out by a known method similar to the production and saponification of a conventional fossil fuel-derived ethylene-vinyl ester copolymer.
  • the vinyl ester for example, a carboxylic acid vinyl ester such as vinyl acetate, vinyl formate, vinyl propionate, vinyl valerate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl pivalate, vinyl versatic acid can be used. It can be made, and vinyl acetate is preferable.
  • Biomass-derived ethylene can be produced by a known method, for example, by purifying bioethanol from a biomass raw material and performing a dehydration reaction.
  • biomass raw material waste type, unused type, resource crop type and the like can be used, for example, cellulose type crops (pulp, kenaf, straw, rice straw, used paper, papermaking residue, etc.), wood, charcoal, compost.
  • the method for producing bioethanol is not particularly limited, and for example, the biomass raw material is pretreated (pressurized hot water treatment, acid treatment, alkali treatment, saccharification treatment using a saccharifying enzyme) as necessary, and then yeast fermentation.
  • the bioethanol can be purified through a distillation step and a dehydration step.
  • sequential saccharification fermentation in which saccharification and fermentation are carried out in stages may be used, or parallel saccharification fermentation in which saccharification and fermentation are carried out at the same time may be used, but the production efficiency is improved. From the viewpoint, it is preferable to produce bioethanol by parallel saccharification fermentation.
  • biomass-derived ethylene may be used, for example, Braskem S. A. Bioethylene derived from sugar cane can be used.
  • biomass-derived vinyl ester examples include vinyl esters produced using biomass-derived ethylene.
  • the method for producing vinyl ester derived from biomass include a method of reacting ethylene with acetic acid and oxygen molecules using a palladium catalyst, which is a general industrial production method.
  • the portion (acyl group) derived from a carboxylic acid such as acetic acid may be derived from biomass or may be derived from fossil fuel. That is, the biomass-derived vinyl ester may be produced by using biomass-derived ethylene and a biomass-derived or fossil fuel-derived carboxylic acid.
  • carboxylic acid-derived portion of the ethylene-vinyl ester copolymer is desorbed by saponification, and the desorbed carboxylic acid can be used again for synthesis, so that there is almost no effect from the viewpoint of carbon neutrality. This is because.
  • the lower limit of the ethylene unit content of biomass-derived EVOH is preferably 20 mol%, more preferably 23 mol%, still more preferably 25 mol%.
  • the upper limit of the ethylene unit content of biomass-derived EVOH is preferably 60 mol%, more preferably 55 mol%, still more preferably 50 mol%.
  • the ethylene unit content of biomass-derived EVOH can be determined by a nuclear magnetic resonance (NMR) method.
  • the lower limit of the saponification degree of biomass-derived EVOH is preferably 90 mol%, more preferably 95 mol%, still more preferably 99 mol%.
  • the saponification degree of biomass-derived EVOH is 90 mol% or more, the gas barrier property, molding processability, and long-run property of the gas barrier resin composition of the present invention tend to be better.
  • the upper limit of the saponification degree of the biomass-derived EVOH may be 100 mol%, and may be 99.97 mol% or 99.94 mol%.
  • the degree of saponification of EVOH can be calculated by performing 1 H-NMR measurement and measuring the peak area of hydrogen atoms contained in the vinyl ester structure and the peak area of hydrogen atoms contained in the vinyl alcohol structure.
  • the biobase degree of biomass-derived EVOH is preferably more than 99%, more preferably more than 99.5%, and may be 100%. Since some fossil fuel-derived raw materials may be mixed with the raw materials, the biobase degree may be less than 100%, but from the viewpoint of reducing the environmental load, the biobase degree of biomass-derived EVOH should be within the above range. Is preferable.
  • the biomass-derived EVOH may have a unit derived from a monomer other than ethylene, vinyl ester and a saponified product thereof, as long as the object of the present invention is not impaired.
  • the upper limit of the content of the unit derived from the other monomer to the total structural unit of the biomass-derived EVOH is preferably 30 mol%, preferably 20 mol%. More preferably, 10 mol% is even more preferred, 5 mol% is even more preferred, and 1 mol% is even more preferred.
  • the lower limit of its content may be 0.05 mol% or 0.10 mol%.
  • the other monomers include, for example, alkenes such as propylene, butylene, pentene, and hexene; 3-allyloxy-1-propene, 3-acyloxy-1-butene, 4-acyloxy-1-butene, 3,4-diasiloxy.
  • -1-Buten 3-Aryloxy-4-methyl-1-butene, 4-Achilloxy-2-methyl-1-butene, 4-Aryloxy-3-methyl-1-butene, 3,4-diasiloxy-2-methyl -1-Buten, 4-Acyloxy-1-Penten, 5-Acyloxy-1-Penten, 4,5-Diacyloxy-1-Penten, 4-Acyloxy-1-hexene, 5-Acyloxy-1-Hexene, 6-Acyloxy Alkenes having ester groups such as -1-hexene, 5,6-diasiloxy-1-hexene, 1,3-diacetoxy-2-methylenepropane, or alkenes thereof; Unsaturated acid or its anhydride, salt, mono or dialkyl ester, etc .; nitriles such as acrylonitrile and methacrylonitrile; amides such as acrylamide and methacrylamide; olefin
  • vinylsilane compounds such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri ( ⁇ -methoxy-ethoxy) silane, ⁇ -methacryloxypropylmethoxysilane; alkyl vinyl ethers, vinyl ketones, N-vinylpyrrolidone, vinyl chloride, Examples include vinylidene chloride.
  • Biomass-derived EVOH may be post-denatured by methods such as urethanization, acetalization, cyanoethylation, and oxyalkyleneization.
  • the biomass-derived EVOH may have a structural unit (modifying group) represented by the following formula (I).
  • X represents a group represented by hydrogen atom, methyl group, or R 2 -OH.
  • R 1 and R 2 each independently represent a single bond, an alkylene group having 1 to 9 carbon atoms or an alkylene oxy group having 1 to 9 carbon atoms, and the alkylene group and the alkylene oxy group are hydroxyl groups, alkoxy groups or halogen atoms. May include. ]
  • X is preferably a group represented by hydrogen or R 2 -OH, more preferably a group represented by R 2 -OH.
  • the alkylene group and alkyleneoxy group used as R 1 or R 2 may contain a hydroxyl group, an alkoxy group or a halogen atom.
  • R 1 and R 2 are preferably an alkylene group or an alkyleneoxy group having 1 to 5 carbon atoms, and more preferably an alkylene group or an alkyleneoxy group having 1 to 3 carbon atoms.
  • structural unit (modifying group) represented by the formula (I) include the following structural units (modifying group) represented by the formulas (II), (III), and (IV). Can be mentioned.
  • R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and the alkyl group may contain a hydroxyl group, an alkoxy group or a halogen atom. ]
  • R 5 is synonymous with X in formula (I).
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and the alkyl group may contain a hydroxyl group, an alkoxy group or a halogen atom.
  • R 7 and R 8 independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, or a hydroxyl group. Further, a part or all of the alkyl group and the hydrogen atom of the cycloalkyl group may be substituted with a hydroxyl group, an alkoxy group or a halogen atom.
  • R 1 in the formula (I) may be a single bond
  • X may be a hydroxymethyl group
  • R 3 and R 4 in the formula (II) are hydrogen atoms.
  • the upper limit of the content of the structural unit (modifying group) is preferably 20 mol%, more preferably 10 mol%, further preferably 8 mol%, and particularly preferably 5 mol% from the viewpoint of improving the gas barrier property. ..
  • R 1 in the formula (I) may be a hydroxymethylene group
  • X may be a hydrogen atom
  • R 5 and R 6 in the formula (III) are hydrogen atoms.
  • the upper limit of the content of the structural unit (modifying group) is preferably 20 mol%, more preferably 10 mol%, further preferably 8 mol%, and particularly preferably 5 mol% from the viewpoint of improving the gas barrier property. ..
  • R 1 is a methyl methylene group of in the formula (I)
  • X may be a hydrogen atom.
  • biomass-derived EVOH having this structural unit (modifying group) secondary processability such as stretchability and thermoformability tends to be improved without significantly deteriorating the gas barrier property.
  • an oxygen atom is bonded to a carbon atom in the main chain. That is, in the formula (IV), it is preferable that one of R 7 and R 8 is a methyl group and the other is a hydrogen atom.
  • the lower limit of the content is preferably 0.1 mol%, more preferably 0.5 mol%, still more preferably 1.0 mol%. 0 mol% is particularly preferred.
  • the upper limit of the content of the structural unit (modifying group) is preferably 20 mol%, more preferably 15 mol%, still more preferably 10 mol% from the viewpoint of improving the gas barrier property.
  • Biomass-derived EVOH may be used alone or in combination of two or more.
  • the gas barrier resin composition of the present invention contains EVOH (X) as biomass-derived EVOH and EVOH (Y) having a melting point lower than that of EVOH (X), and the mass of EVOH (X) and EVOH (Y). It is preferable that the ratio (X / Y) is 60/40 or more and 95/5 or less from the viewpoint of further improving the molding processability.
  • EVOH (X) is an EVOH having a melting point higher than that of EVOH (Y), and is usually an EVOH having the highest melting point among the biomass-derived EVOH contained in the gas barrier resin composition of the present invention.
  • the gas barrier resin composition of the present invention contains EVOH (X), it tends to have excellent gas barrier properties.
  • the lower limit of the melting point of EVOH (X) is preferably 150 ° C., more preferably 155 ° C., and even more preferably 160 ° C.
  • the upper limit of the melting point of EVOH (X) is preferably 200 ° C. When the melting point of EVOH (X) is within the above range, the gas barrier property of the gas barrier resin composition of the present invention tends to be good.
  • the lower limit of the ethylene unit content of EVOH (X) is preferably 20 mol%, more preferably 22 mol%, still more preferably 24 mol%, from the viewpoint of good molding processability and long-run property.
  • the upper limit of the ethylene unit content of EVOH (X) is preferably 50 mol%, more preferably 48 mol%, still more preferably 46 mol%, from the viewpoint of raising the melting point and improving the gas barrier property.
  • the lower limit of the saponification degree of EVOH (X) is preferably 90 mol%, more preferably 95 mol%, still more preferably 99 mol%.
  • the saponification degree of EVOH (X) is 90 mol% or more, the gas barrier property, molding processability and long-run property of the gas barrier resin composition of the present invention tend to be better.
  • the upper limit of the saponification degree of EVOH (X) may be 100 mol%, and may be 99.97 mol% or 99.94 mol%.
  • EVOH (X) may have a monomer unit other than the ethylene, vinyl ester and the saponified product described in the above-mentioned biomass-derived EVOH as long as the object of the present invention is not impaired. From the viewpoint of maintaining a high gas barrier property of the gas barrier resin composition, it is preferable not to have other monomer units.
  • the content of EVOH (X) with respect to all structural units is preferably 5 mol% or less, more preferably 3 mol% or less, and further preferably 1 mol% or less. preferable.
  • EVOH (Y) is a biomass-derived EVOH having a melting point lower than that of EVOH (X).
  • the gas barrier resin composition of the present invention contains EVOH (Y), it tends to exhibit excellent molding processability.
  • the lower limit of the melting point of EVOH (Y) is preferably 100 ° C, more preferably 105 ° C, and even more preferably 110 ° C.
  • the upper limit of the melting point of EVOH (Y) is preferably 180 ° C. When the melting point of EVOH (Y) is within the above range, the gas barrier property of the gas barrier resin composition of the present invention tends to be good.
  • the lower limit of the ethylene unit content of EVOH (Y) is preferably 30 mol%, more preferably 32 mol%, and further 34 mol% from the viewpoint of lowering the melting point and improving the molding processability and long-running property.
  • the upper limit of the ethylene unit content of EVOH (Y) is preferably 60 mol%, more preferably 58 mol%, and even more preferably 56 mol% from the viewpoint of improving the gas barrier property.
  • the lower limit of the saponification degree of EVOH (Y) is preferably 90 mol%, more preferably 95 mol%, still more preferably 99 mol%.
  • the saponification degree of EVOH (Y) is 90 mol% or more, the gas barrier property, molding processability and long-run property of the gas barrier resin composition of the present invention tend to be better.
  • the upper limit of the saponification degree of EVOH (Y) may be 100 mol%, and may be 99.97 mol% or 99.94 mol%.
  • the lower limit of the saponification degree of EVOH (Y) may be 70 mol% or 80 mol% from the viewpoint of enhancing the molding processability, and the upper limit of the saponification degree of EVOH (Y) is. From the viewpoint of enhancing the moldability, it may be 98 mol%.
  • EVOH (Y) may have a monomer unit (structural unit) other than ethylene, vinyl ester and its saponified product described in the above-mentioned biomass-derived EVOH, as long as the object of the present invention is not impaired.
  • EVOH (Y) has another monomer unit (structural unit) from the viewpoint of lowering the melting point of EVOH (Y) and enhancing the molding processability of the gas barrier resin composition of the present invention.
  • the lower limit of the content of EVOH (Y) with respect to all structural units is preferably 0.1 mol%, more preferably 0.3 mol%.
  • the upper limit of the content is preferably 15 mol%, more preferably 10 mol%.
  • the other monomer unit is not particularly limited, but is preferably the structural unit described in the above formula (I), and is of the above formula (II), formula (III) or formula (IV). It is more preferably a structural unit, and further preferably the above formula (IV).
  • EVOH (Y) contains the above-mentioned other monomer unit (structural unit), the molding processability tends to be excellent.
  • the ethylene unit content difference (YX) between EVOH (Y) and EVOH (X) is preferably 5 mol% or more, more preferably 7 mol% or more, still more preferably 10 mol% or more. Further, the ethylene unit content difference (YX) may be 25 mol% or less. When the ethylene unit content difference (YX) is in the above range, the moldability tends to be good while showing a good gas barrier property.
  • the melting point difference (XY) between EVOH (X) and EVOH (Y) is preferably 15 ° C. or higher, more preferably 18 ° C. or higher.
  • the melting point difference (XY) may be 100 ° C. or lower, or 50 ° C. or lower. When the melting point difference (XY) is in the above range, the molding processability tends to be good while showing a good gas barrier property.
  • the mass ratio (X / Y) of EVOH (X) to EVOH (Y) is preferably 60/40 or more, and more preferably 65/35 or more.
  • the mass ratio (X / Y) is preferably 95/5 or less, more preferably 90/10 or less.
  • the gas barrier resin composition of the present invention may contain EVOH (Z) having a melting point lower than EVOH (Y). When the gas barrier resin composition contains EVOH (Z), it tends to exhibit excellent molding processability.
  • a preferred embodiment of EVOH (Z) is similar to EVOH (Y), except that it has a lower melting point than EVOH (Y).
  • the lower limit of the melt flow rate (MFR) of biomass-derived EVOH measured in accordance with JIS K7210: 1999 at 190 ° C. and a load of 2160 g is preferably 0.1 g / 10 minutes, more preferably 0.5 g / 10 minutes. 1.0 g / 10 minutes is more preferable.
  • the upper limit of the MFR of biomass-derived EVOH is preferably 30 g / 10 minutes, more preferably 20 g / 10 minutes, and even more preferably 15 g / 10 minutes.
  • the lower limit of the melting point of biomass-derived EVOH is preferably 135 ° C, more preferably 150 ° C, and even more preferably 155 ° C. When the melting point of biomass-derived EVOH is 135 ° C. or higher, the gas barrier property tends to be excellent.
  • the upper limit of the melting point of the biomass-derived EVOH is preferably 200 ° C, more preferably 190 ° C, and even more preferably 185 ° C. When the melting point of biomass-derived EVOH is 200 ° C. or lower, the molding processability tends to increase.
  • the lower limit of the proportion of biomass-derived EVOH in all the resins constituting the gas barrier resin composition of the present invention is preferably 80% by mass, more preferably 90% by mass, further preferably 95% by mass, and particularly preferably 98% by mass. , 99% by mass, and the resin constituting the gas barrier resin composition of the present invention may be substantially only biomass-derived EVOH or may be only biomass-derived EVOH.
  • the lower limit of the proportion of biomass-derived EVOH in the gas barrier resin composition of the present invention is preferably 80% by mass, more preferably 90% by mass, further preferably 95% by mass, particularly preferably 98% by mass, and 99% by mass.
  • the gas barrier resin composition of the present invention may be substantially composed of only biomass-derived EVOH.
  • the gas barrier resin composition of the present invention contains a sulfur compound in an amount of more than 0 ppm and 100 ppm in terms of sulfur atom from the viewpoint of tracking the company's product. Further, the inventors have found that a sulfur compound having a sulfur atom equivalent of 100 ppm or less does not substantially affect the performance of the gas barrier resin composition, and the sulfur compound is suitable as a tracer substance.
  • the upper limit of the content of the sulfur compound is more preferably 50 ppm, further preferably 5 ppm, still more preferably 3 ppm, and particularly preferably 1.5 ppm.
  • the lower limit of the content of the sulfur compound may be 0.0001 ppm, 0.001 ppm, 0.01 ppm, 0.05 ppm, or 0.1 ppm.
  • EVOH containing an organic sulfur compound contained in the raw material of biomass may be obtained.
  • the amount of sulfur compound is smaller than that of EVOH derived from biomass. Therefore, when such biomass-derived EVOH is used, it becomes easier to trace the biomass-derived EVOH by comparing the contents of the sulfur compounds.
  • the gas barrier resin composition of the present invention contains an organic sulfur compound as a sulfur compound, particularly dimethyl sulfide or dimethyl sulfoxide, tracking becomes easier.
  • the content of the sulfur compound is the detection limit value for the biomass-derived ethylene and biomass-derived vinyl ester as raw materials and the obtained EVOH during the production of EVOH. It may be preferable not to carry out excessive purification as described below.
  • the gas barrier resin composition of the present invention preferably further contains a carboxylic acid.
  • a carboxylic acid melt moldability and color resistance at high temperatures can be improved.
  • the pH buffering capacity of the gas barrier resin composition is enhanced, and the coloring resistance to acidic substances and basic substances may be improved. Therefore, the pKa of the carboxylic acid is more preferably in the range of 3.5 to 5.5. preferable.
  • the lower limit of the content is preferably 30 ppm, more preferably 100 ppm in terms of carboxylic acid root.
  • the upper limit of the carboxylic acid content is preferably 1000 ppm, more preferably 600 ppm.
  • the content of the carboxylic acid is calculated by titrating an extract obtained by extracting 10 g of the resin composition with 50 ml of pure water at 95 ° C. for 8 hours.
  • the content of the carboxylic acid salt present in the extract is not taken into consideration as the content of the carboxylic acid in the resin composition.
  • the carboxylic acid may exist as a carboxylic acid ion.
  • the carboxylic acid examples include monovalent carboxylic acid and polyvalent carboxylic acid, which may be composed of one kind or a plurality of kinds.
  • the melt moldability of the gas barrier resin composition and the coloring resistance at high temperatures may be further improved.
  • the multivalent carboxylic acid may have three or more carboxy groups. In this case, the coloring resistance of the gas barrier resin composition of the present invention may be further improved.
  • the monovalent carboxylic acid is a compound having one carboxy group in the molecule.
  • the pKa of the monovalent carboxylic acid is preferably in the range of 3.5 to 5.5.
  • PKa 4.88
  • carboxylic acids may have substituents such as hydroxyl groups, amino groups and halogen atoms as long as pKa is in the range of 3.5 to 5.5.
  • acetic acid is preferable because it is highly safe and easy to handle.
  • a polyvalent carboxylic acid is a compound having two or more carboxy groups in the molecule.
  • the pKa of at least one carboxy group is preferably in the range of 3.5 to 5.5.
  • the gas barrier resin composition of the present invention preferably further contains a phosphoric acid compound.
  • the lower limit of the content thereof is preferably 1 ppm in terms of phosphoric acid root, and more preferably 3 ppm.
  • the upper limit of the content is preferably 200 ppm in terms of phosphoric acid root, and more preferably 100 ppm. If a phosphoric acid compound is contained in this range, the thermal stability of the gas barrier resin composition of the present invention may be improved. In particular, it may be possible to suppress the generation and coloring of gel-like lumps during melt molding for a long period of time.
  • the phosphoric acid compound for example, various acids such as phosphoric acid and phosphoric acid and salts thereof can be used.
  • the phosphate may be in the form of a first phosphate, a second phosphate, or a third phosphate.
  • the cation species of phosphate include alkali metals and alkaline earth metals.
  • Specific examples of the phosphoric acid compound include a phosphoric acid compound in the form of sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate, and dipotassium hydrogen phosphate.
  • the gas barrier resin composition of the present invention preferably further contains a boron compound.
  • the lower limit of the content thereof is preferably 5 ppm, more preferably 100 ppm in terms of boron element.
  • the upper limit of the content is preferably 5000 ppm, more preferably 1000 ppm in terms of boron atom. If a boron compound is contained in this range, the thermal stability of the gas barrier resin composition of the present invention during melt molding can be improved, and the generation of gel-like lumps may be suppressed. In some cases, the mechanical properties of the obtained molded product can be improved.
  • Examples of the boron compound include boric acid, borate ester, borate, and boron borohydride.
  • examples of boric acid include orthoboric acid (H 3 BO 3 ), metaboric acid, and tetraboric acid
  • examples of boric acid esters include, for example, trimethyl borate and triethyl borate, boric acid.
  • the salt include the above-mentioned alkali metal salts of boric acid, alkaline earth metal salts, and boric acid.
  • the gas barrier resin composition of the present invention preferably further contains metal ions.
  • the interlayer adhesiveness becomes excellent when a multi-layer molded body, that is, a multi-layer structure is formed.
  • the reason for the improvement in interlayer adhesion is not clear, but if the layer adjacent to the layer made of the gas barrier resin composition contains a molecule having a functional group capable of reacting with the hydroxy group of EVOH, both of them are subjected to metal ions. It is considered that the bond formation reaction of is accelerated. Further, by controlling the content ratio of the metal ion and the above-mentioned carboxylic acid, the melt moldability and coloring resistance of the gas barrier resin composition of the present invention can be improved.
  • the lower limit of the content is preferably 1 ppm, more preferably 100 ppm, still more preferably 150 ppm.
  • the upper limit of the metal ion content is preferably 1000 ppm, more preferably 400 ppm, still more preferably 350 ppm.
  • the content of the metal ion is 1 ppm or more, the interlayer adhesiveness of the obtained multilayer structure tends to be good.
  • the content of the metal ion is 1000 ppm or less, the coloring resistance tends to be good.
  • the metal ion examples include a monovalent metal ion, a divalent metal ion, and other transition metal ions, which may be composed of one or more kinds. Of these, monovalent metal ions and divalent metal ions are preferable.
  • an alkali metal ion is preferable, and examples thereof include lithium, sodium, potassium, rubidium and cesium ions, and sodium or potassium ion is preferable from the viewpoint of industrial availability.
  • the alkali metal salt that gives alkali metal ions include aliphatic carboxylates, aromatic carboxylates, carbonates, hydrochlorides, nitrates, sulfates, phosphates and metal complexes. Of these, aliphatic carboxylates and phosphates are preferable because they are easily available, and specifically, sodium acetate, potassium acetate, sodium phosphate and potassium phosphate are preferable.
  • divalent metal ions As metal ions, it may be preferable to include divalent metal ions as metal ions.
  • the metal ion contains a divalent metal ion, for example, thermal deterioration of EVOH when the trim is recovered and reused is suppressed, and the generation of gel and lumps in the obtained molded product may be suppressed.
  • the divalent metal ion include ions of beryllium, magnesium, calcium, strontium, barium and zinc, but magnesium, calcium or zinc ions are preferable from the viewpoint of industrial availability.
  • Examples of the divalent metal salt that gives a divalent metal ion include a carboxylate, a carbonate, a hydrochloride, a nitrate, a sulfate, a phosphate and a metal complex, and a carboxylate is preferable.
  • the carboxylic acid constituting the carboxylic acid salt is preferably a carboxylic acid having 1 to 30 carbon atoms, and specifically, acetic acid, stearic acid, lauric acid, montanic acid, behenic acid, octyl acid, sebacic acid, ricinolic acid, and the like. Examples thereof include myristic acid and palmitic acid, and acetic acid and stearic acid are preferable.
  • the gas barrier resin composition of the present invention is, for example, an antistatic agent, a processing aid, a resin other than EVOH, a stabilizer, an antioxidant, an ultraviolet absorber, a plasticizer, as long as the effect of the present invention is not impaired.
  • Other components such as antistatic agents, lubricants, colorants, fillers, surfactants, desiccants, oxygen absorbers, cross-linking agents, and reinforcing agents such as various fibers may be contained.
  • the blocking inhibitor examples include oxides, nitrides, and nitride oxides of elements selected from silicon, aluminum, magnesium, zirconium, cerium, tungsten, molybdenum, etc. Among these, silicon oxide is preferable because of its availability. .. When the gas barrier resin composition of the present invention contains a blocking inhibitor, blocking resistance can be enhanced.
  • processing aid examples include fluorine-based processing aids such as Arkema's Kynar (trademark) and 3M's Dynamer (trademark).
  • fluorine-based processing aids such as Arkema's Kynar (trademark) and 3M's Dynamer (trademark).
  • Resins other than EVOH include, for example, various polyolefins (polyethylene, polypropylene, poly1-butene, poly4-methyl-1-pentene, ethylene-propylene copolymer, and the common weight of ethylene and ⁇ -olefin having 4 or more carbon atoms.
  • Stabilizers for improving melt stability, etc. include hydrotalcite compounds, hindered phenol-based, hindered amine-based heat stabilizers, metal salts of higher aliphatic carboxylic acids (for example, calcium stearate, magnesium stearate, etc.) and the like. Can be mentioned.
  • the content thereof is preferably 0.001 to 1% by mass.
  • Antioxidants include 2,5-di-t-butyl-hydroquinone, 2,6-di-t-butyl-p-cresol, 4,4'-thiobis- (6-t-butylphenol), 2,2. '-Methylene-bis- (4-methyl-6-t-butylphenol), octadecyl-3- (3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate, 4,4'-thiobis- (6-t-Butylphenol) and the like can be mentioned.
  • ultraviolet absorber examples include ethylene-2-cyano-3', 3'-diphenylacrylate, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, and 2- (2'-hydroxy-3'-t. -Butyl-5'-methylphenyl) 5-chlorobenzotriazole, 2-hydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone and the like can be mentioned.
  • plasticizer examples include dimethyl phthalate, diethyl phthalate, dioctyl phthalate, wax, liquid paraffin, phosphate ester and the like.
  • antistatic agent examples include pentaerythritol monostearate, sorbitan monopalmitate, sulfated polyolefins, polyethylene oxide, carbowax and the like.
  • lubricant examples include ethylene bisstearoamide and butyl stearate.
  • colorant examples include carbon black, phthalocyanine, quinacridone, indoline, azo pigments, red iron oxide and the like.
  • filler examples include glass fiber, asbestos, ballastonite, calcium silicate and the like.
  • desiccant examples include phosphate (excluding the above phosphate), sodium borate, sodium sulfate, sodium chloride, sodium nitrate, sugar, silica gel, bentonite, molecular sieve, highly water-absorbent resin and the like.
  • the water content of the gas barrier resin composition of the present invention is preferably 3.0 parts by mass or less, preferably 1.0 part by mass, based on 100 parts by mass of the total of biomass-derived EVOH from the viewpoint of preventing the generation of voids during molding.
  • the following is more preferable, 0.5 parts by mass or less is further preferable, and 0.3 parts by mass or less is particularly preferable.
  • the gas barrier resin composition of the present invention may contain impurities derived from biomass caused by EVOH derived from biomass. It may contain various impurities, but it tends to contain at least a large amount of metals such as iron and nickel.
  • the biobase degree of the gas barrier resin composition of the present invention is preferably more than 99%, more preferably more than 99.5%, and may be 100%.
  • the biobase degree of this gas barrier resin composition means a value measured in consideration of other resins and the like contained in arbitrary components other than EVOH.
  • the environmental load is extremely low, which is preferable.
  • the method for incorporating the above-mentioned other components into the gas barrier resin composition of the present invention is not particularly limited, but it can be produced by melt-kneading other components and additives with biomass-derived EVOH.
  • Each component may be blended in a solid state such as powder or as a melt, or may be blended as a solute contained in a solution or a dispersoid contained in a dispersion liquid.
  • a dispersion liquid an aqueous solution and an aqueous dispersion liquid are suitable, respectively.
  • melt-kneading a known mixing device or kneading device such as a kneader ruder, an extruder, a mixing roll, and a Banbury mixer can be used.
  • the temperature range at the time of melt-kneading can be appropriately adjusted according to the biomass-derived EVOH used, the melting point of each component, and the like, and usually 150 to 250 ° C. is adopted. Further, some components may be added to the biomass-derived EVOH in advance, and then other necessary components may be melt-kneaded as described above to produce the product.
  • a method of pre-adding some components to biomass-derived EVOH a method of immersing biomass-derived EVOH as pellets or powder in a solution in which the added components are dissolved can be exemplified.
  • a solution an aqueous solution is suitable.
  • a molded product provided with a layer formed from the gas barrier resin composition of the present invention (hereinafter, also referred to as “gas barrier resin composition layer”) is a preferred embodiment of the present invention.
  • the gas barrier resin composition of the present invention may be a molded product having a single-layer structure, or may be a molded product (laminated product) having a thermoplastic resin layer.
  • the thermoplastic resin layer is a layer containing a thermoplastic resin as a main component.
  • the molded product of the present invention may include an adhesive resin layer (adhesive layer).
  • the adhesive resin layer means a layer containing an adhesive resin, an anchor coating agent, or an adhesive as a main component.
  • the "main component” means that the proportion of the component is more than 50% by mass, and is preferably 90% by mass or more.
  • the molded product of the present invention may further include other layers.
  • the molded body of the present invention can also be a multi-layer structure (laminated body).
  • the lower limit of the number of layers of the molded product of the present invention may be 1, but 2 is preferable, and 3 is more preferable.
  • the upper limit of the number of layers of the molded product may be, for example, 1000, 100, 20 or 10.
  • the molded product has a low environmental load and has good gas barrier properties, appearance, molding processability, and the like.
  • the molded product using the gas barrier resin composition of the present invention has various uses, and examples thereof include films, sheets, containers, bottles, tanks, pipes, hoses and the like.
  • films, sheets, pipes and hoses can be molded by extrusion molding
  • container shapes can be molded by injection molding
  • hollow containers such as bottles and tanks can be molded by hollow molding or rotary molding.
  • the hollow molding include extrusion hollow molding in which a parison is formed by extrusion molding and then blown to form the preform, and injection hollow molding in which a preform is formed by injection molding and then blown to form the preform.
  • a method of forming a packaging material such as a multilayer film by extrusion molding and a method of thermoforming a multilayer sheet formed by extrusion molding into a container-shaped packaging material are preferably used.
  • the multilayer structure is a multilayer structure including at least one gas barrier resin composition layer and further including a thermoplastic resin layer.
  • the multilayer structure is usually obtained by laminating a gas barrier resin composition layer and another layer (thermoplastic resin layer).
  • the layer structure of the multilayer structure for example, if the layer made of a resin other than the gas barrier resin composition of the present invention is an x layer, the gas barrier resin composition layer is a y layer, and the adhesive resin layer is a z layer, for example, x / y.
  • the types may be the same or different.
  • a layer using a recovery resin made of scrap such as trim generated during molding may be separately provided, or the recovery resin may be mixed with a layer made of another resin.
  • the thickness ratio of the y layer to the total layer thickness is usually 2 to 20% from the viewpoint of moldability and cost.
  • thermoplastic resin As the resin used for the x layer, a thermoplastic resin is preferable from the viewpoint of workability and the like.
  • thermoplastic resin include various polyolefins (polyethylene, polypropylene, poly1-butene, poly4-methyl-1-pentene, ethylene-propylene copolymer, and a copolymer of ethylene and ⁇ -olefin having 4 or more carbon atoms.
  • the thermoplastic resin layer may be unstretched, or may be uniaxially or biaxially stretched or rolled.
  • polyolefin is preferable in terms of moisture resistance, mechanical properties, economy and heat sealability
  • polyamide and polyester are preferable in terms of mechanical properties and heat resistance.
  • the adhesive resin used for the z layer is a resin having adhesiveness, and is preferably a thermoplastic resin having adhesiveness.
  • a carboxylic acid-modified polyolefin is suitable.
  • the carboxylic acid-modified polyolefin is a polyolefin-based copolymer containing an unsaturated carboxylic acid or an anhydride thereof (maleic anhydride or the like) as a copolymerization component; or an unsaturated carboxylic acid or an anhydride thereof is grafted onto the polyolefin. Means the graft copolymer obtained in the above.
  • An adhesive, an anchor coating agent, or the like can also be used for the z layer.
  • the anchor coating agent and the adhesive may be a resin, may be a non-resin such as a small molecule compound, or may be composed of a plurality of components.
  • the z layer can be formed by applying these and drying them if necessary. Adhesiveness may be improved by performing surface treatment such as corona discharge treatment on the coated surface before coating.
  • the adhesive is not particularly limited, and for example, it is preferable to use a two-component reaction type polyurethane adhesive in which a polyisocyanate component and a polyol component are mixed and reacted. Further, the adhesiveness may be further enhanced by adding a small amount of a known silane coupling agent or the like.
  • the silane coupling agent include a silane coupling agent having a reactive group such as an isocyanate group, an epoxy group, an amino group, a ureido group and a mercapto group.
  • the multilayer structure may further have a paper base material layer.
  • a paper base material layer any paper having various types, bending resistance, rigidity, waist, strength, etc. can be used depending on the use of the paper container. For example, it is a main strength material, and bleached or unbleached paper having a strong size property, or various types of paper such as pure white roll paper, kraft paper, paperboard, processed paper, or milk base paper can be used.
  • the paper base material layer may be a laminate of a plurality of these paper layers.
  • the paper substrate layer has a basis weight of 80 to 600 g / m 2 , preferably a basis weight of 100 to 450 g / m 2 , and a thickness of 110 to 860 ⁇ m, preferably 140 to 640 ⁇ m. If the thickness of the paper base layer is thinner than the above range, the strength as a container is insufficient, and if the thickness of the paper base layer is thicker than the above range, the rigidity becomes too high and processing becomes difficult. obtain. In addition, for example, characters, figures, symbols, and other desired patterns can be arbitrarily formed on the paper base material layer by a normal printing method.
  • Examples of the method for obtaining a multi-layer structure include co-extrusion molding, co-extrusion hollow molding, co-injection molding, extrusion laminating, co-extrusion laminating, dry laminating, solution coating and the like.
  • the multilayer structure obtained by such a method is further subjected to secondary processing molding after reheating by a method such as vacuum compressed air deep drawing molding, blow molding, press molding, etc., and the target molded body structure is performed. May be.
  • the multilayer structure is stretched by uniaxial or biaxial stretching after reheating within the range below the melting point of EVOH by a roll stretching method, a pantograph stretching method, an inflation stretching method, or the like. You can also get it.
  • containers bags, cups, tubes, trays, bottles, etc.
  • fuel containers pipes, fibers, food and drink packaging materials, container packings, etc.
  • Materials medical infusion bag materials, tire tube materials, shoe cushion materials, bag-in-box inner bag materials, organic liquid storage tank materials, organic liquid transport pipe materials, hot water pipe materials for heating (hot water for floor heating) (Pipe materials, etc.), cosmetic packaging materials, dental care packaging materials, pharmaceutical packaging materials, packaging material child parts (caps, bag-in-box cock parts, etc.), pesticide bottles, agricultural films (greenhouse films, soil) (Smoking film), grain storage bag, geomembrane, vacuum insulation board outer bag, wallpaper or decorative board, gas tank for hydrogen, oxygen, etc. can be mentioned. A part of the example will be specifically described below.
  • the film or sheet of the present invention comprises a molded product of the present invention.
  • the film means "a film-like soft film having an average thickness of less than 250 ⁇ m", and the sheet means "a thin plate-like soft film having an average thickness of 250 ⁇ m or more".
  • film or sheet is also referred to as "film or the like”.
  • the film or the like of the present invention may be a film or the like made of the molded product of the present invention. That is, one embodiment of the molded product of the present invention may be a film or the like.
  • the film or the like of the present invention has a low environmental load, and has good gas barrier properties, appearance, and molding processability.
  • the film or the like of the present invention may be a single-layer film composed of only the gas barrier resin composition layer, or may be a multilayer film.
  • the average thickness of the film or the like of the present invention is preferably, for example, 1 ⁇ m or more and less than 300 ⁇ m, and more preferably 5 ⁇ m or more and less than 100 ⁇ m.
  • the film or the like of the present invention can be suitably used as various packaging materials and the like.
  • the arithmetic average roughness (Ra) of at least one surface of the film or the like of the present invention measured in accordance with JIS B0601 is preferably 1.0 ⁇ m or less, more preferably 0.8 ⁇ m or less, and further preferably 0.6 ⁇ m or less. It is preferably 0.4 ⁇ m or less, and particularly preferably 0.4 ⁇ m or less.
  • the arithmetic mean roughness (Ra) of at least one surface of the film or the like of the present invention is preferably 0.05 ⁇ m or more, more preferably 0.10 ⁇ m or more, further preferably 0.15 ⁇ m or more, and particularly preferably 0.20 ⁇ m or more. .. When the arithmetic average roughness (Ra) of at least one surface of the film or the like of the present invention is within the above range, the fracture resistance is excellent.
  • the average length (RSm) of at least one surface contour curve element measured according to JIS B0601 of the film of the present invention is preferably 1000 ⁇ m or less, more preferably 800 ⁇ m or less, further preferably 600 ⁇ m or less, and further preferably 400 ⁇ m. The following are particularly preferred.
  • the average length (RSm) of the contour curve element of at least one surface of the film of the present invention is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, further preferably 150 ⁇ m or more, and particularly preferably 200 ⁇ m or more.
  • the average length (RSm) of the contour curve element on at least one surface of the film or the like of the present invention is within the above range, the fracture resistance is excellent.
  • the above-mentioned JIS B0601 represents JIS B0601: 2001.
  • the film or the like of the present invention may be an unstretched film or the like, but it is preferably stretched. The strength and the like are improved by being stretched. Further, when the film or the like of the present invention is a stretched film or the like, the appearance and gas barrier properties are also good because the occurrence of streak-like unevenness that may occur due to stretching is small. Further, the film or the like of the present invention may be a heat-shrinkable film or the like.
  • the film or the like of the present invention can be produced by a known method.
  • the method for forming the film or the like is not particularly limited, and examples thereof include a melting method, a solution method, a calendar method, and the like, and the melting method is preferable.
  • the melting method include a T-die method (cast method) and an inflation method, and the cast method is preferable.
  • the melting temperature in the melting method varies depending on the melting point of the gas barrier resin composition of the present invention and the like, but is preferably about 150 to 300 ° C.
  • the stretching may be uniaxial stretching or biaxial stretching, and biaxial stretching is preferable.
  • the biaxial stretching may be either sequential biaxial stretching or simultaneous biaxial stretching.
  • the lower limit of the stretch ratio in terms of area is preferably 6 times, more preferably 8 times.
  • the upper limit of the draw ratio is preferably 15 times, more preferably 12 times. When the draw ratio is within the above range, the uniformity of the thickness of the film or the like, the gas barrier property, and the mechanical strength can be improved.
  • the stretching temperature can be, for example, 60 ° C. or higher and 120 ° C. or lower.
  • the method for producing a film or the like of the present invention may include a step of heat-treating the stretched film or the like after the stretching step.
  • the heat treatment temperature is usually set to a temperature higher than the stretching temperature, and can be, for example, more than 120 ° C. and 200 ° C. or lower.
  • the film or the like of the present invention is suitably used as a material for various packaging containers such as food packaging containers, pharmaceutical packaging containers, industrial chemical packaging containers, and pesticide packaging containers. Further, a heat-shrinkable film or the like and an industrial film or the like, which will be described later, are also included in one embodiment of the film or the like of the present invention.
  • the packaging material of the present invention comprises the film or sheet of the present invention.
  • the packaging material of the present invention may be a packaging material made of the film or sheet of the present invention. That is, one embodiment of the molded product of the present invention may be a packaging material.
  • the packaging material of the present invention has a low environmental load, and has good gas barrier properties, appearance, and molding processability.
  • the packaging material of the present invention may be a single-layer film or the like, or may be a multilayer film or the like. Further, the multilayer film or the like may further have a layer formed from other than the resin, for example, a paper layer, a metal layer, or the like.
  • the packaging material of the present invention may remain in the form of a film or sheet, or the film or sheet may be secondarily processed. Examples of the packaging material obtained by the secondary processing include (1) a tray cup-shaped container obtained by thermoforming a film or sheet by vacuum forming, vacuum forming, vacuum forming, or the like, (2) a film or.
  • Examples thereof include a bottle obtained by performing stretch blow molding on a sheet, a cup-shaped container, (3) a bag-shaped container obtained by heat-sealing a film or a sheet, and the like.
  • the secondary processing method is not limited to each of the methods exemplified above, and for example, a known secondary processing method other than the above such as blow molding can be appropriately used.
  • the packaging material of the present invention is used for packaging, for example, foods, beverages, chemicals such as pesticides and pharmaceuticals, medical equipment, machine parts, industrial materials such as precision materials, and clothing.
  • the packaging material of the present invention is preferably used for applications that require a barrier property against oxygen and applications in which the inside of the packaging material is replaced by various functional gases.
  • the packaging material of the present invention is formed in various forms depending on the application, for example, a vertical bag filling seal bag, a vacuum packaging bag, a pouch with a spout, a laminated tube container, a lid material for a container, and the like.
  • the packaging material of the present invention may be a vacuum packaging bag.
  • An example of a vacuum packaging bag is a bag-shaped container provided with a film or the like of the present invention as a partition wall separating the inside and the outside where the contents are packaged, and the inside is in a depressurized state.
  • the two films of the present invention are overlapped with each other, and the peripheral portions of the two films and the like are sealed to each other.
  • the partition wall is preferably a multilayer film or the like.
  • the vacuum packaging bag can be manufactured using a nozzle type or chamber type vacuum packaging machine.
  • the vacuum packaging bag is used for applications where it is desired to wrap in a vacuum state, for example, for storing foods, beverages, etc. Further, the vacuum packaging bag can also be used as an outer packaging material for a vacuum heat insulating body.
  • the industrial film or sheet of the present invention comprises a molded body such as a single-layer or multilayer film of the present invention.
  • the industrial film or the like of the present invention may be an industrial film or the like made of the molded product of the present invention. That is, one embodiment of the molded product of the present invention may be an industrial film or the like.
  • the industrial film or the like of the present invention has a low environmental load, and has good gas barrier properties, appearance, and molding processability. Specific examples of industrial films and the like include agricultural films, landfill films and the like, architectural films and the like.
  • the industrial film or the like of the present invention is preferably a multilayer film or the like, and as the thermoplastic resin layer, a hydrophobic thermoplastic resin is preferably used for the purpose of preventing deterioration of the gas barrier performance of the gas barrier resin composition layer due to moisture. Be done.
  • polyolefin-based resins linear low-density polyethylene, low-density polyethylene, ultra-low-density polyethylene, ultra-low-density linear polyethylene, medium-density polyethylene, polyethylene such as high-density polyethylene, and ethylene- ⁇ -.
  • Polyolefin resins such as olefin copolymers, polypropylene, ethylene-propylene (block and random) copolymers, polypropylene resins such as propylene- ⁇ -olefin ( ⁇ -olefins with 4 to 20 carbon atoms) copolymers, polybutene , Polypentene, etc .; grafted polyolefins obtained by graft-modifying these polyolefins with unsaturated carboxylic acids or esters thereof, cyclic polyolefin-based resins; ionomers, ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers, ethylene-acrylic acid esters.
  • Halogenized polyolefins such as copolymers, polyester resins, polyamide resins, polyvinyl chlorides, polyvinylidene chlorides, acrylic resins, polystyrenes, vinyl ester resins, polyester elastomers, polyurethane elastomers, chlorinated polyethylenes, chlorinated polypropylenes, etc.
  • Examples thereof include aromatic or aliphatic polyketones.
  • polyolefin-based resins are preferable, and polyethylene and polypropylene are particularly preferable in terms of mechanical strength and moldability.
  • the lower limit of MFR under a load of 210 ° C. and 2160 g is preferably 1.0 g / 10 minutes, more preferably 2.0 g / 10 minutes.
  • the upper limit is preferably 100 g / 10 minutes, more preferably 60 g / 10 minutes.
  • the layer structure of the industrial film or the like of the present invention assuming that the layer made of a resin other than the gas barrier resin composition of the present invention is the x layer, the gas barrier resin composition layer is the y layer, and the adhesive resin layer is the z layer, the following The layer structure of can be exemplified.
  • the layer structure on the left side indicates that the layer is on the outer side (the side exposed to the external environment).
  • a gas barrier resin composition layer as an intermediate layer and a thermoplastic resin layer as an outer layer, and x / z / y / z / x, x / x.
  • Configurations such as / z / y / z / x / x are more preferable.
  • the total thickness of the industrial film or the like of the present invention is usually 5 to 5 mm, preferably 10 to 4.5 mm, more preferably 15 to 4 mm, and particularly preferably 20 to 3.5 mm.
  • the thickness of the hydrophobic resin composition layer or the like in the industrial film or the like is not particularly limited, but is usually 0.5 to 2.5 mm, preferably 1 to 2 mm, and particularly preferably 1 to 1.5 mm.
  • the thickness of the thermoplastic resin layer is not particularly limited, but is preferably in the range of 1 to 20%, preferably 2 to 18%, and more preferably 3 to 15% of the total layer thickness.
  • Examples of the above-mentioned architectural film include wallpaper.
  • the wallpaper as an embodiment of the industrial film or the like of the present invention has a small environmental load and is excellent in productivity.
  • Examples of the landfill film and the like include geomembranes and landfill sheets.
  • Geomembrane is a sheet used as a water shield for waste treatment plants.
  • the landfill sheet is a sheet that prevents the diffusion of harmful substances generated from industrial waste and the like, and can be used, for example, to prevent the diffusion of radon gas.
  • the gas barrier resin composition contains an antioxidant or an ultraviolet resistant agent (ultraviolet absorber, light stabilizer, colorant) or the like from the viewpoint of enabling long-term outdoor use.
  • the agricultural film or the like is preferably a multilayer film or the like, and as the thermoplastic resin layer, a hydrophobic thermoplastic resin is preferably used for the purpose of preventing deterioration of the gas barrier performance of the gas barrier resin composition layer due to moisture.
  • the thermoplastic resin layer contains an ultraviolet resistant agent and an adhesive component.
  • the ultraviolet resistant agent include an ultraviolet absorber, a light stabilizer, a colorant and the like.
  • the blending amount of the above UV resistant agent with respect to the hydrophobic thermoplastic resin is usually 1 to 10% by mass, preferably 2 to 8% by mass, and particularly preferably 3 to 5% by mass with respect to the hydrophobic thermoplastic resin.
  • the hydrophobic thermoplastic resin is likely to be deteriorated by ultraviolet rays.
  • the mechanical strength of the hydrophobic thermoplastic resin is lowered.
  • the adhesive component examples include an aliphatic saturated hydrocarbon resin such as polyisobutene and an alicyclic saturated hydrocarbon resin, and the blending amount with respect to the hydrophobic thermoplastic resin is usually 1 to 30% by mass, preferably 1 to 30% by mass. It is 2 to 20% by mass, particularly preferably 3 to 15% by mass. If the blending amount is appropriate, the films and the like are crimped to each other when wrapping with the agricultural film and the like, and the sealing is easily maintained. If the blending amount is less than the above range, gaps are generated between the films and the like, and air invades the inside, so that the long-term storage property of the contents deteriorates. Further, when the blending amount is larger than the above range, blocking of the multilayer film occurs and it becomes impossible to unwind from the film roll or the like.
  • an aliphatic saturated hydrocarbon resin such as polyisobutene and an alicyclic saturated hydrocarbon resin
  • the total thickness of the agricultural film or the like is usually 5 to 200 ⁇ m, preferably 10 to 150 ⁇ m, more preferably 15 to 100 ⁇ m, and particularly preferably 20 to 50 ⁇ m.
  • the thickness of the thermoplastic resin layer (hydrophobic resin composition layer, etc.) in the agricultural film or the like is not particularly limited, but is usually 0.5 to 200 ⁇ m, preferably 1 to 100 ⁇ m, and particularly preferably 1 to 10 ⁇ m. be.
  • the thickness of the gas barrier resin composition layer is not particularly limited, but is preferably in the range of 1 to 20%, preferably 2 to 18%, and more preferably 3 to 15% of the total layer thickness.
  • the form of the silo using the agricultural film or the like is not particularly limited, and examples thereof include a lap silo, a bunker silo, a bag silo, a tube silo, and a stack silo, but the silo is particularly suitable.
  • the agricultural film and the like can be used for various purposes such as a greenhouse film, a soil fumigation film, a silage film, a silo bag, and a grain storage bag.
  • the tube of the present invention comprises the molded body of the present invention.
  • the tube of the present invention may be a tube made of the molded product of the present invention. That is, one embodiment of the molded product of the present invention may be a tube.
  • the tube of the present invention has a low environmental load, and has good gas barrier properties, appearance, and molding processability.
  • the method for producing the tube of the present invention is not particularly limited, and for example, a method of directly forming a tube by melt molding such as coextrusion molding, co-injection molding, extrusion coating, or heat welding of the film or sheet of the present invention.
  • melt molding such as coextrusion molding, co-injection molding, extrusion coating, or heat welding of the film or sheet of the present invention.
  • examples thereof include a method of forming into a tube shape, a method of laminating the film or sheet of the present invention with an adhesive, and forming into a tube shape.
  • the multilayer pipe of the present invention comprises the molded body of the present invention.
  • the multilayer pipe of the present invention may be a multilayer pipe made of the molded product of the present invention. That is, one embodiment of the molded product of the present invention may be a multi-layer pipe.
  • the multi-layer pipe of the present invention has a low environmental load, and has good gas barrier properties, appearance, and molding processability.
  • the multilayer pipe of the present invention preferably contains an antioxidant in the gas barrier resin composition from the viewpoint of suppressing oxidative deterioration in long-term use.
  • the antioxidant is preferably a compound having a hindered amine group and / or a compound having a hindered phenol group from the viewpoint of suppressing oxidative deterioration in use at high temperatures.
  • the layer structure of the multi-layer pipe As the layer structure of the multi-layer pipe, the layer structure of the above-mentioned molded body can be adopted.
  • a three-layer structure of a thermoplastic resin layer having a thermoplastic resin layer as the outermost layer / a gas barrier resin composition layer / a thermoplastic resin layer is generally adopted.
  • This can be easily diverted to the production line of the multi-layer pipe of the present invention by adding the coextrusion coating equipment of the gas barrier resin composition of the present invention and the adhesive resin to the existing production line of a single-layer pipe such as crosslinked polyolefin. This is because many pipe manufacturers actually adopt this configuration.
  • Providing polyolefin layers or the like on both sides of the gas barrier resin composition layer and using the gas barrier resin composition layer as an intermediate layer is effective in preventing scratches on the gas barrier resin composition layer.
  • the multi-layer pipe is used as a hot water circulation pipe such as a floor heating pipe, it is usually buried under the floor, and the risk of damage to the gas barrier resin composition layer due to physical impact is relatively small. Rather, from the viewpoint of gas barrier properties, it is desirable to arrange the gas barrier resin composition layer on the outermost layer. Since the gas barrier resin composition shows a large humidity dependence and the barrier property is lowered under high humidity conditions, by arranging the gas barrier resin composition layer on the outermost layer, the gas barrier resin composition layer mainly comes into contact with water.
  • the EVOH layer when it is generally arranged on the outermost layer, it is easily affected by oxidative deterioration because it comes into direct contact with air.
  • a gas barrier resin composition containing a compound having a hindered amine group and / or an antioxidant having a hindered phenol group when used, it is arranged on the outermost layer which is less likely to be oxidatively deteriorated even at high temperatures. Therefore, the effect of providing a multi-layer pipe having a good barrier property and reducing the occurrence of cracks due to oxidative deterioration is more effectively exhibited.
  • thermoplastic resin layer / adhesive resin layer / gas barrier resin composition in which the gas barrier resin composition layer is arranged inside the thermoplastic resin layer.
  • the thermoplastic resin layer / adhesive resin layer / gas barrier resin composition layer / adhesiveness It is preferable to have a five-layer structure of a resin layer / thermoplastic resin layer (hereinafter, may be abbreviated as laminate 2).
  • the configuration of the heat insulating multi-layer pipe for district heating and cooling is not particularly limited, but for example, the inner pipe, the heat insulating foam layer surrounding the inner pipe, and the laminated body 1 or 2 as the outer layer are arranged in this order from the inside. Is preferable.
  • the type (material), shape and size of the pipe used for the inner pipe are not particularly limited as long as they can transport a heat medium such as gas or liquid, and the type of heat medium and the use and usage form of the piping material are not particularly limited. It can be appropriately selected according to the above. Specifically, metals such as steel, stainless steel, and aluminum, polyolefins (polyethylene, cross-linked polyethylene (PEX), polypropylene, poly1-butene, poly4-methyl-1-pentene, etc.), and the above-mentioned laminate 1 or 2 and the like. Among these, cross-linked polyethylene (PEX) is preferably used.
  • Polyurethane foam polyethylene foam, polystyrene foam, phenol foam, and polyisocyanurate foam can be used as the heat insulating foam, and polyurethane foam is preferably used from the viewpoint of improving heat insulating performance.
  • Freon gas various alternative fluorocarbons, water, hydrocarbons chloride, hydrocarbons, carbon dioxide, etc. are used as foaming agents for heat insulating foams, but hydrocarbons, specifically n-, are used from the viewpoint of foaming effect and environmental impact. Pentane and cyclopentane are preferably used.
  • a method for manufacturing a heat insulating multi-layer pipe for example, an inner pipe for transporting a heat medium is placed in a pipe-shaped outer layer, the inner pipe is fixed with a spacer to form a double pipe, and then a gap between the inner pipe and the outer layer is formed.
  • Examples thereof include a method of injecting various foam stock solutions into the foam to foam and solidify.
  • the material of the spacer is not particularly limited, but polyethylene or polyurethane is preferable in order to reduce damage to the inner tube and the outer layer due to the spacer.
  • the multilayer pipe of the present invention can be produced, for example, by coextruding a gas barrier resin composition and an adhesive resin on a single-layer pipe such as crosslinked polyolefin as described above.
  • a film in which the gas barrier resin composition and the adhesive resin are melted may be simply coated on the single-layer pipe.
  • the adhesive force between the pipe and the coat layer may be insufficient, and the coat layer may peel off and lose the gas barrier property during long-term use.
  • it is effective to perform frame treatment and / or corona discharge treatment on the surface of the pipe to be coated before coating.
  • multi-layer molding method for manufacturing multi-layer pipes a number of extruders corresponding to the types of resin layers are used, and simultaneous extrusion molding is performed in a layered state in which the flows of the melted resin are overlapped in the extruder. There is a method of carrying out by so-called coextrusion molding. Further, a multi-layer molding method such as dry lamination can also be adopted.
  • the method for manufacturing a multi-layer pipe may include a step of cooling with water at 10 to 70 ° C. immediately after molding. That is, it is desirable to solidify the gas barrier resin composition layer by cooling with water at 10 to 70 ° C. after melt molding and before the gas barrier resin composition layer solidifies. If the temperature of the cooling water is too low, cracks due to strain are likely to occur in the gas barrier resin composition layer at the bent portion when the multilayer pipe is bent in the subsequent secondary processing step. The details of the cause of the tendency for cracks to occur due to strain are not clear, but it is presumed that the residual stress in the molded product has an effect. From this viewpoint, the temperature of the cooling water is more preferably 15 ° C. or higher, further preferably 20 ° C. or higher.
  • the temperature of the cooling water is more preferably 60 ° C. or lower, further preferably 50 ° C. or lower.
  • Various molded bodies can be obtained by secondary processing the multi-layer pipe obtained by the above method.
  • the secondary processing method is not particularly limited, and a known secondary processing method can be appropriately used. For example, in a state where the multilayer pipe is heated to 80 to 160 ° C. and then deformed into a desired shape, 1 A method of processing by fixing for 2 minutes to 2 hours can be mentioned.
  • the thermoformed container of the present invention comprises the molded body of the present invention.
  • the thermoformed container of the present invention may be a thermoformed container made of the molded body of the present invention. That is, one embodiment of the molded product of the present invention may be a thermoformed container.
  • the thermoformed container of the present invention has a low environmental load, and has good gas barrier properties, appearance, and moldability.
  • the thermoformed container of the present invention is used in various fields such as foods, cosmetics, medical chemicals, toiletries, etc., where oxygen barrier properties are required.
  • the thermoformed container is formed as having an accommodating portion, for example, by thermoforming a single-layer or multi-layer film or sheet.
  • the storage part is a part that stores the contents such as food.
  • the shape of this accommodating portion is determined according to the shape of the contents.
  • the thermoformed container is formed as, for example, a cup-shaped container, a tray-shaped container, a bag-shaped container, a bottle-shaped container, a pouch-shaped container, or the like.
  • the form of the accommodating portion can be expressed by the aperture ratio (S) as one index.
  • the aperture ratio (S) is a value obtained by dividing the depth of the deepest part of the container by the diameter of the circle having the maximum diameter inscribed in the opening of the container. That is, the aperture ratio (S) means that the larger the value, the deeper the bottom of the container, and the smaller the value, the shallower the bottom of the container.
  • the drawing ratio (S) is large, and when it is a tray, the drawing ratio (S) is small.
  • the diameter of the inscribed maximum diameter circle is, for example, the diameter of the circle when the opening of the accommodating portion is circular, the minor diameter (minor axis length) when it is elliptical, and short when it is rectangular. The length of the side.
  • the suitable value of the aperture ratio (S) differs depending on the film or sheet thickness.
  • the drawing ratio (S) is preferably 0.2 or more, more preferably 0.3 or more, still more preferably 0.4 or more.
  • the drawing ratio (S) is preferably 0.3 or more, more preferably 0.5 or more, still more preferably 0.8 or more.
  • the total thickness I of the other layers laminated on one surface side of the gas barrier resin composition layer and the total thickness O of the other layers laminated on the other surface side of the gas barrier resin composition layer As the lower limit of the thickness ratio (I / O) with, 1/99 is preferable, and 30/70 is more preferable.
  • the upper limit of the I / O is preferably 70/30, more preferably 55/45.
  • the thickness of all layers or a single layer of the thermoformed container is an average value of the thicknesses measured by observation with an optical microscope for samples cut out from a plurality of locations of the thermoformed container using a microtome.
  • the lower limit of the overall average thickness of the thermoformed container is preferably 300 ⁇ m, more preferably 500 ⁇ m, and even more preferably 700 ⁇ m.
  • the upper limit of the overall average thickness of the thermoformed container is preferably 10,000 ⁇ m, more preferably 8500 ⁇ m, and even more preferably 7,000 ⁇ m.
  • the overall average thickness refers to the thickness of all layers in the housing portion of the thermoformed container. If the overall average thickness exceeds the above upper limit, the manufacturing cost of the thermoformed container increases. On the other hand, if the overall average thickness is less than the above upper limit, the rigidity cannot be maintained and the thermoformed container may be easily broken.
  • the multilayer sheet can be formed by using a coextrusion molding apparatus.
  • This multilayer sheet can be formed as having a predetermined layer structure by, for example, charging a gas barrier resin composition or another resin forming each layer into separate extruders and co-extruding them with these extruders.
  • Extrusion molding of each layer is performed by operating an extruder equipped with a uniaxial screw at a predetermined temperature.
  • the temperature of the extruder that forms the gas barrier resin composition layer is, for example, 170 ° C. or higher and 260 ° C. or lower.
  • the temperature of the extruder that forms the thermoplastic resin layer, the adhesive resin layer, and the recovery layer is, for example, 150 ° C. or higher and 260 ° C. or lower.
  • thermoformed container of the present invention can be formed by heating and softening a multilayer sheet or the like and then molding it into a mold shape.
  • thermoforming method for example, vacuum or compressed air is used, and if necessary, a plug is also used to form a mold shape (straight method, drape method, air slip method, snapback method, plug assist method, etc.), press molding. How to do it.
  • Various molding conditions such as molding temperature, degree of vacuum, compressed air pressure, and molding speed are appropriately set according to the shape of the plug, the shape of the mold, the properties of the raw material resin, and the like.
  • the molding temperature is not particularly limited as long as the resin can be softened sufficiently for molding, and the suitable temperature range differs depending on the configuration of the multilayer sheet or the like.
  • This heating temperature is usually lower than the melting point of the resin.
  • the lower limit of the heating temperature of a specific multilayer sheet or the like is usually 50 ° C., preferably 60 ° C., more preferably 70 ° C.
  • the upper limit of the heating temperature is, for example, 180 ° C., and may be 160 ° C.
  • thermoformed container of the present invention may be provided with at least a gas barrier resin composition layer, and may be composed of a single layer or a plurality of layers.
  • the layer structure may be appropriately set according to the intended use and the like.
  • thermoformed container of the present invention is composed of a plurality of layers, it is preferable to arrange the thermoplastic resin layer on the outermost layer.
  • the layer made of a resin other than the gas barrier resin composition of the present invention is the x layer
  • the gas barrier resin composition layer is the y layer
  • the adhesive resin layer is the z layer, x / z from the inner surface to the outer surface of the accommodating portion.
  • / Y / z / x is preferable from the viewpoint of impact resistance.
  • the layer structure when the recovery layer is included is, for example, (inner surface) x / z / y / z / recovery layer / x (outer surface).
  • a layer configuration may be provided in which a recovery layer is provided instead of the thermoplastic resin layer.
  • the resins constituting the respective layers may be the same or different.
  • thermoformed container of the present invention will be specifically described by taking the cup-shaped container shown in FIGS. 1 and 2 as an example.
  • the cup-shaped container is only an example of a thermoformed container, and the following description of the cup-shaped container does not limit the scope of the present invention.
  • the cup-shaped container 1 of FIGS. 1 and 2 includes a cup body 2 as an accommodating portion and a flange portion 3.
  • the cup-shaped container 1 is used by accommodating the contents in the cup body 2 and sealing the lid 7 on the flange portion 3 so as to close the opening 4 of the cup body 2.
  • the lid 7 include a resin film, a metal foil, a metal resin composite film, and the like, and among these, a metal resin composite film in which a metal layer is laminated on a resin film is preferable.
  • the resin film include a polyethylene film and a polyethylene terephthalate film.
  • the metal layer is not particularly limited, and a metal foil and a metal vapor deposition layer are preferable, and an aluminum foil is more preferable from the viewpoint of gas barrier property and productivity.
  • the cup-shaped container 1 is usually obtained by thermoforming a multilayer sheet. It is preferable that the multilayer sheet includes at least a gas barrier resin composition layer, and another layer is laminated on the gas barrier resin composition layer. Examples of the other layer include a thermoplastic resin layer, an adhesive resin layer, a recovery layer, and the like. Specific examples of the layer structure of the multilayer sheet are as described above.
  • the cup-shaped container 1 is manufactured by heating a continuous multilayer sheet 21 with a heating device 30 to soften it, and then thermoforming it using a mold device 40.
  • the heating device 30 includes a pair of heaters (heater 31 and heater 32), and the continuous multilayer sheet 21 can pass between the heater 31 and the heater 32.
  • a device that is heated by a hot press can also be used.
  • the mold device 40 is suitable for thermoforming by the plug assist method, and includes a lower mold 50 and an upper mold 51 housed in a chamber (not shown).
  • the lower mold 50 and the upper mold 51 can be individually moved in the vertical direction, and the continuous multilayer sheet 21 can pass between the lower mold 50 and the upper mold 51 in a separated state.
  • the lower mold 50 has a plurality of recesses 52 for forming the accommodating portion of the cup-shaped container 1.
  • the upper die 51 includes a plurality of plugs 53 projecting toward the lower die 50.
  • the plurality of plugs 53 are provided at positions corresponding to the plurality of recesses 52 of the lower mold 50. Each plug 53 can be inserted into the corresponding recess 52.
  • the continuous multilayer sheet 21 softened by the heating device 30 is brought into close contact with the lower mold 50 by moving the lower mold 50 upward, and the continuous multilayer sheet 21 is brought into close contact with the lower mold 50. Is slightly lifted to give tension to the continuous multilayer sheet 21.
  • the plug 53 is inserted into the recess 52 by moving the upper mold 51 downward.
  • the upper mold 51 is moved upward to separate the plug 53 from the recess 52, and then the inside of the chamber (not shown) is evacuated to draw the continuous multilayer sheet 21 into the recess 52. Adhere to the inner surface. After that, the shape is fixed by cooling the molded portion by injecting air. Subsequently, as shown in FIG. 4D, the inside of the chamber (not shown) is opened to the atmosphere and the lower mold 50 is moved downward to release the lower mold 50, whereby a primary molded product is obtained. By cutting this primary molded product, the cup-shaped container 1 shown in FIGS. 1 and 2 can be obtained.
  • thermoformed container of the present invention is not limited to the above-mentioned form, and the tray-shaped container is also included in the thermoformed container of the present invention.
  • the tray-shaped container can also be manufactured by the same method as the cup-shaped container described above.
  • the tray-shaped container is suitably used as a food tray or the like.
  • the blow-molded container of the present invention includes the molded product of the present invention.
  • the blow-molded container of the present invention may be a blow-molded container made of the molded product of the present invention. That is, one embodiment of the molded product of the present invention may be a blow molded container.
  • the blow-molded container of the present invention has a low environmental load and has good barrier properties, appearance and molding processability.
  • the blow-molded container of the present invention can be used for various containers that require gas barrier properties, oil resistance, and the like.
  • the layer made of a resin other than the gas barrier resin composition of the present invention is an x layer
  • the gas barrier resin composition layer is a y layer
  • the adhesive resin layer is a z layer, for example, from the inner surface of the container.
  • a configuration may include a recovery layer instead of the adhesive resin layer, and in the case of an arrangement in which a plurality of x, y, z and recovery layers are used, the resins constituting the respective layers may be the same or different. good.
  • the blow-molded container of the present invention is preferably manufactured by a manufacturing method including a step of blow-molding using a gas barrier resin composition.
  • Blow molding can be performed by a known method such as direct blow molding, injection blow molding, sheet blow molding, and free blow molding.
  • a gas barrier resin composition pellet forming a gas barrier resin composition layer and, if necessary, each resin forming each other layer are used and blown at a temperature of 100 ° C. to 400 ° C. by a blow molding machine. Mold and cool at a mold temperature of 10 ° C to 30 ° C for 10 seconds to 30 minutes. This makes it possible to mold a blow-molded hollow container.
  • the heating temperature at the time of blow molding may be 150 ° C. or higher, and may be 180 ° C. or 200 ° C. or higher. Further, this heating temperature may be equal to or higher than the melting point of the gas barrier resin composition. On the other hand, the upper limit of this heating temperature may be 350 ° C., and may be 300 ° C. or 250 ° C.
  • the blow-molded container of the present invention is used for various purposes such as a fuel container and various bottles.
  • the blow molded container of the present invention can be used as a fuel container.
  • the fuel container of the present invention may include a filter, a fuel gauge, a baffle plate, and the like. Since the fuel container of the present invention is provided with the blow-molded container of the present invention, it has a low environmental load, good barrier properties, appearance and moldability, and is suitably used as a fuel container.
  • the fuel container is a fuel container mounted on an automobile, a motorcycle, a ship, an aircraft, a generator, industrial or agricultural equipment, or a portable fuel container for refueling these fuel containers, and further. Means a container for storing fuel.
  • gasoline particularly oxygen-containing gasoline blended with methanol, ethanol, MTBE, etc.
  • methanol, ethanol, MTBE, etc. is mentioned as a fuel, but heavy oil, light oil, kerosene, etc. are also included.
  • the fuel container of the present invention is particularly preferably used as a fuel container for oxygen-containing gasoline.
  • the blow-molded container of the present invention can be used as a bottle container.
  • the bottle container of the present invention may further include a structure other than the blow-molded container of the present invention, such as a cover film and a cap.
  • Examples of the method for molding a bottle container of the present invention include direct blow molding and injection blow molding.
  • the blow-molded container of the present invention molded into a bottle shape has a low environmental load and has good barrier properties, appearance, and molding processability, and is therefore preferably used for bottle containers for foods, cosmetics, and the like.
  • the paper container of the present invention comprises the molded product of the present invention.
  • the paper container of the present invention may be a paper container made of the molded product of the present invention. That is, one embodiment of the molded product of the present invention may be a paper container.
  • the paper container is made of a molded body containing a paper base material, and is made by processing it into a shape such as a carton or a cup. Such a paper container can store various beverages and the like for a long period of time.
  • the molded product containing the paper substrate can be formed at a high speed by being formed by, for example, extrusion coating by the T-die method.
  • the present invention is not limited to those described in the above embodiments. Any of the molded bodies, films or sheets, packaging materials, industrial films or sheets, thermoformed containers, cup-shaped containers, tray-shaped containers, blow-molded containers, fuel containers, bottle containers, tubes and multilayer pipes of the present invention, for example. , A single-layer structure composed of only a gas barrier layer formed of a gas barrier resin composition, a multi-layer structure composed of a gas barrier layer formed of a plurality of gas barrier resin compositions, and the like may be used.
  • This treatment liquid was transferred to a 50 mL volumetric flask (manufactured by TPX) and scalpel-up with pure water. Elemental analysis of this solution was performed using an ICP emission spectrophotometer (PerkinElmer's "OPTIMA4300DV"), and the metal atom equivalent amount of metal ions and the phosphorus atom conversion of phosphorus compounds contained in EVOH pellets or gas barrier resin composition pellets. The amount and the boron atom equivalent amount of the boron compound were determined.
  • the film-forming defects are "good (A)" when the number of defects is less than 50, “slightly good (B)” when the number of defects is 50 or more and less than 200, and “defective (C)” when the number of defects is 200 or more. Judged as.
  • Oxygen permeability Using the gas barrier resin composition pellets obtained in Examples and Comparative Examples, a single-layer film having a thickness of 20 ⁇ m was formed under the following conditions, and humidity control was performed under the conditions of 20 ° C./65% RH. After that, the oxygen permeability was measured under the condition of 20 ° C./65% RH using an oxygen permeability measuring device (“OX-Tran2 / 20” of ModernControl). This measurement was carried out in accordance with JIS K 7126-2 (isopressure method; 2006).
  • an oxygen permeability measuring device (8-2) Measurement of Oxygen Permeability After adjusting the humidity of the multilayer film produced 30 minutes after the start of operation in (8-1) above under the conditions of 20 ° C. and 65% RH, an oxygen permeability measuring device (8-2). Oxygen permeation according to the method described in JIS K 7126-2 (isopressure method; 2006) using "OX-Tran2 / 20") of Mocon Modern Controls.inc under the conditions of 20 ° C. and 65% RH. The degree was measured.
  • thermoformed container Gas barrier resin composition pellets obtained in Examples and Comparative Examples, polypropylene (“Novatec (trademark) PP EA7AD” manufactured by Nippon Polypro Co., Ltd.), and adhesive resin (“Mitsui Chemicals Co., Ltd.” Admer TM QF551 ”), using a 3 type 5 layer coextruder, under the following conditions, multi-layer sheet (polypropylene / adhesive resin / gas barrier resin composition / adhesive resin / polypropylene, thickness ( ⁇ m): 368/16/32/16/368) was created.
  • Polypropylene resin extruder 32 ⁇ single-screw extruder, GT-32-A type (manufactured by Plastic Engineering Laboratory Co., Ltd.)
  • Adhesive resin extruder 25 ⁇ single-screw extruder, P25-18-AC type (manufactured by Osaka Seiki Kogyo Co., Ltd.)
  • EVOH resin composition extruder 20 ⁇ extruder, laboratory machine ME type CO-EXT (manufactured by Toyo Seiki Seisakusho Co., Ltd.)
  • T-die 300 mm width for 3 types and 5 layers (manufactured by Plastic Engineering Laboratory Co., Ltd.)
  • Pick-up speed 1 m / min Collect the multi-layer sheet produced 30 minutes after the start of operation, and
  • thermoforming a thermoformed container was obtained.
  • the molding conditions are shown below.
  • the appearance of the cup-shaped thermoformed container obtained visually was evaluated according to the following evaluation criteria. (Appearance evaluation criteria) Good (A): No unevenness or local unevenness was observed. Slightly good (B): Slight unevenness and local unevenness were confirmed. Defective (C): Significant unevenness and local unevenness were confirmed.
  • the mold In the manufacture of blow-molded containers, the mold is cooled at a temperature of 15 ° C. for 20 seconds, and the average thickness of all layers is 1000 ⁇ m ((inside) high-density polyethylene layer / adhesive resin layer / gas barrier resin composition layer / adhesive resin.
  • a 3L blow-molded container of layer / high-density polyethylene layer / high-density polyethylene layer (outside) (inside) 340 ⁇ m / 50 ⁇ m / 40 ⁇ m / 50 ⁇ m / 400 ⁇ m / 120 ⁇ m (outside) was molded.
  • the bottom surface average diameter of this blow molded container was 100 mm, and the average height was 400 mm.
  • Blow-molded containers were collected 30 minutes after the start of operation, and streak evaluation was performed by visual inspection of the appearance and observation of a cross-sectional microscope in the circumferential direction. (Streak evaluation criteria) A (good): No streak was observed. B (slightly good): Streak was confirmed. C (defective): Many streaks were confirmed.
  • the layer structure of the multilayer film was 90 ⁇ m for the polyethylene resin of the inner and outer layers, 10 ⁇ m each for the adhesive resin, and 20 ⁇ m for the gas barrier resin composition layer of the intermediate layer.
  • the permeability of the model fuel of the obtained multilayer film was measured using a GTR Tech flow-type gas / vapor transmittance measuring device (GTR-30XFKE).
  • GTR-30XFKE GTR Tech flow-type gas / vapor transmittance measuring device
  • the multilayer film was humidity-controlled at 20 ° C. and 65% RH for 1 month, and the measurement was carried out at 60 ° C.
  • ethylene ethylene derived from biomass (bioethylene derived from sugar cane manufactured by Braskem SA) is used, and a gas cylinder filled with this ethylene (ethylene purity 96.44%, internal volume 29.502 L, internal pressure 1.8234 MPa). )It was used.
  • acetic acid biomass-derived acetic acid (Bioacetate derived from sugarcane produced by Godavari Biorefines Ltd.) was used, vaporized at 220 ° C., and then introduced into the reaction system by steam.
  • ethylene derived from biomass bioethylene derived from sugar cane, manufactured by Braskem SA
  • V-65 2,2'-azobis (2,4-dimethylvaleronitrile)
  • methanol methanol
  • the ethylene pressure was maintained at 3.67 MPa and the polymerization temperature was maintained at 65 ° C.
  • the mixture was cooled to terminate the polymerization.
  • nitrogen gas was bubbled to completely deethylene.
  • MeOH was added to the ethylene-vinyl acetate copolymer to prepare a 20% by mass MeOH solution.
  • the water-containing pellets of EVOH were put into an acetic acid aqueous solution (bath ratio 20) having a concentration of 1 g / L and washed by stirring for 2 hours. This was deflated, further added to a 1 g / L acetic acid aqueous solution (bath ratio 20), and stirred and washed for 2 hours. After the liquid was removed, the acetic acid aqueous solution was updated and the same operation was performed. After washing with an acetic acid aqueous solution and then deflated, the solution is put into ion-exchanged water (bath ratio 20), stirred and washed for 2 hours, and the operation of deflated is repeated 3 times to purify the catalyst during the saponification reaction.
  • Water-containing pellets of EVOH were obtained from which the residue and MeOH used at the time of strand precipitation were removed.
  • the water content of the obtained EVOH water-containing pellets was measured with a halogen moisture meter "HR73" manufactured by METTLER CORPORATION and found to be 110% by mass.
  • EVOH (A2) to EVOH (A6) and EVOH (B1) to (B5) EVOH (A1) except that the types of ethylene and vinyl acetate as raw materials (raw material monomers) and the contents of phosphoric acid compounds and boron compounds were changed as shown in Table 2, and the amounts of ethylene and vinyl acetate used were changed as appropriate.
  • EVOH (A2) pellets to EVOH (A6) pellets and EVOH (B1) to EVOH (B5) pellets were prepared in the same manner as the pellets.
  • ethylene derived from fossil fuel ethylene manufactured by Air Liquide Industrial Gas Co., Ltd. was used.
  • Example 1 EVOH (A1) pellets are extruded and pelletized in a nitrogen atmosphere using a twin-screw extruder (“2D25W” manufactured by Toyo Seiki Seisakusho Co., Ltd., 25 mm ⁇ , die temperature 220 ° C., screw rotation speed 100 rpm), and Example 1 Gas barrier resin composition pellets were obtained.
  • a twin-screw extruder (“2D25W” manufactured by Toyo Seiki Seisakusho Co., Ltd., 25 mm ⁇ , die temperature 220 ° C., screw rotation speed 100 rpm)
  • Examples 2, 4 to 6, Comparative Examples 1, 3 to 5 Each gas barrier resin composition pellet of Examples 2, 4 to 6 and Comparative Examples 1, 3 to 5 was prepared in the same manner as in Example 1 except that the type of EVOH used was changed as shown in Table 3. And evaluated. The results are shown in Tables 3 and 4.
  • Example 3 Comparative Example 2> The gas barrier resin composition pellets of Example 3 and Comparative Example 2 were prepared in the same manner as in Example 1 except that the type and mass ratio (ratio) of EVOH used were changed as shown in Table 3. According to the methods described in the above evaluation methods (3) to (9), quantification of carboxylic acid, quantification of metal ion, phosphoric acid compound and boron compound, biobase degree, single layer film evaluation, oxygen permeability, multilayer film evaluation, In addition, the evaluation of the thermoformed container was measured or evaluated. The results are shown in Tables 3 and 4. The ethylene unit content and saponification degree in Table 3 are the results of Table 2 reprinted.
  • the sulfur compounds of the gas barrier resin composition pellets obtained in Examples 1 to 6 and Comparative Examples 1 to 5 were measured according to the method described below.
  • the results (contents and types of sulfur compounds in terms of sulfur atoms) are shown in Table 3. ⁇ Measurement of sulfur compound content>
  • the quantification of sulfur compounds was performed using a trace nitrogen sulfur analytical instrument (TS-2100H type) manufactured by Mitsubishi Analytech, and the measurement conditions were as follows.
  • Heater temperature Inlet 900 °C, Outlet 900 °C Gas flow rate: Ar, O 2 300 ml / min each [Analysis system NSX-2100] Measurement mode: TS Parameters: SD-210 Measurement time (timer): 540 seconds (9 minutes) PMT Sensitivity: High-concentration sulfur compounds were identified using gas chromatography (GC) and gas chromatography-mass spectrometry (GC / MS). As a GC detector, an FPD (flame light intensity detector), which is highly sensitive to trace amounts of sulfur compounds and phosphorus compounds, is used to analyze the mass components observed during the retention time when sulfur compounds are detected. By doing so, identification was performed.
  • GC gas chromatography
  • MS gas chromatography-mass spectrometry
  • Example 7 and Comparative Example 6> Evaluation of co-extruded coated paper
  • carton paper thickness 500 ⁇ m, basis weight 400 g / m 2
  • the coextrusion structure is low density polyethylene / adhesive layer / gas barrier resin composition layer / adhesive layer / low density polyethylene / carton paper, and the thickness structure is 20/5/5/5/20/500 ⁇ m.
  • a feed block and a T-shaped die were used to merge and distribute a low-density polyethylene extruder, an EVOH extruder, an adhesive layer extruder, and resins supplied from the respective extruders.
  • the low-density polyethylene is linear low-density polyethylene ("Ultzex (trademark) 2022L” manufactured by Prime Polymer Co., Ltd.), and the adhesive layer is polypropylene modified with maleic anhydride ("Admer (Admer)” manufactured by Mitsui Chemicals, Inc. Trademark) QF-500 ”) was used.
  • the temperature conditions of the feed block and the T-shaped die were set to 250 ° C., and the pick-up speed was set to 300 m / min.
  • the coextruded coated paper produced 30 minutes after the start of operation, the presence or absence of streaks on the coextruded coated surface side was visually evaluated according to the following evaluation criteria. (Streak evaluation criteria) A (good): No streak was observed B (slightly good): Streak was confirmed C (bad): Many streaks were confirmed
  • Example 7 and Comparative Example 6 The results of coextrusion coated paper evaluation using each of the gas barrier resin composition pellets of Example 5 and Comparative Example 4 as the gas barrier resin composition are referred to as Example 7 and Comparative Example 6, respectively.
  • the gas barrier resin compositions of Examples 1 to 6 are only derived from fossil fuels while using raw materials derived from biomass (gas barrier resin compositions of Comparative Examples 1 to 5). ), It has high gas barrier properties and molding processability comparable to those of), and it is suggested that its performance is not due to raw materials such as biomass or fossil fuels.
  • Cup-shaped container 1 Cup-shaped container 2 Cup body 3 Flange part 4 Opening 5 Inner surface 6 Outer surface 7 Lid 21 Continuous multi-layer sheet 30 Heating device 31, 32 Heater 40 Mold device 50 Lower mold 51 Upper mold 52 Recessed 53 Plug

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides: a gas barrier resin composition which uses a starting material derived from biomass and still has high gas barrier properties and high formability equivalent to those of materials derived from fossil fuels; and a molded body, a film or sheet, a packaging material, a film or sheet for industrial uses, a heat molded container, a cup shaped container, a tray shaped container, a blow molded container, a fuel container, a bottle container, a tube, a multilayer pipe and a paper container, each of which uses the above-described gas barrier resin composition. A gas barrier resin composition that contains a saponified ethylene-vinyl ester copolymer, wherein the ethylene and the vinyl ester, which are starting materials of the saponified ethylene-vinyl ester copolymer, are derived from biomass.

Description

ガスバリア樹脂組成物、成形体、フィルムまたはシート、包装材、産業用フィルムまたはシート、熱成形容器、カップ状容器、トレイ状容器、ブロー成形容器、燃料容器、ボトル容器、チューブ、多層パイプ及び紙容器Gas barrier resin composition, molded body, film or sheet, packaging material, industrial film or sheet, thermoformed container, cup-shaped container, tray-shaped container, blow molded container, fuel container, bottle container, tube, multi-layer pipe and paper container
 本発明は、ガスバリア樹脂組成物、成形体、フィルムまたはシート、包装材、産業用フィルムまたはシート、熱成形容器、カップ状容器、トレイ状容器、ブロー成形容器、燃料容器、ボトル容器、チューブ、多層パイプ及び紙容器に関する。 The present invention relates to a gas barrier resin composition, a molded body, a film or sheet, a packaging material, an industrial film or sheet, a thermoformed container, a cup-shaped container, a tray-shaped container, a blow molded container, a fuel container, a bottle container, a tube, and a multilayer. Regarding pipes and paper containers.
 酸素等のガスを遮断する性能(ガスバリア性)に優れた樹脂を用いたガスバリア材は、容器、フィルム、シート、パイプ等の各種用途に幅広く使用されている。ガスバリア性に優れた樹脂としては、ポリアミド、ポリエステル、ポリ塩化ビニリデン、アクリロニトリル共重合体、ポリフッ化ビニリデン、ポリクロロトリフルオロエチレン、エチレン-ビニルエステル共重合体ケン化物等が知られている。例えば特許文献1には、ポリアミド、ポリエステル、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、フッ素含有樹脂及びシリコーン樹脂から選ばれる少なくとも一種のガスバリア性樹脂層を有する多層プラスチック容器の発明が記載されている。 Gas barrier materials using resins with excellent ability to block gases such as oxygen (gas barrier properties) are widely used in various applications such as containers, films, sheets, and pipes. As the resin having excellent gas barrier properties, polyamide, polyester, polyvinylidene chloride, acrylonitrile copolymer, polyvinylidene fluoride, polychlorotrifluoroethylene, ethylene-vinyl ester copolymer sakenized product and the like are known. For example, Patent Document 1 describes an invention of a multilayer plastic container having at least one gas barrier resin layer selected from polyamide, polyester, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, fluorine-containing resin and silicone resin. ..
 一方、近年、循環型社会を目指し、カーボンニュートラルなバイオマス由来の原料を用いたバイオプラスチックの需要が高まっている。しかし、バイオマス由来の合成樹脂は、化石燃料由来の合成樹脂と比べて性能が劣る場合があることが知られている。例えば特許文献2には、従来のバイオマス由来のポリオレフィン等のフィルム材は密着性、加工性、耐久性等の品質が十分ではなかったとされ、このような点を改善するための、バイオマス由来の樹脂を含む特定の組成のバイオマス由来樹脂層を備える樹脂フィルムの発明が記載されている。また、特許文献3には、石油由来の樹脂をバイオマス由来の樹脂に置き換えたフィルムは耐衝撃性等が低下する場合があるとされ、このような点を改善するための、バイオマス由来のバイオマスポリエチレンと、化石燃料由来のポリエチレンと、プロピレン系ブロック共重合体樹脂とを含有する中間層を有する積層フィルムの発明が記載されている。また、特許文献4にはバイオマスエチレングリコールを用いたカーボンニュートラルなポリエステル樹脂フィルムからなる層を有する積層体に関わる発明が記載されており、ガスバリア性樹脂としてエチレン-ビニルエステル共重合体ケン化物が例示されているが、このエチレン-ビニルエステル共重合体ケン化物は化石燃料由来の原料からなる樹脂として示されている。このような特許文献4の積層体は、バイオマス由来樹脂と化石燃料由来樹脂が共存していることから、バイオプラスチックとしては限定的である。 On the other hand, in recent years, with the aim of creating a sound material-cycle society, demand for bioplastics using carbon-neutral biomass-derived raw materials is increasing. However, it is known that the synthetic resin derived from biomass may be inferior in performance to the synthetic resin derived from fossil fuel. For example, Patent Document 2 states that conventional film materials such as biomass-derived polyolefins do not have sufficient qualities such as adhesion, processability, and durability, and a biomass-derived resin for improving such points. Described is an invention of a resin film comprising a biomass-derived resin layer having a specific composition including. Further, Patent Document 3 states that a film in which a petroleum-derived resin is replaced with a biomass-derived resin may have reduced impact resistance and the like, and a biomass-derived biomass polyethylene for improving such a point. The present invention describes the invention of a laminated film having an intermediate layer containing polyethylene derived from fossil fuel and a propylene-based block copolymer resin. Further, Patent Document 4 describes an invention relating to a laminate having a layer made of a carbon-neutral polyester resin film using biomass ethylene glycol, and an ethylene-vinyl ester copolymer saken product is exemplified as a gas barrier resin. However, this ethylene-vinyl ester copolymer saken product is shown as a resin made of a raw material derived from fossil fuel. Such a laminate of Patent Document 4 is limited as a bioplastic because a biomass-derived resin and a fossil fuel-derived resin coexist.
特開2007-137506号公報Japanese Unexamined Patent Publication No. 2007-137506 国際公開第2014/065380号International Publication No. 2014/065380 国際公開第2018/163835号International Publication No. 2018/163835 特開2012-096410号公報Japanese Unexamined Patent Publication No. 2012-096410
 ガスバリア材の用途において、バイオマス由来の原料を用いて合成されたガスバリア樹脂の製品化が期待される。しかし、上述のようにバイオマス由来の合成樹脂は、化石燃料由来の合成樹脂と比べて性能が劣る場合があることから、従来の化石燃料由来のガスバリア樹脂をバイオマス由来のガスバリア樹脂に置き換えた場合、最も重要なガスバリア性及び成形加工性が低下することが懸念される。このため、化石燃料由来の樹脂と遜色のない優れたガスバリア性及び成形加工性を有するバイオマス由来の樹脂の開発が望まれている。 In the use of gas barrier materials, it is expected that gas barrier resins synthesized using biomass-derived raw materials will be commercialized. However, as described above, the performance of the biomass-derived synthetic resin may be inferior to that of the fossil fuel-derived synthetic resin. Therefore, when the conventional fossil fuel-derived gas barrier resin is replaced with the biomass-derived gas barrier resin, There is concern that the most important gas barrier properties and molding processability will deteriorate. Therefore, it is desired to develop a biomass-derived resin having excellent gas barrier properties and molding processability comparable to those of fossil fuel-derived resins.
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、バイオマス由来の原料を用いていながら、化石燃料由来のものと遜色のない高いガスバリア性及び成形加工性を有するガスバリア樹脂組成物、並びにこのガスバリア樹脂組成物を用いた成形体、フィルムまたはシート、包装材、産業用フィルムまたはシート、熱成形容器、カップ状容器、トレイ状容器、ブロー成形容器、燃料容器、ボトル容器、チューブ、多層パイプ及び紙容器を提供することである。 The present invention has been made based on the above circumstances, and an object thereof is a gas barrier having high gas barrier properties and molding processability comparable to those derived from fossil fuels while using raw materials derived from biomass. Resin composition, and molded bodies, films or sheets, packaging materials, industrial films or sheets, thermoformed containers, cup-shaped containers, tray-shaped containers, blow-molded containers, fuel containers, bottle containers using this gas barrier resin composition. , Tubes, multi-layer pipes and paper containers.
 本発明者は、ガスバリア樹脂の一種であるエチレン-ビニルエステル共重合体ケン化物においては、バイオマス由来の原料をモノマーとして用いて合成したものが、化石燃料由来の原料をモノマーとして用いて合成された同一構造の従来のものと遜色ない高いガスバリア性及び成形加工性を有することを見いだし、本発明の完成に至った。 The present inventor has synthesized an ethylene-vinyl ester copolymer saken product, which is a kind of gas barrier resin, using a raw material derived from biomass as a monomer and a raw material derived from fossil fuel as a monomer. It has been found that it has a high gas barrier property and molding processability comparable to those of the conventional one having the same structure, and the present invention has been completed.
 すなわち本発明は、
[1]エチレン-ビニルエステル共重合体ケン化物を含み、上記エチレン-ビニルエステル共重合体ケン化物の原料であるエチレン及びビニルエステルがバイオマス由来である、ガスバリア樹脂組成物;
[2]上記エチレン-ビニルエステル共重合体ケン化物のバイオベース度が99%超である、[1]のガスバリア樹脂組成物;
[3]バイオベース度が99%超である、[1]または[2]のガスバリア樹脂組成物;
[4]硫黄化合物を硫黄原子換算で0ppmを超えて100ppm以下含む、[1]~[3]のいずれかのガスバリア樹脂組成物;
[5]上記硫黄化合物が、ジメチルスルフィドまたはジメチルスルホキシドである、[4]のガスバリア樹脂組成物;
[6]上記エチレン-ビニルエステル共重合体ケン化物が、エチレン-ビニルエステル共重合体ケン化物(X)と、上記エチレン-ビニルエステル共重合体ケン化物(X)よりも融点が低いエチレン-ビニルエステル共重合体ケン化物(Y)とを含む、[1]~[5]のいずれかのガスバリア樹脂組成物;
[7]上記エチレン-ビニルエステル共重合体ケン化物(X)と上記エチレン-ビニルエステル共重合体ケン化物(Y)との質量比(X/Y)が60/40以上95/5以下である、[6]のガスバリア樹脂組成物;
[8]上記エチレン-ビニルエステル共重合体ケン化物(X)と上記エチレン-ビニルエステル共重合体ケン化物(Y)との融点の差(X-Y)が15℃以上である、[6]または[7]のガスバリア樹脂組成物;
[9]カルボン酸をカルボン酸根換算で30ppm以上1000ppm以下含む、[1]~[8]のいずれかのガスバリア樹脂組成物;
[10]金属イオンを1ppm以上1000ppm以下含む、[1]~[9]のいずれかのガスバリア樹脂組成物;
[11]リン酸化合物をリン原子換算で1ppm以上200ppm以下含む、[1]~[10]のいずれかのガスバリア樹脂組成物;
[12]ホウ素化合物をホウ素原子換算で5ppm以上5000ppm以下含む、[1]~[11]のいずれかのガスバリア樹脂組成物;
[13][1]~[12]のいずれかのガスバリア樹脂組成物から形成される層を備える、成形体;
[14]熱可塑性樹脂層をさらに備える、[13]の成形体;
[15][13]または[14]の成形体を備える、フィルムまたはシート;
[16][15]のフィルムまたはシートを備える、包装材;
[17][13]または[14]の成形体を備える、産業用フィルムまたはシート;
[18][13]または[14]の成形体を備える、熱成形容器;
[19][18]の熱成形容器を備える、カップ状容器;
[20][18]の熱成形容器を備える、トレイ状容器;
[21][13]または[14]の成形体を備える、ブロー成形容器;
[22][21]のブロー成形容器を備える、燃料容器;
[23][21]のブロー成形容器を備える、ボトル容器;
[24][13]または[14]の成形体を備える、チューブ;
[25][13]または[14]の成形体を備える、多層パイプ;
[26][13]または[14]の成形体を備える、紙容器;
を提供することにより達成される。
That is, the present invention
[1] A gas barrier resin composition containing an ethylene-vinyl ester copolymer saponified product and in which ethylene and vinyl ester, which are raw materials for the above-mentioned ethylene-vinyl ester copolymer saken product, are derived from biomass;
[2] The gas barrier resin composition of [1], wherein the ethylene-vinyl ester copolymer saken product has a biobase degree of more than 99%;
[3] The gas barrier resin composition of [1] or [2] having a biobase degree of more than 99%;
[4] The gas barrier resin composition according to any one of [1] to [3], which contains a sulfur compound in an amount of more than 0 ppm and 100 ppm or less in terms of sulfur atom.
[5] The gas barrier resin composition of [4], wherein the sulfur compound is dimethyl sulfide or dimethyl sulfoxide;
[6] The ethylene-vinyl ester copolymer kenide has a lower melting point than the ethylene-vinyl ester copolymer kenide (X) and the ethylene-vinyl ester copolymer kenide (X). The gas barrier resin composition according to any one of [1] to [5], which comprises the ester copolymer saponified product (Y);
[7] The mass ratio (X / Y) of the ethylene-vinyl ester copolymer saponified product (X) and the ethylene-vinyl ester copolymer saken product (Y) is 60/40 or more and 95/5 or less. , [6] gas barrier resin composition;
[8] The difference in melting point (XY) between the ethylene-vinyl ester copolymer saken product (X) and the ethylene-vinyl ester copolymer saken product (Y) is 15 ° C. or higher [6]. Or the gas barrier resin composition of [7];
[9] The gas barrier resin composition according to any one of [1] to [8], which contains carboxylic acid in an amount of 30 ppm or more and 1000 ppm or less in terms of carboxylic acid root;
[10] The gas barrier resin composition according to any one of [1] to [9], which contains 1 ppm or more and 1000 ppm or less of metal ions;
[11] The gas barrier resin composition according to any one of [1] to [10], which comprises 1 ppm or more and 200 ppm or less of a phosphoric acid compound in terms of phosphorus atom.
[12] The gas barrier resin composition according to any one of [1] to [11], which contains a boron compound in an amount of 5 ppm or more and 5000 ppm or less in terms of boron atom;
[13] A molded product comprising a layer formed from the gas barrier resin composition according to any one of [1] to [12];
[14] The molded product of [13] further comprising a thermoplastic resin layer;
[15] A film or sheet comprising the molded product of [13] or [14];
[16] A packaging material comprising the film or sheet of [15];
[17] An industrial film or sheet comprising the molded article of [13] or [14];
[18] A thermoformed container comprising the molded body of [13] or [14];
[19] A cup-shaped container provided with the thermoformed container of [18];
[20] A tray-shaped container provided with the thermoformed container of [18];
[21] A blow-molded container comprising the molded product of [13] or [14];
[22] A fuel container provided with the blow-molded container of [21];
[23] A bottle container comprising the blow-molded container of [21];
[24] A tube comprising the molded product of [13] or [14];
[25] Multilayer pipe comprising the molded body of [13] or [14];
[26] A paper container comprising the molded product of [13] or [14];
Is achieved by providing.
 本発明によれば、バイオマス由来の原料を用いていながら、化石燃料由来のものと遜色のない高いガスバリア性及び成形加工性を有するガスバリア樹脂組成物、並びにこのガスバリア樹脂組成物を用いた成形体、フィルムまたはシート、包装材、産業用フィルムまたはシート、熱成形容器、カップ状容器、トレイ状容器、ブロー成形容器、燃料容器、ボトル容器、チューブ、多層パイプ及び紙容器を提供できる。 According to the present invention, a gas barrier resin composition having high gas barrier properties and molding processability comparable to those derived from fossil fuels while using a raw material derived from biomass, and a molded product using this gas barrier resin composition. A film or sheet, a packaging material, an industrial film or sheet, a heat-molded container, a cup-shaped container, a tray-shaped container, a blow-molded container, a fuel container, a bottle container, a tube, a multi-layer pipe and a paper container can be provided.
図1は、本発明の一実施形態であるカップ状容器を示す模式的斜視図である。FIG. 1 is a schematic perspective view showing a cup-shaped container according to an embodiment of the present invention. 図2は、図1のカップ状容器の断面図である。FIG. 2 is a cross-sectional view of the cup-shaped container of FIG. 図3は、図1のカップ状容器の製造方法を説明するための模式図である。FIG. 3 is a schematic diagram for explaining a method for manufacturing the cup-shaped container of FIG. 図4(A)~図4(D)は、図1のカップ状容器の製造方法を説明するための模式図である。4 (A) to 4 (D) are schematic views for explaining a method for manufacturing the cup-shaped container of FIG. 1.
<ガスバリア樹脂組成物>
 本発明のガスバリア樹脂組成物は、エチレン-ビニルエステル共重合体ケン化物(エチレン-ビニルアルコール共重合体;以下、「EVOH」ともいう。)を含み、上記EVOHの原料(原料モノマー)であるエチレン及びビニルエステルがバイオマス由来である(以下、本発明のガスバリア樹脂組成物に含まれる、原料がバイオマス由来であるEVOHを「バイオマス由来EVOH」ともいう。)、ガスバリア樹脂組成物である。当該ガスバリア樹脂組成物は、バイオマス由来の原料が用いられていることで、環境負荷が極めて低い。また、当該ガスバリア樹脂組成物は、ガスバリア樹脂としてEVOHを選択して用いており、EVOHはバイオマス由来の原料を用いて合成された場合であっても、化石燃料由来の原料のみから合成された同一構造のEVOHと同等の高いガスバリア性及び成形加工性を発揮できる。なお、同一構造のEVOHとは、重合度、各構造単位の含有比率、変性の有無、ケン化度等が同じであるEVOHをいう。
<Gas barrier resin composition>
The gas barrier resin composition of the present invention contains an ethylene-vinyl ester copolymer saken compound (ethylene-vinyl alcohol copolymer; hereinafter also referred to as "EVOH"), and is an ethylene which is a raw material (raw material monomer) of the above-mentioned EVOH. The vinyl ester is derived from biomass (hereinafter, EVOH whose raw material is derived from biomass, which is contained in the gas barrier resin composition of the present invention is also referred to as "EVOH derived from biomass"), is a gas barrier resin composition. Since the gas barrier resin composition uses a raw material derived from biomass, the environmental load is extremely low. Further, in the gas barrier resin composition, EVOH is selected and used as the gas barrier resin, and even when EVOH is synthesized using a raw material derived from biomass, it is the same as that synthesized only from the raw material derived from fossil fuel. It can exhibit high gas barrier properties and molding processability equivalent to EVOH of the structure. Note that EVOH having the same structure means EVOH having the same degree of polymerization, content ratio of each structural unit, presence / absence of denaturation, degree of saponification, and the like.
 原料として用いられたエチレン及びビニルエステルがバイオマス由来であることは、バイオベース度の測定により確認することができる。バイオベース度とは、バイオマス由来原料の割合を表す指標であり、本明細書においては、加速器質量分析器(AMS)による放射性炭素(14C)の濃度測定により求められるバイオベース炭素含有率である。バイオベース度は、具体的にはASTM D6866-18に記載の方法に沿って測定することができる。 It can be confirmed by measuring the degree of biobase that the ethylene and vinyl esters used as raw materials are derived from biomass. The biobase degree is an index showing the ratio of biomass-derived raw materials, and in the present specification, it is the biobase carbon content obtained by measuring the concentration of radioactive carbon (14 C) by an accelerator mass spectrometer (AMS). .. The degree of biobase can be specifically measured according to the method described in ASTM D6866-18.
 「バイオマス」とは、動植物に由来する有機物である資源であって、化石燃料(化石資源)を除いたものをいう。バイオマスは、植物に由来する有機物である資源であってよい。 "Biomass" is a resource that is an organic substance derived from animals and plants, excluding fossil fuels (fossil resources). Biomass may be a resource that is an organic matter derived from plants.
 本発明のガスバリア性樹脂組成物は、放射性炭素(14C)の濃度を利用して自社製品を追跡することも可能である。生物はその活動中に、大気中の放射性炭素(14C)を取り込み一定量含有するが、活動を停止すると新しい14Cの取り込みが止まり、全炭素に対する14Cの比が低下する。また、植物が炭素を固定する際に同位体選別と呼ばれる現象が生じ、植物の種毎に全炭素に対する14Cの比が異なることが知られている。全炭素に対する14Cの比は、産地、年代によっても異なることが知られており、原料とするバイオマスにより、異なる全炭素に対する14Cの比の原料を得ることができる。例えば、異なる全炭素に対する14Cの比の原料比を変化させることにより、特定の全炭素に対する14Cの比のEVOHを得ることが可能となり、この全炭素に対する14Cの比を調べることにより、自社製EVOH(ガスバリア性樹脂組成物)の追跡が可能となる。 The gas barrier resin composition of the present invention can also be used to track its own products by utilizing the concentration of radiocarbon (14 C). Organisms take up and contain a certain amount of radiocarbon (14 C) in the atmosphere during their activity, but when the activity is stopped, the uptake of new 14 C stops and the ratio of 14 C to total carbon decreases. It is also known that a phenomenon called isotope sorting occurs when plants fix carbon, and the ratio of 14 C to total carbon differs depending on the plant species. It is known that the ratio of 14 C to total carbon varies depending on the place of origin and age, and a raw material having a ratio of 14 C to total carbon can be obtained depending on the biomass used as a raw material. For example, by changing the raw material ratio of 14 C to different total carbons, it is possible to obtain EVOH with a ratio of 14 C to specific total carbons, and by examining this ratio of 14 C to total carbons, it is possible to obtain EVOH. It is possible to track EVOH (gas barrier resin composition) manufactured in-house.
 EVOHは幅広い用途で使用されており、高品質の製品を市場へ供給することはサプライヤーの責務である。また、ブランディングのために自社製品と他社製品を識別する方法が求められている。例えば、市販の包装容器のガスバリア層に用いられているEVOHは、熱成形により包装容器に成形されるが、熱成形時に受ける熱履歴によりエチレン-ビニルエステル共重合体ケン化物は溶媒に不溶なゲルを形成することがある。そのため、包装容器を回収し、使用されているEVOHを溶媒で抽出して、その分子量を測定しようとしても、分子量を正確に測定することが困難な場合が多い。そのため、成形体を分析しただけでは自社のEVOHであるか否かを判別することができない。 EVOH is used in a wide range of applications, and it is the supplier's responsibility to supply high-quality products to the market. There is also a need for a way to distinguish between our own products and those of other companies for branding. For example, EVOH used in the gas barrier layer of a commercially available packaging container is formed into a packaging container by thermoforming, but the ethylene-vinyl ester copolymer saken product is a gel insoluble in a solvent due to the thermal history received during thermoforming. May form. Therefore, even if the packaging container is collected, the EVOH used is extracted with a solvent, and the molecular weight is to be measured, it is often difficult to accurately measure the molecular weight. Therefore, it is not possible to determine whether or not it is EVOH of the company only by analyzing the molded product.
 EVOHは、多くの流通経路を経て、食品、医薬品、工業薬品、農薬等の包装材料として、フィルム、シート、容器等に利用されている。また、そのバリア性、保温性、耐汚染性等を活かして、自動車等車両の燃料タンク、タイヤ用チューブ材、農業用フィルム、ジオメンブレン、靴用クッション材等の用途にも使用されている。これらのEVOHが使用された材料がさらに廃棄された場合、かかる樹脂やその使用後の包装容器がどの工場、どの製造ラインから製造されたかの判別が困難である。また、使用時あるいは使用後の自社製品の品質調査や廃棄後の環境への影響や地中への分解性などの追跡も困難である。 EVOH is used in films, sheets, containers, etc. as a packaging material for foods, pharmaceuticals, industrial chemicals, pesticides, etc. through many distribution channels. It is also used in fuel tanks for automobiles and other vehicles, tube materials for tires, agricultural films, geomembranes, cushioning materials for shoes, etc., taking advantage of its barrier properties, heat retention properties, stain resistance, and the like. When these materials in which EVOH is used are further discarded, it is difficult to determine from which factory and which production line the such resin and the packaging container after use thereof are manufactured. In addition, it is difficult to conduct a quality survey of the company's products during or after use, and to track the environmental impact after disposal and the degradability into the ground.
 自社製品の追跡方法の一つとして、例えば、EVOHにトレーサー物質を添加する方法が考えられる。しかしながら、トレーサーの添加はコスト上昇やEVOHの性能低下を起こす場合がある。このような背景において、放射性炭素(14C)の濃度を利用して自社製品を追跡することができることは、非常に有用な効果であると言える。 As one of the tracking methods for in-house products, for example, a method of adding a tracer substance to EVOH can be considered. However, the addition of a tracer may cause an increase in cost and a decrease in EVOH performance. Against this background, being able to track in-house products using the concentration of radiocarbon (14 C) can be said to be a very useful effect.
 本発明のガスバリア樹脂組成物は、気体の透過を抑制する機能を有する樹脂組成物である。20℃-65%RH条件下で、JIS K 7126-2(等圧法;2006年)に記載の方法に準じて測定した本発明のガスバリア樹脂組成物の酸素透過速度の上限は、100mL・20μm/(m・day・atm)が好ましく、50mL・20μm/(m・day・atm)がより好ましく、10mL・20μm/(m・day・atm)、1mL・20μm/(m・day・atm)、又は0.5mL・20μm/(m・day・atm)がさらに好ましい。 The gas barrier resin composition of the present invention is a resin composition having a function of suppressing gas permeation. The upper limit of the oxygen permeation rate of the gas barrier resin composition of the present invention measured according to the method described in JIS K 7126-2 (isopressure method; 2006) under 20 ° C.-65% RH conditions is 100 mL / 20 μm /. (m 2 · day · atm) are preferred, more preferably 50mL · 20μm / (m 2 · day · atm), 10mL · 20μm / (m 2 · day · atm), 1mL · 20μm / (m 2 · day · atm), or 0.5mL · 20μm / (m 2 · day · atm) it is more preferred.
(バイオマス由来EVOH)
 本発明のガスバリア樹脂組成物に含まれるバイオマス由来EVOHは、原料モノマーであるエチレン及びビニルエステルがバイオマス由来であるEVOHである。バイオマス由来EVOHがバイオマス由来の原料を含むことで、本発明のガスバリア樹脂組成物のバイオベース度を高め、環境負荷を低減できる。
(Biomass-derived EVOH)
The biomass-derived EVOH contained in the gas barrier resin composition of the present invention is an EVOH in which ethylene and vinyl esters, which are raw material monomers, are derived from biomass. Since the biomass-derived EVOH contains a biomass-derived raw material, the biobase degree of the gas barrier resin composition of the present invention can be increased and the environmental load can be reduced.
 バイオマス由来EVOHは、バイオマス由来であるエチレン及びビニルエステルの共重合体のケン化により得られる。バイオマス由来EVOHの前駆体となるエチレン-ビニルエステル共重合体の製造及びケン化は、従来の化石燃料由来のエチレン-ビニルエステル共重合体の製造及びケン化と同様の公知の方法により行うことができる。ビニルエステルとしては、例えば酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル等のカルボン酸ビニルエステルを用いることができ、酢酸ビニルが好ましい。 Biomass-derived EVOH is obtained by saponification of a copolymer of biomass-derived ethylene and vinyl ester. The production and saponification of an ethylene-vinyl ester copolymer as a precursor of biomass-derived EVOH can be carried out by a known method similar to the production and saponification of a conventional fossil fuel-derived ethylene-vinyl ester copolymer. can. As the vinyl ester, for example, a carboxylic acid vinyl ester such as vinyl acetate, vinyl formate, vinyl propionate, vinyl valerate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl pivalate, vinyl versatic acid can be used. It can be made, and vinyl acetate is preferable.
 バイオマス由来のエチレンは、例えばバイオマス原料からバイオエタノールを精製し、脱水反応を行うなど、公知の方法で製造することができる。バイオマス原料としては、廃棄物系、未利用系、資源作物系等を用いることができ、例えば、セルロース系作物(パルプ、ケナフ、麦わら、稲わら、古紙、製紙残渣など)、木材、木炭、堆肥、天然ゴム、綿花、サトウキビ、おから、油脂(菜種油、綿実油、大豆油、ココナッツ油、ヒマシ油など)、炭水化物系作物(トウモロコシ、イモ類、小麦、米、籾殻、米ぬか、古米、キャッサバ、サゴヤシなど)、バガス、そば、大豆、精油(松根油、オレンジ油、ユーカリ油など)、パルプ黒液、植物油カスなどを用いることができる。 Biomass-derived ethylene can be produced by a known method, for example, by purifying bioethanol from a biomass raw material and performing a dehydration reaction. As the biomass raw material, waste type, unused type, resource crop type and the like can be used, for example, cellulose type crops (pulp, kenaf, straw, rice straw, used paper, papermaking residue, etc.), wood, charcoal, compost. , Natural rubber, cotton, sugar cane, okara, oil (rapeseed oil, cottonseed oil, soybean oil, coconut oil, castor oil, etc.), carbohydrate-based crops (corn, potatoes, wheat, rice, rice husks, rice bran, old rice, cassaba, sago palm) , Bagasse, buckwheat, soybean, essential oil (pine root oil, orange oil, eucalyptus oil, etc.), pulp black liquor, vegetable oil residue, etc. can be used.
 バイオエタノールを製造する方法は特に限定されず、例えば、バイオマス原料を必要に応じて前処理(加圧熱水処理、酸処理、アルカリ処理、糖化酵素を用いた糖化処理)した上で、酵母発酵させバイオエタノールを製造した後、蒸留工程及び脱水工程を経てバイオエタノールを精製することができる。バイオエタノール製造の際に、糖化処理を行う場合、糖化と発酵を段階的に行う逐次糖化発酵を用いてもよいし、糖化と発酵を同時に行う並行糖化発酵を用いてもよいが、製造効率の観点から並行糖化発酵にてバイオエタノールを製造することが好ましい。 The method for producing bioethanol is not particularly limited, and for example, the biomass raw material is pretreated (pressurized hot water treatment, acid treatment, alkali treatment, saccharification treatment using a saccharifying enzyme) as necessary, and then yeast fermentation. After producing bioethanol, the bioethanol can be purified through a distillation step and a dehydration step. When saccharification is performed during the production of bioethanol, sequential saccharification fermentation in which saccharification and fermentation are carried out in stages may be used, or parallel saccharification fermentation in which saccharification and fermentation are carried out at the same time may be used, but the production efficiency is improved. From the viewpoint, it is preferable to produce bioethanol by parallel saccharification fermentation.
 市販のバイオマス由来のエチレンを使用してもよく、例えばBraskem S.A.製のサトウキビ由来バイオエチレン等を使用できる。 Commercially available biomass-derived ethylene may be used, for example, Braskem S. A. Bioethylene derived from sugar cane can be used.
 バイオマス由来のビニルエステルとしては、バイオマス由来のエチレンを用いて製造したビニルエステルが挙げられる。バイオマス由来のビニルエステルの製造方法としては、例えば一般的な工業製法であるパラジウム触媒を用いてエチレンと酢酸と酸素分子とを反応させる方法等が挙げられる。また、バイオマス由来のビニルエステルにおいては、酢酸等のカルボン酸に由来する部分(アシル基)は、バイオマス由来であってもよく、化石燃料由来であってもよい。すなわち、バイオマス由来のビニルエステルは、バイオマス由来のエチレンと、バイオマス由来又は化石燃料由来のカルボン酸とを用いて製造されたものであってよい。エチレン-ビニルエステル共重合体におけるカルボン酸に由来する部分はケン化によって大部分は脱離し、また、脱離したカルボン酸は再度合成に用いることができるため、カーボンニュートラルの観点からはほとんど影響しないためである。 Examples of the biomass-derived vinyl ester include vinyl esters produced using biomass-derived ethylene. Examples of the method for producing vinyl ester derived from biomass include a method of reacting ethylene with acetic acid and oxygen molecules using a palladium catalyst, which is a general industrial production method. Further, in the biomass-derived vinyl ester, the portion (acyl group) derived from a carboxylic acid such as acetic acid may be derived from biomass or may be derived from fossil fuel. That is, the biomass-derived vinyl ester may be produced by using biomass-derived ethylene and a biomass-derived or fossil fuel-derived carboxylic acid. Most of the carboxylic acid-derived portion of the ethylene-vinyl ester copolymer is desorbed by saponification, and the desorbed carboxylic acid can be used again for synthesis, so that there is almost no effect from the viewpoint of carbon neutrality. This is because.
 バイオマス由来EVOHのエチレン単位含有量の下限は20モル%が好ましく、23モル%がより好ましく、25モル%がさらに好ましい。バイオマス由来EVOHのエチレン単位含有量が20モル%以上であると、成形加工性、ロングラン性等が高まる傾向となる。バイオマス由来EVOHのエチレン単位含有量の上限は60モル%が好ましく、55モル%がより好ましく、50モル%がさらに好ましい。バイオマス由来EVOHのエチレン単位含有量が60モル%以下であると、ガスバリア性がより良好となる傾向となる。EVOHのエチレン単位含有量は、核磁気共鳴(NMR)法により求めることができる。 The lower limit of the ethylene unit content of biomass-derived EVOH is preferably 20 mol%, more preferably 23 mol%, still more preferably 25 mol%. When the ethylene unit content of biomass-derived EVOH is 20 mol% or more, molding processability, long-run property and the like tend to be improved. The upper limit of the ethylene unit content of biomass-derived EVOH is preferably 60 mol%, more preferably 55 mol%, still more preferably 50 mol%. When the ethylene unit content of biomass-derived EVOH is 60 mol% or less, the gas barrier property tends to be better. The ethylene unit content of EVOH can be determined by a nuclear magnetic resonance (NMR) method.
 バイオマス由来EVOHのケン化度の下限は90モル%が好ましく、95モル%がより好ましく、99モル%がさらに好ましい。バイオマス由来EVOHのケン化度が90モル%以上であると、本発明のガスバリア樹脂組成物におけるガスバリア性、成形加工性及びロングラン性がより良好となる傾向がある。また、バイオマス由来EVOHのケン化度の上限は100モル%であってよく、99.97モル%又は99.94モル%であってもよい。EVOHのケン化度は、H-NMR測定を行い、ビニルエステル構造に含まれる水素原子のピーク面積と、ビニルアルコール構造に含まれる水素原子のピーク面積とを測定して算出できる。 The lower limit of the saponification degree of biomass-derived EVOH is preferably 90 mol%, more preferably 95 mol%, still more preferably 99 mol%. When the saponification degree of biomass-derived EVOH is 90 mol% or more, the gas barrier property, molding processability, and long-run property of the gas barrier resin composition of the present invention tend to be better. Further, the upper limit of the saponification degree of the biomass-derived EVOH may be 100 mol%, and may be 99.97 mol% or 99.94 mol%. The degree of saponification of EVOH can be calculated by performing 1 H-NMR measurement and measuring the peak area of hydrogen atoms contained in the vinyl ester structure and the peak area of hydrogen atoms contained in the vinyl alcohol structure.
 バイオマス由来EVOHのバイオベース度は、99%超であることが好ましく、99.5%超であることがより好ましく、100%であってもよい。原料に一部化石燃料由来の原料が混ざる場合もあるため、バイオベース度が100%を割る場合があるが、環境負荷低減の観点からは、バイオマス由来EVOHのバイオベース度が上記範囲であることが好ましい。 The biobase degree of biomass-derived EVOH is preferably more than 99%, more preferably more than 99.5%, and may be 100%. Since some fossil fuel-derived raw materials may be mixed with the raw materials, the biobase degree may be less than 100%, but from the viewpoint of reducing the environmental load, the biobase degree of biomass-derived EVOH should be within the above range. Is preferable.
 バイオマス由来EVOHは、本発明の目的が阻害されない範囲で、エチレン、ビニルエステル及びそのケン化物以外の他の単量体由来の単位を有していてもよい。バイオマス由来EVOHが上記他の単量体由来の単位を有する場合、上記他の単量体由来の単位のバイオマス由来EVOHの全構造単位に対する含有量の上限は30モル%が好ましく、20モル%がより好ましく、10モル%がさらに好ましく、5モル%がよりさらに好ましく、1モル%がよりさらに好ましいこともある。また、バイオマス由来EVOHが上記他の単量体由来の単位を有する場合、その含有量の下限は0.05モル%であってもよく、0.10モル%であってもよい。上記他の単量体は、例えば、プロピレン、ブチレン、ペンテン、ヘキセン等のアルケン;3-アシロキシ-1-プロペン、3-アシロキシ-1-ブテン、4-アシロキシ-1-ブテン、3,4-ジアシロキシ-1-ブテン、3-アシロキシ-4-メチル-1-ブテン、4-アシロキシ-2-メチル-1-ブテン、4-アシロキシ-3-メチル-1-ブテン、3,4-ジアシロキシ-2-メチル-1-ブテン、4-アシロキシ-1-ペンテン、5-アシロキシ-1-ペンテン、4,5-ジアシロキシ-1-ペンテン、4-アシロキシ-1-ヘキセン、5-アシロキシ-1-ヘキセン、6-アシロキシ-1-ヘキセン、5,6-ジアシロキシ-1-ヘキセン、1,3-ジアセトキシ-2-メチレンプロパン等のエステル基を有するアルケン又はそのケン化物;アクリル酸、メタクリル酸、クロトン酸、イタコン酸等の不飽和酸又はその無水物、塩、又はモノ若しくはジアルキルエステル等;アクリロニトリル、メタクリロニトリル等のニトリル;アクリルアミド、メタクリルアミド等のアミド;ビニルスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸又はその塩;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(β-メトキシ-エトキシ)シラン、γ-メタクリルオキシプロピルメトキシシラン等ビニルシラン化合物;アルキルビニルエーテル類、ビニルケトン、N-ビニルピロリドン、塩化ビニル、塩化ビニリデン等が挙げられる。 The biomass-derived EVOH may have a unit derived from a monomer other than ethylene, vinyl ester and a saponified product thereof, as long as the object of the present invention is not impaired. When the biomass-derived EVOH has a unit derived from the other monomer, the upper limit of the content of the unit derived from the other monomer to the total structural unit of the biomass-derived EVOH is preferably 30 mol%, preferably 20 mol%. More preferably, 10 mol% is even more preferred, 5 mol% is even more preferred, and 1 mol% is even more preferred. When the biomass-derived EVOH has a unit derived from the other monomer, the lower limit of its content may be 0.05 mol% or 0.10 mol%. The other monomers include, for example, alkenes such as propylene, butylene, pentene, and hexene; 3-allyloxy-1-propene, 3-acyloxy-1-butene, 4-acyloxy-1-butene, 3,4-diasiloxy. -1-Buten, 3-Aryloxy-4-methyl-1-butene, 4-Achilloxy-2-methyl-1-butene, 4-Aryloxy-3-methyl-1-butene, 3,4-diasiloxy-2-methyl -1-Buten, 4-Acyloxy-1-Penten, 5-Acyloxy-1-Penten, 4,5-Diacyloxy-1-Penten, 4-Acyloxy-1-hexene, 5-Acyloxy-1-Hexene, 6-Acyloxy Alkenes having ester groups such as -1-hexene, 5,6-diasiloxy-1-hexene, 1,3-diacetoxy-2-methylenepropane, or alkenes thereof; Unsaturated acid or its anhydride, salt, mono or dialkyl ester, etc .; nitriles such as acrylonitrile and methacrylonitrile; amides such as acrylamide and methacrylamide; olefin sulfone such as vinyl sulfonic acid, allyl sulfonic acid and methallyl sulfonic acid. Acids or salts thereof; vinylsilane compounds such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri (β-methoxy-ethoxy) silane, γ-methacryloxypropylmethoxysilane; alkyl vinyl ethers, vinyl ketones, N-vinylpyrrolidone, vinyl chloride, Examples include vinylidene chloride.
 バイオマス由来EVOHは、ウレタン化、アセタール化、シアノエチル化、オキシアルキレン化等の手法の後変性がされていてもよい。 Biomass-derived EVOH may be post-denatured by methods such as urethanization, acetalization, cyanoethylation, and oxyalkyleneization.
 バイオマス由来EVOHがその他単量体単位等の変性基を有する場合、バイオマス由来EVOHが下記式(I)で表される構造単位(変性基)を持っていてもよい。 When the biomass-derived EVOH has a modifying group such as another monomer unit, the biomass-derived EVOH may have a structural unit (modifying group) represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[式(I)中、Xは水素原子、メチル基又はR-OHで表される基を表す。R及びRは、それぞれ独立に単結合、炭素数1~9のアルキレン基又は炭素数1~9のアルキレンオキシ基を表し、上記アルキレン基及び上記アルキレンオキシ基は水酸基、アルコキシ基又はハロゲン原子を含んでもよい。] [In the formula (I), X represents a group represented by hydrogen atom, methyl group, or R 2 -OH. R 1 and R 2 each independently represent a single bond, an alkylene group having 1 to 9 carbon atoms or an alkylene oxy group having 1 to 9 carbon atoms, and the alkylene group and the alkylene oxy group are hydroxyl groups, alkoxy groups or halogen atoms. May include. ]
 Xは、好ましくは水素原子又はR-OHで表される基であり、より好ましくはR-OHで表される基である。 X is preferably a group represented by hydrogen or R 2 -OH, more preferably a group represented by R 2 -OH.
 R又はRとして用いられるアルキレン基及びアルキレンオキシ基は水酸基、アルコキシ基又はハロゲン原子を含んでもよい。R及びRは、好ましくは炭素数1~5のアルキレン基又はアルキレンオキシ基であり、より好ましくは炭素数1~3のアルキレン基又はアルキレンオキシ基である。 The alkylene group and alkyleneoxy group used as R 1 or R 2 may contain a hydroxyl group, an alkoxy group or a halogen atom. R 1 and R 2 are preferably an alkylene group or an alkyleneoxy group having 1 to 5 carbon atoms, and more preferably an alkylene group or an alkyleneoxy group having 1 to 3 carbon atoms.
 式(I)で表される構造単位(変性基)の具体例としては、例えば、下記の式(II)、式(III)、及び式(IV)で表される構造単位(変性基)が挙げられる。 Specific examples of the structural unit (modifying group) represented by the formula (I) include the following structural units (modifying group) represented by the formulas (II), (III), and (IV). Can be mentioned.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[式(II)中、R及びRは、それぞれ独立に水素原子又は炭素数1~8のアルキル基を表し、該アルキル基は水酸基、アルコキシ基又はハロゲン原子を含んでもよい。] [In formula (II), R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and the alkyl group may contain a hydroxyl group, an alkoxy group or a halogen atom. ]
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[式(III)中、Rは式(I)中のXと同義である。Rは、水素原子又は炭素数1~8のアルキル基を表し、該アルキル基は水酸基、アルコキシ基又はハロゲン原子を含んでもよい。] [In formula (III), R 5 is synonymous with X in formula (I). R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and the alkyl group may contain a hydroxyl group, an alkoxy group or a halogen atom. ]
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[式(IV)中、R及びRは、それぞれ独立して、水素原子、炭素数1~8のアルキル基、炭素数3~8のシクロアルキル基または水酸基を表す。また、上記アルキル基、上記シクロアルキル基が有する水素原子の一部または全部は、水酸基、アルコキシ基またはハロゲン原子で置換されていてもよい。 [In formula (IV), R 7 and R 8 independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, or a hydroxyl group. Further, a part or all of the alkyl group and the hydrogen atom of the cycloalkyl group may be substituted with a hydroxyl group, an alkoxy group or a halogen atom.
 本発明において、式(I)中のRが単結合で、Xがヒドロキシメチル基(式(II)中のR、Rが水素原子)であってもよい。この構造単位(変性基)を有するバイオマス由来EVOHを用いることで、ガスバリア性を著しく悪化させることなく延伸性、熱成形性等の二次加工性を高められる傾向となる。バイオマス由来EVOHが上記構造単位(変性基)を含有する場合、その含有量の下限は0.1モル%が好ましく、0.4モル%がより好ましく、1.0モル%がさらに好ましい。一方、上記構造単位(変性基)の含有量の上限は、ガスバリア性を良好とする観点から20モル%が好ましく、10モル%がより好ましく、8モル%がさらに好ましく、5モル%が特に好ましい。 In the present invention, R 1 in the formula (I) may be a single bond, and X may be a hydroxymethyl group (R 3 and R 4 in the formula (II) are hydrogen atoms). By using biomass-derived EVOH having this structural unit (modifying group), secondary processability such as stretchability and thermoformability tends to be improved without significantly deteriorating the gas barrier property. When the biomass-derived EVOH contains the structural unit (modifying group), the lower limit of the content is preferably 0.1 mol%, more preferably 0.4 mol%, still more preferably 1.0 mol%. On the other hand, the upper limit of the content of the structural unit (modifying group) is preferably 20 mol%, more preferably 10 mol%, further preferably 8 mol%, and particularly preferably 5 mol% from the viewpoint of improving the gas barrier property. ..
 本発明において、式(I)中のRがヒドロキシメチレン基、Xが水素原子(式(III)中のR、Rが水素原子)であってもよい。この構造単位(変性基)を有するバイオマス由来EVOHを用いることで、ガスバリア性を著しく悪化させることなく延伸性、熱成形性等の二次加工性を高められる傾向となる。バイオマス由来EVOHが上記構造単位(変性基)を含有する場合、その含有量の下限は0.1モル%が好ましく、0.4モル%がより好ましく、1.0モル%がさらに好ましい。一方、上記構造単位(変性基)の含有量の上限は、ガスバリア性を良好とする観点から20モル%が好ましく、10モル%がより好ましく、8モル%がさらに好ましく、5モル%が特に好ましい。 In the present invention, R 1 in the formula (I) may be a hydroxymethylene group, and X may be a hydrogen atom (R 5 and R 6 in the formula (III) are hydrogen atoms). By using biomass-derived EVOH having this structural unit (modifying group), secondary processability such as stretchability and thermoformability tends to be improved without significantly deteriorating the gas barrier property. When the biomass-derived EVOH contains the structural unit (modifying group), the lower limit of the content is preferably 0.1 mol%, more preferably 0.4 mol%, still more preferably 1.0 mol%. On the other hand, the upper limit of the content of the structural unit (modifying group) is preferably 20 mol%, more preferably 10 mol%, further preferably 8 mol%, and particularly preferably 5 mol% from the viewpoint of improving the gas barrier property. ..
 本発明において、式(I)中のRがメチルメチレンオキシ基、Xが水素原子であってもよい。この構造単位(変性基)を有するバイオマス由来EVOHを用いることで、ガスバリア性を著しく悪化させることなく延伸性、熱成形性等の二次加工性を高められる傾向となる。また、上記メチルメチレンオキシ基は、酸素原子が主鎖の炭素原子に結合している。すなわち、式(IV)中、R、Rの一方がメチル基であり、他方が水素原子であることが好ましい。バイオマス由来EVOHが上記構造単位(変性基)を含有する場合、その含有量の下限は0.1モル%が好ましく、0.5モル%がより好ましく、1.0モル%がさらに好ましく、2.0モル%が特に好ましい。一方、上記構造単位(変性基)の含有量の上限は、ガスバリア性を良好とする観点から20モル%が好ましく、15モル%がより好ましく、10モル%がさらに好ましい。 In the present invention, R 1 is a methyl methylene group of in the formula (I), X may be a hydrogen atom. By using biomass-derived EVOH having this structural unit (modifying group), secondary processability such as stretchability and thermoformability tends to be improved without significantly deteriorating the gas barrier property. Further, in the above-mentioned methylmethyleneoxy group, an oxygen atom is bonded to a carbon atom in the main chain. That is, in the formula (IV), it is preferable that one of R 7 and R 8 is a methyl group and the other is a hydrogen atom. When the biomass-derived EVOH contains the structural unit (modifying group), the lower limit of the content is preferably 0.1 mol%, more preferably 0.5 mol%, still more preferably 1.0 mol%. 0 mol% is particularly preferred. On the other hand, the upper limit of the content of the structural unit (modifying group) is preferably 20 mol%, more preferably 15 mol%, still more preferably 10 mol% from the viewpoint of improving the gas barrier property.
 バイオマス由来EVOHは、単独で用いても2種以上併用してもよい。 Biomass-derived EVOH may be used alone or in combination of two or more.
 バイオマス由来EVOHを2種以上併用する場合は、融点の異なるバイオマス由来EVOHを2種以上用いることが好ましい。融点の異なる2種以上のバイオマス由来EVOHを用いることで、優れた成形加工性を示す傾向となる。本発明のガスバリア樹脂組成物は、バイオマス由来EVOHとして、EVOH(X)と、上記EVOH(X)よりも融点が低いEVOH(Y)とを含み、EVOH(X)とEVOH(Y)との質量比(X/Y)が60/40以上95/5以下であることが、より成形加工性を良好にする観点から好ましい。 When two or more types of biomass-derived EVOH are used in combination, it is preferable to use two or more types of biomass-derived EVOH having different melting points. By using two or more kinds of biomass-derived EVOH having different melting points, it tends to show excellent molding processability. The gas barrier resin composition of the present invention contains EVOH (X) as biomass-derived EVOH and EVOH (Y) having a melting point lower than that of EVOH (X), and the mass of EVOH (X) and EVOH (Y). It is preferable that the ratio (X / Y) is 60/40 or more and 95/5 or less from the viewpoint of further improving the molding processability.
(EVOH(X))
 EVOH(X)はEVOH(Y)よりも高い融点を有するEVOHであり、通常、本発明のガスバリア樹脂組成物に含まれるバイオマス由来EVOHにおいて、最も高い融点を有するEVOHである。本発明のガスバリア樹脂組成物がEVOH(X)を含むことで、優れたガスバリア性を有する傾向となる。EVOH(X)の融点の下限は150℃が好ましく、155℃がより好ましく、160℃がさらに好ましい。EVOH(X)の融点の上限は200℃が好ましい。EVOH(X)の融点が上記範囲内であると、本発明のガスバリア樹脂組成物のガスバリア性が良好となる傾向となる。
(EVOH (X))
EVOH (X) is an EVOH having a melting point higher than that of EVOH (Y), and is usually an EVOH having the highest melting point among the biomass-derived EVOH contained in the gas barrier resin composition of the present invention. When the gas barrier resin composition of the present invention contains EVOH (X), it tends to have excellent gas barrier properties. The lower limit of the melting point of EVOH (X) is preferably 150 ° C., more preferably 155 ° C., and even more preferably 160 ° C. The upper limit of the melting point of EVOH (X) is preferably 200 ° C. When the melting point of EVOH (X) is within the above range, the gas barrier property of the gas barrier resin composition of the present invention tends to be good.
 EVOH(X)のエチレン単位含有量の下限は、成形加工性及びロングラン性を良好とする観点から、20モル%が好ましく、22モル%がより好ましく、24モル%がさらに好ましい。また、EVOH(X)のエチレン単位含有量の上限は、融点を高くする観点及びガスバリア性を良好とする観点から50モル%が好ましく、48モル%がより好ましく、46モル%がさらに好ましい。 The lower limit of the ethylene unit content of EVOH (X) is preferably 20 mol%, more preferably 22 mol%, still more preferably 24 mol%, from the viewpoint of good molding processability and long-run property. The upper limit of the ethylene unit content of EVOH (X) is preferably 50 mol%, more preferably 48 mol%, still more preferably 46 mol%, from the viewpoint of raising the melting point and improving the gas barrier property.
 EVOH(X)のケン化度の下限は90モル%が好ましく、95モル%がより好ましく、99モル%がさらに好ましい。EVOH(X)のケン化度が90モル%以上であると、本発明のガスバリア樹脂組成物におけるガスバリア性、成形加工性及びロングラン性がより良好となる傾向がある。また、EVOH(X)のケン化度の上限は100モル%であってよく、99.97モル%又は99.94モル%であってもよい。 The lower limit of the saponification degree of EVOH (X) is preferably 90 mol%, more preferably 95 mol%, still more preferably 99 mol%. When the saponification degree of EVOH (X) is 90 mol% or more, the gas barrier property, molding processability and long-run property of the gas barrier resin composition of the present invention tend to be better. Further, the upper limit of the saponification degree of EVOH (X) may be 100 mol%, and may be 99.97 mol% or 99.94 mol%.
 EVOH(X)は、本発明の目的が阻害されない範囲で、上記バイオマス由来EVOHに記載されるエチレン、ビニルエステル及びそのケン化物以外の単量体単位を有していてもよいが、本発明のガスバリア樹脂組成物のガスバリア性を高く維持する観点から、他の単量体単位を有さないことが好ましい。EVOH(X)が上記他の単量体単位を有する場合、EVOH(X)の全構造単位に対する含有量は、5モル%以下が好ましく、3モル%以下がより好ましく、1モル%以下がさらに好ましい。 EVOH (X) may have a monomer unit other than the ethylene, vinyl ester and the saponified product described in the above-mentioned biomass-derived EVOH as long as the object of the present invention is not impaired. From the viewpoint of maintaining a high gas barrier property of the gas barrier resin composition, it is preferable not to have other monomer units. When EVOH (X) has the above other monomer units, the content of EVOH (X) with respect to all structural units is preferably 5 mol% or less, more preferably 3 mol% or less, and further preferably 1 mol% or less. preferable.
(EVOH(Y))
 EVOH(Y)は、EVOH(X)よりも低い融点を有するバイオマス由来EVOHである。本発明のガスバリア樹脂組成物がEVOH(Y)を含むことで、優れた成形加工性を示す傾向となる。EVOH(Y)の融点の下限は100℃が好ましく、105℃がより好ましく、110℃がさらに好ましい。EVOH(Y)の融点の上限は180℃が好ましい。EVOH(Y)の融点が上記範囲内であると、本発明のガスバリア樹脂組成物のガスバリア性が良好となる傾向となる。
(EVOH (Y))
EVOH (Y) is a biomass-derived EVOH having a melting point lower than that of EVOH (X). When the gas barrier resin composition of the present invention contains EVOH (Y), it tends to exhibit excellent molding processability. The lower limit of the melting point of EVOH (Y) is preferably 100 ° C, more preferably 105 ° C, and even more preferably 110 ° C. The upper limit of the melting point of EVOH (Y) is preferably 180 ° C. When the melting point of EVOH (Y) is within the above range, the gas barrier property of the gas barrier resin composition of the present invention tends to be good.
 EVOH(Y)のエチレン単位含有量の下限は、融点を低くする観点並びに成形加工性及びロングラン性を良好とする観点から、30モル%が好ましく、32モル%がより好ましく、34モル%がさらに好ましい。また、EVOH(Y)のエチレン単位含有量の上限は、ガスバリア性を良好とする観点から60モル%が好ましく、58モル%がより好ましく、56モル%がさらに好ましい。 The lower limit of the ethylene unit content of EVOH (Y) is preferably 30 mol%, more preferably 32 mol%, and further 34 mol% from the viewpoint of lowering the melting point and improving the molding processability and long-running property. preferable. The upper limit of the ethylene unit content of EVOH (Y) is preferably 60 mol%, more preferably 58 mol%, and even more preferably 56 mol% from the viewpoint of improving the gas barrier property.
 EVOH(Y)のケン化度の下限は90モル%が好ましく、95モル%がより好ましく、99モル%がさらに好ましい。EVOH(Y)のケン化度が90モル%以上であると、本発明のガスバリア樹脂組成物におけるガスバリア性、成形加工性及びロングラン性がより良好となる傾向がある。また、EVOH(Y)のケン化度の上限は100モル%であってよく、99.97モル%又は99.94モル%であってもよい。また、EVOH(Y)のケン化度の下限は、成形加工性を高める観点から70モル%であっても、80モル%であってもよく、EVOH(Y)のケン化度の上限は、成形加工性を高める観点から98モル%であってもよい。 The lower limit of the saponification degree of EVOH (Y) is preferably 90 mol%, more preferably 95 mol%, still more preferably 99 mol%. When the saponification degree of EVOH (Y) is 90 mol% or more, the gas barrier property, molding processability and long-run property of the gas barrier resin composition of the present invention tend to be better. Further, the upper limit of the saponification degree of EVOH (Y) may be 100 mol%, and may be 99.97 mol% or 99.94 mol%. Further, the lower limit of the saponification degree of EVOH (Y) may be 70 mol% or 80 mol% from the viewpoint of enhancing the molding processability, and the upper limit of the saponification degree of EVOH (Y) is. From the viewpoint of enhancing the moldability, it may be 98 mol%.
 EVOH(Y)は、本発明の目的が阻害されない範囲で、上記バイオマス由来EVOHに記載されるエチレン、ビニルエステル及びそのケン化物以外の単量体単位(構造単位)を有していてもよい。EVOH(Y)の融点を下げ、本発明のガスバリア樹脂組成物の成形加工性を高める観点から、EVOH(Y)が、他の単量体単位(構造単位)を有していることが好ましい場合がある。EVOH(Y)が他の単量体単位を含む場合、EVOH(Y)の全構造単位に対する含有量の下限は、0.1モル%が好ましく、0.3モル%がより好ましい。また、上記含有量の上限は、15モル%が好ましく、10モル%がより好ましい。他の単量体単位(構造単位)としては、特に限定されないが、上記式(I)に記載の構造単位であることが好ましく、上記式(II)、式(III)または式(IV)の構造単位であることがより好ましく、上記式(IV)であることがさらに好ましい。EVOH(Y)が、上記他の単量体単位(構造単位)を含むことで、成形加工性が優れる傾向となる。 EVOH (Y) may have a monomer unit (structural unit) other than ethylene, vinyl ester and its saponified product described in the above-mentioned biomass-derived EVOH, as long as the object of the present invention is not impaired. When it is preferable that EVOH (Y) has another monomer unit (structural unit) from the viewpoint of lowering the melting point of EVOH (Y) and enhancing the molding processability of the gas barrier resin composition of the present invention. There is. When EVOH (Y) contains other monomer units, the lower limit of the content of EVOH (Y) with respect to all structural units is preferably 0.1 mol%, more preferably 0.3 mol%. The upper limit of the content is preferably 15 mol%, more preferably 10 mol%. The other monomer unit (structural unit) is not particularly limited, but is preferably the structural unit described in the above formula (I), and is of the above formula (II), formula (III) or formula (IV). It is more preferably a structural unit, and further preferably the above formula (IV). When EVOH (Y) contains the above-mentioned other monomer unit (structural unit), the molding processability tends to be excellent.
 EVOH(Y)とEVOH(X)とのエチレン単位含有量差(Y-X)は5モル%以上が好ましく、7モル%以上がより好ましく、10モル%以上がさらに好ましい。また、上記エチレン単位含有量差(Y-X)は25モル%以下であってもよい。上記エチレン単位含有量差(Y-X)が上記範囲であると、良好なガスバリア性を示しつつ成形性が良好となる傾向となる。 The ethylene unit content difference (YX) between EVOH (Y) and EVOH (X) is preferably 5 mol% or more, more preferably 7 mol% or more, still more preferably 10 mol% or more. Further, the ethylene unit content difference (YX) may be 25 mol% or less. When the ethylene unit content difference (YX) is in the above range, the moldability tends to be good while showing a good gas barrier property.
 EVOH(X)とEVOH(Y)との融点差(X-Y)は15℃以上が好ましく、18℃以上がより好ましい。上記融点差(X-Y)は100℃以下であってもよく、50℃以下であってもよい。上記融点差(X-Y)が上記範囲であると、良好なガスバリア性を示しつつ成形加工性が良好となる傾向となる。 The melting point difference (XY) between EVOH (X) and EVOH (Y) is preferably 15 ° C. or higher, more preferably 18 ° C. or higher. The melting point difference (XY) may be 100 ° C. or lower, or 50 ° C. or lower. When the melting point difference (XY) is in the above range, the molding processability tends to be good while showing a good gas barrier property.
 EVOH(X)とEVOH(Y)との質量比(X/Y)は、60/40以上が好ましく、65/35以上がより好ましい。また、上記質量比(X/Y)は95/5以下が好ましく、90/10以下がより好ましい。上記質量比(X/Y)が上記範囲であると良好なガスバリア性を示しつつ成形加工性が良好となる傾向となる。 The mass ratio (X / Y) of EVOH (X) to EVOH (Y) is preferably 60/40 or more, and more preferably 65/35 or more. The mass ratio (X / Y) is preferably 95/5 or less, more preferably 90/10 or less. When the mass ratio (X / Y) is in the above range, the molding processability tends to be good while showing a good gas barrier property.
(EVOH(Z))
 本発明のガスバリア樹脂組成物は、EVOH(Y)よりも融点が低いEVOH(Z)を含んでいてもよい。当該ガスバリア樹脂組成物がEVOH(Z)を含むと、優れた成形加工性を示す傾向となる。EVOH(Z)の好適な態様は、EVOH(Y)よりも融点が低いことを除き、EVOH(Y)と同様である。
(EVOH (Z))
The gas barrier resin composition of the present invention may contain EVOH (Z) having a melting point lower than EVOH (Y). When the gas barrier resin composition contains EVOH (Z), it tends to exhibit excellent molding processability. A preferred embodiment of EVOH (Z) is similar to EVOH (Y), except that it has a lower melting point than EVOH (Y).
 JIS K7210:1999に準拠して測定した、バイオマス由来EVOHの190℃、2160g荷重におけるメルトフローレート(MFR)の下限は、0.1g/10分が好ましく、0.5g/10分がより好ましく、1.0g/10分がさらに好ましい。一方、バイオマス由来EVOHのMFRの上限は、30g/10分が好ましく、20g/10分がより好ましく、15g/10分がさらに好ましい。バイオマス由来EVOHの190℃、2160g荷重におけるMFRが上記範囲であると、成形加工性が高まる傾向となる。 The lower limit of the melt flow rate (MFR) of biomass-derived EVOH measured in accordance with JIS K7210: 1999 at 190 ° C. and a load of 2160 g is preferably 0.1 g / 10 minutes, more preferably 0.5 g / 10 minutes. 1.0 g / 10 minutes is more preferable. On the other hand, the upper limit of the MFR of biomass-derived EVOH is preferably 30 g / 10 minutes, more preferably 20 g / 10 minutes, and even more preferably 15 g / 10 minutes. When the MFR of biomass-derived EVOH at 190 ° C. and a load of 2160 g is within the above range, the molding processability tends to increase.
 バイオマス由来EVOHの融点の下限は135℃が好ましく、150℃がより好ましく、155℃がさらに好ましい。バイオマス由来EVOHの融点が135℃以上であると、ガスバリア性に優れる傾向となる。またバイオマス由来EVOHの融点の上限は200℃が好ましく、190℃がより好ましく、185℃がさらに好ましい。バイオマス由来EVOHの融点が200℃以下であると、成形加工性が高まる傾向となる。 The lower limit of the melting point of biomass-derived EVOH is preferably 135 ° C, more preferably 150 ° C, and even more preferably 155 ° C. When the melting point of biomass-derived EVOH is 135 ° C. or higher, the gas barrier property tends to be excellent. The upper limit of the melting point of the biomass-derived EVOH is preferably 200 ° C, more preferably 190 ° C, and even more preferably 185 ° C. When the melting point of biomass-derived EVOH is 200 ° C. or lower, the molding processability tends to increase.
 本発明のガスバリア樹脂組成物を構成する全ての樹脂におけるバイオマス由来EVOHが占める割合の下限は、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましく、98質量%が特に好ましく、99質量%であってもよく、本発明のガスバリア樹脂組成物を構成する樹脂は、実質的にバイオマス由来EVOHのみであってもよく、バイオマス由来EVOHのみであってもよい。また、本発明のガスバリア樹脂組成物におけるバイオマス由来EVOHが占める割合の下限は、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましく、98質量%が特に好ましく、99質量%であってもよく、本発明のガスバリア樹脂組成物は実質的にバイオマス由来EVOHのみから構成されていてもよい。 The lower limit of the proportion of biomass-derived EVOH in all the resins constituting the gas barrier resin composition of the present invention is preferably 80% by mass, more preferably 90% by mass, further preferably 95% by mass, and particularly preferably 98% by mass. , 99% by mass, and the resin constituting the gas barrier resin composition of the present invention may be substantially only biomass-derived EVOH or may be only biomass-derived EVOH. The lower limit of the proportion of biomass-derived EVOH in the gas barrier resin composition of the present invention is preferably 80% by mass, more preferably 90% by mass, further preferably 95% by mass, particularly preferably 98% by mass, and 99% by mass. The gas barrier resin composition of the present invention may be substantially composed of only biomass-derived EVOH.
 本発明のガスバリア樹脂組成物は、硫黄化合物を硫黄原子換算で0ppm超100ppm含んでいることが、自社製品を追跡する観点からより好ましい。また、硫黄原子換算で100ppm以下の硫黄化合物は、ガスバリア樹脂組成物の性能に実質的に影響を与えないことを発明者らは知見しており、硫黄化合物はトレーサー物質として好適である。硫黄化合物の含有量の上限は50ppmがより好ましく、5ppmがさらに好ましく、3ppmがよりさらに好ましく、1.5ppmが特に好ましい。硫黄化合物の含有量の下限は、0.0001ppmであっても、0.001ppmであっても、0.01ppmであっても、0.05ppmであっても、0.1ppmであってもよい。バイオマス由来の原料を用いた場合、バイオマス原料に含まれる有機系硫黄化合物を含むEVOHが得られることがある。一方、化石燃料由来のEVOHは、ナフサのクラッキング時に脱硫していることから、バイオマス由来のEVOHに比して硫黄化合物が少なくなる。そのため、このようなバイオマス由来のEVOHを用いた場合、硫黄化合物の含有量を比較することでバイオマス由来のEVOHの追跡がより容易となる。特に、本発明のガスバリア樹脂組成物が、硫黄化合物として、有機系硫黄化合物、中でもジメチルスルフィドまたはジメチルスルホキシドを含むとき、さらに追跡が容易となる。また、自社製品を追跡する観点などからは、EVOHの製造の際に、原料となるバイオマス由来のエチレン及びバイオマス由来のビニルエステル、並びに得られるEVOHに対して、硫黄化合物の含有量が検出限界値以下となるような過剰な精製を行わないことが好ましい場合がある。 It is more preferable that the gas barrier resin composition of the present invention contains a sulfur compound in an amount of more than 0 ppm and 100 ppm in terms of sulfur atom from the viewpoint of tracking the company's product. Further, the inventors have found that a sulfur compound having a sulfur atom equivalent of 100 ppm or less does not substantially affect the performance of the gas barrier resin composition, and the sulfur compound is suitable as a tracer substance. The upper limit of the content of the sulfur compound is more preferably 50 ppm, further preferably 5 ppm, still more preferably 3 ppm, and particularly preferably 1.5 ppm. The lower limit of the content of the sulfur compound may be 0.0001 ppm, 0.001 ppm, 0.01 ppm, 0.05 ppm, or 0.1 ppm. When a raw material derived from biomass is used, EVOH containing an organic sulfur compound contained in the raw material of biomass may be obtained. On the other hand, since EVOH derived from fossil fuel is desulfurized during cracking of naphtha, the amount of sulfur compound is smaller than that of EVOH derived from biomass. Therefore, when such biomass-derived EVOH is used, it becomes easier to trace the biomass-derived EVOH by comparing the contents of the sulfur compounds. In particular, when the gas barrier resin composition of the present invention contains an organic sulfur compound as a sulfur compound, particularly dimethyl sulfide or dimethyl sulfoxide, tracking becomes easier. In addition, from the viewpoint of tracking the company's products, the content of the sulfur compound is the detection limit value for the biomass-derived ethylene and biomass-derived vinyl ester as raw materials and the obtained EVOH during the production of EVOH. It may be preferable not to carry out excessive purification as described below.
(その他成分)
 本発明のガスバリア樹脂組成物はカルボン酸をさらに含有することが好ましい。本発明のガスバリア樹脂組成物がカルボン酸を含有すると、溶融成形性や高温下での着色耐性を改善できる。特に、ガスバリア樹脂組成物のpH緩衝能力が高まり、酸性物質や塩基性物質に対する着色耐性を改善できる場合がある点から、カルボン酸のpKaが3.5~5.5の範囲にあることがより好ましい。
(Other ingredients)
The gas barrier resin composition of the present invention preferably further contains a carboxylic acid. When the gas barrier resin composition of the present invention contains a carboxylic acid, melt moldability and color resistance at high temperatures can be improved. In particular, the pH buffering capacity of the gas barrier resin composition is enhanced, and the coloring resistance to acidic substances and basic substances may be improved. Therefore, the pKa of the carboxylic acid is more preferably in the range of 3.5 to 5.5. preferable.
 本発明のガスバリア樹脂組成物がカルボン酸を含有する場合、その含有量の下限はカルボン酸根換算で30ppmが好ましく、100ppmがより好ましい。一方、カルボン酸の含有量の上限は1000ppmが好ましく、600ppmがより好ましい。カルボン酸の含有量が30ppm以上であると、高温による着色耐性が良好になる傾向となる。一方、カルボン酸の含有量が1000ppm以下であると、溶融成形性が良好となる傾向となる。カルボン酸の含有量は、樹脂組成物10gを純水50mlで95℃にて8時間抽出して得られる抽出液を滴定することで算出する。ここで、樹脂組成物中のカルボン酸の含有量として、上記抽出液中に存在するカルボン酸塩の含有量は考慮しない。また、カルボン酸はカルボン酸イオンとして存在していてもよい。 When the gas barrier resin composition of the present invention contains a carboxylic acid, the lower limit of the content is preferably 30 ppm, more preferably 100 ppm in terms of carboxylic acid root. On the other hand, the upper limit of the carboxylic acid content is preferably 1000 ppm, more preferably 600 ppm. When the content of the carboxylic acid is 30 ppm or more, the color resistance due to high temperature tends to be good. On the other hand, when the content of the carboxylic acid is 1000 ppm or less, the melt moldability tends to be good. The content of the carboxylic acid is calculated by titrating an extract obtained by extracting 10 g of the resin composition with 50 ml of pure water at 95 ° C. for 8 hours. Here, the content of the carboxylic acid salt present in the extract is not taken into consideration as the content of the carboxylic acid in the resin composition. Further, the carboxylic acid may exist as a carboxylic acid ion.
 カルボン酸としては、1価カルボン酸及び多価カルボン酸が挙げられ、これらは1種又は複数種からなっていてもよい。カルボン酸として1価カルボン酸と多価カルボン酸との両方を含む場合、ガスバリア樹脂組成物の溶融成形性や高温下での着色耐性をより改善できる場合がある。また、多価カルボン酸は、3個以上のカルボキシ基を有してもよい。この場合、本発明のガスバリア樹脂組成物の着色耐性をさらに向上できる場合がある。 Examples of the carboxylic acid include monovalent carboxylic acid and polyvalent carboxylic acid, which may be composed of one kind or a plurality of kinds. When both a monovalent carboxylic acid and a polyvalent carboxylic acid are contained as the carboxylic acid, the melt moldability of the gas barrier resin composition and the coloring resistance at high temperatures may be further improved. Further, the multivalent carboxylic acid may have three or more carboxy groups. In this case, the coloring resistance of the gas barrier resin composition of the present invention may be further improved.
 1価カルボン酸とは、分子内に1つのカルボキシ基を有する化合物である。1価のカルボン酸のpKaが3.5~5.5の範囲にあることが好ましい。このような1価カルボン酸としては、例えばギ酸(pKa=3.77)、酢酸(pKa=4.76)、プロピオン酸(pKa=4.85)、酪酸(pKa=4.82)、カプロン酸(pKa=4.88)、カプリン酸(pKa=4.90)、乳酸(pKa=3.86)、アクリル酸(pKa=4.25)、メタクリル酸(pKa=4.65)、安息香酸(pKa=4.20)、2-ナフトエ酸(pKa=4.17)が挙げられる。これらのカルボン酸は、pKaが3.5~5.5の範囲にある限り、水酸基、アミノ基、ハロゲン原子といった置換基を有してもよい。中でも、安全性が高く、取扱いが容易であることから酢酸が好ましい。 The monovalent carboxylic acid is a compound having one carboxy group in the molecule. The pKa of the monovalent carboxylic acid is preferably in the range of 3.5 to 5.5. Examples of such monovalent carboxylic acids include formic acid (pKa = 3.77), acetic acid (pKa = 4.76), propionic acid (pKa = 4.85), butyric acid (pKa = 4.82), and caproic acid. (PKa = 4.88), caproic acid (pKa = 4.90), lactic acid (pKa = 3.86), acrylic acid (pKa = 4.25), methacrylic acid (pKa = 4.65), benzoic acid (pKa = 4.65). Examples thereof include pKa = 4.20) and 2-naphthoic acid (pKa = 4.17). These carboxylic acids may have substituents such as hydroxyl groups, amino groups and halogen atoms as long as pKa is in the range of 3.5 to 5.5. Of these, acetic acid is preferable because it is highly safe and easy to handle.
 多価カルボン酸とは、分子内に2つ以上のカルボキシ基を有する化合物である。この場合、少なくとも1つのカルボキシ基のpKaが3.5~5.5の範囲にあることが好ましい。このような多価カルボン酸として、例えばシュウ酸(pKa2=4.27)、コハク酸(pKa1=4.20)、フマル酸(pKa2=4.44)、リンゴ酸(pKa2=5.13)、グルタル酸(pKa1=4.30、pKa2=5.40)、アジピン酸(pKa1=4.43、pKa2=5.41)、ピメリン酸(pKa1=4.71)、フタル酸(pKa2=5.41)、イソフタル酸(pKa2=4.46)、テレフタル酸(pKa1=3.51、pKa2=4.82)、クエン酸(pKa2=4.75)、酒石酸(pKa2=4.40)、グルタミン酸(pKa2=4.07)、アスパラギン酸(pKa=3.90)が挙げられる。 A polyvalent carboxylic acid is a compound having two or more carboxy groups in the molecule. In this case, the pKa of at least one carboxy group is preferably in the range of 3.5 to 5.5. Examples of such polyvalent carboxylic acids include oxalic acid (pKa2 = 4.27), succinic acid (pKa1 = 4.20), fumaric acid (pKa2 = 4.44), and malic acid (pKa2 = 5.13). Glutaric acid (pKa1 = 4.30, pKa2 = 5.40), adipic acid (pKa1 = 4.43, pKa2 = 5.41), pimelic acid (pKa1 = 4.71), phthalic acid (pKa2 = 5.41). ), Isophthalic acid (pKa2 = 4.46), terephthalic acid (pKa1 = 3.51, pKa2 = 4.82), succinic acid (pKa2 = 4.75), tartaric acid (pKa2 = 4.40), glutamate (pKa2). = 4.07), aspartic acid (pKa = 3.90), and the like.
 本発明のガスバリア樹脂組成物はリン酸化合物をさらに含有することが好ましい。本発明のガスバリア樹脂組成物がリン酸化合物を含有する場合、その含有量の下限はリン酸根換算で1ppmが好ましく、3ppmがより好ましい。一方、上記含有量の上限はリン酸根換算で200ppmが好ましく、100ppmがより好ましい。この範囲でリン酸化合物を含有すると、本発明のガスバリア樹脂組成物の熱安定性を改善できる場合がある。特に、長時間に亘って溶融成形を行う際のゲル状ブツの発生や着色を抑制できる場合がある。リン酸化合物としては、例えばリン酸、亜リン酸等の各種の酸やその塩等を用いることができる。リン酸塩は第1リン酸塩、第2リン酸塩、第3リン酸塩のいずれの形であってもよい。リン酸塩のカチオン種として、アルカリ金属、アルカリ土類金属が挙げられる。リン酸化合物として、具体的には、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸水素二ナトリウム、リン酸水素二カリウムの形でリン酸化合物が挙げられる。 The gas barrier resin composition of the present invention preferably further contains a phosphoric acid compound. When the gas barrier resin composition of the present invention contains a phosphoric acid compound, the lower limit of the content thereof is preferably 1 ppm in terms of phosphoric acid root, and more preferably 3 ppm. On the other hand, the upper limit of the content is preferably 200 ppm in terms of phosphoric acid root, and more preferably 100 ppm. If a phosphoric acid compound is contained in this range, the thermal stability of the gas barrier resin composition of the present invention may be improved. In particular, it may be possible to suppress the generation and coloring of gel-like lumps during melt molding for a long period of time. As the phosphoric acid compound, for example, various acids such as phosphoric acid and phosphoric acid and salts thereof can be used. The phosphate may be in the form of a first phosphate, a second phosphate, or a third phosphate. Examples of the cation species of phosphate include alkali metals and alkaline earth metals. Specific examples of the phosphoric acid compound include a phosphoric acid compound in the form of sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate, and dipotassium hydrogen phosphate.
 本発明のガスバリア樹脂組成物は、ホウ素化合物をさらに含有することが好ましい。本発明のガスバリア樹脂組成物がホウ素化合物を含有する場合、その含有量の下限はホウ素元子換算で5ppmが好ましく、100ppmがより好ましい。一方、上記含有量の上限はホウ素原子換算で5000ppmが好ましく、1000ppmがより好ましい。この範囲でホウ素化合物を含有すると、本発明のガスバリア樹脂組成物の溶融成形時の熱安定性を向上でき、ゲル状ブツの発生を抑制できる場合がある。また、得られる成形体の機械物性を向上できる場合もある。これらの効果は、EVOHとホウ素化合物との間にキレート相互作用が発生することに起因すると推測される。ホウ素化合物としては、例えばホウ酸、ホウ酸エステル、ホウ酸塩、水素化ホウ素が挙げられる。具体的には、ホウ酸としては、例えばオルトホウ酸(HBO)、メタホウ酸、四ホウ酸が挙げられ、ホウ酸エステルとしては、例えばホウ酸トリメチル、ホウ酸トリエチルが挙げられ、ホウ酸塩としては、例えば上記ホウ酸類のアルカリ金属塩、アルカリ土類金属塩、ホウ砂が挙げられる。 The gas barrier resin composition of the present invention preferably further contains a boron compound. When the gas barrier resin composition of the present invention contains a boron compound, the lower limit of the content thereof is preferably 5 ppm, more preferably 100 ppm in terms of boron element. On the other hand, the upper limit of the content is preferably 5000 ppm, more preferably 1000 ppm in terms of boron atom. If a boron compound is contained in this range, the thermal stability of the gas barrier resin composition of the present invention during melt molding can be improved, and the generation of gel-like lumps may be suppressed. In some cases, the mechanical properties of the obtained molded product can be improved. It is speculated that these effects are due to the chelate interaction between EVOH and the boron compound. Examples of the boron compound include boric acid, borate ester, borate, and boron borohydride. Specifically, examples of boric acid include orthoboric acid (H 3 BO 3 ), metaboric acid, and tetraboric acid, and examples of boric acid esters include, for example, trimethyl borate and triethyl borate, boric acid. Examples of the salt include the above-mentioned alkali metal salts of boric acid, alkaline earth metal salts, and boric acid.
 本発明のガスバリア樹脂組成物は、金属イオンをさらに含有することが好ましい。本発明のガスバリア樹脂組成物が金属イオンを含有すると、多層の成形体、すなわち多層構造体としたときの層間接着性が優れたものとなる。層間接着性が向上する理由は定かでないが、ガスバリア樹脂組成物からなる層と隣接する層中に、EVOHのヒドロキシ基と反応し得る官能基を有する分子が含まれる場合には、金属イオンによって両者の結合生成反応が加速されると考えられる。また、金属イオンと上記したカルボン酸との含有比率を制御すると、本発明のガスバリア樹脂組成物の溶融成形性や着色耐性も改善できる。 The gas barrier resin composition of the present invention preferably further contains metal ions. When the gas barrier resin composition of the present invention contains metal ions, the interlayer adhesiveness becomes excellent when a multi-layer molded body, that is, a multi-layer structure is formed. The reason for the improvement in interlayer adhesion is not clear, but if the layer adjacent to the layer made of the gas barrier resin composition contains a molecule having a functional group capable of reacting with the hydroxy group of EVOH, both of them are subjected to metal ions. It is considered that the bond formation reaction of is accelerated. Further, by controlling the content ratio of the metal ion and the above-mentioned carboxylic acid, the melt moldability and coloring resistance of the gas barrier resin composition of the present invention can be improved.
 本発明のガスバリア樹脂組成物が金属イオンを含有する場合、その含有量の下限は1ppmが好ましく、100ppmがより好ましく、150ppmがさらに好ましい。一方、金属イオンの含有量の上限は1000ppmが好ましく、400ppmがより好ましく、350ppmがさらに好ましい。金属イオンの含有量が1ppm以上であると、得られる多層構造体の層間接着性が良好となる傾向となる。一方、金属イオンの含有量が1000ppm以下であると、着色耐性が良好となる傾向となる。 When the gas barrier resin composition of the present invention contains metal ions, the lower limit of the content is preferably 1 ppm, more preferably 100 ppm, still more preferably 150 ppm. On the other hand, the upper limit of the metal ion content is preferably 1000 ppm, more preferably 400 ppm, still more preferably 350 ppm. When the content of the metal ion is 1 ppm or more, the interlayer adhesiveness of the obtained multilayer structure tends to be good. On the other hand, when the content of the metal ion is 1000 ppm or less, the coloring resistance tends to be good.
 金属イオンとしては、一価金属イオン、二価金属イオン、その他遷移金属イオンが挙げられ、これらは1種又は複数種からなっていてもよい。中でも一価金属イオン及び二価金属イオンが好ましい。 Examples of the metal ion include a monovalent metal ion, a divalent metal ion, and other transition metal ions, which may be composed of one or more kinds. Of these, monovalent metal ions and divalent metal ions are preferable.
 一価金属イオンとしては、アルカリ金属イオンが好ましく、例えばリチウム、ナトリウム、カリウム、ルビジウム及びセシウムのイオンが挙げられ、工業的な入手容易性の点からはナトリウム又はカリウムのイオンが好ましい。また、アルカリ金属イオンを与えるアルカリ金属塩としては、例えば脂肪族カルボン酸塩、芳香族カルボン酸塩、炭酸塩、塩酸塩、硝酸塩、硫酸塩、リン酸塩及び金属錯体が挙げられる。中でも、脂肪族カルボン酸塩及びリン酸塩が入手容易である点から好ましく、具体的には、酢酸ナトリウム、酢酸カリウム、リン酸ナトリウム及びリン酸カリウムが好ましい。 As the monovalent metal ion, an alkali metal ion is preferable, and examples thereof include lithium, sodium, potassium, rubidium and cesium ions, and sodium or potassium ion is preferable from the viewpoint of industrial availability. Examples of the alkali metal salt that gives alkali metal ions include aliphatic carboxylates, aromatic carboxylates, carbonates, hydrochlorides, nitrates, sulfates, phosphates and metal complexes. Of these, aliphatic carboxylates and phosphates are preferable because they are easily available, and specifically, sodium acetate, potassium acetate, sodium phosphate and potassium phosphate are preferable.
 金属イオンとして二価金属イオンを含むことが好ましい場合もある。金属イオンが二価金属イオンを含むと、例えばトリムを回収して再利用した際のEVOHの熱劣化が抑制され、得られる成形体のゲル及びブツの発生が抑制される場合がある。二価金属イオンとしては、例えばベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム及び亜鉛のイオンが挙げられるが、工業的な入手容易性の点からはマグネシウム、カルシウム又は亜鉛のイオンが好ましい。また、二価金属イオンを与える二価金属塩としては、例えばカルボン酸塩、炭酸塩、塩酸塩、硝酸塩、硫酸塩、リン酸塩及び金属錯体が挙げられカルボン酸塩が好ましい。カルボン酸塩を構成するカルボン酸としては、炭素数1~30のカルボン酸が好ましく、具体的には、酢酸、ステアリン酸、ラウリン酸、モンタン酸、ベヘン酸、オクチル酸、セバシン酸、リシノール酸、ミリスチン酸、パルミチン酸等が挙げられ、中でも、酢酸及びステアリン酸が好ましい。 It may be preferable to include divalent metal ions as metal ions. When the metal ion contains a divalent metal ion, for example, thermal deterioration of EVOH when the trim is recovered and reused is suppressed, and the generation of gel and lumps in the obtained molded product may be suppressed. Examples of the divalent metal ion include ions of beryllium, magnesium, calcium, strontium, barium and zinc, but magnesium, calcium or zinc ions are preferable from the viewpoint of industrial availability. Examples of the divalent metal salt that gives a divalent metal ion include a carboxylate, a carbonate, a hydrochloride, a nitrate, a sulfate, a phosphate and a metal complex, and a carboxylate is preferable. The carboxylic acid constituting the carboxylic acid salt is preferably a carboxylic acid having 1 to 30 carbon atoms, and specifically, acetic acid, stearic acid, lauric acid, montanic acid, behenic acid, octyl acid, sebacic acid, ricinolic acid, and the like. Examples thereof include myristic acid and palmitic acid, and acetic acid and stearic acid are preferable.
 本発明のガスバリア樹脂組成物は、本発明の効果を阻害しない範囲であれば、例えば、ブロッキング防止剤、加工助剤、EVOH以外の樹脂、安定剤、酸化防止剤、紫外線吸収剤、可塑剤、帯電防止剤、滑剤、着色剤、充填剤、界面活性剤、乾燥剤、酸素吸収剤、架橋剤、各種繊維などの補強剤などのその他成分を含有してもよい。 The gas barrier resin composition of the present invention is, for example, an antistatic agent, a processing aid, a resin other than EVOH, a stabilizer, an antioxidant, an ultraviolet absorber, a plasticizer, as long as the effect of the present invention is not impaired. Other components such as antistatic agents, lubricants, colorants, fillers, surfactants, desiccants, oxygen absorbers, cross-linking agents, and reinforcing agents such as various fibers may be contained.
 ブロッキング防止剤としては、ケイ素、アルミニウム、マグネシウム、ジルコニウム、セリウム、タングステン及びモリブデンなどから選ばれる元素の酸化物、窒化物、酸化窒化物等が挙げられ、これらの中でも入手容易性から酸化ケイ素が望ましい。本発明のガスバリア樹脂組成物がブロッキング防止剤を含むことで、耐ブロッキング性を高めることができる。 Examples of the blocking inhibitor include oxides, nitrides, and nitride oxides of elements selected from silicon, aluminum, magnesium, zirconium, cerium, tungsten, molybdenum, etc. Among these, silicon oxide is preferable because of its availability. .. When the gas barrier resin composition of the present invention contains a blocking inhibitor, blocking resistance can be enhanced.
 加工助剤としては、アルケマ社製Kynar(商標)、3M社製ダイナマー(商標)などのフッ素系加工助剤が挙げられる。本発明のガスバリア樹脂組成物が加工助剤を含むことで、ダイリップへの目やに付着を防止できる傾向となる。 Examples of the processing aid include fluorine-based processing aids such as Arkema's Kynar (trademark) and 3M's Dynamer (trademark). When the gas barrier resin composition of the present invention contains a processing aid, it tends to be able to prevent adhesion to the eyes and eyes of the die lip.
 EVOH以外の樹脂としては、例えば各種ポリオレフィン(ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテン、エチレン-プロピレン共重合体、エチレンと炭素数4以上のα-オレフィンとの共重合体、ポリオレフィンと無水マレイン酸との共重合体、エチレン-ビニルエステル共重合体、エチレン-アクリル酸エステル共重合体、又はこれらを不飽和カルボン酸もしくはその誘導体でグラフト変性した変性ポリオレフィン等)、各種ポリアミド(ナイロン6、ナイロン6・6、ナイロン6/66共重合体、ナイロン11、ナイロン12、ポリメタキシリレンアジパミド等)、各種ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリアクリロニトリル、ポリウレタン、ポリカーボネート、ポリアセタール、ポリアクリレート及び変性ポリビニルアルコール樹脂が挙げられる。 Resins other than EVOH include, for example, various polyolefins (polyethylene, polypropylene, poly1-butene, poly4-methyl-1-pentene, ethylene-propylene copolymer, and the common weight of ethylene and α-olefin having 4 or more carbon atoms. Combines, copolymers of polyolefins and maleic anhydride, ethylene-vinyl ester copolymers, ethylene-acrylic acid ester copolymers, or modified polyolefins graft-modified with unsaturated carboxylic acids or derivatives thereof, etc.), various types Polyamide (nylon 6, nylon 6.6, nylon 6/66 copolymer, nylon 11, nylon 12, polymethoxylylen adipamide, etc.), various polyesters (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc.), poly Examples thereof include vinyl chloride, polyvinylidene chloride, polystyrene, polyacrylonitrile, polyurethane, polycarbonate, polyacetal, polyacrylate and modified polyvinyl alcohol resin.
 溶融安定性等を改善するための安定剤としては、ハイドロタルサイト化合物、ヒンダードフェノール系、ヒンダードアミン系熱安定剤、高級脂肪族カルボン酸の金属塩(例えば、ステアリン酸カルシウム、ステアリン酸マグネシウム等)等が挙げられる。本発明のガスバリア樹脂組成物が安定剤を含む場合、その含有量は0.001~1質量%が好ましい。 Stabilizers for improving melt stability, etc. include hydrotalcite compounds, hindered phenol-based, hindered amine-based heat stabilizers, metal salts of higher aliphatic carboxylic acids (for example, calcium stearate, magnesium stearate, etc.) and the like. Can be mentioned. When the gas barrier resin composition of the present invention contains a stabilizer, the content thereof is preferably 0.001 to 1% by mass.
 酸化防止剤としては、2,5-ジ-t-ブチル-ハイドロキノン、2,6-ジ-t-ブチル-p-クレゾール、4,4’-チオビス-(6-t-ブチルフェノール)、2,2’-メチレン-ビス-(4-メチル-6-t-ブチルフェノール)、オクタデシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート、4,4’-チオビス-(6-t-ブチルフェノール)等が挙げられる。 Antioxidants include 2,5-di-t-butyl-hydroquinone, 2,6-di-t-butyl-p-cresol, 4,4'-thiobis- (6-t-butylphenol), 2,2. '-Methylene-bis- (4-methyl-6-t-butylphenol), octadecyl-3- (3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate, 4,4'-thiobis- (6-t-Butylphenol) and the like can be mentioned.
 紫外線吸収剤としては、エチレン-2-シアノ-3’,3’-ジフェニルアクリレート、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)5-クロロベンゾトリアゾール、2-ヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン等が挙げられる。 Examples of the ultraviolet absorber include ethylene-2-cyano-3', 3'-diphenylacrylate, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, and 2- (2'-hydroxy-3'-t. -Butyl-5'-methylphenyl) 5-chlorobenzotriazole, 2-hydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone and the like can be mentioned.
 可塑剤としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジオクチル、ワックス、流動パラフィン、リン酸エステル等が挙げられる。 Examples of the plasticizer include dimethyl phthalate, diethyl phthalate, dioctyl phthalate, wax, liquid paraffin, phosphate ester and the like.
 帯電防止剤としては、ペンタエリスリットモノステアレート、ソルビタンモノパルミテート、硫酸化ポリオレフィン類、ポリエチレンオキシド、カーボワックス等が挙げられる。 Examples of the antistatic agent include pentaerythritol monostearate, sorbitan monopalmitate, sulfated polyolefins, polyethylene oxide, carbowax and the like.
 滑剤としては、エチレンビスステアロアミド、ブチルステアレート等が挙げられる。 Examples of the lubricant include ethylene bisstearoamide and butyl stearate.
 着色剤としては、カーボンブラック、フタロシアニン、キナクリドン、インドリン、アゾ系顔料、ベンガラ等が挙げられる。 Examples of the colorant include carbon black, phthalocyanine, quinacridone, indoline, azo pigments, red iron oxide and the like.
 充填剤としては、グラスファイバー、アスベスト、バラストナイト、ケイ酸カルシウム等が挙げられる。 Examples of the filler include glass fiber, asbestos, ballastonite, calcium silicate and the like.
 乾燥剤としては、リン酸塩(上記リン酸塩を除く)、ホウ酸ナトリウム、硫酸ナトリウム等、塩化ナトリウム、硝酸ナトリウム、砂糖、シリカゲル、ベントナイト、モレキュラーシーブ、高吸水性樹脂等が挙げられる。 Examples of the desiccant include phosphate (excluding the above phosphate), sodium borate, sodium sulfate, sodium chloride, sodium nitrate, sugar, silica gel, bentonite, molecular sieve, highly water-absorbent resin and the like.
 本発明のガスバリア樹脂組成物の含水量は、成形加工時のボイドの発生を防ぐ観点から、バイオマス由来EVOHの合計100質量部に対して、3.0質量部以下が好ましく、1.0質量部以下がより好ましく、0.5質量部以下がさらに好ましく、0.3質量部以下が特に好ましい。 The water content of the gas barrier resin composition of the present invention is preferably 3.0 parts by mass or less, preferably 1.0 part by mass, based on 100 parts by mass of the total of biomass-derived EVOH from the viewpoint of preventing the generation of voids during molding. The following is more preferable, 0.5 parts by mass or less is further preferable, and 0.3 parts by mass or less is particularly preferable.
 本発明のガスバリア樹脂組成物は、バイオマス由来EVOHに起因する、バイオマス由来の不純物を含有する場合がある。様々な不純物を含有する可能性があるが、少なくとも鉄及びニッケル等の金属が多く含まれる場合が多い傾向にある。 The gas barrier resin composition of the present invention may contain impurities derived from biomass caused by EVOH derived from biomass. It may contain various impurities, but it tends to contain at least a large amount of metals such as iron and nickel.
(ガスバリア樹脂組成物のバイオベース度)
 本発明のガスバリア樹脂組成物のバイオベース度は、99%超であることが好ましく、99.5%超であることがより好ましく、100%であってもよい。なお、このガスバリア樹脂組成物のバイオベース度とは、EVOH以外の任意成分に含まれる他の樹脂等も考慮して測定される値をいう。本発明のガスバリア樹脂組成物のバイオベース度が上記範囲にあると、環境負荷が極めて低いため、好ましい。
(Biobase degree of gas barrier resin composition)
The biobase degree of the gas barrier resin composition of the present invention is preferably more than 99%, more preferably more than 99.5%, and may be 100%. The biobase degree of this gas barrier resin composition means a value measured in consideration of other resins and the like contained in arbitrary components other than EVOH. When the biobase degree of the gas barrier resin composition of the present invention is within the above range, the environmental load is extremely low, which is preferable.
 本発明のガスバリア樹脂組成物について、上記その他の成分を含ませる方法は特に限定されないが、バイオマス由来EVOHにその他の成分及び添加剤を溶融混練することにより製造できる。各成分は、粉末等固体状態のまま、又は溶融物として配合してもよく、溶液に含まれる溶質又は分散液に含まれる分散質として配合してもよい。溶液及び分散液としては、それぞれ水溶液及び水分散液が好適である。溶融混練は、例えばニーダールーダー、押出機、ミキシングロール、バンバリーミキサー等の既知の混合装置又は混練装置を用いることができる。溶融混練時の温度範囲は、使用するバイオマス由来EVOHや各成分の融点等に応じて適宜調節でき、通常、150~250℃が採用される。また、いくつかの成分をバイオマス由来EVOHに予め添加した上で、追加で必要な他の成分を上記のように溶融混練することで製造してもよい。いくつかの成分をバイオマス由来EVOHに予め添加する方法としては、添加成分が溶解している溶液にバイオマス由来EVOHをペレット又は粉末として浸漬する方法が例示できる。溶液としては、水溶液が好適である。 The method for incorporating the above-mentioned other components into the gas barrier resin composition of the present invention is not particularly limited, but it can be produced by melt-kneading other components and additives with biomass-derived EVOH. Each component may be blended in a solid state such as powder or as a melt, or may be blended as a solute contained in a solution or a dispersoid contained in a dispersion liquid. As the solution and the dispersion liquid, an aqueous solution and an aqueous dispersion liquid are suitable, respectively. For melt-kneading, a known mixing device or kneading device such as a kneader ruder, an extruder, a mixing roll, and a Banbury mixer can be used. The temperature range at the time of melt-kneading can be appropriately adjusted according to the biomass-derived EVOH used, the melting point of each component, and the like, and usually 150 to 250 ° C. is adopted. Further, some components may be added to the biomass-derived EVOH in advance, and then other necessary components may be melt-kneaded as described above to produce the product. As a method of pre-adding some components to biomass-derived EVOH, a method of immersing biomass-derived EVOH as pellets or powder in a solution in which the added components are dissolved can be exemplified. As the solution, an aqueous solution is suitable.
<成形体>
 本発明のガスバリア樹脂組成物から形成される層(以下、「ガスバリア樹脂組成物層」ともいう。)を備える成形体は、本発明の好適な一実施態様である。本発明のガスバリア樹脂組成物は、単層構造の成形体とすることもできるし、さらに熱可塑性樹脂層を備える成形体(積層体)であってもよい。熱可塑性樹脂層とは、熱可塑性樹脂を主成分とする層をいう。さらに、本発明の成形体は、接着性樹脂層(接着層)を備えていてもよい。接着性樹脂層とは、接着性樹脂、アンカーコーティング剤又は接着剤を主成分とする層をいう。ここで、「主成分」とは、その成分が占める割合が50質量%超であることを意味し、90質量%以上であることが好ましい。本発明の成形体は、さらにその他の層を備えていてもよい。
<Molded body>
A molded product provided with a layer formed from the gas barrier resin composition of the present invention (hereinafter, also referred to as “gas barrier resin composition layer”) is a preferred embodiment of the present invention. The gas barrier resin composition of the present invention may be a molded product having a single-layer structure, or may be a molded product (laminated product) having a thermoplastic resin layer. The thermoplastic resin layer is a layer containing a thermoplastic resin as a main component. Further, the molded product of the present invention may include an adhesive resin layer (adhesive layer). The adhesive resin layer means a layer containing an adhesive resin, an anchor coating agent, or an adhesive as a main component. Here, the "main component" means that the proportion of the component is more than 50% by mass, and is preferably 90% by mass or more. The molded product of the present invention may further include other layers.
 このように本発明の成形体は、多層構造体(積層体)とすることもできる。本発明の成形体の層数の下限としては、1であってよいが、2が好ましく、3がより好ましい。また、当該成形体の層数の上限としては、例えば1000であってよく、100であってもよく、20又は10であってもよい。当該成形体は、環境負荷が低く、良好なガスバリア性、外観、成形加工性等を有する。本発明のガスバリア樹脂組成物を用いた成形体の用途は多岐に亘り、例えばフィルム、シート、容器、ボトル、タンク、パイプ、ホース等が挙げられる。 As described above, the molded body of the present invention can also be a multi-layer structure (laminated body). The lower limit of the number of layers of the molded product of the present invention may be 1, but 2 is preferable, and 3 is more preferable. The upper limit of the number of layers of the molded product may be, for example, 1000, 100, 20 or 10. The molded product has a low environmental load and has good gas barrier properties, appearance, molding processability, and the like. The molded product using the gas barrier resin composition of the present invention has various uses, and examples thereof include films, sheets, containers, bottles, tanks, pipes, hoses and the like.
 具体的な成形方法として、例えばフィルム、シート、パイプ、ホースは押出成形により、容器形状は射出成形により、ボトルやタンク等の中空容器は中空成形や回転成形により成形できる。中空成形としては、押出成形によりパリソンを成形し、これをブローして成形を行う押出中空成形と、射出成形によりプリフォームを成形し、これをブローして成形を行う射出中空成形が挙げられる。フレキシブル包装材や容器の製造には、押出成形によって多層フィルム等の包装材を成形する方法、押出成形によって成形した多層シートを熱成形して容器状の包装材にする方法が好適に用いられる。 As a specific molding method, for example, films, sheets, pipes and hoses can be molded by extrusion molding, container shapes can be molded by injection molding, and hollow containers such as bottles and tanks can be molded by hollow molding or rotary molding. Examples of the hollow molding include extrusion hollow molding in which a parison is formed by extrusion molding and then blown to form the preform, and injection hollow molding in which a preform is formed by injection molding and then blown to form the preform. For the production of flexible packaging materials and containers, a method of forming a packaging material such as a multilayer film by extrusion molding and a method of thermoforming a multilayer sheet formed by extrusion molding into a container-shaped packaging material are preferably used.
 上記多層構造体は、ガスバリア樹脂組成物層を少なくとも1層備え、熱可塑性樹脂層をさらに備える多層構造体である。当該多層構造体は、通常、ガスバリア樹脂組成物層と他の層(熱可塑性樹脂層)とを積層して得られる。当該多層構造体の層構成としては、本発明のガスバリア樹脂組成物以外の樹脂からなる層をx層、ガスバリア樹脂組成物層をy層、接着性樹脂層をz層とすると、例えばx/y、x/y/x、x/z/y、x/z/y/z/x、x/y/x/y/x、x/z/y/z/x/z/y/z/x等が挙げられる。複数のx層、y層、z層を設ける場合は、その種類は同じでも異なってもよい。また、成形時に発生するトリム等のスクラップからなる回収樹脂を用いた層を別途設けてよいし、回収樹脂を他の樹脂からなる層に混合してもよい。多層構造体の各層の厚さ構成は、成形性及びコスト等の観点から、全層厚さに対するy層の厚さ比が通常2~20%である。 The multilayer structure is a multilayer structure including at least one gas barrier resin composition layer and further including a thermoplastic resin layer. The multilayer structure is usually obtained by laminating a gas barrier resin composition layer and another layer (thermoplastic resin layer). As the layer structure of the multilayer structure, for example, if the layer made of a resin other than the gas barrier resin composition of the present invention is an x layer, the gas barrier resin composition layer is a y layer, and the adhesive resin layer is a z layer, for example, x / y. , X / y / x, x / z / y, x / z / y / z / x, x / y / x / y / x, x / z / y / z / x / z / y / z / x And so on. When a plurality of x-layers, y-layers, and z-layers are provided, the types may be the same or different. Further, a layer using a recovery resin made of scrap such as trim generated during molding may be separately provided, or the recovery resin may be mixed with a layer made of another resin. In the thickness structure of each layer of the multilayer structure, the thickness ratio of the y layer to the total layer thickness is usually 2 to 20% from the viewpoint of moldability and cost.
 上記x層に使用される樹脂としては、加工性等の観点から熱可塑性樹脂が好ましい。熱可塑性樹脂としては、例えば各種ポリオレフィン(ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテン、エチレン-プロピレン共重合体、エチレンと炭素数4以上のα-オレフィンとの共重合体、ポリオレフィンと無水マレイン酸との共重合体、エチレン-ビニルエステル共重合体、エチレン-アクリル酸エステル共重合体、又はこれらを不飽和カルボン酸もしくはその誘導体でグラフト変性した変性ポリオレフィン等)、各種ポリアミド(ナイロン6、ナイロン6・6、ナイロン6/66共重合体、ナイロン11、ナイロン12、ポリメタキシリレンアジパミド等)、各種ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリアクリロニトリル、ポリウレタン、ポリカーボネート、ポリアセタール、ポリアクリレート及び変性ポリビニルアルコール樹脂が挙げられる。かかる熱可塑性樹脂層は無延伸のものであってもよく、一軸又は二軸に延伸又は圧延されていてもよい。中でも、ポリオレフィンは耐湿性、機械的特性、経済性、ヒートシール性の点で、また、ポリアミドやポリエステルは機械的特性、耐熱性の点で好ましい。 As the resin used for the x layer, a thermoplastic resin is preferable from the viewpoint of workability and the like. Examples of the thermoplastic resin include various polyolefins (polyethylene, polypropylene, poly1-butene, poly4-methyl-1-pentene, ethylene-propylene copolymer, and a copolymer of ethylene and α-olefin having 4 or more carbon atoms. , Polypolymer of polyolefin and maleic anhydride, ethylene-vinyl ester copolymer, ethylene-acrylic acid ester copolymer, or modified polyolefin obtained by graft-modifying these with unsaturated carboxylic acid or a derivative thereof), various polyamides (Nylon 6, Nylon 6.6, Nylon 6/66 copolymer, Nylon 11, Nylon 12, Polymethoxylylen adipamide, etc.), Various polyesters (Polyethylene terephthalate, Polybutylene terephthalate, Polyethylene naphthalate, etc.), Polychloride Examples thereof include vinyl, polyvinylidene chloride, polystyrene, polyacrylonitrile, polyurethane, polycarbonate, polyacetal, polyacrylate and modified polyvinyl alcohol resin. The thermoplastic resin layer may be unstretched, or may be uniaxially or biaxially stretched or rolled. Among them, polyolefin is preferable in terms of moisture resistance, mechanical properties, economy and heat sealability, and polyamide and polyester are preferable in terms of mechanical properties and heat resistance.
 上記z層に使用される接着性樹脂は、接着性を有する樹脂であり、接着性を有する熱可塑性樹脂であることが好ましい。接着性樹脂としては、例えばカルボン酸変性ポリオレフィンが好適である。ここで、カルボン酸変性ポリオレフィンとは、不飽和カルボン酸又はその無水物(無水マレイン酸等)を共重合成分として含むポリオレフィン系共重合体;又は不飽和カルボン酸又はその無水物をポリオレフィンにグラフトさせて得られるグラフト共重合体を意味する。 The adhesive resin used for the z layer is a resin having adhesiveness, and is preferably a thermoplastic resin having adhesiveness. As the adhesive resin, for example, a carboxylic acid-modified polyolefin is suitable. Here, the carboxylic acid-modified polyolefin is a polyolefin-based copolymer containing an unsaturated carboxylic acid or an anhydride thereof (maleic anhydride or the like) as a copolymerization component; or an unsaturated carboxylic acid or an anhydride thereof is grafted onto the polyolefin. Means the graft copolymer obtained in the above.
 上記z層には、接着剤、アンカーコーティング剤等を用いることもできる。アンカーコーティング剤及び接着剤は、樹脂であってもよく、低分子化合物等、樹脂以外であってもよく、複数の成分からなるものであってもよい。これらを塗布及び必要に応じて乾燥することで、z層を形成することができる。塗布の前に塗布面にコロナ放電処理等の表面処理を行うことによって、接着性を高めることができる場合がある。接着剤としては、特に限定されず、例えば、ポリイソシアネート成分とポリオール成分とを混合し反応させる二液反応型ポリウレタン系接着剤を用いることが好ましい。また、公知のシランカップリング剤などを少量添加することで、さらに接着性を高めることができる場合がある。シランカップリング剤の好適な例としては、イソシアネート基、エポキシ基、アミノ基、ウレイド基、メルカプト基などの反応性基を有するシランカップリング剤を挙げることができる。 An adhesive, an anchor coating agent, or the like can also be used for the z layer. The anchor coating agent and the adhesive may be a resin, may be a non-resin such as a small molecule compound, or may be composed of a plurality of components. The z layer can be formed by applying these and drying them if necessary. Adhesiveness may be improved by performing surface treatment such as corona discharge treatment on the coated surface before coating. The adhesive is not particularly limited, and for example, it is preferable to use a two-component reaction type polyurethane adhesive in which a polyisocyanate component and a polyol component are mixed and reacted. Further, the adhesiveness may be further enhanced by adding a small amount of a known silane coupling agent or the like. Preferable examples of the silane coupling agent include a silane coupling agent having a reactive group such as an isocyanate group, an epoxy group, an amino group, a ureido group and a mercapto group.
 上記多層構造体は、さらに紙基材層を有していてもよい。紙基材層に使用される紙基材としては、紙容器の用途に応じて、種々の賦型性、耐屈曲性、剛性、腰、強度等を有する任意の紙を使用することができ、例えば、主強度材であり、強サイズ性の晒または未晒の紙、あるいは、純白ロール紙、クラフト紙、板紙、加工紙、またはミルク原紙等の各種の紙を使用することができる。紙基材層は、これらの紙を複数層重ねてラミネートしたものであってもよい。紙基材層は、坪量80~600g/m、好ましくは坪量100~450g/mであり、厚さ110~860μm、好ましくは140~640μmの範囲である。紙基材層の厚さが上記範囲より薄いと、容器としての強度が不足し、また、紙基材層の厚さが上記範囲より厚いと、剛性が高くなりすぎて、加工が困難になり得る。なお、紙基材層には、例えば、文字、図形、記号、その他の所望の絵柄を通常の印刷方式にて任意に形成することができる。 The multilayer structure may further have a paper base material layer. As the paper base material used for the paper base material layer, any paper having various types, bending resistance, rigidity, waist, strength, etc. can be used depending on the use of the paper container. For example, it is a main strength material, and bleached or unbleached paper having a strong size property, or various types of paper such as pure white roll paper, kraft paper, paperboard, processed paper, or milk base paper can be used. The paper base material layer may be a laminate of a plurality of these paper layers. The paper substrate layer has a basis weight of 80 to 600 g / m 2 , preferably a basis weight of 100 to 450 g / m 2 , and a thickness of 110 to 860 μm, preferably 140 to 640 μm. If the thickness of the paper base layer is thinner than the above range, the strength as a container is insufficient, and if the thickness of the paper base layer is thicker than the above range, the rigidity becomes too high and processing becomes difficult. obtain. In addition, for example, characters, figures, symbols, and other desired patterns can be arbitrarily formed on the paper base material layer by a normal printing method.
 多層構造体を得る方法としては、例えば共押出成形、共押出中空成形、共射出成形、押出ラミネート、共押出ラミネート、ドライラミネート、溶液コート等が挙げられる。なお、このような方法で得られた多層構造体に対して、さらに真空圧空深絞成形、ブロー成形、プレス成形等の方法により、再加熱後に二次加工成形を行い、目的とする成形体構造にしてよい。また、多層構造体に対して、ロール延伸法、パンタグラフ延伸法、インフレーション延伸法等の方法により、EVOHの融点以下の範囲で再加熱後に一軸又は二軸延伸して、延伸された多層構造体を得ることもできる。後述するフィルムまたはシート、包装材、産業用フィルムまたはシート、熱成形容器、カップ状容器、トレイ状容器、ブロー成形容器、燃料容器、ボトル容器、チューブ、多層パイプ及び紙容器を製造する方法も、本発明の成形体の製造方法の形態に含まれる。 Examples of the method for obtaining a multi-layer structure include co-extrusion molding, co-extrusion hollow molding, co-injection molding, extrusion laminating, co-extrusion laminating, dry laminating, solution coating and the like. The multilayer structure obtained by such a method is further subjected to secondary processing molding after reheating by a method such as vacuum compressed air deep drawing molding, blow molding, press molding, etc., and the target molded body structure is performed. May be. Further, the multilayer structure is stretched by uniaxial or biaxial stretching after reheating within the range below the melting point of EVOH by a roll stretching method, a pantograph stretching method, an inflation stretching method, or the like. You can also get it. Methods for manufacturing films or sheets, packaging materials, industrial films or sheets, heat-molded containers, cup-shaped containers, tray-shaped containers, blow-molded containers, fuel containers, bottle containers, tubes, multi-layer pipes and paper containers, which will be described later, are also available. It is included in the form of the method for producing a molded product of the present invention.
 本発明のガスバリア樹脂組成物を用いた単層又は多層の成形体としては、容器(袋、カップ、チューブ、トレー、ボトル等)、燃料容器、パイプ、繊維、飲食品用包装材、容器用パッキング材、医療用輸液バッグ材、タイヤ用チューブ材、靴用クッション材、バッグインボックス用内袋材、有機液体貯蔵用タンク材、有機液体輸送用パイプ材、暖房用温水パイプ材(床暖房用温水パイプ材等)、化粧品用包装材、デンタルケア用包装材、医薬品用包装材、包材用子部品(キャップ、バッグインボックスのコック部分など)、農薬ボトル、農業用フィルム(温室用フィルム、土壌燻蒸用フィルム)、穀物保管用袋、ジオメンブレン、真空断熱板外袋、壁紙又は化粧板、水素、酸素等のガスタンク等を挙げることができる。以下に、その例の一部を具体的に説明する。 As a single-layer or multi-layer molded body using the gas barrier resin composition of the present invention, containers (bags, cups, tubes, trays, bottles, etc.), fuel containers, pipes, fibers, food and drink packaging materials, container packings, etc. Materials, medical infusion bag materials, tire tube materials, shoe cushion materials, bag-in-box inner bag materials, organic liquid storage tank materials, organic liquid transport pipe materials, hot water pipe materials for heating (hot water for floor heating) (Pipe materials, etc.), cosmetic packaging materials, dental care packaging materials, pharmaceutical packaging materials, packaging material child parts (caps, bag-in-box cock parts, etc.), pesticide bottles, agricultural films (greenhouse films, soil) (Smoking film), grain storage bag, geomembrane, vacuum insulation board outer bag, wallpaper or decorative board, gas tank for hydrogen, oxygen, etc. can be mentioned. A part of the example will be specifically described below.
<フィルムまたはシート>
 本発明のフィルムまたはシートは、本発明の成形体を備える。フィルムとは、「平均厚みが250μm未満の膜状の軟質性のもの」をいい、シートとは「平均厚みが250μm以上の薄い板状の軟質性のもの」をいう。産業用「フィルムまたはシート」におけるフィルムとシートとの区別においても同様である。以下、「フィルムまたはシート」を「フィルム等」とも称する。本発明のフィルム等は、本発明の成形体からなるフィルム等であってよい。すなわち、本発明の成形体の一実施形態は、フィルム等であってよい。本発明のフィルム等は環境負荷が低く、ガスバリア性、外観及び成形加工性も良好である。本発明のフィルム等は、ガスバリア樹脂組成物層のみからなる単層フィルムであってもよく、多層フィルムであってもよい。本発明のフィルム等の平均厚みは、例えば1μm以上300μm未満であることが好ましく、5μm以上100μm未満であることがより好ましい。本発明のフィルム等は、各種包装材などとして好適に用いることができる。
<Film or sheet>
The film or sheet of the present invention comprises a molded product of the present invention. The film means "a film-like soft film having an average thickness of less than 250 μm", and the sheet means "a thin plate-like soft film having an average thickness of 250 μm or more". The same applies to the distinction between film and sheet in industrial "film or sheet". Hereinafter, "film or sheet" is also referred to as "film or the like". The film or the like of the present invention may be a film or the like made of the molded product of the present invention. That is, one embodiment of the molded product of the present invention may be a film or the like. The film or the like of the present invention has a low environmental load, and has good gas barrier properties, appearance, and molding processability. The film or the like of the present invention may be a single-layer film composed of only the gas barrier resin composition layer, or may be a multilayer film. The average thickness of the film or the like of the present invention is preferably, for example, 1 μm or more and less than 300 μm, and more preferably 5 μm or more and less than 100 μm. The film or the like of the present invention can be suitably used as various packaging materials and the like.
 本発明のフィルム等の、JIS B0601に準拠して測定される少なくとも一方の表面の算術平均粗さ(Ra)は1.0μm以下が好ましく、0.8μm以下がより好ましく、0.6μm以下がさらに好ましく、0.4μm以下が特に好ましい。本発明のフィルム等の、少なくとも一方の表面の算術平均粗さ(Ra)は0.05μm以上が好ましく、0.10μm以上がより好ましく、0.15μm以上がさらに好ましく、0.20μm以上が特に好ましい。本発明のフィルム等の少なくとも一方の表面の算術平均粗さ(Ra)を上記範囲とすると、耐破断性が優れる。 The arithmetic average roughness (Ra) of at least one surface of the film or the like of the present invention measured in accordance with JIS B0601 is preferably 1.0 μm or less, more preferably 0.8 μm or less, and further preferably 0.6 μm or less. It is preferably 0.4 μm or less, and particularly preferably 0.4 μm or less. The arithmetic mean roughness (Ra) of at least one surface of the film or the like of the present invention is preferably 0.05 μm or more, more preferably 0.10 μm or more, further preferably 0.15 μm or more, and particularly preferably 0.20 μm or more. .. When the arithmetic average roughness (Ra) of at least one surface of the film or the like of the present invention is within the above range, the fracture resistance is excellent.
 本発明のフィルム等の、JIS B0601に準拠して測定される少なくとも一方の表面の輪郭曲線要素の平均長さ(RSm)は1000μm以下が好ましく、800μm以下がより好ましく、600μm以下がさらに好ましく、400μm以下が特に好ましい。本発明のフィルム等の、少なくとも一方の表面の輪郭曲線要素の平均長さ(RSm)は50μm以上が好ましく、100μm以上がより好ましく、150μm以上がさらに好ましく、200μm以上が特に好ましい。本発明のフィルム等の少なくとも一方の表面の輪郭曲線要素の平均長さ(RSm)を上記範囲とすると、耐破断性が優れる。なお上記したJIS B0601とはJIS B0601:2001を表す。 The average length (RSm) of at least one surface contour curve element measured according to JIS B0601 of the film of the present invention is preferably 1000 μm or less, more preferably 800 μm or less, further preferably 600 μm or less, and further preferably 400 μm. The following are particularly preferred. The average length (RSm) of the contour curve element of at least one surface of the film of the present invention is preferably 50 μm or more, more preferably 100 μm or more, further preferably 150 μm or more, and particularly preferably 200 μm or more. When the average length (RSm) of the contour curve element on at least one surface of the film or the like of the present invention is within the above range, the fracture resistance is excellent. The above-mentioned JIS B0601 represents JIS B0601: 2001.
 本発明のフィルム等は、未延伸フィルム等であってもよいが、延伸されていることが好ましい。延伸されていることで強度等が向上する。さらに、本発明のフィルム等が延伸フィルム等である場合、延伸に伴って生じうるスジ状のムラの発生が少ないため、外観やガスバリア性等も良好である。また、本発明のフィルム等は、熱収縮フィルム等であってもよい。 The film or the like of the present invention may be an unstretched film or the like, but it is preferably stretched. The strength and the like are improved by being stretched. Further, when the film or the like of the present invention is a stretched film or the like, the appearance and gas barrier properties are also good because the occurrence of streak-like unevenness that may occur due to stretching is small. Further, the film or the like of the present invention may be a heat-shrinkable film or the like.
(フィルム等の製造方法)
 本発明のフィルム等は公知の方法で製造できる。フィルム等の形成方法としては特に限定されず、例えば溶融法、溶液法、カレンダー法等が挙げられ、溶融法が好ましい。溶融法としては、Tダイ法(キャスト法)、インフレーション法が挙げられ、キャスト法が好ましい。特に、本発明のフィルム等を構成する樹脂組成物をキャスティングロール上に溶融押出するキャスト成形工程、及び上記樹脂組成物から得られる未延伸フィルム等を延伸する工程を備える方法で製造することが好ましい。溶融法の際の溶融温度は本発明のガスバリア樹脂組成物の融点等により異なるが、150~300℃程度が好ましい。
(Manufacturing method of film, etc.)
The film or the like of the present invention can be produced by a known method. The method for forming the film or the like is not particularly limited, and examples thereof include a melting method, a solution method, a calendar method, and the like, and the melting method is preferable. Examples of the melting method include a T-die method (cast method) and an inflation method, and the cast method is preferable. In particular, it is preferable to produce the product by a method including a cast molding step of melt-extruding the resin composition constituting the film or the like of the present invention onto a casting roll and a step of stretching an unstretched film or the like obtained from the resin composition. .. The melting temperature in the melting method varies depending on the melting point of the gas barrier resin composition of the present invention and the like, but is preferably about 150 to 300 ° C.
 延伸は一軸延伸でも二軸延伸でもよく、二軸延伸が好ましい。二軸延伸は、逐次二軸延伸及び同時二軸延伸のいずれでもよい。面積換算の延伸倍率の下限は6倍が好ましく、8倍がより好ましい。延伸倍率の上限は15倍が好ましく、12倍がより好ましい。延伸倍率が上記範囲であると、フィルム等の厚みの均一性、ガスバリア性及び機械的強度の点を向上させることができる。また、延伸温度としては、例えば60℃以上120℃以下とすることができる。 The stretching may be uniaxial stretching or biaxial stretching, and biaxial stretching is preferable. The biaxial stretching may be either sequential biaxial stretching or simultaneous biaxial stretching. The lower limit of the stretch ratio in terms of area is preferably 6 times, more preferably 8 times. The upper limit of the draw ratio is preferably 15 times, more preferably 12 times. When the draw ratio is within the above range, the uniformity of the thickness of the film or the like, the gas barrier property, and the mechanical strength can be improved. The stretching temperature can be, for example, 60 ° C. or higher and 120 ° C. or lower.
 本発明のフィルム等の製造方法は、延伸工程の後に、延伸されたフィルム等を熱処理する工程を備えていてもよい。熱処理温度は、通常、延伸温度よりも高い温度に設定され、例えば120℃超200℃以下とすることができる。 The method for producing a film or the like of the present invention may include a step of heat-treating the stretched film or the like after the stretching step. The heat treatment temperature is usually set to a temperature higher than the stretching temperature, and can be, for example, more than 120 ° C. and 200 ° C. or lower.
 本発明のフィルム等は、食品包装容器、医薬品包装容器、工業薬品包装容器、農薬包装容器等の各種包装容器の材料として好適に用いられる。また、後述する熱収縮フィルム等及び産業用フィルム等も、本発明のフィルム等の一実施形態に含まれる。 The film or the like of the present invention is suitably used as a material for various packaging containers such as food packaging containers, pharmaceutical packaging containers, industrial chemical packaging containers, and pesticide packaging containers. Further, a heat-shrinkable film or the like and an industrial film or the like, which will be described later, are also included in one embodiment of the film or the like of the present invention.
<包装材>
 本発明の包装材は、本発明のフィルムまたはシートを備える。本発明の包装材は、本発明のフィルムまたはシートからなる包装材であってよい。すなわち、本発明の成形体の一実施形態は、包装材であってよい。本発明の包装材は、環境負荷が低く、ガスバリア性、外観及び成形加工性も良好である。
<Packaging material>
The packaging material of the present invention comprises the film or sheet of the present invention. The packaging material of the present invention may be a packaging material made of the film or sheet of the present invention. That is, one embodiment of the molded product of the present invention may be a packaging material. The packaging material of the present invention has a low environmental load, and has good gas barrier properties, appearance, and molding processability.
 本発明の包装材は、単層フィルム等であってもよく、多層フィルム等であってもよい。また、多層フィルム等は、樹脂以外から形成される層、例えば紙層、金属層等をさらに有していてもよい。本発明の包装材は、フィルムまたはシート形状のままのものであってもよいし、フィルム又はシートが二次加工されたものであってもよい。二次加工することで得られる包装材としては例えば、(1)フィルム又はシートを真空成形、圧空成形、真空圧空成形等、熱成形加工することにより得られるトレーカップ状容器、(2)フィルム又はシートにストレッチブロー成形等を行って得られるボトル、カップ状容器、(3)フィルム又はシートをヒートシールすることにより得られる袋状容器等が挙げられる。なお、二次加工法は、上記に例示した各方法に限定されることなく、例えば、ブロー成形等の上記以外の公知の二次加工法を適宜用いることができる。 The packaging material of the present invention may be a single-layer film or the like, or may be a multilayer film or the like. Further, the multilayer film or the like may further have a layer formed from other than the resin, for example, a paper layer, a metal layer, or the like. The packaging material of the present invention may remain in the form of a film or sheet, or the film or sheet may be secondarily processed. Examples of the packaging material obtained by the secondary processing include (1) a tray cup-shaped container obtained by thermoforming a film or sheet by vacuum forming, vacuum forming, vacuum forming, or the like, (2) a film or. Examples thereof include a bottle obtained by performing stretch blow molding on a sheet, a cup-shaped container, (3) a bag-shaped container obtained by heat-sealing a film or a sheet, and the like. The secondary processing method is not limited to each of the methods exemplified above, and for example, a known secondary processing method other than the above such as blow molding can be appropriately used.
 本発明の包装材は、例えば食品、飲料物、農薬や医薬等の薬品、医療器材、機械部品、精密材料等の産業資材、衣料などを包装するために使用される。特に、本発明の包装材は、酸素に対するバリア性が必要となる用途、包装材の内部が各種の機能性ガスによって置換される用途に好ましく使用される。本発明の包装材は、用途に応じて種々の形態、例えば縦製袋充填シール袋、真空包装袋、スパウト付パウチ、ラミネートチューブ容器、容器用蓋材等に形成される。 The packaging material of the present invention is used for packaging, for example, foods, beverages, chemicals such as pesticides and pharmaceuticals, medical equipment, machine parts, industrial materials such as precision materials, and clothing. In particular, the packaging material of the present invention is preferably used for applications that require a barrier property against oxygen and applications in which the inside of the packaging material is replaced by various functional gases. The packaging material of the present invention is formed in various forms depending on the application, for example, a vertical bag filling seal bag, a vacuum packaging bag, a pouch with a spout, a laminated tube container, a lid material for a container, and the like.
<真空包装袋>
 本発明の包装材は真空包装袋であってもよい。真空包装袋の一例としては、内容物が包装される内部と、外部とを隔てる隔壁として本発明のフィルム等を備え、上記内部が減圧された状態となっている袋状の容器である。真空包装袋においては、例えば本発明の2枚のフィルム等が重なり合わされ、この2枚のフィルム等の周縁部が互いにシールされている。真空包装袋においては、上記隔壁としては、多層フィルム等が好ましい。真空包装袋は、ノズル式又はチャンバー式の真空包装機を用いて製造することができる。
<Vacuum packaging bag>
The packaging material of the present invention may be a vacuum packaging bag. An example of a vacuum packaging bag is a bag-shaped container provided with a film or the like of the present invention as a partition wall separating the inside and the outside where the contents are packaged, and the inside is in a depressurized state. In the vacuum packaging bag, for example, the two films of the present invention are overlapped with each other, and the peripheral portions of the two films and the like are sealed to each other. In the vacuum packaging bag, the partition wall is preferably a multilayer film or the like. The vacuum packaging bag can be manufactured using a nozzle type or chamber type vacuum packaging machine.
 当該真空包装袋は、真空状態で包装することが望まれる用途、例えば食品、飲料物等の保存に使用される。また、当該真空包装袋は、真空断熱体の外包材として用いることもできる。 The vacuum packaging bag is used for applications where it is desired to wrap in a vacuum state, for example, for storing foods, beverages, etc. Further, the vacuum packaging bag can also be used as an outer packaging material for a vacuum heat insulating body.
<産業用フィルムまたはシート>
 本発明の産業用フィルムまたはシート(産業用フィルムまたは産業用シート)は、本発明の単層又は多層フィルム等の成形体を備える。本発明の産業用フィルム等は、本発明の成形体からなる産業用フィルム等であってよい。すなわち、本発明の成形体の一実施形態は、産業用フィルム等であってよい。本発明の産業用フィルム等は環境負荷が低く、ガスバリア性、外観及び成形加工性も良好である。産業用フィルム等の具体例としては、農業用フィルム等、埋立用フィルム等、建築用フィルム等があげられる。
<Industrial film or sheet>
The industrial film or sheet of the present invention (industrial film or industrial sheet) comprises a molded body such as a single-layer or multilayer film of the present invention. The industrial film or the like of the present invention may be an industrial film or the like made of the molded product of the present invention. That is, one embodiment of the molded product of the present invention may be an industrial film or the like. The industrial film or the like of the present invention has a low environmental load, and has good gas barrier properties, appearance, and molding processability. Specific examples of industrial films and the like include agricultural films, landfill films and the like, architectural films and the like.
 本発明の産業用フィルム等は、多層フィルム等であることが好ましく、熱可塑性樹脂層としては、水分によるガスバリア樹脂組成物層のガスバリア性能の低下を防ぐ目的で、疎水性熱可塑性樹脂が好ましく用いられる。具体的には、ポリオレフィン系樹脂:直鎖状低密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン、超低密度直鎖状ポリエチレン、中密度ポリエチレン、高密度ポリエチレンなどのポリエチレン類、およびエチレン-α-オレフィン共重合体などのポリエチレン系樹脂、ポリプロピレン、エチレン-プロピレン(ブロックおよびランダム)共重合体、プロピレン-α-オレフィン(炭素数4~20のα-オレフィン)共重合体などのポリプロピレン系樹脂、ポリブテン、ポリペンテンなど;これらポリオレフィンを不飽和カルボン酸またはそのエステルでグラフト変性したグラフト化ポリオレフィン、環状ポリオレフィン系樹脂;アイオノマー、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、ポリエステル系樹脂、ポリアミド系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、アクリル系樹脂、ポリスチレン、ビニルエステル系樹脂、ポリエステルエラストマー、ポリウレタンエラストマー、塩素化ポリエチレン、塩素化ポリプロピレンなどのハロゲン化ポリオレフィン、芳香族または脂肪族ポリケトンなどが挙げられ、中でも機械的強度や成形加工性の点で、ポリオレフィン系樹脂が好ましく、ポリエチレン、ポリプロピレンが特に好ましい。 The industrial film or the like of the present invention is preferably a multilayer film or the like, and as the thermoplastic resin layer, a hydrophobic thermoplastic resin is preferably used for the purpose of preventing deterioration of the gas barrier performance of the gas barrier resin composition layer due to moisture. Be done. Specifically, polyolefin-based resins: linear low-density polyethylene, low-density polyethylene, ultra-low-density polyethylene, ultra-low-density linear polyethylene, medium-density polyethylene, polyethylene such as high-density polyethylene, and ethylene-α-. Polyolefin resins such as olefin copolymers, polypropylene, ethylene-propylene (block and random) copolymers, polypropylene resins such as propylene-α-olefin (α-olefins with 4 to 20 carbon atoms) copolymers, polybutene , Polypentene, etc .; grafted polyolefins obtained by graft-modifying these polyolefins with unsaturated carboxylic acids or esters thereof, cyclic polyolefin-based resins; ionomers, ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers, ethylene-acrylic acid esters. Halogenized polyolefins such as copolymers, polyester resins, polyamide resins, polyvinyl chlorides, polyvinylidene chlorides, acrylic resins, polystyrenes, vinyl ester resins, polyester elastomers, polyurethane elastomers, chlorinated polyethylenes, chlorinated polypropylenes, etc. Examples thereof include aromatic or aliphatic polyketones. Among them, polyolefin-based resins are preferable, and polyethylene and polypropylene are particularly preferable in terms of mechanical strength and moldability.
 上記疎水性熱可塑性樹脂の溶融粘度に関し、210℃、2160g荷重下におけるMFRの下限値としては、1.0g/10分であることが好ましく、2.0g/10分であることがより好ましく、上限値としては、100g/10分であることが好ましく、60g/10分であることがより好ましい。このような溶融粘度の疎水性熱可塑性樹脂組成物を用いることで、層乱れのない良好な多層フィルム等を得ることができる。 Regarding the melt viscosity of the hydrophobic thermoplastic resin, the lower limit of MFR under a load of 210 ° C. and 2160 g is preferably 1.0 g / 10 minutes, more preferably 2.0 g / 10 minutes. The upper limit is preferably 100 g / 10 minutes, more preferably 60 g / 10 minutes. By using such a hydrophobic thermoplastic resin composition having a melt viscosity, a good multilayer film or the like without layer disorder can be obtained.
 本発明の産業用フィルム等の層構造としては、本発明のガスバリア樹脂組成物以外の樹脂からなる層をx層、ガスバリア樹脂組成物層をy層、接着性樹脂層をz層とすると、以下の層構成が例示できる。層構成は左側のものほど、外側(外部の環境にさらされる側)の層となることを表す。
 5層 y/z/x/z/y、x/z/y/z/x、x/z/y/z/y
 6層 x/z/y/z/x/x
 7層 x/z/y/z/y/z/x、x/x/z/y/z/x/x
As the layer structure of the industrial film or the like of the present invention, assuming that the layer made of a resin other than the gas barrier resin composition of the present invention is the x layer, the gas barrier resin composition layer is the y layer, and the adhesive resin layer is the z layer, the following The layer structure of can be exemplified. The layer structure on the left side indicates that the layer is on the outer side (the side exposed to the external environment).
5 layers y / z / x / z / y, x / z / y / z / x, x / z / y / z / y
6 layers x / z / y / z / x / x
7 layers x / z / y / z / y / z / x, x / x / z / y / z / x / x
 特に水分による酸素バリア性の低下を防ぐ目的で、中間層としてガスバリア樹脂組成物層を用い、外層として熱可塑性樹脂層を用いた構成が好ましく、x/z/y/z/x、x/x/z/y/z/x/x等の構成がより好ましい。 In particular, for the purpose of preventing deterioration of the oxygen barrier property due to moisture, it is preferable to use a gas barrier resin composition layer as an intermediate layer and a thermoplastic resin layer as an outer layer, and x / z / y / z / x, x / x. Configurations such as / z / y / z / x / x are more preferable.
 本発明の産業用フィルム等の厚みとしては、その全厚みが通常5~5mm、好ましくは10~4.5mm、より好ましくは15~4mm、特に好ましくは20~3.5mmである。また、産業用フィルム等中の疎水性樹脂組成物層等の厚みは、特に限定しないが、通常0.5~2.5mm、好ましくは1~2mm、特に好ましくは1~1.5mmである。熱可塑性樹脂層の厚みは、特に限定しないが、全層厚みの1~20%、好ましくは2~18%、より好ましくは3~15%の範囲であることが好ましい。 The total thickness of the industrial film or the like of the present invention is usually 5 to 5 mm, preferably 10 to 4.5 mm, more preferably 15 to 4 mm, and particularly preferably 20 to 3.5 mm. The thickness of the hydrophobic resin composition layer or the like in the industrial film or the like is not particularly limited, but is usually 0.5 to 2.5 mm, preferably 1 to 2 mm, and particularly preferably 1 to 1.5 mm. The thickness of the thermoplastic resin layer is not particularly limited, but is preferably in the range of 1 to 20%, preferably 2 to 18%, and more preferably 3 to 15% of the total layer thickness.
 上記建築用フィルム等としては、例えば壁紙等があげられる。本発明の産業用フィルム等の一実施形態としての壁紙は、環境負荷が小さく、生産性に優れる。 Examples of the above-mentioned architectural film include wallpaper. The wallpaper as an embodiment of the industrial film or the like of the present invention has a small environmental load and is excellent in productivity.
 上記埋立用フィルム等としては、ジオメンブレンやランドフィルシート等があげられる。ジオメンブレンとは、廃棄物処理場などの遮水工として使用されるシートである。また、ランドフィルシートとは、産業廃棄物等から出てくる有害物質の拡散を防止するシートであり、例えば、ラドンガスの拡散を防止するために用いることができる。 Examples of the landfill film and the like include geomembranes and landfill sheets. Geomembrane is a sheet used as a water shield for waste treatment plants. The landfill sheet is a sheet that prevents the diffusion of harmful substances generated from industrial waste and the like, and can be used, for example, to prevent the diffusion of radon gas.
 上記農業用フィルム等においては、ガスバリア樹脂組成物に酸化防止剤または耐紫外線剤(紫外線吸収剤、光安定剤、着色剤)等を含むことが、屋外での長期使用が可能となる観点から好ましい。上記農業用フィルム等は、多層フィルム等であることが好ましく、熱可塑性樹脂層としては、水分によるガスバリア樹脂組成物層のガスバリア性能の低下を防ぐ目的で、疎水性熱可塑性樹脂が好ましく用いられる。 In the above agricultural film and the like, it is preferable that the gas barrier resin composition contains an antioxidant or an ultraviolet resistant agent (ultraviolet absorber, light stabilizer, colorant) or the like from the viewpoint of enabling long-term outdoor use. .. The agricultural film or the like is preferably a multilayer film or the like, and as the thermoplastic resin layer, a hydrophobic thermoplastic resin is preferably used for the purpose of preventing deterioration of the gas barrier performance of the gas barrier resin composition layer due to moisture.
 熱可塑性樹脂層は、耐紫外線剤や粘着性成分を配合することが好ましい。耐紫外線剤としては、例えば紫外線吸収剤、光安定剤、着色剤などが挙げられる。 It is preferable that the thermoplastic resin layer contains an ultraviolet resistant agent and an adhesive component. Examples of the ultraviolet resistant agent include an ultraviolet absorber, a light stabilizer, a colorant and the like.
 上記の耐紫外線剤の疎水性熱可塑性樹脂に対する配合量は上記疎水性熱可塑性樹脂に対して通常1~10質量%、好ましくは2~8質量%、特に好ましくは3~5質量%である。配合量が上記範囲より少ない場合、紫外線によって疎水性熱可塑性樹脂が劣化しやすくなる。一方、配合量が上記範囲より多い場合、疎水性熱可塑性樹脂の機械的強度が低下する。 The blending amount of the above UV resistant agent with respect to the hydrophobic thermoplastic resin is usually 1 to 10% by mass, preferably 2 to 8% by mass, and particularly preferably 3 to 5% by mass with respect to the hydrophobic thermoplastic resin. When the blending amount is less than the above range, the hydrophobic thermoplastic resin is likely to be deteriorated by ultraviolet rays. On the other hand, when the blending amount is larger than the above range, the mechanical strength of the hydrophobic thermoplastic resin is lowered.
 上記の粘着性成分としては、ポリイソブテンなどの脂肪族飽和炭化水素樹脂や、脂環族飽和炭化水素樹脂などが挙げられ、上記疎水性熱可塑性樹脂に対する配合量は通常1~30質量%、好ましくは2~20質量%、特に好ましくは3~15質量%である。配合量が適切であれば上記農業用フィルム等を用いてラッピングする際にフィルム等同士が圧着され、密封が維持されやすくなる。配合量が上記範囲より少ない場合、フィルム等間に隙間が発生し、内部に空気が侵入するため、内容物の長期保管性が悪くなる。また配合量が上記範囲より多い場合、多層フィルムのブロッキングが起こり、フィルムロール等から巻き出すことが出来なくなる。 Examples of the adhesive component include an aliphatic saturated hydrocarbon resin such as polyisobutene and an alicyclic saturated hydrocarbon resin, and the blending amount with respect to the hydrophobic thermoplastic resin is usually 1 to 30% by mass, preferably 1 to 30% by mass. It is 2 to 20% by mass, particularly preferably 3 to 15% by mass. If the blending amount is appropriate, the films and the like are crimped to each other when wrapping with the agricultural film and the like, and the sealing is easily maintained. If the blending amount is less than the above range, gaps are generated between the films and the like, and air invades the inside, so that the long-term storage property of the contents deteriorates. Further, when the blending amount is larger than the above range, blocking of the multilayer film occurs and it becomes impossible to unwind from the film roll or the like.
 上記農業用フィルム等の厚みとしては、その全厚みが通常5~200μm、好ましくは10~150μm、より好ましくは15~100μm、特に好ましくは20~50μmである。また、農業用フィルム等中の熱可塑性樹脂層(疎水性樹脂組成物層等)の厚みは、特に限定しないが、通常0.5~200μm、好ましくは1~100μm、特に好ましくは1~10μmである。ガスバリア樹脂組成物層の厚みは、特に限定しないが、全層厚みの1~20%、好ましくは2~18%、より好ましくは3~15%の範囲であることが好ましい。 The total thickness of the agricultural film or the like is usually 5 to 200 μm, preferably 10 to 150 μm, more preferably 15 to 100 μm, and particularly preferably 20 to 50 μm. The thickness of the thermoplastic resin layer (hydrophobic resin composition layer, etc.) in the agricultural film or the like is not particularly limited, but is usually 0.5 to 200 μm, preferably 1 to 100 μm, and particularly preferably 1 to 10 μm. be. The thickness of the gas barrier resin composition layer is not particularly limited, but is preferably in the range of 1 to 20%, preferably 2 to 18%, and more preferably 3 to 15% of the total layer thickness.
 上記農業用フィルム等を用いるサイロの形態としては、特に限定されるものではなく、例えばラップサイロ、バンカーサイロ、バッグサイロ、チューブサイロ、スタックサイロが挙げられるが、特にラップサイロに好適である。 The form of the silo using the agricultural film or the like is not particularly limited, and examples thereof include a lap silo, a bunker silo, a bag silo, a tube silo, and a stack silo, but the silo is particularly suitable.
 ラップサイロを作製する場合には、まず牧草をロールベーラなどの機械を用いて所望の容量に成型する。そして、成型した牧草にベールラッパなどの機械を用いて上記農業用フィルム等を巻きつけ、密封する。密封の際の残存空気量が内容物の品質に影響を与えるため、農業用フィルム等に張力をかけて延伸しながら巻きつけ、内容物にフィルム等を密着させることが好ましい。 When making a wrap silo, first mold the grass to the desired capacity using a machine such as a roll baler. Then, the agricultural film or the like is wrapped around the molded grass using a machine such as a bale trumpet and sealed. Since the amount of residual air at the time of sealing affects the quality of the contents, it is preferable to apply tension to the agricultural film or the like and wind it while stretching the film to bring the film or the like into close contact with the contents.
 上記農業用フィルム等は、温室用フィルム、土壌燻蒸用フィルム、サイレージフィルム、サイロバッグ、穀物保存用袋等、様々な用途で使用することができる。 The agricultural film and the like can be used for various purposes such as a greenhouse film, a soil fumigation film, a silage film, a silo bag, and a grain storage bag.
<チューブ>
 本発明のチューブは、本発明の成形体を備える。本発明のチューブは、本発明の成形体からなるチューブであってよい。すなわち、本発明の成形体の一実施形態は、チューブであってよい。本発明のチューブは、環境負荷が低く、ガスバリア性、外観及び成形加工性も良好である。
<Tube>
The tube of the present invention comprises the molded body of the present invention. The tube of the present invention may be a tube made of the molded product of the present invention. That is, one embodiment of the molded product of the present invention may be a tube. The tube of the present invention has a low environmental load, and has good gas barrier properties, appearance, and molding processability.
 本発明のチューブの製造方法は特に限定されず、例えば、共押出成形、共射出成形、押出コーティング等の溶融成形により、直接チューブ状に成形する方法、本発明のフィルムまたはシートを熱溶着してチューブ状に成形する方法、本発明のフィルムまたはシートを、接着剤を用いてラミネートしてチューブ状に成形する方法等が挙げられる。 The method for producing the tube of the present invention is not particularly limited, and for example, a method of directly forming a tube by melt molding such as coextrusion molding, co-injection molding, extrusion coating, or heat welding of the film or sheet of the present invention. Examples thereof include a method of forming into a tube shape, a method of laminating the film or sheet of the present invention with an adhesive, and forming into a tube shape.
<多層パイプ>
 本発明の多層パイプは、本発明の成形体を備える。本発明の多層パイプは、本発明の成形体からなる多層パイプであってよい。すなわち、本発明の成形体の一実施形態は、多層パイプであってよい。本発明の多層パイプは環境負荷が低く、ガスバリア性、外観及び成形加工性も良好である。本発明の多層パイプは、長期使用における酸化劣化を抑制する観点から、ガスバリア樹脂組成物に酸化防止剤を含むことが好ましい。上記酸化防止剤としては、高温での使用における酸化劣化を抑制する観点からヒンダードアミン基を有する化合物及び/またはヒンダードフェノール基を有する化合物であることが好ましい。
<Multi-layer pipe>
The multilayer pipe of the present invention comprises the molded body of the present invention. The multilayer pipe of the present invention may be a multilayer pipe made of the molded product of the present invention. That is, one embodiment of the molded product of the present invention may be a multi-layer pipe. The multi-layer pipe of the present invention has a low environmental load, and has good gas barrier properties, appearance, and molding processability. The multilayer pipe of the present invention preferably contains an antioxidant in the gas barrier resin composition from the viewpoint of suppressing oxidative deterioration in long-term use. The antioxidant is preferably a compound having a hindered amine group and / or a compound having a hindered phenol group from the viewpoint of suppressing oxidative deterioration in use at high temperatures.
 多層パイプの層構成としては、上記成形体の層構成を採用することができる。多層パイプが温水循環用パイプとして用いられる場合には、熱可塑性樹脂層を最外層とする熱可塑性樹脂層/ガスバリア樹脂組成物層/熱可塑性樹脂層の3層構成が一般的に採用される。これは、既存の架橋ポリオレフィンなど単層パイプの製造ラインに、本発明のガスバリア樹脂組成物と接着性樹脂の共押出コーティング設備を付加する事により、容易に本発明の多層パイプの製造ラインに転用でき、実際に多くのパイプメーカーがこの構成を採用しているためである。 As the layer structure of the multi-layer pipe, the layer structure of the above-mentioned molded body can be adopted. When the multilayer pipe is used as a hot water circulation pipe, a three-layer structure of a thermoplastic resin layer having a thermoplastic resin layer as the outermost layer / a gas barrier resin composition layer / a thermoplastic resin layer is generally adopted. This can be easily diverted to the production line of the multi-layer pipe of the present invention by adding the coextrusion coating equipment of the gas barrier resin composition of the present invention and the adhesive resin to the existing production line of a single-layer pipe such as crosslinked polyolefin. This is because many pipe manufacturers actually adopt this configuration.
 ガスバリア樹脂組成物層の両側にポリオレフィン層などを設けて、ガスバリア樹脂組成物層を中間層として使用することは、ガスバリア樹脂組成物層の傷付き防止などに有効である。しかしながら、多層パイプを床暖房パイプなどの温水循環用パイプとして用いる場合には、通常床下に埋設されるため、物理的な衝撃によるガスバリア樹脂組成物層の傷付きなどのリスクは比較的小さいため、むしろガスバリア性の観点から、ガスバリア樹脂組成物層を最外層に配することが望ましい。ガスバリア樹脂組成物は大きな湿度依存性を示し、高湿度条件下ではバリア性が低下する事から、ガスバリア樹脂組成物層を最外層に配することにより、主としてガスバリア樹脂組成物層が水と接触するパイプ内表面より最も遠い場所に位置することとなり、多層パイプのバリア性能面からは最も有利な層構成となる。一方で、一般的にEVOH層を最外層に配する場合、空気と直接接触するため、酸化劣化の影響を受けやすい。このような環境下において、ヒンダードアミン基を有する化合物及び/またはヒンダードフェノール基を有する酸化防止剤を含むガスバリア樹脂組成物を用いた場合、高温下でも酸化劣化しにくい最外層に配することとなるため、良好なバリア性を有しつつ酸化劣化によるクラックの発生を低減した多層パイプを提供するという効果がより有効に発揮される。 Providing polyolefin layers or the like on both sides of the gas barrier resin composition layer and using the gas barrier resin composition layer as an intermediate layer is effective in preventing scratches on the gas barrier resin composition layer. However, when the multi-layer pipe is used as a hot water circulation pipe such as a floor heating pipe, it is usually buried under the floor, and the risk of damage to the gas barrier resin composition layer due to physical impact is relatively small. Rather, from the viewpoint of gas barrier properties, it is desirable to arrange the gas barrier resin composition layer on the outermost layer. Since the gas barrier resin composition shows a large humidity dependence and the barrier property is lowered under high humidity conditions, by arranging the gas barrier resin composition layer on the outermost layer, the gas barrier resin composition layer mainly comes into contact with water. It will be located at the farthest place from the inner surface of the pipe, and will have the most advantageous layer structure in terms of the barrier performance of the multi-layer pipe. On the other hand, when the EVOH layer is generally arranged on the outermost layer, it is easily affected by oxidative deterioration because it comes into direct contact with air. In such an environment, when a gas barrier resin composition containing a compound having a hindered amine group and / or an antioxidant having a hindered phenol group is used, it is arranged on the outermost layer which is less likely to be oxidatively deteriorated even at high temperatures. Therefore, the effect of providing a multi-layer pipe having a good barrier property and reducing the occurrence of cracks due to oxidative deterioration is more effectively exhibited.
 また、本発明の多層パイプが地域冷暖房などの断熱多層パイプに用いられる場合には、ガスバリア樹脂組成物層を熱可塑性樹脂層より内側に配する熱可塑性樹脂層/接着性樹脂層/ガスバリア樹脂組成物層の3層構成(以下、積層体1と略称することがある)、もしくは層(1)の傷付き防止の観点から熱可塑性樹脂層/接着性樹脂層/ガスバリア樹脂組成物層/接着性樹脂層/熱可塑性樹脂層の5層構成(以下、積層体2と略称することがある)を有することが好ましい。 Further, when the multilayer pipe of the present invention is used for a heat insulating multilayer pipe for district heating and cooling, the thermoplastic resin layer / adhesive resin layer / gas barrier resin composition in which the gas barrier resin composition layer is arranged inside the thermoplastic resin layer. From the viewpoint of preventing damage to the three-layer structure of the material layer (hereinafter, may be abbreviated as the laminated body 1) or the layer (1), the thermoplastic resin layer / adhesive resin layer / gas barrier resin composition layer / adhesiveness. It is preferable to have a five-layer structure of a resin layer / thermoplastic resin layer (hereinafter, may be abbreviated as laminate 2).
 地域冷暖房などの断熱多層パイプの構成は特に限定されないが、例えば、内側から、内管、内管の周りを覆う断熱発泡体層、そして外層として上記積層体1又は2の順で配置されることが好ましい。 The configuration of the heat insulating multi-layer pipe for district heating and cooling is not particularly limited, but for example, the inner pipe, the heat insulating foam layer surrounding the inner pipe, and the laminated body 1 or 2 as the outer layer are arranged in this order from the inside. Is preferable.
 内管に使われるパイプの種類(素材)、形状及び大きさは、ガスや液体などの熱媒体を輸送できるものであれば特に限定はなく、熱媒体の種類や、配管材の用途及び使用形態等に応じて適宜選択することができる。具体的には、鋼、ステンレス、アルミニウム等の金属、ポリオレフィン(ポリエチレン、架橋ポリエチレン(PEX)、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテンなど)、及び上記積層体1又は2などが挙げられ、これらの中でも架橋ポリエチレン(PEX)が好適に用いられる。 The type (material), shape and size of the pipe used for the inner pipe are not particularly limited as long as they can transport a heat medium such as gas or liquid, and the type of heat medium and the use and usage form of the piping material are not particularly limited. It can be appropriately selected according to the above. Specifically, metals such as steel, stainless steel, and aluminum, polyolefins (polyethylene, cross-linked polyethylene (PEX), polypropylene, poly1-butene, poly4-methyl-1-pentene, etc.), and the above-mentioned laminate 1 or 2 and the like. Among these, cross-linked polyethylene (PEX) is preferably used.
 断熱発泡体には、ポリウレタンフォーム、ポリエチレンフォーム、ポリスチレンフォーム、フェノールフォーム、ポリイソシアヌレートフォームを用いることができ、断熱性能向上の観点から、ポリウレタンフォームが好適に用いられる。 Polyurethane foam, polyethylene foam, polystyrene foam, phenol foam, and polyisocyanurate foam can be used as the heat insulating foam, and polyurethane foam is preferably used from the viewpoint of improving heat insulating performance.
 断熱発泡体の発泡剤としてはフロンガス、各種代替フロン、水、塩化炭化水素、炭化水素、二酸化炭素等が用いられるが、発泡効果、環境への影響の観点から炭化水素、具体的にはn-ペンタン、シクロペンタンが好適に用いられる。 Freon gas, various alternative fluorocarbons, water, hydrocarbons chloride, hydrocarbons, carbon dioxide, etc. are used as foaming agents for heat insulating foams, but hydrocarbons, specifically n-, are used from the viewpoint of foaming effect and environmental impact. Pentane and cyclopentane are preferably used.
 断熱多層パイプの製造方法としては、例えば、熱媒体を輸送する内管を、パイプ状の外層の中に入れて内管をスペーサーで固定し二重管とした後、内管と外層の間隙部に各種発泡体原液を注入し、発泡及び固化させる方法が挙げられる。上記スペーサーの素材は特に限定されないが、スペーサーによる内管及び外層への傷を減らすため、ポリエチレン又はポリウレタンであることが好ましい。 As a method for manufacturing a heat insulating multi-layer pipe, for example, an inner pipe for transporting a heat medium is placed in a pipe-shaped outer layer, the inner pipe is fixed with a spacer to form a double pipe, and then a gap between the inner pipe and the outer layer is formed. Examples thereof include a method of injecting various foam stock solutions into the foam to foam and solidify. The material of the spacer is not particularly limited, but polyethylene or polyurethane is preferable in order to reduce damage to the inner tube and the outer layer due to the spacer.
(多層パイプ等の製造方法)
 以下、多層パイプの製造方法について説明するが、この製造方法の一部又は全部は他の成形体(フィルム、シート等)にも適用することができる。本発明の多層パイプは、例えば、上述のように架橋ポリオレフィンなどの単層パイプの上にガスバリア樹脂組成物と接着性樹脂を共押出コーティングすることにより製造することができる。単層パイプ上にガスバリア樹脂組成物と接着性樹脂の共押出コーティングを実施する際は、単純に単層パイプ上にガスバリア樹脂組成物と接着性樹脂の溶融したフィルムをコートしても良いが、パイプとコート層の間の接着力が不十分な場合があり、長期間の使用中にコート層が剥離してガスバリア性を失う可能性がある。その対策としては、コート前にコートするパイプの表面をフレーム処理及び/又はコロナ放電処理することが有効である。
(Manufacturing method for multi-layer pipes, etc.)
Hereinafter, a method for manufacturing a multi-layer pipe will be described, but a part or all of this manufacturing method can be applied to other molded bodies (films, sheets, etc.). The multilayer pipe of the present invention can be produced, for example, by coextruding a gas barrier resin composition and an adhesive resin on a single-layer pipe such as crosslinked polyolefin as described above. When performing coextrusion coating of the gas barrier resin composition and the adhesive resin on the single-layer pipe, a film in which the gas barrier resin composition and the adhesive resin are melted may be simply coated on the single-layer pipe. The adhesive force between the pipe and the coat layer may be insufficient, and the coat layer may peel off and lose the gas barrier property during long-term use. As a countermeasure, it is effective to perform frame treatment and / or corona discharge treatment on the surface of the pipe to be coated before coating.
 多層パイプを製造するためのその他の多層成形方法としては、樹脂層の種類に対応する数の押出機を使用し、この押出機内で溶融された樹脂の流れを重ねあわせた層状態で同時押出成形する、いわゆる共押出成形により実施する方法が挙げられる。また、ドライラミネーションなどの多層成形方法も採用され得る。 As another multi-layer molding method for manufacturing multi-layer pipes, a number of extruders corresponding to the types of resin layers are used, and simultaneous extrusion molding is performed in a layered state in which the flows of the melted resin are overlapped in the extruder. There is a method of carrying out by so-called coextrusion molding. Further, a multi-layer molding method such as dry lamination can also be adopted.
 多層パイプの製造方法は、成形直後に10~70℃の水で冷却を行う工程を含むとよい。すなわち、溶融成形後、ガスバリア樹脂組成物層が固化する前に10~70℃の水で冷却することにより、ガスバリア樹脂組成物層を固化させることが望ましい。冷却水の温度が低すぎると、続く二次加工工程において多層パイプを屈曲させる場合に、屈曲部のガスバリア樹脂組成物層に歪みによるクラックが生じやすい。歪みによるクラックが生じやすくなる原因の詳細は明らかでないが、成形物中の残留応力が影響しているものと推測される。この観点から、冷却水の温度は15℃以上がより好ましく、20℃以上がさらに好ましい。一方、冷却水の温度が高すぎても、二次加工の際に屈曲部のガスバリア樹脂組成物層に歪みによるクラックを生じやすい。この原因の詳細も十分に解明されていないが、ガスバリア樹脂組成物層の結晶化度が大きくなりすぎるためと推定される。この観点より冷却水の温度は60℃以下がより好ましく、50℃以下がさらに好ましい。 The method for manufacturing a multi-layer pipe may include a step of cooling with water at 10 to 70 ° C. immediately after molding. That is, it is desirable to solidify the gas barrier resin composition layer by cooling with water at 10 to 70 ° C. after melt molding and before the gas barrier resin composition layer solidifies. If the temperature of the cooling water is too low, cracks due to strain are likely to occur in the gas barrier resin composition layer at the bent portion when the multilayer pipe is bent in the subsequent secondary processing step. The details of the cause of the tendency for cracks to occur due to strain are not clear, but it is presumed that the residual stress in the molded product has an effect. From this viewpoint, the temperature of the cooling water is more preferably 15 ° C. or higher, further preferably 20 ° C. or higher. On the other hand, even if the temperature of the cooling water is too high, cracks due to strain are likely to occur in the gas barrier resin composition layer at the bent portion during the secondary processing. The details of this cause have not been fully elucidated, but it is presumed that the crystallinity of the gas barrier resin composition layer becomes too large. From this viewpoint, the temperature of the cooling water is more preferably 60 ° C. or lower, further preferably 50 ° C. or lower.
 上記の方法で得られた多層パイプを二次加工することにより、各種成形体を得ることができる。二次加工法としては、特に限定されず、公知の二次加工法を適宜用いることができるが、例えば、多層パイプを80~160℃に加熱した後所望の形に変形させた状態で、1分~2時間固定することにより加工する方法が挙げられる。 Various molded bodies can be obtained by secondary processing the multi-layer pipe obtained by the above method. The secondary processing method is not particularly limited, and a known secondary processing method can be appropriately used. For example, in a state where the multilayer pipe is heated to 80 to 160 ° C. and then deformed into a desired shape, 1 A method of processing by fixing for 2 minutes to 2 hours can be mentioned.
<熱成形容器>
 本発明の熱成形容器は、本発明の成形体を備える。本発明の熱成形容器は、本発明の成形体からなる熱成形容器であってよい。すなわち、本発明の成形体の一実施形態は、熱成形容器であってよい。本発明の熱成形容器は、環境負荷が低く、ガスバリア性、外観及び成形加工性も良好である。本発明の熱成形容器は、酸素バリア性が要求される用途、例えば食品、化粧品、医化学薬品、トイレタリー等の種々の分野で利用される。この熱成形容器は、例えば単層または多層のフィルムまたはシートを熱成形することで、収容部を有するものとして形成される。
<Thermoforming container>
The thermoformed container of the present invention comprises the molded body of the present invention. The thermoformed container of the present invention may be a thermoformed container made of the molded body of the present invention. That is, one embodiment of the molded product of the present invention may be a thermoformed container. The thermoformed container of the present invention has a low environmental load, and has good gas barrier properties, appearance, and moldability. The thermoformed container of the present invention is used in various fields such as foods, cosmetics, medical chemicals, toiletries, etc., where oxygen barrier properties are required. The thermoformed container is formed as having an accommodating portion, for example, by thermoforming a single-layer or multi-layer film or sheet.
(収容部)
 収容部は、食品等の内容物を収容する部分である。この収容部の形状は、内容物の形状に対応して決定される。具体的には、当該熱成形容器は、例えばカップ状容器、トレイ状容器、バッグ状容器、ボトル状容器、パウチ状容器等として形成される。
(Accommodation)
The storage part is a part that stores the contents such as food. The shape of this accommodating portion is determined according to the shape of the contents. Specifically, the thermoformed container is formed as, for example, a cup-shaped container, a tray-shaped container, a bag-shaped container, a bottle-shaped container, a pouch-shaped container, or the like.
 収容部の形態は、一つの指標として、絞り比(S)で表すことができる。ここで、絞り比(S)とは、容器の最深部の深さを容器の開口に内接する最大径の円の直径で割った値である。すなわち、絞り比(S)は、値が大きいほど底の深い容器であり、値が小さいほど底が浅い容器であることを意味する。例えば、熱成形容器がカップ状である場合には、絞り比(S)が大きく、トレイである場合には絞り比(S)が小さい。なお、内接する最大径の円の直径は、例えば収容部の開口が円形である場合には円の直径、楕円である場合には短径(短軸長さ)、長方形である場合には短辺の長さである。 The form of the accommodating portion can be expressed by the aperture ratio (S) as one index. Here, the aperture ratio (S) is a value obtained by dividing the depth of the deepest part of the container by the diameter of the circle having the maximum diameter inscribed in the opening of the container. That is, the aperture ratio (S) means that the larger the value, the deeper the bottom of the container, and the smaller the value, the shallower the bottom of the container. For example, when the thermoformed container is cup-shaped, the drawing ratio (S) is large, and when it is a tray, the drawing ratio (S) is small. The diameter of the inscribed maximum diameter circle is, for example, the diameter of the circle when the opening of the accommodating portion is circular, the minor diameter (minor axis length) when it is elliptical, and short when it is rectangular. The length of the side.
 絞り比(S)は、フィルムまたはシート厚みによって好適値が異なる。当該熱成形容器がフィルムを熱成形したものである場合、絞り比(S)としては0.2以上が好ましく、0.3以上がより好ましく、0.4以上がさらに好ましい。一方、当該熱成形容器がシートを成形したものである場合、絞り比(S)としては0.3以上が好ましく、0.5以上がより好ましく、0.8以上がさらに好ましい。 The suitable value of the aperture ratio (S) differs depending on the film or sheet thickness. When the thermoformed container is a film obtained by thermoforming, the drawing ratio (S) is preferably 0.2 or more, more preferably 0.3 or more, still more preferably 0.4 or more. On the other hand, when the thermoformed container is a molded sheet, the drawing ratio (S) is preferably 0.3 or more, more preferably 0.5 or more, still more preferably 0.8 or more.
 当該熱成形容器において、ガスバリア樹脂組成物層の一方の面側に積層される他の層の合計厚みIと、ガスバリア樹脂組成物層の他方の面側に積層される他の層の合計厚みOとの厚み比(I/O)の下限としては、1/99が好ましく、30/70がより好ましい。また、上記I/Oの上限としては、70/30が好ましく、55/45がより好ましい。なお、熱成形容器の全層又は単層の厚みは、ミクロトームを用いて熱成形容器の複数箇所から切り出したサンプルについて、光学顕微鏡観察により測定した厚みの平均値である。 In the thermoformed container, the total thickness I of the other layers laminated on one surface side of the gas barrier resin composition layer and the total thickness O of the other layers laminated on the other surface side of the gas barrier resin composition layer. As the lower limit of the thickness ratio (I / O) with, 1/99 is preferable, and 30/70 is more preferable. The upper limit of the I / O is preferably 70/30, more preferably 55/45. The thickness of all layers or a single layer of the thermoformed container is an average value of the thicknesses measured by observation with an optical microscope for samples cut out from a plurality of locations of the thermoformed container using a microtome.
 熱成形容器の全体平均厚みの下限としては、300μmが好ましく、500μmがより好ましく、700μmがさらに好ましい。また、熱成形容器の全体平均厚みの上限としては、10000μmが好ましく、8500μmがより好ましく、7000μmがさらに好ましい。なお、全体平均厚みは、熱成形容器の収容部における全層の厚みをいう。全体平均厚みが上記上限を超えると、熱成形容器の製造コストが上昇する。一方、全体平均厚みが上記上限未満であると、剛性が保てず、熱成形容器が容易に破壊されてしまうおそれがある。 The lower limit of the overall average thickness of the thermoformed container is preferably 300 μm, more preferably 500 μm, and even more preferably 700 μm. The upper limit of the overall average thickness of the thermoformed container is preferably 10,000 μm, more preferably 8500 μm, and even more preferably 7,000 μm. The overall average thickness refers to the thickness of all layers in the housing portion of the thermoformed container. If the overall average thickness exceeds the above upper limit, the manufacturing cost of the thermoformed container increases. On the other hand, if the overall average thickness is less than the above upper limit, the rigidity cannot be maintained and the thermoformed container may be easily broken.
(熱成形容器に用いる多層シートの製造方法)
 熱成形容器の製造に用いる単層または多層のフィルム等の一つである多層シートの製造方法について説明する。多層シートは、共押出成形装置を用いて形成できる。この多層シートは、例えば各層を形成するガスバリア樹脂組成物や他の樹脂などをそれぞれ別々の押出機に仕込み、これらの押出機で共押出することで所定の層構成を有するものとして形成できる。
(Manufacturing method of multilayer sheet used for thermoformed container)
A method for manufacturing a multilayer sheet, which is one of a single-layer or multilayer film used for manufacturing a thermoformed container, will be described. The multilayer sheet can be formed by using a coextrusion molding apparatus. This multilayer sheet can be formed as having a predetermined layer structure by, for example, charging a gas barrier resin composition or another resin forming each layer into separate extruders and co-extruding them with these extruders.
 各層の押出成形は、一軸スクリューを備えた押出機を所定の温度で運転することにより行われる。ガスバリア樹脂組成物層を形成する押出機の温度は、例えば170℃以上260℃以下とされる。また、熱可塑性樹脂層、接着性樹脂層及び回収層を形成する押出機の温度は、例えば150℃以上260℃以下とされる。 Extrusion molding of each layer is performed by operating an extruder equipped with a uniaxial screw at a predetermined temperature. The temperature of the extruder that forms the gas barrier resin composition layer is, for example, 170 ° C. or higher and 260 ° C. or lower. The temperature of the extruder that forms the thermoplastic resin layer, the adhesive resin layer, and the recovery layer is, for example, 150 ° C. or higher and 260 ° C. or lower.
(熱成形)
 本発明の熱成形容器は、多層シート等を加熱して軟化させた後に、金型形状に成形することで形成できる。熱成形方法としては、例えば真空又は圧空を用い、必要によりプラグを併せ用いて金型形状に成形する方法(ストレート法、ドレープ法、エアスリップ法、スナップバック法、プラグアシスト法等)、プレス成形する方法などが挙げられる。成形温度、真空度、圧空の圧力、成形速度等の各種成形条件は、プラグ形状や金型形状、原料樹脂の性質等により適当に設定される。
(Thermoforming)
The thermoformed container of the present invention can be formed by heating and softening a multilayer sheet or the like and then molding it into a mold shape. As the thermoforming method, for example, vacuum or compressed air is used, and if necessary, a plug is also used to form a mold shape (straight method, drape method, air slip method, snapback method, plug assist method, etc.), press molding. How to do it. Various molding conditions such as molding temperature, degree of vacuum, compressed air pressure, and molding speed are appropriately set according to the shape of the plug, the shape of the mold, the properties of the raw material resin, and the like.
 成形温度は、成形するのに十分なだけ樹脂が軟化できる温度であれば特に限定されず、多層シート等の構成によってその好適な温度範囲は異なる。なお、この加熱温度は、通常、樹脂の融点よりも低い。具体的な多層シート等の加熱温度の下限は通常50℃であり、60℃が好ましく、70℃がより好ましい。加熱温度の上限は例えば180℃であり、160℃であってもよい。 The molding temperature is not particularly limited as long as the resin can be softened sufficiently for molding, and the suitable temperature range differs depending on the configuration of the multilayer sheet or the like. This heating temperature is usually lower than the melting point of the resin. The lower limit of the heating temperature of a specific multilayer sheet or the like is usually 50 ° C., preferably 60 ° C., more preferably 70 ° C. The upper limit of the heating temperature is, for example, 180 ° C., and may be 160 ° C.
(熱成形容器の層構成)
 本発明の熱成形容器は、少なくともガスバリア樹脂組成物層を備えていればよく、単層からなってもよいし複数層からなってもよい。熱成形容器が複数層である場合の層構成は、用途等に応じて適宜設定すればよい。
(Layer composition of thermoformed container)
The thermoformed container of the present invention may be provided with at least a gas barrier resin composition layer, and may be composed of a single layer or a plurality of layers. When the thermoforming container has a plurality of layers, the layer structure may be appropriately set according to the intended use and the like.
 本発明の熱成形容器が複数層からなる場合の層構成としては、熱可塑性樹脂層を最外層に配置することが好ましい。本発明のガスバリア樹脂組成物以外の樹脂からなる層をx層、ガスバリア樹脂組成物層をy層、接着性樹脂層をz層とすると収容部の内表面から外表面に向かって、x/z/y/z/xが耐衝撃性の観点から好ましい。また、回収層を含む場合の層構成としては、例えば
 (内表面)x/z/y/z/回収層/x(外表面)、
 (内表面)x/回収層/z/y/z/回収層/x(外表面)、
 (内表面)回収層/z/y/z/回収層(外表面)
等が挙げられる。なお、これらの層構成において熱可塑性樹脂層の代わりに回収層を備える層構成であってもよい。なお、x、y、z及び回収層がそれぞれ複数用いられている場合、それぞれの層を構成する樹脂は同一でも異なっていてもよい。
When the thermoformed container of the present invention is composed of a plurality of layers, it is preferable to arrange the thermoplastic resin layer on the outermost layer. When the layer made of a resin other than the gas barrier resin composition of the present invention is the x layer, the gas barrier resin composition layer is the y layer, and the adhesive resin layer is the z layer, x / z from the inner surface to the outer surface of the accommodating portion. / Y / z / x is preferable from the viewpoint of impact resistance. The layer structure when the recovery layer is included is, for example, (inner surface) x / z / y / z / recovery layer / x (outer surface).
(Inner surface) x / recovery layer / z / y / z / recovery layer / x (outer surface),
(Inner surface) Recovery layer / z / y / z / Recovery layer (outer surface)
And so on. In these layer configurations, a layer configuration may be provided in which a recovery layer is provided instead of the thermoplastic resin layer. When a plurality of x, y, z and recovery layers are used, the resins constituting the respective layers may be the same or different.
<カップ状容器>
 次に、本発明の熱成形容器について、図1及び図2に示すカップ状容器を例にとって、具体的に説明する。但し、カップ状容器は熱成形容器の一例に過ぎず、以下のカップ状容器の説明は、本発明の範囲を限定するものではない。
<Cup-shaped container>
Next, the thermoformed container of the present invention will be specifically described by taking the cup-shaped container shown in FIGS. 1 and 2 as an example. However, the cup-shaped container is only an example of a thermoformed container, and the following description of the cup-shaped container does not limit the scope of the present invention.
 図1及び図2のカップ状容器1は、収容部としてのカップ本体2、及びフランジ部3を備える。このカップ状容器1は、カップ本体2に内容物を収容し、カップ本体2の開口4を塞ぐようにフランジ部3に蓋7をシールすることで使用される。この蓋7としては、例えば樹脂フィルム、金属箔、金属樹脂複合フィルム等が挙げられ、これらの中で、樹脂フィルムに金属層を積層した金属樹脂複合フィルムが好ましい。樹脂フィルムとしては、例えばポリエチレンフィルム、ポリエチレンテレフタレートフィルム等が挙げられる。金属層は特に限定されず、金属箔及び金属蒸着層が好ましく、ガスバリア性及び生産性の観点からアルミニウム箔がより好ましい。 The cup-shaped container 1 of FIGS. 1 and 2 includes a cup body 2 as an accommodating portion and a flange portion 3. The cup-shaped container 1 is used by accommodating the contents in the cup body 2 and sealing the lid 7 on the flange portion 3 so as to close the opening 4 of the cup body 2. Examples of the lid 7 include a resin film, a metal foil, a metal resin composite film, and the like, and among these, a metal resin composite film in which a metal layer is laminated on a resin film is preferable. Examples of the resin film include a polyethylene film and a polyethylene terephthalate film. The metal layer is not particularly limited, and a metal foil and a metal vapor deposition layer are preferable, and an aluminum foil is more preferable from the viewpoint of gas barrier property and productivity.
 カップ状容器1は、通常、多層シートを熱成形することで得られる。この多層シートは、少なくともガスバリア樹脂組成物層を備え、このガスバリア樹脂組成物層に他の層が積層されることが好ましい。他の層としては、例えば熱可塑性樹脂層、接着性樹脂層、回収層等が挙げられる。多層シートの層構造の具体例は、上述した通りである。 The cup-shaped container 1 is usually obtained by thermoforming a multilayer sheet. It is preferable that the multilayer sheet includes at least a gas barrier resin composition layer, and another layer is laminated on the gas barrier resin composition layer. Examples of the other layer include a thermoplastic resin layer, an adhesive resin layer, a recovery layer, and the like. Specific examples of the layer structure of the multilayer sheet are as described above.
(カップ状容器の製造方法)
 カップ状容器1は、図3に示すように連続多層シート21を加熱装置30により加熱して軟化させた後に、金型装置40を用いて熱成形することで製造される。
(Manufacturing method of cup-shaped container)
As shown in FIG. 3, the cup-shaped container 1 is manufactured by heating a continuous multilayer sheet 21 with a heating device 30 to soften it, and then thermoforming it using a mold device 40.
(加熱装置)
 加熱装置30は、一対のヒーター(ヒーター31及びヒーター32)を備えるものであり、これらのヒーター31及びヒーター32の間を連続多層シート21が通過可能とされている。なお、加熱装置30としては、熱プレスにより加熱するものを用いることもできる。
(Heating device)
The heating device 30 includes a pair of heaters (heater 31 and heater 32), and the continuous multilayer sheet 21 can pass between the heater 31 and the heater 32. As the heating device 30, a device that is heated by a hot press can also be used.
(金型装置)
 金型装置40は、プラグアシスト法による熱成形に適するものであり、チャンバー(図示略)内に収容される下型50及び上型51を備える。下型50及び上型51は、それぞれ個別に上下方向に移動可能であり、離間状態において、これらの下型50及び上型51の間を連続多層シート21が通過可能とされている。下型50は、カップ状容器1の収容部を形成するための複数の凹部52を有する。上型51は、下型50に向けて突出する複数のプラグ53を備える。複数のプラグ53は、下型50の複数の凹部52に対応した位置に設けられている。各プラグ53は、対応する凹部52に挿入可能である。
(Mold device)
The mold device 40 is suitable for thermoforming by the plug assist method, and includes a lower mold 50 and an upper mold 51 housed in a chamber (not shown). The lower mold 50 and the upper mold 51 can be individually moved in the vertical direction, and the continuous multilayer sheet 21 can pass between the lower mold 50 and the upper mold 51 in a separated state. The lower mold 50 has a plurality of recesses 52 for forming the accommodating portion of the cup-shaped container 1. The upper die 51 includes a plurality of plugs 53 projecting toward the lower die 50. The plurality of plugs 53 are provided at positions corresponding to the plurality of recesses 52 of the lower mold 50. Each plug 53 can be inserted into the corresponding recess 52.
(熱成形)
 まず、図3及び図4(A)に示すように、加熱装置30により軟化させた連続多層シート21に対して、下型50を上動させることで下型50に密着させると共に連続多層シート21を若干持ち上げて連続多層シート21にテンションを付与する。次に、図4(B)に示すように、上型51を下動させることでプラグ53を凹部52に挿入する。
(Thermoforming)
First, as shown in FIGS. 3 and 4A, the continuous multilayer sheet 21 softened by the heating device 30 is brought into close contact with the lower mold 50 by moving the lower mold 50 upward, and the continuous multilayer sheet 21 is brought into close contact with the lower mold 50. Is slightly lifted to give tension to the continuous multilayer sheet 21. Next, as shown in FIG. 4B, the plug 53 is inserted into the recess 52 by moving the upper mold 51 downward.
 続いて、図4(C)に示すように、上型51を上動させてプラグ53を凹部52から離間させた後にチャンバー(図示略)内を真空引きし、連続多層シート21を凹部52の内面に密着させる。その後、エアーの噴射により成形部を冷却することで形状を固定する。続いて、図4(D)に示すように、チャンバー(図示略)内を大気開放すると共に下型50を下動させて下型50を離型することで一次成形品が得られる。この一次成形品を切断することで、図1及び図2に示すカップ状容器1が得られる。 Subsequently, as shown in FIG. 4C, the upper mold 51 is moved upward to separate the plug 53 from the recess 52, and then the inside of the chamber (not shown) is evacuated to draw the continuous multilayer sheet 21 into the recess 52. Adhere to the inner surface. After that, the shape is fixed by cooling the molded portion by injecting air. Subsequently, as shown in FIG. 4D, the inside of the chamber (not shown) is opened to the atmosphere and the lower mold 50 is moved downward to release the lower mold 50, whereby a primary molded product is obtained. By cutting this primary molded product, the cup-shaped container 1 shown in FIGS. 1 and 2 can be obtained.
<熱成形容器のその他の実施形態>
 本発明の熱成形容器は、上述した形態に限定されず、トレイ状容器も本発明の熱成形容器に含まれる。トレイ状容器も、上述したカップ状容器等と同様の方法により製造することができる。当該トレイ状容器は、食品トレイ等として好適に用いられる。
<Other Embodiments of Thermoformed Container>
The thermoformed container of the present invention is not limited to the above-mentioned form, and the tray-shaped container is also included in the thermoformed container of the present invention. The tray-shaped container can also be manufactured by the same method as the cup-shaped container described above. The tray-shaped container is suitably used as a food tray or the like.
<ブロー成形容器>
 本発明のブロー成形容器は、本発明の成形体を備える。本発明のブロー成形容器は、本発明の成形体からなるブロー成形容器であってよい。すなわち、本発明の成形体の一実施形態は、ブロー成形容器であってよい。本発明のブロー成形容器は環境負荷が低く、バリア性、外観及び成形加工性も良好である。本発明のブロー成形容器は、ガスバリア性、耐油性等が要求される各種容器に使用できる。
<Blow molded container>
The blow-molded container of the present invention includes the molded product of the present invention. The blow-molded container of the present invention may be a blow-molded container made of the molded product of the present invention. That is, one embodiment of the molded product of the present invention may be a blow molded container. The blow-molded container of the present invention has a low environmental load and has good barrier properties, appearance and molding processability. The blow-molded container of the present invention can be used for various containers that require gas barrier properties, oil resistance, and the like.
 本発明のブロー成形容器は、本発明のガスバリア樹脂組成物以外の樹脂からなる層をx層、ガスバリア樹脂組成物層をy層、接着性樹脂層をz層とすると、例えば、容器内部表面から容器外部表面に向かって、(内)x/z/y/z/回収層/x(外)、(内)x/z/y/z/x(外)、(内)x/回収層/z/y/z/回収層/x(外)、(内)回収層/z/y/z/回収層(外)等の層構造のものを採用することができる。なお、接着性樹脂層の代わりに回収層を備える構成でもよく、x、y、z及び回収層がそれぞれ複数用いられている配置の場合、それぞれの層を構成する樹脂は同一でも異なっていてもよい。 In the blow-molded container of the present invention, when the layer made of a resin other than the gas barrier resin composition of the present invention is an x layer, the gas barrier resin composition layer is a y layer, and the adhesive resin layer is a z layer, for example, from the inner surface of the container. (Inside) x / z / y / z / Recovery layer / x (outside), (inside) x / z / y / z / x (outside), (inside) x / recovery layer / toward the outer surface of the container Layer structures such as z / y / z / recovery layer / x (outside) and (inside) recovery layer / z / y / z / recovery layer (outside) can be adopted. It should be noted that a configuration may include a recovery layer instead of the adhesive resin layer, and in the case of an arrangement in which a plurality of x, y, z and recovery layers are used, the resins constituting the respective layers may be the same or different. good.
 本発明のブロー成形容器は、ガスバリア樹脂組成物を用いてブロー成形する工程を有する製造方法により製造することが好ましい。ブロー成形は、ダイレクトブロー成形、インジェクションブロー成形、シートブロー成形、フリーブロー成形等の公知の方法により行うことができる。 The blow-molded container of the present invention is preferably manufactured by a manufacturing method including a step of blow-molding using a gas barrier resin composition. Blow molding can be performed by a known method such as direct blow molding, injection blow molding, sheet blow molding, and free blow molding.
 具体的には、例えばガスバリア樹脂組成物層を形成するガスバリア樹脂組成物ペレット、及び必要に応じて他の各層を形成する各樹脂を用い、ブロー成形機にて100℃~400℃の温度でブロー成形し、金型内温度10℃~30℃で10秒間~30分間冷却する。これにより、ブロー成形された中空容器を成形できる。ブロー成形の際の加熱温度は、150℃以上であってよく、180℃又は200℃以上であってよい。また、この加熱温度は、ガスバリア樹脂組成物の融点以上であってよい。一方、この加熱温度の上限は350℃であってよく、300℃又は250℃であってよい。本発明のブロー成形容器は、燃料容器や各種ボトル等の種々の用途で利用される。 Specifically, for example, a gas barrier resin composition pellet forming a gas barrier resin composition layer and, if necessary, each resin forming each other layer are used and blown at a temperature of 100 ° C. to 400 ° C. by a blow molding machine. Mold and cool at a mold temperature of 10 ° C to 30 ° C for 10 seconds to 30 minutes. This makes it possible to mold a blow-molded hollow container. The heating temperature at the time of blow molding may be 150 ° C. or higher, and may be 180 ° C. or 200 ° C. or higher. Further, this heating temperature may be equal to or higher than the melting point of the gas barrier resin composition. On the other hand, the upper limit of this heating temperature may be 350 ° C., and may be 300 ° C. or 250 ° C. The blow-molded container of the present invention is used for various purposes such as a fuel container and various bottles.
<燃料容器>
 本発明のブロー成形容器は、燃料容器として使用できる。本発明の燃料容器はフィルター、残量計、バッフルプレート等を備えていてもよい。本発明の燃料容器は、本発明のブロー成形容器を備えることで、環境負荷が低く、バリア性、外観及び成形加工性も良好であり、燃料容器として好適に用いられる。ここで、燃料容器とは、自動車、オートバイ、船舶、航空機、発電機、工業用若しくは農業用機器等に搭載された燃料容器、又はこれら燃料容器に燃料を補給するための携帯用燃料容器、さらには、燃料を保管するための容器を意味する。また、燃料としては、ガソリン、特にメタノール、エタノール又はMTBE等をブレンドした含酸素ガソリン等が代表例として挙げられるが、その他、重油、軽油、灯油等も含まれるものとする。これらうち、本発明の燃料容器は、含酸素ガソリン用燃料容器として特に好適に用いられる。
<Fuel container>
The blow molded container of the present invention can be used as a fuel container. The fuel container of the present invention may include a filter, a fuel gauge, a baffle plate, and the like. Since the fuel container of the present invention is provided with the blow-molded container of the present invention, it has a low environmental load, good barrier properties, appearance and moldability, and is suitably used as a fuel container. Here, the fuel container is a fuel container mounted on an automobile, a motorcycle, a ship, an aircraft, a generator, industrial or agricultural equipment, or a portable fuel container for refueling these fuel containers, and further. Means a container for storing fuel. As a typical example, gasoline, particularly oxygen-containing gasoline blended with methanol, ethanol, MTBE, etc., is mentioned as a fuel, but heavy oil, light oil, kerosene, etc. are also included. Of these, the fuel container of the present invention is particularly preferably used as a fuel container for oxygen-containing gasoline.
<ボトル容器>
 本発明のブロー成形容器は、ボトル容器として使用できる。本発明のボトル容器は、カバーフィルム、キャップ等、本発明のブロー成形容器以外の構成をさらに備えていてもよい。本発明のボトル容器の成形方法は例えば、ダイレクトブロー成形及びインジェクションブロー成形が挙げられる。ボトル状に成形した本発明のブロー成形容器は、環境負荷が低く、バリア性、外観及び成形加工性も良好であるため、食品、化粧品などのボトル容器に好適に用いられる。
<Bottle container>
The blow-molded container of the present invention can be used as a bottle container. The bottle container of the present invention may further include a structure other than the blow-molded container of the present invention, such as a cover film and a cap. Examples of the method for molding a bottle container of the present invention include direct blow molding and injection blow molding. The blow-molded container of the present invention molded into a bottle shape has a low environmental load and has good barrier properties, appearance, and molding processability, and is therefore preferably used for bottle containers for foods, cosmetics, and the like.
 <紙容器>
 本発明の紙容器は、本発明の成形体を備える。本発明の紙容器は、本発明の成形体からなる紙容器であってよい。すなわち、本発明の成形体の一実施形態は、紙容器であってよい。紙容器は紙基材を含む成形体からなり、カートンあるいはカップ等の形状に加工されることで作成される。かかる紙容器は、各種飲料等を長期に保存することが可能である。
<Paper container>
The paper container of the present invention comprises the molded product of the present invention. The paper container of the present invention may be a paper container made of the molded product of the present invention. That is, one embodiment of the molded product of the present invention may be a paper container. The paper container is made of a molded body containing a paper base material, and is made by processing it into a shape such as a carton or a cup. Such a paper container can store various beverages and the like for a long period of time.
 紙基材を含む成形体は、例えば、Tダイ法による押出コーティングで形成されることにより高速度での製膜が可能である。 The molded product containing the paper substrate can be formed at a high speed by being formed by, for example, extrusion coating by the T-die method.
<その他の実施形態>
 本発明は、上記実施形態に記載のものに限定されるものではない。本発明の成形体、フィルムまたはシート、包装材、産業用フィルムまたはシート、熱成形容器、カップ状容器、トレイ状容器、ブロー成形容器、燃料容器、ボトル容器、チューブおよび多層パイプのいずれも、例えば、ガスバリア樹脂組成物から形成されるガスバリア層のみからなる単層構造のもの、複数のガスバリア樹脂組成物から形成されるガスバリア層からなる多層構造のものなどであってもよい。
<Other embodiments>
The present invention is not limited to those described in the above embodiments. Any of the molded bodies, films or sheets, packaging materials, industrial films or sheets, thermoformed containers, cup-shaped containers, tray-shaped containers, blow-molded containers, fuel containers, bottle containers, tubes and multilayer pipes of the present invention, for example. , A single-layer structure composed of only a gas barrier layer formed of a gas barrier resin composition, a multi-layer structure composed of a gas barrier layer formed of a plurality of gas barrier resin compositions, and the like may be used.
 以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[評価方法]
(1)EVOHのエチレン単位含有量及びケン化度
 合成して得られたEVOHペレットについて、内部標準物質としてテトラメチルシラン、添加剤としてテトラフルオロ酢酸(TFA)を含むジメチルスルホキシド(DMSO)-dに溶解し、500MHzの1H-NMR(日本電子株式会社製「JMTC-400/54/SS」)を用いて80℃で測定し、エチレン単位含有量及びケン化度を測定した。
 上記測定のスペクトル中の各ピークは、以下のように帰属される。
 0.6~1.9ppm:エチレン単位のメチレンプロトン(4H)、ビニルアルコール単位のメチレンプロトン(2H)、酢酸ビニル単位のメチレンプロトン(2H)
 1.9~2.0ppm:酢酸ビニル単位のメチルプロトン(3H)
 3.1~4.2ppm:ビニルアルコール単位のメチンプロトン(1H)
(2)EVOHの融点
 合成して得られたEVOHペレットについて、TA Instruments製の示差走査型熱量計「Q2000」を用い、30℃から250℃までを10℃/分の速度で昇温し測定されるピーク温度より融点を求めた。
[Evaluation method]
(1) Ethylene unit content and degree of saponification of EVOH Dimethyl sulfoxide (DMSO) -d 6 containing tetramethylsilane as an internal standard and tetrafluoroacetic acid (TFA) as an additive for the synthesized EVOH pellets. The ethylene unit content and the degree of saponification were measured at 80 ° C. using 1H-NMR (“JMTC-400 / 54 / SS” manufactured by JEOL Ltd.) at 500 MHz.
Each peak in the spectrum of the above measurement is assigned as follows.
0.6 to 1.9 ppm: Methylene proton (4H) in ethylene unit, methylene proton (2H) in vinyl alcohol unit, methylene proton in vinyl acetate unit (2H)
1.9-2.0 ppm: Methyl proton (3H) in vinyl acetate unit
3.1-4.2 ppm: Methine proton (1H) in vinyl alcohol unit
(2) Melting point of EVOH The EVOH pellets obtained by synthesis are measured by raising the temperature from 30 ° C to 250 ° C at a rate of 10 ° C / min using a differential scanning calorimeter “Q2000” manufactured by TA Instruments. The melting point was calculated from the peak temperature.
(3)カルボン酸の定量
 合成して得られたEVOHペレット又は実施例及び比較例で得られたガスバリア樹脂組成物ペレット20gとイオン交換水100mLとを共栓付き200mL三角フラスコに投入し、冷却コンデンサーを付け、95℃で6時間攪拌抽出した。得られた抽出液にフェノールフタレインを指示薬としてN/50のNaOHで中和滴定し、カルボン酸のカルボン酸根換算の含有量を定量した。なお、リン化合物が含まれる態様においては、後述の評価方法で測定されるリン化合物の含有量を加味して、カルボン酸量を算出した。
(3) Quantification of Carboxylic Acid 20 g of EVOH pellets obtained by synthesis or gas barrier resin composition pellets obtained in Examples and Comparative Examples and 100 mL of ion-exchanged water are put into a 200 mL triangular flask with a stopper, and a cooling condenser is used. Was added, and the mixture was stirred and extracted at 95 ° C. for 6 hours. The obtained extract was neutralized and titrated with N / 50 NaOH using phenolphthalein as an indicator, and the content of carboxylic acid in terms of carboxylic acid root was quantified. In the embodiment containing a phosphorus compound, the amount of carboxylic acid was calculated by taking into account the content of the phosphorus compound measured by the evaluation method described later.
(4)金属イオン、リン酸化合物及びホウ素化合物の定量
 合成して得られたEVOHペレット又は実施例及び比較例で得られたガスバリア樹脂組成物ペレット0.5gをテフロン(登録商標)製圧力容器に入れ、ここに濃硝酸5mLを加えて室温で30分間分解させた。30分後蓋をし、湿式分解装置(アクタック社の「MWS-2」)により150℃で10分間、次いで180℃で5分間加熱することで分解を行い、その後室温まで冷却した。この処理液を50mLのメスフラスコ(TPX製)に移し純水でメスアップした。この溶液について、ICP発光分光分析装置(パーキンエルマー社の「OPTIMA4300DV」)により元素分析を行い、EVOHペレット又はガスバリア樹脂組成物ペレットに含まれる、金属イオンの金属原子換算量、リン化合物のリン原子換算量及びホウ素化合物のホウ素原子換算量を求めた。
(4) Quantitative determination of metal ions, phosphoric acid compounds and boron compounds 0.5 g of EVOH pellets obtained by synthesis or gas barrier resin composition pellets obtained in Examples and Comparative Examples were placed in a pressure vessel made of Teflon (registered trademark). It was added, 5 mL of concentrated nitric acid was added thereto, and the mixture was decomposed at room temperature for 30 minutes. After 30 minutes, the lid was closed, and the mixture was decomposed by heating at 150 ° C. for 10 minutes and then at 180 ° C. for 5 minutes using a wet decomposition device (“MWS-2” manufactured by Actac), and then cooled to room temperature. This treatment liquid was transferred to a 50 mL volumetric flask (manufactured by TPX) and scalpel-up with pure water. Elemental analysis of this solution was performed using an ICP emission spectrophotometer (PerkinElmer's "OPTIMA4300DV"), and the metal atom equivalent amount of metal ions and the phosphorus atom conversion of phosphorus compounds contained in EVOH pellets or gas barrier resin composition pellets. The amount and the boron atom equivalent amount of the boron compound were determined.
(5)バイオベース度
 合成して得られたEVOHペレット並びに実施例及び比較例で得られたガスバリア樹脂組成物ペレットについて、ASTM D6866-18に記載の方法に従い、加速器質量分析器(AMS)により放射性炭素(14C)の濃度を測定し、放射性炭素年代測定の原理に基づいて、バイオベース度を算出した。
(5) Bio-based degree The EVOH pellets obtained by synthesis and the gas barrier resin composition pellets obtained in Examples and Comparative Examples are radioactive by an accelerator mass spectrometer (AMS) according to the method described in ASTM D6866-18. The concentration of carbon ( 14 C) was measured and the degree of biobase was calculated based on the principle of radiocarbon dating.
(6)単層フィルムの評価
(6-1)単層フィルム製膜欠点評価
 単軸押出装置(株式会社東洋精機製作所の「D2020」;D(mm)=20、L/D=20、圧縮比=3.0、スクリュー:フルフライト)を用い、実施例及び比較例で得られたガスバリア樹脂組成物ペレットから平均厚み20μmの単層フィルムを作製した。このときの各条件は以下に示す通りである。
(単軸押出装置条件)
 押出温度:210℃
 スクリュー回転数:40rpm
 ダイス幅:30cm
 引取りロール温度:80℃
 引取りロール速度:3.1m/分
 上記条件で連続運転して単層フィルムを作製し、運転開始30分後に作製された各フィルムについて、フィルム長17cm当たりの欠点数をカウントした。上記欠点数のカウントは、フィルム欠点検査装置(フロンティアシステム社の「AI-10」) を用いて行った。なお、このフィルム欠点検査装置における検出カメラは、そのレンズ位置がフィルム面より195mmの距離となるように設置した。製膜欠点は、欠点数が50個未満の場合を「良好(A)」、50個以上200個未満の場合を「やや良好(B)」、200個以上の場合を「不良(C)」として判断した。
(6) Evaluation of single-layer film (6-1) Evaluation of defects in single-layer film formation Single-screw extruder (“D2020” by Toyo Seiki Seisakusho Co., Ltd .; D (mm) = 20, L / D = 20, compression ratio = 3.0, screw: full flight) was used to prepare a single-layer film having an average thickness of 20 μm from the gas barrier resin composition pellets obtained in Examples and Comparative Examples. Each condition at this time is as shown below.
(Conditions for single-screw extruder)
Extrusion temperature: 210 ° C
Screw rotation speed: 40 rpm
Die width: 30 cm
Pick-up roll temperature: 80 ° C
Take-up roll speed: 3.1 m / min A single-layer film was produced by continuous operation under the above conditions, and the number of defects per 17 cm of film length was counted for each film produced 30 minutes after the start of operation. The number of defects was counted using a film defect inspection device (“AI-10” manufactured by Frontier Systems). The detection camera in this film defect inspection device was installed so that the lens position was 195 mm from the film surface. The film-forming defects are "good (A)" when the number of defects is less than 50, "slightly good (B)" when the number of defects is 50 or more and less than 200, and "defective (C)" when the number of defects is 200 or more. Judged as.
(6-2)単層フィルム外観性の評価
 運転開始30分後に作製されたフィルムについて、目視にて外観性(ストリーク)を下記評価基準により評価した。また、フィルム100mを紙管に巻き取ったロールを作製し、ロールの端部の黄変による外観性(着色)を目視で下記評価基準により評価した。
(ストリークの評価基準)
 良好(A):ストリークは認められなかった
 やや良好(B):ストリークが確認された
 不良(C):多数のストリークが確認された
(ロール端部の着色の評価基準)
 良好(A):無色
 やや良好(B):黄変
 不良(C):著しく黄変
(6-2) Evaluation of Appearance of Single-Layer Film The appearance (streak) of the film produced 30 minutes after the start of operation was visually evaluated according to the following evaluation criteria. Further, a roll in which 100 m of the film was wound around a paper tube was prepared, and the appearance (coloring) due to yellowing of the end of the roll was visually evaluated according to the following evaluation criteria.
(Streak evaluation criteria)
Good (A): No streak was observed Slightly good (B): Streak was confirmed Defective (C): Many streak was confirmed (evaluation criteria for coloring at the end of the roll)
Good (A): Colorless Slightly good (B): Yellowing Poor (C): Significant yellowing
(7)酸素透過度
 実施例及び比較例で得られたガスバリア樹脂組成物ペレットを用いて、下記条件で厚み20μmの単層フィルムを製膜し、20℃/65%RHの条件下で調湿した後、酸素透過度測定装置(ModernControlの「OX-Tran2/20」)を使用し、20℃/65%RHの条件下で酸素透過度を測定した。なお、本測定はJIS K 7126-2(等圧法;2006年)に準拠して実施した。
(単層フィルムの作製)
 単軸押出装置(株式会社東洋精機製作所の「D2020」、D(mm)=20、L/D=20、圧縮比=3.0、スクリュー:フルフライト)を用い、上記ガスバリア樹脂組成物ペレットから厚み20μmの単層フィルムを作製した。押出条件は以下に示すとおりである。
 押出温度:210℃
 ダイス幅:30cm
 引取りロール温度:80℃
 スクリュー回転数:40rpm
 引取りロール速度:3.1m/分
(7) Oxygen permeability Using the gas barrier resin composition pellets obtained in Examples and Comparative Examples, a single-layer film having a thickness of 20 μm was formed under the following conditions, and humidity control was performed under the conditions of 20 ° C./65% RH. After that, the oxygen permeability was measured under the condition of 20 ° C./65% RH using an oxygen permeability measuring device (“OX-Tran2 / 20” of ModernControl). This measurement was carried out in accordance with JIS K 7126-2 (isopressure method; 2006).
(Making a single-layer film)
From the above gas barrier resin composition pellets using a single-screw extruder (“D2020” from Toyo Seiki Seisakusho Co., Ltd., D (mm) = 20, L / D = 20, compression ratio = 3.0, screw: full flight). A single-layer film having a thickness of 20 μm was produced. The extrusion conditions are as shown below.
Extrusion temperature: 210 ° C
Die width: 30 cm
Pick-up roll temperature: 80 ° C
Screw rotation speed: 40 rpm
Pick-up roll speed: 3.1 m / min
(8)多層フィルムの評価
(8-1)多層フィルム外観性の評価
 実施例及び比較例で得られたガスバリア樹脂組成物ペレットを用い、3種5層共押出機を用いて、下記条件にて、多層フィルム(ポリエチレン層/接着性樹脂層/ガスバリア樹脂組成物層/接着性樹脂層/ポリエチレン層、厚み(μm):60/10/10/10/60)を作成した。ポリエチレンとして日本ポリエチレン株式会社製「ノバテック(商標)UF943」を、接着性樹脂として三井化学株式会社製「アドマー(商標)NF528」を用いた。
(押出機条件)
各樹脂の押出温度:供給部/圧縮部/計量部/ダイ=170℃/170℃/210℃/210℃
ポリエチレンの押出機:32φ単軸押出機、GT-32-A型(株式会社プラスチック工学研究所製)
接着性樹脂の押出機:25φ単軸押出機、P25-18-AC型(大阪精機工作株式会社製)
ガスバリア樹脂組成物の押出機:20φ単軸押出機、ラボ機ME型CO-EXT(株式会社東洋精機製作所製)
Tダイ:300mm幅3種5層用(株式会社プラスチック工学研究所製)
冷却ロールの温度:50℃
引取速度:4m/分
 運転開始30分後に作製された多層フィルムについて、目視にてストリークの有無を下記評価基準により評価した。また、多層フィルム100mを紙管に巻き取ったロールを作製し、ロールの端部の黄変の有無を目視で下記評価基準により評価した。
(ストリークの評価基準)
 A(良好):ストリークは認められなかった
 B(やや良好):ストリークが確認された
 C(不良):多数のストリークが確認された
(ロール端部の着色の評価基準)
 A(良好):無色
 B(やや良好):黄変
 C(不良):著しく黄変
(8) Evaluation of multilayer film (8-1) Evaluation of appearance of multilayer film Using the gas barrier resin composition pellets obtained in Examples and Comparative Examples, using a 3 type 5-layer coextruder under the following conditions. , A multilayer film (polyethylene layer / adhesive resin layer / gas barrier resin composition layer / adhesive resin layer / polyethylene layer, thickness (μm): 60/10/10/10/60) was prepared. "Novatec (trademark) UF943" manufactured by Japan Polyethylene Corporation was used as the polyethylene, and "Admer (trademark) NF528" manufactured by Mitsui Chemicals, Inc. was used as the adhesive resin.
(Extruder conditions)
Extrusion temperature of each resin: Supply part / compression part / measuring part / die = 170 ℃ / 170 ℃ / 210 ℃ / 210 ℃
Polyethylene extruder: 32φ single-screw extruder, GT-32-A type (manufactured by Plastic Engineering Laboratory Co., Ltd.)
Adhesive resin extruder: 25φ single-screw extruder, P25-18-AC type (manufactured by Osaka Seiki Kogyo Co., Ltd.)
Extruder of gas barrier resin composition: 20φ single-screw extruder, laboratory machine ME type CO-EXT (manufactured by Toyo Seiki Seisakusho Co., Ltd.)
T-die: 300 mm width for 3 types and 5 layers (manufactured by Plastic Engineering Laboratory Co., Ltd.)
Cooling roll temperature: 50 ° C
Pick-up speed: 4 m / min The presence or absence of streaks was visually evaluated for the multilayer film produced 30 minutes after the start of operation according to the following evaluation criteria. Further, a roll in which 100 m of the multilayer film was wound on a paper tube was prepared, and the presence or absence of yellowing at the end of the roll was visually evaluated according to the following evaluation criteria.
(Streak evaluation criteria)
A (good): No streak was observed B (slightly good): Streak was confirmed C (defective): Many streaks were confirmed (evaluation criteria for coloring at the end of the roll)
A (good): colorless B (slightly good): yellowing C (poor): markedly yellowing
(8-2)酸素透過度の測定
 上記(8-1)で運転開始から30分後に作製された多層フィルムを20℃、65%RHの条件下で調湿した後、酸素透過度測定装置(Mocon Modern Controls.incの「OX-Tran2/20」)を使用し、20℃、65%RHの条件下で、JIS K 7126-2(等圧法;2006年)に記載の方法に準じて酸素透過度を測定した。
(8-2) Measurement of Oxygen Permeability After adjusting the humidity of the multilayer film produced 30 minutes after the start of operation in (8-1) above under the conditions of 20 ° C. and 65% RH, an oxygen permeability measuring device (8-2). Oxygen permeation according to the method described in JIS K 7126-2 (isopressure method; 2006) using "OX-Tran2 / 20") of Mocon Modern Controls.inc under the conditions of 20 ° C. and 65% RH. The degree was measured.
(9)熱成形容器評価
 実施例及び比較例で得られたガスバリア樹脂組成物ペレット、ポリプロピレン(日本ポリプロ株式会社製「ノバテック(商標)PP EA7AD」)、および接着性樹脂(三井化学株式会社製「アドマー(商標)QF551」)を用い、3種5層共押出装置を用いて、下記条件にて多層シート(ポリプロピレン/接着性樹脂/ガスバリア樹脂組成物/接着性樹脂/ポリプロピレン、厚み(μm):368/16/32/16/368)を作成した。
(押出機条件)
各樹脂の押出温度:供給部/圧縮部/計量部/ダイ=150℃/150℃/210℃/210℃ 
ポリプロピレン樹脂の押出機:32φ単軸押出機、GT-32-A型(株式会社プラスチック工学研究所製)
接着性樹脂の押出機:25φ単軸押出機、P25-18-AC型(大阪精機工作株式会社製)
EVOH樹脂組成物の押出機:20φ押出機、ラボ機ME型CO-EXT(株式会社東洋精機製作所製)
Tダイ:300mm幅3種5層用(株式会社プラスチック工学研究所製)
冷却ロールの温度:80℃
引取速度:1m/分
 運転開始30分後に作製された多層シートを採取し、得られた多層シートを熱成形機(株式会社浅野製作所製:真空圧空深絞り成形機「FX-0431-3型」)にて、シート温度を160℃にして、圧縮空気(気圧5kgf/cm)により、丸カップ形状(金型形状:上部75mmφ、下部60mmφ、深さ75mm、絞り比S=1.0)に熱成形することにより、熱成形容器を得た。成形条件を以下に示す。
 ヒーター温度:400℃
 プラグ   :45φ×65mm
 金型温度  :40℃
 目視にて得られたカップ形状の熱成形容器の外観を下記評価基準により評価した。
(外観の評価基準)
良好(A):ムラおよび局部的偏肉は認められなかった
やや良好(B):わずかなムラおよび局部的偏肉が確認された
不良(C):著しいムラおよび局部的偏肉が確認された
(9) Evaluation of thermoformed container Gas barrier resin composition pellets obtained in Examples and Comparative Examples, polypropylene (“Novatec (trademark) PP EA7AD” manufactured by Nippon Polypro Co., Ltd.), and adhesive resin (“Mitsui Chemicals Co., Ltd.” Admer ™ QF551 ”), using a 3 type 5 layer coextruder, under the following conditions, multi-layer sheet (polypropylene / adhesive resin / gas barrier resin composition / adhesive resin / polypropylene, thickness (μm): 368/16/32/16/368) was created.
(Extruder conditions)
Extrusion temperature of each resin: Supply part / compression part / measuring part / die = 150 ℃ / 150 ℃ / 210 ℃ / 210 ℃
Polypropylene resin extruder: 32φ single-screw extruder, GT-32-A type (manufactured by Plastic Engineering Laboratory Co., Ltd.)
Adhesive resin extruder: 25φ single-screw extruder, P25-18-AC type (manufactured by Osaka Seiki Kogyo Co., Ltd.)
EVOH resin composition extruder: 20φ extruder, laboratory machine ME type CO-EXT (manufactured by Toyo Seiki Seisakusho Co., Ltd.)
T-die: 300 mm width for 3 types and 5 layers (manufactured by Plastic Engineering Laboratory Co., Ltd.)
Cooling roll temperature: 80 ° C
Pick-up speed: 1 m / min Collect the multi-layer sheet produced 30 minutes after the start of operation, and use the obtained multi-layer sheet as a thermoforming machine (manufactured by Asano Manufacturing Co., Ltd .: vacuum compressed air deep drawing molding machine "FX-0431-3"". ), The sheet temperature is set to 160 ° C., and compressed air (atmospheric pressure 5 kgf / cm 2 ) makes it into a round cup shape (mold shape: upper part 75 mmφ, lower part 60 mmφ, depth 75 mm, drawing ratio S = 1.0). By thermoforming, a thermoformed container was obtained. The molding conditions are shown below.
Heater temperature: 400 ° C
Plug: 45φ x 65mm
Mold temperature: 40 ° C
The appearance of the cup-shaped thermoformed container obtained visually was evaluated according to the following evaluation criteria.
(Appearance evaluation criteria)
Good (A): No unevenness or local unevenness was observed. Slightly good (B): Slight unevenness and local unevenness were confirmed. Defective (C): Significant unevenness and local unevenness were confirmed.
(10)ブロー成形容器のストリーク評価
 実施例及び比較例で得られたEVOH樹脂組成物ペレット、高密度ポリエチレン(株式会社プライムポリマー製の「ハイゼックス(商標)8200B」)、及び接着性樹脂(三井化学株式会社の「ADMER(商標)GT-6A」)を用い、鈴木製工所製ブロー成形機TB-ST-6Pにて210℃で、(内側)高密度ポリエチレン層/接着性樹脂層/ガスバリア樹脂組成物層/接着性樹脂層/高密度ポリエチレン層/高密度ポリエチレン層(外側)の3種6層パリソンよりブロー成形容器を作成した。なお、ブロー成形容器の製造においては、金型内温度15℃で20秒間冷却し、全層平均厚み1000μm((内側)高密度ポリエチレン層/接着性樹脂層/ガスバリア樹脂組成物層/接着性樹脂層/高密度ポリエチレン層/高密度ポリエチレン層(外側)=(内側)340μm/50μm/40μm/50μm/400μm/120μm(外側))の3Lブロー成形容器を成形した。このブロー成形容器の底面平均直径は100mm、平均高さは400mmであった。運転開始より30分経過した後のブロー成形容器を採取し、外観目視及び円周方向の断面顕微鏡観察によるストリーク評価を行った。
(ストリークの評価基準)
 A(良好):ストリークは認められなかった。
 B(やや良好):ストリークが確認された。
 C(不良):多数のストリークが確認された。
(10) Streak evaluation of blow-molded container EVOH resin composition pellets obtained in Examples and Comparative Examples, high-density polyethylene (“HIZEX ™ 8200B” manufactured by Prime Polymer Co., Ltd.), and adhesive resin (Mitsui Chemicals). (Inside) high-density polyethylene layer / adhesive resin layer / gas barrier resin at 210 ° C. using a blow molding machine TB-ST-6P manufactured by Suzuki Kosakusho Co., Ltd. using "ADMER (trademark) GT-6A"). A blow-molded container was prepared from 3 types of 6-layer parisons of composition layer / adhesive resin layer / high-density polyethylene layer / high-density polyethylene layer (outside). In the manufacture of blow-molded containers, the mold is cooled at a temperature of 15 ° C. for 20 seconds, and the average thickness of all layers is 1000 μm ((inside) high-density polyethylene layer / adhesive resin layer / gas barrier resin composition layer / adhesive resin. A 3L blow-molded container of layer / high-density polyethylene layer / high-density polyethylene layer (outside) = (inside) 340 μm / 50 μm / 40 μm / 50 μm / 400 μm / 120 μm (outside) was molded. The bottom surface average diameter of this blow molded container was 100 mm, and the average height was 400 mm. Blow-molded containers were collected 30 minutes after the start of operation, and streak evaluation was performed by visual inspection of the appearance and observation of a cross-sectional microscope in the circumferential direction.
(Streak evaluation criteria)
A (good): No streak was observed.
B (slightly good): Streak was confirmed.
C (defective): Many streaks were confirmed.
(11)燃料透過度
 実施例及び比較例で得られたガスバリア樹脂組成物ペレット、高密度ポリエチレン(株式会社プライムポリマー製の「ハイゼックス(商標)8200B」)及び接着性樹脂(三井化学株式会社の「ADMER(商標)GT-6A」)を用い、上記(5)で用いた3種5層共押出装置及び押出機条件を使用して、多層フィルム(ポリエチレン/接着性樹脂/ガスバリア樹脂組成物/接着性樹脂/ポリエチレン)を作成した。多層フィルムの層構成は、内外層のポリエチレン樹脂が90μm、接着性樹脂が各10μm、中間層のガスバリア樹脂組成物層が20μmであった。得られた多層フィルムについて、GTRテック社フロー式ガス・蒸気透過率測定装置(GTR-30XFKE)を用いて、モデル燃料の透過度を測定した。多層フィルムは20℃65%RHで1ヶ月調湿し、測定は60℃で実施した。モデル燃料はCE10ガソリンを用い、その組成はトルエン/イソオクタン/エタノール=45/45/10質量%であった。
(11) Fuel permeability The gas barrier resin composition pellets obtained in Examples and Comparative Examples, high-density polyethylene (“HIZEX ™ 8200B” manufactured by Prime Polymer Co., Ltd.) and adhesive resin (“HIZEX ™ 8200B” manufactured by Prime Polymer Co., Ltd.) and adhesive resin (“Mitsui Chemicals Co., Ltd.” ADMER ™ GT-6A ”) and the multilayer film (polyethylene / adhesive resin / gas barrier resin composition / adhesion) using the 3 types and 5 layer co-extruder and extruder conditions used in (5) above. (Resin / polyethylene) was prepared. The layer structure of the multilayer film was 90 μm for the polyethylene resin of the inner and outer layers, 10 μm each for the adhesive resin, and 20 μm for the gas barrier resin composition layer of the intermediate layer. The permeability of the model fuel of the obtained multilayer film was measured using a GTR Tech flow-type gas / vapor transmittance measuring device (GTR-30XFKE). The multilayer film was humidity-controlled at 20 ° C. and 65% RH for 1 month, and the measurement was carried out at 60 ° C. CE10 gasoline was used as the model fuel, and its composition was toluene / isooctane / ethanol = 45/45/10% by mass.
[酢酸ビニル合成触媒の調製]
 上海海源化工科技有限公司製シリカ球体担体HSV-I(球体直径5mm、比表面積160m2/g、吸水率0.75g/g)23g(吸水量19.7g)に、56質量%テトラクロロパラジウム酸ナトリウム水溶液1.5g及び17質量%テトラクロロ金酸四水和物水溶液1.5gを含む担体吸水量相当の水溶液を含浸させた後、メタケイ酸ナトリウム9水和物2.5gを含む水溶液40mLに浸漬し、20時間静置した。続いて、52質量%ヒドラジン水和物水溶液3.3mLを添加し、室温で4時間静置した後、水中に塩化物イオンが無くなるまで水洗し、110℃で4時間乾燥した。得られたパラジウム/金/担体組成物を1.7質量%酢酸水溶液60mLに浸漬し、一晩静置した。次いで、一晩水洗し、110℃で4時間乾燥した。その後、2gの酢酸カリウムの担体吸水量相当水溶液に含浸し、110℃で4時間乾燥することで酢酸ビニル合成触媒を得た。
[Preparation of vinyl acetate synthesis catalyst]
Silica sphere carrier HSV-I (sphere diameter 5 mm, specific surface area 160 m2 / g, water absorption rate 0.75 g / g) 23 g (water absorption 19.7 g) manufactured by Shanghai Haiyuan Chemical Technology Co., Ltd., 56 mass% sodium tetrachloroplazate After impregnating with an aqueous solution equivalent to the amount of water absorbed by the carrier containing 1.5 g of the aqueous solution and 1.5 g of the 17 mass% tetrachlorogold acid tetrahydrate aqueous solution, the mixture is immersed in 40 mL of the aqueous solution containing 2.5 g of sodium metasilicate 9hydrate. Then, it was allowed to stand for 20 hours. Subsequently, 3.3 mL of a 52 mass% hydrazine hydrate aqueous solution was added, and the mixture was allowed to stand at room temperature for 4 hours, washed with water until chloride ions disappeared, and dried at 110 ° C. for 4 hours. The obtained palladium / gold / carrier composition was immersed in 60 mL of a 1.7 mass% acetic acid aqueous solution and allowed to stand overnight. Then, it was washed with water overnight and dried at 110 ° C. for 4 hours. Then, 2 g of potassium acetate was impregnated into an aqueous solution corresponding to the amount of water absorbed by the carrier and dried at 110 ° C. for 4 hours to obtain a vinyl acetate synthesis catalyst.
[酢酸ビニルの合成]
<VAM1の合成例>
 上記酢酸ビニル合成触媒3mLをガラスビーズ75mLで希釈してSUS316L製反応管(内径22mm、長さ480mm)に充填し、温度150℃、圧力0.6MPaGでエチレン/酸素/水/酢酸/窒素=47.3/6.1/5.6/26.3/14.7(mol%)の割合に混合したガスを流量20NL/時で流通させ、反応を行い、酢酸ビニル(VAM1)を合成した。エチレンには、バイオマス由来のエチレン(Braskem S.A.製、サトウキビ由来のバイオエチレン)を用い、このエチレンが充填されたガスボンベ(エチレン純度96.44%、内容積29.502L、内圧1.8234MPa)を使用した。また、酢酸には、バイオマス由来の酢酸(Godavari Biorefineries Ltd.製、サトウキビ由来のバイオ酢酸)を用い、220℃で気化させてから蒸気で反応系に導入した。
[Synthesis of vinyl acetate]
<Synthesis example of VAM1>
The vinyl acetate synthesis catalyst 3 mL is diluted with 75 mL of glass beads and filled in a SUS316L reaction tube (inner diameter 22 mm, length 480 mm), and ethylene / oxygen / water / acetic acid / nitrogen = 47 at a temperature of 150 ° C. and a pressure of 0.6 MPaG. A gas mixed at a ratio of 3.3 / 6.1 / 5.6 / 26.3 / 14.7 (mol%) was circulated at a flow rate of 20 NL / hour, and a reaction was carried out to synthesize vinyl acetate (VAM1). As ethylene, ethylene derived from biomass (bioethylene derived from sugar cane manufactured by Braskem SA) is used, and a gas cylinder filled with this ethylene (ethylene purity 96.44%, internal volume 29.502 L, internal pressure 1.8234 MPa). )It was used. As acetic acid, biomass-derived acetic acid (Bioacetate derived from sugarcane produced by Godavari Biorefines Ltd.) was used, vaporized at 220 ° C., and then introduced into the reaction system by steam.
<VAM2~VAM3の合成>
 原料のエチレン及び酢酸を表1に記載の通り、バイオマス由来及び/又は化石燃料由来のものに変更した以外は、VAM1と同様の方法でVAM2~VAM3の各酢酸ビニルを合成した。
<Synthesis of VAM2 to VAM3>
As shown in Table 1, each vinyl acetate of VAM2 to VAM3 was synthesized by the same method as VAM1 except that the raw materials ethylene and acetic acid were changed to those derived from biomass and / or fossil fuel.
 なお、酢酸ビニルの合成に用いた原料としては、下記の原料を使用した。
・バイオマス由来のエチレン  :Braskem S.A.製、サトウキビ由来のバイオエチレン
・化石燃料由来のエチレン:エア・リキード工業ガス株式会社製、化石燃料由来のエチレン
・バイオマス由来の酢酸    :Godavari Biorefineries Ltd.製、サトウキビ由来のバイオ酢酸
・化石燃料由来の酢酸  :富士フィルム和光純薬株式会社製、化石燃料由来の酢酸
The following raw materials were used as the raw materials used for the synthesis of vinyl acetate.
-Biomass-derived ethylene: Braskem S. A. Manufactured by Satoukibi-derived bioethylene / fossil fuel-derived ethylene: Air Liquid Industrial Gas Co., Ltd., manufactured by Fossil Fuel-derived ethylene / biomass-derived acetic acid: Godavari Biorefines Ltd. Bioacetic acid derived from sugar cane, acetic acid derived from fossil fuel: Acetic acid derived from fossil fuel manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[EVOHの合成]
<EVOH(A1)ペレットの作製>
(エチレン-酢酸ビニル共重合体の重合)
 ジャケット、攪拌機、窒素導入口、エチレン導入口及び開始剤添加口を備えた250L加圧反応槽に、VAM1を105kg、及びメタノール(以下、MeOHと称することもある)を32.3kg仕込み、65℃に昇温した後、30分間窒素バブリングして反応槽内を窒素置換した。次いで反応槽圧力(エチレン圧力)が3.67MPaとなるようにエチレンを昇圧して導入した。エチレンには、バイオマス由来のエチレン(Braskem S.A.製、サトウキビ由来のバイオエチレン)を用いた。反応槽内の温度を65℃に調整した後、開始剤として16.8gの2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬工業社の「V-65」)をメタノール溶液として添加し、重合を開始した。重合中はエチレン圧力を3.67MPaに、重合温度を65℃に維持した。3時間後にVAcの重合率が45%となったところで冷却して重合を停止した。反応槽を開放して脱エチレンした後、窒素ガスをバブリングして脱エチレンを完全に行った。次いで減圧下で未反応のVAcを除去した後、エチレン-酢酸ビニル共重合体にMeOHを添加して20質量%MeOH溶液とした。
[Synthesis of EVOH]
<Preparation of EVOH (A1) pellets>
(Polymerization of ethylene-vinyl acetate copolymer)
105 kg of VAM1 and 32.3 kg of methanol (hereinafter, also referred to as MeOH) were charged into a 250 L pressurized reaction vessel equipped with a jacket, a stirrer, a nitrogen inlet, an ethylene inlet and an initiator addition port, and the temperature was 65 ° C. After the temperature was raised to the above temperature, nitrogen bubbling was performed for 30 minutes to replace the inside of the reaction vessel with nitrogen. Next, ethylene was boosted and introduced so that the reaction vessel pressure (ethylene pressure) was 3.67 MPa. As ethylene, ethylene derived from biomass (bioethylene derived from sugar cane, manufactured by Braskem SA) was used. After adjusting the temperature in the reaction vessel to 65 ° C., 16.8 g of 2,2'-azobis (2,4-dimethylvaleronitrile) (“V-65” manufactured by Wako Pure Chemical Industries, Ltd.) as an initiator is methanol. It was added as a solution and polymerization was started. During the polymerization, the ethylene pressure was maintained at 3.67 MPa and the polymerization temperature was maintained at 65 ° C. After 3 hours, when the polymerization rate of VAc reached 45%, the mixture was cooled to terminate the polymerization. After opening the reaction vessel and deethyleneing, nitrogen gas was bubbled to completely deethylene. Then, after removing the unreacted VAC under reduced pressure, MeOH was added to the ethylene-vinyl acetate copolymer to prepare a 20% by mass MeOH solution.
(ケン化及び洗浄)
 得られたエチレン-酢酸ビニル共重合体ジャケットの20質量%MeOH溶液250kgを、攪拌機、窒素導入口、還流冷却器及び溶液添加口を備えた500L反応槽に入れ、かかる溶液に窒素を吹き込みながら60℃に昇温し、水酸化ナトリウム4kgを濃度2規定のMeOH溶液として添加した。水酸化ナトリウムの添加終了後、系内温度を60℃に保ちながら2時間攪拌してケン化反応を進行させた。2時間経過した後に、再度、同様の方法で水酸化ナトリウムを4kg添加し、2時間加熱攪拌を継続した。その後、酢酸を14kg添加してケン化反応を停止し、イオン交換水50kgを添加した。加熱攪拌しながら反応槽外にMeOHと水を留出させ反応液を濃縮した。3時間経過した後、更にイオン交換水50kgを添加し、EVOHを析出させた。デカンテーションにより析出したEVOHを収集し、ミキサーで粉砕した。得られたEVOH粉末を1g/Lの酢酸水溶液(浴比20:イオン交換水200Lに対し粉末10kgの割合)に投入して2時間攪拌洗浄した。これを脱液し、さらに1g/Lの酢酸水溶液(浴比20)に投入して2時間攪拌洗浄した。これを脱液したものを、イオン交換水(浴比20)に投入して攪拌洗浄を2時間行い脱液する操作を3回繰り返して精製を行った。これを60℃で16時間乾燥させることでEVOHの粗乾燥物を25kg得た。
(Saponification and cleaning)
250 kg of a 20 mass% MeOH solution of the obtained ethylene-vinyl acetate copolymer jacket was placed in a 500 L reaction vessel equipped with a stirrer, a nitrogen inlet, a reflux condenser and a solution addition port, and 60 while blowing nitrogen into the solution. The temperature was raised to ° C., and 4 kg of sodium hydroxide was added as a MeOH solution having a concentration of 2 specified. After the addition of sodium hydroxide was completed, the saponification reaction was allowed to proceed by stirring for 2 hours while keeping the temperature inside the system at 60 ° C. After 2 hours had passed, 4 kg of sodium hydroxide was added again in the same manner, and heating and stirring were continued for 2 hours. Then, 14 kg of acetic acid was added to stop the saponification reaction, and 50 kg of ion-exchanged water was added. The reaction solution was concentrated by distilling MeOH and water out of the reaction vessel while heating and stirring. After 3 hours had passed, 50 kg of ion-exchanged water was further added to precipitate EVOH. EVOH precipitated by decantation was collected and ground with a mixer. The obtained EVOH powder was put into a 1 g / L acetic acid aqueous solution (bath ratio 20: ratio of 10 kg of powder to 200 L of ion-exchanged water) and washed by stirring for 2 hours. This was deflated, further added to a 1 g / L acetic acid aqueous solution (bath ratio 20), and stirred and washed for 2 hours. The deflated product was put into ion-exchanged water (bath ratio 20), stirred and washed for 2 hours, and the operation of deflating the liquid was repeated 3 times for purification. By drying this at 60 ° C. for 16 hours, 25 kg of a crudely dried EVOH was obtained.
(EVOH含水ペレットの製造)
 得られたEVOHの粗乾燥物25kgを、ジャケット、攪拌機及び還流冷却器を備えた100L攪拌槽に入れ、さらに水20kg及びMeOH20gを加え、70℃に昇温して溶解させた。この溶解液を径3mmのガラス管を通して5℃に冷却した重量比で水/MeOH=90/10の混合液中に押し出してストランド状に析出させ、このストランドをストランドカッターでペレット状にカットすることでEVOHの含水ペレットを得た。このEVOHの含水ペレットを濃度1g/Lの酢酸水溶液(浴比20)に投入して2時間攪拌洗浄した。これを脱液し、さらに1g/Lの酢酸水溶液(浴比20)に投入して2時間攪拌洗浄した。脱液後、酢酸水溶液を更新し同様の操作を行った。酢酸水溶液で洗浄してから脱液したものを、イオン交換水(浴比20)に投入して攪拌洗浄を2時間行い脱液する操作を3回繰り返して精製を行い、ケン化反応時の触媒残渣とストランド析出時に使用したMeOHが除去された、EVOHの含水ペレットを得た。得られたEVOHの含水ペレットの含水率をメトラー社のハロゲン水分計「HR73」で測定したところ、110質量%であった。
(Manufacturing of EVOH hydrous pellets)
25 kg of the obtained crude EVOH was placed in a 100 L stirring tank equipped with a jacket, a stirrer and a reflux condenser, 20 kg of water and 20 g of MeOH were further added, and the temperature was raised to 70 ° C. to dissolve. This solution is extruded into a mixed solution of water / MeOH = 90/10 at a weight ratio cooled to 5 ° C. through a glass tube having a diameter of 3 mm to precipitate in a strand shape, and the strand is cut into a pellet shape with a strand cutter. A water-containing pellet of EVOH was obtained. The water-containing pellets of EVOH were put into an acetic acid aqueous solution (bath ratio 20) having a concentration of 1 g / L and washed by stirring for 2 hours. This was deflated, further added to a 1 g / L acetic acid aqueous solution (bath ratio 20), and stirred and washed for 2 hours. After the liquid was removed, the acetic acid aqueous solution was updated and the same operation was performed. After washing with an acetic acid aqueous solution and then deflated, the solution is put into ion-exchanged water (bath ratio 20), stirred and washed for 2 hours, and the operation of deflated is repeated 3 times to purify the catalyst during the saponification reaction. Water-containing pellets of EVOH were obtained from which the residue and MeOH used at the time of strand precipitation were removed. The water content of the obtained EVOH water-containing pellets was measured with a halogen moisture meter "HR73" manufactured by METTLER CORPORATION and found to be 110% by mass.
(EVOH(A1)ペレットの製造)
 得られたEVOHの含水ペレットを酢酸ナトリウム、酢酸、リン酸及びホウ酸が含まれる水溶液(浴比20)に投入し、定期的に攪拌しながら4時間浸漬させた。なお、各成分の濃度は、得られたEVOH(A1)ペレットにおける各成分の含有量が表2に記載の通りとなるように調整した。浸漬後に脱液し、空気下で80℃、3時間、及び空気下で130℃、7.5時間乾燥することにより、酢酸ナトリウム、酢酸、リン酸及びホウ酸を含むEVOH(A1)ペレットを得た。
(Manufacturing of EVOH (A1) pellets)
The obtained water-containing pellets of EVOH were put into an aqueous solution (bath ratio 20) containing sodium acetate, acetic acid, phosphoric acid and boric acid, and immersed for 4 hours with regular stirring. The concentration of each component was adjusted so that the content of each component in the obtained EVOH (A1) pellet was as shown in Table 2. After soaking, the liquid is drained and dried in air at 80 ° C. for 3 hours and in air at 130 ° C. for 7.5 hours to obtain EVOH (A1) pellets containing sodium acetate, acetic acid, phosphoric acid and boric acid. rice field.
 <EVOH(A2)~EVOH(A6)、EVOH(B1)~(B5)の各ペレットの作製>
 原料(原料モノマー)のエチレン及び酢酸ビニルの種類並びにリン酸化合物及びホウ素化合物の含有量を表2に記載の通り変更し、且つエチレン及び酢酸ビニルの使用量を適宜変更した以外は、EVOH(A1)ペレットと同様の方法で、EVOH(A2)ペレット~EVOH(A6)ペレット及びEVOH(B1)~EVOH(B5)ペレットを作製した。化石燃料由来のエチレンには、エア・リキード工業ガス株式会社製のエチレンを用いた。
<Preparation of each pellet of EVOH (A2) to EVOH (A6) and EVOH (B1) to (B5)>
EVOH (A1) except that the types of ethylene and vinyl acetate as raw materials (raw material monomers) and the contents of phosphoric acid compounds and boron compounds were changed as shown in Table 2, and the amounts of ethylene and vinyl acetate used were changed as appropriate. ) EVOH (A2) pellets to EVOH (A6) pellets and EVOH (B1) to EVOH (B5) pellets were prepared in the same manner as the pellets. As the ethylene derived from fossil fuel, ethylene manufactured by Air Liquide Industrial Gas Co., Ltd. was used.
 EVOH(A1)ペレット~EVOH(A6)ペレット及びEVOH(B1)~EVOH(B5)ペレットのそれぞれについて、上記評価方法(1)~(5)に記載の方法に従い、エチレン単位含有量及びケン化度、融点、カルボン酸の定量、金属イオン、リン酸化合物及びホウ素化合物の定量、並びにバイオベース度の測定を行った。結果を表2に示す。 For each of the EVOH (A1) pellets to the EVOH (A6) pellets and the EVOH (B1) to the EVOH (B5) pellets, the ethylene unit content and the degree of saponification according to the methods described in the above evaluation methods (1) to (5). , Melting point, quantification of carboxylic acid, quantification of metal ion, phosphoric acid compound and boron compound, and measurement of biobase degree. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[実施例]
<実施例1>
 EVOH(A1)ペレットを、二軸押出機(株式会社東洋精機製作所の「2D25W」、25mmφ,ダイ温度220℃,スクリュー回転数100rpm)を用い、窒素雰囲気下で押出しペレット化を行い、実施例1のガスバリア樹脂組成物ペレットを得た。
[Example]
<Example 1>
EVOH (A1) pellets are extruded and pelletized in a nitrogen atmosphere using a twin-screw extruder (“2D25W” manufactured by Toyo Seiki Seisakusho Co., Ltd., 25 mmφ, die temperature 220 ° C., screw rotation speed 100 rpm), and Example 1 Gas barrier resin composition pellets were obtained.
 得られた実施例1のガスバリア樹脂組成物ペレットについて、上記評価方法(3)~(8)、(10)及び(11)に記載の方法に従って、カルボン酸の定量、金属イオン、リン酸化合物及びホウ素化合物の定量、バイオベース度、単層フィルム評価、酸素透過度、多層フィルム評価、ブロー成形容器のストリーク評価、並びに燃料透過度の測定又は評価を行った。結果を表3及び表4に示す。なお、表3のエチレン単位含有量及びケン化度は、表2の結果を再掲したものである。 With respect to the obtained gas barrier resin composition pellets of Example 1, quantification of carboxylic acid, metal ion, phosphoric acid compound and according to the methods described in the above evaluation methods (3) to (8), (10) and (11). Quantification of boron compounds, biobase degree, single layer film evaluation, oxygen permeability, multilayer film evaluation, streak evaluation of blow-molded container, and measurement or evaluation of fuel permeability were performed. The results are shown in Tables 3 and 4. The ethylene unit content and saponification degree in Table 3 are the results of Table 2 reprinted.
 <実施例2、4~6、比較例1、3~5>
 用いたEVOHの種類を、表3に記載の通り変更した以外は、実施例1と同様の方法で実施例2、4~6及び比較例1、3~5の各ガスバリア樹脂組成物ペレットを作製し、評価した。結果を表3及び表4に示す。
<Examples 2, 4 to 6, Comparative Examples 1, 3 to 5>
Each gas barrier resin composition pellet of Examples 2, 4 to 6 and Comparative Examples 1, 3 to 5 was prepared in the same manner as in Example 1 except that the type of EVOH used was changed as shown in Table 3. And evaluated. The results are shown in Tables 3 and 4.
 <実施例3、比較例2>
 用いたEVOHの種類及び質量比(割合)を、表3に記載の通り変更した以外は、実施例1と同様の方法で実施例3及び比較例2の各ガスバリア樹脂組成物ペレットを作製し、上記評価方法(3)~(9)に記載の方法に従って、カルボン酸の定量、金属イオン、リン酸化合物及びホウ素化合物の定量、バイオベース度、単層フィルム評価、酸素透過度、多層フィルム評価、並びに熱成形容器評価の測定又は評価を行った。結果を表3及び表4に示す。なお、表3のエチレン単位含有量及びケン化度は、表2の結果を再掲したものである。
<Example 3, Comparative Example 2>
The gas barrier resin composition pellets of Example 3 and Comparative Example 2 were prepared in the same manner as in Example 1 except that the type and mass ratio (ratio) of EVOH used were changed as shown in Table 3. According to the methods described in the above evaluation methods (3) to (9), quantification of carboxylic acid, quantification of metal ion, phosphoric acid compound and boron compound, biobase degree, single layer film evaluation, oxygen permeability, multilayer film evaluation, In addition, the evaluation of the thermoformed container was measured or evaluated. The results are shown in Tables 3 and 4. The ethylene unit content and saponification degree in Table 3 are the results of Table 2 reprinted.
 実施例1~6及び比較例1~5で得られたガスバリア樹脂組成物ペレットについて、下記記載の方法に従って硫黄化合物の測定を行った。結果(硫黄化合物の硫黄原子換算の含有量及び種類)を表3に示す。
 <硫黄化合物含有量の測定>
 硫黄化合物の定量は三菱アナリテック製微量窒素硫黄分析装(TS-2100H型)を用いて行い、測定条件は以下の通りとした。
ヒーター温度:Inlet 900℃,Outlet 900℃
ガス流量:Ar,O各300ml/min
[分析システム NSX-2100]
測定モード:TS
パラメータ:SD-210
測定時間(タイマー):540秒(9分)
PMT感度:高濃度
 硫黄化合物の同定は、ガスクロマトグラフィー(GC)と、ガスクロマトグラフィー質量分析法(GC/MS)を用いて行った。GCの検出器としては、微量の硫黄化合物、リン化合物に対して高い感度を示すFPD(炎光光度検出器)を用いて行い、硫黄化合物が検出された保持時間で観測された質量成分を解析することで、同定を行った。
The sulfur compounds of the gas barrier resin composition pellets obtained in Examples 1 to 6 and Comparative Examples 1 to 5 were measured according to the method described below. The results (contents and types of sulfur compounds in terms of sulfur atoms) are shown in Table 3.
<Measurement of sulfur compound content>
The quantification of sulfur compounds was performed using a trace nitrogen sulfur analytical instrument (TS-2100H type) manufactured by Mitsubishi Analytech, and the measurement conditions were as follows.
Heater temperature: Inlet 900 ℃, Outlet 900 ℃
Gas flow rate: Ar, O 2 300 ml / min each
[Analysis system NSX-2100]
Measurement mode: TS
Parameters: SD-210
Measurement time (timer): 540 seconds (9 minutes)
PMT Sensitivity: High-concentration sulfur compounds were identified using gas chromatography (GC) and gas chromatography-mass spectrometry (GC / MS). As a GC detector, an FPD (flame light intensity detector), which is highly sensitive to trace amounts of sulfur compounds and phosphorus compounds, is used to analyze the mass components observed during the retention time when sulfur compounds are detected. By doing so, identification was performed.
 <実施例7および比較例6>
(共押出コート紙評価) 
 基材としてカートン紙(厚み500μm、坪量400g/m)を用いて、3種5層の共押出コートを行った。共押出の構成は低密度ポリエチレン/接着層/ガスバリア樹脂組成物層/接着層/低密度ポリエチレン/カートン紙であり、厚み構成は20/5/5/5/20/500μmである。低密度ポリエチレン用押出機、EVOH用押出機、接着層用押出機とそれぞれの押出機から供給される樹脂を合流、分配するフィードブロックとT型ダイスを使用した。低密度ポリエチレンとしては線状低密度ポリエチレン(株式会社プライムポリマー製「ウルトゼックス(商標)2022L」)を、また、接着層としては無水マレイン酸で変性されたポリプロピレン(三井化学株式会社製「アドマー(商標)QF-500」)を使用した。このときのフィードブロック、T型ダイスの温度条件を250℃、引取速度は300m/minとした。運転開始30分後に作製された共押出コート紙について、目視にて共押出コート面側のストリークの有無を下記評価基準により評価した。
(ストリークの評価基準)
 A(良好):ストリークは認められなかった
 B(やや良好):ストリークが確認された
 C(不良):多数のストリークが確認された
<Example 7 and Comparative Example 6>
(Evaluation of co-extruded coated paper)
Using carton paper (thickness 500 μm, basis weight 400 g / m 2 ) as a base material, coextrusion coating of 3 types and 5 layers was performed. The coextrusion structure is low density polyethylene / adhesive layer / gas barrier resin composition layer / adhesive layer / low density polyethylene / carton paper, and the thickness structure is 20/5/5/5/20/500 μm. A feed block and a T-shaped die were used to merge and distribute a low-density polyethylene extruder, an EVOH extruder, an adhesive layer extruder, and resins supplied from the respective extruders. The low-density polyethylene is linear low-density polyethylene ("Ultzex (trademark) 2022L" manufactured by Prime Polymer Co., Ltd.), and the adhesive layer is polypropylene modified with maleic anhydride ("Admer (Admer)" manufactured by Mitsui Chemicals, Inc. Trademark) QF-500 ") was used. At this time, the temperature conditions of the feed block and the T-shaped die were set to 250 ° C., and the pick-up speed was set to 300 m / min. With respect to the coextruded coated paper produced 30 minutes after the start of operation, the presence or absence of streaks on the coextruded coated surface side was visually evaluated according to the following evaluation criteria.
(Streak evaluation criteria)
A (good): No streak was observed B (slightly good): Streak was confirmed C (bad): Many streaks were confirmed
 ガスバリア樹脂組成物として、それぞれ実施例5および比較例4の各ガスバリア樹脂組成物ペレットを用いて共押出コート紙評価を行った結果をそれぞれ実施例7および比較例6とする。実施例7および比較例6のストリーク評価はAであった。 The results of coextrusion coated paper evaluation using each of the gas barrier resin composition pellets of Example 5 and Comparative Example 4 as the gas barrier resin composition are referred to as Example 7 and Comparative Example 6, respectively. The streak evaluation of Example 7 and Comparative Example 6 was A.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表3及び表4に示されるように、実施例1~6の各ガスバリア樹脂組成物は、バイオマス由来の原料を用いていながら、化石燃料由来のみのもの(比較例1~5のガスバリア樹脂組成物)と遜色のない高いガスバリア性及び成形加工性を有しており、その性能はバイオマスあるいは化石燃料といった原料に起因しないことが示唆された。 As shown in Tables 3 and 4, the gas barrier resin compositions of Examples 1 to 6 are only derived from fossil fuels while using raw materials derived from biomass (gas barrier resin compositions of Comparative Examples 1 to 5). ), It has high gas barrier properties and molding processability comparable to those of), and it is suggested that its performance is not due to raw materials such as biomass or fossil fuels.
 <実施例8>
 前記実施例3について、上記評価方法(9)熱成形容器評価で得られた運転開始30分後の熱成形容器を用いて、追跡可能性(トレーサビリティ性)の評価を行った。具体的には得られた熱成形容器のEVOH層を取り出し、トレーサビリティ用試料とした。取り出したEVOH層のバイオベース度を上記評価方法(5)に記載の方法に従って測定したところ100%であり、実施例3のガスバリア樹脂組成物ペレットで得られた値と一致し、トレーサビリティ性があることが確認された。また、取り出したEVOH層の硫黄化合物含有量の測定、及びその同定を行ったところ、硫黄化合物は硫黄原子換算で1.2ppmであり、硫黄化合物はジメチルスルフィドであり、実施例3のガスバリア樹脂組成物ペレットで得られた値と一致し、トレーサビリティ性があることが確認された。
<Example 8>
The traceability of Example 3 was evaluated using the thermoformed container 30 minutes after the start of operation obtained in the evaluation method (9) thermoformed container evaluation. Specifically, the EVOH layer of the obtained thermoformed container was taken out and used as a traceability sample. The biobase degree of the removed EVOH layer was measured according to the method described in the above evaluation method (5) and found to be 100%, which is consistent with the value obtained in the gas barrier resin composition pellet of Example 3 and has traceability. It was confirmed that. Further, when the sulfur compound content of the extracted EVOH layer was measured and identified, the sulfur compound was 1.2 ppm in terms of sulfur atom, the sulfur compound was dimethyl sulfide, and the gas barrier resin composition of Example 3 was obtained. It was confirmed that the value was consistent with the value obtained with the product pellet and that it had traceability.
 1 カップ状容器
 2 カップ本体
 3 フランジ部
 4 開口
 5 内表面
 6 外表面
 7 蓋
 21 連続多層シート
 30 加熱装置
 31,32 ヒーター
 40 金型装置
 50 下型
 51 上型
 52 凹部
 53 プラグ
1 Cup-shaped container 2 Cup body 3 Flange part 4 Opening 5 Inner surface 6 Outer surface 7 Lid 21 Continuous multi-layer sheet 30 Heating device 31, 32 Heater 40 Mold device 50 Lower mold 51 Upper mold 52 Recessed 53 Plug

Claims (26)

  1.  エチレン-ビニルエステル共重合体ケン化物を含み、
     上記エチレン-ビニルエステル共重合体ケン化物の原料であるエチレン及びビニルエステルがバイオマス由来である、ガスバリア樹脂組成物。
    Containing ethylene-vinyl ester copolymer saken product,
    A gas barrier resin composition in which ethylene and vinyl ester, which are raw materials for the ethylene-vinyl ester copolymer saponified product, are derived from biomass.
  2.  上記エチレン-ビニルエステル共重合体ケン化物のバイオベース度が99%超である、請求項1に記載のガスバリア樹脂組成物。 The gas barrier resin composition according to claim 1, wherein the ethylene-vinyl ester copolymer saken product has a biobase degree of more than 99%.
  3.  バイオベース度が99%超である、請求項1または2に記載のガスバリア樹脂組成物。 The gas barrier resin composition according to claim 1 or 2, wherein the degree of biobase is more than 99%.
  4.  硫黄化合物を硫黄原子換算で0ppmを超えて100ppm以下含む、請求項1~3のいずれか1項に記載のガスバリア樹脂組成物。 The gas barrier resin composition according to any one of claims 1 to 3, which contains a sulfur compound in an amount of more than 0 ppm and 100 ppm or less in terms of sulfur atom.
  5.  上記硫黄化合物が、ジメチルスルフィドまたはジメチルスルホキシドである、請求項4に記載のガスバリア樹脂組成物。 The gas barrier resin composition according to claim 4, wherein the sulfur compound is dimethyl sulfide or dimethyl sulfoxide.
  6.  上記エチレン-ビニルエステル共重合体ケン化物が、エチレン-ビニルエステル共重合体ケン化物(X)と、上記エチレン-ビニルエステル共重合体ケン化物(X)よりも融点が低いエチレン-ビニルエステル共重合体ケン化物(Y)とを含む、請求項1~5のいずれか1項に記載のガスバリア樹脂組成物。 The ethylene-vinyl ester copolymer saken product has a lower melting point than the ethylene-vinyl ester copolymer saken product (X) and the ethylene-vinyl ester copolymer saken product (X). The gas barrier resin composition according to any one of claims 1 to 5, which comprises a coalesced polymer (Y).
  7.  上記エチレン-ビニルエステル共重合体ケン化物(X)と上記エチレン-ビニルエステル共重合体ケン化物(Y)との質量比(X/Y)が60/40以上95/5以下である、請求項6に記載のガスバリア樹脂組成物。 The claim that the mass ratio (X / Y) of the ethylene-vinyl ester copolymer saken product (X) and the ethylene-vinyl ester copolymer saken product (Y) is 60/40 or more and 95/5 or less. The gas barrier resin composition according to 6.
  8.  上記エチレン-ビニルエステル共重合体ケン化物(X)と上記エチレン-ビニルエステル共重合体ケン化物(Y)との融点の差(X-Y)が15℃以上である、請求項6または7に記載のガスバリア樹脂組成物。 6. The gas barrier resin composition according to the above.
  9.  カルボン酸をカルボン酸根換算で30ppm以上1000ppm以下含む、請求項1~8のいずれか1項に記載のガスバリア樹脂組成物。 The gas barrier resin composition according to any one of claims 1 to 8, which contains carboxylic acid in an amount of 30 ppm or more and 1000 ppm or less in terms of carboxylic acid root.
  10.  金属イオンを1ppm以上1000ppm以下含む、請求項1~9のいずれか1項に記載のガスバリア樹脂組成物。 The gas barrier resin composition according to any one of claims 1 to 9, which contains 1 ppm or more and 1000 ppm or less of metal ions.
  11.  リン酸化合物をリン原子換算で1ppm以上200ppm以下含む、請求項1~10のいずれか1項に記載のガスバリア樹脂組成物。 The gas barrier resin composition according to any one of claims 1 to 10, which contains 1 ppm or more and 200 ppm or less of a phosphoric acid compound in terms of phosphorus atoms.
  12.  ホウ素化合物をホウ素原子換算で5ppm以上5000ppm以下含む、請求項1~11のいずれか1項に記載のガスバリア樹脂組成物。 The gas barrier resin composition according to any one of claims 1 to 11, which contains a boron compound in an amount of 5 ppm or more and 5000 ppm or less in terms of boron atom.
  13.  請求項1~12のいずれか1項に記載のガスバリア樹脂組成物から形成される層を備える、成形体。 A molded product comprising a layer formed from the gas barrier resin composition according to any one of claims 1 to 12.
  14.  熱可塑性樹脂層をさらに備える、請求項13に記載の成形体。 The molded product according to claim 13, further comprising a thermoplastic resin layer.
  15.  請求項13または14に記載の成形体を備える、フィルムまたはシート。 A film or sheet comprising the molded product according to claim 13 or 14.
  16.  請求項15に記載のフィルムまたはシートを備える、包装材。 A packaging material comprising the film or sheet according to claim 15.
  17.  請求項13または14に記載の成形体を備える、産業用フィルムまたはシート。 An industrial film or sheet comprising the molded product according to claim 13 or 14.
  18.  請求項13または14に記載の成形体を備える、熱成形容器。 A thermoformed container comprising the molded product according to claim 13 or 14.
  19.  請求項18に記載の熱成形容器を備える、カップ状容器。 A cup-shaped container provided with the thermoformed container according to claim 18.
  20.  請求項18に記載の熱成形容器を備える、トレイ状容器。 A tray-shaped container provided with the thermoformed container according to claim 18.
  21.  請求項13または14に記載の成形体を備える、ブロー成形容器。 A blow-molded container comprising the molded product according to claim 13 or 14.
  22.  請求項21に記載のブロー成形容器を備える、燃料容器。 A fuel container comprising the blow-molded container according to claim 21.
  23.  請求項21に記載のブロー成形容器を備える、ボトル容器。 A bottle container provided with the blow-molded container according to claim 21.
  24.  請求項13または14に記載の成形体を備える、チューブ。 A tube comprising the molded product according to claim 13 or 14.
  25.  請求項13または14に記載の成形体を備える、多層パイプ。 A multi-layer pipe comprising the molded body according to claim 13 or 14.
  26.  請求項13または14に記載の成形体を備える、紙容器。 A paper container comprising the molded product according to claim 13 or 14.
PCT/JP2021/024450 2020-06-30 2021-06-29 Gas barrier resin composition, molded body, film or sheet, packaging material, film or sheet for industrial uses, heat molded container, cup shaped container, tray shaped container, blow molded container, fuel container, bottle container, tube, multilayer pipe and paper container WO2022004691A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022534017A JPWO2022004691A1 (en) 2020-06-30 2021-06-29

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020113327 2020-06-30
JP2020-113327 2020-06-30
JP2020-205860 2020-12-11
JP2020205860 2020-12-11

Publications (1)

Publication Number Publication Date
WO2022004691A1 true WO2022004691A1 (en) 2022-01-06

Family

ID=79316232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024450 WO2022004691A1 (en) 2020-06-30 2021-06-29 Gas barrier resin composition, molded body, film or sheet, packaging material, film or sheet for industrial uses, heat molded container, cup shaped container, tray shaped container, blow molded container, fuel container, bottle container, tube, multilayer pipe and paper container

Country Status (3)

Country Link
JP (1) JPWO2022004691A1 (en)
TW (1) TW202208488A (en)
WO (1) WO2022004691A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104647A (en) * 2016-12-28 2018-07-05 日本合成化学工業株式会社 Ethylene-vinyl ester-based copolymer saponified product pellet and manufacturing method therefor
JP2019182947A (en) * 2018-04-04 2019-10-24 株式会社クラレ Resin composition and use therefor
WO2019202405A1 (en) * 2018-04-16 2019-10-24 Braskem, S.A. Bio-based eva compositions and articles and methods thereof
WO2020071513A1 (en) * 2018-10-04 2020-04-09 株式会社クラレ Multilayer structure and packaging material comprising same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104647A (en) * 2016-12-28 2018-07-05 日本合成化学工業株式会社 Ethylene-vinyl ester-based copolymer saponified product pellet and manufacturing method therefor
JP2019182947A (en) * 2018-04-04 2019-10-24 株式会社クラレ Resin composition and use therefor
WO2019202405A1 (en) * 2018-04-16 2019-10-24 Braskem, S.A. Bio-based eva compositions and articles and methods thereof
WO2020071513A1 (en) * 2018-10-04 2020-04-09 株式会社クラレ Multilayer structure and packaging material comprising same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAITO, SHOJI: "Sugar Information, AGRICULTURE & LIVESTOCK INDUSTRIES CORPORATION", MULTIPURPOSE USE OF SUGAR ~ USE AS AN INTERMEDIATE CHEMICAL RAW MATERIAL OBTAINED BY FERMENTATION~, 6 March 2010 (2010-03-06), Retrieved from the Internet <URL:https://sugar.alic.go.jp/japan/example_03/example0808a.htm> *
SCHMID, M. ET AL.: "Technofunctional properties of films made from ethylene vinyl acetate/whey protein isolate compounds", PACKAGING TECHNOLOGY AND SCIENCE, vol. 27, no. 7, 24 October 2013 (2013-10-24), pages 521 - 533, XP055895902 *

Also Published As

Publication number Publication date
TW202208488A (en) 2022-03-01
JPWO2022004691A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
EP3168242B1 (en) Method for producing a thermoformed container
TWI577700B (en) Modified ethylene-vinyl alcohol copolymer, production method therefor, and use thereof
TW201936663A (en) Resin composition, molded body, multilayer structure, film, vapor deposition film, packaging material, vacuum packaging bag, vacuum insulation body, thermoformed container, blow molded container, fuel container, and bottle container
WO2022004701A1 (en) Gas-barrier resin composition, method for producing gas-barrier resin composition, and molded body
JP7019856B2 (en) Molds, films or sheets, heat shrink films or sheets, packaging materials, industrial films or sheets, thermoformed containers, cup-shaped containers, tray-shaped containers, blow molded containers, fuel containers, bottle containers, tubes, multilayer pipes and paper. container
WO2022004691A1 (en) Gas barrier resin composition, molded body, film or sheet, packaging material, film or sheet for industrial uses, heat molded container, cup shaped container, tray shaped container, blow molded container, fuel container, bottle container, tube, multilayer pipe and paper container
JP6680694B2 (en) Polymethallyl alcohol resin composition and molded article using the same
JP7007518B1 (en) Manufacturing method of gas barrier resin composition, multi-layer structure, packaging material, vertical bag filling seal bag, inner container for back-in box, laminated peeling container, multi-layer tube, blow molded container and gas barrier resin composition
JP7007517B1 (en) A method for producing a gas barrier resin composition, a multilayer structure, a packaging material, and a gas barrier resin composition.
JP7065237B2 (en) Gas barrier resin compositions, multilayer sheets, packaging materials and containers
JP7007516B1 (en) Gas barrier resin composition, single layer film, multilayer film, thin film and multilayer structure
JP7065234B2 (en) A method for producing a gas barrier resin composition, a multilayer structure, and a gas barrier resin composition.
JP7008859B1 (en) Single layer film, thin film, multilayer film and heat seal film
JP7008860B1 (en) Gas barrier resin compositions, multilayer structures, pipes, hot water circulation pipes, adiabatic multilayer pipes, and fuel pipes.
JPH07308996A (en) Fuel vessel and fuel feeding pipe
JP6634386B2 (en) Polymethallyl alcohol resin composition and molded article using the same
JP5409376B2 (en) Molded product and manufacturing method thereof
WO2024085228A1 (en) Multilayer film, packaging material, and reaction apparatus
CN118043396A (en) Resin composition, molded article, multilayer structure, thermoformed container, blow molded container, and vapor deposition film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534017

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21834297

Country of ref document: EP

Kind code of ref document: A1