WO2022004688A1 - Radiation camera - Google Patents

Radiation camera Download PDF

Info

Publication number
WO2022004688A1
WO2022004688A1 PCT/JP2021/024444 JP2021024444W WO2022004688A1 WO 2022004688 A1 WO2022004688 A1 WO 2022004688A1 JP 2021024444 W JP2021024444 W JP 2021024444W WO 2022004688 A1 WO2022004688 A1 WO 2022004688A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
light emitting
radiation detection
detection element
emitting element
Prior art date
Application number
PCT/JP2021/024444
Other languages
French (fr)
Japanese (ja)
Inventor
泰賀 山谷
ハンギュ カン
Original Assignee
国立研究開発法人量子科学技術研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人量子科学技術研究開発機構 filed Critical 国立研究開発法人量子科学技術研究開発機構
Priority to JP2022534014A priority Critical patent/JPWO2022004688A1/ja
Publication of WO2022004688A1 publication Critical patent/WO2022004688A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments

Definitions

  • the present invention relates to a radiation camera for gamma rays, X-rays, annihilation radiation, etc.
  • Non-Patent Document 1 discloses a portable gamma camera capable of determining the presence or absence of cancer metastasis to the sentinel lymph node during surgery in order to carry out this method.
  • Non-Patent Document 2 discloses a handheld imaging device having a built-in projector. This imaging device has a camera that detects the near-infrared fluorescence of indocyanine green from the surgical site, and is configured to project light from the projector to the site where the near-infrared fluorescence is detected.
  • the imaging apparatus disclosed in Non-Patent Document 2 aims to project light onto a portion where near-infrared fluorescence is detected.
  • the optical axis of the camera that detects near-infrared fluorescence and the optical axis of the projector do not match. Therefore, a distance sensor and a calibration calculation program for calibrating the projected position according to the position of the imaging device are required so that the light is projected at the correct position.
  • a high-performance processor for performing calibration calculations in real time according to the ever-changing distance, and its cooling function and power supply function are required, which may increase the size of the device. There is.
  • One aspect of the present invention is to provide a radiation camera capable of projecting visible light toward a radiation source without having to calibrate the projection direction according to the position of the radiation camera.
  • the radiation camera has a collimator that collimates the incident radiation, a radiation detection unit that detects the radiation that has passed through the collimator, and the radiation detection unit. It is provided with a light emitting unit that emits visible light in the direction opposite to the incident direction of radiation.
  • a radiation camera capable of projecting visible light toward a radiation source without having to calibrate the projection direction according to the position of the radiation camera.
  • FIG. 2A is a schematic vertical sectional view showing the configuration of the gamma camera according to the first embodiment of the present invention
  • FIG. 2B is a schematic vertical sectional view showing the configuration of the gamma camera according to the modified example
  • c) is a perspective view of a radiation detection element of a modified gamma camera. It is a block diagram which shows the structure of the gamma camera which concerns on Embodiment 1.
  • FIG. It is a schematic vertical sectional view which shows the structure of the gamma camera which concerns on Embodiment 2 of this invention, and is the partially enlarged view of the tip part.
  • FIG. 5A is a perspective view showing an example of the shape of the gamma camera according to the second embodiment
  • FIG. 5B is a perspective view showing another example of the shape of the gamma camera.
  • It is a schematic vertical sectional view which shows the structure of the gamma camera which concerns on Embodiment 3 of this invention.
  • 7 (a) to 7 (c) are schematic views showing the operation of the gamma camera according to the third embodiment of the present invention, and FIG. 7 (d) is a flowchart thereof.
  • FIG. 8A is a schematic vertical sectional view showing the configuration of the gamma camera according to the fourth embodiment of the present invention
  • FIG. 8B is a flowchart showing the operation thereof.
  • FIG. 12 (a) is a schematic vertical sectional view of the gamma camera according to the seventh embodiment of the present invention
  • FIG. 12 (b) is a control flow thereof.
  • FIG. 16 (a) is a perspective view of a shield of a gamma camera according to the eighth embodiment of the present invention
  • FIG. 16 (b) is a vertical sectional view thereof.
  • FIG. 17 (a) is an example of a shield of a gamma camera according to the ninth embodiment of the present invention
  • FIG. 17 (b) is a vertical sectional view showing another example of the embodiment. It is a schematic diagram which shows the application example of the gamma camera which concerns on embodiment of this invention to medical treatment.
  • FIG. 1 is a diagram conceptually showing the function of a medical gamma camera according to an embodiment of the present invention.
  • the gamma camera shown in FIG. 1 is a medical gamma camera that detects radiation (for example, gamma rays) from a radiation source of a target (for example, a human body) and emits visible light in the direction opposite to the incident direction of the detected gamma rays. .. With such a configuration, visible light is irradiated to the position where the radiation source exists in the target.
  • radiation for example, gamma rays
  • a target for example, a human body
  • the operator of the gamma camera can easily visually grasp the position where the radiation source exists in the target.
  • the radiation source (hereinafter, also simply referred to as “radioactive source”) exists inside the object, but the radiation source may exist on the surface of the object.
  • Gamma rays are generally emitted from a radiation source in an unspecified direction, but a gamma camera is configured to determine the incident direction of gamma rays and emit visible light in the direction opposite to the incident direction.
  • a specific configuration example of a gamma camera for realizing such a function will be described.
  • the radiation camera is a radiation camera for gamma rays, X-rays, annihilation radiation, and the like.
  • FIG. 2 is a schematic vertical sectional view showing the configuration of the gamma camera 1 according to the first embodiment and the gamma camera 1A according to a modification thereof.
  • the gamma camera 1 includes a housing 9 and a shield 8 provided at one end of the housing 9.
  • the vertical direction of the drawing will be described as the vertical direction of the gamma camera 1 for convenience.
  • the shield 8 has a conical upper portion 8A and a cylindrical lower portion 8B.
  • the shape of the shield 8 may be rectangular.
  • the upper 8A may be a pyramid and the lower 8B may be a prism.
  • the shield 8 is formed to have a predetermined thickness by using a high-density material such as lead or tungsten in order to shield gamma rays.
  • the predetermined thickness is a thickness capable of shielding gamma rays of a predetermined energy.
  • the gamma camera 1 according to the present embodiment is intended to detect gamma rays of about 140 keV emitted from , for example, 99 m Tc. Therefore, the shield 8 is designed to have a thickness capable of shielding 140 keV gamma rays.
  • the shield 8 is formed with a pinhole 8D (an example of a “collimator” in the claims) which is a minute opening at the tip portion 8C in order to collimate the incident gamma ray.
  • the pinhole 8D is formed in a pore shape so as to allow only gamma rays R incident from above to pass through.
  • the gamma camera 1 includes a radiation detection unit and a light emitting unit.
  • the radiation detection unit is composed of one radiation detection element 13 provided inside the shield 8, and the light emitting unit is one light emission corresponding to the radiation detection element 13 provided inside the shield 8. It is composed of an element 14.
  • the light emitting element 14 is arranged on the side closer to the pinhole 8D, and the radiation detection element 13 is arranged on the side farther from the pinhole 8D.
  • the light emitting element 14 and the radiation detecting element 13 are arranged adjacent to each other along the traveling direction of the gamma ray R (that is, vertically) in this order.
  • the traveling direction of the gamma ray is a direction from the side near the pinhole 8D (light emitting element 14 side) to the side far from the pinhole 8D (radiation detection element 13 side).
  • adjacent includes a case where they are in contact with each other and a case where they are separated from each other. That is, the light emitting element 14 and the radiation detecting element 13 may be arranged in contact with each other or may be arranged apart from each other. Further, when the light emitting element 14 and the radiation detection element 13 are arranged in contact with each other, both may be directly laminated, and in addition, a support member that transmits gamma rays R between the light emitting element 14 and the radiation detection element 13 or the like may be used. Spacers may be interposed.
  • the type of the radiation detection element 13 is not particularly limited, but a small detection element such as a scintillation detection element or a semiconductor detection element is preferable.
  • a CsI (Tl) scintillator, a NaI (Tl) scintillator, or the like can be used.
  • the semiconductor detection element a CdTe semiconductor detection element, a CZT semiconductor detection element, a Si semiconductor detection element, a Ge semiconductor detection element, or the like can be used.
  • the radiation detection element 13 converts the energy of radiation into an electric signal and outputs it, but since a known configuration can be used for the configuration of converting the energy into an electric signal, the illustration and description thereof will be omitted.
  • the type of the light emitting element 14 is not particularly limited, but for example, a light emitting diode (Light Emitting Diode, LED) that emits visible light (hereinafter, also simply referred to as “light”) can be used.
  • a light emitting diode Light Em
  • the light emitting element 14 is arranged on the radiation detection element 13. Therefore, as shown in FIG. 2A, the gamma ray R incident on and passing through the pinhole 8D passes through the light emitting element 14 and reaches the radiation detection element 13.
  • the energy of the gamma ray R emitted from 99 m Tc is about 140 keV, and the light emitting element 14 can be easily transmitted, and there is little possibility of affecting the detection efficiency of the gamma ray R.
  • the control unit 16 is arranged inside the housing 9 and outside the shield 8. By providing the control unit 16 inside the housing 9, portability is improved. By integrating the radiation detection element 13, the light emitting element 14, and the control unit 16, a more compact configuration can be obtained. As shown in FIG. 3, the control unit 16 receives an electric signal that the radiation detection element 13 receives and outputs a gamma ray, and the light emitting element 14 is excited for a predetermined time by receiving the electric signal to generate light. Control is performed to emit (emit) L. If the light emitting element 14 is made to emit light for a long time, the light L is overlapped and continuously projected when the radiation intensity (counting rate or air dose rate) is strong, which is not preferable.
  • control unit 16 may be configured so that the light emission time can be adjusted based on the intensity of radiation so that appropriate visual inspection is possible. Further, the control unit 16 may be configured so that the emission intensity (luminance) can be adjusted in place of or in addition to the emission time.
  • the control unit 16 includes a processor such as an MPU (Micro Processing Unit) or a CPU (Central Processing Unit), and a memory for storing various programs and data. Alternatively, the control unit 16 may use a dedicated processor such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array) as the processor.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the light L emitted from the light emitting element 14 only the light L directed in the direction opposite to the incident direction of the gamma ray R is emitted to the outside through the pinhole 8D.
  • the light L is projected at the position of the target corresponding to the radiation source.
  • the position corresponding to the radiation source is the position of the radiation source when the radiation source is on the surface of the target, and the line segment connecting the radiation source and the light emitting element 14 when the radiation source is inside the target. Is the position where is the intersection with the surface of the object.
  • the radiation detection element 13 detects the gamma ray R that has passed through the pinhole 8D, and the light emitting element 14 emits visible light L in the direction opposite to the incident direction of the gamma ray R.
  • the emitted visible light L is emitted toward the radiation source and projected at the position of the target corresponding to the radiation source.
  • the medical gamma camera 1 can detect gamma rays emitted from, for example, 99 m Tc, and emit light in the direction opposite to the incident direction.
  • a labeled compound such as albumin or futinic acid containing 99 mTc
  • the labeled compound accumulates in the affected part of the breast cancer. Therefore, when the doctor makes a diagnosis using the gamma camera 1, light is emitted from the gamma camera 1 in the direction of the source of the gamma rays emitted from 99 mTc.
  • the light from the gamma camera 1 is directly projected onto the patient's skin toward the affected area where the labeled compound is accumulated and visualized. Therefore, the doctor can visually grasp the position of the affected area.
  • the gamma camera 1 can also be used during surgery, in which case the position of the affected area can be visualized on the surface of the organ.
  • the incident axis of the detected radiation and the projection axis of the projected light do not match, so complicated calibration calculation is required depending on the position where the light is projected.
  • the gamma camera 1 visible light can be projected toward a radiation source without calibrating the projection direction according to the position of the gamma camera 1.
  • the light emitting element 14 is arranged on the radiation detection element 13.
  • the light emitting element 14 and the radiation detection element 13 may be arranged in reverse.
  • the radiation detection element 13 is arranged inside the shield 8
  • the light emitting element 14 is arranged inside the housing 9 below the shield 8.
  • a cylindrical opening 13A is provided in the central portion of the radiation detection element 13, and the light emitting element 14 emits light through the opening 13A.
  • the light emitting element 14 may also be provided inside the shield 8. Even with such a configuration, the same effect as that of the first embodiment can be obtained.
  • the control unit 16 is provided inside the housing 9.
  • the control unit 16 may also be provided inside the shield 8.
  • the light emitting element 14 may be a laser light emitting element.
  • the "gamma camera" is exemplified in this embodiment, the radiation to be detected as described above does not necessarily have to be gamma rays.
  • it may be configured to detect beta rays or electromagnetic waves of various energy levels and emit light in the opposite direction.
  • the radiation detection element 13 is appropriately changed to one having a configuration suitable for detecting radiation.
  • FIG. 4 is a schematic vertical sectional view showing the configuration of the medical gamma camera 2 according to the second embodiment.
  • the gamma camera 2 includes a radiation detection unit 12 and a control unit 16 inside the shield 10.
  • the shield 10 also serves as a housing for the gamma camera 2, and the upper portion 10A is conical and the lower portion 10B is cylindrical.
  • the shield 10 is formed with a pinhole 11 (an example of a “collimator” in the claims) which is a minute opening for collimating a gamma ray at the tip portion 10C. ..
  • the pinhole 11 of the gamma camera 2 is formed so as to collimate gamma rays from a wide angle.
  • the material and thickness of the shield 10 are as described in the first embodiment.
  • the radiation detection unit 12 includes a plurality of radiation detection elements 13 (an example of a "radiation detection unit” within the scope of claims).
  • the plurality of radiation detection elements 13 are regularly arranged on a circular plane according to the cross-sectional shape of the lower portion 10B of the shield 10.
  • the radiation detection element 13 the scintillation detection element, the semiconductor detection element, or the like is preferable as in the first embodiment.
  • a light emitting portion including a light emitting element 14 and a reflecting portion 15 is arranged on the tip portion 10C of the shield body 10.
  • the light emitting element 14 is arranged at one place of the open end portion 10D of the pinhole 11.
  • the reflecting portion 15 is arranged at a position of the opening end portion 10D facing the light emitting element 14.
  • the light emitting element 14 is, for example, a light emitting diode that emits light L toward the reflecting unit 15.
  • the control unit 16 When the radiation detection element 13 detects a gamma ray, the light emitting element 14 is controlled by the control unit 16 so as to emit light L toward the reflection unit 15 for a predetermined time.
  • the reflecting unit 15 is composed of a planar reflecting plate 15A and a driving unit 15B for driving the reflecting plate 15A.
  • the drive unit 15B is a piezoelectric actuator that can, for example, rotate the reflector 15A in two orthogonal axial directions to arbitrarily change the direction of the reflector 15A.
  • the drive unit 15B is driven and controlled by the control unit 16.
  • the orientation of the reflector 15A that reflects the light L emitted from the light emitting element 14 corresponds to the position of each of the plurality of radiation detection elements 13.
  • the incident direction of the detected gamma ray is determined from the position of the detected radiation detection element 13 and the position of the pinhole 11. That is, the line connecting the detected radiation detection element 13 and the pinhole 11 is the incident direction of the gamma ray.
  • the control unit 16 drives the drive unit 15B according to the radiation detection element 13 that has detected the gamma ray. Specifically, the control unit 16 drives the drive unit 15B to change the direction of the reflector 15A so that the light L is reflected in the direction opposite to the incident direction of the gamma ray.
  • the light emitting element 14 is made to emit light for a predetermined time. If the light emitting element 14 emits light for a long time, the light L continues to be emitted even after the gamma camera 2 is moved, which is not preferable. On the other hand, if the light emission time is too short, it becomes difficult to visually recognize, so a certain amount of light emission time is required. Further, when the radiation intensity (counting rate or air dose rate) is high, the emission times may overlap and the intensity of the radiation source depending on the position may not be separated. Therefore, it may be configured so that the user can adjust the light emission time so that appropriate visual inspection is possible. Further, it may be configured so that the user can adjust the emission intensity (luminance) instead of or in addition to the emission time.
  • the gamma camera 2 can obtain the same effect as that of the first embodiment. That is, according to the above configuration, visible light can be projected toward the radiation source without calibrating the projection direction depending on the position of the gamma camera. Further, by providing a plurality of radiation detection elements 13, when the radiation detection element 13 detects the radiation that has passed through the pinhole 11, the incident direction of the radiation can be easily determined from the positions of the pinhole 11 and the radiation detection element 13. Can be decided. Visible light can be emitted from the light emitting element 14 in the direction opposite to the incident direction of the radiation.
  • the shield 10 has a cylindrical shape at the lower portion and a conical shape at the upper portion.
  • the shape of the shield 10 is not limited.
  • the shape of the shield 10 may be rectangular. That is, the lower portion of the shield 10 may be prismatic and the upper portion may be pyramidal.
  • the light emitting element 14 and the reflecting portion 15 are arranged at the tip portion 10C of the shielding body 10, but the positions thereof are not limited.
  • the incident direction of the gamma ray is determined by the position of the radiation detection element 13 that has detected the gamma ray. ..
  • the light emitting element 14 and the reflecting portion 15 may be arranged at different positions, and the light may be guided so as to be emitted from the tip portion 10C of the shielding body 10.
  • the shield 10 also serves as a housing for the gamma camera 2.
  • the housing may not be shared with the shield 10 and may be configured separately.
  • the control unit 16 may be arranged inside the housing unit.
  • FIG. 6 is a schematic cross-sectional vertical view showing the configuration of the gamma camera 3.
  • the gamma camera 3 includes a cylindrical shield 20 similar to the shield 10 described in the first embodiment.
  • the shield 20 has a pinhole 11 (an example of a "collimator” in the claims) at the tip thereof.
  • the shield 20 includes a plurality of radiation detection elements 13, a plurality of light emitting elements 30, and a control unit 16 inside.
  • the plurality of radiation detection elements 13 and the plurality of light emitting elements 30 are arranged adjacent to each other in the direction along the traveling direction of the gamma ray.
  • the radiation detection element 13 and the light emitting element 30 are arranged adjacent to each other in the vertical direction of the drawing.
  • the number of radiation detection elements 13 and the number of light emitting elements 30 are the same, and one light emitting element 30 is arranged on one radiation detection element 13.
  • the radiation detection element 13 and the light emitting element 30 arranged adjacent to each other in the vertical direction are associated with each other.
  • the light emitting element 30 is arranged so as to emit light upward. Since the emitted light is collimated by the pinhole 11, the light emitting element 30 does not need to emit directional light.
  • the light emitting surface of the light emitting element 30 and the detection surface of the radiation detection element 13 are preferably geometrically similar in shape and size, and more preferably equivalent. As a result, the distribution of the projected light and the distribution of the radiation source can be made more consistent.
  • step S71 when gamma rays are detected by the radiation detection element 13 (step S71), the control unit 16 causes the corresponding light emitting element 30 to emit light (step S72). ).
  • step S72 when gamma rays from, for example, a radiation source (affected portion) 50 existing in the body are detected by the radiation detection element 13, light is projected onto the skin 51 at a position corresponding to the radiation source 50.
  • gamma rays incident through the pinhole 11 are detected by the radiation detection element 13.
  • the control unit 16 receives the gamma ray detection signal from the radiation detection element 13, as shown in FIG. 7B, the control unit 16 emits visible light from the light emitting element 30 corresponding to the radiation detection element 13 that has detected the gamma ray for a predetermined time.
  • the reason for emitting visible light for a predetermined time and the fact that the predetermined light emission time may be adjusted are the same as those in the first and second embodiments. As shown in FIG.
  • the light emitted upward from the light emitting element 30 is collimated by the pinhole 11, and only the light directed in the direction opposite to the incident direction of the incident gamma ray is emitted to the outside. , Lymph nodes, etc. are projected onto the skin 51 at a position corresponding to the radiation source 50. This operation is repeated in each radiation detection element 13 and the corresponding light emitting element 30.
  • the radiation detection element 13 and the light emitting element 30 By stacking the radiation detection element 13 and the light emitting element 30 adjacent to each other in the direction along the traveling direction of the gamma ray, only the light emitting element 30 is made to emit light, and the direction is opposite to the incident direction of the gamma ray incident from the pinhole 11. Light can be emitted to the outside. Then, the light from the gamma camera 3 is directly projected onto the patient's skin 51 and visualized toward the radiation source (affected portion) 50 in which the labeled compound that emits gamma rays is accumulated. This allows the doctor to visually grasp the position of the affected area 50. When used during surgery, it may be the surface of an organ instead of the skin 51.
  • the light emitting element 30 is arranged adjacent to the radiation detection element 13. Therefore, the incident gamma rays pass through the light emitting element 30 and reach the radiation detection element 13.
  • the energy of gamma rays emitted from 99 mTc is about 140 keV, and the light emitting element 30 can be easily transmitted, and there is little possibility of affecting the gamma ray detection efficiency.
  • the number of light emitting elements 30 is larger than that in the gamma camera 2 of the second embodiment, but the reflector 15A that reflects the light L emitted from the light emitting element 14 is driven by the driving unit 15B. It is not necessary to drive using.
  • the simple configuration in which the corresponding radiation detection element 13 and the light emitting element 30 are arranged adjacent to each other along the traveling direction of the radiation makes it easy to emit light in the opposite direction of the incident radiation. That is, it is possible to emit light in the opposite direction of the incident radiation simply by emitting light from the light emitting element 30 corresponding to each of the radiation detection elements 13.
  • the modifications shown in the first and second embodiments can be appropriately applied to the third embodiment.
  • the gamma camera 4 has a shield 20 similar to that of the third embodiment.
  • the gamma camera 4 has a radiation detection element 13 and a laser light emitting element 32 (an example of a “light emitting unit” in the claims) inside the shield 20.
  • the radiation detection element 13 and the laser light emitting element 32 are arranged adjacent to each other along the traveling direction of gamma rays.
  • the radiation detection element 13 and the laser light emitting element 32 are arranged correspondingly in the same number.
  • the laser light emitting element 32 is arranged so as to emit visible laser light toward the pinhole 11.
  • step S81 when the control unit 16 receives the gamma ray detection signal from the radiation detection element 13 (step S81), the control unit 16 is connected to the laser light emitting element 32 corresponding to the radiation detection element 13 that has detected the gamma ray. Visible light is emitted for a predetermined time (step S82). This flowchart is repeated between the corresponding radiation detection element 13 and the laser light emitting element 32.
  • the laser light emitting element 32 has high directivity, it is preferable to arrange the laser light emitting direction with high accuracy toward the pinhole 11. Specifically, the light emitting surface of the laser light emitting element 32 is adjusted so as to face the pinhole 11, and the center of the light emitting surface is a line connecting the center of the detection surface of each radiation detection element 13 and the pinhole 11. It is preferably on the minute.
  • the same effect as that of the gamma camera 3 according to the third embodiment can be obtained. Further, according to the gamma camera 4, the brightness of the projected light can be increased as compared with the gamma camera 3 of the third embodiment.
  • the modifications shown in the first and second embodiments can be appropriately applied to the fourth embodiment.
  • the gamma camera 5 has a shield 20 similar to that of the third embodiment.
  • the gamma camera 5 has a radiation detection element 13 and a laser light emitting element 32 inside the shield 20. As shown in FIG. 9, the radiation detection element 13 and the laser light emitting element 32 are arranged adjacent to each other along the traveling direction of gamma rays. The radiation detection element 13 and the laser light emitting element 32 are arranged correspondingly in the same number.
  • the corresponding radiation detection element 13 and the laser light emitting element 32 are integrated. More specifically, the detection surface of the radiation detection element 13 and the light emission surface of the laser light emitting element 32 are integrated along the traveling direction of the gamma ray so as to face the same direction.
  • the integrated radiation detection element 13 and the laser light emitting element 32 are arranged toward the pinhole 11. By manufacturing the integrated radiation detection element 13 and the laser light emitting element 32 in advance, it becomes easy to arrange each of them in the direction of the pinhole 11.
  • the operation of the gamma camera 5 is the same as the operation of the gamma camera 3 described in the third embodiment.
  • the same effect as that of the gamma camera 3 according to the third embodiment can be obtained. Further, by integrating the radiation detection element 13 and the laser light emitting element 32, it becomes easy to arrange them adjacent to each other in the direction of the pinhole 11.
  • the laser light emitting element 32 is used as the light emitting element, but a light emitting element other than the laser light emitting element may be used. Further, the modifications shown in the first and second embodiments can be appropriately applied to the fifth embodiment.
  • the arrangement of the radiation detection element 13 and the laser light emitting element 32 will be described with reference to FIG.
  • the laser light emitting elements 32 and the radiation detection elements 13 correspond to the same number and are arranged on a substantially plane. I explained the aspect.
  • the pitch of the laser light emitting element 32 does not have to match the pitch of the radiation detection element 13. That is, the number of radiation detection elements 13 and the number of laser light emitting elements 32 do not have to match.
  • the number of laser light emitting elements 32 is larger than the number of radiation detection elements 13, a plurality of laser light emitting elements 32 corresponding to one radiation detection element 13 Is decided in advance. Then, the corresponding plurality of laser light emitting elements 32 are arranged so as to emit light in the same direction as the line connecting the one associated radiation detection element 13 and the pinhole 11.
  • a gamma ray is detected by one radiation detection element 13, a plurality of laser light emitting elements 32 associated with the radiation detection element 13 are controlled to emit light.
  • one laser light emitting element corresponding to the plurality of radiation detection elements 13 is used. 32 is decided in advance. Then, the corresponding laser light emitting element 32 is arranged so as to emit light in the same direction as the line connecting the vicinity of the center of the detection surface of the associated plurality of radiation detection elements 13 and the pinhole 11.
  • one laser light emitting element 32 associated with the radiation detection element 13 is controlled to emit light.
  • the radiation detection element 13 may not be pixelated.
  • the control shown in the flowchart of FIG. 11A is performed. That is, when the control unit 16 receives the gamma ray detection signal from the radiation detection element 13 (step S111), the control unit 16 calculates at which position of the radiation detection element 13 the gamma ray is detected (step S112). Next, the control unit 16 determines the laser light emitting element 32 located at the position closest to the line segment connecting the gamma ray detection position and the pinhole 11 (step S113). Then, the control unit 16 causes the determined laser light emitting element 32 to emit light (step S114).
  • FIG. 11B shows a block configuration diagram of the gamma cameras 4 and 5 that perform such control.
  • a plurality of laser light emitting elements 32 may be arranged in a curved surface. If the element array in which a plurality of laser light emitting elements 32 are arranged is curved so that the light emitting surface (emission direction) faces the pinhole 11, light can be efficiently emitted to the outside, and a gamma camera can be manufactured and assembled. Becomes easier. Further, instead of or in addition to these forms, a plurality of radiation detection elements 13 may be arranged in a curved surface (not shown). If the element array in which a plurality of radiation detection elements 13 are arranged is curved so that the gamma ray detection surface faces the pinhole 11, the gamma ray detection efficiency is increased.
  • the integrated laser light emitting element 32 and the radiation detection element 13 may be curvedly arranged.
  • the laser light emitting element 32 and the radiation detection element 13 it is possible to improve the gamma ray detection efficiency and the accuracy of the light emission direction.
  • both the light emitting surface of the laser light emitting element 32 and the detection surface of the radiation detecting element 13 can be arranged toward the pinhole 11, and both the gamma ray detection efficiency and the light emission efficiency to the outside are increased. .. It also facilitates the manufacture and assembly of gamma cameras.
  • the radiation detection element 13 and the light emitting element 32 corresponding to the radiation detection element 13 are arranged adjacent to each other along the traveling direction of radiation.
  • the radiation detection element 13 and the light emitting element 32 corresponding to the radiation detection element 13 may be arranged apart from each other or may be arranged in contact with each other.
  • the radiation detection element 13 and the light emitting element 32 do not have to have a one-to-one correspondence. It is preferable that at least the light emitting surface of the laser light emitting element 32 is arranged toward the pinhole 11. This is because the laser beam emitted by the laser light emitting element 32 has high directivity. Further, the detection surface of the radiation detection element 13 does not necessarily have to face the direction of the pinhole 11, but it is preferable to arrange the radiation detection element 13 toward the pinhole 11 as much as possible. Thereby, the detection efficiency of the radiation detection element 13 can be improved.
  • FIG. 12 is a schematic vertical sectional view of the gamma camera 6 and its control flow.
  • FIG. 13 is a plan view showing an arrangement of the radiation detection element 13 and the laser light emitting element 32.
  • FIG. 14 is a perspective view showing an arrangement of the radiation detection element 13 and the laser light emitting element 32.
  • the radiation detection element 13 is arranged closer to the pinhole 11 than the laser light emitting element 32.
  • the laser light emitting element 32 is arranged on the side farther from the pinhole 11 than the radiation detection element 13.
  • the corresponding radiation detection element 13 and the laser light emitting element 32 are arranged adjacent to each other in a direction intersecting the traveling direction of the gamma ray. Further, the radiation detection element 13 and the laser light emitting element 32 are arranged apart from each other.
  • the flowchart shown in FIG. 12B will be described later.
  • the radiation detection element 13 and the laser light emitting element 32 are arranged in two orthogonal directions with a distance L1 and a distance L2, respectively.
  • the shifting direction is a direction that intersects with the traveling direction of the gamma ray, and in the present embodiment, is a direction orthogonal to the traveling direction of the gamma ray.
  • the distance L1 and the distance L2 are both more than half the width of the radiation detection element 13 along each direction of the distance L1 and the distance L2.
  • the support portion 40 has a curved plate shape and supports the radiation detection element 13 on the side close to the pinhole 11. Further, the support portion 40 supports the laser light emitting element 32 on the side farther from the pinhole 11 than the radiation detection element 13.
  • the support portion 40 is provided with a plurality of through holes 41 through which the laser beam L is passed in advance. The through hole 41 is provided so as to face the light emitting surface of the plurality of laser light emitting elements 32 and to face the gap between the plurality of radiation detection elements 13.
  • the support portion 40 supports the laser light emitting element 32 so that the laser light L can be irradiated toward the pinhole 11 from the gap between the radiation detection elements 13. If the support portion 40 is used, the laser beam L from the laser light emitting element 32 can be arranged so as to pass through the hole of the pinhole 11 without performing complicated optical axis adjustment work.
  • the radiation detection element 13 and the laser light emitting element 32 are drawn as if they are arranged apart from the support portion 40 in FIG. 14, they are actually in contact with each other as shown in FIG. 12 (a).
  • the gamma camera 6 is one of the effective embodiments when the laser light emitting element 32 becomes large in the incident direction of the gamma ray.
  • the degree of freedom in the arrangement of the radiation detection element 13 and the laser light emitting element 32 is improved. Therefore, the degree of freedom in structural design of the gamma camera is increased.
  • the control unit 16 receives the gamma ray detection signal from the radiation detection element 13 (step S121), the control unit 16 receives a gamma ray detection signal (step S121), and the laser is located near the radiation detection element 13.
  • the light emitting element 32 is selected (step S122). Then, the control unit 16 causes the selected laser light emitting element 32 to emit light (step S123).
  • the method of selecting the laser emitting element 32 in the above flowchart includes (1) a method of selecting all the laser emitting elements 32 adjacent to the radiation detecting element 13, and (2) (for example, the right side) the radiation detecting element 13. There is a method of selecting only a specific adjacent laser emitting element 32, or (3) a method of randomly selecting only one element from the laser emitting elements 32 adjacent to the radiation detecting element 13.
  • the incident axis of the gamma ray and the optical axis of the laser beam emitted corresponding to the gamma ray are slightly deviated from each other. Therefore, the projection position of the laser beam is also slightly deviated.
  • the size (width in the direction intersecting the traveling direction of the gamma ray) of the radiation detection element 13 (or the laser light emitting element 32) that causes the deviation is small and the projection distance is small, the magnitude of the deviation is small. Therefore, there is no problem in practical use even if the position of the projected light shifts.
  • the angle of deviation between the incident axis of the gamma ray and the emitted laser optical axis is within the same angle as the angle error when detecting the incident angle of the gamma ray.
  • the angle ⁇ 2 is more preferably half or less of ⁇ 1.
  • FIG. 16 (a) is a perspective view of the shield 22 according to the eighth embodiment
  • FIG. 16 (b) is a vertical sectional view thereof.
  • the collimator shown in the first to seventh embodiments is a pinhole collimator.
  • the shield 22 according to the eighth embodiment has a parallel porous (parallel hole) collimator as shown in FIGS. 16A and 16B.
  • the plurality of holes 22A provided serve as a collimator.
  • not only the pinhole collimator but also a general parallel porous collimator can be applied.
  • the wider the opening area of the hole 22A the higher the radiation detection sensitivity.
  • the size of the imaging / projection field of view and the size of the detector match, it is preferable to apply it to a handheld size device used outside the body. Even when such a collimator is used, it is possible to easily emit light in the direction opposite to the incident direction of the incident radiation.
  • the shields 23 and 24 of the gamma camera according to the ninth embodiment will be described with reference to the drawings.
  • the shield 23 according to the ninth embodiment has a condensing porous type collimator.
  • a plurality of holes 23A are provided as a collimator.
  • the size of the image pickup / projection field of view is smaller than the size of the detector portion, but the spatial resolution finer than the spacing of the radiation detection elements 13 can be obtained due to the enlargement effect.
  • a shield 24 having a divergent porous collimator may be used.
  • the plurality of holes 24A provided serve as a collimator.
  • the size of the image pickup / projection field of view can be made larger than the size of the detector portion, but the spatial resolution is deteriorated more than the distance between the radiation detection elements 13. It is preferable to use these collimators 23A and 24A properly according to the place of use and the purpose of use. Even when such a collimator is used, it is possible to easily emit light in the direction opposite to the incident direction of the incident radiation.
  • FIG. 18 is a schematic view showing an example of application of the gamma camera according to each of the above embodiments to microscopic surgery or robotic surgery.
  • the gamma camera of each of the above embodiments is inserted near the affected area. Since the gamma camera alone projects the distribution of the radioactive drug on the surface of the affected area, the operator can visually recognize the distribution of the radioactive drug projected on the surface of the affected area through the image of a normal optical camera.
  • a medical gamma camera has been described as an example.
  • embodiments of the present invention do not necessarily have to be for medical use.
  • it may be configured as a radiation camera for confirming the position of a pollution source in, for example, a nuclear power plant, a facility for using radioactive materials, a nuclear fuel processing facility, a reprocessing facility, or the like.
  • it may be constructed as a radiation camera for security purposes to monitor the presence or absence of radioactive substances and nuclear substances in luggage at airports, borders, and the like.
  • the light emitting element may be configured so that the light emitting time or the light emitting intensity of the emitted light can be changed according to the detected radiation intensity (energy intensity, counting rate or air dose rate). Since the distance to the radiation source is long, it is preferable to use a laser light emitting element having high directivity as the light emitting element. Further, when the radiation energy intensity of the radiation source to be detected covers a wide range, it is preferable to set the thickness of the shield to a thickness capable of shielding the radiation of the maximum energy.
  • the radiation camera according to the first aspect of the present invention has a collimator that collimates incident radiation, a radiation detection unit that detects radiation that has passed through the collimator, and a radiation detection unit that directs the radiation detected in the direction opposite to the incident direction. It is provided with a light emitting unit that emits visible light.
  • the incident direction of the radiation is determined from the positions of the collimator and the radiation detection unit.
  • the radiation detection unit is composed of one or a plurality of radiation detection elements
  • the light emitting unit is composed of one or a plurality of light emitting elements.
  • the detection element and the light emitting element that emits visible light in the direction opposite to the incident direction of the radiation detected by the radiation detection element may be associated with each other.
  • the radiation detection element and the light emitting element corresponding to the radiation detection element may be arranged adjacent to each other along the traveling direction of the radiation.
  • the direction of the emitted light can be easily aligned with the incident direction of the incident radiation. Can be done.
  • the radiation detection element and the light emitting element corresponding to the radiation detection element may be integrated.
  • the radiation detection element and the corresponding light emitting element can be easily arranged adjacent to each other.
  • the radiation detection element and the light emitting element corresponding to the radiation detection element may be arranged adjacent to each other in a direction intersecting the traveling direction of the radiation.
  • the direction of the emitted light can be easily directed to the incident direction of the incident radiation. Can be matched.
  • the radiation detection element and the light emitting element corresponding to the radiation detection element may be arranged apart from each other.
  • the degree of freedom in the arrangement of the radiation detection element and the corresponding light emitting element is increased. Therefore, the degree of freedom in the structural design of the radiation camera is increased.
  • the radiation camera according to the seventh aspect of the present invention has a support portion that supports the radiation detection element on the side closer to the collimator and supports the light emitting element on the side farther from the collimator than the radiation detection element.
  • the support portion may have a plurality of through holes provided so as to face each of the light emitting surfaces of the plurality of the light emitting elements and to face the gaps between the plurality of radiation detection elements.
  • the light from the light emitting element can be arranged so as to pass through the hole of the pinhole without complicated optical axis adjustment work.
  • the plurality of radiation detection elements and the plurality of light emitting elements may be arranged in a plane or a curved surface, respectively.
  • the radiation detection element or the light emitting element in a plane, manufacturing becomes easy. Further, by arranging the radiation detection elements in a curved surface (that is, toward the incident portion), the radiation detection efficiency is increased. Further, by arranging the light emitting elements in a curved surface, the emitted light can be efficiently emitted to the outside.
  • the collimator may be at least one of a pinhole collimator, a parallel hole collimator, a condensing porous collimator, and a divergent porous collimator.
  • the radiation camera according to the tenth aspect of the present invention may further include a control unit that controls the light emitting unit so as to emit visible light in the direction opposite to the incident direction of the radiation detected by the radiation detection unit. ..
  • the portability is improved by providing the control unit inside the radiation camera. Further, by integrating the radiation detection unit, the light emitting unit, and the control unit, a compact configuration can be obtained.
  • control unit may adjust the light emission time or the light emission intensity of the light emitting unit based on the intensity of the radiation detected by the radiation detection unit.
  • the information on the intensity of radiation is considered to be useful for distinguishing cancer. More detailed information can be obtained by displaying the radiation intensity by adjusting the light emission time or the light emission intensity based on the radiation intensity. Further, when measuring an environment in which a plurality of radiations having different intensities are detected, since the light can be projected to the position of the radiation source, it is possible to directly recognize how much radiation is emitted from which position.
  • the method of operating the radiation camera includes a step of detecting collimated radiation and a step of emitting visible light in the direction opposite to the incident direction of the detected radiation. More specifically, for example, in the method of operating a medical radiation camera, a step of collimating and detecting gamma rays emitted from a radiopharmaceutical accumulated in a specific part of a living body and the reverse of the incident direction of the detected gamma rays are used. Includes a step of emitting visible light in a direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Provided is a radiation camera which can project visible light toward a radiation source, and which does not require correction of a projection direction according to the position of the radiation camera. The radiation camera (1) is provided with: a collimator (8) that collimates incoming radiation; a radiation detection unit (13) that detects the radiation having passed through the collimator (8); and a light-emitting unit (14) that emits visible light toward a direction opposite to the incoming direction of the radiation detected by the radiation detection unit (13).

Description

放射線カメラRadiation camera
 本発明は、ガンマ線、X線、消滅放射線などを対象とした放射線カメラに関する。 The present invention relates to a radiation camera for gamma rays, X-rays, annihilation radiation, etc.
 従来、特定の化合物を取り込みやすいがん細胞、又は特定の大きさの化合物が留まりやすい組織が知られている。そのようながん細胞又は組織の位置を特定するため、放射性核種を含む化合物を患者に投与し、ガンマカメラでその位置を特定することが行われている。例えば、99mTcを含む化合物製剤を患者に投与し、その化合物が集積したリンパ節を特定して郭清(かくせい)する方法が知られている。非特許文献1には、この方法を実施するため、センチネルリンパ節へのがん転移の有無を手術中に判断することができる可搬型ガンマカメラが開示されている。 Conventionally, cancer cells that easily take up a specific compound or tissues in which a compound of a specific size easily stays are known. In order to locate such cancer cells or tissues, a compound containing a radionuclide is administered to a patient and the location is determined by a gamma camera. For example, a method is known in which a compound preparation containing 99 m Tc is administered to a patient, and the lymph node in which the compound is accumulated is identified and dissected. Non-Patent Document 1 discloses a portable gamma camera capable of determining the presence or absence of cancer metastasis to the sentinel lymph node during surgery in order to carry out this method.
 また、非特許文献2には、プロジェクタを内蔵した手持ち式イメージング装置が開示されている。このイメージング装置は、手術部位からのインドシアニングリーンの近赤外蛍光を検出するカメラを有し、近赤外蛍光が検出された部位にプロジェクタから光が投影されるように構成されている。 Further, Non-Patent Document 2 discloses a handheld imaging device having a built-in projector. This imaging device has a camera that detects the near-infrared fluorescence of indocyanine green from the surgical site, and is configured to project light from the projector to the site where the near-infrared fluorescence is detected.
 しかしながら、非特許文献1に開示されたガンマカメラは、検出された放射線の強度分布の画像が別体のディスプレイ上に表示されるため、表示された画像と手術部位との位置関係を把握しにくい。一方、非特許文献2に開示されたイメージング装置は、近赤外蛍光が検出された部位に光を投影することを目指している。しかし、このイメージング装置では、近赤外蛍光を検出するカメラの光軸とプロジェクタの光軸とが一致していない。そのため、正しい位置に光が投影されるように、イメージング装置の位置によって投影位置を校正するための距離センサと校正計算プログラムを必要とする。しかし、距離センサ自体の大きさに加え、刻々と変わる距離に応じて校正計算をリアルタイムに行うための高性能プロセッサ、さらにその冷却機能・電源供給機能が必要になり、装置が大型化してしまう虞がある。 However, in the gamma camera disclosed in Non-Patent Document 1, since the image of the detected radiation intensity distribution is displayed on a separate display, it is difficult to grasp the positional relationship between the displayed image and the surgical site. .. On the other hand, the imaging apparatus disclosed in Non-Patent Document 2 aims to project light onto a portion where near-infrared fluorescence is detected. However, in this imaging device, the optical axis of the camera that detects near-infrared fluorescence and the optical axis of the projector do not match. Therefore, a distance sensor and a calibration calculation program for calibrating the projected position according to the position of the imaging device are required so that the light is projected at the correct position. However, in addition to the size of the distance sensor itself, a high-performance processor for performing calibration calculations in real time according to the ever-changing distance, and its cooling function and power supply function are required, which may increase the size of the device. There is.
 本発明の一態様は、放射線源に向けて可視光を投影できる、放射線カメラの位置による投影方向の校正を行う必要のない放射線カメラを提供することを目的とする。 One aspect of the present invention is to provide a radiation camera capable of projecting visible light toward a radiation source without having to calibrate the projection direction according to the position of the radiation camera.
 上記の課題を解決するために、本発明の一態様に係る放射線カメラは、入射する放射線をコリメートするコリメータと、前記コリメータを通過した放射線を検出する放射線検出部と、前記放射線検出部が検出した放射線の入射方向の逆方向に向けて可視光を射出する発光部と、を備える。 In order to solve the above problems, the radiation camera according to one aspect of the present invention has a collimator that collimates the incident radiation, a radiation detection unit that detects the radiation that has passed through the collimator, and the radiation detection unit. It is provided with a light emitting unit that emits visible light in the direction opposite to the incident direction of radiation.
 本発明の一態様によれば、放射線源に向けて可視光を投影できる、放射線カメラの位置による投影方向の校正を行う必要のない放射線カメラを提供することができる。 According to one aspect of the present invention, it is possible to provide a radiation camera capable of projecting visible light toward a radiation source without having to calibrate the projection direction according to the position of the radiation camera.
本発明の一実施形態に係るガンマカメラの機能を概念的に示す図である。It is a figure which conceptually shows the function of the gamma camera which concerns on one Embodiment of this invention. 図2(a)は本発明の実施形態1に係るガンマカメラの構成を示す概略縦断面図、図2(b)はその変形例に係るガンマカメラの構成を示す概略縦断面図、図2(c)は変形例のガンマカメラの放射線検出素子の斜視図である。FIG. 2A is a schematic vertical sectional view showing the configuration of the gamma camera according to the first embodiment of the present invention, and FIG. 2B is a schematic vertical sectional view showing the configuration of the gamma camera according to the modified example, FIG. 2 (). c) is a perspective view of a radiation detection element of a modified gamma camera. 実施形態1に係るガンマカメラの構成を示すブロック図である。It is a block diagram which shows the structure of the gamma camera which concerns on Embodiment 1. FIG. 本発明の実施形態2に係るガンマカメラの構成を示す概略縦断面図と先端部の部分拡大図である。It is a schematic vertical sectional view which shows the structure of the gamma camera which concerns on Embodiment 2 of this invention, and is the partially enlarged view of the tip part. 図5(a)は実施形態2に係るガンマカメラの形状の一例を示す斜視図、図5(b)はガンマカメラの他の形状例を示す斜視図である。FIG. 5A is a perspective view showing an example of the shape of the gamma camera according to the second embodiment, and FIG. 5B is a perspective view showing another example of the shape of the gamma camera. 本発明の実施形態3に係るガンマカメラの構成を示す概略縦断面図である。It is a schematic vertical sectional view which shows the structure of the gamma camera which concerns on Embodiment 3 of this invention. 図7(a)から(c)は、本発明の実施形態3に係るガンマカメラの動作を示す概略図、図7(d)はそのフローチャートである。7 (a) to 7 (c) are schematic views showing the operation of the gamma camera according to the third embodiment of the present invention, and FIG. 7 (d) is a flowchart thereof. 図8(a)は本発明の実施形態4に係るガンマカメラの構成を示す概略縦断面図、図8(b)はその動作を示すフローチャートである。FIG. 8A is a schematic vertical sectional view showing the configuration of the gamma camera according to the fourth embodiment of the present invention, and FIG. 8B is a flowchart showing the operation thereof. 本発明の実施形態5に係るガンマカメラの構成を示す概略縦断面図である。It is a schematic vertical sectional view which shows the structure of the gamma camera which concerns on Embodiment 5 of this invention. 図10(a)から(j)は、本発明の実施形態6に係る放射線検出素子とレーザ発光素子の配列例を示す概略縦断面図である。10 (a) to 10 (j) are schematic vertical sectional views showing an arrangement example of a radiation detection element and a laser light emitting element according to the sixth embodiment of the present invention. 図11(a)は実施形態6に係るガンマカメラの制御フローの一例、図11(b)はそのガンマカメラの構成を示すブロック図である。11 (a) is an example of the control flow of the gamma camera according to the sixth embodiment, and FIG. 11 (b) is a block diagram showing the configuration of the gamma camera. 図12(a)は本発明の実施形態7に係るガンマカメラの概略縦断面図、図12(b)はその制御フローである。FIG. 12 (a) is a schematic vertical sectional view of the gamma camera according to the seventh embodiment of the present invention, and FIG. 12 (b) is a control flow thereof. 実施形態7に係るガンマカメラの放射線検出素子とレーザ発光素子の配列を示す平面図である。It is a top view which shows the arrangement of the radiation detection element and the laser emission element of the gamma camera which concerns on Embodiment 7. 実施形態7に係るガンマカメラの放射線検出素子とレーザ発光素子の配列を示す斜視図である。It is a perspective view which shows the arrangement of the radiation detection element and the laser light emitting element of the gamma camera which concerns on Embodiment 7. 実施形態7に係るガンマカメラにおける、ガンマ線の入射軸と射出するレーザ光軸とのずれ角度の好ましい範囲を示す図である。It is a figure which shows the preferable range of the deviation angle between the incident axis of the gamma ray and the laser optical axis which emits in the gamma camera which concerns on Embodiment 7. 図16(a)は本発明の実施形態8に係るガンマカメラの遮蔽体の斜視図、図16(b)はその縦断面図である。16 (a) is a perspective view of a shield of a gamma camera according to the eighth embodiment of the present invention, and FIG. 16 (b) is a vertical sectional view thereof. 図17(a)は本発明の実施形態9に係るガンマカメラの遮蔽体の一形態例、図17(b)は他の形態例を示す縦断面図である。FIG. 17 (a) is an example of a shield of a gamma camera according to the ninth embodiment of the present invention, and FIG. 17 (b) is a vertical sectional view showing another example of the embodiment. 本発明の実施形態に係るガンマカメラの医療への適用例を示す概略図である。It is a schematic diagram which shows the application example of the gamma camera which concerns on embodiment of this invention to medical treatment.
 (ガンマカメラの機能)
 まず、本発明の実施形態における放射線カメラの一例としてのガンマカメラの機能について、図面を参照して説明する。図1は、本発明の実施形態における、医療用のガンマカメラの機能を概念的に示す図である。図1に示すガンマカメラは、対象(例えば人体)の放射線源からの放射線(例えばガンマ線)を検出し、検出したガンマ線の入射方向の逆方向に向けて可視光を射出する医療用ガンマカメラである。このような構成により、対象において放射線源が存在する位置に可視光が照射される。これにより、ガンマカメラの操作者は、対象において放射線源が存在する位置を目視により容易に把握することが可能になる。図1に示す例では、放射線源(以下単に「線源」とも称する。)は対象の内部に存在するが、線源は対象の表面に存在してもよい。ガンマ線は一般に線源から不特定の方向に射出されるが、ガンマカメラはガンマ線の入射方向を決定し、その入射方向の逆方向に向けて可視光を射出できるように構成されている。以下、このような機能を実現するためのガンマカメラの具体的な構成例について説明する。なお、「入射方向の逆方向に向けて」とは、入射軸に一致する逆方向だけではなく、入射軸に対してある程度の角度だけずれた逆方向も含む意味である。この射出角度の精度は、例えば放射線の入射角度の検出精度と同程度の精度であることが好ましい。なお、放射線カメラは、ガンマ線、X線、消滅放射線などを対象とした放射線カメラである。
(Function of gamma camera)
First, the function of the gamma camera as an example of the radiation camera in the embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram conceptually showing the function of a medical gamma camera according to an embodiment of the present invention. The gamma camera shown in FIG. 1 is a medical gamma camera that detects radiation (for example, gamma rays) from a radiation source of a target (for example, a human body) and emits visible light in the direction opposite to the incident direction of the detected gamma rays. .. With such a configuration, visible light is irradiated to the position where the radiation source exists in the target. As a result, the operator of the gamma camera can easily visually grasp the position where the radiation source exists in the target. In the example shown in FIG. 1, the radiation source (hereinafter, also simply referred to as “radioactive source”) exists inside the object, but the radiation source may exist on the surface of the object. Gamma rays are generally emitted from a radiation source in an unspecified direction, but a gamma camera is configured to determine the incident direction of gamma rays and emit visible light in the direction opposite to the incident direction. Hereinafter, a specific configuration example of a gamma camera for realizing such a function will be described. In addition, "toward the opposite direction of the incident direction" means not only the reverse direction corresponding to the incident axis but also the reverse direction deviated by a certain angle with respect to the incident axis. It is preferable that the accuracy of the injection angle is, for example, the same as the accuracy of detecting the incident angle of radiation. The radiation camera is a radiation camera for gamma rays, X-rays, annihilation radiation, and the like.
 〔実施形態1〕
 (ガンマカメラ1の構成及び動作)
 次に、本発明の実施形態1に係るガンマカメラ1(特許請求の範囲における「放射線カメラ」の一例)について、図面を参照して説明する。図2は、実施形態1に係るガンマカメラ1とその変形例に係るガンマカメラ1Aの構成を示す概略縦断面図である。図2(a)に示すように、ガンマカメラ1は、筐体9と、筐体9の一端部に設けられた遮蔽体8を備える。なお、以下においては図面の上下方向を便宜的にガンマカメラ1の上下方向として説明する。遮蔽体8は、上部8Aは円錐形で下部8Bが円筒形である。なお、遮蔽体8の形状は、矩形状であってもよい。例えば、上部8Aが角錐形で、下部8Bは角柱形であってもよい。遮蔽体8は、ガンマ線を遮蔽するため、鉛又はタングステン等の密度の大きな材料を用いて所定の厚さで形成されている。所定の厚さとは、所定のエネルギーのガンマ線を遮蔽することができる厚さである。本実施形態に係るガンマカメラ1は、例えば99mTcから放射される約140keVのガンマ線を検出することを目的としている。そのため、遮蔽体8は、140keVのガンマ線を遮蔽できる厚さに設計されている。遮蔽体8は、入射するガンマ線をコリメートするために、先端部8Cに微小な開口であるピンホール8D(特許請求の範囲における「コリメータ」の一例)が形成されている。ピンホール8Dは、上方向から入射するガンマ線Rのみを通過させるように、細孔状に形成されている。
[Embodiment 1]
(Configuration and operation of gamma camera 1)
Next, the gamma camera 1 (an example of a “radiation camera” in the claims) according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a schematic vertical sectional view showing the configuration of the gamma camera 1 according to the first embodiment and the gamma camera 1A according to a modification thereof. As shown in FIG. 2A, the gamma camera 1 includes a housing 9 and a shield 8 provided at one end of the housing 9. In the following, the vertical direction of the drawing will be described as the vertical direction of the gamma camera 1 for convenience. The shield 8 has a conical upper portion 8A and a cylindrical lower portion 8B. The shape of the shield 8 may be rectangular. For example, the upper 8A may be a pyramid and the lower 8B may be a prism. The shield 8 is formed to have a predetermined thickness by using a high-density material such as lead or tungsten in order to shield gamma rays. The predetermined thickness is a thickness capable of shielding gamma rays of a predetermined energy. The gamma camera 1 according to the present embodiment is intended to detect gamma rays of about 140 keV emitted from , for example, 99 m Tc. Therefore, the shield 8 is designed to have a thickness capable of shielding 140 keV gamma rays. The shield 8 is formed with a pinhole 8D (an example of a “collimator” in the claims) which is a minute opening at the tip portion 8C in order to collimate the incident gamma ray. The pinhole 8D is formed in a pore shape so as to allow only gamma rays R incident from above to pass through.
 ガンマカメラ1は、放射線検出部と発光部とを備えている。放射線検出部は、遮蔽体8の内部に設けられた1つの放射線検出素子13により構成されており、発光部は、遮蔽体8の内部に設けられた、放射線検出素子13に対応する1つの発光素子14により構成されている。本実施形態では、発光素子14がピンホール8Dに近い側に配置され、放射線検出素子13がピンホール8Dから遠い側に配置されている。発光素子14と放射線検出素子13とは、この順でガンマ線Rの進行方向に沿って(つまり上下に)隣接して配列されている。ガンマ線の進行方向とは、ピンホール8Dに近い側(発光素子14側)からピンホール8Dから遠い側(放射線検出素子13側)に向かう方向である。また、「隣接して」とは、接して隣接する場合と離間して隣接する場合とを含む。つまり、発光素子14と放射線検出素子13とは、接して配置されていてもよく、離間して配置されていてもよい。また、発光素子14と放射線検出素子13とを接して配置する場合、両者を直接積層してもよく、他に、発光素子14と放射線検出素子13との間にガンマ線Rを透過する支持部材などのスペーサを介在させても良い。 The gamma camera 1 includes a radiation detection unit and a light emitting unit. The radiation detection unit is composed of one radiation detection element 13 provided inside the shield 8, and the light emitting unit is one light emission corresponding to the radiation detection element 13 provided inside the shield 8. It is composed of an element 14. In the present embodiment, the light emitting element 14 is arranged on the side closer to the pinhole 8D, and the radiation detection element 13 is arranged on the side farther from the pinhole 8D. The light emitting element 14 and the radiation detecting element 13 are arranged adjacent to each other along the traveling direction of the gamma ray R (that is, vertically) in this order. The traveling direction of the gamma ray is a direction from the side near the pinhole 8D (light emitting element 14 side) to the side far from the pinhole 8D (radiation detection element 13 side). Further, "adjacent" includes a case where they are in contact with each other and a case where they are separated from each other. That is, the light emitting element 14 and the radiation detecting element 13 may be arranged in contact with each other or may be arranged apart from each other. Further, when the light emitting element 14 and the radiation detection element 13 are arranged in contact with each other, both may be directly laminated, and in addition, a support member that transmits gamma rays R between the light emitting element 14 and the radiation detection element 13 or the like may be used. Spacers may be interposed.
 放射線検出素子13の種類は特に限定されないが、シンチレーション検出素子又は半導体検出素子等の小型の検出素子であることが好ましい。シンチレーション検出素子としては、CsI(Tl)シンチレータ、NaI(Tl)シンチレータ等を用いることができる。半導体検出素子としては、CdTe半導体検出素子、CZT半導体検出素子、Si半導体検出素子、Ge半導体検出素子等を用いることができる。放射線検出素子13は、放射線のエネルギーを電気信号に変換して出力するが、エネルギーを電気信号に変換する構成は公知の構成を用いることができるため、その図示と説明は省略する。発光素子14の種類は特に限定されないが、可視光(以下、単に「光」とも称する。)を射出する例えば発光ダイオード(Light Emitting Diode, LED)を用いることができる。 The type of the radiation detection element 13 is not particularly limited, but a small detection element such as a scintillation detection element or a semiconductor detection element is preferable. As the scintillation detection element, a CsI (Tl) scintillator, a NaI (Tl) scintillator, or the like can be used. As the semiconductor detection element, a CdTe semiconductor detection element, a CZT semiconductor detection element, a Si semiconductor detection element, a Ge semiconductor detection element, or the like can be used. The radiation detection element 13 converts the energy of radiation into an electric signal and outputs it, but since a known configuration can be used for the configuration of converting the energy into an electric signal, the illustration and description thereof will be omitted. The type of the light emitting element 14 is not particularly limited, but for example, a light emitting diode (Light Emitting Diode, LED) that emits visible light (hereinafter, also simply referred to as “light”) can be used.
 前述のように、ガンマカメラ1では放射線検出素子13の上に発光素子14が配列されている。従って、図2(a)に示すように、ピンホール8Dに入射して通過したガンマ線Rは発光素子14を透過して放射線検出素子13に到達する。しかし、例えば99mTcから放射されるガンマ線Rのエネルギーは約140keVであり、発光素子14を容易に透過することができ、ガンマ線Rの検出効率に影響を与える虞は少ない。 As described above, in the gamma camera 1, the light emitting element 14 is arranged on the radiation detection element 13. Therefore, as shown in FIG. 2A, the gamma ray R incident on and passing through the pinhole 8D passes through the light emitting element 14 and reaches the radiation detection element 13. However, for example, the energy of the gamma ray R emitted from 99 m Tc is about 140 keV, and the light emitting element 14 can be easily transmitted, and there is little possibility of affecting the detection efficiency of the gamma ray R.
 制御部16は、筐体9の内部であって遮蔽体8の外部に配置されている。制御部16を筐体9の内部に備えることで、可搬性が向上する。なお、放射線検出素子13、発光素子14、及び制御部16を一体化させることで、よりコンパクトな構成とすることができる。図3に示すように、制御部16は、放射線検出素子13がガンマ線を受けて出力する電気信号を受信し、その電気信号の受信を契機に、発光素子14を所定の時間だけ励起させて光Lを射出(発光)させる制御を行う。発光素子14を長時間発光させると、放射線の強度(計数率又は空間線量率)が強い場合に光Lが重なって連続的に投影され続けるため、好ましくない。一方、発光時間があまり短いと、目視しにくくなるため、ある程度の発光時間が必要である。そのため、適切な目視が可能となるように、制御部16は、放射線の強度に基づいて、発光時間を調節できるように構成してもよい。また、制御部16は、発光時間に代えて、又は加えて発光強度(輝度)を調節できるように構成してもよい。制御部16は、MPU(Micro Processing Unit)又はCPU(Central Processing Unit)等のプロセッサと、各種プログラム及びデータを記憶したメモリとを含む。又は、制御部16は、プロセッサとして、ASIC(Application Specific Integrated Circuit)又はFPGA(Field Programmable Gate Array)等の専用プロセッサを用いてもよい。 The control unit 16 is arranged inside the housing 9 and outside the shield 8. By providing the control unit 16 inside the housing 9, portability is improved. By integrating the radiation detection element 13, the light emitting element 14, and the control unit 16, a more compact configuration can be obtained. As shown in FIG. 3, the control unit 16 receives an electric signal that the radiation detection element 13 receives and outputs a gamma ray, and the light emitting element 14 is excited for a predetermined time by receiving the electric signal to generate light. Control is performed to emit (emit) L. If the light emitting element 14 is made to emit light for a long time, the light L is overlapped and continuously projected when the radiation intensity (counting rate or air dose rate) is strong, which is not preferable. On the other hand, if the light emission time is too short, it becomes difficult to visually recognize the light emission time, so that a certain amount of light emission time is required. Therefore, the control unit 16 may be configured so that the light emission time can be adjusted based on the intensity of radiation so that appropriate visual inspection is possible. Further, the control unit 16 may be configured so that the emission intensity (luminance) can be adjusted in place of or in addition to the emission time. The control unit 16 includes a processor such as an MPU (Micro Processing Unit) or a CPU (Central Processing Unit), and a memory for storing various programs and data. Alternatively, the control unit 16 may use a dedicated processor such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array) as the processor.
 図2に戻り、発光素子14から射出された光Lは、ピンホール8Dを介してガンマ線Rの入射方向の逆方向に向いた光Lのみが外部に発出される。その結果、線源に対応する対象の位置に光Lが投影される。線源に対応する位置とは、線源が対象の表面にある場合は、その線源の位置であり、線源が対象の内部にある場合は、線源と発光素子14とを結ぶ線分が対象の表面と交わる位置である。 Returning to FIG. 2, as for the light L emitted from the light emitting element 14, only the light L directed in the direction opposite to the incident direction of the gamma ray R is emitted to the outside through the pinhole 8D. As a result, the light L is projected at the position of the target corresponding to the radiation source. The position corresponding to the radiation source is the position of the radiation source when the radiation source is on the surface of the target, and the line segment connecting the radiation source and the light emitting element 14 when the radiation source is inside the target. Is the position where is the intersection with the surface of the object.
 以上のように、放射線検出素子13は、ピンホール8Dを通過したガンマ線Rを検出し、発光素子14は、そのガンマ線Rの入射方向の逆方向に向けて可視光Lを射出する。射出された可視光Lは、線源に向かって照射され、線源に対応する対象の位置に投影される。 As described above, the radiation detection element 13 detects the gamma ray R that has passed through the pinhole 8D, and the light emitting element 14 emits visible light L in the direction opposite to the incident direction of the gamma ray R. The emitted visible light L is emitted toward the radiation source and projected at the position of the target corresponding to the radiation source.
 この構成を本実施形態のように医療用のガンマカメラに適用した場合、患部の位置を皮膚上に可視化することができる。具体的には、医療用のガンマカメラ1は、例えば99mTcから放射されるガンマ線を検出して、その入射方向の逆方向に向けて光を射出することができる。例えば、99mTcを含むアルブミン、フチン酸等の標識化合物を乳がん患者に投与すると、標識化合物は乳がんの患部に集積する。そこで、医師がガンマカメラ1を用いて診断すると、99mTcから放射されるガンマ線の線源の方向にガンマカメラ1から光が射出される。つまり、標識化合物が集積した患部に向けてガンマカメラ1からの光が患者の皮膚上に直接投影され、可視化される。そのため、医師は患部の位置を視覚的に把握することができる。また、ガンマカメラ1は、手術中にも使用でき、その場合は、臓器の表面上に患部の位置を可視化することができる。 When this configuration is applied to a medical gamma camera as in the present embodiment, the position of the affected area can be visualized on the skin. Specifically, the medical gamma camera 1 can detect gamma rays emitted from, for example, 99 m Tc, and emit light in the direction opposite to the incident direction. For example, when a labeled compound such as albumin or futinic acid containing 99 mTc is administered to a breast cancer patient, the labeled compound accumulates in the affected part of the breast cancer. Therefore, when the doctor makes a diagnosis using the gamma camera 1, light is emitted from the gamma camera 1 in the direction of the source of the gamma rays emitted from 99 mTc. That is, the light from the gamma camera 1 is directly projected onto the patient's skin toward the affected area where the labeled compound is accumulated and visualized. Therefore, the doctor can visually grasp the position of the affected area. The gamma camera 1 can also be used during surgery, in which case the position of the affected area can be visualized on the surface of the organ.
 患部が人体の内部にある場合は、ガンマカメラ1のピンホール8Dと患部とを結ぶ線が皮膚と交わる位置に光が投影される。ガンマカメラ1の位置を変えて患部の位置を診断することにより、患部の位置が内部にあってもその位置を把握することができる。 When the affected area is inside the human body, light is projected at the position where the line connecting the pinhole 8D of the gamma camera 1 and the affected area intersects the skin. By diagnosing the position of the affected area by changing the position of the gamma camera 1, even if the position of the affected area is inside, the position can be grasped.
 従来技術では、検出した放射線の入射軸と投影する光の投影軸が一致しないため、光を投影する位置によって複雑な校正演算が必要である。しかし、ガンマカメラ1によれば、ガンマカメラ1の位置による投影方向の校正を行うことなく、放射線源に向けて可視光を投影することができる。 In the prior art, the incident axis of the detected radiation and the projection axis of the projected light do not match, so complicated calibration calculation is required depending on the position where the light is projected. However, according to the gamma camera 1, visible light can be projected toward a radiation source without calibrating the projection direction according to the position of the gamma camera 1.
 (変形例)
 上記の実施形態1では、発光素子14が放射線検出素子13の上に配置されている。しかし、図2(b)に示すように、発光素子14と放射線検出素子13とを逆に配置してもよい。図2(b)に示す例では、放射線検出素子13を遮蔽体8の内部に配置し、発光素子14を遮蔽体8の下部の筐体9の内部に配置している。図2(c)に示すように、放射線検出素子13の中央部分に円筒状の開口13Aを設けており、発光素子14は、開口13Aを通じて光を射出する。なお、発光素子14も遮蔽体8の内部に設けてもよい。このような構成でも実施形態1と同様の効果を得ることができる。
(Modification example)
In the first embodiment, the light emitting element 14 is arranged on the radiation detection element 13. However, as shown in FIG. 2B, the light emitting element 14 and the radiation detection element 13 may be arranged in reverse. In the example shown in FIG. 2B, the radiation detection element 13 is arranged inside the shield 8, and the light emitting element 14 is arranged inside the housing 9 below the shield 8. As shown in FIG. 2C, a cylindrical opening 13A is provided in the central portion of the radiation detection element 13, and the light emitting element 14 emits light through the opening 13A. The light emitting element 14 may also be provided inside the shield 8. Even with such a configuration, the same effect as that of the first embodiment can be obtained.
 上記の実施形態1では、制御部16を筐体9の内部に設けた。しかし制御部16も遮蔽体8の内部に設けてもよい。また、発光素子14はレーザ発光素子でもよい。なお、本実施形態では「ガンマカメラ」を例示しているが、前述のように検出する放射線は必ずしもガンマ線でなくともよい。例えば、ベータ線又は各種のエネルギーレベルの電磁波を検出して光をその逆方向に向けて射出する構成としてもよい。その場合は、放射線検出素子13を適宜放射線の検出に適した構成のものに変更して用いる。 In the first embodiment, the control unit 16 is provided inside the housing 9. However, the control unit 16 may also be provided inside the shield 8. Further, the light emitting element 14 may be a laser light emitting element. Although the "gamma camera" is exemplified in this embodiment, the radiation to be detected as described above does not necessarily have to be gamma rays. For example, it may be configured to detect beta rays or electromagnetic waves of various energy levels and emit light in the opposite direction. In that case, the radiation detection element 13 is appropriately changed to one having a configuration suitable for detecting radiation.
 〔実施形態2〕
 (ガンマカメラ2の構成)
 次に、本発明の実施形態2に係るガンマカメラ2について、図面を参照して説明する。図4は、実施形態2に係る医療用のガンマカメラ2の構成を示す概略縦断面図である。図4に示すように、ガンマカメラ2は、遮蔽体10の内部に放射線検出部12と制御部16を備える。遮蔽体10は、ガンマカメラ2の筐体を兼ねており、上部10Aは円錐形で下部10Bが円筒形である。遮蔽体10は、実施形態1の遮蔽体8と同様、先端部10Cにガンマ線をコリメートするための微小な開口であるピンホール11(特許請求の範囲における「コリメータ」の一例)が形成されている。ガンマカメラ2のピンホール11は、広角度からのガンマ線をコリメートするように形成されている。遮蔽体10の材質及び厚さは、実施形態1で説明したとおりである。
[Embodiment 2]
(Configuration of gamma camera 2)
Next, the gamma camera 2 according to the second embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a schematic vertical sectional view showing the configuration of the medical gamma camera 2 according to the second embodiment. As shown in FIG. 4, the gamma camera 2 includes a radiation detection unit 12 and a control unit 16 inside the shield 10. The shield 10 also serves as a housing for the gamma camera 2, and the upper portion 10A is conical and the lower portion 10B is cylindrical. Similar to the shield 8 of the first embodiment, the shield 10 is formed with a pinhole 11 (an example of a “collimator” in the claims) which is a minute opening for collimating a gamma ray at the tip portion 10C. .. The pinhole 11 of the gamma camera 2 is formed so as to collimate gamma rays from a wide angle. The material and thickness of the shield 10 are as described in the first embodiment.
 放射線検出部12は、複数の放射線検出素子13(特許請求の範囲における「放射線検出部」の一例)を含む。複数の放射線検出素子13は、遮蔽体10の下部10Bの横断面形状に合わせて、円形の平面上に規則正しく配列されている。放射線検出素子13は、実施形態1と同様、シンチレーション検出素子又は半導体検出素子等が好ましい。 The radiation detection unit 12 includes a plurality of radiation detection elements 13 (an example of a "radiation detection unit" within the scope of claims). The plurality of radiation detection elements 13 are regularly arranged on a circular plane according to the cross-sectional shape of the lower portion 10B of the shield 10. As the radiation detection element 13, the scintillation detection element, the semiconductor detection element, or the like is preferable as in the first embodiment.
 遮蔽体10の先端部10Cには、図4中の拡大図に示すように、発光素子14と反射部15とを含む発光部が配置されている。発光素子14は、ピンホール11の開口端部10Dの一か所に配置されている。反射部15は、開口端部10Dの、発光素子14に対向する位置に配置されている。発光素子14は、例えば、光Lを反射部15に向けて射出する発光ダイオードである。発光素子14は、放射線検出素子13がガンマ線を検出すると、所定の時間だけ反射部15に向けて光Lを射出するように制御部16によって制御される。反射部15は、平面状の反射板15Aとそれを駆動する駆動部15Bとから構成されている。駆動部15Bは、例えば反射板15Aを直交する2軸方向に旋回させて、反射板15Aの向きを任意に変えることができる圧電アクチュエータである。駆動部15Bは、制御部16により駆動制御される。本実施形態では、発光素子14から出射される光Lを反射する反射板15Aの向きは、複数の放射線検出素子13のそれぞれの位置と対応している。 As shown in the enlarged view in FIG. 4, a light emitting portion including a light emitting element 14 and a reflecting portion 15 is arranged on the tip portion 10C of the shield body 10. The light emitting element 14 is arranged at one place of the open end portion 10D of the pinhole 11. The reflecting portion 15 is arranged at a position of the opening end portion 10D facing the light emitting element 14. The light emitting element 14 is, for example, a light emitting diode that emits light L toward the reflecting unit 15. When the radiation detection element 13 detects a gamma ray, the light emitting element 14 is controlled by the control unit 16 so as to emit light L toward the reflection unit 15 for a predetermined time. The reflecting unit 15 is composed of a planar reflecting plate 15A and a driving unit 15B for driving the reflecting plate 15A. The drive unit 15B is a piezoelectric actuator that can, for example, rotate the reflector 15A in two orthogonal axial directions to arbitrarily change the direction of the reflector 15A. The drive unit 15B is driven and controlled by the control unit 16. In the present embodiment, the orientation of the reflector 15A that reflects the light L emitted from the light emitting element 14 corresponds to the position of each of the plurality of radiation detection elements 13.
 (ガンマカメラ2の動作)
 ガンマ線が放射線検出素子13によって検出されると、検出された放射線検出素子13の位置とピンホール11の位置とから、検出されたガンマ線の入射方向が決定される。つまり、検出された放射線検出素子13とピンホール11とを結ぶ線が、ガンマ線の入射方向となる。制御部16は、放射線検出素子13からの信号を受信すると、ガンマ線を検出した放射線検出素子13に応じて駆動部15Bを駆動する。具体的には、制御部16は、駆動部15Bを駆動して、ガンマ線の入射方向と逆方向に光Lが反射されるように反射板15Aの向きを変更させる。その後、発光素子14を所定の時間だけ発光させる。発光素子14を長時間発光させると、ガンマカメラ2を移動させた後も光Lが射出され続けるため、好ましくない。一方、発光時間があまり短いと目視しにくくなるため、ある程度の発光時間が必要である。また、放射線の強度(計数率又は空間線量率)が大きい場合、発光時間が重なってしまい、位置による線源の強さが分別できなくなる虞もある。そのため、適切な目視が可能となるように、発光時間をユーザが調節できるように構成してもよい。また、発光時間に代えて、又は加えて発光強度(輝度)をユーザが調節できるように構成してもよい。
(Operation of gamma camera 2)
When the gamma ray is detected by the radiation detection element 13, the incident direction of the detected gamma ray is determined from the position of the detected radiation detection element 13 and the position of the pinhole 11. That is, the line connecting the detected radiation detection element 13 and the pinhole 11 is the incident direction of the gamma ray. When the control unit 16 receives the signal from the radiation detection element 13, the control unit 16 drives the drive unit 15B according to the radiation detection element 13 that has detected the gamma ray. Specifically, the control unit 16 drives the drive unit 15B to change the direction of the reflector 15A so that the light L is reflected in the direction opposite to the incident direction of the gamma ray. After that, the light emitting element 14 is made to emit light for a predetermined time. If the light emitting element 14 emits light for a long time, the light L continues to be emitted even after the gamma camera 2 is moved, which is not preferable. On the other hand, if the light emission time is too short, it becomes difficult to visually recognize, so a certain amount of light emission time is required. Further, when the radiation intensity (counting rate or air dose rate) is high, the emission times may overlap and the intensity of the radiation source depending on the position may not be separated. Therefore, it may be configured so that the user can adjust the light emission time so that appropriate visual inspection is possible. Further, it may be configured so that the user can adjust the emission intensity (luminance) instead of or in addition to the emission time.
 以上の構成により、ガンマカメラ2は、実施形態1と同様の効果が得られる。つまり、以上の構成によれば、ガンマカメラの位置によって投影方向の校正を行うことなく、放射線源に向けて可視光を投影することができる。さらに、複数の放射線検出素子13を備えることにより、ピンホール11を通過した放射線を放射線検出素子13が検出した場合に、ピンホール11とその放射線検出素子13との位置から放射線の入射方向を容易に決定することができる。その放射線の入射方向の逆方向に向けて発光素子14から可視光を射出させることができる。 With the above configuration, the gamma camera 2 can obtain the same effect as that of the first embodiment. That is, according to the above configuration, visible light can be projected toward the radiation source without calibrating the projection direction depending on the position of the gamma camera. Further, by providing a plurality of radiation detection elements 13, when the radiation detection element 13 detects the radiation that has passed through the pinhole 11, the incident direction of the radiation can be easily determined from the positions of the pinhole 11 and the radiation detection element 13. Can be decided. Visible light can be emitted from the light emitting element 14 in the direction opposite to the incident direction of the radiation.
 (変形例)
 実施形態2では、遮蔽体10は図5(a)に示すように、下部は円筒形であり、上部は円錐形である。しかし遮蔽体10の形状は限定されない。例えば、図5(b)に示すように、遮蔽体10の形状は矩形状でもよい。つまり、遮蔽体10の下部は角柱形で、上部は角錐形でもよい。また、上記の例では、発光素子14と反射部15は遮蔽体10の先端部10Cに配置されているが、その位置は限定されない。前述のようにガンマ線の入射方向はガンマ線を検出した放射線検出素子13の位置によって決まるので、その方向に向けて光が射出されるように構成しておけばよく、発光部の配置位置は限定されない。また、発光素子14と反射部15を別の位置に配置しておき、遮蔽体10の先端部10Cから射出されるように光を導光してもよい。
(Modification example)
In the second embodiment, as shown in FIG. 5A, the shield 10 has a cylindrical shape at the lower portion and a conical shape at the upper portion. However, the shape of the shield 10 is not limited. For example, as shown in FIG. 5B, the shape of the shield 10 may be rectangular. That is, the lower portion of the shield 10 may be prismatic and the upper portion may be pyramidal. Further, in the above example, the light emitting element 14 and the reflecting portion 15 are arranged at the tip portion 10C of the shielding body 10, but the positions thereof are not limited. As described above, the incident direction of the gamma ray is determined by the position of the radiation detection element 13 that has detected the gamma ray. .. Further, the light emitting element 14 and the reflecting portion 15 may be arranged at different positions, and the light may be guided so as to be emitted from the tip portion 10C of the shielding body 10.
 実施形態2では、遮蔽体10はガンマカメラ2の筐体を兼ねている。しかし筐体を遮蔽体10と兼用しないで別に構成してもよい。その場合、制御部16は筐体部の内部に配置してもよい。 In the second embodiment, the shield 10 also serves as a housing for the gamma camera 2. However, the housing may not be shared with the shield 10 and may be configured separately. In that case, the control unit 16 may be arranged inside the housing unit.
 〔実施形態3〕
 (ガンマカメラ3の構成)
 次に、実施形態3に係る医療用のガンマカメラ3について、図面を参照して説明する。なお、説明の便宜上、以下の各実施形態において、それまでの実施形態で説明した部材と同じ機能を有する部材については、同じ符号を付し、その説明を繰り返さない。図6は、ガンマカメラ3の構成を示す断面縦概略図である。図6に示すように、ガンマカメラ3は、実施形態1で説明した遮蔽体10と同様の円筒形の遮蔽体20を備える。遮蔽体20は、先端部にピンホール11(特許請求の範囲における「コリメータ」の一例)を有する。遮蔽体20は、内部に複数の放射線検出素子13と複数の発光素子30と制御部16とを備える。
[Embodiment 3]
(Structure of gamma camera 3)
Next, the medical gamma camera 3 according to the third embodiment will be described with reference to the drawings. For convenience of explanation, in each of the following embodiments, the members having the same functions as the members described in the previous embodiments are designated by the same reference numerals, and the description thereof will not be repeated. FIG. 6 is a schematic cross-sectional vertical view showing the configuration of the gamma camera 3. As shown in FIG. 6, the gamma camera 3 includes a cylindrical shield 20 similar to the shield 10 described in the first embodiment. The shield 20 has a pinhole 11 (an example of a "collimator" in the claims) at the tip thereof. The shield 20 includes a plurality of radiation detection elements 13, a plurality of light emitting elements 30, and a control unit 16 inside.
 複数の放射線検出素子13と複数の発光素子30とは、ガンマ線の進行方向に沿った方向に隣接して配列されている。本実施形態において、放射線検出素子13と発光素子30とは、図面の上下方向に隣接して配列されている。本実施形態では、放射線検出素子13と発光素子30の数は同じであり、1つの放射線検出素子13の上に1つの発光素子30が配列されている。なお、上下方向に隣接して配列された放射線検出素子13と発光素子30とは、互いに対応づけられている。発光素子30は、上方向に向けて光を射出するように配置されている。射出された光は、ピンホール11によってコリメートされるため、発光素子30は、指向性のある光を射出する必要はない。発光素子30の発光面と放射線検出素子13の検出面とは、形状と大きさが幾何学的に相似していることが好ましく、同等であることがより好ましい。これにより、投影光の分布と線源の分布とをより一致させることができる。 The plurality of radiation detection elements 13 and the plurality of light emitting elements 30 are arranged adjacent to each other in the direction along the traveling direction of the gamma ray. In the present embodiment, the radiation detection element 13 and the light emitting element 30 are arranged adjacent to each other in the vertical direction of the drawing. In this embodiment, the number of radiation detection elements 13 and the number of light emitting elements 30 are the same, and one light emitting element 30 is arranged on one radiation detection element 13. The radiation detection element 13 and the light emitting element 30 arranged adjacent to each other in the vertical direction are associated with each other. The light emitting element 30 is arranged so as to emit light upward. Since the emitted light is collimated by the pinhole 11, the light emitting element 30 does not need to emit directional light. The light emitting surface of the light emitting element 30 and the detection surface of the radiation detection element 13 are preferably geometrically similar in shape and size, and more preferably equivalent. As a result, the distribution of the projected light and the distribution of the radiation source can be made more consistent.
 (ガンマカメラ3の動作)
 ガンマカメラ3の動作について、図7を参照して説明する。図7(d)に示すフローチャートに示すように、本実施形態では、放射線検出素子13によってガンマ線が検出されると(ステップS71)、制御部16は、対応する発光素子30を発光させる(ステップS72)。これにより、放射線検出素子13によって例えば体内に存在する線源(患部)50からのガンマ線が検出されると、線源50に対応する位置の皮膚51に光が投影される。
(Operation of gamma camera 3)
The operation of the gamma camera 3 will be described with reference to FIG. 7. As shown in the flowchart shown in FIG. 7 (d), in the present embodiment, when gamma rays are detected by the radiation detection element 13 (step S71), the control unit 16 causes the corresponding light emitting element 30 to emit light (step S72). ). As a result, when gamma rays from, for example, a radiation source (affected portion) 50 existing in the body are detected by the radiation detection element 13, light is projected onto the skin 51 at a position corresponding to the radiation source 50.
 より具体的には、図7(a)に示すように、ピンホール11を通過して入射したガンマ線は、放射線検出素子13で検出される。制御部16は、放射線検出素子13からガンマ線の検出信号を受信すると、図7(b)に示すように、ガンマ線を検出した放射線検出素子13に対応する発光素子30から所定時間だけ可視光を射出させる。所定時間だけ可視光を射出する理由、及び所定の発光時間を調節できるようにしてもよいことは実施形態1、2と同様である。図7(c)に示すように、発光素子30から上方向に射出された光は、ピンホール11によってコリメートされて、入射したガンマ線の入射方向と逆方向に向いた光だけが外部に射出され、リンパ節等の線源50に対応する位置の皮膚51に投影される。この動作が、各々の放射線検出素子13とそれに対応する発光素子30で繰り返される。 More specifically, as shown in FIG. 7A, gamma rays incident through the pinhole 11 are detected by the radiation detection element 13. When the control unit 16 receives the gamma ray detection signal from the radiation detection element 13, as shown in FIG. 7B, the control unit 16 emits visible light from the light emitting element 30 corresponding to the radiation detection element 13 that has detected the gamma ray for a predetermined time. Let me. The reason for emitting visible light for a predetermined time and the fact that the predetermined light emission time may be adjusted are the same as those in the first and second embodiments. As shown in FIG. 7 (c), the light emitted upward from the light emitting element 30 is collimated by the pinhole 11, and only the light directed in the direction opposite to the incident direction of the incident gamma ray is emitted to the outside. , Lymph nodes, etc. are projected onto the skin 51 at a position corresponding to the radiation source 50. This operation is repeated in each radiation detection element 13 and the corresponding light emitting element 30.
 ガンマ線の進行方向に沿った方向に隣接して放射線検出素子13と発光素子30とを重ねた構成により、発光素子30を発光させるだけで、ピンホール11から入射するガンマ線の入射方向と逆方向に向けて、外部に光を射出させることができる。そして、ガンマ線を放射する標識化合物が集積した線源(患部)50に向けてガンマカメラ3からの光が患者の皮膚51上に直接投影され、可視化される。これによって、医師は患部50の位置を視覚的に把握することができる。なお、手術中に使用される場合には、皮膚51の代わりに臓器の表面の場合もあり得る。 By stacking the radiation detection element 13 and the light emitting element 30 adjacent to each other in the direction along the traveling direction of the gamma ray, only the light emitting element 30 is made to emit light, and the direction is opposite to the incident direction of the gamma ray incident from the pinhole 11. Light can be emitted to the outside. Then, the light from the gamma camera 3 is directly projected onto the patient's skin 51 and visualized toward the radiation source (affected portion) 50 in which the labeled compound that emits gamma rays is accumulated. This allows the doctor to visually grasp the position of the affected area 50. When used during surgery, it may be the surface of an organ instead of the skin 51.
 ガンマカメラ3では、放射線検出素子13の上に発光素子30が隣接して配列されている。従って、入射したガンマ線は発光素子30を透過して放射線検出素子13に到達する。しかし前述のように、例えば99mTcから放射されるガンマ線のエネルギーは約140keVであり、発光素子30を容易に透過することができ、ガンマ線の検出効率に影響を与える虞は少ない。 In the gamma camera 3, the light emitting element 30 is arranged adjacent to the radiation detection element 13. Therefore, the incident gamma rays pass through the light emitting element 30 and reach the radiation detection element 13. However, as described above, for example, the energy of gamma rays emitted from 99 mTc is about 140 keV, and the light emitting element 30 can be easily transmitted, and there is little possibility of affecting the gamma ray detection efficiency.
 実施形態3に係るガンマカメラ3では、実施形態2のガンマカメラ2に比べて、発光素子30の数は多くなるが、発光素子14から出射した光Lを反射する反射板15Aを、駆動部15Bを用いて駆動させる必要がない。対応する放射線検出素子13と発光素子30とを放射線の進行方向に沿って隣接して配列するという簡易な構成によって、入射した放射線の逆方向に向けて光を射出させることが容易となる。つまり、放射線検出素子13の各々に対応する発光素子30から光を射出させるだけで、入射した放射線の逆方向に向けて光を射出させることが可能となる。なお、実施形態1、2で示した変形例は、実施形態3においても適宜適用可能である。 In the gamma camera 3 according to the third embodiment, the number of light emitting elements 30 is larger than that in the gamma camera 2 of the second embodiment, but the reflector 15A that reflects the light L emitted from the light emitting element 14 is driven by the driving unit 15B. It is not necessary to drive using. The simple configuration in which the corresponding radiation detection element 13 and the light emitting element 30 are arranged adjacent to each other along the traveling direction of the radiation makes it easy to emit light in the opposite direction of the incident radiation. That is, it is possible to emit light in the opposite direction of the incident radiation simply by emitting light from the light emitting element 30 corresponding to each of the radiation detection elements 13. The modifications shown in the first and second embodiments can be appropriately applied to the third embodiment.
 〔実施形態4〕
 次に、実施形態4に係るガンマカメラ4の構成と動作について、図8を参照して説明する。図8(a)に示すように、ガンマカメラ4は、実施形態3と同様の遮蔽体20を有する。ガンマカメラ4は、遮蔽体20の内部に、放射線検出素子13とレーザ発光素子32(特許請求の範囲における「発光部」の一例)を有する。放射線検出素子13とレーザ発光素子32とは、ガンマ線の進行方向に沿って隣接して配列されている。放射線検出素子13とレーザ発光素子32とは、同じ数で対応して配列されている。レーザ発光素子32は、可視レーザ光をピンホール11の方向に向けて射出するように配置されている。
[Embodiment 4]
Next, the configuration and operation of the gamma camera 4 according to the fourth embodiment will be described with reference to FIG. As shown in FIG. 8A, the gamma camera 4 has a shield 20 similar to that of the third embodiment. The gamma camera 4 has a radiation detection element 13 and a laser light emitting element 32 (an example of a “light emitting unit” in the claims) inside the shield 20. The radiation detection element 13 and the laser light emitting element 32 are arranged adjacent to each other along the traveling direction of gamma rays. The radiation detection element 13 and the laser light emitting element 32 are arranged correspondingly in the same number. The laser light emitting element 32 is arranged so as to emit visible laser light toward the pinhole 11.
 図8(b)のフローチャートに示すように、制御部16は、放射線検出素子13からガンマ線の検出信号を受信すると(ステップS81)、ガンマ線を検出した放射線検出素子13に対応するレーザ発光素子32から所定時間だけ可視光を射出させる(ステップS82)。このフローチャートが、対応する放射線検出素子13とレーザ発光素子32との間で繰り返される。 As shown in the flowchart of FIG. 8B, when the control unit 16 receives the gamma ray detection signal from the radiation detection element 13 (step S81), the control unit 16 is connected to the laser light emitting element 32 corresponding to the radiation detection element 13 that has detected the gamma ray. Visible light is emitted for a predetermined time (step S82). This flowchart is repeated between the corresponding radiation detection element 13 and the laser light emitting element 32.
 ガンマカメラ4によれば、実施形態3における指向性のない発光素子30を、指向性のあるレーザ発光素子32に代えることで、より明るい光を投影することができる。なお、レーザ発光素子32は指向性が高いため、レーザ光の射出方向を精度よくピンホール11に向けて配置することが好ましい。具体的には、レーザ発光素子32の発光面はそれぞれピンホール11に向かうように調整されており、かつ発光面の中心は、それぞれの放射線検出素子13の検出面中心とピンホール11を結ぶ線分上にあることが好ましい。 According to the gamma camera 4, brighter light can be projected by replacing the non-directional light emitting element 30 in the third embodiment with the directional laser light emitting element 32. Since the laser light emitting element 32 has high directivity, it is preferable to arrange the laser light emitting direction with high accuracy toward the pinhole 11. Specifically, the light emitting surface of the laser light emitting element 32 is adjusted so as to face the pinhole 11, and the center of the light emitting surface is a line connecting the center of the detection surface of each radiation detection element 13 and the pinhole 11. It is preferably on the minute.
 以上の構成のガンマカメラ4により、実施形態3に係るガンマカメラ3と同様の効果を得ることができる。また、ガンマカメラ4によれば、実施形態3のガンマカメラ3に比べて、投影する光の明るさを強くすることができる。なお、実施形態1、2で示した変形例は、実施形態4においても適宜適用可能である。 With the gamma camera 4 having the above configuration, the same effect as that of the gamma camera 3 according to the third embodiment can be obtained. Further, according to the gamma camera 4, the brightness of the projected light can be increased as compared with the gamma camera 3 of the third embodiment. The modifications shown in the first and second embodiments can be appropriately applied to the fourth embodiment.
 〔実施形態5〕
 次に、実施形態5に係るガンマカメラ5について、図9を参照して説明する。ガンマカメラ5は、実施形態3と同様の遮蔽体20を有する。ガンマカメラ5は、遮蔽体20の内部に、放射線検出素子13とレーザ発光素子32を有する。図9に示すように、放射線検出素子13とレーザ発光素子32とは、ガンマ線の進行方向に沿って隣接して配列されている。放射線検出素子13とレーザ発光素子32とは、同じ数で対応して配列されている。
[Embodiment 5]
Next, the gamma camera 5 according to the fifth embodiment will be described with reference to FIG. The gamma camera 5 has a shield 20 similar to that of the third embodiment. The gamma camera 5 has a radiation detection element 13 and a laser light emitting element 32 inside the shield 20. As shown in FIG. 9, the radiation detection element 13 and the laser light emitting element 32 are arranged adjacent to each other along the traveling direction of gamma rays. The radiation detection element 13 and the laser light emitting element 32 are arranged correspondingly in the same number.
 より具体的には、対応する放射線検出素子13とレーザ発光素子32とは、一体化されている。より具体的には、放射線検出素子13の検出面とレーザ発光素子32の発光面とが同じ方向を向くように、ガンマ線の進行方向に沿って一体化されている。そして一体化された放射線検出素子13とレーザ発光素子32が、ピンホール11に向けて配列されている。一体化した放射線検出素子13とレーザ発光素子32を予め製造しておくことで、それぞれをピンホール11の方向に向けて配列することが容易となる。なお、ガンマカメラ5の動作は、実施形態3で説明したガンマカメラ3の動作と同様である。 More specifically, the corresponding radiation detection element 13 and the laser light emitting element 32 are integrated. More specifically, the detection surface of the radiation detection element 13 and the light emission surface of the laser light emitting element 32 are integrated along the traveling direction of the gamma ray so as to face the same direction. The integrated radiation detection element 13 and the laser light emitting element 32 are arranged toward the pinhole 11. By manufacturing the integrated radiation detection element 13 and the laser light emitting element 32 in advance, it becomes easy to arrange each of them in the direction of the pinhole 11. The operation of the gamma camera 5 is the same as the operation of the gamma camera 3 described in the third embodiment.
 以上の構成のガンマカメラ5により、実施形態3に係るガンマカメラ3と同様の効果を得ることができる。さらに、放射線検出素子13とレーザ発光素子32を一体化することで、両者をピンホール11の方向に向けて隣接して配列することが容易となる。なお、実施形態5以下の実施形態においては、発光素子としてレーザ発光素子32を用いて説明しているが、レーザ発光素子ではない発光素子を用いてもよい。また、実施形態1、2で示した変形例は、実施形態5においても適宜適用可能である。 With the gamma camera 5 having the above configuration, the same effect as that of the gamma camera 3 according to the third embodiment can be obtained. Further, by integrating the radiation detection element 13 and the laser light emitting element 32, it becomes easy to arrange them adjacent to each other in the direction of the pinhole 11. In the fifth and subsequent embodiments, the laser light emitting element 32 is used as the light emitting element, but a light emitting element other than the laser light emitting element may be used. Further, the modifications shown in the first and second embodiments can be appropriately applied to the fifth embodiment.
 〔実施形態6〕
 次に、実施形態6として、放射線検出素子13とレーザ発光素子32の配列について、図10を参照して説明する。ガンマカメラ4及びガンマカメラ5では、図10(a)及び図10(i)に示すように、レーザ発光素子32と放射線検出素子13とが同じ数だけ対応して、略平面上に配列されている態様を説明した。
[Embodiment 6]
Next, as the sixth embodiment, the arrangement of the radiation detection element 13 and the laser light emitting element 32 will be described with reference to FIG. In the gamma camera 4 and the gamma camera 5, as shown in FIGS. 10 (a) and 10 (i), the laser light emitting elements 32 and the radiation detection elements 13 correspond to the same number and are arranged on a substantially plane. I explained the aspect.
 しかし、図10(c)、(d)、(e)、(f)にそれぞれ示すように、レーザ発光素子32のピッチが放射線検出素子13のピッチと一致していなくてもよい。つまり、放射線検出素子13の数とレーザ発光素子32の数が一致していなくてもよい。例えば、図10(c)、(d)に示すように、放射線検出素子13の数よりもレーザ発光素子32の数が多い場合は、1つの放射線検出素子13に対応する複数のレーザ発光素子32を予め決めておく。そして、対応する複数のレーザ発光素子32は、対応付けられた1つの放射線検出素子13とピンホール11とを結ぶ線と同じ方向に光を射出するように配置する。1つの放射線検出素子13でガンマ線を検出した場合は、その放射線検出素子13に対応付けられた複数のレーザ発光素子32を発光させるように制御される。 However, as shown in FIGS. 10 (c), (d), (e), and (f), the pitch of the laser light emitting element 32 does not have to match the pitch of the radiation detection element 13. That is, the number of radiation detection elements 13 and the number of laser light emitting elements 32 do not have to match. For example, as shown in FIGS. 10 (c) and 10 (d), when the number of laser light emitting elements 32 is larger than the number of radiation detection elements 13, a plurality of laser light emitting elements 32 corresponding to one radiation detection element 13 Is decided in advance. Then, the corresponding plurality of laser light emitting elements 32 are arranged so as to emit light in the same direction as the line connecting the one associated radiation detection element 13 and the pinhole 11. When a gamma ray is detected by one radiation detection element 13, a plurality of laser light emitting elements 32 associated with the radiation detection element 13 are controlled to emit light.
 逆に、図10(e)、(f)に示すように、放射線検出素子13の数よりもレーザ発光素子32の数が少ない場合は、複数の放射線検出素子13に対応する1つのレーザ発光素子32を予め決めておく。そして、対応する1つのレーザ発光素子32は、対応付けられた複数の放射線検出素子13の検出面の中央付近とピンホール11とを結ぶ線と同じ方向に光を射出するように配置する。複数の放射線検出素子13のいずれかでガンマ線を検出した場合は、その放射線検出素子13に対応付けられた1つのレーザ発光素子32を発光させるように制御される。 On the contrary, as shown in FIGS. 10 (e) and 10 (f), when the number of the laser light emitting elements 32 is smaller than the number of the radiation detection elements 13, one laser light emitting element corresponding to the plurality of radiation detection elements 13 is used. 32 is decided in advance. Then, the corresponding laser light emitting element 32 is arranged so as to emit light in the same direction as the line connecting the vicinity of the center of the detection surface of the associated plurality of radiation detection elements 13 and the pinhole 11. When a gamma ray is detected by any of the plurality of radiation detection elements 13, one laser light emitting element 32 associated with the radiation detection element 13 is controlled to emit light.
 また、図10(g)、(h)に示すように、放射線検出素子13がピクセル化されていなくてもよい。放射線検出素子13がピクセル化されていない場合は、図11(a)のフローチャートに示す制御が行われる。つまり、制御部16は、放射線検出素子13からガンマ線の検出信号を受信すると(ステップS111)、放射線検出素子13のどの位置でガンマ線が検出されたかの演算を行う(ステップS112)。次に、制御部16は、そのガンマ線検出位置とピンホール11とを結ぶ線分に最も近い位置にあるレーザ発光素子32を決定する(ステップS113)。そして、制御部16は、決定したレーザ発光素子32を発光させる(ステップS114)。このような制御を行うガンマカメラ4、5のブロック構成図を図11(b)に示す。 Further, as shown in FIGS. 10 (g) and 10 (h), the radiation detection element 13 may not be pixelated. When the radiation detection element 13 is not pixelated, the control shown in the flowchart of FIG. 11A is performed. That is, when the control unit 16 receives the gamma ray detection signal from the radiation detection element 13 (step S111), the control unit 16 calculates at which position of the radiation detection element 13 the gamma ray is detected (step S112). Next, the control unit 16 determines the laser light emitting element 32 located at the position closest to the line segment connecting the gamma ray detection position and the pinhole 11 (step S113). Then, the control unit 16 causes the determined laser light emitting element 32 to emit light (step S114). FIG. 11B shows a block configuration diagram of the gamma cameras 4 and 5 that perform such control.
 また、図10(b)、(d)、(f)、(h)に示すように、複数のレーザ発光素子32が、曲面状に配列されていてもよい。複数のレーザ発光素子32を配列した素子アレイを、光の発光面(射出方向)がピンホール11に向くように湾曲させておけば、効率よく光を外部に射出でき、またガンマカメラの製造組み立てが容易となる。また、これらの形態に代えて、又は加えて、複数の放射線検出素子13が、曲面状に配列されていてもよい(図示せず)。複数の放射線検出素子13を配列した素子アレイを、ガンマ線の検出面がピンホール11に向くように湾曲させておけば、ガンマ線の検出効率が増加する。 Further, as shown in FIGS. 10 (b), (d), (f), and (h), a plurality of laser light emitting elements 32 may be arranged in a curved surface. If the element array in which a plurality of laser light emitting elements 32 are arranged is curved so that the light emitting surface (emission direction) faces the pinhole 11, light can be efficiently emitted to the outside, and a gamma camera can be manufactured and assembled. Becomes easier. Further, instead of or in addition to these forms, a plurality of radiation detection elements 13 may be arranged in a curved surface (not shown). If the element array in which a plurality of radiation detection elements 13 are arranged is curved so that the gamma ray detection surface faces the pinhole 11, the gamma ray detection efficiency is increased.
 また、図10(j)に示すように、一体化されたレーザ発光素子32と放射線検出素子13が湾曲して配列されていてもよい。レーザ発光素子32と放射線検出素子13とを一体化することで、ガンマ線の検出効率と光の射出方向の精度を向上させることができる。また、レーザ発光素子32の発光面と放射線検出素子13の検出面の両方をピンホール11の方向に向けて配置することができ、ガンマ線の検出効率と外部への光射出効率の両方が増加する。また、ガンマカメラの製造組み立てが容易となる。 Further, as shown in FIG. 10 (j), the integrated laser light emitting element 32 and the radiation detection element 13 may be curvedly arranged. By integrating the laser light emitting element 32 and the radiation detection element 13, it is possible to improve the gamma ray detection efficiency and the accuracy of the light emission direction. Further, both the light emitting surface of the laser light emitting element 32 and the detection surface of the radiation detecting element 13 can be arranged toward the pinhole 11, and both the gamma ray detection efficiency and the light emission efficiency to the outside are increased. .. It also facilitates the manufacture and assembly of gamma cameras.
 以上のように、放射線検出素子13と当該放射線検出素子13に対応する発光素子32とを放射線の進行方向に沿って隣接して配置する形態は様々な種類がある。放射線検出素子13と当該放射線検出素子13に対応する発光素子32とが、離間して配列されていてもよく、接して配列されていてもよい。放射線検出素子13と当該放射線検出素子13に対応する発光素子32とを離間して配列することにより、両者の配列の自由度が向上する。したがって、ガンマカメラの構造設計の自由度が増加する。 As described above, there are various types in which the radiation detection element 13 and the light emitting element 32 corresponding to the radiation detection element 13 are arranged adjacent to each other along the traveling direction of radiation. The radiation detection element 13 and the light emitting element 32 corresponding to the radiation detection element 13 may be arranged apart from each other or may be arranged in contact with each other. By arranging the radiation detection element 13 and the light emitting element 32 corresponding to the radiation detection element 13 apart from each other, the degree of freedom in the arrangement of both is improved. Therefore, the degree of freedom in structural design of the gamma camera is increased.
 また、放射線検出素子13と発光素子32とが1対1で対応していなくてもよい。なお、少なくともレーザ発光素子32の発光面はピンホール11の方向に向けて配置することが好ましい。レーザ発光素子32が射出するレーザ光は指向性が高いためである。また、放射線検出素子13の検出面は必ずしもピンホール11の方向に向いていなくともよいが、できるだけピンホール11の方向に向けて配置することが好ましい。これにより、放射線検出素子13の検出効率を高めることができる。 Further, the radiation detection element 13 and the light emitting element 32 do not have to have a one-to-one correspondence. It is preferable that at least the light emitting surface of the laser light emitting element 32 is arranged toward the pinhole 11. This is because the laser beam emitted by the laser light emitting element 32 has high directivity. Further, the detection surface of the radiation detection element 13 does not necessarily have to face the direction of the pinhole 11, but it is preferable to arrange the radiation detection element 13 toward the pinhole 11 as much as possible. Thereby, the detection efficiency of the radiation detection element 13 can be improved.
 〔実施形態7〕
 次に、実施形態7に係るガンマカメラ6について、図面を参照して説明する。図12は、ガンマカメラ6の概略縦断面図とその制御フローである。図13は、放射線検出素子13とレーザ発光素子32の配列を示す平面図である。図14は、放射線検出素子13とレーザ発光素子32の配列を示す斜視図である。
[Embodiment 7]
Next, the gamma camera 6 according to the seventh embodiment will be described with reference to the drawings. FIG. 12 is a schematic vertical sectional view of the gamma camera 6 and its control flow. FIG. 13 is a plan view showing an arrangement of the radiation detection element 13 and the laser light emitting element 32. FIG. 14 is a perspective view showing an arrangement of the radiation detection element 13 and the laser light emitting element 32.
 図12(a)に示すように、ガンマカメラ6では、放射線検出素子13はレーザ発光素子32よりもピンホール11に近い側に配列されている。レーザ発光素子32は、放射線検出素子13よりもピンホール11から遠い側に配列されている。対応する放射線検出素子13とレーザ発光素子32とは、ガンマ線の進行方向と交差する方向に隣接して配列されている。また、放射線検出素子13とレーザ発光素子32とは、離間して配列されている。図12(b)に示すフローチャートについては後述する。 As shown in FIG. 12A, in the gamma camera 6, the radiation detection element 13 is arranged closer to the pinhole 11 than the laser light emitting element 32. The laser light emitting element 32 is arranged on the side farther from the pinhole 11 than the radiation detection element 13. The corresponding radiation detection element 13 and the laser light emitting element 32 are arranged adjacent to each other in a direction intersecting the traveling direction of the gamma ray. Further, the radiation detection element 13 and the laser light emitting element 32 are arranged apart from each other. The flowchart shown in FIG. 12B will be described later.
 放射線検出素子13とレーザ発光素子32の配列についてより詳細に説明する。図13に示すように、放射線検出素子13とレーザ発光素子32とは、直交する二方向に、それぞれ距離L1及び距離L2だけずらして配列されている。ずらす方向は、ガンマ線の進行方向と交差する方向であり、本実施形態においては、ガンマ線の進行方向と直交する方向である。距離L1及び距離L2は、距離L1及び距離L2とも放射線検出素子13の各方向に沿った幅の2分の1以上である。このように配列することにより、放射線検出素子13を避けてレーザ発光素子32からレーザ光を射出することができる。また、放射線検出素子13をできるだけ密に配列することができ、検出位置の精度が向上する。ずらす量はより大きくてもよいが、その分検出効率又は検出の位置精度が低下する場合がある。 The arrangement of the radiation detection element 13 and the laser light emitting element 32 will be described in more detail. As shown in FIG. 13, the radiation detection element 13 and the laser light emitting element 32 are arranged in two orthogonal directions with a distance L1 and a distance L2, respectively. The shifting direction is a direction that intersects with the traveling direction of the gamma ray, and in the present embodiment, is a direction orthogonal to the traveling direction of the gamma ray. The distance L1 and the distance L2 are both more than half the width of the radiation detection element 13 along each direction of the distance L1 and the distance L2. By arranging in this way, the laser beam can be emitted from the laser light emitting element 32 while avoiding the radiation detection element 13. Further, the radiation detection elements 13 can be arranged as closely as possible, and the accuracy of the detection position is improved. The amount of shift may be larger, but the detection efficiency or the position accuracy of detection may be lowered accordingly.
 上記の配列を容易に形成するため、図12(a)、図14に示すように、ピンホール11を中心とする球面状の支持部40を用いることが好ましい。支持部40は、湾曲した板状であり、放射線検出素子13をピンホール11に近い側で支持する。また、支持部40は、レーザ発光素子32を放射線検出素子13よりもピンホール11から遠い側で支持する。支持部40には、予めレーザ光Lを通す複数の貫通穴41が設けられている。貫通穴41は、複数のレーザ発光素子32の発光面にそれぞれ対向し、複数の放射線検出素子13の間の隙間に対向して設けられている。 In order to easily form the above arrangement, it is preferable to use a spherical support portion 40 centered on the pinhole 11 as shown in FIGS. 12 (a) and 14 (a). The support portion 40 has a curved plate shape and supports the radiation detection element 13 on the side close to the pinhole 11. Further, the support portion 40 supports the laser light emitting element 32 on the side farther from the pinhole 11 than the radiation detection element 13. The support portion 40 is provided with a plurality of through holes 41 through which the laser beam L is passed in advance. The through hole 41 is provided so as to face the light emitting surface of the plurality of laser light emitting elements 32 and to face the gap between the plurality of radiation detection elements 13.
 換言すれば、支持部40によって、放射線検出素子13の間の隙間からレーザ発光素子32がピンホール11に向かってレーザ光Lを照射できるように支持されている。支持部40を用いれば、複雑な光軸調整作業をすることなく、レーザ発光素子32からのレーザ光Lがピンホール11の穴を通るように配列させることができる。なお、図14では、放射線検出素子13とレーザ発光素子32が支持部40から離間して配列されているように描画されているが、実際は図12(a)に示すように接している。 In other words, the support portion 40 supports the laser light emitting element 32 so that the laser light L can be irradiated toward the pinhole 11 from the gap between the radiation detection elements 13. If the support portion 40 is used, the laser beam L from the laser light emitting element 32 can be arranged so as to pass through the hole of the pinhole 11 without performing complicated optical axis adjustment work. Although the radiation detection element 13 and the laser light emitting element 32 are drawn as if they are arranged apart from the support portion 40 in FIG. 14, they are actually in contact with each other as shown in FIG. 12 (a).
 ガンマカメラ6は、レーザ発光素子32がガンマ線の入射方向に大型化してしまう場合に有効な態様の1つである。このように、放射線検出素子13とそれに対応するレーザ発光素子32とを交差する方向に隣接して配列することにより、放射線検出素子13とレーザ発光素子32の配列の自由度が向上する。したがって、ガンマカメラの構造設計の自由度が増加する。 The gamma camera 6 is one of the effective embodiments when the laser light emitting element 32 becomes large in the incident direction of the gamma ray. By arranging the radiation detection element 13 and the corresponding laser light emitting element 32 adjacent to each other in the intersecting direction in this way, the degree of freedom in the arrangement of the radiation detection element 13 and the laser light emitting element 32 is improved. Therefore, the degree of freedom in structural design of the gamma camera is increased.
 ガンマカメラ6は、放射線検出素子13とレーザ発光素子32とがガンマ線の進行方向と交差する方向に隣接して配列されているため、ガンマ線の入射軸とレーザの光軸とが若干ずれている。そのため、ガンマ線検出後、放射線検出素子13の近辺で対応する適切なレーザ発光素子32を選定する制御を行うことが好ましい。具体的には、図12(b)に示すフローチャートのように、制御部16は、放射線検出素子13からガンマ線の検出信号を受信すると(ステップS121)、その放射線検出素子13に近い位置にあるレーザ発光素子32を選定する(ステップS122)。そして、制御部16は、選定したレーザ発光素子32を発光させる(ステップS123)。 In the gamma camera 6, since the radiation detection element 13 and the laser light emitting element 32 are arranged adjacent to each other in the direction intersecting the traveling direction of the gamma ray, the incident axis of the gamma ray and the optical axis of the laser are slightly deviated. Therefore, after gamma ray detection, it is preferable to perform control to select an appropriate laser emitting element 32 corresponding to the vicinity of the radiation detecting element 13. Specifically, as shown in the flowchart shown in FIG. 12B, when the control unit 16 receives the gamma ray detection signal from the radiation detection element 13 (step S121), the control unit 16 receives a gamma ray detection signal (step S121), and the laser is located near the radiation detection element 13. The light emitting element 32 is selected (step S122). Then, the control unit 16 causes the selected laser light emitting element 32 to emit light (step S123).
 上述のフローチャートにおけるレーザ発光素子32の選定方法としては、(1)当該放射線検出素子13に隣接するすべてのレーザ発光素子32を選定する方法、(2)(たとえば右側など)当該放射線検出素子13に隣接する特定のレーザ発光素子32のみを選定する方法、あるいは(3)当該放射線検出素子13に隣接するレーザ発光素子32の中から、ランダムに1素子のみを選択する方法、等がある。 The method of selecting the laser emitting element 32 in the above flowchart includes (1) a method of selecting all the laser emitting elements 32 adjacent to the radiation detecting element 13, and (2) (for example, the right side) the radiation detecting element 13. There is a method of selecting only a specific adjacent laser emitting element 32, or (3) a method of randomly selecting only one element from the laser emitting elements 32 adjacent to the radiation detecting element 13.
 本実施形態では、前述のように、原理的にガンマ線の入射軸とそのガンマ線に対応して射出されるレーザ光の光軸とが若干ずれる。そのため、レーザ光の投影位置も若干ずれる。しかし、ずれの原因となる放射線検出素子13(又はレーザ発光素子32)の大きさ(ガンマ線の進行方向と交差する方向の幅)が小さく、投影距離が小さいため、そのずれの大きさは小さい。そのため、投影される光の位置がずれても実用上は問題ない。なお、ガンマ線の入射軸と射出するレーザ光軸とのずれの角度は、ガンマ線の入射角度を検出する際の角度誤差と同程度の角度内であることが好ましい。具体的には、図15に示すように、隣り合う放射線検出素子13どうしがピンホール11に対して見込む角度をθ1とした場合、ガンマ線Rの入射軸と射出するレーザ光軸Lとのずれの角度θ2は、θ1の半分以下であることがさらに好ましい。 In the present embodiment, as described above, in principle, the incident axis of the gamma ray and the optical axis of the laser beam emitted corresponding to the gamma ray are slightly deviated from each other. Therefore, the projection position of the laser beam is also slightly deviated. However, since the size (width in the direction intersecting the traveling direction of the gamma ray) of the radiation detection element 13 (or the laser light emitting element 32) that causes the deviation is small and the projection distance is small, the magnitude of the deviation is small. Therefore, there is no problem in practical use even if the position of the projected light shifts. It is preferable that the angle of deviation between the incident axis of the gamma ray and the emitted laser optical axis is within the same angle as the angle error when detecting the incident angle of the gamma ray. Specifically, as shown in FIG. 15, when the angle seen by the adjacent radiation detection elements 13 with respect to the pinhole 11 is θ1, the deviation between the incident axis of the gamma ray R and the emitted laser optical axis L The angle θ2 is more preferably half or less of θ1.
 〔実施形態8〕
 次に、実施形態8に係るガンマカメラの遮蔽体22について、図面を参照して説明する。図16(a)は実施形態8に係る遮蔽体22の斜視図、図16(b)はその縦断面図である。実施形態1から実施形態7で示したコリメータは、ピンホールコリメータである。それに対して、実施形態8に係る遮蔽体22は、図16(a)、(b)に示すように、平行多孔(パラレルホール)コリメータを有する。この場合、複数設けられた孔部22Aがコリメータとなる。このように、本発明の実施形態においては、ピンホールコリメータに限らず、一般的な平行多孔コリメータも適用可能である。平行多孔コリメータの場合、孔部22Aの開口面積が広くなるほど、放射線検出感度が高まる。一方で、撮像・投影視野サイズと検出器サイズが一致するため、体外で使用する手持ちサイズの機器の場合に適用することが好ましい。このようなコリメータを用いた場合でも、入射した放射線の入射方向の逆方向に向けて光を射出することが容易に可能となる。
[Embodiment 8]
Next, the shield 22 of the gamma camera according to the eighth embodiment will be described with reference to the drawings. 16 (a) is a perspective view of the shield 22 according to the eighth embodiment, and FIG. 16 (b) is a vertical sectional view thereof. The collimator shown in the first to seventh embodiments is a pinhole collimator. On the other hand, the shield 22 according to the eighth embodiment has a parallel porous (parallel hole) collimator as shown in FIGS. 16A and 16B. In this case, the plurality of holes 22A provided serve as a collimator. As described above, in the embodiment of the present invention, not only the pinhole collimator but also a general parallel porous collimator can be applied. In the case of a parallel porous collimator, the wider the opening area of the hole 22A, the higher the radiation detection sensitivity. On the other hand, since the size of the imaging / projection field of view and the size of the detector match, it is preferable to apply it to a handheld size device used outside the body. Even when such a collimator is used, it is possible to easily emit light in the direction opposite to the incident direction of the incident radiation.
 〔実施形態9〕
 次に、実施形態9に係るガンマカメラの遮蔽体23、24について図面を参照して説明する。実施形態9に係る遮蔽体23は、図17(a)に示すように、集光多孔型のコリメータを有する。この場合、複数設けられた孔部23Aがコリメータとなる。この形態では、検出器部分のサイズよりも撮像・投影視野サイズが小さくなるが、拡大効果により放射線検出素子13の間隔よりも細かい空間分解能を得ることができる。また、図17(b)に示すように、発散多孔型のコリメータを有する遮蔽体24を用いてもよい。この場合、複数設けられた孔部24Aがコリメータとなる。この形態では、検出器部分のサイズよりも撮像・投影視野サイズを大きくできるが、空間分解能は、放射線検出素子13の間隔よりも劣化してしまう。これらのコリメータ23A、24Aは、使用場所と使用目的によって適宜使い分けることが好ましい。このようなコリメータを用いた場合でも、入射した放射線の入射方向の逆方向に向けて光を射出することが容易に可能となる。
[Embodiment 9]
Next, the shields 23 and 24 of the gamma camera according to the ninth embodiment will be described with reference to the drawings. As shown in FIG. 17A, the shield 23 according to the ninth embodiment has a condensing porous type collimator. In this case, a plurality of holes 23A are provided as a collimator. In this embodiment, the size of the image pickup / projection field of view is smaller than the size of the detector portion, but the spatial resolution finer than the spacing of the radiation detection elements 13 can be obtained due to the enlargement effect. Further, as shown in FIG. 17B, a shield 24 having a divergent porous collimator may be used. In this case, the plurality of holes 24A provided serve as a collimator. In this form, the size of the image pickup / projection field of view can be made larger than the size of the detector portion, but the spatial resolution is deteriorated more than the distance between the radiation detection elements 13. It is preferable to use these collimators 23A and 24A properly according to the place of use and the purpose of use. Even when such a collimator is used, it is possible to easily emit light in the direction opposite to the incident direction of the incident radiation.
 (適用例)
 上記の各実施形態のガンマカメラは、医療に適用することができる。図18は、上記の各実施形態に係るガンマカメラの鏡視下手術またはロボット手術への適用例を示す概略図である。図18に示すように、通常の鏡視下手術やロボット手術でポートに挿入する光学カメラや鉗子に加えて、上記各実施形態のガンマカメラを患部近くに挿入する。ガンマカメラは単独で患部表面に放射性薬剤の分布を投影するため、術者は通常の光学カメラの画像を通じて、患部表面に投影された放射性薬剤の分布状況を視認することができる。
(Application example)
The gamma camera of each of the above embodiments can be applied to medical treatment. FIG. 18 is a schematic view showing an example of application of the gamma camera according to each of the above embodiments to microscopic surgery or robotic surgery. As shown in FIG. 18, in addition to the optical camera and forceps to be inserted into the port in normal arthroscopic surgery or robotic surgery, the gamma camera of each of the above embodiments is inserted near the affected area. Since the gamma camera alone projects the distribution of the radioactive drug on the surface of the affected area, the operator can visually recognize the distribution of the radioactive drug projected on the surface of the affected area through the image of a normal optical camera.
 (変形例)
 以上の各実施形態においては、医療用のガンマカメラを例にとって説明した。しかし、本発明の実施形態は必ずしも医療用でなくともよい。例えば、原子力発電所、放射性物質の使用施設、核燃料の加工施設、再処理施設等において、例えば汚染源の位置を確認するための放射線カメラとして構成してもよい。あるいは、空港や国境等での荷物中の放射性物質や核物質の有無などを監視するセキュリティ目的の放射線カメラとして構築してもよい。
(Modification example)
In each of the above embodiments, a medical gamma camera has been described as an example. However, embodiments of the present invention do not necessarily have to be for medical use. For example, it may be configured as a radiation camera for confirming the position of a pollution source in, for example, a nuclear power plant, a facility for using radioactive materials, a nuclear fuel processing facility, a reprocessing facility, or the like. Alternatively, it may be constructed as a radiation camera for security purposes to monitor the presence or absence of radioactive substances and nuclear substances in luggage at airports, borders, and the like.
 そのように構成することにより、例えば除染すべき個所を可視化することができる。この場合、発光素子は、検出した放射線の強度(エネルギー強度、計数率又は空間線量率)により、射出光の発光時間又は発光強度を変えて射出できるように構成してもよい。なお、線源までの距離が長くなるため、発光素子として指向性の高いレーザ発光素子を用いることが好ましい。また、検出したい線源の放射線エネルギー強度が広い範囲にわたる場合は、遮蔽体の厚さを最大エネルギーの放射線を遮蔽できる厚さに設定することが好ましい。 With such a configuration, it is possible to visualize, for example, the part to be decontaminated. In this case, the light emitting element may be configured so that the light emitting time or the light emitting intensity of the emitted light can be changed according to the detected radiation intensity (energy intensity, counting rate or air dose rate). Since the distance to the radiation source is long, it is preferable to use a laser light emitting element having high directivity as the light emitting element. Further, when the radiation energy intensity of the radiation source to be detected covers a wide range, it is preferable to set the thickness of the shield to a thickness capable of shielding the radiation of the maximum energy.
 〔まとめ〕
 本発明の態様1に係る放射線カメラは、入射する放射線をコリメートするコリメータと、前記コリメータを通過した放射線を検出する放射線検出部と、前記放射線検出部が検出した放射線の入射方向の逆方向に向けて可視光を射出する発光部と、を備える。
〔summary〕
The radiation camera according to the first aspect of the present invention has a collimator that collimates incident radiation, a radiation detection unit that detects radiation that has passed through the collimator, and a radiation detection unit that directs the radiation detected in the direction opposite to the incident direction. It is provided with a light emitting unit that emits visible light.
 上記の構成によれば、コリメータを通過した放射線を放射線検出部が検出した場合に、コリメータと放射線検出部との位置から放射線の入射方向が決定される。その放射線の入射方向の逆方向に向けて発光素子から可視光を射出させることによって、放射線カメラの位置による投影方向の校正を行う必要なく、放射線源に向けて可視光を投影できる。これにより、例えば患部の位置を皮膚上に可視化することができる。 According to the above configuration, when the radiation detection unit detects the radiation that has passed through the collimator, the incident direction of the radiation is determined from the positions of the collimator and the radiation detection unit. By emitting visible light from the light emitting element in the direction opposite to the incident direction of the radiation, it is possible to project visible light toward the radiation source without having to calibrate the projection direction according to the position of the radiation camera. This makes it possible to visualize, for example, the position of the affected area on the skin.
 本発明の態様2に係る放射線カメラにおいて、前記放射線検出部は、1つ又は複数の放射線検出素子により構成されており、前記発光部は1つ又は複数の発光素子により構成されており、前記放射線検出素子と、当該放射線検出素子が検出する放射線の入射方向の逆方向に向けて可視光を射出する前記発光素子とが対応づけられていてもよい。 In the radiation camera according to the second aspect of the present invention, the radiation detection unit is composed of one or a plurality of radiation detection elements, and the light emitting unit is composed of one or a plurality of light emitting elements. The detection element and the light emitting element that emits visible light in the direction opposite to the incident direction of the radiation detected by the radiation detection element may be associated with each other.
 上記の構成によれば、1つ又は複数の放射線検出素子と1つ又は複数の発光素子とを対応づけることにより、放射線の入射方向の逆方向に向けて発光部から可視光を容易に射出させることができる。 According to the above configuration, by associating one or more radiation detection elements with one or more light emitting elements, visible light is easily emitted from the light emitting unit in the direction opposite to the incident direction of the radiation. be able to.
 本発明の態様3に係る放射線カメラにおいて、前記放射線検出素子と当該放射線検出素子に対応する前記発光素子とが、前記放射線の進行方向に沿って隣接して配列されていてもよい。 In the radiation camera according to the third aspect of the present invention, the radiation detection element and the light emitting element corresponding to the radiation detection element may be arranged adjacent to each other along the traveling direction of the radiation.
 上記の構成によれば、放射線検出素子とそれに対応する発光素子とを放射線の進行方向に沿って隣接して配列することにより、射出する光の向きを入射した放射線の入射方向に容易に合わせることができる。 According to the above configuration, by arranging the radiation detection element and the corresponding light emitting element adjacent to each other along the traveling direction of the radiation, the direction of the emitted light can be easily aligned with the incident direction of the incident radiation. Can be done.
 本発明の態様4に係る放射線カメラにおいて、前記放射線検出素子と当該放射線検出素子に対応する前記発光素子とが、一体化されていてもよい。 In the radiation camera according to the fourth aspect of the present invention, the radiation detection element and the light emitting element corresponding to the radiation detection element may be integrated.
 上記の構成によれば、放射線検出素子とそれに対応する発光素子とを一体化することにより、放射線検出素子とそれに対応する発光素子とを容易に隣接して配列することができる。 According to the above configuration, by integrating the radiation detection element and the corresponding light emitting element, the radiation detection element and the corresponding light emitting element can be easily arranged adjacent to each other.
 本発明の態様5に係る放射線カメラにおいて、前記放射線検出素子と当該放射線検出素子に対応する前記発光素子とが、前記放射線の進行方向と交差する方向に隣接して配列されていてもよい。 In the radiation camera according to the fifth aspect of the present invention, the radiation detection element and the light emitting element corresponding to the radiation detection element may be arranged adjacent to each other in a direction intersecting the traveling direction of the radiation.
 上記の構成によれば、放射線検出素子とそれに対応する発光素子とを放射線の進行方向と交差する方向に隣接して配列することにより、射出する光の向きを入射した放射線の入射方向に容易に合わせることができる。 According to the above configuration, by arranging the radiation detection element and the corresponding light emitting element adjacent to each other in the direction intersecting the traveling direction of the radiation, the direction of the emitted light can be easily directed to the incident direction of the incident radiation. Can be matched.
 本発明の態様6に係る放射線カメラにおいて、前記放射線検出素子と当該放射線検出素子に対応する前記発光素子とが、離間して配列されていてもよい。 In the radiation camera according to the sixth aspect of the present invention, the radiation detection element and the light emitting element corresponding to the radiation detection element may be arranged apart from each other.
 上記の構成によれば、放射線検出素子とそれに対応する発光素子とを離間して配列することにより、放射線検出素子とそれに対応する発光素子の配列の自由度が増加する。したがって、放射線カメラの構造設計の自由度が増加する。 According to the above configuration, by arranging the radiation detection element and the corresponding light emitting element apart from each other, the degree of freedom in the arrangement of the radiation detection element and the corresponding light emitting element is increased. Therefore, the degree of freedom in the structural design of the radiation camera is increased.
 本発明の態様7に係る放射線カメラにおいて、前記放射線検出素子を前記コリメータに近い側で支持し、前記発光素子を前記放射線検出素子よりも前記コリメータから遠い側で支持する支持部を有し、前記支持部は、複数の前記発光素子の発光面にそれぞれ対向し、複数の前記放射線検出素子間の隙間に対向して設けられた複数の貫通穴を有していてもよい。 The radiation camera according to the seventh aspect of the present invention has a support portion that supports the radiation detection element on the side closer to the collimator and supports the light emitting element on the side farther from the collimator than the radiation detection element. The support portion may have a plurality of through holes provided so as to face each of the light emitting surfaces of the plurality of the light emitting elements and to face the gaps between the plurality of radiation detection elements.
 上記の構成によれば、複雑な光軸調整作業をすることなく、発光素子からの光がピンホールの穴を通るように配列させることができる。 According to the above configuration, the light from the light emitting element can be arranged so as to pass through the hole of the pinhole without complicated optical axis adjustment work.
 本発明の態様8に係る放射線カメラにおいて、前記複数の放射線検出素子及び前記複数の発光素子が、それぞれ平面状又は曲面状に配列されていてもよい。 In the radiation camera according to the eighth aspect of the present invention, the plurality of radiation detection elements and the plurality of light emitting elements may be arranged in a plane or a curved surface, respectively.
 上記の構成によれば、放射線検出素子又は前記発光素子を平面状に配列することにより、製造が容易となる。また、放射線検出素子を曲面状に(つまり入射部に向けて)配列することにより、放射線の検出効率が増加する。また、前記発光素子を曲面状に配列することにより、発光した光を効率よく外部へ射出できる。 According to the above configuration, by arranging the radiation detection element or the light emitting element in a plane, manufacturing becomes easy. Further, by arranging the radiation detection elements in a curved surface (that is, toward the incident portion), the radiation detection efficiency is increased. Further, by arranging the light emitting elements in a curved surface, the emitted light can be efficiently emitted to the outside.
 本発明の態様9に係る放射線カメラにおいて、前記コリメータは、ピンホールコリメータ、パラレルホールコリメータ、集光多孔コリメータ、及び発散多孔コリメータのうちの少なくともいずれかであってもよい。 In the radiation camera according to the ninth aspect of the present invention, the collimator may be at least one of a pinhole collimator, a parallel hole collimator, a condensing porous collimator, and a divergent porous collimator.
 上記の構成によれば、いずれを用いた場合でも、射出する光の向きを入射した放射線の入射方向に合わせることが容易に可能となる。 According to the above configuration, it is possible to easily match the direction of the emitted light with the incident direction of the incident radiation regardless of which one is used.
 本発明の態様10に係る放射線カメラにおいて、前記放射線検出部が検出した放射線の入射方向の逆方向に向けて可視光を射出するように前記発光部を制御する制御部を更に備えていてもよい。 The radiation camera according to the tenth aspect of the present invention may further include a control unit that controls the light emitting unit so as to emit visible light in the direction opposite to the incident direction of the radiation detected by the radiation detection unit. ..
 上記の構成によれば、制御部を放射線カメラ内部に備えることで、可搬性が向上する。また、放射線検出部、発光部、及び制御部を一体化させることで、コンパクトな構成とすることができる。 According to the above configuration, the portability is improved by providing the control unit inside the radiation camera. Further, by integrating the radiation detection unit, the light emitting unit, and the control unit, a compact configuration can be obtained.
 本発明の態様11に係る放射線カメラにおいて、前記制御部は、前記放射線検出部が検出した前記放射線の強度に基づいて、前記発光部の発光時間又は発光強度を調節してもよい。 In the radiation camera according to the eleventh aspect of the present invention, the control unit may adjust the light emission time or the light emission intensity of the light emitting unit based on the intensity of the radiation detected by the radiation detection unit.
 上記の構成によれば、放射性核種の集積量ががんの悪性度と相関している場合、放射線の強度の情報はがんの鑑別に役立つと考えられる。放射線の強度に基づいて発光時間又は発光強度を調節して放射線の強度を表示することにより、より詳細な情報を得ることができる。また、強度の異なる複数の放射線が検出される環境を測定する場合に、放射線源の位置に光を投影できるため、どの位置からどの程度の放射線が出ているかを直接認識することができる。 According to the above configuration, when the accumulation amount of radionuclides correlates with the malignancy of cancer, the information on the intensity of radiation is considered to be useful for distinguishing cancer. More detailed information can be obtained by displaying the radiation intensity by adjusting the light emission time or the light emission intensity based on the radiation intensity. Further, when measuring an environment in which a plurality of radiations having different intensities are detected, since the light can be projected to the position of the radiation source, it is possible to directly recognize how much radiation is emitted from which position.
 また、本発明の一態様に係る放射線カメラの作動方法は、コリメートされた放射線を検出するステップと、検出した放射線の入射方向の逆方向に向けて可視光を射出するステップと、を含む。より具体的には、例えば、医療用の放射線カメラの作動方法は、生体内の特定部位に集積した放射性薬剤から放出されるガンマ線をコリメートして検出するステップと、検出したガンマ線の入射方向の逆方向に可視光を射出するステップと、を含む。 Further, the method of operating the radiation camera according to one aspect of the present invention includes a step of detecting collimated radiation and a step of emitting visible light in the direction opposite to the incident direction of the detected radiation. More specifically, for example, in the method of operating a medical radiation camera, a step of collimating and detecting gamma rays emitted from a radiopharmaceutical accumulated in a specific part of a living body and the reverse of the incident direction of the detected gamma rays are used. Includes a step of emitting visible light in a direction.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
1,1A,2,3,4,5,6 ガンマカメラ(放射線カメラ)
8,10,20,22,23,24 遮蔽体
8A,10A 上部
8B,10B 下部
8C,10C 先端部
8D,11 ピンホール(コリメータ)
9 筐体
10D 開口端部
12 放射線検出部
13 放射線検出素子(放射線検出部)
14,30 発光素子(発光部)
15 反射部
15A 反射板
15B 駆動部
16 制御部
22A,23A,24A 孔部(コリメータ)
32 レーザ発光素子(発光部)
40 支持部
41 貫通穴
50 線源
51 皮膚
1,1A, 2,3,4,5,6 Gamma camera (radiation camera)
8,10,20,22,23,24 Shielding body 8A, 10A Upper part 8B, 10B Lower part 8C, 10C Tip part 8D, 11 Pinhole (collimator)
9 Housing 10D Open end 12 Radiation detection unit 13 Radiation detection element (radiation detection unit)
14,30 light emitting element (light emitting part)
15 Reflector 15A Reflector 15B Drive 16 Control 22A, 23A, 24A Hole (collimator)
32 Laser light emitting element (light emitting part)
40 Support 41 Through hole 50 Radioactive source 51 Skin

Claims (11)

  1.  入射する放射線をコリメートするコリメータと、
     前記コリメータを通過した放射線を検出する放射線検出部と、
     前記放射線検出部が検出した放射線の入射方向の逆方向に向けて可視光を射出する発光部と、
     を備える放射線カメラ。
    A collimator that collimates the incident radiation,
    A radiation detection unit that detects radiation that has passed through the collimator,
    A light emitting unit that emits visible light in the direction opposite to the incident direction of the radiation detected by the radiation detection unit, and a light emitting unit.
    Radiation camera equipped with.
  2.  前記放射線検出部は、1つ又は複数の放射線検出素子により構成されており、前記発光部は1つ又は複数の発光素子により構成されており、前記放射線検出素子と、当該放射線検出素子が検出する放射線の入射方向の逆方向に向けて可視光を射出する前記発光素子とが対応づけられている、請求項1に記載の放射線カメラ。 The radiation detection unit is composed of one or a plurality of radiation detection elements, and the light emitting unit is composed of one or a plurality of light emitting elements, and the radiation detection element and the radiation detection element detect. The radiation camera according to claim 1, wherein the light emitting element that emits visible light in the direction opposite to the incident direction of the radiation is associated with the light emitting element.
  3.  前記放射線検出素子と当該放射線検出素子に対応する前記発光素子とが、前記放射線の進行方向に沿って隣接して配列されている、請求項2に記載の放射線カメラ。 The radiation camera according to claim 2, wherein the radiation detection element and the light emitting element corresponding to the radiation detection element are arranged adjacent to each other along the traveling direction of the radiation.
  4.  前記放射線検出素子と当該放射線検出素子に対応する前記発光素子とが、一体化されている、請求項3に記載の放射線カメラ。 The radiation camera according to claim 3, wherein the radiation detection element and the light emitting element corresponding to the radiation detection element are integrated.
  5.  前記放射線検出素子と当該放射線検出素子に対応する前記発光素子とが、前記放射線の進行方向と交差する方向に隣接して配列されている、請求項3に記載の放射線カメラ。 The radiation camera according to claim 3, wherein the radiation detection element and the light emitting element corresponding to the radiation detection element are arranged adjacent to each other in a direction intersecting the traveling direction of the radiation.
  6.  前記放射線検出素子と当該放射線検出素子に対応する前記発光素子とが、離間して配列されている、請求項5に記載の放射線カメラ。 The radiation camera according to claim 5, wherein the radiation detection element and the light emitting element corresponding to the radiation detection element are arranged apart from each other.
  7.  前記放射線検出素子を前記コリメータに近い側で支持し、前記発光素子を前記放射線検出素子よりも前記コリメータから遠い側で支持する支持部を有し、前記支持部は、複数の前記発光素子の発光面にそれぞれ対向し、複数の前記放射線検出素子間の隙間に対向して設けられた複数の貫通穴を有する、請求項6に記載の放射線カメラ。 It has a support portion that supports the radiation detection element on a side closer to the collimator and supports the light emitting element on a side farther from the collimator than the radiation detection element, and the support portion emits light from a plurality of the light emitting elements. The radiation camera according to claim 6, which has a plurality of through holes facing each other and facing a gap between the plurality of radiation detection elements.
  8.  前記複数の放射線検出素子及び前記複数の発光素子が、それぞれ平面状又は曲面状に配列されている、請求項3から7のいずれか1項に記載の放射線カメラ。 The radiation camera according to any one of claims 3 to 7, wherein the plurality of radiation detection elements and the plurality of light emitting elements are arranged in a plane or a curved surface, respectively.
  9.  前記コリメータは、ピンホールコリメータ、パラレルホールコリメータ、集光多孔コリメータ、及び発散多孔コリメータのうちの少なくともいずれかである、請求項1から8のいずれか1項に記載の放射線カメラ。 The radiation camera according to any one of claims 1 to 8, wherein the collimeter is at least one of a pinhole collimeter, a parallel hole collimeter, a condensing porous collimeter, and a divergent porous collimeter.
  10.  前記放射線検出部が検出した放射線の入射方向の逆方向に向けて可視光を射出するように前記発光部を制御する制御部を更に備える、請求項1から9のいずれか1項に記載の放射線カメラ。 The radiation according to any one of claims 1 to 9, further comprising a control unit that controls the light emitting unit so that visible light is emitted in the direction opposite to the incident direction of the radiation detected by the radiation detection unit. camera.
  11.  前記制御部は、前記放射線検出部が検出した前記放射線の強度に基づいて、前記発光部の発光時間又は発光強度を調節する、請求項10に記載の放射線カメラ。 The radiation camera according to claim 10, wherein the control unit adjusts the light emission time or the light emission intensity of the light emitting unit based on the intensity of the radiation detected by the radiation detection unit.
PCT/JP2021/024444 2020-07-02 2021-06-29 Radiation camera WO2022004688A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022534014A JPWO2022004688A1 (en) 2020-07-02 2021-06-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-114954 2020-07-02
JP2020114954 2020-07-02

Publications (1)

Publication Number Publication Date
WO2022004688A1 true WO2022004688A1 (en) 2022-01-06

Family

ID=79316305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024444 WO2022004688A1 (en) 2020-07-02 2021-06-29 Radiation camera

Country Status (2)

Country Link
JP (1) JPWO2022004688A1 (en)
WO (1) WO2022004688A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280992A (en) * 1988-09-16 1990-03-22 Olympus Optical Co Ltd Radiation detecting endoscopic apparatus
JPH0611573A (en) * 1992-03-12 1994-01-21 De Beers Ind Diamond Div Ltd Radiation probe
US20040204646A1 (en) * 2002-11-04 2004-10-14 V-Target Technologies Ltd. Intracorporeal-imaging head
US20110293068A1 (en) * 2008-10-27 2011-12-01 Pnsensor Gmbh Electronic X-Ray Camera with Spectral Resolution
JP2019501371A (en) * 2015-10-27 2019-01-17 デビコー・メディカル・プロダクツ・インコーポレイテッドDevicor Medical Products, Inc. Surgical probe device, and system and method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280992A (en) * 1988-09-16 1990-03-22 Olympus Optical Co Ltd Radiation detecting endoscopic apparatus
JPH0611573A (en) * 1992-03-12 1994-01-21 De Beers Ind Diamond Div Ltd Radiation probe
US20040204646A1 (en) * 2002-11-04 2004-10-14 V-Target Technologies Ltd. Intracorporeal-imaging head
US20110293068A1 (en) * 2008-10-27 2011-12-01 Pnsensor Gmbh Electronic X-Ray Camera with Spectral Resolution
JP2019501371A (en) * 2015-10-27 2019-01-17 デビコー・メディカル・プロダクツ・インコーポレイテッドDevicor Medical Products, Inc. Surgical probe device, and system and method using the same

Also Published As

Publication number Publication date
JPWO2022004688A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
US7579600B2 (en) Preclinical SPECT system using multi-pinhole collimation
CN103959049B (en) X-ray range indicator and correlation technique
US8716668B2 (en) Radiation detector and radiotherapy apparatus
US10631795B2 (en) Variable pinhole collimator and radiographic imaging device using same
JP5837724B2 (en) Variable pinhole type collimator device and radiation image device using the same
CN202715136U (en) Mobile X-ray unit
US8497480B2 (en) Particle radiotherapy apparatus
JP5195910B2 (en) Radiation tomography equipment
KR20140093232A (en) A hadron radiation installation and verification method
US20220066056A1 (en) Gamma radiation imaging device and imaging method thereof
JP2016514835A (en) Detector for detecting the trajectory of ionized particles
WO2022004688A1 (en) Radiation camera
JP5120459B2 (en) Particle beam therapy system
ES2961545T3 (en) Rotating collimator for an X-ray detection system
JP3902048B2 (en) Radiation inspection equipment
KR102236154B1 (en) Angle-variable collimator and radiation detection device using the same
WO2021261198A1 (en) Radiation detector
KR101684780B1 (en) Variable pin-hole collimator, radiation imaging device and radiation detecting device using the same
US10989819B2 (en) Gamma radiation detector with parallax compensation
US20020183617A1 (en) Apparatus for measuring nonuniform attenuation in a scintillation camera
JP5218270B2 (en) Radiation tomography system for breast examination
JP2018151158A (en) Radiation measuring device
ES2626044B1 (en) FOCALIZABLE COMPTON CAMERA EQUIPPED WITH VARIABLE SEPARATION DETECTORS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534014

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833033

Country of ref document: EP

Kind code of ref document: A1