WO2022004218A1 - Ac arc welding method - Google Patents

Ac arc welding method Download PDF

Info

Publication number
WO2022004218A1
WO2022004218A1 PCT/JP2021/020475 JP2021020475W WO2022004218A1 WO 2022004218 A1 WO2022004218 A1 WO 2022004218A1 JP 2021020475 W JP2021020475 W JP 2021020475W WO 2022004218 A1 WO2022004218 A1 WO 2022004218A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
value
current value
welding
less
Prior art date
Application number
PCT/JP2021/020475
Other languages
French (fr)
Japanese (ja)
Inventor
健太 玉川
英樹 井原
芳行 田畑
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022533750A priority Critical patent/JPWO2022004218A1/ja
Priority to CN202180042774.9A priority patent/CN115702055A/en
Publication of WO2022004218A1 publication Critical patent/WO2022004218A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc

Definitions

  • the present disclosure relates to an AC arc welding method in which an arc is generated between an electrode and a base metal by an AC welding current to perform welding.
  • Patent Document 1 discloses an AC arc welding method in which an arc is generated between an electrode and a base metal by an AC welding current to perform welding.
  • the waveform of the welding current is a waveform obtained by superimposing a pulse on the alternating current of a square wave so that the arc directivity can be maintained even if the time ratio of the electrode minus period is reduced. ..
  • the waveform of the welding current is a waveform obtained by superimposing a pulse on the alternating current of a square wave
  • the welding current is rapidly increased.
  • High work noise is generated, and the burden on the worker becomes heavy.
  • the welding current is lowered from a positive value to a negative value, the same problem arises due to the rapid decrease in the welding current.
  • the waveform of the welding current is made into a sine and cosine in order to suppress the generation of high work noise, the melting of the base metal will be delayed and the work efficiency will deteriorate.
  • This disclosure has been made in view of this point, and the purpose of the present disclosure is to reduce the work noise while suppressing the deterioration of the welding work efficiency.
  • the first aspect of the present disclosure is an AC arc welding method in which an arc is generated between an electrode and a base metal by an AC welding current to perform welding, in which the welding current is negative at the first inclination.
  • the value is increased from the value to a second current value of 0.6 times or more and 0.9 times or less of the predetermined positive first current value, and then 60 ⁇ A / ⁇ s or more, which is smaller than the first gradient from the second current value.
  • the welding current rise step when executed, when the welding current is increased from a negative value to the first current value, from the time when the welding current reaches the second current value to the time when the welding current reaches the first current value.
  • the welding current is increased at a second inclination of 600 mA / ⁇ s or less, so that the working noise can be lowered as compared with the case where the welding current is increased at an inclination of more than 600 mA / ⁇ s.
  • the welding current rise step when the welding current is increased from a negative value to the first current value, the welding current is set to be smaller than the second slope until the welding current reaches the second current value. Since the current is increased with a large first inclination, the base metal can be melted faster and the work efficiency can be improved as compared with the case of increasing with the second inclination.
  • the second current value is 0.6 times or more the first current value, so that the second current value is less than 0.6 times the first current value.
  • the base metal can be melted faster, the work efficiency can be improved, the period when the welding current is small can be shortened, and the arc breakage can be less likely to occur.
  • the second current value is 0.9 times or less of the first current value, the period during which the work noise is lower than when the second current value is larger than 0.9 times the first current value is set. You can make it longer.
  • the welding current reduction step when the welding current is reduced from the positive value to the third current value, the welding current reaches the fourth current value and the third current value. Since the welding current is decreased at the fourth inclination of ⁇ 600 mA / ⁇ s or more, the working noise can be lowered as compared with the case of increasing at the inclination of less than ⁇ 600 mA / ⁇ s.
  • the welding current when the welding current is reduced from the positive value to the third current value, the welding current is set to be smaller than the fourth slope until the welding current reaches the fourth current value. Since the current is reduced by a small third tilt, arc breakage can be less likely to occur as compared with the case where the current is reduced by a fourth tilt.
  • the fourth current value is 0.6 times or less of the third current value, so that the fourth current value is larger than 0.6 times the third current value. Compared with this, the period during which the absolute value of the welding current is small can be shortened, and arc breakage can be less likely to occur. Further, since the 4th current value is 0.9 times or more the 3rd current value, the period during which the work noise is low is longer than when the 4th current value is less than 0.9 times the 3rd current value. can.
  • the second aspect of the present disclosure is an AC arc welding method in which an arc is generated between the electrode and the base metal by an AC welding current to perform welding, and the welding current is applied to a predetermined value only during the first pulse period.
  • the first peak current application step in which the current value is 1.15 times or more and 1.6 times or less the positive set current value, and the welding current is 0.6 times or more and 0 times the set current value for the second pulse period.
  • the first base current application step with a current value of 9 times or less is alternated two or more times between the time when the welding current is increased from a negative value to a positive value and the time when the welding current is decreased from a negative value to the next negative value.
  • the welding current is negative from a positive value. It is characterized in that the second pulse current application step, which is alternately executed once, is executed between the time when the value is lowered to the value of 1 and the time when the value is raised to the next positive value.
  • the first peak current application step a large amount of heat for melting the filler rod is given to the filler rod, and the output directivity of the arc is enhanced by increasing the electromagnetic pinch force, so that the droplets are smooth. Since the transition can be promoted, the melting rate can be increased as compared with the case where the welding current is always set to the set current value. Further, even if the welding current is made larger than the set current value in the first peak current applying step, the welding current is made smaller than the set current value in the first base current applying step, so that the first pulse current applying step is being executed. The effective value of the welding current in can be brought close to the set current value.
  • the arc output directivity is increased by increasing the electromagnetic pinch force in the second peak current application step, and the welding current is always set to the set current value as compared with the case where the welding current is always set to the set current value.
  • the cleaning action can be promoted.
  • the welding current is made smaller than -1 times the set current value in the second peak current applying step, the welding current is made larger than -1 times the set current value in the second base current applying step.
  • the effective value of the welding current during the execution of the 2-pulse current application step can be made close to -1 times the set current value.
  • the melting rate can be more effectively increased as compared with the case where the first peak current application step is executed only once.
  • the third pulse period can be lengthened as compared with the case where the second peak current application step and the second base current application step are executed twice or more. Therefore, since the cleaning period can be lengthened with a current value smaller than -1 times the set current value, the oxide on the surface of the base metal can be firmly removed. Further, even when the period for making the welding current a negative value is set to a small ratio of less than 50% in one cycle, the second peak current application step and the second base current application step are executed twice or more, respectively. Since the third pulse period and the fourth pulse period can be lengthened as compared with the above, it is possible to prevent the third pulse period and the fourth pulse period from becoming too short and difficult to control.
  • FIG. 1 is a diagram showing a schematic configuration of a welding apparatus.
  • FIG. 2 is a circuit diagram of a welding power supply.
  • FIG. 3 is a diagram showing a waveform of a welding current during arc welding.
  • FIG. 1 shows a welding device 1.
  • the welding device 1 includes a welding torch 10 and a welding power source 20.
  • This welding device 1 is an AC TIG welding device in which the welding torch 10 is a non-consumable electrode type torch.
  • the welding torch 10 has a nozzle 11 for ejecting a shield gas SG supplied from a gas supply device (not shown). Inside the nozzle 11, a substantially cylindrical collet 12 is arranged along the ejection direction of the nozzle 11. A rod-shaped tungsten electrode TE is fixed inside the collet 12.
  • the welding power supply 20 generates an arc A by applying an AC voltage between the tungsten electrode TE of the welding torch 10 and the base metal W.
  • the worker forms a molten pool P in the base metal W by generating an arc A between the tungsten electrode TE and the base metal W by the welding device 1, and the filler rod R is placed in the molten pool P. By inserting, a weld bead can be formed.
  • the welding power supply 20 includes a first rectifying smoothing circuit 21, a first inverter circuit 22, a first transformer 23, a second rectifying smoothing circuit 24, and a first.
  • the second reactors 25 and 26, the second inverter circuit 27, and the control device 30 are provided.
  • the first rectifying smoothing circuit 21 converts the input AC power input from the commercial power supply 2 into DC power and outputs it.
  • the first inverter circuit 22 is, for example, a single-phase full-bridge type PWM control inverter, and includes four switching elements (not shown).
  • the first inverter circuit 22 switches these four switching elements according to the switching signal SG1 output by the control device 30, so that the DC power output by the first rectifying smoothing circuit 21 becomes AC power. Convert and output.
  • the output voltage of the first inverter circuit 22 is taken as the first AC voltage.
  • an inverter circuit having another configuration such as a half-bridge type inverter may be used.
  • the first transformer 23 changes the first AC voltage output by the first inverter circuit 22 to the second AC voltage and outputs it.
  • the first transformer 23 has a first primary coil 23a and a first secondary coil 23b.
  • a first AC voltage output by the first inverter circuit 22 is applied to the first primary coil 23a.
  • the voltage of the first secondary coil 23b becomes the second AC voltage.
  • the second rectifying smoothing circuit 24 converts the second AC voltage output by the first transformer 23 into the first DC voltage and outputs it from the positive output terminal 24a and the negative output terminal 24b.
  • the second rectifying smoothing circuit 24 is a diode bridge circuit composed of four diodes 24c.
  • the second inverter circuit 27 is a single-phase half-bridge type inverter circuit.
  • the second inverter circuit 27 includes an upper arm switching element 273 and a lower arm switching element connected in series between the first and second input terminals 271,272 and the first and second input terminals 271,272. It is equipped with 274.
  • the polarity switching signal SG2 output by the control device 30 is input to the upper arm switching element 273, while the signal obtained by inverting the polarity switching signal SG2 is input to the lower arm switching element 274.
  • the first input terminal 271 of the second inverter circuit 27 is connected to the positive output terminal 24a of the second rectifying smoothing circuit 24 via the first reactor 25.
  • the second input terminal 272 of the second inverter circuit 27 is connected to the negative output terminal 24b of the second rectifying smoothing circuit 24 via the second reactor 26.
  • the output terminal 275 of the second inverter circuit 27 is connected to the base material W.
  • the second inverter circuit 27 sets the base material W to a higher potential than the tungsten electrode TE, while the upper arm switching element. With the 273 turned off and the lower arm switching element 274 turned on, the second inverter circuit 27 sets the base material W to a lower potential than the tungsten electrode TE.
  • the second inverter circuit 27 can be applied between the base material W and the tungsten electrode TE.
  • the polarity of the AC voltage is set to the EN (electrode minus) polarity at which the tungsten electrode TE has a lower potential than the base material W and the EP (electrode plus) polarity at which the tungsten electrode TE has a higher potential than the base material W. Switch periodically. As a result, an alternating current welding current flows between the base metal W and the tungsten electrode TE.
  • the control device 30 controls the welding current I.
  • a predetermined positive first current value I1 is input to the control device 30 by the user using an input means (not shown), and is set as a set current value.
  • the control device 30 is a first inverter circuit 22 so that the effective value of the welding current I becomes the set current value by PWM control based on the measured value of the welding current I input from the current sensor (not shown).
  • the polarity switching signal SG2 for switching the polarity of the AC voltage applied between the electrode TE and the base material W is output.
  • the welding current I is controlled by the control device 30 by the outputs of the switching signal SG1 and the polarity switching signal SG2.
  • the frequency of the polarity switching signal SG2, that is, the frequency of the welding current is set to 10 Hz or more and 400 Hz or less.
  • the control device 30 sets the welding current to a second current value I2 which is (1- ⁇ ) times the positive first current value I1 from a negative value at the first slope S1 of 1.7 A / ⁇ s. Then, from the second current value I2 to the first slope S1 with a second slope S2 of 60 ⁇ A / ⁇ s or more and 600 mA / ⁇ s or less, which is smaller than the first slope S1, the first slope period SPE1 is applied to the first current value I1. And perform a current rise step to increase.
  • the ⁇ is set to 0.1 or more and 0.4 or less. Therefore, the second current value I2 is 0.6 times or more and 0.9 times or less the first current value I1.
  • the welding current is increased from the second current value I2 to the first current value I1 with a second inclination S2 of 600 mA / ⁇ s or less.
  • the work noise can be lowered and the worker can be given a softer feeling.
  • the base material W can be melted faster than when it is less than 60 ⁇ A / ⁇ s.
  • the welding current is increased from the negative value to the second current value I2 at the first inclination S1 of 1 A / ⁇ s or more, so that the base metal is increased as compared with the case where the welding current is increased at the second inclination S2.
  • the melting of W can be accelerated and the work efficiency can be improved.
  • the base material W has a base material W as compared with the case where the second current value I2 is less than 0.6 times the first current value I1. It is possible to speed up melting, improve work efficiency, shorten the period when the welding current is small, and prevent arc breakage. Further, since the second current value I2 is 0.9 times or less the first current value I1, the work noise is higher than when the second current value I2 is larger than 0.9 times the first current value I1. You can lengthen the period of low.
  • the control device 30 raises the welding current to the first peak current value P1 which is (1 + ⁇ / 2 + ⁇ ) times the first current value I1, and the first peak current value only for the first pulse period PPE1.
  • the first peak current application step set to P1 and the welding current are lowered to the first base current value B1 which is (1- ⁇ ) times the first current value I1, and the first base current value B1 is applied only for the second pulse period PPE2.
  • the first pulse current application step is executed by alternately executing the first base current application step twice in order.
  • the above ⁇ is set to 0.1 or more and 0.4 or less. Therefore, the first peak current value P1 is 1.15 times or more and 1.6 times or less the first current value I1, and the first base current value B1 is 0.6 times or more and 0.9 times the first current value I1. It will be less than double.
  • the welding current is set to the first peak current value P1 which is larger than the first current value I1, so that a large amount of heat for melting the filler rod R is given to the filler rod R.
  • the output directivity of the arc A can be enhanced and the smooth transition of the droplets can be promoted. Therefore, the melting rate can be increased as compared with the case where the welding current is always set to the set current value (first current value I1).
  • the effective value of the welding current during the execution of the first pulse current application step is set to the set current value. You can get closer.
  • the melting rate can be effectively increased as compared with the case where it is set to less than 0.1.
  • is set to 0.4 or less, the arc A is suppressed from becoming too strong in the first peak current application step as compared with the case where it is set to be larger than 0.4, and the tungsten electrode TE is consumed. It can be slowed down and the burden on the operator can be reduced.
  • the control device 30 raises the welding current from the first base current value B1 to the first current value I1. Then, the control device 30 adjusts the welding current from the first current value I1 to a slope -1 times that of the second slope S2, that is, a slope of ⁇ 60 ⁇ A / ⁇ s or less and ⁇ 600 mA / ⁇ s or more ⁇ S2, and the first tilt period SPE1.
  • a current reduction step of reducing the current by the DPE for a reduction period of 0.35 times or more and 0.95 times or less is performed.
  • the control device 30 applies the welding current to the first current value only for the start-up period RPE of 0.05 times or more and 0.65 times or less of the first inclination period SPE1.
  • the positive rising current value RI 1.0 times or more and 1.65 times or less of I1 is used.
  • the welding current is made smaller than the first current value I1 in the first inclination period SPE1 and the decreasing period DPE, even if the welding current is made larger than the first current value I1 in the first peak current application step.
  • the effective value of the welding current during the period when the welding current is positive can be brought close to the set current value (first current value I1).
  • the control device 30 lowers the welding current at the timing tE. Specifically, the control device 30 has a third slope S3 of -1.7 A / ⁇ s, and a fourth current value I4 which is (1- ⁇ ) times the negative third current value I3 from the positive rising current value RI. Then, from the fourth current value I4 to the third slope S3, which is larger than the third slope S3 and has a fourth slope S4 of -60 ⁇ A / ⁇ s or less and -600 mA / ⁇ s or more, the second slope period SPE2. Perform a current reduction step to reduce.
  • the third current value I3 is a value -1 times the first current value I1 (set current value).
  • the above ⁇ is set to 0.1 or more and 0.4 or less. Therefore, the fourth current value I4 is 0.6 times or less and 0.9 times or more the third current value I3.
  • the current reduction step is executed, and immediately before the welding current is reduced from a positive value to a negative value.
  • the welding current is once started up to the start-up current value RI.
  • the welding current is set from a current value lower than the set current value (first current value I1) to 1.0 times or more and 1.65 times or less the first current value I1. Since the current is raised to the rising current value RI once, the third inclination S3 becomes steeper (smaller) and arc breakage is less likely to occur as compared with the case where the welding current is lowered to a negative value immediately after the current reduction step is executed. ..
  • the welding current may not be raised to the rising current value RI once, but the welding current may be lowered to a negative value.
  • the reduction period DPE may be set to 0.95 times or more and 1 times or less the first inclination period SPE1.
  • the welding current is decreased from the fourth current value I4 to the third current value I3 at the fourth inclination S4 of ⁇ 600 mA / ⁇ s or more, so that the welding current is increased at an inclination of less than ⁇ 600 mA / ⁇ s.
  • the work noise can be lowered and the worker can be given a softer feeling.
  • the fourth slope S4 is set to -60 ⁇ A / ⁇ s or less, arc breakage can be less likely to occur as compared with the case where the slope exceeds -60 ⁇ A / ⁇ s.
  • the welding current is reduced from the positive value to the fourth current value I4 at the third slope S3 of -1A / ⁇ s or less, so that the arc is compared with the case where the welding current is reduced at the fourth slope S4. It can be less likely to break.
  • the fourth current value I4 is 0.6 times or less and 0.9 times or more the third current value I3, compared with the case where the fourth current value I4 is larger than 0.6 times the third current value I3. , The period during which the absolute value of the welding current is small can be shortened, and arc breakage can be less likely to occur. Further, as compared with the case where the fourth current value I4 is less than 0.9 times the third current value I3, the period during which the work noise is low can be lengthened.
  • the control device 30 lowers the welding current to the second peak current value P2, which is (1 + ⁇ + ⁇ ) times the third current value I3, and the second peak current value P2 only for the third pulse period PPE3.
  • the welding current is raised to the second base current value B2, which is (1- ⁇ ) times the third current value I3, and the second base current value B2 is applied only during the fourth pulse period PPE4.
  • the second pulse current application step is executed, in which the second base current application step is alternately executed only once.
  • the above ⁇ is set to 0.1 to 0.4.
  • the second peak current value P2 is 1.2 times or less and 1.8 times or more the third current value I3, that is, -1.2 times or less and 1.8 times the set current value (first current value I1). That is all.
  • the second base current value B2 is 0.6 times or less and 0.9 times or more the third current value I3, that is, -0.6 times or less and -0.9 times or more the set current value (first current value I1). Become.
  • the welding current is set to the second peak current value P2, which is smaller than the third current value I3, so that the output directivity of the arc A can be enhanced by increasing the electromagnetic pinch force. Therefore, the cleaning action can be promoted as compared with the case where the welding current is always set to the third current value I3 (-1 times the set current value).
  • the second peak current value P2 is set independently of the first peak current value P1 according to the degree of cleaning action required.
  • the welding current is set to the second base current value B2, which is larger than the third current value I3. Therefore, the effective value of the welding current during the execution of the second pulse current application step is the set current value. It can be approached by -1 times.
  • the control device 30 lowers the welding current from the second base current value B2 to the third current value I3. Then, the control device 30 adjusts the welding current from the third current value I3 to a slope -1 times that of the fourth slope S4, that is, a slope of 60 ⁇ A / ⁇ s or more and 600 mA / ⁇ s or less, and 0.35 of the second slope period SPE2.
  • a current increase step of increasing by IPE for an increase period of doubling or more and 0.95 times or less is performed.
  • the control device 30 applies the welding current to the third current value only for the fall period FPE of 0.05 times or more and 0.65 times or less of the second inclination period SPE2.
  • the falling current value FI is 1.0 times or less and 1.65 times or more of I3, and then the operation from the timing tA is repeated. That is, the control device 30 raises the welding current from the falling current value FI to the positive second current value I2 at the first inclination S1 of 1.7 A / ⁇ s.
  • the current increase step is executed, and immediately before the welding current is increased from a negative value to a positive value.
  • the welding current is temporarily reduced to the falling current value FI.
  • the welding current is changed from a current value higher than -1 times the set current value to a falling current value 1.0 times or less and 1.65 times or more the third current value I3. Since the current is once lowered to FI, the first inclination S1 becomes steeper (larger) and arc breakage is less likely to occur as compared with the case where the welding current is raised to a positive value immediately after the execution of the current increase step.
  • the welding current may be lowered to a positive value without temporarily dropping to the current value FI.
  • the increase period IPE may be set to 0.95 times or more and 1 times or less the second slope period SPE2.
  • the welding current is made larger than the third current value I3, so that the welding current is made smaller than the third current value I3 in the second peak current application step. Also, the effective value of the welding current during the period when the welding current is negative can be brought close to -1 times the set current value (third current value I3).
  • the period from the timing tA to the next timing tE that is, the period in which the polarity of the AC voltage applied between the base metal W and the tungsten electrode TE in one cycle T becomes the EN polarity is set to EN ( Electrode minus) Period Ten is called.
  • the period from the timing tE to the next timing tA that is, the period in which the polarity of the AC voltage applied between the base material W and the tungsten electrode TE in one cycle T becomes the EP polarity is EP (electrode). Plus) Called period Tep.
  • the EN period Ten is set to 90 to 50% of one cycle T, and the EP period Tep is set to 10 to 50% of one cycle T. In the example of FIG. 3, the EN period Ten and the EP period Tep are each set to 50% of one cycle.
  • the first gradient period SPE1, each first pulse period PPE1, and each second pulse period PPE2 are set to about 1/6 of the EN period Ten.
  • the sum of the reduction period DPE and the start-up period RPE is also set to about 1/6 of the EN period Ten. Since the frequency of the welding current is set to 10 to 400 Hz, the total of the first inclination period SPE1, each first pulse period PPE1, each second pulse period PPE2, the decrease period DPE and the start-up period RPE is , 200 ⁇ s or more and 15 ms or less, respectively.
  • the second slope period SPE2, the third pulse period PPE3, and the fourth pulse period PPE4 are set to about 1/4 of the EP period Tep.
  • the sum of the increase period IPE and the start-up period FPE is also set to about 1/4 of the EP period Tep. Since the frequency of the welding current is set to 10 to 400 Hz, the sum of the second inclination period SPE2, the third pulse period PPE3, the fourth pulse period PPE4, the increase period IPE and the fall period FPE, respectively. It will be 60 ⁇ s or more and 12.5 ms or less.
  • the start-up period RPE and the start-up period FPE are set to 160 ⁇ s to 620 ⁇ s when the frequency is 10 Hz to 600 Hz.
  • the first peak current application step and the first base current application step are performed twice between the execution of the current rise step and the next reduction of the welding current to a negative value. Since it is executed, the melting rate can be increased more effectively than when it is executed only once.
  • the third pulse period PPE3 for maintaining the welding current at the second peak current value P2 can be lengthened as compared with the case where the welding current is executed more than once. Therefore, since the cleaning period can be lengthened at the second peak current value P2, the oxide on the surface of the base material W can be firmly removed. Further, even when the EP period Tep is set to a small ratio of less than 50% of one cycle T, 1 is compared with the case where the second peak current application step and the second base current application step are executed twice or more. Since one third pulse period PPE3 and one fourth pulse period PPE4 can be lengthened, it is possible to prevent the third pulse period PPE3 and the fourth pulse period PPE4 from becoming too short and difficult to control.
  • each first pulse period PPE1 is set to about 1/6 of the EN period Ten, but it may be set to another ratio of 1/30 or more and 1/6 or less.
  • each second pulse period PPE2 is set to about 1/6 of the EN period Ten, but it may be set to another ratio of 1/6 or more and 3/10 or less.
  • each third pulse period PPE3 is set to about 1/4 of the EP period Tep, but it may be set to another ratio of 1/20 or more and 1/4 or less.
  • each fourth pulse period PPE4 is set to about 1/4 of the EP period Tep, but it may be set to another ratio of 1/4 or more and 9/20 or less.
  • the welding current is set to the common first peak current value P1 in the two first peak current application steps executed in the first pulse current application step, but 1.15 times the set current value. As long as the current values are 1.6 times or more, the current values may be different from each other.
  • the welding current is set to the common first base current value B1, but the set current value is 0.6 times or more and 0.9. If the current values are double or less, the current values may be different from each other.
  • control device 30 executes both the current rise step and the current fall step, and both the current decrease step and the current increase step, but only the current rise step and the current decrease step are executed.
  • the current lowering step and the current increasing step may not be executed.
  • only the current lowering step and the current increasing step may be executed, and the current rising step and the current decreasing step may not be executed.
  • control device 30 raises the welding current to the rising current value RI immediately after executing the current decrease step, and lowers the welding current to the rising current value FI after executing the current increasing step. You may want to execute only one of the above.
  • control device 30 has executed the first peak current applying step and the first base current applying step twice, but may be executed three times or more.
  • the AC arc welding method of the present disclosure can reduce the work noise while suppressing deterioration of welding work efficiency, and AC arc welding is performed by generating an arc between the electrode and the base metal by the AC welding current. It is useful as a method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Abstract

The present invention involves causing a welding device to execute: a current-raising step in which a welding current is increased, according to a first slope (S1), from a negative value to a second current value (I2) that is 0.6-0.9 (inclusive) times a prescribed positive first current value (I1), and then is increased from the second current value (I2) to the first current value (I1) according to a second slope (S2) ranging from 60 μA/μs to 600 mA/μs (inclusive), the second slope (S2) being less than the first slope (S1); and a current-lowering step in which the welding current is reduced, according to a third slope (S3), from a positive value to a fourth current value (I4) that is 0.6-0.9 (inclusive) times a prescribed negative third current value (I3), and then is reduced from the fourth current value (I4) to the third current value (I3) according to a fourth slope (S4) of -60 μA/μS to -600 mA/μs (inclusive), the fourth slope (S4) being greater than the third slope (S3).

Description

交流アーク溶接方法AC arc welding method
 本開示は、交流の溶接電流によって電極と母材との間にアークを発生させて溶接を行う交流アーク溶接方法に関する。 The present disclosure relates to an AC arc welding method in which an arc is generated between an electrode and a base metal by an AC welding current to perform welding.
 特許文献1には、交流の溶接電流によって電極と母材との間にアークを発生させて溶接を行う交流アーク溶接方法が開示されている。この交流アーク溶接方法では、溶接電流の波形を、矩形波の交流にパルスを重畳した波形とすることにより、電極マイナス期間の時間比率を小さくしてもアークの指向性を維持できるようにしている。 Patent Document 1 discloses an AC arc welding method in which an arc is generated between an electrode and a base metal by an AC welding current to perform welding. In this AC arc welding method, the waveform of the welding current is a waveform obtained by superimposing a pulse on the alternating current of a square wave so that the arc directivity can be maintained even if the time ratio of the electrode minus period is reduced. ..
特許第2689752号公報Japanese Patent No. 2689752
 しかし、特許文献1では、溶接電流の波形を、矩形波の交流にパルスを重畳した波形としたので、溶接電流を負の値から正の値に立ち上げるときに、溶接電流の急速な増加により、高い作業音が発生し、作業者の負担が大きくなる。また、溶接電流を正の値から負の値に立ち下げるときにも、溶接電流の急速な減少により、同様の問題が生じる。 However, in Patent Document 1, since the waveform of the welding current is a waveform obtained by superimposing a pulse on the alternating current of a square wave, when the welding current is raised from a negative value to a positive value, the welding current is rapidly increased. , High work noise is generated, and the burden on the worker becomes heavy. Further, when the welding current is lowered from a positive value to a negative value, the same problem arises due to the rapid decrease in the welding current.
 また、高い作業音の発生を抑制するために、溶接電流の波形を正弦波形にすると、母材の溶融が遅くなり、作業効率が悪化する。 Also, if the waveform of the welding current is made into a sine and cosine in order to suppress the generation of high work noise, the melting of the base metal will be delayed and the work efficiency will deteriorate.
 本開示は、かかる点に鑑みてなされたものであり、その目的とするところは、溶接の作業効率の悪化を抑制しつつ、作業音を低くすることにある。 This disclosure has been made in view of this point, and the purpose of the present disclosure is to reduce the work noise while suppressing the deterioration of the welding work efficiency.
 本開示の第1の態様は、交流の溶接電流によって電極と母材との間にアークを発生させて溶接を行う交流アーク溶接方法であって、前記溶接電流を、第1の傾きで負の値から所定の正の第1電流値の0.6倍以上0.9倍以下の第2電流値まで増加させ、次いで、当該第2電流値から前記第1の傾きよりも小さい60μA/μs以上600mA/μs以下の第2の傾きで前記第1電流値まで第1傾斜期間をかけて増加させる電流立上げステップと、前記溶接電流を、第3の傾きで正の値から所定の負の第3電流値の0.6倍以下0.9倍以上の第4電流値まで減少させ、次いで、当該第4電流値から前記第3の傾きよりも大きい-60μA/μs以下-600mA/μs以上の第4の傾きで前記第3電流値まで第2傾斜期間をかけて減少させる電流立下げステップとの少なくとも一方を実行させることを特徴とする。 The first aspect of the present disclosure is an AC arc welding method in which an arc is generated between an electrode and a base metal by an AC welding current to perform welding, in which the welding current is negative at the first inclination. The value is increased from the value to a second current value of 0.6 times or more and 0.9 times or less of the predetermined positive first current value, and then 60 μA / μs or more, which is smaller than the first gradient from the second current value. A current rise step of increasing the current value up to the first current value over a first tilt period at a second tilt of 600 mA / μs or less, and a predetermined negative third of the welding current from a positive value at the third tilt. 3 Reduce to the 4th current value of 0.6 times or less and 0.9 times or more of the current value, and then from the 4th current value to -60 μA / μs or less and -600 mA / μs or more, which is larger than the third slope. It is characterized in that at least one of a current reduction step of reducing the third current value to the third tilt value over a second tilt period is executed at the fourth tilt.
 この態様によると、電流立上げステップを実行する場合には、溶接電流を負の値から第1電流値まで増加させる際、溶接電流が第2電流値に達してから第1電流値に達するまでの間、溶接電流を600mA/μs以下の第2の傾きで増加させるので、600mA/μsを超える傾きで増加させる場合に比べ、作業音を低くできる。 According to this aspect, when the current rise step is executed, when the welding current is increased from a negative value to the first current value, from the time when the welding current reaches the second current value to the time when the welding current reaches the first current value. During the period, the welding current is increased at a second inclination of 600 mA / μs or less, so that the working noise can be lowered as compared with the case where the welding current is increased at an inclination of more than 600 mA / μs.
 また、電流立上げステップを実行する場合には、溶接電流を負の値から第1電流値まで増加させる際、溶接電流が第2電流値に達するまでは、溶接電流を第2の傾きよりも大きい第1の傾きで増加させるので、第2の傾きで増加させる場合に比べ、母材の溶融を速くし、作業効率を向上できる。 Further, when the current rise step is executed, when the welding current is increased from a negative value to the first current value, the welding current is set to be smaller than the second slope until the welding current reaches the second current value. Since the current is increased with a large first inclination, the base metal can be melted faster and the work efficiency can be improved as compared with the case of increasing with the second inclination.
 また、電流立上げステップを実行する場合には、第2電流値を第1電流値の0.6倍以上とするので、第2電流値を第1電流値の0.6倍未満にした場合に比べ、母材の溶融を速くし、作業効率を向上できるとともに、溶接電流が小さい期間を短縮し、アーク切れを起こりにくくできる。また、第2電流値を第1電流値の0.9倍以下とするので、第2電流値を第1電流値の0.9倍よりも大きくした場合に比べ、作業音が低くなる期間を長くできる。 Further, when the current rise step is executed, the second current value is 0.6 times or more the first current value, so that the second current value is less than 0.6 times the first current value. In comparison with the above, the base metal can be melted faster, the work efficiency can be improved, the period when the welding current is small can be shortened, and the arc breakage can be less likely to occur. In addition, since the second current value is 0.9 times or less of the first current value, the period during which the work noise is lower than when the second current value is larger than 0.9 times the first current value is set. You can make it longer.
 一方、電流立下げステップを実行する場合には、溶接電流を正の値から第3電流値まで減少させる際、溶接電流が第4電流値に達してから第3電流値に達するまでの間、溶接電流を-600mA/μs以上の第4の傾きで減少させるので、-600mA/μs未満の傾きで増加させる場合に比べ、作業音を低くできる。 On the other hand, when the current reduction step is executed, when the welding current is reduced from the positive value to the third current value, the welding current reaches the fourth current value and the third current value. Since the welding current is decreased at the fourth inclination of −600 mA / μs or more, the working noise can be lowered as compared with the case of increasing at the inclination of less than −600 mA / μs.
 また、電流立下げステップを実行する場合には、溶接電流を正の値から第3電流値まで減少させる際、溶接電流が第4電流値に達するまでは、溶接電流を第4の傾きよりも小さい第3の傾きで減少させるので、第4の傾きで減少させる場合に比べ、アーク切れを起こりにくくできる。 Further, when the current reduction step is executed, when the welding current is reduced from the positive value to the third current value, the welding current is set to be smaller than the fourth slope until the welding current reaches the fourth current value. Since the current is reduced by a small third tilt, arc breakage can be less likely to occur as compared with the case where the current is reduced by a fourth tilt.
 また、電流立下げステップを実行する場合には、第4電流値を第3電流値の0.6倍以下とするので、第4電流値を第3電流値の0.6倍より大きくした場合に比べ、溶接電流の絶対値が小さい期間を短縮し、アーク切れを起こりにくくできる。また、第4電流値を第3電流値の0.9倍以上とするので、第4電流値を第3電流値の0.9倍未満にした場合に比べ、作業音が低くなる期間を長くできる。 Further, when the current reduction step is executed, the fourth current value is 0.6 times or less of the third current value, so that the fourth current value is larger than 0.6 times the third current value. Compared with this, the period during which the absolute value of the welding current is small can be shortened, and arc breakage can be less likely to occur. Further, since the 4th current value is 0.9 times or more the 3rd current value, the period during which the work noise is low is longer than when the 4th current value is less than 0.9 times the 3rd current value. can.
 本開示の第2の態様は、交流の溶接電流によって電極と母材との間にアークを発生させて溶接を行う交流アーク溶接方法であって、前記溶接電流を、第1パルス期間だけ所定の正の設定電流値の1.15倍以上1.6倍以下の電流値とする第1ピーク電流印可ステップ、及び前記溶接電流を、第2パルス期間だけ前記設定電流値の0.6倍以上0.9倍以下の電流値とする第1ベース電流印可ステップを、前記溶接電流を負の値から正の値に立ち上げてから次に負の値に立ち下げるまでの間に、2回以上交互に実行する第1パルス電流印可ステップと、前記溶接電流を、第3パルス期間だけ前記設定電流値の-1.2倍以下-1.8倍以上の電流値とする第2ピーク電流印可ステップ、及び前記溶接電流を、第4パルス期間だけ前記設定電流値の-0.6倍以下-0.9倍以上の電流値とする第2ベース電流印可ステップを、前記溶接電流を正の値から負の値に立ち下げてから次に正の値に立ち上げるまでの間に、1回ずつ交互に実行する第2パルス電流印可ステップとを実行することを特徴とする。 The second aspect of the present disclosure is an AC arc welding method in which an arc is generated between the electrode and the base metal by an AC welding current to perform welding, and the welding current is applied to a predetermined value only during the first pulse period. The first peak current application step in which the current value is 1.15 times or more and 1.6 times or less the positive set current value, and the welding current is 0.6 times or more and 0 times the set current value for the second pulse period. . The first base current application step with a current value of 9 times or less is alternated two or more times between the time when the welding current is increased from a negative value to a positive value and the time when the welding current is decreased from a negative value to the next negative value. The first pulse current application step to be executed, and the second peak current application step in which the welding current is set to a current value of −1.2 times or less and −1.8 times or more of the set current value for the third pulse period. In the second base current application step in which the welding current is set to a current value of −0.6 times or less and −0.9 times or more of the set current value for the fourth pulse period, the welding current is negative from a positive value. It is characterized in that the second pulse current application step, which is alternately executed once, is executed between the time when the value is lowered to the value of 1 and the time when the value is raised to the next positive value.
 この態様によると、第1ピーク電流印可ステップで、溶加棒を溶融させるための熱を溶加棒に多く与えるとともに、電磁ピンチ力の増大によりアークの出力指向性を高め、溶滴のスムーズな移行を促進できるので、溶接電流を常に設定電流値にする場合に比べ、溶融速度を高められる。また、第1ピーク電流印可ステップで、溶接電流を設定電流値よりも大きくしても、第1ベース電流印可ステップで、溶接電流を設定電流値より小さくするので、第1パルス電流印可ステップ実行中における溶接電流の実効値を設定電流値に近づけることができる。 According to this aspect, in the first peak current application step, a large amount of heat for melting the filler rod is given to the filler rod, and the output directivity of the arc is enhanced by increasing the electromagnetic pinch force, so that the droplets are smooth. Since the transition can be promoted, the melting rate can be increased as compared with the case where the welding current is always set to the set current value. Further, even if the welding current is made larger than the set current value in the first peak current applying step, the welding current is made smaller than the set current value in the first base current applying step, so that the first pulse current applying step is being executed. The effective value of the welding current in can be brought close to the set current value.
 また、第2パルス電流印可ステップを実行する場合には、第2ピーク電流印可ステップで、電磁ピンチ力の増大によりアークの出力指向性を高め、溶接電流を常に設定電流値にする場合に比べ、クリーニング作用を促進できる。また、第2ピーク電流印可ステップで、溶接電流を設定電流値の-1倍より小さくしても、第2ベース電流印可ステップで、溶接電流を設定電流値の-1倍より大きくするので、第2パルス電流印可ステップ実行中における溶接電流の実効値を設定電流値の-1倍に近づけることができる。 Further, when the second pulse current application step is executed, the arc output directivity is increased by increasing the electromagnetic pinch force in the second peak current application step, and the welding current is always set to the set current value as compared with the case where the welding current is always set to the set current value. The cleaning action can be promoted. Further, even if the welding current is made smaller than -1 times the set current value in the second peak current applying step, the welding current is made larger than -1 times the set current value in the second base current applying step. The effective value of the welding current during the execution of the 2-pulse current application step can be made close to -1 times the set current value.
 また、第1ピーク電流印可ステップ、及び第1ベース電流印可ステップを2回以上実行するので、1回だけ実行する場合に比べ、溶融速度をより効果的に高められる。 Further, since the first peak current application step and the first base current application step are executed twice or more, the melting rate can be more effectively increased as compared with the case where the first peak current application step is executed only once.
 また、第2ピーク電流印可ステップ、及び第2ベース電流印可ステップをそれぞれ1回だけ実行するので、2回以上実行する場合に比べ、第3パルス期間を長くできる。したがって、設定電流値の-1倍よりも小さい電流値でクリーニングを行う期間を長くできるので、母材表面の酸化物をしっかり除去できる。また、溶接電流を負の値にする期間を、1周期の50%未満の小さい割合に設定した場合でも、第2ピーク電流印可ステップ、及び第2ベース電流印可ステップをそれぞれ2回以上実行する場合に比べて、第3パルス期間及び第4パルス期間を長くできるので、第3パルス期間及び第4パルス期間が短過ぎて制御が困難になるのを防止できる。 Further, since the second peak current application step and the second base current application step are executed only once, the third pulse period can be lengthened as compared with the case where the second peak current application step and the second base current application step are executed twice or more. Therefore, since the cleaning period can be lengthened with a current value smaller than -1 times the set current value, the oxide on the surface of the base metal can be firmly removed. Further, even when the period for making the welding current a negative value is set to a small ratio of less than 50% in one cycle, the second peak current application step and the second base current application step are executed twice or more, respectively. Since the third pulse period and the fourth pulse period can be lengthened as compared with the above, it is possible to prevent the third pulse period and the fourth pulse period from becoming too short and difficult to control.
 本開示によれば、溶接の作業効率の悪化を抑制しつつ、作業音を低くできる。 According to this disclosure, it is possible to reduce the work noise while suppressing the deterioration of the welding work efficiency.
図1は、溶接装置の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a welding apparatus. 図2は、溶接電源の回路図である。FIG. 2 is a circuit diagram of a welding power supply. 図3は、アーク溶接時における溶接電流の波形を示す図である。FIG. 3 is a diagram showing a waveform of a welding current during arc welding.
 以下、本開示の実施形態について図面に基づいて説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 図1は、溶接装置1を示す。この溶接装置1は、溶接トーチ10と、溶接電源20とを備えている。この溶接装置1は、溶接トーチ10が非消耗電極式のトーチである交流TIG溶接装置である。 FIG. 1 shows a welding device 1. The welding device 1 includes a welding torch 10 and a welding power source 20. This welding device 1 is an AC TIG welding device in which the welding torch 10 is a non-consumable electrode type torch.
 溶接トーチ10は、図示しないガス供給装置から供給されるシールドガスSGを噴出するノズル11を有している。ノズル11の内側には、略筒状のコレット12が、ノズル11の噴出方向に沿うように配設されている。このコレット12の内側には、棒状のタングステン電極TEが固定されている。 The welding torch 10 has a nozzle 11 for ejecting a shield gas SG supplied from a gas supply device (not shown). Inside the nozzle 11, a substantially cylindrical collet 12 is arranged along the ejection direction of the nozzle 11. A rod-shaped tungsten electrode TE is fixed inside the collet 12.
 溶接電源20は、溶接トーチ10のタングステン電極TEと母材Wとの間に交流電圧を印加することでアークAを発生させる。 The welding power supply 20 generates an arc A by applying an AC voltage between the tungsten electrode TE of the welding torch 10 and the base metal W.
 作業者は、この溶接装置1によって、タングステン電極TEと母材Wとの間にアークAを発生させることにより、母材Wに溶融池Pを形成し、この溶融池Pに溶加棒Rを挿入することにより、溶接ビードを形成できる。 The worker forms a molten pool P in the base metal W by generating an arc A between the tungsten electrode TE and the base metal W by the welding device 1, and the filler rod R is placed in the molten pool P. By inserting, a weld bead can be formed.
 詳しくは、溶接電源20は、図2に示すように、第1の整流平滑回路21と、第1のインバータ回路22と、第1のトランス23と、第2の整流平滑回路24と、第1及び第2のリアクトル25,26と、第2のインバータ回路27と、制御装置30とを備えている。 Specifically, as shown in FIG. 2, the welding power supply 20 includes a first rectifying smoothing circuit 21, a first inverter circuit 22, a first transformer 23, a second rectifying smoothing circuit 24, and a first. The second reactors 25 and 26, the second inverter circuit 27, and the control device 30 are provided.
 第1の整流平滑回路21は、商用電源2から入力される入力交流電力を直流電力に変換して出力する。 The first rectifying smoothing circuit 21 converts the input AC power input from the commercial power supply 2 into DC power and outputs it.
 第1のインバータ回路22は、例えば、単相フルブリッジ型のPWM制御インバータであり、4つのスイッチング素子(図示せず)を備えている。第1のインバータ回路22は、これら4つのスイッチング素子を、制御装置30によって出力されるスイッチング信号SG1に応じてスイッチングさせることで、第1の整流平滑回路21によって出力された直流電力を交流電力に変換して出力する。ここで、第1のインバータ回路22の出力電圧を第1の交流電圧とする。なお、第1のインバータ回路22として、ハーフブリッジ型のインバータ等、他の構成のインバータ回路を用いてもよい。 The first inverter circuit 22 is, for example, a single-phase full-bridge type PWM control inverter, and includes four switching elements (not shown). The first inverter circuit 22 switches these four switching elements according to the switching signal SG1 output by the control device 30, so that the DC power output by the first rectifying smoothing circuit 21 becomes AC power. Convert and output. Here, the output voltage of the first inverter circuit 22 is taken as the first AC voltage. As the first inverter circuit 22, an inverter circuit having another configuration such as a half-bridge type inverter may be used.
 第1のトランス23は、第1のインバータ回路22によって出力された第1の交流電圧を第2の交流電圧に変化させて出力する。第1のトランス23は、第1の一次コイル23aと第1の二次コイル23bとを有している。第1の一次コイル23aには、第1のインバータ回路22によって出力された第1の交流電圧が印可される。第1の二次コイル23bの電圧は、第2の交流電圧となる。 The first transformer 23 changes the first AC voltage output by the first inverter circuit 22 to the second AC voltage and outputs it. The first transformer 23 has a first primary coil 23a and a first secondary coil 23b. A first AC voltage output by the first inverter circuit 22 is applied to the first primary coil 23a. The voltage of the first secondary coil 23b becomes the second AC voltage.
 第2の整流平滑回路24は、第1のトランス23によって出力された第2の交流電圧を第1の直流電圧に変換して正出力端子24a及び負出力端子24bから出力する。第2の整流平滑回路24は、4つのダイオード24cからなるダイオードブリッジ回路である。 The second rectifying smoothing circuit 24 converts the second AC voltage output by the first transformer 23 into the first DC voltage and outputs it from the positive output terminal 24a and the negative output terminal 24b. The second rectifying smoothing circuit 24 is a diode bridge circuit composed of four diodes 24c.
 第2のインバータ回路27は、単相ハーフブリッジ型のインバータ回路である。第2のインバータ回路27は、第1及び第2の入力端子271,272と、第1及び第2の入力端子271,272間に互いに直列に接続された上アームスイッチング素子273及び下アームスイッチング素子274とを備えている。上アームスイッチング素子273には、制御装置30によって出力される極性切替信号SG2が入力される一方、下アームスイッチング素子274には、極性切替信号SG2を反転させた信号が入力される。第2のインバータ回路27の第1の入力端子271は、第1のリアクトル25を介して第2の整流平滑回路24の正出力端子24aに接続されている。第2のインバータ回路27の第2の入力端子272は、第2のリアクトル26を介して第2の整流平滑回路24の負出力端子24bに接続されている。第2のインバータ回路27の出力端子275は、母材Wに接続されている。 The second inverter circuit 27 is a single-phase half-bridge type inverter circuit. The second inverter circuit 27 includes an upper arm switching element 273 and a lower arm switching element connected in series between the first and second input terminals 271,272 and the first and second input terminals 271,272. It is equipped with 274. The polarity switching signal SG2 output by the control device 30 is input to the upper arm switching element 273, while the signal obtained by inverting the polarity switching signal SG2 is input to the lower arm switching element 274. The first input terminal 271 of the second inverter circuit 27 is connected to the positive output terminal 24a of the second rectifying smoothing circuit 24 via the first reactor 25. The second input terminal 272 of the second inverter circuit 27 is connected to the negative output terminal 24b of the second rectifying smoothing circuit 24 via the second reactor 26. The output terminal 275 of the second inverter circuit 27 is connected to the base material W.
 したがって、上アームスイッチング素子273をオンし、かつ下アームスイッチング素子274をオフした状態で、第2のインバータ回路27は、母材Wをタングステン電極TEよりも高電位とする一方、上アームスイッチング素子273をオフし、かつ下アームスイッチング素子274をオンした状態で、第2のインバータ回路27は、母材Wをタングステン電極TEよりも低電位とする。所定の周期でハイレベルとローレベルとに切り替わるパルス信号を極性切替信号SG2として第2のインバータ回路27に入力すると、第2のインバータ回路27は、母材Wとタングステン電極TEとの間に印可される交流電圧の極性を、タングステン電極TEが母材Wよりも低電位となるEN(電極マイナス)極性と、タングステン電極TEが母材Wよりも高電位となるEP(電極プラス)極性とに周期的に切り替える。これにより、母材Wとタングステン電極TEとの間に交流の溶接電流が流れる。 Therefore, with the upper arm switching element 273 turned on and the lower arm switching element 274 turned off, the second inverter circuit 27 sets the base material W to a higher potential than the tungsten electrode TE, while the upper arm switching element. With the 273 turned off and the lower arm switching element 274 turned on, the second inverter circuit 27 sets the base material W to a lower potential than the tungsten electrode TE. When a pulse signal that switches between high level and low level in a predetermined cycle is input to the second inverter circuit 27 as the polarity switching signal SG2, the second inverter circuit 27 can be applied between the base material W and the tungsten electrode TE. The polarity of the AC voltage is set to the EN (electrode minus) polarity at which the tungsten electrode TE has a lower potential than the base material W and the EP (electrode plus) polarity at which the tungsten electrode TE has a higher potential than the base material W. Switch periodically. As a result, an alternating current welding current flows between the base metal W and the tungsten electrode TE.
 制御装置30は、溶接電流Iを制御する。制御装置30には、ユーザにより、図示しない入力手段を用いて所定の正の第1電流値I1が入力され、設定電流値として設定される。詳しくは、制御装置30は、図示しない電流センサから入力される溶接電流Iの測定値に基づいて、PWM制御により、溶接電流Iの実効値が設定電流値となるように第1のインバータ回路22にスイッチング信号SG1を出力するとともに、電極TEと母材Wとの間に印可される交流電圧の極性を切り替える極性切替信号SG2を出力する。制御装置30による溶接電流Iの制御は、上記スイッチング信号SG1及び極性切替信号SG2の出力により行われる。極性切替信号SG2の周波数、すなわち溶接電流の周波数は、10Hz以上400Hz以下に設定される。 The control device 30 controls the welding current I. A predetermined positive first current value I1 is input to the control device 30 by the user using an input means (not shown), and is set as a set current value. Specifically, the control device 30 is a first inverter circuit 22 so that the effective value of the welding current I becomes the set current value by PWM control based on the measured value of the welding current I input from the current sensor (not shown). In addition to outputting the switching signal SG1, the polarity switching signal SG2 for switching the polarity of the AC voltage applied between the electrode TE and the base material W is output. The welding current I is controlled by the control device 30 by the outputs of the switching signal SG1 and the polarity switching signal SG2. The frequency of the polarity switching signal SG2, that is, the frequency of the welding current is set to 10 Hz or more and 400 Hz or less.
 以下、図3を参照して、本開示の実施形態に係る交流アーク溶接方法によって溶接を行うときの制御装置30による1周期T分の溶接電流の制御について説明する。 Hereinafter, with reference to FIG. 3, the control of the welding current for one cycle T by the control device 30 when welding is performed by the AC arc welding method according to the embodiment of the present disclosure will be described.
 まず、タイミングtAにおいて、制御装置30は、溶接電流を1.7A/μsの第1の傾きS1で負の値から正の第1電流値I1の(1-α)倍の第2電流値I2まで増加させ、次いで、当該第2電流値I2から第1の傾きS1よりも小さい60μA/μs以上600mA/μs以下の第2の傾きS2で前記第1電流値I1まで第1傾斜期間SPE1をかけて増加させる電流立上げステップを実行する。前記αは、0.1以上0.4以下に設定される。したがって、第2電流値I2は、第1電流値I1の0.6倍以上0.9倍以下となる。 First, at the timing tA, the control device 30 sets the welding current to a second current value I2 which is (1-α) times the positive first current value I1 from a negative value at the first slope S1 of 1.7 A / μs. Then, from the second current value I2 to the first slope S1 with a second slope S2 of 60 μA / μs or more and 600 mA / μs or less, which is smaller than the first slope S1, the first slope period SPE1 is applied to the first current value I1. And perform a current rise step to increase. The α is set to 0.1 or more and 0.4 or less. Therefore, the second current value I2 is 0.6 times or more and 0.9 times or less the first current value I1.
 このように、電流立上げステップにおいて、溶接電流を第2電流値I2から第1電流値I1まで600mA/μs以下の第2の傾きS2で増加させるので、600mA/μsを超える傾きで増加させる場合に比べ、作業音を低くし、より柔らかい感覚を作業者に与えることができる。 In this way, in the current rise step, the welding current is increased from the second current value I2 to the first current value I1 with a second inclination S2 of 600 mA / μs or less. Compared to, the work noise can be lowered and the worker can be given a softer feeling.
 また、第2の傾きS2を60μA/μs以上とするので、60μA/μs未満とした場合に比べ、母材Wの溶融を速くできる。 Further, since the second inclination S2 is 60 μA / μs or more, the base material W can be melted faster than when it is less than 60 μA / μs.
 また、電流立上げステップにおいて、溶接電流を負の値から第2電流値I2まで1A/μs以上の第1の傾きS1で増加させるので、第2の傾きS2で増加させる場合に比べ、母材Wの溶融を速くし、作業効率を向上できる。 Further, in the current rise step, the welding current is increased from the negative value to the second current value I2 at the first inclination S1 of 1 A / μs or more, so that the base metal is increased as compared with the case where the welding current is increased at the second inclination S2. The melting of W can be accelerated and the work efficiency can be improved.
 また、第2電流値I2を第1電流値I1の0.6倍以上とするので、第2電流値I2を第1電流値I1の0.6倍未満にした場合に比べ、母材Wの溶融を速くし、作業効率を向上できるとともに、溶接電流が小さい期間を短縮し、アーク切れを起こりにくくできる。また、第2電流値I2を第1電流値I1の0.9倍以下とするので、第2電流値I2を第1電流値I1の0.9倍よりも大きくした場合に比べ、作業音が低くなる期間を長くできる。 Further, since the second current value I2 is 0.6 times or more the first current value I1, the base material W has a base material W as compared with the case where the second current value I2 is less than 0.6 times the first current value I1. It is possible to speed up melting, improve work efficiency, shorten the period when the welding current is small, and prevent arc breakage. Further, since the second current value I2 is 0.9 times or less the first current value I1, the work noise is higher than when the second current value I2 is larger than 0.9 times the first current value I1. You can lengthen the period of low.
 次に、タイミングtBから、制御装置30は、溶接電流を第1電流値I1の(1+α/2+β)倍の第1ピーク電流値P1に立ち上げ、第1パルス期間PPE1だけ当該第1ピーク電流値P1とする第1ピーク電流印可ステップ、及び溶接電流を第1電流値I1の(1-β)倍の第1ベース電流値B1に立ち下げ、第2パルス期間PPE2だけ当該第1ベース電流値B1とする第1ベース電流印可ステップを順に交互に2回ずつ実行する第1パルス電流印可ステップを実行する。上記βは、0.1以上0.4以下に設定される。したがって、第1ピーク電流値P1は、第1電流値I1の1.15倍以上1.6倍以下となり、第1ベース電流値B1は、第1電流値I1の0.6倍以上0.9倍以下となる。 Next, from the timing tB, the control device 30 raises the welding current to the first peak current value P1 which is (1 + α / 2 + β) times the first current value I1, and the first peak current value only for the first pulse period PPE1. The first peak current application step set to P1 and the welding current are lowered to the first base current value B1 which is (1-β) times the first current value I1, and the first base current value B1 is applied only for the second pulse period PPE2. The first pulse current application step is executed by alternately executing the first base current application step twice in order. The above β is set to 0.1 or more and 0.4 or less. Therefore, the first peak current value P1 is 1.15 times or more and 1.6 times or less the first current value I1, and the first base current value B1 is 0.6 times or more and 0.9 times the first current value I1. It will be less than double.
 上記第1ピーク電流印可ステップでは、溶接電流を第1電流値I1よりも大きい第1ピーク電流値P1とすることにより、溶加棒Rを溶融させるための熱を溶加棒Rに多く与えるとともに、電磁ピンチ力の増大によりアークAの出力指向性を高め、溶滴のスムーズな移行を促進できる。したがって、溶接電流を常に設定電流値(第1電流値I1)にする場合に比べ、溶融速度を高められる。また、第1ベース電流印可ステップで、溶接電流を第1電流値I1よりも小さい第1ベース電流値B1とするので、第1パルス電流印可ステップ実行中における溶接電流の実効値を設定電流値に近づけることができる。 In the first peak current application step, the welding current is set to the first peak current value P1 which is larger than the first current value I1, so that a large amount of heat for melting the filler rod R is given to the filler rod R. By increasing the electromagnetic pinch force, the output directivity of the arc A can be enhanced and the smooth transition of the droplets can be promoted. Therefore, the melting rate can be increased as compared with the case where the welding current is always set to the set current value (first current value I1). Further, since the welding current is set to the first base current value B1 smaller than the first current value I1 in the first base current application step, the effective value of the welding current during the execution of the first pulse current application step is set to the set current value. You can get closer.
 また、上記βを、0.1以上に設定したので、0.1未満に設定した場合に比べ、溶融速度を効果的に高められる。また、上記βを0.4以下に設定したので、0.4よりも大きく設定した場合に比べ、第1ピーク電流印可ステップでアークAが強くなり過ぎるのを抑制し、タングステン電極TEの消耗を遅くするとともに、作業者負担を軽減できる。 Further, since the above β is set to 0.1 or more, the melting rate can be effectively increased as compared with the case where it is set to less than 0.1. Further, since β is set to 0.4 or less, the arc A is suppressed from becoming too strong in the first peak current application step as compared with the case where it is set to be larger than 0.4, and the tungsten electrode TE is consumed. It can be slowed down and the burden on the operator can be reduced.
 そして、タイミングtCにおいて、制御装置30は、溶接電流を第1ベース電流値B1から第1電流値I1に立ち上げる。そして、制御装置30は、溶接電流を第1電流値I1から前記第2の傾きS2の-1倍の傾き、すなわち-60μA/μs以下-600mA/μs以上の傾き-S2で第1傾斜期間SPE1の0.35倍以上0.95倍以下の減少期間DPEだけ減少させる電流減少ステップを実行する。次いで、制御装置30は、電流減少ステップの実行直後のタイミングtDにおいて、溶接電流を、前記第1傾斜期間SPE1の0.05倍以上0.65倍以下の立上げ期間RPEだけ前記第1電流値I1の1.0倍以上1.65倍以下の正の立上げ電流値RIとする。 Then, at the timing tC, the control device 30 raises the welding current from the first base current value B1 to the first current value I1. Then, the control device 30 adjusts the welding current from the first current value I1 to a slope -1 times that of the second slope S2, that is, a slope of −60 μA / μs or less and −600 mA / μs or more −S2, and the first tilt period SPE1. A current reduction step of reducing the current by the DPE for a reduction period of 0.35 times or more and 0.95 times or less is performed. Next, at the timing tD immediately after the execution of the current reduction step, the control device 30 applies the welding current to the first current value only for the start-up period RPE of 0.05 times or more and 0.65 times or less of the first inclination period SPE1. The positive rising current value RI of 1.0 times or more and 1.65 times or less of I1 is used.
 第1傾斜期間SPE1及び減少期間DPEでは、溶接電流を第1電流値I1よりも小さくしているので、第1ピーク電流印可ステップで、溶接電流を第1電流値I1よりも大きくしても、溶接電流が正である期間における溶接電流の実効値を設定電流値(第1電流値I1)に近づけることができる。 Since the welding current is made smaller than the first current value I1 in the first inclination period SPE1 and the decreasing period DPE, even if the welding current is made larger than the first current value I1 in the first peak current application step. The effective value of the welding current during the period when the welding current is positive can be brought close to the set current value (first current value I1).
 その後、制御装置30は、タイミングtEにおいて、溶接電流を立ち下げる。詳しくは、制御装置30は、-1.7A/μsの第3の傾きS3で、正の立上げ電流値RIから負の第3電流値I3の(1-γ)倍の第4電流値I4まで減少させ、次いで、当該第4電流値I4から第3の傾きS3よりも大きい-60μA/μs以下-600mA/μs以上の第4の傾きS4で前記第3電流値I3まで第2傾斜期間SPE2をかけて減少させる電流立下げステップを実行する。第3電流値I3は、第1電流値I1(設定電流値)の-1倍の値である。上記γは、0.1以上0.4以下に設定される。したがって、第4電流値I4は、第3電流値I3の0.6倍以下0.9倍以上となる。 After that, the control device 30 lowers the welding current at the timing tE. Specifically, the control device 30 has a third slope S3 of -1.7 A / μs, and a fourth current value I4 which is (1-γ) times the negative third current value I3 from the positive rising current value RI. Then, from the fourth current value I4 to the third slope S3, which is larger than the third slope S3 and has a fourth slope S4 of -60 μA / μs or less and -600 mA / μs or more, the second slope period SPE2. Perform a current reduction step to reduce. The third current value I3 is a value -1 times the first current value I1 (set current value). The above γ is set to 0.1 or more and 0.4 or less. Therefore, the fourth current value I4 is 0.6 times or less and 0.9 times or more the third current value I3.
 このように、電流立上げステップを実行してから次に溶接電流を負の値に立ち下げるまでの間に、電流減少ステップが実行され、溶接電流を正の値から負の値に立ち下げる直前に、溶接電流が立上げ電流値RIに一旦立ち上げられる。 In this way, between the execution of the current rise step and the next reduction of the welding current to a negative value, the current reduction step is executed, and immediately before the welding current is reduced from a positive value to a negative value. In addition, the welding current is once started up to the start-up current value RI.
 このように、電流減少ステップの実行直後に、溶接電流を、設定電流値(第1電流値I1)よりも低い電流値から第1電流値I1の1.0倍以上1.65倍以下の立上げ電流値RIに一旦立ち上げるので、電流減少ステップの実行直後に、溶接電流を負の値に立ち下げる場合に比べ、第3の傾きS3が急峻に(小さく)なり、アーク切れが発生しにくい。 In this way, immediately after executing the current reduction step, the welding current is set from a current value lower than the set current value (first current value I1) to 1.0 times or more and 1.65 times or less the first current value I1. Since the current is raised to the rising current value RI once, the third inclination S3 becomes steeper (smaller) and arc breakage is less likely to occur as compared with the case where the welding current is lowered to a negative value immediately after the current reduction step is executed. ..
 なお、電流減少ステップの実行直後に、溶接電流を立上げ電流値RIに一旦立ち上げず、溶接電流を負の値まで立ち下げるようにしてもよい。この場合、減少期間DPEを、第1傾斜期間SPE1の0.95倍以上1倍以下に設定してもよい。 Immediately after the execution of the current reduction step, the welding current may not be raised to the rising current value RI once, but the welding current may be lowered to a negative value. In this case, the reduction period DPE may be set to 0.95 times or more and 1 times or less the first inclination period SPE1.
 また、電流立下げステップにおいて、溶接電流を第4電流値I4から第3電流値I3まで-600mA/μs以上の第4の傾きS4で減少させるので、-600mA/μs未満の傾きで増加させる場合に比べ、作業音を低くし、より柔らかい感覚を作業者に与えることができる。 Further, in the current reduction step, the welding current is decreased from the fourth current value I4 to the third current value I3 at the fourth inclination S4 of −600 mA / μs or more, so that the welding current is increased at an inclination of less than −600 mA / μs. Compared to, the work noise can be lowered and the worker can be given a softer feeling.
 また、第4の傾きS4を-60μA/μs以下とするので、-60μA/μsを超える傾きとした場合に比べ、アーク切れを起こりにくくできる。 Further, since the fourth slope S4 is set to -60 μA / μs or less, arc breakage can be less likely to occur as compared with the case where the slope exceeds -60 μA / μs.
 また、電流立下げステップにおいて、溶接電流を正の値から第4電流値I4まで-1A/μs以下の第3の傾きS3で減少させるので、第4の傾きS4で減少させる場合に比べ、アーク切れを起こりにくくできる。 Further, in the current reduction step, the welding current is reduced from the positive value to the fourth current value I4 at the third slope S3 of -1A / μs or less, so that the arc is compared with the case where the welding current is reduced at the fourth slope S4. It can be less likely to break.
 また、第4電流値I4を第3電流値I3の0.6倍以下0.9倍以上とするので、第4電流値I4を第3電流値I3の0.6倍より大きくした場合に比べ、溶接電流の絶対値が小さい期間を短縮し、アーク切れを起こりにくくできる。また、第4電流値I4を第3電流値I3の0.9倍未満にした場合に比べ、作業音が低くなる期間を長くできる。 Further, since the fourth current value I4 is 0.6 times or less and 0.9 times or more the third current value I3, compared with the case where the fourth current value I4 is larger than 0.6 times the third current value I3. , The period during which the absolute value of the welding current is small can be shortened, and arc breakage can be less likely to occur. Further, as compared with the case where the fourth current value I4 is less than 0.9 times the third current value I3, the period during which the work noise is low can be lengthened.
 次に、タイミングtFから、制御装置30は、溶接電流を前記第3電流値I3の(1+γ+σ)倍の第2ピーク電流値P2に立ち下げ、第3パルス期間PPE3だけ当該第2ピーク電流値P2とする第2ピーク電流印可ステップ、及び前記溶接電流を第3電流値I3の(1-σ)倍の第2ベース電流値B2に立ち上げ、第4パルス期間PPE4だけ当該第2ベース電流値B2とする第2ベース電流印可ステップを、順に交互に1回だけ実行する第2パルス電流印可ステップを実行する。上記σは、0.1~0.4に設定される。したがって、第2ピーク電流値P2は、第3電流値I3の1.2倍以下1.8倍以上、すなわち設定電流値(第1電流値I1)の-1.2倍以下-1.8倍以上となる。第2ベース電流値B2は、第3電流値I3の0.6倍以下0.9倍以上、すなわち設定電流値(第1電流値I1)の-0.6倍以下-0.9倍以上となる。 Next, from the timing tF, the control device 30 lowers the welding current to the second peak current value P2, which is (1 + γ + σ) times the third current value I3, and the second peak current value P2 only for the third pulse period PPE3. In the second peak current application step, and the welding current is raised to the second base current value B2, which is (1-σ) times the third current value I3, and the second base current value B2 is applied only during the fourth pulse period PPE4. The second pulse current application step is executed, in which the second base current application step is alternately executed only once. The above σ is set to 0.1 to 0.4. Therefore, the second peak current value P2 is 1.2 times or less and 1.8 times or more the third current value I3, that is, -1.2 times or less and 1.8 times the set current value (first current value I1). That is all. The second base current value B2 is 0.6 times or less and 0.9 times or more the third current value I3, that is, -0.6 times or less and -0.9 times or more the set current value (first current value I1). Become.
 上記第2ピーク電流印可ステップでは、溶接電流を第3電流値I3よりも小さい第2ピーク電流値P2とすることにより、電磁ピンチ力の増大によりアークAの出力指向性を高められる。したがって、溶接電流を常に第3電流値I3(設定電流値の-1倍)にする場合に比べ、クリーニング作用を促進できる。第2ピーク電流値P2は、必要となるクリーニング作用の程度に応じて、第1ピーク電流値P1とは独立に設定される。また、第2ベース電流印可ステップで、溶接電流を第3電流値I3よりも大きい第2ベース電流値B2とするので、第2パルス電流印可ステップ実行中における溶接電流の実効値を設定電流値の-1倍に近づけることができる。 In the second peak current application step, the welding current is set to the second peak current value P2, which is smaller than the third current value I3, so that the output directivity of the arc A can be enhanced by increasing the electromagnetic pinch force. Therefore, the cleaning action can be promoted as compared with the case where the welding current is always set to the third current value I3 (-1 times the set current value). The second peak current value P2 is set independently of the first peak current value P1 according to the degree of cleaning action required. Further, in the second base current application step, the welding current is set to the second base current value B2, which is larger than the third current value I3. Therefore, the effective value of the welding current during the execution of the second pulse current application step is the set current value. It can be approached by -1 times.
 そして、タイミングtGにおいて、制御装置30は、溶接電流を第2ベース電流値B2から第3電流値I3に立ち下げる。そして、制御装置30は、溶接電流を第3電流値I3から前記第4の傾きS4の-1倍の傾き、すなわち60μA/μs以上600mA/μs以下の傾きで第2傾斜期間SPE2の0.35倍以上0.95倍以下の増加期間IPEだけ増加させる電流増加ステップを実行する。次いで、制御装置30は、電流増加ステップの実行直後のタイミングtHにおいて、溶接電流を、前記第2傾斜期間SPE2の0.05倍以上0.65倍以下の立下げ期間FPEだけ前記第3電流値I3の1.0倍以下1.65倍以上の立下げ電流値FIとし、その後、タイミングtAからの動作を繰り返す。つまり、制御装置30は、溶接電流を1.7A/μsの第1の傾きS1で立下げ電流値FIから正の第2電流値I2まで立ち上げる。 Then, at the timing tG, the control device 30 lowers the welding current from the second base current value B2 to the third current value I3. Then, the control device 30 adjusts the welding current from the third current value I3 to a slope -1 times that of the fourth slope S4, that is, a slope of 60 μA / μs or more and 600 mA / μs or less, and 0.35 of the second slope period SPE2. A current increase step of increasing by IPE for an increase period of doubling or more and 0.95 times or less is performed. Next, at the timing tH immediately after the execution of the current increase step, the control device 30 applies the welding current to the third current value only for the fall period FPE of 0.05 times or more and 0.65 times or less of the second inclination period SPE2. The falling current value FI is 1.0 times or less and 1.65 times or more of I3, and then the operation from the timing tA is repeated. That is, the control device 30 raises the welding current from the falling current value FI to the positive second current value I2 at the first inclination S1 of 1.7 A / μs.
 このように、電流立下げステップを実行してから次に溶接電流を正の値に立ち上げるまでの間に、電流増加ステップが実行され、溶接電流を負の値から正の値に立ち上げる直前に、溶接電流が立下げ電流値FIに一旦立ち下げられる。 In this way, between the execution of the current reduction step and the next increase in the welding current to a positive value, the current increase step is executed, and immediately before the welding current is increased from a negative value to a positive value. In addition, the welding current is temporarily reduced to the falling current value FI.
 このように、電流増加ステップの実行直後に、溶接電流を、設定電流値の-1倍よりも高い電流値から第3電流値I3の1.0倍以下1.65倍以上の立下げ電流値FIに一旦立ち下げるので、電流増加ステップの実行直後に、溶接電流を正の値に立ち上げる場合に比べ、第1の傾きS1が急峻に(大きく)なり、アーク切れが発生しにくい。 In this way, immediately after executing the current increase step, the welding current is changed from a current value higher than -1 times the set current value to a falling current value 1.0 times or less and 1.65 times or more the third current value I3. Since the current is once lowered to FI, the first inclination S1 becomes steeper (larger) and arc breakage is less likely to occur as compared with the case where the welding current is raised to a positive value immediately after the execution of the current increase step.
 なお、電流増加ステップの実行直後に、溶接電流を立下げ電流値FIに一旦立ち下げず、溶接電流を正の値まで立ち上げるようにしてもよい。この場合、増加期間IPEを、第2傾斜期間SPE2の0.95倍以上1倍以下に設定してもよい。 Immediately after the execution of the current increase step, the welding current may be lowered to a positive value without temporarily dropping to the current value FI. In this case, the increase period IPE may be set to 0.95 times or more and 1 times or less the second slope period SPE2.
 また、第2傾斜期間SPE2及び増加期間IPEでは、溶接電流を第3電流値I3よりも大きくしているので、第2ピーク電流印可ステップで、溶接電流を第3電流値I3よりも小さくしても、溶接電流が負である期間における溶接電流の実効値を設定電流値の-1倍(第3電流値I3)に近づけることができる。 Further, in the second inclination period SPE2 and the increase period IPE, the welding current is made larger than the third current value I3, so that the welding current is made smaller than the third current value I3 in the second peak current application step. Also, the effective value of the welding current during the period when the welding current is negative can be brought close to -1 times the set current value (third current value I3).
 ここで、タイミングtAから次のタイミングtEまでの期間、すなわち、1周期Tのうち、母材Wとタングステン電極TEとの間に印可される交流電圧の極性がEN極性となる期間を、EN(電極マイナス)期間Tenと呼ぶ。また、タイミングtEから次のタイミングtAまでの期間、すなわち、1周期Tのうち、母材Wとタングステン電極TEとの間に印可される交流電圧の極性がEP極性となる期間を、EP(電極プラス)期間Tepと呼ぶ。EN期間Tenは、1周期Tの90~50%に設定され、EP期間Tepは、1周期Tの10~50%に設定される。図3の例では、EN期間Ten及びEP期間Tepは、それぞれ1周期の50%に設定されている。 Here, the period from the timing tA to the next timing tE, that is, the period in which the polarity of the AC voltage applied between the base metal W and the tungsten electrode TE in one cycle T becomes the EN polarity is set to EN ( Electrode minus) Period Ten is called. Further, the period from the timing tE to the next timing tA, that is, the period in which the polarity of the AC voltage applied between the base material W and the tungsten electrode TE in one cycle T becomes the EP polarity is EP (electrode). Plus) Called period Tep. The EN period Ten is set to 90 to 50% of one cycle T, and the EP period Tep is set to 10 to 50% of one cycle T. In the example of FIG. 3, the EN period Ten and the EP period Tep are each set to 50% of one cycle.
 第1傾斜期間SPE1、各第1パルス期間PPE1、及び各第2パルス期間PPE2は、EN期間Tenの約1/6に設定される。減少期間DPEと立上げ期間RPEとの合計も、EN期間Tenの約1/6に設定される。溶接電流の周波数は、10~400Hzに設定されるので、第1傾斜期間SPE1と、各第1パルス期間PPE1と、各第2パルス期間PPE2と、減少期間DPE及び立上げ期間RPEの合計とは、それぞれ200μs以上15ms以下となる。 The first gradient period SPE1, each first pulse period PPE1, and each second pulse period PPE2 are set to about 1/6 of the EN period Ten. The sum of the reduction period DPE and the start-up period RPE is also set to about 1/6 of the EN period Ten. Since the frequency of the welding current is set to 10 to 400 Hz, the total of the first inclination period SPE1, each first pulse period PPE1, each second pulse period PPE2, the decrease period DPE and the start-up period RPE is , 200 μs or more and 15 ms or less, respectively.
 第2傾斜期間SPE2、第3パルス期間PPE3、及び第4パルス期間PPE4は、EP期間Tepの約1/4に設定される。増加期間IPEと立下げ期間FPEとの合計も、EP期間Tepの約1/4に設定される。溶接電流の周波数は、10~400Hzに設定されるので、第2傾斜期間SPE2と、第3パルス期間PPE3と、第4パルス期間PPE4と、増加期間IPE及び立下げ期間FPEの合計とは、それぞれ60μs以上12.5ms以下となる。 The second slope period SPE2, the third pulse period PPE3, and the fourth pulse period PPE4 are set to about 1/4 of the EP period Tep. The sum of the increase period IPE and the start-up period FPE is also set to about 1/4 of the EP period Tep. Since the frequency of the welding current is set to 10 to 400 Hz, the sum of the second inclination period SPE2, the third pulse period PPE3, the fourth pulse period PPE4, the increase period IPE and the fall period FPE, respectively. It will be 60 μs or more and 12.5 ms or less.
 立上げ期間RPE及び立下げ期間FPEは、周波数10Hz~600Hzの場合、160μs~620μsに設定される。 The start-up period RPE and the start-up period FPE are set to 160 μs to 620 μs when the frequency is 10 Hz to 600 Hz.
 したがって、本実施形態によると、電流立上げステップを実行してから次に溶接電流を負の値に立ち下げるまでの間に、第1ピーク電流印可ステップ、及び第1ベース電流印可ステップを2回実行するので、1回だけ実行する場合に比べ、溶融速度をより効果的に高められる。 Therefore, according to the present embodiment, the first peak current application step and the first base current application step are performed twice between the execution of the current rise step and the next reduction of the welding current to a negative value. Since it is executed, the melting rate can be increased more effectively than when it is executed only once.
 また、電流立下げステップを実行してから次に溶接電流を正の値に立ち上げるまでの間に第2ピーク電流印可ステップ、及び第2ベース電流印可ステップをそれぞれ1回だけ実行するので、2回以上実行する場合に比べ、溶接電流を第2ピーク電流値P2に維持する第3パルス期間PPE3を長くできる。したがって、第2ピーク電流値P2でクリーニングを行う期間を長くできるので、母材W表面の酸化物をしっかり除去できる。また、EP期間Tepを、1周期Tの50%未満の小さい割合に設定した場合でも、第2ピーク電流印可ステップ、及び第2ベース電流印可ステップをそれぞれ2回以上実行する場合に比べて、1つの第3パルス期間PPE3及び1つの第4パルス期間PPE4を長くできるので、第3パルス期間PPE3及び第4パルス期間PPE4が短過ぎて制御が困難になるのを防止できる。 Further, since the second peak current application step and the second base current application step are executed only once between the execution of the current reduction step and the next increase in the welding current to a positive value, 2 The third pulse period PPE3 for maintaining the welding current at the second peak current value P2 can be lengthened as compared with the case where the welding current is executed more than once. Therefore, since the cleaning period can be lengthened at the second peak current value P2, the oxide on the surface of the base material W can be firmly removed. Further, even when the EP period Tep is set to a small ratio of less than 50% of one cycle T, 1 is compared with the case where the second peak current application step and the second base current application step are executed twice or more. Since one third pulse period PPE3 and one fourth pulse period PPE4 can be lengthened, it is possible to prevent the third pulse period PPE3 and the fourth pulse period PPE4 from becoming too short and difficult to control.
 なお、上記実施形態では、各第1パルス期間PPE1を、EN期間Tenの約1/6に設定したが、1/30以上1/6以下の他の割合に設定してもよい。 In the above embodiment, each first pulse period PPE1 is set to about 1/6 of the EN period Ten, but it may be set to another ratio of 1/30 or more and 1/6 or less.
 同様に、上記実施形態では、各第2パルス期間PPE2を、EN期間Tenの約1/6に設定したが、1/6以上3/10以下の他の割合に設定してもよい。 Similarly, in the above embodiment, each second pulse period PPE2 is set to about 1/6 of the EN period Ten, but it may be set to another ratio of 1/6 or more and 3/10 or less.
 また、上記実施形態では、各第3パルス期間PPE3を、EP期間Tepの約1/4に設定したが、1/20以上1/4以下の他の割合に設定してもよい。 Further, in the above embodiment, each third pulse period PPE3 is set to about 1/4 of the EP period Tep, but it may be set to another ratio of 1/20 or more and 1/4 or less.
 同様に、上記実施形態では、各第4パルス期間PPE4を、EP期間Tepの約1/4に設定したが、1/4以上9/20以下の他の割合に設定してもよい。 Similarly, in the above embodiment, each fourth pulse period PPE4 is set to about 1/4 of the EP period Tep, but it may be set to another ratio of 1/4 or more and 9/20 or less.
 また、上記実施形態では、第1パルス電流印可ステップで実行する2回の第1ピーク電流印可ステップにおいて、溶接電流を共通の第1ピーク電流値P1としたが、設定電流値の1.15倍以上1.6倍以下の電流値であれば、互いに異なる電流値としてもよい。 Further, in the above embodiment, the welding current is set to the common first peak current value P1 in the two first peak current application steps executed in the first pulse current application step, but 1.15 times the set current value. As long as the current values are 1.6 times or more, the current values may be different from each other.
 同様に、第1パルス電流印可ステップで実行する2回の第1ベース電流印可ステップにおいて、溶接電流を共通の第1ベース電流値B1としたが、設定電流値の0.6倍以上0.9倍以下の電流値であれば、互いに異なる電流値としてもよい。 Similarly, in the two first base current application steps executed in the first pulse current application step, the welding current is set to the common first base current value B1, but the set current value is 0.6 times or more and 0.9. If the current values are double or less, the current values may be different from each other.
 また、上記実施形態では、制御装置30が、電流立上げステップと電流立下げステップの両方、及び電流減少ステップと電流増加ステップの両方を実行したが、電流立上げステップ及び電流減少ステップだけを実行し、電流立下げステップ及び電流増加ステップを実行しないようにしてもよい。また、電流立下げステップ及び電流増加ステップだけを実行し、電流立上げステップ及び電流減少ステップを実行しないようにしてもよい。 Further, in the above embodiment, the control device 30 executes both the current rise step and the current fall step, and both the current decrease step and the current increase step, but only the current rise step and the current decrease step are executed. However, the current lowering step and the current increasing step may not be executed. Further, only the current lowering step and the current increasing step may be executed, and the current rising step and the current decreasing step may not be executed.
 また、制御装置30が、電流減少ステップの実行直後に、溶接電流を立上げ電流値RIに立ち上げるというステップと、電流増加ステップの実行後に、溶接電流を立下げ電流値FIに立ち下げるというステップとのいずれか一方だけを実行するようにしてもよい。 Further, the control device 30 raises the welding current to the rising current value RI immediately after executing the current decrease step, and lowers the welding current to the rising current value FI after executing the current increasing step. You may want to execute only one of the above.
 また、上記実施形態では、制御装置30が、第1ピーク電流印可ステップ、及び第1ベース電流印可ステップを2回実行したが、3回以上実行してもよい。 Further, in the above embodiment, the control device 30 has executed the first peak current applying step and the first base current applying step twice, but may be executed three times or more.
 本開示の交流アーク溶接方法は、溶接の作業効率の悪化を抑制しつつ、作業音を低くでき、交流の溶接電流によって電極と母材との間にアークを発生させて溶接を行う交流アーク溶接方法として有用である。 The AC arc welding method of the present disclosure can reduce the work noise while suppressing deterioration of welding work efficiency, and AC arc welding is performed by generating an arc between the electrode and the base metal by the AC welding current. It is useful as a method.
W   母材
TE   タングステン電極
A   アーク
S1   第1の傾き
S2   第2の傾き
S3   第3の傾き
S4   第4の傾き
I1   第1電流値(設定電流値)
I2   第2電流値
I3   第3電流値
I4   第4電流値
P1   第1ピーク電流値
B1   第1ベース電流値
P2   第2ピーク電流値
B2   第2ベース電流値
RI   立上げ電流値
FI   立下げ電流値
SPE1   第1傾斜期間
SPE2   第2傾斜期間
PPE1   第1パルス期間
PPE2   第2パルス期間
PPE3   第3パルス期間
PPE4   第4パルス期間
W Base material TE Tungsten electrode A Arc S1 First inclination S2 Second inclination S3 Third inclination S4 Fourth inclination I1 First current value (set current value)
I2 2nd current value I3 3rd current value I4 4th current value P1 1st peak current value B1 1st base current value P2 2nd peak current value B2 2nd base current value RI start-up current value FI start-up current value SPE1 1st tilt period SPE2 2nd tilt period PPE1 1st pulse period PPE2 2nd pulse period PPE3 3rd pulse period PPE4 4th pulse period

Claims (6)

  1.  交流の溶接電流によって電極と母材との間にアークを発生させて溶接を行う交流アーク溶接方法であって、
     前記溶接電流を、第1の傾きで負の値から所定の正の第1電流値の0.6倍以上0.9倍以下の第2電流値まで増加させ、次いで、当該第2電流値から前記第1の傾きよりも小さい60μA/μs以上600mA/μs以下の第2の傾きで前記第1電流値まで第1傾斜期間をかけて増加させる電流立上げステップと、
     前記溶接電流を、第3の傾きで正の値から所定の負の第3電流値の0.6倍以下0.9倍以上の第4電流値まで減少させ、次いで、当該第4電流値から前記第3の傾きよりも大きい-60μA/μs以下-600mA/μs以上の第4の傾きで前記第3電流値まで第2傾斜期間をかけて減少させる電流立下げステップとの少なくとも一方を実行させることを特徴とする交流アーク溶接方法。
    This is an AC arc welding method in which an arc is generated between the electrode and the base metal by an AC welding current to perform welding.
    The welding current is increased from a negative value on the first slope to a second current value of 0.6 times or more and 0.9 times or less of a predetermined positive first current value, and then from the second current value. A current start-up step of increasing the current value up to the first current value over a first slope period with a second slope of 60 μA / μs or more and 600 mA / μs or less, which is smaller than the first slope.
    The welding current is reduced from a positive value at a third slope to a fourth current value of 0.6 times or less and 0.9 times or more of a predetermined negative third current value, and then from the fourth current value. At least one of the current reduction step of reducing the current value to the third current value over the second tilt period at a fourth tilt of −60 μA / μs or less and −600 mA / μs or more, which is larger than the third tilt, is executed. An AC arc welding method characterized by this.
  2.  請求項1に記載の交流アーク溶接方法において、
     前記電流立上げステップを実行し、かつ当該電流立上げステップを実行してから次に前記溶接電流を負の値に立ち下げるまでの間に、前記溶接電流を、前記第1電流値から前記第2の傾きの-1倍の傾きで前記第1傾斜期間の0.35倍以上1倍以下の期間だけ減少させる電流減少ステップを実行することと、
     前記電流立下げステップを実行し、かつ当該電流立下げステップを実行してから次に前記溶接電流を正の値に立ち上げるまでの間に、前記溶接電流を、前記第3電流値から前記第4の傾きの-1倍の傾きで前記第2傾斜期間の0.35倍以上1倍以下の期間だけ増加させる電流増加ステップを実行することとの少なくとも一方を特徴とする交流アーク溶接方法。
    In the AC arc welding method according to claim 1,
    Between the execution of the current rise step and the execution of the current rise step and the subsequent reduction of the welding current to a negative value, the welding current is applied from the first current value to the first current value. Performing a current reduction step of reducing the current by a slope of -1 times the slope of 2 for a period of 0.35 times or more and 1 times or less of the first slope period.
    Between the execution of the current reduction step and the execution of the current reduction step and the subsequent increase of the welding current to a positive value, the welding current is measured from the third current value to the first value. An AC arc welding method comprising at least one of performing a current increasing step of increasing the current by an inclination of -1 times the inclination of 4 by a period of 0.35 times or more and 1 times or less of the second inclination period.
  3.  請求項2に記載の交流アーク溶接方法において、
     前記電流立上げステップ及び前記電流減少ステップを実行し、前記電流減少ステップの実行直後に、前記溶接電流を、前記第1傾斜期間の0.05倍以上0.65倍以下の期間だけ前記第1電流値の1.0倍以上1.65倍以下の立上げ電流値とし、その後、当該立上げ電流値から負の値まで立ち下げることと、
     前記電流立下げステップ及び前記電流増加ステップを実行し、前記電流増加ステップの実行直後に、前記溶接電流を、前記第2傾斜期間の0.05倍以上0.65倍以下の期間だけ前記第3電流値の1.0倍以下1.65倍以上の立下げ電流値とし、その後、当該立下げ電流値から正の値まで立ち上げることとの少なくとも一方を特徴とする交流アーク溶接方法。
    In the AC arc welding method according to claim 2,
    The current start-up step and the current decrease step are executed, and immediately after the execution of the current decrease step, the welding current is applied to the welding current for a period of 0.05 times or more and 0.65 times or less of the first inclination period. The start-up current value should be 1.0 times or more and 1.65 times or less of the current value, and then the start-up current value should be lowered to a negative value.
    The current lowering step and the current increasing step are executed, and immediately after the execution of the current increasing step, the welding current is applied to the welding current for a period of 0.05 times or more and 0.65 times or less of the second inclination period. An AC arc welding method comprising at least one of setting a falling current value of 1.0 times or less and 1.65 times or more of the current value, and then raising the current value from the falling current value to a positive value.
  4.  請求項1~3のいずれか1項に記載の交流アーク溶接方法であって、
     前記電流立上げステップを実行し、かつ前記溶接電流を第1パルス期間だけ前記第1電流値の1.15倍以上1.6倍以下の電流値とする第1ピーク電流印可ステップ、及び前記溶接電流を第2パルス期間だけ前記第1電流値の0.6倍以上0.9倍以下の電流値とする第1ベース電流印可ステップを、前記電流立上げステップを実行してから次に前記溶接電流を負の値に立ち下げるまでの間に交互に実行することと、
     前記電流立下げステップを実行し、かつ前記溶接電流を第3パルス期間だけ前記第3電流値の1.2倍以下1.8倍以上の電流値とする第2ピーク電流印可ステップ、及び前記溶接電流を第4パルス期間だけ前記第3電流値の0.6倍以下0.9倍以上の電流値とする第2ベース電流印可ステップを、前記電流立下げステップを実行してから次に前記溶接電流を正の値に立ち上げるまでの間に交互に実行することとの少なくとも一方を特徴とする交流アーク溶接方法。
    The AC arc welding method according to any one of claims 1 to 3.
    The first peak current application step in which the current rise step is executed and the welding current is set to a current value of 1.15 times or more and 1.6 times or less of the first current value for the first pulse period, and the welding. The first base current application step in which the current is set to a current value of 0.6 times or more and 0.9 times or less of the first current value for the second pulse period is executed, and then the welding is performed. Alternate execution until the current drops to a negative value,
    The second peak current application step in which the current lowering step is executed and the welding current is set to a current value of 1.2 times or less and 1.8 times or more of the third current value for the third pulse period, and the welding. The second base current application step in which the current is set to a current value of 0.6 times or less and 0.9 times or more the third current value for the fourth pulse period is executed, and then the welding is performed. An AC arc welding method characterized by at least one of alternating currents before they are raised to a positive value.
  5.  交流の溶接電流によって電極と母材との間にアークを発生させて溶接を行う交流アーク溶接方法であって、
     前記溶接電流を、第1パルス期間だけ所定の正の設定電流値の1.15倍以上1.6倍以下の電流値とする第1ピーク電流印可ステップ、及び前記溶接電流を、第2パルス期間だけ前記設定電流値の0.6倍以上0.9倍以下の電流値とする第1ベース電流印可ステップを、前記溶接電流を負の値から正の値に立ち上げてから次に負の値に立ち下げるまでの間に、2回以上交互に実行する第1パルス電流印可ステップと、
     前記溶接電流を、第3パルス期間だけ前記設定電流値の-1.2倍以下-1.8倍以上の電流値とする第2ピーク電流印可ステップ、及び前記溶接電流を、第4パルス期間だけ前記設定電流値の-0.6倍以下-0.9倍以上の電流値とする第2ベース電流印可ステップを、前記溶接電流を正の値から負の値に立ち下げてから次に正の値に立ち上げるまでの間に、1回ずつ交互に実行する第2パルス電流印可ステップとを実行することを特徴とする交流アーク溶接方法。
    This is an AC arc welding method in which an arc is generated between the electrode and the base metal by an AC welding current to perform welding.
    The first peak current application step in which the welding current is set to a current value of 1.15 times or more and 1.6 times or less the predetermined positive set current value for the first pulse period, and the welding current is used in the second pulse period. In the first base current application step in which the current value is 0.6 times or more and 0.9 times or less the set current value, the welding current is increased from a negative value to a positive value, and then a negative value is applied. The first pulse current application step, which is executed twice or more alternately until the current is turned down,
    The second peak current application step in which the welding current is set to a current value of −1.2 times or less and −1.8 times or more of the set current value for the third pulse period, and the welding current is set for the fourth pulse period only. In the second base current application step in which the current value is -0.6 times or less and -0.9 times or more the set current value, the welding current is lowered from a positive value to a negative value, and then a positive value is applied. An AC arc welding method characterized by executing a second pulse current application step, which is alternately executed once until the value is raised.
  6.  請求項5に記載の交流アーク溶接方法において、
     前記溶接電流を、正の値から負の値に立ち下げる直前に、前記設定電流値よりも低い電流値から前記設定電流値の1.0倍以上1.65倍以下の立上げ電流値とすることと、
     前記溶接電流を、負の値から正の値に立ち上げる直前に、前記設定電流値の-1倍よりも高い電流値から前記設定電流値の-1.0倍以下-1.65倍以上の立下げ電流値とすることとの少なくとも一方を特徴とする交流アーク溶接方法。
    In the AC arc welding method according to claim 5,
    Immediately before the welding current is lowered from a positive value to a negative value, the start-up current value is set to 1.0 times or more and 1.65 times or less from the set current value from a current value lower than the set current value. That and
    Immediately before raising the welding current from a negative value to a positive value, a current value higher than -1 times the set current value to -1.0 times or less and -1.65 times or more the set current value. An AC arc welding method characterized by at least one of a falling current value.
PCT/JP2021/020475 2020-06-30 2021-05-28 Ac arc welding method WO2022004218A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022533750A JPWO2022004218A1 (en) 2020-06-30 2021-05-28
CN202180042774.9A CN115702055A (en) 2020-06-30 2021-05-28 AC arc welding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020112872 2020-06-30
JP2020-112872 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022004218A1 true WO2022004218A1 (en) 2022-01-06

Family

ID=79315909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020475 WO2022004218A1 (en) 2020-06-30 2021-05-28 Ac arc welding method

Country Status (3)

Country Link
JP (1) JPWO2022004218A1 (en)
CN (1) CN115702055A (en)
WO (1) WO2022004218A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048069A (en) * 2001-08-01 2003-02-18 Daihen Corp Output control method of ac tig welding
JP2005028383A (en) * 2003-07-09 2005-02-03 Daihen Corp Electric current control method for ac tig welding
JP2006102813A (en) * 2004-10-06 2006-04-20 Lincoln Global Inc Alternating current welding method using cored electrode
JP2008253997A (en) * 2007-03-12 2008-10-23 Daihen Corp Squeezing detection control method for consumable electrode ac arc welding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048069A (en) * 2001-08-01 2003-02-18 Daihen Corp Output control method of ac tig welding
JP2005028383A (en) * 2003-07-09 2005-02-03 Daihen Corp Electric current control method for ac tig welding
JP2006102813A (en) * 2004-10-06 2006-04-20 Lincoln Global Inc Alternating current welding method using cored electrode
JP2008253997A (en) * 2007-03-12 2008-10-23 Daihen Corp Squeezing detection control method for consumable electrode ac arc welding

Also Published As

Publication number Publication date
JPWO2022004218A1 (en) 2022-01-06
CN115702055A (en) 2023-02-14

Similar Documents

Publication Publication Date Title
JP5201266B2 (en) Arc welding method and arc welding apparatus
JP4916759B2 (en) Polarity switching control method for consumable electrode AC pulse arc welding
US8338750B2 (en) AC pulse arc welding control method
JP4950819B2 (en) AC consumable electrode short-circuit arc welding method
EP2732901B1 (en) Arc welding control method and arc welding device
WO2006006350A1 (en) Arc welding control method and arc welding device
JP5278542B2 (en) Arc welding control method and arc welding control apparatus
JP3809983B2 (en) Consumable electrode type AC gas shield welding equipment
JP2006192463A (en) Arc start-control method of ac arc welding
JP5226117B2 (en) Output control method of pulse arc welding
JP5429356B2 (en) AC arc welding method and AC arc welding apparatus
JP5070119B2 (en) Output control method of pulse arc welding
JP2011206794A (en) Plasma mig welding method
JP5706709B2 (en) 2-wire welding control method
JP6882832B2 (en) AC non-consumable electrode arc welding control method
WO2022004218A1 (en) Ac arc welding method
JP5943460B2 (en) Arc start control method for consumable electrode arc welding
JP2015217409A (en) Arc-welding control method, and arc welding apparatus
JP5766406B2 (en) Consumable electrode arc welding method
JP7202760B2 (en) AC arc welding control method
JP2854613B2 (en) AC arc welding method and apparatus for consumable electrode type gas shielded arc welding
JP2711138B2 (en) AC TIG welding method and apparatus
JP6921773B2 (en) Non-consumable electrode pulse arc welding control method
JP4850638B2 (en) Polarity switching short-circuit arc welding method
JP3951621B2 (en) Consumable electrode type arc welding machine and its control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832554

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533750

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832554

Country of ref document: EP

Kind code of ref document: A1