WO2022003861A1 - Portable power generator - Google Patents

Portable power generator Download PDF

Info

Publication number
WO2022003861A1
WO2022003861A1 PCT/JP2020/025814 JP2020025814W WO2022003861A1 WO 2022003861 A1 WO2022003861 A1 WO 2022003861A1 JP 2020025814 W JP2020025814 W JP 2020025814W WO 2022003861 A1 WO2022003861 A1 WO 2022003861A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature portion
power generation
low temperature
high temperature
portable power
Prior art date
Application number
PCT/JP2020/025814
Other languages
French (fr)
Japanese (ja)
Inventor
雄哉 赤木
貞紀 中村
誠 森澤
Original Assignee
岩谷産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩谷産業株式会社 filed Critical 岩谷産業株式会社
Priority to JP2022532918A priority Critical patent/JP7411086B2/en
Priority to PCT/JP2020/025814 priority patent/WO2022003861A1/en
Priority to KR1020237002835A priority patent/KR20230027286A/en
Priority to CN202080102551.2A priority patent/CN115735326A/en
Publication of WO2022003861A1 publication Critical patent/WO2022003861A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N3/00Generators in which thermal or kinetic energy is converted into electrical energy by ionisation of a fluid and removal of the charge therefrom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/82Connection of interconnections
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00

Definitions

  • the present invention relates to a portable power generation device that can generate electricity by using combustion heat and can be transported.
  • Patent Document 1 discloses a simple power generation device including a thermoelectric power generation element utilizing the Pelche effect.
  • the simplified power generation device described in Patent Document 1 is configured to eject liquefied gas fuel supplied from a fuel tank via a fuel pipe from a nozzle installed near the air mixing section toward the combustion chamber. ..
  • the heating surface of the thermoelectric generation element utilizing the Pelche effect is joined to the heat diffusion plate and faces the heating base made of a flat plate via the heat diffusion plate.
  • the heating surface of the thermoelectric power generation element utilizing the Pelche effect is orthogonal to the installation surface of the simple power generation device.
  • the nozzle extends in a direction orthogonal to the installation surface of the simple power generation device, and ejects the liquefied gas fuel in the direction orthogonal to the installation surface of the simple power generation device. Therefore, the ejection direction of the liquefied gas fuel ejected from the nozzle is substantially parallel to the heating surface of the thermoelectric generation element. That is, the emission direction of the flame emitted from the nozzle is substantially parallel to the heating surface of the thermoelectric generation element. Therefore, there is room for improvement in that the heat of the flame and the exhaust gas emitted from the burner is efficiently transferred to the heating surface of the thermoelectric power generation element to improve the amount of power generation and the power generation efficiency.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a portable power generation device capable of improving the amount of power generation and the power generation efficiency.
  • the subject is a portable power generation device capable of generating and transporting power by utilizing combustion heat, and the fuel gas supplied from a fuel gas storage container in which fuel gas is stored is used.
  • a burner that burns, a high-temperature portion that is heated by heat transmitted from the flame emitted from the burner and exhaust gas, a low-temperature portion that is arranged facing the high-temperature portion and is maintained at a temperature lower than the high-temperature portion, and the above-mentioned
  • a thermoelectric element sandwiched between the high temperature portion and the low temperature portion and generating electricity based on the temperature difference generated between the high temperature portion and the low temperature portion is provided, and the heat transmitted from the flame and the exhaust gas is transferred.
  • the surface of the high temperature portion to be received is solved by the portable power generation device characterized in that it is inclined with respect to the direction orthogonal to the installation surface of the portable power generation device.
  • the portable power generation device since the surface (heat receiving surface) of the high temperature portion is inclined in the direction orthogonal to the installation surface of the portable power generation device, the flame emitted from the burner The heat is transmitted along the surface of the high temperature portion inclined with respect to the direction orthogonal to the installation surface. Therefore, it is possible to suppress the heat of the flame from being transmitted to the local portion of the high temperature portion, and to uniformly heat the entire surface of the high temperature portion by the heat of the flame. Further, the exhaust gas discharged from the burner flows along the surface of the high temperature portion inclined with respect to the direction orthogonal to the installation surface. Therefore, it is possible to prevent the exhaust gas emitted from the burner from being trapped in the local portion of the high temperature portion.
  • the portable power generation device is preferably provided on the side of the burner when viewed from the high temperature portion, and is a guide for forming a flow path for guiding the exhaust gas upward along the surface of the high temperature portion. It is characterized by having more parts.
  • the exhaust gas discharged from the burner is guided upward in the slope in the flow path formed by the guide portion, and has a high temperature inclined in the direction orthogonal to the installation surface. It flows more reliably along the surface of the part. Therefore, the heat of the exhaust gas can be further suppressed from being transferred to the local portion of the high temperature portion, and the entire surface of the high temperature portion can be uniformly heated by the heat of the exhaust gas. Further, since the exhaust gas having a temperature higher than the temperature of the gas existing outside the flow path of the guide portion flows inside the flow path of the guide portion, the guide portion plays the role of a chimney and the chimney effect is generated.
  • the exhaust gas discharged from the burner can be further suppressed from being trapped in the local portion of the high temperature portion, and the entire surface of the high temperature portion can be uniformly heated by the heat of the exhaust gas.
  • the power generation amount and the power generation efficiency of the portable power generation device according to the present invention can be further improved.
  • the portable power generation device is preferably arranged so as to face the low temperature portion and is driven by being supplied with the electromotive force generated by the thermoelectric element to send air to the low temperature portion to cool the low temperature portion.
  • the air containing the exhaust gas flowing along the surface of the high temperature portion and the air containing the cooling air sent from the blower and flowing along the surface of the low temperature portion are mixed and mixed. It is characterized by further including an exhaust mixing portion that forms a flow path that guides the air to the outside.
  • the blower is driven by being supplied with the electromotive force generated by the thermoelectric element, and sends air to the low temperature part. That is, the blower is driven by being supplied with the electromotive force generated by the thermoelectric element, and causes forced convection on the surface of the low temperature portion. As a result, the blower forcibly cools the low temperature portion. Therefore, the temperature difference generated between the high temperature portion and the low temperature portion can be efficiently generated. Thereby, the power generation amount and the power generation efficiency of the portable power generation device according to the present invention can be further improved.
  • the exhaust mixing section mixes the air containing the exhaust gas flowing along the surface of the high temperature section and the air containing the cooling air sent from the blower and flowing along the surface of the low temperature section, and mixes the mixed air. Form a flow path leading to the outside.
  • the blower can forcibly discharge the exhaust gas discharged from the burner and guided to the flow path of the exhaust mixing portion to the outside of the portable power generation device.
  • the air containing the exhaust gas is mixed with the air containing the cooling air sent from the blower in the flow path of the exhaust mixing portion, the temperature of the air discharged to the outside of the portable power generation device can be suppressed.
  • the blower is characterized in that the air is sent in a direction perpendicular to the surface of the low temperature portion.
  • the blower can efficiently cool the surface of the low temperature portion. Therefore, the blower can efficiently generate the temperature difference generated between the high temperature portion and the low temperature portion.
  • the blower is characterized in that the air is sent in a direction parallel to the surface of the low temperature portion.
  • the blower can send air along the surface of the low temperature portion, and can cool the surface of the low temperature portion more efficiently. Therefore, it is possible to reduce the size and weight of the low temperature portion, and it is also possible to reduce the size and weight of the blower. This makes it possible to reduce the size and weight of the portable power generation device. Further, since the blower can cool the surface of the low temperature portion more efficiently, the temperature difference generated between the high temperature portion and the low temperature portion can be generated more efficiently.
  • the present invention it is possible to provide a portable power generation device capable of improving the amount of power generation and the power generation efficiency.
  • FIG. 3 is a plan view showing a portable power generation device when viewed from the direction of arrow A21 shown in FIG. 1. It is a top view which shows the portable power generation apparatus which concerns on the modification of this embodiment. It is sectional drawing which shows the internal structure of the portable power generation apparatus which concerns on 2nd Embodiment of this invention.
  • FIG. 3 is a plan view showing a portable power generation device when viewed from the direction of arrow A22 shown in FIG. It is sectional drawing which shows the internal structure of the portable power generation apparatus which concerns on the modification of this Embodiment. 6 is a plan view showing a portable power generation device when viewed from the direction of arrow A23 shown in FIG.
  • FIG. 1 is a cross-sectional view showing the internal structure of the portable power generation device according to the first embodiment of the present invention.
  • FIG. 2 is a plan view showing a portable power generation device when viewed from the direction of arrow A21 shown in FIG. In FIG. 2, for convenience of explanation, the housing 21 and the exhaust mixing unit 7 are omitted.
  • the portable power generation device 2 is a power generation device that burns fuel gas and generates electromotive power by using the combustion heat at that time, such as outdoors where commercial power is not supplied or at a disaster area site. It is a portable power generation device that has been made available in Japan.
  • the portable power generation device 2 includes a housing 21, a burner 4, a high temperature section 51, a low temperature section 52, and a thermoelectric element 53. Further, the portable power generation device 2 may further include a guide unit 6, a blower 54, an exhaust mixing unit 7, and a baffle plate 8.
  • the housing 21 is, for example, a metal casing with heat-resistant coating, and has a size that allows it to be carried.
  • the housing 21 may have a handle (not shown) that can be grasped by the user. In this case, the user can easily carry the portable power generation device 2 by grasping the handle.
  • a plurality of legs 22 are provided on the bottom surface of the housing 21. As a result, the user can stably place the portable power generation device 2 on the installation surface 9.
  • the burner 4 the high temperature section 51, the low temperature section 52, the thermoelectric element 53, the guide section 6, the blower 54, the exhaust mixing section 7, and the baffle plate 8 are included. Is provided inside the housing 21. Further, by opening the door (not shown) provided in the housing 21, the user can attach the fuel gas storage container 31 containing the fuel gas to the inside of the housing 21 through the take-out port 23. It can be removed from the inside of the housing 21.
  • the fuel gas storage container 31 is, for example, a cartridge type gas cylinder in which a compressed liquefied gas is stored, and stores the fuel gas.
  • the fuel gas discharged from the fuel gas accommodating container 31 enters the governor provided inside the container connecting portion 32 and the pressure is adjusted.
  • the attachment / detachment mechanism between the fuel gas storage container 31 and the container connection portion 32 is a magnet type. According to this, when the gas cylinder is heated and the internal pressure of the gas cylinder rises abnormally, the safety mechanism is activated and the connection between the fuel gas storage container 31 and the container connection portion 32 is disconnected.
  • the container connection portion 32 is connected to the operation knob portion 33, and the amount of fuel gas supplied from the fuel gas storage container 31 can be adjusted. Then, the fuel gas supplied from the fuel gas accommodating container 31 via the container connection portion 32 passes through a gas conduit 34, a gas / air mixer (not shown), and the like, and is supplied to the burner 4 while being mixed with air. To.
  • the burner 4 is installed on the bottom surface of the housing 21 inside the housing 21.
  • An electrode (not shown) is provided in the vicinity of the burner 4.
  • the igniter (not shown) is pushed and a pulse voltage is generated.
  • the electrode provided in the vicinity of the burner 4 is discharged by the pulse voltage generated by the rotation of the operation knob 33, burns the fuel gas supplied to the burner 4 from the fuel gas accommodating container 31, and ignites the burner 4. be able to.
  • the axis 42 of the burner 4 extends in the direction A1 orthogonal to the installation surface 9. Therefore, the flame 41 emitted from the burner 4 extends in the direction A1 orthogonal to the installation surface 9. Further, as shown in FIG. 2, the burner 4 has a plurality of flame openings 43 arranged side by side in the X direction.
  • the X direction shown in FIG. 2 corresponds to the width direction of the high temperature portion 51 and the low temperature portion 52.
  • the Y direction shown in FIG. 2 is orthogonal to the X direction and corresponds to the height direction or the thickness direction of the high temperature portion 51 and the low temperature portion 52. Therefore, as shown in FIG.
  • the burner 4 can heat substantially the entire width direction of the high temperature portion 51 by the heat of the flame 41.
  • the installation position of the burner 4 inside the housing 21, the installation direction of the burner 4 (direction of the axis 42 of the burner 4), and the shape of the burner 4 are not necessarily limited to the examples shown in FIGS. 1 and 2. Do not mean.
  • the high temperature portion 51 is installed above the burner 4, and is heated by the heat transferred from the flame 41 emitted from the burner 4 and the exhaust gas.
  • the high temperature portion 51 is formed of a well-known metal such as aluminum, and receives heat transferred from the flame 41 and the exhaust gas on the surface 511. That is, the surface 511 of the high temperature portion 51 functions as a heat receiving surface.
  • the high temperature portion 51 is, for example, a heat sink with fins having a plurality of fins 512. According to this, the high temperature portion 51 can efficiently receive the heat transferred from the flame 41 and the exhaust gas at the surface 511 and the fin 512, and transfer the heat to the thermoelectric element 53.
  • the high temperature portion 51 is not necessarily limited to the heat sink with fins. In the following description, a case where the high temperature portion 51 is a heat sink with fins having a plurality of fins 512 will be described as an example.
  • the surface 511 of the flame 41 emitted from the burner 4 and the high temperature portion 51 receiving heat transmitted from the exhaust gas is inclined with respect to the direction A1 orthogonal to the installation surface 9 of the portable power generation device 2. ing.
  • the surface 511 of the high temperature portion 51 is inclined with respect to the installation surface 9.
  • the inclination angle of the surface 511 of the high temperature portion 51 with respect to the installation surface 9 is, for example, about 10 ° or more and 40 ° or less.
  • the inclination angle of the surface 511 of the high temperature portion 51 with respect to the installation surface 9 is not necessarily limited to 10 ° or more and 40 ° or less. The details of the inclination angle of the surface 511 of the high temperature portion 51 will be described later.
  • the axis 42 of the burner 4 extends in the direction A1 orthogonal to the installation surface 9, the surface 511 of the high temperature portion 51 is the flame 41 emitted from the burner 4. And it is inclined with respect to the exhaust gas emission direction.
  • the fin 512 of the high temperature portion 51 extends along the inclination direction of the surface 511 of the high temperature portion 51 (that is, the direction connecting the lower portion of the inclination and the upper portion of the inclination).
  • the high temperature section 51 can allow the exhaust gas discharged from the burner 4 to flow more smoothly along the surface 511 of the high temperature section 51, and the exhaust gas is further discharged to the outside of the portable power generation device 2 through the exhaust mixing section 7. It can be discharged smoothly.
  • the low temperature section 52 is arranged above the high temperature section 51 so as to face the high temperature section 51, and is held at a temperature lower than that of the high temperature section 51.
  • the low temperature section 52 is cooled by the air sent from the blower 54 arranged above the low temperature section 52 so as to face the low temperature section 52, and the temperature is lower than that of the high temperature section 51. Is held in.
  • the low temperature portion 52 is formed of a well-known metal such as aluminum. As shown in FIG. 2, the low temperature portion 52 is, for example, a heat sink with fins having a plurality of fins 522.
  • the low temperature portion 52 is efficiently cooled by the air sent from the blower 54, and is reliably held at a temperature lower than that of the high temperature portion 51.
  • the low temperature portion 52 is not necessarily limited to the heat sink with fins. In the following description, a case where the low temperature portion 52 is a heat sink with fins having a plurality of fins 522 will be described as an example.
  • the surface 521 of the low temperature portion 52 is inclined with respect to the direction A1 orthogonal to the installation surface 9 of the portable power generation device 2, and is parallel to the surface 511 of the high temperature portion 51.
  • the surface 521 of the low temperature portion 52 is inclined with respect to the installation surface 9 and is parallel to the surface 511 of the high temperature portion 51.
  • the surface 521 of the low temperature portion 52 is the flame 41 emitted from the burner 4. And it is inclined with respect to the exhaust gas emission direction.
  • the fin 522 of the low temperature portion 52 extends along the inclination direction of the surface 521 of the low temperature portion 52 (that is, the direction connecting the lower portion of the inclination and the upper portion of the inclination).
  • the low temperature section 52 can allow the air sent from the blower 54 to flow more smoothly along the surface 521 of the low temperature section 52, and the air sent from the blower 54 can be passed through the exhaust mixing section 7 to the portable power generation device 2. It can be discharged more smoothly to the outside.
  • thermoelectric element 53 is sandwiched between the high temperature section 51 and the low temperature section 52, and generates electricity based on the temperature difference generated between the high temperature section 51 and the low temperature section 52.
  • the thermoelectric element 53 generates a thermoelectromotive force by utilizing the Seebeck effect, and is also called a thermoelectric conversion element or a thermoelectric power generation element.
  • the thermoelectric element 53 can generate more thermoelectromotive force when the temperature difference generated between the high temperature portion 51 and the low temperature portion 52 is, for example, about 100 ° C. to 150 ° C.
  • the guide portion 6 is provided on the side of the burner 4 when viewed from the high temperature portion 51, and is fixed to, for example, the high temperature portion 51.
  • the guide portion 6 has a first inner surface 61 and a second inner surface 62. As shown in FIGS. 1 and 2, in the portable power generation device 2 according to the present embodiment, the second inner surface 62 of the guide portion 6 is in contact with the tip portion 513 of the fin 512 of the high temperature portion 51.
  • the first inner surface 61 of the guide portion 6 is connected to the second inner surface 62, and while being separated from the tip portion 513 of the fin 512 of the high temperature portion 51, the flame port 43 of the burner 4 is separated from the connection portion with the second inner surface 62. Extends towards.
  • the lower end portion 64 of the guide portion 6 is arranged below the position 65 where the shaft 42 of the burner 4 and the lower portion of the high temperature portion 51 intersect.
  • the flame 41 is in a position where it comes into contact with the tip portion 513 of the fin 512 of the high temperature portion 51, but if the burner 4 is on the shaft 42, it is in a position where it does not come into contact with the tip portion 513 of the fin 512 of the high temperature portion 51. May be there.
  • the guide portion 6 forms a flow path 63 that guides the exhaust gas discharged from the burner 4.
  • the flow path 63 has a first space 631 sandwiched between a plane including the tip portion 513 of the fin 512 of the high temperature portion 51 and the first inner surface 61 of the guide portion 6. Further, the flow path 63 has a second space 632 surrounded by the surface 511 of the high temperature portion 51, the side surface 514 of the fin 512 of the high temperature portion 51, and the second inner surface 62 of the guide portion 6.
  • the exhaust gas discharged from the burner 4 flows through the first space 631 and the second space 632 of the flow path 63, and flows along the surface 511 of the high temperature portion 51.
  • the guide portion 6 is limited to being fixed to the high temperature portion 51 as long as the flow path 63 that guides the exhaust gas discharged from the burner 4 upward along the surface 511 of the high temperature portion 51 is formed. Instead, for example, it may be fixed to the housing 21.
  • the obstruction plate 8 is arranged at the lower end portion 515 of the high temperature portion 51.
  • the baffle plate 8 may be fixed to the high temperature portion 51 or may be fixed to the housing 21.
  • the baffle plate 8 guides the exhaust gas flowing in the direction opposite to the arrows A2, A3, and A4 shown in FIG. 1 to the lower side of the high temperature portion 51. That is, the obstruction plate 8 has the high temperature portion 51 and the housing 21 after the exhaust gas flowing in the direction opposite to the arrows A2, A3, and A4 shown in FIG. 1 is guided downward along the surface 511 of the high temperature portion 51. It rises in the gap between them and prevents it from flowing toward the low temperature portion 52.
  • the baffle plate 8 suppresses the wraparound of the exhaust gas flowing in the direction opposite to the arrows A2, A3, and A4 shown in FIG.
  • the heat of the exhaust gas discharged from the burner 4 can be effectively used, and it is possible to suppress the decrease in the heating efficiency of the high temperature portion 51.
  • the blower 54 is arranged to face the low temperature portion 52.
  • the blower 54 is driven by being supplied with an electromotive force generated by the thermoelectric element 53, and sends air to the low temperature section 52 to cool the low temperature section 52.
  • the blower 54 is an axial fan having a motor 541 and a propeller 542.
  • the motor 541 is driven by the electric power supplied from the thermoelectric element 53.
  • the propeller 542 rotates by the rotational force transmitted from the motor 541, sucks air from the suction port 544, and sends air as cooling air to the low temperature portion 52.
  • the blower 54 is arranged so as to face the tip portion 526 of the low temperature portion 52.
  • the axis 543 of the blower 54 is orthogonal to the surface 521 of the low temperature portion 52. That is, the shaft 543 of the blower 54 is perpendicular to the surface 521 of the low temperature portion 52. Therefore, for example, as shown by the arrow A5 shown in FIG. 1, the blower 54 sends air in a direction orthogonal to the surface 521 of the low temperature portion 52 (that is, in a vertical direction).
  • the blower 54 can efficiently send air to the space 524 sandwiched by the side surfaces 523 of the fins 522 adjacent to each other, and can efficiently cool the surface 521 of the low temperature portion 52.
  • the air sent from the blower 54 toward the low temperature portion 52 flows through the space 524 sandwiched by the side surfaces 523 of the fins 522 adjacent to each other, and the low temperature portion 52. Guided above the slope along the surface 521.
  • the axis 543 of the blower 54 is orthogonal to the surface 521 of the low temperature portion 52, but the blower 54 is not limited to this, and the portable power generation such as size and internal structure is not limited to this.
  • air may be sent in a direction diagonally or parallel to the surface 521 of the low temperature portion 52, not in a direction orthogonal to the surface 521.
  • An example in which the blower 54 sends air in a direction parallel to the surface 521 of the low temperature portion 52 will be described later.
  • the opening area of the lower end portion 525 of the low temperature portion 52 may be smaller than the opening area of the space 524 in the portion above the lower end portion 525.
  • the "opening area” here means the opening area in the plane perpendicular to the direction of the arrow A21 shown in FIG.
  • the lower portion of the low temperature portion 52 is lower than the case where the opening area at the lower end portion 525 of the low temperature portion 52 is the same as or wider than the opening area of the space 524 in the portion above the lower end portion 525. It is possible to suppress the amount of cooling air flowing in the direction opposite to the arrow A6 shown in FIG. 1 discharged from the end portion 525 to the outside of the space 524. As a result, as shown by the arrow A6 shown in FIG. 1, the air sent from the blower 54 toward the low temperature portion 52 can be more reliably guided above the slope along the surface 521 of the low temperature portion 52.
  • the exhaust mixing section 7 is provided on the downstream side of the air flow when viewed from the high temperature section 51 and the low temperature section 52.
  • the exhaust mixing section 7 forms a flow path 71 that mixes the air containing the exhaust gas flowing along the surface 511 of the high temperature section 51 and the air containing the cooling air flowing along the surface 521 of the low temperature section 52.
  • the air mixed in the flow path 71 is guided to the outside of the housing 21 through the exhaust port 72. That is, the air containing the exhaust gas flowing along the surface 511 of the high temperature portion 51 and the air containing the cooling air flowing along the surface 521 of the low temperature portion 52 are the flow path 71 formed by the exhaust mixing portion 7. And mixed in the flow path 71, and discharged to the outside of the housing 21 through the exhaust port 72.
  • the exhaust mixing section 7 has a flow path 71 that mixes the air containing the exhaust gas flowing along the surface 511 of the high temperature section 51 and the air containing the cooling air flowing along the surface 521 of the low temperature section 52. As long as it is formed, it may be fixed to at least one of the high temperature portion 51 and the low temperature portion 52, or may be fixed to the housing 21.
  • the operation of the portable power generation device 2 will be described.
  • the electrodes (not shown) provided in the vicinity of the burner 4 are discharged by the pulse voltage generated by the rotation of the operation knob 33 to accommodate the fuel gas.
  • the fuel gas supplied from the container 31 to the burner 4 is burned.
  • the flame 41 is emitted from the flame port 43 of the burner 4.
  • the exhaust gas is emitted from the flame port 43 of the burner 4 together with the emission of the flame 41.
  • the high temperature portion 51 is heated by receiving the heat transmitted from the flame 41 at the surface 511 and the fin 512. Further, the exhaust gas discharged from the burner 4 flows toward the high temperature portion 51. Therefore, the high temperature portion 51 is heated by receiving the heat transferred from the exhaust gas at the surface 511 and the fins 512.
  • the surface 511 of the high temperature portion 51 is inclined with respect to the direction A1 orthogonal to the installation surface 9 of the portable power generation device 2. Therefore, the heat of the flame 41 emitted from the burner 4 is transmitted along the surface 511 of the high temperature portion 51 inclined with respect to the direction A1 orthogonal to the installation surface 9. Therefore, the heat of the flame 41 can be suppressed from being transmitted to the local portion of the high temperature portion 51, and the entire surface 511 of the high temperature portion 51 can be uniformly heated by the heat of the flame 41.
  • the exhaust gas discharged from the burner 4 flows through the first space 631 and the second space 632 of the flow path 63 formed by the guide portion 6. It flows along the surface 511 of the high temperature portion 51 inclined with respect to the direction A1 orthogonal to the installation surface 9. Therefore, it is possible to prevent the exhaust gas emitted from the burner 4 from being trapped in the local portion of the high temperature portion 51. Therefore, the heat of the exhaust gas can be suppressed from being transmitted to the local portion of the high temperature portion 51, and the entire surface 511 of the high temperature portion 51 can be uniformly heated by the heat of the exhaust gas.
  • the surface 511 of the high temperature portion 51 is efficiently heated by the flame 41 and the exhaust gas emitted from the burner 4. Further, since it is possible to suppress the local heating of the predetermined portion of the high temperature portion 51, it is possible to suppress the heat of the flame 41 and the exhaust gas from being transmitted to the low temperature portion 52 via the high temperature portion 51. Therefore, the temperature difference generated between the high temperature portion 51 and the low temperature portion 52 can be efficiently generated.
  • the thermoelectric element 53 When a temperature difference occurs between the high temperature unit 51 and the low temperature unit 52, the thermoelectric element 53 generates electricity based on the temperature difference between the high temperature unit 51 and the low temperature unit 52. Then, for example, as shown by the arrow A5 shown in FIG. 1, the blower 54 is driven by being supplied with the electromotive force generated by the thermoelectric element 53, and sends air to the low temperature section 52 to cool the low temperature section 52. That is, the blower 54 is supplied with the electromotive force generated by the thermoelectric element 53 and driven to generate forced convection on the surface 521 of the low temperature portion 52. As a result, the blower 54 forcibly cools the low temperature section 52. Therefore, the temperature difference generated between the high temperature portion 51 and the low temperature portion 52 can be efficiently generated.
  • the surface 521 of the low temperature portion 52 is inclined with respect to the direction A1 orthogonal to the installation surface 9 of the portable power generation device 2, and is parallel to the surface 511 of the high temperature portion 51. Therefore, for example, as shown by the arrow A6 shown in FIG. 1, the air sent from the blower 54 toward the low temperature portion 52 flows through the space 524 sandwiched by the side surfaces 523 of the fins 522 adjacent to each other, and the low temperature portion 52. Guided above the slope along the surface 521.
  • the air containing the exhaust gas that has flowed along the surface 511 of the high temperature portion 51 is guided to the flow path 71 formed by the exhaust mixing portion 7. Further, the air including the cooling air flowing along the surface 521 of the low temperature portion 52 is guided to the flow path 71 formed by the exhaust mixing portion 7. Then, the air containing the exhaust gas flowing along the surface 511 of the high temperature section 51 and the air containing the cooling air flowing along the surface 521 of the low temperature section 52 are mixed in the flow path 71 of the exhaust mixing section 7. , Is discharged to the outside of the housing 21 through the exhaust port 72.
  • the surface 511 (the surface receiving heat) of the high temperature portion 51 is inclined with respect to the direction A1 orthogonal to the installation surface 9 of the portable power generation device 2.
  • the heat of the flame 41 emitted from the burner 4 is transmitted along the surface 511 of the high temperature portion 51 inclined with respect to the direction A1 orthogonal to the installation surface 9. Therefore, the heat of the flame 41 can be suppressed from being transmitted to the local portion of the high temperature portion 51, and the entire surface 511 of the high temperature portion 51 can be uniformly heated by the heat of the flame 41.
  • the exhaust gas discharged from the burner 4 flows along the surface 511 of the high temperature portion 51 inclined with respect to the direction orthogonal to the installation surface 9.
  • the exhaust gas emitted from the burner 4 from being trapped in the local portion of the high temperature portion 51. Therefore, the heat of the exhaust gas can be suppressed from being transmitted to the local portion of the high temperature portion 51, and the entire surface 511 of the high temperature portion 51 can be uniformly heated by the heat of the exhaust gas. As a result, the surface 511 of the high temperature portion 51 is efficiently heated by the flame 41 and the exhaust gas emitted from the burner 4. Further, since it is possible to suppress the local heating of the predetermined portion of the high temperature portion 51, it is possible to suppress the heat of the flame 41 and the exhaust gas from being transmitted to the low temperature portion 52 via the high temperature portion 51. Therefore, the temperature difference generated between the high temperature portion 51 and the low temperature portion 52 can be efficiently generated. Thereby, the power generation amount and the power generation efficiency of the portable power generation device 2 according to the present embodiment can be improved.
  • the voltage value supplied by the portable power generation device 2 is not particularly limited, and is, for example, 5V or 12V.
  • the connection terminal to which the portable power generation device 2 supplies the voltage is not particularly limited, and is, for example, a USB (Universal Serial Bus), a cigar writer socket (cigar socket) mounted on a vehicle, an accessory socket, or the like.
  • the portable power generation device 2 includes a guide portion 6 that forms a flow path 63 for guiding the exhaust gas discharged from the burner 4.
  • the exhaust gas discharged from the burner 4 is guided upward in the slope in the flow path 63 formed by the guide portion 6 and is orthogonal to the installation surface 9. It flows more reliably along the surface 511 of the high temperature portion 51 inclined with respect to A1. Therefore, the heat of the exhaust gas can be further suppressed from being transmitted to the local portion of the high temperature portion 51, and the entire surface 511 of the high temperature portion 51 can be uniformly heated by the heat of the exhaust gas.
  • the guide portion 6 plays the role of a chimney and the chimney effect is generated. .. Therefore, the exhaust gas discharged from the burner 4 can be further suppressed from being trapped in the local portion of the high temperature portion 51, and the entire surface 511 of the high temperature portion 51 can be uniformly heated by the heat of the exhaust gas. Thereby, the power generation amount and the power generation efficiency of the portable power generation device 2 according to the present embodiment can be further improved.
  • the second inner surface 62 of the guide portion 6 is in contact with the tip portion 513 of the fin 512 of the high temperature portion 51. Therefore, for example, as shown by arrows A2, A3, and A4 shown in FIG. 1, the guide portion 6 reliably guides the exhaust gas flowing through the first space 631 of the flow path 63 by the second space 632 of the flow path 63, and the temperature is high. Exhaust gas can be guided above the slope along the surface 511 of the portion 51. That is, when the distance between the adjacent fins 512 is relatively narrow, the exhaust gas discharged from the burner 4 is sandwiched by the side surfaces 514 of the adjacent fins 512 due to the pressure loss generated at the tip portion 513 of the fins 512.
  • the portable power generation device 2 since the second inner surface 62 of the guide portion 6 is in contact with the tip portion 513 of the fin 512 of the high temperature portion 51, the guide portions 6 are adjacent to each other. Exhaust gas can be more reliably guided to the space sandwiched by the side surfaces 514 of the matching fins 512.
  • the lower end portion 64 of the guide portion 6 is arranged below the position 65 where the shaft 42 of the burner 4 and the lower portion of the high temperature portion 51 intersect. Therefore, the guide unit 6 can prevent the exhaust gas discharged from the burner 4 from escaping to the outside of the guide unit 6, and can surely guide the exhaust gas discharged from the burner 4 through the flow path 63. Thereby, the power generation amount and the power generation efficiency of the portable power generation device 2 according to the present embodiment can be further improved.
  • the blower 54 is supplied with an electromotive force generated by the thermoelectric element 53 and driven to generate forced convection on the surface 521 of the low temperature unit 52. Therefore, the temperature difference generated between the high temperature portion 51 and the low temperature portion 52 can be efficiently generated. Thereby, the power generation amount and the power generation efficiency of the portable power generation device 2 according to the present embodiment can be further improved.
  • the exhaust mixing section 7 has a flow path 71 that mixes the air containing the exhaust gas flowing along the surface 511 of the high temperature section 51 and the air containing the cooling air flowing along the surface 521 of the low temperature section 52.
  • the exhaust gas discharged from the burner 4 and guided to the flow path 71 of the exhaust mixing unit 7 is forcibly discharged to the outside of the portable power generation device 2 through the exhaust port 72. Further, since the air containing the exhaust gas is mixed with the air containing the cooling air sent from the blower 54 in the flow path 71 of the exhaust mixing unit 7, the temperature of the air discharged to the outside of the portable power generation device 2 is suppressed. Can be done.
  • FIG. 3 is a plan view showing a portable power generation device according to a modified example of the present embodiment. Note that FIG. 3 corresponds to a plan view when viewed from the direction of the arrow A21 shown in FIG. In FIG. 3, for convenience of explanation, the housing 21 and the exhaust mixing unit 7 are omitted.
  • the second inner surface 62 of the guide portion 6 is separated from the tip portion 513 of the fin 512 of the high temperature portion 51 toward the burner 4. Specifically, the second inner surface 62 of the guide portion 6 is separated from the tip portion 513 of the fin 512 of the high temperature portion 51 toward the normal direction of the surface 511 of the high temperature portion 51. Therefore, the flow path 63 formed by the guide portion 6 has a first space 631 (see FIG. 1), a second space 632, and a third space 633.
  • the first space 631 and the second space 632 are as described above with respect to FIGS. 1 and 2.
  • the flow path 63 formed by the guide portion 6 further has a third space 633.
  • the third space 633 is a space sandwiched between a flat surface including the tip portion 513 of the fin 512 of the high temperature portion 51 and the second inner surface 62 of the guide portion 6.
  • the portable power generation device 2A according to the present modification is different from the portable power generation device 2 according to the present embodiment described above with respect to FIGS. 1 and 2.
  • Other structures are the same as the structure of the portable power generation device 2 according to the present embodiment described above with respect to FIGS. 1 and 2.
  • the exhaust gas discharged from the burner 4 flows through the first space 631 of the flow path 63 formed by the guide portion 6, and then flows through the second space 632 and the third space 633 of the flow path 63. At this time, the pressure loss of the third space 633 is lower than the pressure loss of the second space 632, and the chimney effect by the guide portion 6 is generated. It can be guided to the third space 633 of the flow path 63 through one space 631. As a result, complete combustion of the fuel gas supplied to the burner 4 can be promoted. As described above, according to the portable power generation device 2A according to the present modification, the air containing no exhaust gas can be efficiently introduced into the flow path 63 formed by the guide portion 6, and the air is supplied to the burner 4. Complete combustion of fuel gas can be promoted. Further, the same effects as those described above can be obtained with respect to FIGS. 1 and 2.
  • FIG. 4 is a cross-sectional view showing the internal structure of the portable power generation device according to the second embodiment of the present invention.
  • FIG. 5 is a plan view showing a portable power generation device when viewed from the direction of arrow A22 shown in FIG. In FIG. 5, for convenience of explanation, the housing 21 and the exhaust mixing unit 7 are omitted.
  • the portable power generation device 2B includes a housing 21, a burner 4, a high temperature section 51, a low temperature section 52, a thermoelectric element 53, a guide section 6, a blower 54A, and an exhaust mixing section 7. , A baffle plate 8 and.
  • the housing 21, the burner 4, the high temperature section 51, the low temperature section 52, the thermoelectric element 53, the guide section 6, the exhaust mixing section 7, and the baffle plate 8 are described above with respect to FIGS. 1 to 3. It's a street.
  • the blower 54A of the portable power generation device 2B is arranged on the side of the low temperature section 52 so as to face the low temperature section 52. Specifically, the blower 54A is arranged to face the lower end portion 525 of the low temperature portion 52.
  • the shaft 543 of the blower 54A is parallel to the surface 521 of the low temperature portion 52. Therefore, for example, as shown by the arrow A11 shown in FIG. 4, the blower 54A sends air as cooling air in the direction parallel to the surface 521 of the low temperature portion 52. For example, as shown by the arrow A12 shown in FIG.
  • the air sent from the blower 54A along the surface 521 of the low temperature portion 52 flows through the space 524 sandwiched by the side surfaces 523 of the fins 522 adjacent to each other, and the low temperature portion 52. More reliably guided above the slope along the surface 521 of the. Then, the air including the cooling air flowing along the surface 521 of the low temperature portion 52 is mixed with the air including the exhaust gas flowing along the surface 511 of the high temperature portion 51 in the flow path 71 of the exhaust mixing portion 7, and is exhausted. It is discharged to the outside of the housing 21 through 72.
  • the length of the blower 54A in the Y direction is substantially the same as the length of the low temperature portion 52 in the Y direction.
  • a plurality of blowers 54A are arranged side by side in the X direction. In the example shown in FIG. 5, two blowers 54A are arranged. However, the number of blowers 54A installed is not limited to two, and may be three or more. Other structures are the same as those of the portable power generation devices 2 and 2A according to the first embodiment described above with respect to FIGS. 1 to 3.
  • the blower 54A can send air along the surface 521 of the low temperature section 52, and can cool the surface 521 of the low temperature section 52 more efficiently. can. Therefore, it is possible to suppress at least the length of the low temperature portion 52 in either the X direction or the Y direction, and it is possible to reduce the size and weight of the low temperature portion 52. Further, as shown in FIG. 5, the length of the blower 54A in the Y direction can be suppressed to the same extent as the length of the low temperature portion 52 in the Y direction, and the blower 54A can be made smaller and lighter. As a result, the portable power generation device 2B can be made smaller and lighter.
  • blower 54A can cool the surface 521 of the low temperature section 52 more efficiently, the temperature difference generated between the high temperature section 51 and the low temperature section 52 can be generated more efficiently. .. Further, with respect to FIGS. 1 to 3, the same effects as those of the portable power generation devices 2 and 2A according to the first embodiment described above can be obtained.
  • FIG. 6 is a cross-sectional view showing the internal structure of the portable power generation device according to the modified example of the present embodiment.
  • FIG. 7 is a plan view showing a portable power generation device when viewed from the direction of arrow A23 shown in FIG. In FIG. 7, the housing 21 and the exhaust mixing unit 7 are omitted for convenience of explanation.
  • the portable power generation device 2C according to this modification includes a housing 21, a burner 4, a high temperature section 51, a low temperature section 52, a thermoelectric element 53, a guide section 6, a blower 54B, and an exhaust mixing section 7. , A baffle plate 8 and a throttle portion 55 are provided. That is, the portable power generation device 2C according to the present modification is narrowed down as compared with the portable power generation devices 2 and 2A described above with respect to FIGS. 1 to 3 and the portable power generation device 2B described above with respect to FIGS. 4 and 5. A unit 55 is further provided. In this respect, the portable power generation device 2C according to the present modification is different from the portable power generation devices 2 and 2A described above with respect to FIGS.
  • the housing 21, the burner 4, the high temperature section 51, the low temperature section 52, the thermoelectric element 53, the guide section 6, the exhaust mixing section 7, and the baffle plate 8 are described above with respect to FIGS. 1 to 3. It's a street.
  • the blower 54B of the portable power generation device 2C is arranged on the side of the low temperature portion 52 so as to face the low temperature portion 52 via the throttle portion 55.
  • the throttle portion 55 is arranged so as to face the lower end portion 525 of the low temperature portion 52.
  • the blower 54B is arranged so as to face the lower end portion 525 of the low temperature portion 52 via the throttle portion 55.
  • the throttle portion 55 is provided between the blower 54B and the low temperature section 52, narrows the cross section of the flow path of the air sent from the blower 54B, and guides the air sent out from the blower 54B to the space 524 of the low temperature section 52. Therefore, the flow velocity of the air after passing through the throttle portion 55 is faster than the flow velocity of the air before passing through the throttle portion 55, that is, the air velocity immediately after being sent out from the blower 54B.
  • the method of drawing or the shape of the drawing of the drawing portion 55 is not particularly limited, and may be an orifice, a nozzle, or a venturi tube.
  • the shaft 543 of the blower 54B is parallel to the surface 521 of the low temperature portion 52. Therefore, for example, as shown by the arrow A13 shown in FIG. 6, the blower 54B sends air as cooling air in the direction parallel to the surface 521 of the low temperature portion 52.
  • the air sent from the blower 54B along the surface 521 of the low temperature section 52 passes through the throttle section 55 and is adjacent to each other in a state where the flow velocity is increased by the throttle section 55, for example, as shown by the arrow A14 shown in FIG. It flows through the space 524 sandwiched by the side surfaces 523 of the matching fins 522 and is more reliably guided above the slope along the surface 521 of the cold portion 52.
  • the air including the cooling air flowing along the surface 521 of the low temperature portion 52 is mixed with the air including the exhaust gas flowing along the surface 511 of the high temperature portion 51 in the flow path 71 of the exhaust mixing portion 7, and is exhausted. It is discharged to the outside of the housing 21 through 72.
  • the length of the blower 54B in the Y direction is longer than the length of the low temperature portion 52 in the Y direction.
  • one blower 54B is arranged in the central part of the low temperature part 52 in the X direction.
  • the number of blowers 54B installed is not limited to one, and may be two or more. Other structures are the same as those of the portable power generation device 2B according to the present embodiment described above with respect to FIGS. 4 and 5.
  • the blower 54B draws air having a larger air volume than the blower 54A described above with respect to FIGS. 4 and 5 through the throttle portion 55 along the surface 521 of the low temperature portion 52. It can be fed, and the surface 521 of the low temperature portion 52 can be cooled more efficiently. Therefore, the surface 521 of the low temperature portion 52 can be efficiently cooled while reducing the number of installed blowers 54B. Therefore, the low temperature portion 52 can be made smaller and lighter, and the portable power generation device 2C can be made smaller and lighter. Further, since the blower 54B can cool the surface 521 of the low temperature section 52 more efficiently, the temperature difference generated between the high temperature section 51 and the low temperature section 52 can be generated more efficiently. .. Further, with respect to FIGS. 1 to 3, the same effects as those of the portable power generation devices 2 and 2A according to the first embodiment described above can be obtained.
  • FIG. 8 is a table showing an example of the results of the studies carried out by the present inventor.
  • FIG. 9 is a graph showing an example of the relationship between the tilt angle of the first sample shown in FIG. 8 and the maximum power generation amount.
  • FIG. 10 is a graph showing an example of the relationship between the tilt angle of the second sample shown in FIG. 8 and the maximum power generation amount.
  • the horizontal axis represents the inclination angle (°) of the surface 511 of the high temperature portion 51 with respect to the installation surface 9.
  • the vertical axis represents the maximum power generation amount (W) of the thermoelectric element 53.
  • the present inventor uses the portable power generation device 2 described above with respect to FIGS. 1 and 2 to determine the inclination angle (°) of the surface 511 of the high temperature portion 51 with respect to the installation surface 9 and the maximum power generation amount (W) of the thermoelectric element 53.
  • the first sample and the second sample shown in FIG. 8 are an example of the high temperature portion 51 of the present embodiment, and are finned heat sinks having a plurality of fins 512.
  • the size of the first sample is 100 mm in length ⁇ 100 mm in width ⁇ 30 mm in height.
  • the distance between the plurality of fins of the first sample is 2 mm.
  • the size of the second sample is 98 mm in length ⁇ 98 mm in width ⁇ 30 mm in height.
  • the distance between the plurality of fins of the second sample is 6 mm.
  • the position of the flame 41 of the burner 4 is the end of each sample, and if the surface of each sample is inclined with respect to the installation surface 9, it is the lower end. That is, the flame 41 of the burner 4 is emitted toward the end of each sample, and when the surface of each sample is inclined with respect to the installation surface 9, it is emitted toward the lower end.
  • the distance between the surface of each sample and the flame port 43 of the burner 4 is 15 mm.
  • FIG. Is An example of the relationship between the “tilt angle (°)”, the “combustion amount (kcal / h)”, and the “maximum power generation amount (W)” in each of the first sample and the second sample is as shown in FIG. Is. Further, an example of the relationship between the inclination angle (°) of the first sample and the maximum power generation amount (W) of the thermoelectric element 53 is as shown in FIG. Further, an example of the relationship between the inclination angle (°) of the second sample and the maximum power generation amount (W) of the thermoelectric element 53 is as shown in FIG.
  • the "tilt angle (°)" in this study is the tilt angle of the surface 511 of the high temperature portion 51 with respect to the installation surface 9. Therefore, the inclination angle of the surface 511 of the high temperature portion 51 with respect to the direction A1 orthogonal to the installation surface 9 is represented by "90 ° -inclination angle (°) in this study”.
  • the maximum power generation amount of the thermoelectric element 53 is equal to or greater than the maximum power generation amount of the thermoelectric element 53 when the surface 511 of the high temperature portion 51 is not tilted with respect to the installation surface 9 (that is, when the tilt angle is 0 °). be. Further, the maximum power generation amount of the thermoelectric element 53 increased when the inclination angle was increased from 0 ° to 30 °, and decreased when the inclination angle was increased from 30 ° to 40 °.
  • the inclination angle of the surface 511 of the high temperature portion 51 with respect to the installation surface 9 is preferably about 10 ° or more and 40 ° or less, and more preferably about 30 °.
  • the maximum power generation amount when the position of the flame 41 of the burner 4 is the center of the sample is when the position of the flame 41 of the burner 4 is the end of the sample. It turned out to be larger than the maximum power generation of. Further, the maximum when the position of the flame 41 of the burner 4 is the position between the center of the sample and the edge of the sample (for example, the position moved from the edge of the sample to the center by 1/4 of the sample length). It was found that the amount of power generation was larger than the maximum amount of power generation when the position of the flame 41 of the burner 4 was the center of the sample.
  • the inclination angle of the surface 511 of the high temperature portion 51 with respect to the installation surface 9 is about 30 °, and the position of the flame 41 of the burner 4 is between the center of the sample and the edge of the sample. It was found that the maximum power generation can be further improved when the position is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fuel Cell (AREA)
  • Control Of Combustion (AREA)

Abstract

[Problem] To provide a portable power generator that can improve power generation capacity and power generation efficiency. [Solution] A portable power generator according to the present invention generates power using combustion heat and is also transportable. The portable power generator 2 is provided with: burners 4 that burn fuel gas supplied from a fuel gas storage container 31 that stores the fuel gas; a high-temperature part 51 that is heated by heat transferred from flames 41 and exhaust gas released from the burners 4; a low-temperature part 52 that is positioned opposite the high-temperature part 51 and kept at a lower temperature than the high-temperature part 51; and a thermoelectric element 53 that is interposed between the high-temperature part 51 and the low-temperature part 52 and generates power on the basis of the temperature difference that arises between the high-temperature part 51 and the low-temperature part 52. A surface 511 of the high-temperature part 51 receives the heat transferred from the flames 41 and the exhaust gas and is inclined with respect to a direction A1 orthogonal to an installation surface 9 of the portable power generator 2.

Description

可搬型発電装置Portable power generator
 本発明は、燃焼熱を利用して発電するとともに搬送可能とされた可搬型発電装置に関する。 The present invention relates to a portable power generation device that can generate electricity by using combustion heat and can be transported.
 特許文献1には、ペルチェ効果を利用した熱発電素子を備える簡易型発電装置が開示されている。特許文献1に記載された簡易型発電装置は、燃料タンクから燃料パイプを介して供給される液化ガス燃料を空気混合部付近に設置したノズルから燃焼室に向けて噴出するように構成されている。ペルチェ効果を利用した熱発電素子の加熱面は、熱拡散板に接合され、熱拡散板を介して平板からなる加熱ベースに対向している。 Patent Document 1 discloses a simple power generation device including a thermoelectric power generation element utilizing the Pelche effect. The simplified power generation device described in Patent Document 1 is configured to eject liquefied gas fuel supplied from a fuel tank via a fuel pipe from a nozzle installed near the air mixing section toward the combustion chamber. .. The heating surface of the thermoelectric generation element utilizing the Pelche effect is joined to the heat diffusion plate and faces the heating base made of a flat plate via the heat diffusion plate.
 特許文献1に記載されたような簡易型あるいは可搬型の発電装置に対しては、商用電源が供給されてない屋外や被災地現場などにおいて、例えばスマートフォンやタブレット端末などの電気製品を充電したり、LED(Light Emitting Diode)照明器などの電気製品を使用したりするために必要な起電力の発生能力が望まれている。また、電気製品の充電と電気製品の使用とを同時に行うことができるために十分な起電力の発生能力が望まれている。つまり、簡易型あるいは可搬型の発電装置に対しては、発電量および発電効率の向上が望まれている。 For a simple or portable power generation device as described in Patent Document 1, for example, electric products such as smartphones and tablet terminals can be charged outdoors or in a disaster area where commercial power is not supplied. , LED (Light Emitting Diode) The ability to generate electromotive force required for using electric products such as illuminators is desired. Further, a sufficient electromotive force generation capacity is desired so that the electric product can be charged and the electric product can be used at the same time. That is, it is desired to improve the power generation amount and the power generation efficiency for the simple type or the portable type power generation device.
 しかし、特許文献1に記載された簡易型発電装置において、ペルチェ効果を利用した熱発電素子の加熱面は、簡易型発電装置の設置面に対して直交している。また、ノズルは、簡易型発電装置の設置面に対して直交する方向に延びており、簡易型発電装置の設置面に対して直交する方向に液化ガス燃料を噴出する。そのため、ノズルから噴出される液化ガス燃料の噴出方向は、熱発電素子の加熱面に略平行な方向になる。すなわち、ノズルから放出される火炎の放出方向は、熱発電素子の加熱面に略平行な方向になる。そのため、バーナから放出される火炎および排ガスの熱を熱発電素子の加熱面に効率良く伝えて発電量および発電効率を向上させるという点においては、改善の余地がある。 However, in the simple power generation device described in Patent Document 1, the heating surface of the thermoelectric power generation element utilizing the Pelche effect is orthogonal to the installation surface of the simple power generation device. Further, the nozzle extends in a direction orthogonal to the installation surface of the simple power generation device, and ejects the liquefied gas fuel in the direction orthogonal to the installation surface of the simple power generation device. Therefore, the ejection direction of the liquefied gas fuel ejected from the nozzle is substantially parallel to the heating surface of the thermoelectric generation element. That is, the emission direction of the flame emitted from the nozzle is substantially parallel to the heating surface of the thermoelectric generation element. Therefore, there is room for improvement in that the heat of the flame and the exhaust gas emitted from the burner is efficiently transferred to the heating surface of the thermoelectric power generation element to improve the amount of power generation and the power generation efficiency.
特開平9-285160号公報Japanese Unexamined Patent Publication No. 9-285160
 本発明は、前記課題を解決するためになされたものであり、発電量および発電効率を向上させることができる可搬型発電装置を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a portable power generation device capable of improving the amount of power generation and the power generation efficiency.
 前記課題は、本発明によれば、燃焼熱を利用して発電するとともに搬送可能とされた可搬型発電装置であって、燃料ガスが収容された燃料ガス収容容器から供給される前記燃料ガスを燃焼するバーナと、前記バーナから放出される火炎および排ガスから伝わる熱により加熱される高温部と、前記高温部に対向して配置され前記高温部よりも低い温度に保持される低温部と、前記高温部と前記低温部との間に挟設され、前記高温部と前記低温部との間に生ずる温度差に基づいて発電する熱電素子と、を備え、前記火炎および前記排ガスから伝わる前記熱を受ける前記高温部の表面は、可搬型発電装置の設置面と直交する方向に対して傾斜していることを特徴とする可搬型発電装置により解決される。 According to the present invention, the subject is a portable power generation device capable of generating and transporting power by utilizing combustion heat, and the fuel gas supplied from a fuel gas storage container in which fuel gas is stored is used. A burner that burns, a high-temperature portion that is heated by heat transmitted from the flame emitted from the burner and exhaust gas, a low-temperature portion that is arranged facing the high-temperature portion and is maintained at a temperature lower than the high-temperature portion, and the above-mentioned A thermoelectric element sandwiched between the high temperature portion and the low temperature portion and generating electricity based on the temperature difference generated between the high temperature portion and the low temperature portion is provided, and the heat transmitted from the flame and the exhaust gas is transferred. The surface of the high temperature portion to be received is solved by the portable power generation device characterized in that it is inclined with respect to the direction orthogonal to the installation surface of the portable power generation device.
 本発明に係る可搬型発電装置によれば、高温部の表面(熱を受ける面)が可搬型発電装置の設置面と直交する方向に対して傾斜しているため、バーナから放出された火炎の熱は、設置面と直交する方向に対して傾斜した高温部の表面に沿って伝わる。そのため、火炎の熱が高温部の局所的な部分に伝わることを抑え、火炎の熱により高温部の表面全体を一様に加熱することができる。また、バーナから放出された排ガスは、設置面と直交する方向に対して傾斜した高温部の表面に沿って流れる。そのため、バーナから放出された排ガスが高温部の局所的な部分に籠もることを抑えることができる。そのため、排ガスの熱が高温部の局所的な部分に伝わることを抑え、排ガスの熱により高温部の表面全体を一様に加熱することができる。これにより、高温部の表面は、バーナから放出される火炎および排ガスにより効率的に加熱される。また、高温部の所定部分が局所的に加熱されることを抑えることができるため、火炎および排ガスの熱が高温部を介して低温部に伝わることを抑えることができる。そのため、高温部と低温部との間に生ずる温度差を効率的に発生させることができる。これにより、本発明に係る可搬型発電装置の発電量および発電効率を向上させることができる。 According to the portable power generation device according to the present invention, since the surface (heat receiving surface) of the high temperature portion is inclined in the direction orthogonal to the installation surface of the portable power generation device, the flame emitted from the burner The heat is transmitted along the surface of the high temperature portion inclined with respect to the direction orthogonal to the installation surface. Therefore, it is possible to suppress the heat of the flame from being transmitted to the local portion of the high temperature portion, and to uniformly heat the entire surface of the high temperature portion by the heat of the flame. Further, the exhaust gas discharged from the burner flows along the surface of the high temperature portion inclined with respect to the direction orthogonal to the installation surface. Therefore, it is possible to prevent the exhaust gas emitted from the burner from being trapped in the local portion of the high temperature portion. Therefore, it is possible to suppress the heat of the exhaust gas from being transferred to the local portion of the high temperature portion, and to uniformly heat the entire surface of the high temperature portion by the heat of the exhaust gas. As a result, the surface of the high temperature portion is efficiently heated by the flame and the exhaust gas emitted from the burner. Further, since it is possible to suppress the local heating of the predetermined portion of the high temperature portion, it is possible to suppress the heat of the flame and the exhaust gas from being transmitted to the low temperature portion via the high temperature portion. Therefore, the temperature difference generated between the high temperature portion and the low temperature portion can be efficiently generated. Thereby, the power generation amount and the power generation efficiency of the portable power generation device according to the present invention can be improved.
 本発明に係る可搬型発電装置は、好ましくは、前記高温部からみて前記バーナの側に設けられ、前記排ガスを前記高温部の前記表面に沿って前記傾斜の上方に導く流路を形成するガイド部をさらに備えたことを特徴とする。 The portable power generation device according to the present invention is preferably provided on the side of the burner when viewed from the high temperature portion, and is a guide for forming a flow path for guiding the exhaust gas upward along the surface of the high temperature portion. It is characterized by having more parts.
 本発明に係る可搬型発電装置によれば、バーナから放出された排ガスは、ガイド部により形成された流路において傾斜の上方に向かって導かれ、設置面と直交する方向に対して傾斜した高温部の表面に沿ってより確実に流れる。そのため、排ガスの熱が高温部の局所的な部分に伝わることをより一層抑え、排ガスの熱により高温部の表面全体を一様に加熱することができる。また、ガイド部の流路の外部に存在する気体の温度よりも高温の排ガスがガイド部の流路の内部を流れるため、ガイド部が煙突の役割を果たし、煙突効果が生ずる。そのため、バーナから放出された排ガスが高温部の局所的な部分に籠もることをより一層抑え、排ガスの熱により高温部の表面全体を一様に加熱することができる。これにより、本発明に係る可搬型発電装置の発電量および発電効率をより一層向上させることができる。 According to the portable power generation device according to the present invention, the exhaust gas discharged from the burner is guided upward in the slope in the flow path formed by the guide portion, and has a high temperature inclined in the direction orthogonal to the installation surface. It flows more reliably along the surface of the part. Therefore, the heat of the exhaust gas can be further suppressed from being transferred to the local portion of the high temperature portion, and the entire surface of the high temperature portion can be uniformly heated by the heat of the exhaust gas. Further, since the exhaust gas having a temperature higher than the temperature of the gas existing outside the flow path of the guide portion flows inside the flow path of the guide portion, the guide portion plays the role of a chimney and the chimney effect is generated. Therefore, the exhaust gas discharged from the burner can be further suppressed from being trapped in the local portion of the high temperature portion, and the entire surface of the high temperature portion can be uniformly heated by the heat of the exhaust gas. Thereby, the power generation amount and the power generation efficiency of the portable power generation device according to the present invention can be further improved.
 本発明に係る可搬型発電装置は、好ましくは、前記低温部に対向して配置されるとともに前記熱電素子により生ずる起電力を供給されて駆動し、前記低温部に空気を送り前記低温部を冷却する送風機と、前記高温部の前記表面に沿って流れた前記排ガスを含む空気と、前記送風機から送られ前記低温部の表面に沿って流れた冷却風を含む空気と、を混合し、前記混合した空気を外部へ導く流路を形成する排気混合部と、をさらに備えたことを特徴とする。 The portable power generation device according to the present invention is preferably arranged so as to face the low temperature portion and is driven by being supplied with the electromotive force generated by the thermoelectric element to send air to the low temperature portion to cool the low temperature portion. The air containing the exhaust gas flowing along the surface of the high temperature portion and the air containing the cooling air sent from the blower and flowing along the surface of the low temperature portion are mixed and mixed. It is characterized by further including an exhaust mixing portion that forms a flow path that guides the air to the outside.
 本発明に係る可搬型発電装置によれば、送風機は、熱電素子により生ずる起電力を供給されて駆動し、低温部に空気を送る。すなわち、送風機は、熱電素子により生ずる起電力を供給されて駆動し、低温部の表面において強制対流を生じさせる。これにより、送風機は、低温部を強制的に冷却する。そのため、高温部と低温部との間に生ずる温度差を効率的に発生させることができる。これにより、本発明に係る可搬型発電装置の発電量および発電効率をより一層向上させることができる。また、排気混合部は、高温部の表面に沿って流れた排ガスを含む空気と、送風機から送られ低温部の表面に沿って流れた冷却風を含む空気と、を混合し、混合した空気を外部へ導く流路を形成する。これにより、送風機は、バーナから放出され排気混合部の流路に導かれた排ガスを可搬型発電装置の外部に強制的に排出することができる。また、排ガスを含む空気が排気混合部の流路において送風機から送られた冷却風を含む空気と混合されるため、可搬型発電装置の外部に排出される空気の温度を抑えることができる。 According to the portable power generation device according to the present invention, the blower is driven by being supplied with the electromotive force generated by the thermoelectric element, and sends air to the low temperature part. That is, the blower is driven by being supplied with the electromotive force generated by the thermoelectric element, and causes forced convection on the surface of the low temperature portion. As a result, the blower forcibly cools the low temperature portion. Therefore, the temperature difference generated between the high temperature portion and the low temperature portion can be efficiently generated. Thereby, the power generation amount and the power generation efficiency of the portable power generation device according to the present invention can be further improved. Further, the exhaust mixing section mixes the air containing the exhaust gas flowing along the surface of the high temperature section and the air containing the cooling air sent from the blower and flowing along the surface of the low temperature section, and mixes the mixed air. Form a flow path leading to the outside. As a result, the blower can forcibly discharge the exhaust gas discharged from the burner and guided to the flow path of the exhaust mixing portion to the outside of the portable power generation device. Further, since the air containing the exhaust gas is mixed with the air containing the cooling air sent from the blower in the flow path of the exhaust mixing portion, the temperature of the air discharged to the outside of the portable power generation device can be suppressed.
 本発明に係る可搬型発電装置において、好ましくは、前記送風機は、前記低温部の前記表面に対して垂直方向に前記空気を送ることを特徴とする。 In the portable power generation device according to the present invention, preferably, the blower is characterized in that the air is sent in a direction perpendicular to the surface of the low temperature portion.
 本発明に係る可搬型発電装置によれば、送風機は、低温部の表面を効率的に冷却することができる。そのため、送風機は、高温部と低温部との間に生ずる温度差を効率的に発生させることができる。 According to the portable power generation device according to the present invention, the blower can efficiently cool the surface of the low temperature portion. Therefore, the blower can efficiently generate the temperature difference generated between the high temperature portion and the low temperature portion.
 本発明に係る可搬型発電装置において、好ましくは、前記送風機は、前記低温部の前記表面に対して平行方向に前記空気を送ることを特徴とする。 In the portable power generation device according to the present invention, preferably, the blower is characterized in that the air is sent in a direction parallel to the surface of the low temperature portion.
 本発明に係る可搬型発電装置によれば、送風機は、低温部の表面に沿って空気を送ることができ、低温部の表面をより一層効率的に冷却することができる。そのため、低温部の小型化および軽量化を図ることができるとともに、送風機の小型化および軽量化を図ることができる。これにより、可搬型発電装置の小型化および軽量化を図ることができる。また、送風機は、低温部の表面をより一層効率的に冷却することができるため、高温部と低温部との間に生ずる温度差をより一層効率的に発生させることができる。 According to the portable power generation device according to the present invention, the blower can send air along the surface of the low temperature portion, and can cool the surface of the low temperature portion more efficiently. Therefore, it is possible to reduce the size and weight of the low temperature portion, and it is also possible to reduce the size and weight of the blower. This makes it possible to reduce the size and weight of the portable power generation device. Further, since the blower can cool the surface of the low temperature portion more efficiently, the temperature difference generated between the high temperature portion and the low temperature portion can be generated more efficiently.
 本発明によれば、発電量および発電効率を向上させることができる可搬型発電装置を提供することができる。 According to the present invention, it is possible to provide a portable power generation device capable of improving the amount of power generation and the power generation efficiency.
本発明の実施形態に係る可搬型発電装置の内部構造を表す断面図である。It is sectional drawing which shows the internal structure of the portable power generation apparatus which concerns on embodiment of this invention. 図1に表した矢印A21の方向からみたときの可搬型発電装置を表す平面図である。FIG. 3 is a plan view showing a portable power generation device when viewed from the direction of arrow A21 shown in FIG. 1. 本実施形態の変形例に係る可搬型発電装置を表す平面図である。It is a top view which shows the portable power generation apparatus which concerns on the modification of this embodiment. 本発明の第2実施形態に係る可搬型発電装置の内部構造を表す断面図である。It is sectional drawing which shows the internal structure of the portable power generation apparatus which concerns on 2nd Embodiment of this invention. 図4に表した矢印A22の方向からみたときの可搬型発電装置を表す平面図である。FIG. 3 is a plan view showing a portable power generation device when viewed from the direction of arrow A22 shown in FIG. 本実施形態の変形例に係る可搬型発電装置の内部構造を表す断面図である。It is sectional drawing which shows the internal structure of the portable power generation apparatus which concerns on the modification of this Embodiment. 図6に表した矢印A23の方向からみたときの可搬型発電装置を表す平面図である。6 is a plan view showing a portable power generation device when viewed from the direction of arrow A23 shown in FIG. 本発明者が実施した検討の結果の一例を表す表である。It is a table which shows an example of the result of the examination carried out by the present inventor. 図8に表した第1試料の傾斜角度と最大発電量との関係の一例を表すグラフである。It is a graph which shows an example of the relationship between the inclination angle of the 1st sample shown in FIG. 8 and the maximum power generation amount. 図8に表した第2試料の傾斜角度と最大発電量との関係の一例を表すグラフである。It is a graph which shows an example of the relationship between the inclination angle of the 2nd sample shown in FIG. 8 and the maximum power generation amount.
 以下に、本発明の好ましい実施形態を、図面を参照して詳しく説明する。
 なお、以下に説明する実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。また、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
Since the embodiments described below are suitable specific examples of the present invention, various technically preferable limitations are added, but the scope of the present invention is particularly limited to the present invention in the following description. Unless otherwise stated, the present invention is not limited to these aspects. Further, in each drawing, the same components are designated by the same reference numerals, and detailed description thereof will be omitted as appropriate.
 図1は、本発明の第1実施形態に係る可搬型発電装置の内部構造を表す断面図である。
 図2は、図1に表した矢印A21の方向からみたときの可搬型発電装置を表す平面図である。
 なお、図2においては、説明の便宜上、筐体21および排気混合部7を省略している。
FIG. 1 is a cross-sectional view showing the internal structure of the portable power generation device according to the first embodiment of the present invention.
FIG. 2 is a plan view showing a portable power generation device when viewed from the direction of arrow A21 shown in FIG.
In FIG. 2, for convenience of explanation, the housing 21 and the exhaust mixing unit 7 are omitted.
 本実施形態に係る可搬型発電装置2は、燃料ガスを燃焼させ、そのときの燃焼熱を利用して起電力を発生させる発電装置であり、商用電源が供給されてない屋外や被災地現場などにおいて利用可能とされた可搬型の発電装置である。 The portable power generation device 2 according to the present embodiment is a power generation device that burns fuel gas and generates electromotive power by using the combustion heat at that time, such as outdoors where commercial power is not supplied or at a disaster area site. It is a portable power generation device that has been made available in Japan.
 図1に表したように、本実施形態に係る可搬型発電装置2は、筐体21と、バーナ4と、高温部51と、低温部52と、熱電素子53と、を備える。また、可搬型発電装置2は、ガイド部6と、送風機54と、排気混合部7と、邪魔板8と、をさらに備えていてもよい。 As shown in FIG. 1, the portable power generation device 2 according to the present embodiment includes a housing 21, a burner 4, a high temperature section 51, a low temperature section 52, and a thermoelectric element 53. Further, the portable power generation device 2 may further include a guide unit 6, a blower 54, an exhaust mixing unit 7, and a baffle plate 8.
 筐体21は、例えば耐熱塗装が施された金属製のケーシングであり、持ち運びが可能な大きさを有する。筐体21は、利用者が把持可能な取っ手(図示せず)を有していてもよい。この場合には、利用者は、取っ手を把持することにより可搬型発電装置2を容易に持ち運ぶことができる。筐体21の底面には、複数の脚部22が設けられている。これにより、利用者は、可搬型発電装置2を設置面9に安定的に置くことができる。 The housing 21 is, for example, a metal casing with heat-resistant coating, and has a size that allows it to be carried. The housing 21 may have a handle (not shown) that can be grasped by the user. In this case, the user can easily carry the portable power generation device 2 by grasping the handle. A plurality of legs 22 are provided on the bottom surface of the housing 21. As a result, the user can stably place the portable power generation device 2 on the installation surface 9.
 本実施形態に係る可搬型発電装置2では、バーナ4と、高温部51と、低温部52と、熱電素子53と、ガイド部6と、送風機54と、排気混合部7と、邪魔板8と、が筐体21の内部に設けられている。また、利用者は、筐体21に設けられた扉(図示せず)を開けることにより、取り出し口23を通して、燃料ガスが収容された燃料ガス収容容器31を筐体21の内部に取り付けたり、筐体21の内部から取り外したりすることができる。 In the portable power generation device 2 according to the present embodiment, the burner 4, the high temperature section 51, the low temperature section 52, the thermoelectric element 53, the guide section 6, the blower 54, the exhaust mixing section 7, and the baffle plate 8 are included. Is provided inside the housing 21. Further, by opening the door (not shown) provided in the housing 21, the user can attach the fuel gas storage container 31 containing the fuel gas to the inside of the housing 21 through the take-out port 23. It can be removed from the inside of the housing 21.
 燃料ガス収容容器31は、例えば圧縮された液化ガスが収容されたカートリッジ式ガスボンベであり、燃料ガスを収容している。燃料ガス収容容器31から吐出された燃料ガスは、容器接続部32の内部に設けられたガバナに入り圧力調整される。なお、燃料ガス収容容器31がカートリッジ式ガスボンベである場合には、燃料ガス収容容器31と容器接続部32との着脱機構は、マグネット式とされている。これによれば、ガスボンベが加熱されてガスボンベの内部圧力が異常に上昇した時、安全機構が作動して燃料ガス収容容器31と容器接続部32との接続が外れる。 The fuel gas storage container 31 is, for example, a cartridge type gas cylinder in which a compressed liquefied gas is stored, and stores the fuel gas. The fuel gas discharged from the fuel gas accommodating container 31 enters the governor provided inside the container connecting portion 32 and the pressure is adjusted. When the fuel gas storage container 31 is a cartridge type gas cylinder, the attachment / detachment mechanism between the fuel gas storage container 31 and the container connection portion 32 is a magnet type. According to this, when the gas cylinder is heated and the internal pressure of the gas cylinder rises abnormally, the safety mechanism is activated and the connection between the fuel gas storage container 31 and the container connection portion 32 is disconnected.
 容器接続部32は、操作摘まみ部33と接続され、燃料ガス収容容器31から供給される燃料ガスの量を調整することができる。そして、燃料ガス収容容器31から容器接続部32を介して供給される燃料ガスは、ガス導管34やガス・空気混合器(図示せず)などを通り、空気と混合されながらバーナ4に供給される。 The container connection portion 32 is connected to the operation knob portion 33, and the amount of fuel gas supplied from the fuel gas storage container 31 can be adjusted. Then, the fuel gas supplied from the fuel gas accommodating container 31 via the container connection portion 32 passes through a gas conduit 34, a gas / air mixer (not shown), and the like, and is supplied to the burner 4 while being mixed with air. To.
 バーナ4は、筐体21の内部において筐体21の底面部に設置されている。バーナ4の近傍には、電極(図示せず)が設けられている。利用者が操作摘まみ部33を回転させると、イグナイタ(図示せず)が押されてパルス電圧が発生する。バーナ4の近傍に設けられた電極は、操作摘まみ部33の回転により発生したパルス電圧により放電し、燃料ガス収容容器31からバーナ4に供給された燃料ガスを燃焼させ、バーナ4に点火することができる。 The burner 4 is installed on the bottom surface of the housing 21 inside the housing 21. An electrode (not shown) is provided in the vicinity of the burner 4. When the user rotates the operation knob 33, the igniter (not shown) is pushed and a pulse voltage is generated. The electrode provided in the vicinity of the burner 4 is discharged by the pulse voltage generated by the rotation of the operation knob 33, burns the fuel gas supplied to the burner 4 from the fuel gas accommodating container 31, and ignites the burner 4. be able to.
 本実施形態に係る可搬型発電装置2では、バーナ4の軸42は、設置面9に対して直交する方向A1に延びている。そのため、バーナ4から放出される火炎41は、設置面9に対して直交する方向A1に延びる。また、図2に表したように、バーナ4は、X方向に並んで配置された複数の火炎口43を有する。図2に表したX方向は、高温部51および低温部52の幅方向に相当する。図2に表したY方向は、X方向に直交し、高温部51および低温部52の高さ方向あるいは厚さ方向に相当する。そのため、図2に表したように、バーナ4は、高温部51の幅方向の略全体を略均一に火炎41の熱により加熱することができる。なお、バーナ4の筐体21の内部における設置位置、バーナ4の設置方向(バーナ4の軸42の向き)、およびバーナ4の形状は、必ずしも図1および図2に表した例に限定されるわけではない。 In the portable power generation device 2 according to the present embodiment, the axis 42 of the burner 4 extends in the direction A1 orthogonal to the installation surface 9. Therefore, the flame 41 emitted from the burner 4 extends in the direction A1 orthogonal to the installation surface 9. Further, as shown in FIG. 2, the burner 4 has a plurality of flame openings 43 arranged side by side in the X direction. The X direction shown in FIG. 2 corresponds to the width direction of the high temperature portion 51 and the low temperature portion 52. The Y direction shown in FIG. 2 is orthogonal to the X direction and corresponds to the height direction or the thickness direction of the high temperature portion 51 and the low temperature portion 52. Therefore, as shown in FIG. 2, the burner 4 can heat substantially the entire width direction of the high temperature portion 51 by the heat of the flame 41. The installation position of the burner 4 inside the housing 21, the installation direction of the burner 4 (direction of the axis 42 of the burner 4), and the shape of the burner 4 are not necessarily limited to the examples shown in FIGS. 1 and 2. Do not mean.
 高温部51は、バーナ4の上方に設置されており、バーナ4から放出される火炎41および排ガスから伝わる熱により加熱される。高温部51は、例えばアルミニウムなどの周知の金属により形成され、火炎41および排ガスから伝わる熱を表面511において受ける。つまり、高温部51の表面511は、受熱面として機能する。図2に表したように、高温部51は、例えば複数のフィン512を有するフィン付きヒートシンクである。これによれば、高温部51は、火炎41および排ガスから伝わる熱を表面511およびフィン512において効率的に受け、その熱を熱電素子53に伝えることができる。なお、高温部51は、必ずしもフィン付きヒートシンクに限定されるわけではない。以下の説明では、高温部51が複数のフィン512を有するフィン付きヒートシンクである場合を例に挙げる。 The high temperature portion 51 is installed above the burner 4, and is heated by the heat transferred from the flame 41 emitted from the burner 4 and the exhaust gas. The high temperature portion 51 is formed of a well-known metal such as aluminum, and receives heat transferred from the flame 41 and the exhaust gas on the surface 511. That is, the surface 511 of the high temperature portion 51 functions as a heat receiving surface. As shown in FIG. 2, the high temperature portion 51 is, for example, a heat sink with fins having a plurality of fins 512. According to this, the high temperature portion 51 can efficiently receive the heat transferred from the flame 41 and the exhaust gas at the surface 511 and the fin 512, and transfer the heat to the thermoelectric element 53. The high temperature portion 51 is not necessarily limited to the heat sink with fins. In the following description, a case where the high temperature portion 51 is a heat sink with fins having a plurality of fins 512 will be described as an example.
 図1に表したように、バーナ4から放出される火炎41および排ガスから伝わる熱を受ける高温部51の表面511は、可搬型発電装置2の設置面9と直交する方向A1に対して傾斜している。言い換えれば、高温部51の表面511は、設置面9に対して傾いている。設置面9に対する高温部51の表面511の傾斜角度は、例えば約10°以上、40°以下程度である。但し、設置面9に対する高温部51の表面511の傾斜角度は、必ずしも10°以上、40°以下に限定されるわけではない。高温部51の表面511の傾斜角度の詳細については、後述する。本実施形態に係る可搬型発電装置2では、バーナ4の軸42が設置面9に対して直交する方向A1に延びているため、高温部51の表面511は、バーナ4から放出される火炎41および排ガスの放出方向に対して傾斜している。 As shown in FIG. 1, the surface 511 of the flame 41 emitted from the burner 4 and the high temperature portion 51 receiving heat transmitted from the exhaust gas is inclined with respect to the direction A1 orthogonal to the installation surface 9 of the portable power generation device 2. ing. In other words, the surface 511 of the high temperature portion 51 is inclined with respect to the installation surface 9. The inclination angle of the surface 511 of the high temperature portion 51 with respect to the installation surface 9 is, for example, about 10 ° or more and 40 ° or less. However, the inclination angle of the surface 511 of the high temperature portion 51 with respect to the installation surface 9 is not necessarily limited to 10 ° or more and 40 ° or less. The details of the inclination angle of the surface 511 of the high temperature portion 51 will be described later. In the portable power generation device 2 according to the present embodiment, since the axis 42 of the burner 4 extends in the direction A1 orthogonal to the installation surface 9, the surface 511 of the high temperature portion 51 is the flame 41 emitted from the burner 4. And it is inclined with respect to the exhaust gas emission direction.
 高温部51のフィン512は、高温部51の表面511の傾斜方向(すなわち傾斜の下方と傾斜の上方とを結ぶ方向)に沿って伸びている。これにより、高温部51は、バーナ4から放出される排ガスを高温部51の表面511に沿ってより円滑に流すことができるとともに、排気混合部7を通して可搬型発電装置2の外部に排ガスをより円滑に排出することができる。 The fin 512 of the high temperature portion 51 extends along the inclination direction of the surface 511 of the high temperature portion 51 (that is, the direction connecting the lower portion of the inclination and the upper portion of the inclination). As a result, the high temperature section 51 can allow the exhaust gas discharged from the burner 4 to flow more smoothly along the surface 511 of the high temperature section 51, and the exhaust gas is further discharged to the outside of the portable power generation device 2 through the exhaust mixing section 7. It can be discharged smoothly.
 低温部52は、高温部51の上方において高温部51に対向して配置され、高温部51よりも低い温度に保持される。本実施形態に係る可搬型発電装置2では、低温部52は、低温部52の上方において低温部52に対向して配置された送風機54から送られる空気により冷却され、高温部51よりも低い温度に保持される。低温部52は、例えばアルミニウムなどの周知の金属により形成されている。図2に表したように、低温部52は、例えば複数のフィン522を有するフィン付きヒートシンクである。これによれば、低温部52は、送風機54から送られる空気により効率的に冷却され、高温部51よりも低い温度により確実に保持される。なお、低温部52は、必ずしもフィン付きヒートシンクに限定されるわけではない。以下の説明では、低温部52が複数のフィン522を有するフィン付きヒートシンクである場合を例に挙げる。 The low temperature section 52 is arranged above the high temperature section 51 so as to face the high temperature section 51, and is held at a temperature lower than that of the high temperature section 51. In the portable power generation device 2 according to the present embodiment, the low temperature section 52 is cooled by the air sent from the blower 54 arranged above the low temperature section 52 so as to face the low temperature section 52, and the temperature is lower than that of the high temperature section 51. Is held in. The low temperature portion 52 is formed of a well-known metal such as aluminum. As shown in FIG. 2, the low temperature portion 52 is, for example, a heat sink with fins having a plurality of fins 522. According to this, the low temperature portion 52 is efficiently cooled by the air sent from the blower 54, and is reliably held at a temperature lower than that of the high temperature portion 51. The low temperature portion 52 is not necessarily limited to the heat sink with fins. In the following description, a case where the low temperature portion 52 is a heat sink with fins having a plurality of fins 522 will be described as an example.
 図1に表したように、低温部52の表面521は、可搬型発電装置2の設置面9と直交する方向A1に対して傾斜しており、高温部51の表面511と平行である。言い換えれば、低温部52の表面521は、設置面9に対して傾いており、高温部51の表面511と平行である。本実施形態に係る可搬型発電装置2では、バーナ4の軸42が設置面9に対して直交する方向A1に延びているため、低温部52の表面521は、バーナ4から放出される火炎41および排ガスの放出方向に対して傾斜している。 As shown in FIG. 1, the surface 521 of the low temperature portion 52 is inclined with respect to the direction A1 orthogonal to the installation surface 9 of the portable power generation device 2, and is parallel to the surface 511 of the high temperature portion 51. In other words, the surface 521 of the low temperature portion 52 is inclined with respect to the installation surface 9 and is parallel to the surface 511 of the high temperature portion 51. In the portable power generation device 2 according to the present embodiment, since the axis 42 of the burner 4 extends in the direction A1 orthogonal to the installation surface 9, the surface 521 of the low temperature portion 52 is the flame 41 emitted from the burner 4. And it is inclined with respect to the exhaust gas emission direction.
 低温部52のフィン522は、低温部52の表面521の傾斜方向(すなわち傾斜の下方と傾斜の上方とを結ぶ方向)に沿って伸びている。これにより、低温部52は、送風機54から送られる空気を低温部52の表面521に沿ってより円滑に流すことができるとともに、送風機54から送られる空気を排気混合部7を通して可搬型発電装置2の外部により円滑に排出することができる。 The fin 522 of the low temperature portion 52 extends along the inclination direction of the surface 521 of the low temperature portion 52 (that is, the direction connecting the lower portion of the inclination and the upper portion of the inclination). As a result, the low temperature section 52 can allow the air sent from the blower 54 to flow more smoothly along the surface 521 of the low temperature section 52, and the air sent from the blower 54 can be passed through the exhaust mixing section 7 to the portable power generation device 2. It can be discharged more smoothly to the outside.
 熱電素子53は、高温部51と低温部52との間に挟設され、高温部51と低温部52との間に生ずる温度差に基づいて発電する。熱電素子53は、ゼーベック効果を利用して熱起電力を発生させ、熱電変換素子あるいは熱電発電素子などとも呼ばれる。熱電素子53は、高温部51と低温部52との間に生ずる温度差が例えば約100℃~150℃程度になると、より多くの熱起電力を発生させることができる。 The thermoelectric element 53 is sandwiched between the high temperature section 51 and the low temperature section 52, and generates electricity based on the temperature difference generated between the high temperature section 51 and the low temperature section 52. The thermoelectric element 53 generates a thermoelectromotive force by utilizing the Seebeck effect, and is also called a thermoelectric conversion element or a thermoelectric power generation element. The thermoelectric element 53 can generate more thermoelectromotive force when the temperature difference generated between the high temperature portion 51 and the low temperature portion 52 is, for example, about 100 ° C. to 150 ° C.
 ガイド部6は、高温部51からみてバーナ4の側に設けられており、例えば高温部51に固定されている。ガイド部6は、第1内面61と、第2内面62と、を有する。図1および図2に表したように、本実施形態に係る可搬型発電装置2では、ガイド部6の第2内面62は、高温部51のフィン512の先端部513に接触している。ガイド部6の第1内面61は、第2内面62に接続されているとともに、高温部51のフィン512の先端部513から離れつつ、第2内面62との接続部からバーナ4の火炎口43に向かって延びている。そして、ガイド部6の下端部64は、バーナ4の軸42と高温部51の下部とが交差する位置65よりも下側に配置される。本実施形態では、火炎41は、高温部51のフィン512の先端部513と接触する位置にあるが、バーナ4が軸42上にあれば高温部51のフィン512の先端部513と接触しない位置にあってもよい。 The guide portion 6 is provided on the side of the burner 4 when viewed from the high temperature portion 51, and is fixed to, for example, the high temperature portion 51. The guide portion 6 has a first inner surface 61 and a second inner surface 62. As shown in FIGS. 1 and 2, in the portable power generation device 2 according to the present embodiment, the second inner surface 62 of the guide portion 6 is in contact with the tip portion 513 of the fin 512 of the high temperature portion 51. The first inner surface 61 of the guide portion 6 is connected to the second inner surface 62, and while being separated from the tip portion 513 of the fin 512 of the high temperature portion 51, the flame port 43 of the burner 4 is separated from the connection portion with the second inner surface 62. Extends towards. The lower end portion 64 of the guide portion 6 is arranged below the position 65 where the shaft 42 of the burner 4 and the lower portion of the high temperature portion 51 intersect. In the present embodiment, the flame 41 is in a position where it comes into contact with the tip portion 513 of the fin 512 of the high temperature portion 51, but if the burner 4 is on the shaft 42, it is in a position where it does not come into contact with the tip portion 513 of the fin 512 of the high temperature portion 51. May be there.
 ガイド部6は、バーナ4から放出される排ガスを導く流路63を形成する。流路63は、高温部51のフィン512の先端部513を含む平面と、ガイド部6の第1内面61と、により挟まれた第1空間631を有する。また、流路63は、高温部51の表面511と、高温部51のフィン512の側面514と、ガイド部6の第2内面62と、により囲まれた第2空間632を有する。例えば図1に表した矢印A2、A3、A4のように、バーナ4から放出される排ガスは、流路63の第1空間631および第2空間632を流れ、高温部51の表面511に沿って傾斜の上方に導かれる。なお、ガイド部6は、バーナ4から放出される排ガスを高温部51の表面511に沿って傾斜の上方に導く流路63を形成する限りにおいて、高温部51に固定されることには限定されず、例えば筐体21に固定されていてもよい。 The guide portion 6 forms a flow path 63 that guides the exhaust gas discharged from the burner 4. The flow path 63 has a first space 631 sandwiched between a plane including the tip portion 513 of the fin 512 of the high temperature portion 51 and the first inner surface 61 of the guide portion 6. Further, the flow path 63 has a second space 632 surrounded by the surface 511 of the high temperature portion 51, the side surface 514 of the fin 512 of the high temperature portion 51, and the second inner surface 62 of the guide portion 6. For example, as shown by arrows A2, A3, and A4 shown in FIG. 1, the exhaust gas discharged from the burner 4 flows through the first space 631 and the second space 632 of the flow path 63, and flows along the surface 511 of the high temperature portion 51. Guided above the slope. The guide portion 6 is limited to being fixed to the high temperature portion 51 as long as the flow path 63 that guides the exhaust gas discharged from the burner 4 upward along the surface 511 of the high temperature portion 51 is formed. Instead, for example, it may be fixed to the housing 21.
 邪魔板8は、高温部51の下方の端部515に配置されている。邪魔板8は、高温部51に固定されていてもよく、筐体21に固定されていてもよい。図1に表した矢印A7のように、邪魔板8は、図1に表した矢印A2、A3、A4と逆向きに流れる排ガスを高温部51の下側へ導く。つまり、邪魔板8は、図1に表した矢印A2、A3、A4と逆向きに流れる排ガスが高温部51の表面511に沿って傾斜の下方に導かれた後に高温部51と筐体21との間の隙間を上昇し、低温部52に向かって流れることを妨げる。言い換えれば、邪魔板8は、図1に表した矢印A2、A3、A4と逆向きに流れる排ガスの回り込みを抑える。これにより、バーナ4から放出される排ガスの熱を有効利用することができ、高温部51の加熱効率が低下することを抑えることができる。あるいは、低温部52の冷却が排ガスの熱により阻害されることを抑えることができる。 The obstruction plate 8 is arranged at the lower end portion 515 of the high temperature portion 51. The baffle plate 8 may be fixed to the high temperature portion 51 or may be fixed to the housing 21. As shown by the arrow A7 shown in FIG. 1, the baffle plate 8 guides the exhaust gas flowing in the direction opposite to the arrows A2, A3, and A4 shown in FIG. 1 to the lower side of the high temperature portion 51. That is, the obstruction plate 8 has the high temperature portion 51 and the housing 21 after the exhaust gas flowing in the direction opposite to the arrows A2, A3, and A4 shown in FIG. 1 is guided downward along the surface 511 of the high temperature portion 51. It rises in the gap between them and prevents it from flowing toward the low temperature portion 52. In other words, the baffle plate 8 suppresses the wraparound of the exhaust gas flowing in the direction opposite to the arrows A2, A3, and A4 shown in FIG. As a result, the heat of the exhaust gas discharged from the burner 4 can be effectively used, and it is possible to suppress the decrease in the heating efficiency of the high temperature portion 51. Alternatively, it is possible to prevent the cooling of the low temperature portion 52 from being hindered by the heat of the exhaust gas.
 送風機54は、低温部52に対向して配置されている。送風機54は、熱電素子53により生ずる起電力を供給されることより駆動し、低温部52に空気を送り低温部52を冷却する。例えば、送風機54は、モータ541と、プロペラ542と、を有する軸流ファンである。モータ541は、熱電素子53から供給される電力により駆動する。プロペラ542は、モータ541から伝達される回転力により回転し、吸入口544から空気を吸い込むとともに、低温部52に対して冷却風としての空気を送る。 The blower 54 is arranged to face the low temperature portion 52. The blower 54 is driven by being supplied with an electromotive force generated by the thermoelectric element 53, and sends air to the low temperature section 52 to cool the low temperature section 52. For example, the blower 54 is an axial fan having a motor 541 and a propeller 542. The motor 541 is driven by the electric power supplied from the thermoelectric element 53. The propeller 542 rotates by the rotational force transmitted from the motor 541, sucks air from the suction port 544, and sends air as cooling air to the low temperature portion 52.
 ここで、送風機54は、低温部52の先端部526に対向して配置されている。送風機54の軸543は、低温部52の表面521に対して直交する。すなわち、送風機54の軸543は、低温部52の表面521に対して垂直である。そのため、例えば図1に表した矢印A5のように、送風機54は、低温部52の表面521に対して直交する方向(すなわち垂直方向)に空気を送る。これにより、送風機54は、互いに隣り合うフィン522の側面523により挟まれた空間524に効率的に空気を送り、低温部52の表面521を効率的に冷却することができる。そして、例えば図1に表した矢印A6のように、送風機54から低温部52に向かって送られた空気は、互いに隣り合うフィン522の側面523により挟まれた空間524を流れ、低温部52の表面521に沿って傾斜の上方に導かれる。なお、本実施形態では、送風機54の軸543が低温部52の表面521に対して直交する例を挙げたが、送風機54は、これだけには限定されず、サイズや内部構造等の可搬型発電装置2の設計条件に合わせ低温部52の表面521に対して直交する方向ではなく斜め或いは平行の方向に空気を送ってもよい。送風機54が低温部52の表面521に対して平行方向に空気を送る例については、後述する。 Here, the blower 54 is arranged so as to face the tip portion 526 of the low temperature portion 52. The axis 543 of the blower 54 is orthogonal to the surface 521 of the low temperature portion 52. That is, the shaft 543 of the blower 54 is perpendicular to the surface 521 of the low temperature portion 52. Therefore, for example, as shown by the arrow A5 shown in FIG. 1, the blower 54 sends air in a direction orthogonal to the surface 521 of the low temperature portion 52 (that is, in a vertical direction). As a result, the blower 54 can efficiently send air to the space 524 sandwiched by the side surfaces 523 of the fins 522 adjacent to each other, and can efficiently cool the surface 521 of the low temperature portion 52. Then, for example, as shown by the arrow A6 shown in FIG. 1, the air sent from the blower 54 toward the low temperature portion 52 flows through the space 524 sandwiched by the side surfaces 523 of the fins 522 adjacent to each other, and the low temperature portion 52. Guided above the slope along the surface 521. In the present embodiment, an example is given in which the axis 543 of the blower 54 is orthogonal to the surface 521 of the low temperature portion 52, but the blower 54 is not limited to this, and the portable power generation such as size and internal structure is not limited to this. Depending on the design conditions of the apparatus 2, air may be sent in a direction diagonally or parallel to the surface 521 of the low temperature portion 52, not in a direction orthogonal to the surface 521. An example in which the blower 54 sends air in a direction parallel to the surface 521 of the low temperature portion 52 will be described later.
 また、低温部52の下方の端部525における開口面積は、下方の端部525よりも上方の部分における空間524の開口面積よりも狭くてもよい。ここでいう「開口面積」とは、図1に表した矢印A21の方向に対して垂直な面における開口面積をいうものとする。これによれば、低温部52の下方の端部525における開口面積が、下方の端部525よりも上方の部分における空間524の開口面積と同じあるいは広い場合と比較して、低温部52の下方の端部525から空間524の外部へ排出される図1に表した矢印A6と逆向きに流れる冷却風の量を抑えることができる。これにより、図1に表した矢印A6のように、送風機54から低温部52に向かって送られた空気を低温部52の表面521に沿って傾斜の上方により確実に導くことができる。 Further, the opening area of the lower end portion 525 of the low temperature portion 52 may be smaller than the opening area of the space 524 in the portion above the lower end portion 525. The "opening area" here means the opening area in the plane perpendicular to the direction of the arrow A21 shown in FIG. According to this, the lower portion of the low temperature portion 52 is lower than the case where the opening area at the lower end portion 525 of the low temperature portion 52 is the same as or wider than the opening area of the space 524 in the portion above the lower end portion 525. It is possible to suppress the amount of cooling air flowing in the direction opposite to the arrow A6 shown in FIG. 1 discharged from the end portion 525 to the outside of the space 524. As a result, as shown by the arrow A6 shown in FIG. 1, the air sent from the blower 54 toward the low temperature portion 52 can be more reliably guided above the slope along the surface 521 of the low temperature portion 52.
 排気混合部7は、高温部51および低温部52からみて空気の流れの下流側に設けられている。排気混合部7は、高温部51の表面511に沿って流れた排ガスを含む空気と、低温部52の表面521に沿って流れた冷却風を含む空気と、を混合する流路71を形成し、流路71において混合した空気を排気口72を通して筐体21の外部へ導く。つまり、高温部51の表面511に沿って流れた排ガスを含む空気と、低温部52の表面521に沿って流れた冷却風を含む空気と、は、排気混合部7により形成された流路71に導かれるとともに流路71において混合され、排気口72を通して筐体21の外部へ排出される。なお、排気混合部7は、高温部51の表面511に沿って流れた排ガスを含む空気と、低温部52の表面521に沿って流れた冷却風を含む空気と、を混合する流路71を形成する限りにおいて、高温部51および低温部52の少なくともいずれかに固定されていてもよく、筐体21に固定されていてもよい。 The exhaust mixing section 7 is provided on the downstream side of the air flow when viewed from the high temperature section 51 and the low temperature section 52. The exhaust mixing section 7 forms a flow path 71 that mixes the air containing the exhaust gas flowing along the surface 511 of the high temperature section 51 and the air containing the cooling air flowing along the surface 521 of the low temperature section 52. , The air mixed in the flow path 71 is guided to the outside of the housing 21 through the exhaust port 72. That is, the air containing the exhaust gas flowing along the surface 511 of the high temperature portion 51 and the air containing the cooling air flowing along the surface 521 of the low temperature portion 52 are the flow path 71 formed by the exhaust mixing portion 7. And mixed in the flow path 71, and discharged to the outside of the housing 21 through the exhaust port 72. The exhaust mixing section 7 has a flow path 71 that mixes the air containing the exhaust gas flowing along the surface 511 of the high temperature section 51 and the air containing the cooling air flowing along the surface 521 of the low temperature section 52. As long as it is formed, it may be fixed to at least one of the high temperature portion 51 and the low temperature portion 52, or may be fixed to the housing 21.
 次に、本実施形態に係る可搬型発電装置2の作用について説明する。
 まず、利用者が操作摘まみ部33を回転させると、バーナ4の近傍に設けられた電極(図示せず)は、操作摘まみ部33の回転により発生したパルス電圧により放電し、燃料ガス収容容器31からバーナ4に供給された燃料ガスを燃焼させる。これにより、火炎41が、バーナ4の火炎口43から放出する。また、排ガスが、火炎41の放出とともにバーナ4の火炎口43から放出する。
Next, the operation of the portable power generation device 2 according to the present embodiment will be described.
First, when the user rotates the operation knob 33, the electrodes (not shown) provided in the vicinity of the burner 4 are discharged by the pulse voltage generated by the rotation of the operation knob 33 to accommodate the fuel gas. The fuel gas supplied from the container 31 to the burner 4 is burned. As a result, the flame 41 is emitted from the flame port 43 of the burner 4. Further, the exhaust gas is emitted from the flame port 43 of the burner 4 together with the emission of the flame 41.
 そうすると、高温部51は、火炎41から伝わる熱を表面511およびフィン512において受けることにより加熱される。また、バーナ4から放出された排ガスは、高温部51に向かって流れる。そのため、高温部51は、排ガスから伝わる熱を表面511およびフィン512において受けることにより加熱される。 Then, the high temperature portion 51 is heated by receiving the heat transmitted from the flame 41 at the surface 511 and the fin 512. Further, the exhaust gas discharged from the burner 4 flows toward the high temperature portion 51. Therefore, the high temperature portion 51 is heated by receiving the heat transferred from the exhaust gas at the surface 511 and the fins 512.
 ここで、前述したように、高温部51の表面511は、可搬型発電装置2の設置面9と直交する方向A1に対して傾斜している。そのため、バーナ4から放出された火炎41の熱は、設置面9と直交する方向A1に対して傾斜した高温部51の表面511に沿って伝わる。そのため、火炎41の熱が高温部51の局所的な部分に伝わることを抑え、火炎41の熱により高温部51の表面511の全体を一様に加熱することができる。 Here, as described above, the surface 511 of the high temperature portion 51 is inclined with respect to the direction A1 orthogonal to the installation surface 9 of the portable power generation device 2. Therefore, the heat of the flame 41 emitted from the burner 4 is transmitted along the surface 511 of the high temperature portion 51 inclined with respect to the direction A1 orthogonal to the installation surface 9. Therefore, the heat of the flame 41 can be suppressed from being transmitted to the local portion of the high temperature portion 51, and the entire surface 511 of the high temperature portion 51 can be uniformly heated by the heat of the flame 41.
 また、例えば図1に表した矢印A2、A3、A4のように、バーナ4から放出された排ガスは、ガイド部6により形成された流路63の第1空間631および第2空間632を流れ、設置面9と直交する方向A1に対して傾斜した高温部51の表面511に沿って流れる。そのため、バーナ4から放出された排ガスが高温部51の局所的な部分に籠もることを抑えることができる。そのため、排ガスの熱が高温部51の局所的な部分に伝わることを抑え、排ガスの熱により高温部51の表面511の全体を一様に加熱することができる。 Further, for example, as shown by arrows A2, A3, and A4 shown in FIG. 1, the exhaust gas discharged from the burner 4 flows through the first space 631 and the second space 632 of the flow path 63 formed by the guide portion 6. It flows along the surface 511 of the high temperature portion 51 inclined with respect to the direction A1 orthogonal to the installation surface 9. Therefore, it is possible to prevent the exhaust gas emitted from the burner 4 from being trapped in the local portion of the high temperature portion 51. Therefore, the heat of the exhaust gas can be suppressed from being transmitted to the local portion of the high temperature portion 51, and the entire surface 511 of the high temperature portion 51 can be uniformly heated by the heat of the exhaust gas.
 これにより、高温部51の表面511は、バーナ4から放出される火炎41および排ガスにより効率的に加熱される。また、高温部51の所定部分が局所的に加熱されることを抑えることができるため、火炎41および排ガスの熱が高温部51を介して低温部52に伝わることを抑えることができる。そのため、高温部51と低温部52との間に生ずる温度差を効率的に発生させることができる。 As a result, the surface 511 of the high temperature portion 51 is efficiently heated by the flame 41 and the exhaust gas emitted from the burner 4. Further, since it is possible to suppress the local heating of the predetermined portion of the high temperature portion 51, it is possible to suppress the heat of the flame 41 and the exhaust gas from being transmitted to the low temperature portion 52 via the high temperature portion 51. Therefore, the temperature difference generated between the high temperature portion 51 and the low temperature portion 52 can be efficiently generated.
 高温部51と低温部52との間に温度差が生ずると、熱電素子53は、高温部51と低温部52との間に生ずる温度差に基づいて発電する。そして、例えば図1に表した矢印A5のように、送風機54は、熱電素子53により生ずる起電力を供給されることより駆動し、低温部52に空気を送り低温部52を冷却する。すなわち、送風機54は、熱電素子53により生ずる起電力を供給されて駆動し、低温部52の表面521において強制対流を生じさせる。これにより、送風機54は、低温部52を強制的に冷却する。そのため、高温部51と低温部52との間に生ずる温度差を効率的に発生させることができる。 When a temperature difference occurs between the high temperature unit 51 and the low temperature unit 52, the thermoelectric element 53 generates electricity based on the temperature difference between the high temperature unit 51 and the low temperature unit 52. Then, for example, as shown by the arrow A5 shown in FIG. 1, the blower 54 is driven by being supplied with the electromotive force generated by the thermoelectric element 53, and sends air to the low temperature section 52 to cool the low temperature section 52. That is, the blower 54 is supplied with the electromotive force generated by the thermoelectric element 53 and driven to generate forced convection on the surface 521 of the low temperature portion 52. As a result, the blower 54 forcibly cools the low temperature section 52. Therefore, the temperature difference generated between the high temperature portion 51 and the low temperature portion 52 can be efficiently generated.
 前述したように、低温部52の表面521は、可搬型発電装置2の設置面9と直交する方向A1に対して傾斜しており、高温部51の表面511と平行である。そのため、例えば図1に表した矢印A6のように、送風機54から低温部52に向かって送られた空気は、互いに隣り合うフィン522の側面523により挟まれた空間524を流れ、低温部52の表面521に沿って傾斜の上方に導かれる。 As described above, the surface 521 of the low temperature portion 52 is inclined with respect to the direction A1 orthogonal to the installation surface 9 of the portable power generation device 2, and is parallel to the surface 511 of the high temperature portion 51. Therefore, for example, as shown by the arrow A6 shown in FIG. 1, the air sent from the blower 54 toward the low temperature portion 52 flows through the space 524 sandwiched by the side surfaces 523 of the fins 522 adjacent to each other, and the low temperature portion 52. Guided above the slope along the surface 521.
 高温部51の表面511に沿って流れた排ガスを含む空気は、排気混合部7により形成された流路71に導かれる。また、低温部52の表面521に沿って流れた冷却風を含む空気は、排気混合部7により形成された流路71に導かれる。そして、高温部51の表面511に沿って流れた排ガスを含む空気と、低温部52の表面521に沿って流れた冷却風を含む空気と、は、排気混合部7の流路71において混合され、排気口72を通して筐体21の外部へ排出される。 The air containing the exhaust gas that has flowed along the surface 511 of the high temperature portion 51 is guided to the flow path 71 formed by the exhaust mixing portion 7. Further, the air including the cooling air flowing along the surface 521 of the low temperature portion 52 is guided to the flow path 71 formed by the exhaust mixing portion 7. Then, the air containing the exhaust gas flowing along the surface 511 of the high temperature section 51 and the air containing the cooling air flowing along the surface 521 of the low temperature section 52 are mixed in the flow path 71 of the exhaust mixing section 7. , Is discharged to the outside of the housing 21 through the exhaust port 72.
 本実施形態に係る可搬型発電装置2によれば、高温部51の表面511(熱を受ける面)が可搬型発電装置2の設置面9と直交する方向A1に対して傾斜しているため、バーナ4から放出された火炎41の熱は、設置面9と直交する方向A1に対して傾斜した高温部51の表面511に沿って伝わる。そのため、火炎41の熱が高温部51の局所的な部分に伝わることを抑え、火炎41の熱により高温部51の表面511の全体を一様に加熱することができる。また、バーナ4から放出された排ガスは、設置面9と直交する方向に対して傾斜した高温部51の表面511に沿って流れる。そのため、バーナ4から放出された排ガスが高温部51の局所的な部分に籠もることを抑えることができる。そのため、排ガスの熱が高温部51の局所的な部分に伝わることを抑え、排ガスの熱により高温部51の表面511の全体を一様に加熱することができる。これにより、高温部51の表面511は、バーナ4から放出される火炎41および排ガスにより効率的に加熱される。また、高温部51の所定部分が局所的に加熱されることを抑えることができるため、火炎41および排ガスの熱が高温部51を介して低温部52に伝わることを抑えることができる。そのため、高温部51と低温部52との間に生ずる温度差を効率的に発生させることができる。これにより、本実施形態に係る可搬型発電装置2の発電量および発電効率を向上させることができる。 According to the portable power generation device 2 according to the present embodiment, the surface 511 (the surface receiving heat) of the high temperature portion 51 is inclined with respect to the direction A1 orthogonal to the installation surface 9 of the portable power generation device 2. The heat of the flame 41 emitted from the burner 4 is transmitted along the surface 511 of the high temperature portion 51 inclined with respect to the direction A1 orthogonal to the installation surface 9. Therefore, the heat of the flame 41 can be suppressed from being transmitted to the local portion of the high temperature portion 51, and the entire surface 511 of the high temperature portion 51 can be uniformly heated by the heat of the flame 41. Further, the exhaust gas discharged from the burner 4 flows along the surface 511 of the high temperature portion 51 inclined with respect to the direction orthogonal to the installation surface 9. Therefore, it is possible to prevent the exhaust gas emitted from the burner 4 from being trapped in the local portion of the high temperature portion 51. Therefore, the heat of the exhaust gas can be suppressed from being transmitted to the local portion of the high temperature portion 51, and the entire surface 511 of the high temperature portion 51 can be uniformly heated by the heat of the exhaust gas. As a result, the surface 511 of the high temperature portion 51 is efficiently heated by the flame 41 and the exhaust gas emitted from the burner 4. Further, since it is possible to suppress the local heating of the predetermined portion of the high temperature portion 51, it is possible to suppress the heat of the flame 41 and the exhaust gas from being transmitted to the low temperature portion 52 via the high temperature portion 51. Therefore, the temperature difference generated between the high temperature portion 51 and the low temperature portion 52 can be efficiently generated. Thereby, the power generation amount and the power generation efficiency of the portable power generation device 2 according to the present embodiment can be improved.
 可搬型発電装置2により供給される電圧値は、特には限定されず、例えば5Vや12Vなどである。また、可搬型発電装置2が電圧を供給する接続端子は、特には限定されず、例えばUSB(Universal Serial Bus)や、車両に搭載されるシガーライタソケット(シガーソケット)やアクセサリーソケットなどである。 The voltage value supplied by the portable power generation device 2 is not particularly limited, and is, for example, 5V or 12V. The connection terminal to which the portable power generation device 2 supplies the voltage is not particularly limited, and is, for example, a USB (Universal Serial Bus), a cigar writer socket (cigar socket) mounted on a vehicle, an accessory socket, or the like.
 また、前述したように、本実施形態に係る可搬型発電装置2は、バーナ4から放出される排ガスを導く流路63を形成するガイド部6を備える。本実施形態に係る可搬型発電装置2によれば、バーナ4から放出された排ガスは、ガイド部6により形成された流路63において傾斜の上方に向かって導かれ、設置面9と直交する方向A1に対して傾斜した高温部51の表面511に沿ってより確実に流れる。そのため、排ガスの熱が高温部51の局所的な部分に伝わることをより一層抑え、排ガスの熱により高温部51の表面511の全体を一様に加熱することができる。また、ガイド部6の流路63の外部に存在する気体の温度よりも高温の排ガスがガイド部6の流路63の内部を流れるため、ガイド部6が煙突の役割を果たし、煙突効果が生ずる。そのため、バーナ4から放出された排ガスが高温部51の局所的な部分に籠もることをより一層抑え、排ガスの熱により高温部51の表面511の全体を一様に加熱することができる。これにより、本実施形態に係る可搬型発電装置2の発電量および発電効率をより一層向上させることができる。 Further, as described above, the portable power generation device 2 according to the present embodiment includes a guide portion 6 that forms a flow path 63 for guiding the exhaust gas discharged from the burner 4. According to the portable power generation device 2 according to the present embodiment, the exhaust gas discharged from the burner 4 is guided upward in the slope in the flow path 63 formed by the guide portion 6 and is orthogonal to the installation surface 9. It flows more reliably along the surface 511 of the high temperature portion 51 inclined with respect to A1. Therefore, the heat of the exhaust gas can be further suppressed from being transmitted to the local portion of the high temperature portion 51, and the entire surface 511 of the high temperature portion 51 can be uniformly heated by the heat of the exhaust gas. Further, since the exhaust gas having a temperature higher than the temperature of the gas existing outside the flow path 63 of the guide portion 6 flows inside the flow path 63 of the guide portion 6, the guide portion 6 plays the role of a chimney and the chimney effect is generated. .. Therefore, the exhaust gas discharged from the burner 4 can be further suppressed from being trapped in the local portion of the high temperature portion 51, and the entire surface 511 of the high temperature portion 51 can be uniformly heated by the heat of the exhaust gas. Thereby, the power generation amount and the power generation efficiency of the portable power generation device 2 according to the present embodiment can be further improved.
 また、ガイド部6の第2内面62は、高温部51のフィン512の先端部513に接触している。そのため、例えば図1に表した矢印A2、A3、A4のように、ガイド部6は、流路63の第1空間631を流れた排ガスを流路63の第2空間632により確実に導き、高温部51の表面511に沿って排ガスを傾斜の上方に導くことができる。すなわち、隣り合うフィン512同士の間隔が比較的狭い場合には、バーナ4から放出された排ガスが、フィン512の先端部513において生ずる圧力損失により、互いに隣り合うフィン512の側面514により挟まれた空間(すなわち第2空間632)に入りにくいことがある。これに対して、本実施形態に係る可搬型発電装置2では、ガイド部6の第2内面62が高温部51のフィン512の先端部513に接触しているため、ガイド部6は、互いに隣り合うフィン512の側面514により挟まれた空間に排ガスをより確実に導くことができる。 Further, the second inner surface 62 of the guide portion 6 is in contact with the tip portion 513 of the fin 512 of the high temperature portion 51. Therefore, for example, as shown by arrows A2, A3, and A4 shown in FIG. 1, the guide portion 6 reliably guides the exhaust gas flowing through the first space 631 of the flow path 63 by the second space 632 of the flow path 63, and the temperature is high. Exhaust gas can be guided above the slope along the surface 511 of the portion 51. That is, when the distance between the adjacent fins 512 is relatively narrow, the exhaust gas discharged from the burner 4 is sandwiched by the side surfaces 514 of the adjacent fins 512 due to the pressure loss generated at the tip portion 513 of the fins 512. It may be difficult to enter the space (that is, the second space 632). On the other hand, in the portable power generation device 2 according to the present embodiment, since the second inner surface 62 of the guide portion 6 is in contact with the tip portion 513 of the fin 512 of the high temperature portion 51, the guide portions 6 are adjacent to each other. Exhaust gas can be more reliably guided to the space sandwiched by the side surfaces 514 of the matching fins 512.
 また、ガイド部6の下端部64は、バーナ4の軸42と高温部51の下部とが交差する位置65よりも下側に配置されている。そのため、ガイド部6は、バーナ4から放出された排ガスがガイド部6の外側に逃げることを抑え、バーナ4から放出された排ガスを流路63により確実に導くことができる。これにより、本実施形態に係る可搬型発電装置2の発電量および発電効率をより一層向上させることができる。 Further, the lower end portion 64 of the guide portion 6 is arranged below the position 65 where the shaft 42 of the burner 4 and the lower portion of the high temperature portion 51 intersect. Therefore, the guide unit 6 can prevent the exhaust gas discharged from the burner 4 from escaping to the outside of the guide unit 6, and can surely guide the exhaust gas discharged from the burner 4 through the flow path 63. Thereby, the power generation amount and the power generation efficiency of the portable power generation device 2 according to the present embodiment can be further improved.
 さらに、本実施形態に係る可搬型発電装置2によれば、送風機54は、熱電素子53により生ずる起電力を供給されて駆動し、低温部52の表面521において強制対流を生じさせる。そのため、高温部51と低温部52との間に生ずる温度差を効率的に発生させることができる。これにより、本実施形態に係る可搬型発電装置2の発電量および発電効率をより一層向上させることができる。また、排気混合部7は、高温部51の表面511に沿って流れた排ガスを含む空気と、低温部52の表面521に沿って流れた冷却風を含む空気と、を混合する流路71を形成する。これにより、バーナ4から放出され排気混合部7の流路71に導かれた排ガスは、排気口72を通して可搬型発電装置2の外部に強制的に排出される。また、排ガスを含む空気が排気混合部7の流路71において送風機54から送られた冷却風を含む空気と混合されるため、可搬型発電装置2の外部に排出される空気の温度を抑えることができる。 Further, according to the portable power generation device 2 according to the present embodiment, the blower 54 is supplied with an electromotive force generated by the thermoelectric element 53 and driven to generate forced convection on the surface 521 of the low temperature unit 52. Therefore, the temperature difference generated between the high temperature portion 51 and the low temperature portion 52 can be efficiently generated. Thereby, the power generation amount and the power generation efficiency of the portable power generation device 2 according to the present embodiment can be further improved. Further, the exhaust mixing section 7 has a flow path 71 that mixes the air containing the exhaust gas flowing along the surface 511 of the high temperature section 51 and the air containing the cooling air flowing along the surface 521 of the low temperature section 52. Form. As a result, the exhaust gas discharged from the burner 4 and guided to the flow path 71 of the exhaust mixing unit 7 is forcibly discharged to the outside of the portable power generation device 2 through the exhaust port 72. Further, since the air containing the exhaust gas is mixed with the air containing the cooling air sent from the blower 54 in the flow path 71 of the exhaust mixing unit 7, the temperature of the air discharged to the outside of the portable power generation device 2 is suppressed. Can be done.
 次に、本実施形態の変形例に係る可搬型発電装置について説明する。
 なお、本変形例に係る可搬型発電装置2Aの構成要素が、図1および図2に関して前述した本実施形態に係る可搬型発電装置2の構成要素と同様である場合には、重複する説明は適宜省略し、以下、相違点を中心に説明する。
Next, a portable power generation device according to a modified example of the present embodiment will be described.
If the components of the portable power generation device 2A according to the present modification are the same as the components of the portable power generation device 2 according to the present embodiment described above with respect to FIGS. 1 and 2, the overlapping description will be described. It will be omitted as appropriate, and the differences will be mainly described below.
 図3は、本実施形態の変形例に係る可搬型発電装置を表す平面図である。
 なお、図3は、図1に表した矢印A21の方向からみたときの平面図に相当する。図3においては、説明の便宜上、筐体21および排気混合部7を省略している。
FIG. 3 is a plan view showing a portable power generation device according to a modified example of the present embodiment.
Note that FIG. 3 corresponds to a plan view when viewed from the direction of the arrow A21 shown in FIG. In FIG. 3, for convenience of explanation, the housing 21 and the exhaust mixing unit 7 are omitted.
 図3に表したように、本変形例に係る可搬型発電装置2Aでは、ガイド部6の第2内面62は、高温部51のフィン512の先端部513からバーナ4の側に離れている。具体的には、ガイド部6の第2内面62は、高温部51のフィン512の先端部513から高温部51の表面511の法線方向に向かって離れている。そのため、ガイド部6により形成される流路63は、第1空間631(図1参照)と、第2空間632と、第3空間633と、を有する。 As shown in FIG. 3, in the portable power generation device 2A according to the present modification, the second inner surface 62 of the guide portion 6 is separated from the tip portion 513 of the fin 512 of the high temperature portion 51 toward the burner 4. Specifically, the second inner surface 62 of the guide portion 6 is separated from the tip portion 513 of the fin 512 of the high temperature portion 51 toward the normal direction of the surface 511 of the high temperature portion 51. Therefore, the flow path 63 formed by the guide portion 6 has a first space 631 (see FIG. 1), a second space 632, and a third space 633.
 第1空間631および第2空間632は、図1および図2に関して前述した通りである。本変形例に係る可搬型発電装置2Aでは、ガイド部6により形成される流路63は、第3空間633をさらに有する。第3空間633は、高温部51のフィン512の先端部513を含む平面と、ガイド部6の第2内面62と、により挟まれた空間である。この点において、本変形例に係る可搬型発電装置2Aは、図1および図2に関して前述した本実施形態に係る可搬型発電装置2とは異なる。他の構造は、図1および図2に関して前述した本実施形態に係る可搬型発電装置2の構造と同様である。 The first space 631 and the second space 632 are as described above with respect to FIGS. 1 and 2. In the portable power generation device 2A according to this modification, the flow path 63 formed by the guide portion 6 further has a third space 633. The third space 633 is a space sandwiched between a flat surface including the tip portion 513 of the fin 512 of the high temperature portion 51 and the second inner surface 62 of the guide portion 6. In this respect, the portable power generation device 2A according to the present modification is different from the portable power generation device 2 according to the present embodiment described above with respect to FIGS. 1 and 2. Other structures are the same as the structure of the portable power generation device 2 according to the present embodiment described above with respect to FIGS. 1 and 2.
 バーナ4から放出された排ガスは、ガイド部6により形成された流路63の第1空間631を流れた後、流路63の第2空間632および第3空間633を流れる。このとき、第3空間633の圧力損失が第2空間632の圧力損失よりも低く、またガイド部6による煙突効果が生ずるため、排ガスを含まない空気を流路63の外部から流路63の第1空間631を通して流路63の第3空間633に導くことができる。これにより、バーナ4に供給された燃料ガスの完全燃焼を促進させることができる。このように、本変形例に係る可搬型発電装置2Aによれば、ガイド部6により形成された流路63に排ガスを含まない空気を効率的に導入することができ、バーナ4に供給された燃料ガスの完全燃焼を促進させることができる。また、図1および図2に関して前述した効果と同様の効果が得られる。 The exhaust gas discharged from the burner 4 flows through the first space 631 of the flow path 63 formed by the guide portion 6, and then flows through the second space 632 and the third space 633 of the flow path 63. At this time, the pressure loss of the third space 633 is lower than the pressure loss of the second space 632, and the chimney effect by the guide portion 6 is generated. It can be guided to the third space 633 of the flow path 63 through one space 631. As a result, complete combustion of the fuel gas supplied to the burner 4 can be promoted. As described above, according to the portable power generation device 2A according to the present modification, the air containing no exhaust gas can be efficiently introduced into the flow path 63 formed by the guide portion 6, and the air is supplied to the burner 4. Complete combustion of fuel gas can be promoted. Further, the same effects as those described above can be obtained with respect to FIGS. 1 and 2.
 次に、本発明の第2実施形態について説明する。
 なお、第2実施形態に係る可搬型発電装置2Bの構成要素が、図1~図3に関して前述した第1実施形態に係る可搬型発電装置2、2Aの構成要素と同様である場合には、重複する説明は適宜省略し、以下、相違点を中心に説明する。
Next, a second embodiment of the present invention will be described.
When the components of the portable power generation device 2B according to the second embodiment are the same as the components of the portable power generation devices 2 and 2A according to the first embodiment described above with respect to FIGS. 1 to 3. Overlapping explanations will be omitted as appropriate, and the differences will be mainly described below.
 図4は、本発明の第2実施形態に係る可搬型発電装置の内部構造を表す断面図である。
 図5は、図4に表した矢印A22の方向からみたときの可搬型発電装置を表す平面図である。
 なお、図5においては、説明の便宜上、筐体21および排気混合部7を省略している。
FIG. 4 is a cross-sectional view showing the internal structure of the portable power generation device according to the second embodiment of the present invention.
FIG. 5 is a plan view showing a portable power generation device when viewed from the direction of arrow A22 shown in FIG.
In FIG. 5, for convenience of explanation, the housing 21 and the exhaust mixing unit 7 are omitted.
 本実施形態に係る可搬型発電装置2Bは、筐体21と、バーナ4と、高温部51と、低温部52と、熱電素子53と、ガイド部6と、送風機54Aと、排気混合部7と、邪魔板8と、を備える。筐体21と、バーナ4と、高温部51と、低温部52と、熱電素子53と、ガイド部6と、排気混合部7と、邪魔板8と、は、図1~図3に関して前述した通りである。 The portable power generation device 2B according to the present embodiment includes a housing 21, a burner 4, a high temperature section 51, a low temperature section 52, a thermoelectric element 53, a guide section 6, a blower 54A, and an exhaust mixing section 7. , A baffle plate 8 and. The housing 21, the burner 4, the high temperature section 51, the low temperature section 52, the thermoelectric element 53, the guide section 6, the exhaust mixing section 7, and the baffle plate 8 are described above with respect to FIGS. 1 to 3. It's a street.
 本実施形態に係る可搬型発電装置2Bの送風機54Aは、低温部52の側方において低温部52に対向して配置されている。具体的には、送風機54Aは、低温部52の下方の端部525に対向して配置されている。送風機54Aの軸543は、低温部52の表面521に対して平行である。そのため、例えば図4に表した矢印A11のように、送風機54Aは、低温部52の表面521に対して平行方向に冷却風としての空気を送る。例えば図4に表した矢印A12のように、送風機54Aから低温部52の表面521に沿って送られた空気は、互いに隣り合うフィン522の側面523により挟まれた空間524を流れ、低温部52の表面521に沿って傾斜の上方により確実に導かれる。そして、低温部52の表面521に沿って流れた冷却風を含む空気は、高温部51の表面511に沿って流れた排ガスを含む空気と排気混合部7の流路71において混合され、排気口72を通して筐体21の外部へ排出される。 The blower 54A of the portable power generation device 2B according to the present embodiment is arranged on the side of the low temperature section 52 so as to face the low temperature section 52. Specifically, the blower 54A is arranged to face the lower end portion 525 of the low temperature portion 52. The shaft 543 of the blower 54A is parallel to the surface 521 of the low temperature portion 52. Therefore, for example, as shown by the arrow A11 shown in FIG. 4, the blower 54A sends air as cooling air in the direction parallel to the surface 521 of the low temperature portion 52. For example, as shown by the arrow A12 shown in FIG. 4, the air sent from the blower 54A along the surface 521 of the low temperature portion 52 flows through the space 524 sandwiched by the side surfaces 523 of the fins 522 adjacent to each other, and the low temperature portion 52. More reliably guided above the slope along the surface 521 of the. Then, the air including the cooling air flowing along the surface 521 of the low temperature portion 52 is mixed with the air including the exhaust gas flowing along the surface 511 of the high temperature portion 51 in the flow path 71 of the exhaust mixing portion 7, and is exhausted. It is discharged to the outside of the housing 21 through 72.
 図5に表したように、送風機54AのY方向の長さは、低温部52のY方向の長さと略同じである。そして、複数の送風機54Aが、X方向に並んで配置されている。なお、図5に表した例では、2つの送風機54Aが配置されている。但し、送風機54Aの設置数は、2つに限定されるわけではなく、3つ以上であってもよい。
 その他の構造は、図1~図3に関して前述した第1実施形態に係る可搬型発電装置2、2Aと同様である。
As shown in FIG. 5, the length of the blower 54A in the Y direction is substantially the same as the length of the low temperature portion 52 in the Y direction. A plurality of blowers 54A are arranged side by side in the X direction. In the example shown in FIG. 5, two blowers 54A are arranged. However, the number of blowers 54A installed is not limited to two, and may be three or more.
Other structures are the same as those of the portable power generation devices 2 and 2A according to the first embodiment described above with respect to FIGS. 1 to 3.
 本実施形態に係る可搬型発電装置2Bによれば、送風機54Aは、低温部52の表面521に沿って空気を送ることができ、低温部52の表面521をより一層効率的に冷却することができる。そのため、低温部52のX方向およびY方向の少なくともいずれかの長さを抑えることができ、低温部52の小型化および軽量化を図ることができる。また、図5に表したように、送風機54AのY方向の長さを低温部52のY方向の長さと同じ程度に抑えることができ、送風機54Aの小型化および軽量化を図ることができる。これにより、可搬型発電装置2Bの小型化および軽量化を図ることができる。また、送風機54Aは、低温部52の表面521をより一層効率的に冷却することができるため、高温部51と低温部52との間に生ずる温度差をより一層効率的に発生させることができる。また、図1~図3に関して前述した第1実施形態に係る可搬型発電装置2、2Aの効果と同様の効果が得られる。 According to the portable power generation device 2B according to the present embodiment, the blower 54A can send air along the surface 521 of the low temperature section 52, and can cool the surface 521 of the low temperature section 52 more efficiently. can. Therefore, it is possible to suppress at least the length of the low temperature portion 52 in either the X direction or the Y direction, and it is possible to reduce the size and weight of the low temperature portion 52. Further, as shown in FIG. 5, the length of the blower 54A in the Y direction can be suppressed to the same extent as the length of the low temperature portion 52 in the Y direction, and the blower 54A can be made smaller and lighter. As a result, the portable power generation device 2B can be made smaller and lighter. Further, since the blower 54A can cool the surface 521 of the low temperature section 52 more efficiently, the temperature difference generated between the high temperature section 51 and the low temperature section 52 can be generated more efficiently. .. Further, with respect to FIGS. 1 to 3, the same effects as those of the portable power generation devices 2 and 2A according to the first embodiment described above can be obtained.
 次に、本実施形態の変形例に係る可搬型発電装置について説明する。
 なお、本変形例に係る可搬型発電装置2Cの構成要素が、図4および図5に関して前述した本実施形態に係る可搬型発電装置2Bの構成要素と同様である場合には、重複する説明は適宜省略し、以下、相違点を中心に説明する。
Next, a portable power generation device according to a modified example of the present embodiment will be described.
If the components of the portable power generation device 2C according to the present modification are the same as the components of the portable power generation device 2B according to the present embodiment described above with respect to FIGS. 4 and 5, the overlapping description will be described. It will be omitted as appropriate, and the differences will be mainly described below.
 図6は、本実施形態の変形例に係る可搬型発電装置の内部構造を表す断面図である。
 図7は、図6に表した矢印A23の方向からみたときの可搬型発電装置を表す平面図である。
 なお、図7においては、説明の便宜上、筐体21および排気混合部7を省略している。
FIG. 6 is a cross-sectional view showing the internal structure of the portable power generation device according to the modified example of the present embodiment.
FIG. 7 is a plan view showing a portable power generation device when viewed from the direction of arrow A23 shown in FIG.
In FIG. 7, the housing 21 and the exhaust mixing unit 7 are omitted for convenience of explanation.
 本変形例に係る可搬型発電装置2Cは、筐体21と、バーナ4と、高温部51と、低温部52と、熱電素子53と、ガイド部6と、送風機54Bと、排気混合部7と、邪魔板8と、絞り部55と、を備える。つまり、本変形例に係る可搬型発電装置2Cは、図1~図3に関して前述した可搬型発電装置2、2A、ならびに図4および図5に関して前述した可搬型発電装置2Bと比較して、絞り部55をさらに備える。この点において、本変形例に係る可搬型発電装置2Cは、図1~図3に関して前述した可搬型発電装置2、2A、ならびに図4および図5に関して前述した可搬型発電装置2Bとは異なる。筐体21と、バーナ4と、高温部51と、低温部52と、熱電素子53と、ガイド部6と、排気混合部7と、邪魔板8と、は、図1~図3に関して前述した通りである。 The portable power generation device 2C according to this modification includes a housing 21, a burner 4, a high temperature section 51, a low temperature section 52, a thermoelectric element 53, a guide section 6, a blower 54B, and an exhaust mixing section 7. , A baffle plate 8 and a throttle portion 55 are provided. That is, the portable power generation device 2C according to the present modification is narrowed down as compared with the portable power generation devices 2 and 2A described above with respect to FIGS. 1 to 3 and the portable power generation device 2B described above with respect to FIGS. 4 and 5. A unit 55 is further provided. In this respect, the portable power generation device 2C according to the present modification is different from the portable power generation devices 2 and 2A described above with respect to FIGS. 1 to 3 and the portable power generation device 2B described above with respect to FIGS. 4 and 5. The housing 21, the burner 4, the high temperature section 51, the low temperature section 52, the thermoelectric element 53, the guide section 6, the exhaust mixing section 7, and the baffle plate 8 are described above with respect to FIGS. 1 to 3. It's a street.
 本変形例に係る可搬型発電装置2Cの送風機54Bは、低温部52の側方において絞り部55を介して低温部52に対向して配置されている。具体的には、絞り部55は、低温部52の下方の端部525に対向して配置されている。また、送風機54Bは、絞り部55を介して、低温部52の下方の端部525に対向して配置されている。 The blower 54B of the portable power generation device 2C according to this modification is arranged on the side of the low temperature portion 52 so as to face the low temperature portion 52 via the throttle portion 55. Specifically, the throttle portion 55 is arranged so as to face the lower end portion 525 of the low temperature portion 52. Further, the blower 54B is arranged so as to face the lower end portion 525 of the low temperature portion 52 via the throttle portion 55.
 絞り部55は、送風機54Bと低温部52との間に設けられ、送風機54Bから送り出された空気の流路断面を絞り、送風機54Bから送り出された空気を低温部52の空間524に導く。そのため、絞り部55を通過した後の空気の流速は、絞り部55を通過する前の空気、すなわち送風機54Bから送り出された直後の空気の流速よりも速い。絞り部55の絞り方あるいは絞り形状は、特に限定されるわけではなく、オリフィスであってもよく、ノズルであってもよく、ベンチュリ管であってもよい。 The throttle portion 55 is provided between the blower 54B and the low temperature section 52, narrows the cross section of the flow path of the air sent from the blower 54B, and guides the air sent out from the blower 54B to the space 524 of the low temperature section 52. Therefore, the flow velocity of the air after passing through the throttle portion 55 is faster than the flow velocity of the air before passing through the throttle portion 55, that is, the air velocity immediately after being sent out from the blower 54B. The method of drawing or the shape of the drawing of the drawing portion 55 is not particularly limited, and may be an orifice, a nozzle, or a venturi tube.
 送風機54Bの軸543は、低温部52の表面521に対して平行である。そのため、例えば図6に表した矢印A13のように、送風機54Bは、低温部52の表面521に対して平行方向に冷却風としての空気を送る。送風機54Bから低温部52の表面521に沿って送られた空気は、絞り部55を通過し絞り部55により流速を高められた状態で、例えば図6に表した矢印A14のように、互いに隣り合うフィン522の側面523により挟まれた空間524を流れ、低温部52の表面521に沿って傾斜の上方により確実に導かれる。そして、低温部52の表面521に沿って流れた冷却風を含む空気は、高温部51の表面511に沿って流れた排ガスを含む空気と排気混合部7の流路71において混合され、排気口72を通して筐体21の外部へ排出される。 The shaft 543 of the blower 54B is parallel to the surface 521 of the low temperature portion 52. Therefore, for example, as shown by the arrow A13 shown in FIG. 6, the blower 54B sends air as cooling air in the direction parallel to the surface 521 of the low temperature portion 52. The air sent from the blower 54B along the surface 521 of the low temperature section 52 passes through the throttle section 55 and is adjacent to each other in a state where the flow velocity is increased by the throttle section 55, for example, as shown by the arrow A14 shown in FIG. It flows through the space 524 sandwiched by the side surfaces 523 of the matching fins 522 and is more reliably guided above the slope along the surface 521 of the cold portion 52. Then, the air including the cooling air flowing along the surface 521 of the low temperature portion 52 is mixed with the air including the exhaust gas flowing along the surface 511 of the high temperature portion 51 in the flow path 71 of the exhaust mixing portion 7, and is exhausted. It is discharged to the outside of the housing 21 through 72.
 図7に表したように、送風機54BのY方向の長さは、低温部52のY方向の長さよりも長い。そして、1つの送風機54Bが、X方向において低温部52の中央部に配置されている。なお、送風機54Bの設置数は、1つに限定されるわけではなく、2つ以上であってもよい。
 その他の構造は、図4および図5に関して前述した本実施形態に係る可搬型発電装置2Bと同様である。
As shown in FIG. 7, the length of the blower 54B in the Y direction is longer than the length of the low temperature portion 52 in the Y direction. And one blower 54B is arranged in the central part of the low temperature part 52 in the X direction. The number of blowers 54B installed is not limited to one, and may be two or more.
Other structures are the same as those of the portable power generation device 2B according to the present embodiment described above with respect to FIGS. 4 and 5.
 本実施形態に係る可搬型発電装置2Cによれば、送風機54Bは、図4および図5に関して前述した送風機54Aよりも大きい風量の空気を絞り部55を介して低温部52の表面521に沿って送ることができ、低温部52の表面521をより一層効率的に冷却することができる。そのため、送風機54Bの設置数を低減しつつ、低温部52の表面521を効率的に冷却することができる。そのため、低温部52の小型化および軽量化を図ることができ、可搬型発電装置2Cの小型化および軽量化を図ることができる。また、送風機54Bは、低温部52の表面521をより一層効率的に冷却することができるため、高温部51と低温部52との間に生ずる温度差をより一層効率的に発生させることができる。また、図1~図3に関して前述した第1実施形態に係る可搬型発電装置2、2Aの効果と同様の効果が得られる。 According to the portable power generator 2C according to the present embodiment, the blower 54B draws air having a larger air volume than the blower 54A described above with respect to FIGS. 4 and 5 through the throttle portion 55 along the surface 521 of the low temperature portion 52. It can be fed, and the surface 521 of the low temperature portion 52 can be cooled more efficiently. Therefore, the surface 521 of the low temperature portion 52 can be efficiently cooled while reducing the number of installed blowers 54B. Therefore, the low temperature portion 52 can be made smaller and lighter, and the portable power generation device 2C can be made smaller and lighter. Further, since the blower 54B can cool the surface 521 of the low temperature section 52 more efficiently, the temperature difference generated between the high temperature section 51 and the low temperature section 52 can be generated more efficiently. .. Further, with respect to FIGS. 1 to 3, the same effects as those of the portable power generation devices 2 and 2A according to the first embodiment described above can be obtained.
 次に、本発明者が実施した検討の結果の一例を、図面を参照して説明する。
 図8は、本発明者が実施した検討の結果の一例を表す表である。
 図9は、図8に表した第1試料の傾斜角度と最大発電量との関係の一例を表すグラフである。
 図10は、図8に表した第2試料の傾斜角度と最大発電量との関係の一例を表すグラフである。
 なお、図9および図10に表したグラフにおいて、横軸は、設置面9に対する高温部51の表面511の傾斜角度(°)を表す。縦軸は、熱電素子53の最大発電量(W)を表す。
Next, an example of the result of the study carried out by the present inventor will be described with reference to the drawings.
FIG. 8 is a table showing an example of the results of the studies carried out by the present inventor.
FIG. 9 is a graph showing an example of the relationship between the tilt angle of the first sample shown in FIG. 8 and the maximum power generation amount.
FIG. 10 is a graph showing an example of the relationship between the tilt angle of the second sample shown in FIG. 8 and the maximum power generation amount.
In the graphs shown in FIGS. 9 and 10, the horizontal axis represents the inclination angle (°) of the surface 511 of the high temperature portion 51 with respect to the installation surface 9. The vertical axis represents the maximum power generation amount (W) of the thermoelectric element 53.
 本発明者は、図1および図2に関して前述した可搬型発電装置2を用いて、設置面9に対する高温部51の表面511の傾斜角度(°)と、熱電素子53の最大発電量(W)と、の関係に関する検討を行った。図8に表した第1試料および第2試料は、本実施形態の高温部51の一例であり、複数のフィン512を有するフィン付きヒートシンクである。第1試料の大きさは、縦100mm×横100mm×高さ30mmである。第1試料の複数のフィン同士の間隔は、2mmである。一方で、第2試料の大きさは、縦98mm×横98mm×高さ30mmである。第2試料の複数のフィン同士の間隔は、6mmである。本検討において、バーナ4の火炎41の位置は、各試料の端部であり、各試料の表面が設置面9に対して傾斜している場合には下方の端部である。すなわち、バーナ4の火炎41は、各試料の端部に向かって放出され、各試料の表面が設置面9に対して傾斜している場合には下方の端部に向かって放出される。また、各試料の表面と、バーナ4の火炎口43と、の間の距離は、15mmである。 The present inventor uses the portable power generation device 2 described above with respect to FIGS. 1 and 2 to determine the inclination angle (°) of the surface 511 of the high temperature portion 51 with respect to the installation surface 9 and the maximum power generation amount (W) of the thermoelectric element 53. We examined the relationship between. The first sample and the second sample shown in FIG. 8 are an example of the high temperature portion 51 of the present embodiment, and are finned heat sinks having a plurality of fins 512. The size of the first sample is 100 mm in length × 100 mm in width × 30 mm in height. The distance between the plurality of fins of the first sample is 2 mm. On the other hand, the size of the second sample is 98 mm in length × 98 mm in width × 30 mm in height. The distance between the plurality of fins of the second sample is 6 mm. In this study, the position of the flame 41 of the burner 4 is the end of each sample, and if the surface of each sample is inclined with respect to the installation surface 9, it is the lower end. That is, the flame 41 of the burner 4 is emitted toward the end of each sample, and when the surface of each sample is inclined with respect to the installation surface 9, it is emitted toward the lower end. The distance between the surface of each sample and the flame port 43 of the burner 4 is 15 mm.
 第1試料および第2試料のそれぞれにおいて、「傾斜角度(°)」、「燃焼量(kcal/h)」、および「最大発電量(W)」の関係の一例は、図8に表した通りである。また、第1試料の傾斜角度(°)と熱電素子53の最大発電量(W)との関係の一例は、図9に表した通りである。さらに、第2試料の傾斜角度(°)と熱電素子53の最大発電量(W)との関係の一例は、図10に表した通りである。本検討における「傾斜角度(°)」は、設置面9に対する高温部51の表面511の傾斜角度である。そのため、設置面9と直交する方向A1に対する高温部51の表面511の傾斜角度は、「90°-本検討における傾斜角度(°)」で表される。 An example of the relationship between the “tilt angle (°)”, the “combustion amount (kcal / h)”, and the “maximum power generation amount (W)” in each of the first sample and the second sample is as shown in FIG. Is. Further, an example of the relationship between the inclination angle (°) of the first sample and the maximum power generation amount (W) of the thermoelectric element 53 is as shown in FIG. Further, an example of the relationship between the inclination angle (°) of the second sample and the maximum power generation amount (W) of the thermoelectric element 53 is as shown in FIG. The "tilt angle (°)" in this study is the tilt angle of the surface 511 of the high temperature portion 51 with respect to the installation surface 9. Therefore, the inclination angle of the surface 511 of the high temperature portion 51 with respect to the direction A1 orthogonal to the installation surface 9 is represented by "90 ° -inclination angle (°) in this study".
 図8~図10に表した結果の一例によれば、高温部51の表面511が設置面9に対して傾いているとき(すなわち、傾斜角度が10°、20°、30°、40°のとき)の熱電素子53の最大発電量は、高温部51の表面511が設置面9に対して傾いていないとき(すなわち、傾斜角度が0°のとき)の熱電素子53の最大発電量以上である。また、熱電素子53の最大発電量は、傾斜角度を0°から30°まで増加させると増加し、傾斜角度を30°から40°に増加させると減少した。つまり、傾斜角度が0°、10°、20°、30°、40°のうちで30°のときに、熱電素子53の最大発電量が最大になった。本検討の結果によれば、設置面9に対する高温部51の表面511の傾斜角度は、10°以上、40°以下程度であることが好ましく、約30°程度であることがより好ましい。 According to an example of the results shown in FIGS. 8 to 10, when the surface 511 of the high temperature portion 51 is tilted with respect to the installation surface 9 (that is, the tilt angles are 10 °, 20 °, 30 °, 40 °). When), the maximum power generation amount of the thermoelectric element 53 is equal to or greater than the maximum power generation amount of the thermoelectric element 53 when the surface 511 of the high temperature portion 51 is not tilted with respect to the installation surface 9 (that is, when the tilt angle is 0 °). be. Further, the maximum power generation amount of the thermoelectric element 53 increased when the inclination angle was increased from 0 ° to 30 °, and decreased when the inclination angle was increased from 30 ° to 40 °. That is, when the inclination angle is 30 ° out of 0 °, 10 °, 20 °, 30 °, and 40 °, the maximum power generation amount of the thermoelectric element 53 is maximized. According to the results of this study, the inclination angle of the surface 511 of the high temperature portion 51 with respect to the installation surface 9 is preferably about 10 ° or more and 40 ° or less, and more preferably about 30 °.
 また、本発明者が実施した検討の結果によれば、バーナ4の火炎41の位置が試料の中心であるときの最大発電量は、バーナ4の火炎41の位置が試料の端部であるときの最大発電量よりも大きいことが分かった。さらに、バーナ4の火炎41の位置が試料の中心と試料の端部との間の位置(例えば、試料の端部から試料長さの1/4だけ中心に移動した位置)であるときの最大発電量は、バーナ4の火炎41の位置が試料の中心であるときの最大発電量よりも大きいことが分かった。そのため、本検討の結果によれば、設置面9に対する高温部51の表面511の傾斜角度が約30°程度であり、バーナ4の火炎41の位置が試料の中心と試料の端部との間の位置であるときに、最大発電量をより一層向上させることができることが分かった。 Further, according to the result of the study conducted by the present inventor, the maximum power generation amount when the position of the flame 41 of the burner 4 is the center of the sample is when the position of the flame 41 of the burner 4 is the end of the sample. It turned out to be larger than the maximum power generation of. Further, the maximum when the position of the flame 41 of the burner 4 is the position between the center of the sample and the edge of the sample (for example, the position moved from the edge of the sample to the center by 1/4 of the sample length). It was found that the amount of power generation was larger than the maximum amount of power generation when the position of the flame 41 of the burner 4 was the center of the sample. Therefore, according to the results of this study, the inclination angle of the surface 511 of the high temperature portion 51 with respect to the installation surface 9 is about 30 °, and the position of the flame 41 of the burner 4 is between the center of the sample and the edge of the sample. It was found that the maximum power generation can be further improved when the position is.
 以上、本発明の実施形態について説明した。しかし、本発明は、上記実施形態に限定されず、特許請求の範囲を逸脱しない範囲で種々の変更を行うことができる。上記実施形態の構成は、その一部を省略したり、上記とは異なるように任意に組み合わせたりすることができる。 The embodiment of the present invention has been described above. However, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of claims. The configuration of the above embodiment may be partially omitted or may be arbitrarily combined so as to be different from the above.
 2、2A、2B、2C:可搬型発電装置、 4:バーナ、 6:ガイド部、 7:排気混合部、 8:邪魔板、 9:設置面、 21:筐体、 22:脚部、 23:取り出し口、 31:燃料ガス収容容器、 32:容器接続部、 33:操作摘まみ部、 34:ガス導管、 41:火炎、 42:軸、 43:火炎口、 51:高温部、 52:低温部、 53:熱電素子、 54、54A、54B:送風機、 55:絞り部、 61:第1内面、 62:第2内面、 63:流路、 64:下端部、 65:位置、 71:流路、 72:排気口、 511:表面、 512:フィン、 513:先端部、 514:側面、 515:端部、 521:表面、 522:フィン、 523:側面、 524:空間、 525:端部、 526:先端部、 541:モータ、 542:プロペラ、 543:軸、 544:吸入口、 631:第1空間、 632:第2空間、 633:第3空間
 
 
2, 2A, 2B, 2C: Portable power generator, 4: Burner, 6: Guide part, 7: Exhaust mixing part, 8: Obstacle plate, 9: Installation surface, 21: Housing, 22: Leg part, 23: Extract port, 31: Fuel gas storage container, 32: Container connection part, 33: Operation knob part, 34: Gas conduit, 41: Flame, 42: Shaft, 43: Flame port, 51: High temperature part, 52: Low temperature part , 53: thermoelectric element, 54, 54A, 54B: blower, 55: throttle, 61: first inner surface, 62: second inner surface, 63: flow path, 64: lower end, 65: position, 71: flow path, 72: Exhaust port, 511: Surface, 512: Fin, 513: Tip, 514: Side, 515: End, 521: Surface, 522: Fin, 523: Side, 524: Space, 525: End, 526: Tip, 541: motor, 542: propeller, 543: shaft, 544: suction port, 631: 1st space, 632: 2nd space, 633: 3rd space

Claims (5)

  1.  燃焼熱を利用して発電するとともに搬送可能とされた可搬型発電装置であって、
     燃料ガスが収容された燃料ガス収容容器から供給される前記燃料ガスを燃焼するバーナと、
     前記バーナから放出される火炎および排ガスから伝わる熱により加熱される高温部と、
     前記高温部に対向して配置され前記高温部よりも低い温度に保持される低温部と、
     前記高温部と前記低温部との間に挟設され、前記高温部と前記低温部との間に生ずる温度差に基づいて発電する熱電素子と、
     を備え、
     前記火炎および前記排ガスから伝わる前記熱を受ける前記高温部の表面は、可搬型発電装置の設置面と直交する方向に対して傾斜していることを特徴とする可搬型発電装置。
    It is a portable power generation device that can generate electricity using the heat of combustion and can also be transported.
    A burner that burns the fuel gas supplied from the fuel gas container containing the fuel gas, and
    The high temperature part heated by the heat transferred from the flame emitted from the burner and the exhaust gas, and
    A low temperature portion arranged facing the high temperature portion and maintained at a temperature lower than the high temperature portion, and a low temperature portion.
    A thermoelectric element sandwiched between the high temperature portion and the low temperature portion and generating electricity based on the temperature difference generated between the high temperature portion and the low temperature portion.
    Equipped with
    A portable power generation device characterized in that the surface of the high temperature portion that receives the heat transmitted from the flame and the exhaust gas is inclined in a direction orthogonal to the installation surface of the portable power generation device.
  2.  前記高温部からみて前記バーナの側に設けられ、前記排ガスを前記高温部の前記表面に沿って前記傾斜の上方に導く流路を形成するガイド部をさらに備えたことを特徴とする請求項1に記載の可搬型発電装置。 1. The portable power generator described in.
  3.  前記低温部に対向して配置されるとともに前記熱電素子により生ずる起電力を供給されて駆動し、前記低温部に空気を送り前記低温部を冷却する送風機と、
     前記高温部の前記表面に沿って流れた前記排ガスを含む空気と、前記送風機から送られ前記低温部の表面に沿って流れた冷却風を含む空気と、を混合し、前記混合した空気を外部へ導く流路を形成する排気混合部と、
     をさらに備えたことを特徴とする請求項1または2に記載の可搬型発電装置。
    A blower arranged to face the low temperature portion and supplied with an electromotive force generated by the thermoelectric element to drive and send air to the low temperature portion to cool the low temperature portion.
    The air containing the exhaust gas flowing along the surface of the high temperature portion and the air containing the cooling air sent from the blower and flowing along the surface of the low temperature portion are mixed, and the mixed air is externally mixed. The exhaust mixing part that forms the flow path leading to
    The portable power generation device according to claim 1 or 2, further comprising.
  4.  前記送風機は、前記低温部の前記表面に対して垂直方向に前記空気を送ることを特徴とする請求項3に記載の可搬型発電装置。 The portable power generation device according to claim 3, wherein the blower sends the air in a direction perpendicular to the surface of the low temperature portion.
  5.  前記送風機は、前記低温部の前記表面に対して平行方向に前記空気を送ることを特徴とする請求項3に記載の可搬型発電装置。
     
     
    The portable power generation device according to claim 3, wherein the blower sends the air in a direction parallel to the surface of the low temperature portion.

PCT/JP2020/025814 2020-07-01 2020-07-01 Portable power generator WO2022003861A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022532918A JP7411086B2 (en) 2020-07-01 2020-07-01 portable power generator
PCT/JP2020/025814 WO2022003861A1 (en) 2020-07-01 2020-07-01 Portable power generator
KR1020237002835A KR20230027286A (en) 2020-07-01 2020-07-01 portable generator
CN202080102551.2A CN115735326A (en) 2020-07-01 2020-07-01 Portable power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/025814 WO2022003861A1 (en) 2020-07-01 2020-07-01 Portable power generator

Publications (1)

Publication Number Publication Date
WO2022003861A1 true WO2022003861A1 (en) 2022-01-06

Family

ID=79314948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025814 WO2022003861A1 (en) 2020-07-01 2020-07-01 Portable power generator

Country Status (4)

Country Link
JP (1) JP7411086B2 (en)
KR (1) KR20230027286A (en)
CN (1) CN115735326A (en)
WO (1) WO2022003861A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076934A (en) * 2013-10-07 2015-04-20 株式会社東芝 Thermoelectric generator
JP2016185074A (en) * 2016-07-27 2016-10-20 岩谷産業株式会社 Burning appliance
JP2017003228A (en) * 2015-06-12 2017-01-05 岩谷産業株式会社 Burning appliance
JP2018064315A (en) * 2016-10-11 2018-04-19 ダイニチ工業株式会社 Portable type power generator
JP2019092326A (en) * 2017-11-15 2019-06-13 古河電気工業株式会社 Thermoelectric conversion element module and gas device
JP2019092327A (en) * 2017-11-15 2019-06-13 古河電気工業株式会社 Power generator
EP3525250A2 (en) * 2018-01-18 2019-08-14 Exergit Ltd A micro cogeneration system
JP2020124047A (en) * 2019-01-30 2020-08-13 岩谷産業株式会社 Portable power generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285160A (en) 1996-04-18 1997-10-31 Orion Mach Co Ltd Simplified power generating apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076934A (en) * 2013-10-07 2015-04-20 株式会社東芝 Thermoelectric generator
JP2017003228A (en) * 2015-06-12 2017-01-05 岩谷産業株式会社 Burning appliance
JP2016185074A (en) * 2016-07-27 2016-10-20 岩谷産業株式会社 Burning appliance
JP2018064315A (en) * 2016-10-11 2018-04-19 ダイニチ工業株式会社 Portable type power generator
JP2019092326A (en) * 2017-11-15 2019-06-13 古河電気工業株式会社 Thermoelectric conversion element module and gas device
JP2019092327A (en) * 2017-11-15 2019-06-13 古河電気工業株式会社 Power generator
EP3525250A2 (en) * 2018-01-18 2019-08-14 Exergit Ltd A micro cogeneration system
JP2020124047A (en) * 2019-01-30 2020-08-13 岩谷産業株式会社 Portable power generator

Also Published As

Publication number Publication date
JPWO2022003861A1 (en) 2022-01-06
JP7411086B2 (en) 2024-01-10
CN115735326A (en) 2023-03-03
KR20230027286A (en) 2023-02-27

Similar Documents

Publication Publication Date Title
JP7220089B2 (en) portable generator
RU2436015C2 (en) Solid fuel fired furnace with improved combustion process
US4480985A (en) Pulsing combustion
US4479484A (en) Pulsing combustion
US4488865A (en) Pulsing combustion
JP4050001B2 (en) Gas-fired hair dryer
TWI278291B (en) Gas combustion-type portable dryer for generating negative ions and negative ion generating method in the portable dryer
KR20020073602A (en) Auxiliary power unit
JPH05126317A (en) Kerosene burner
JP6031056B2 (en) Combustion equipment
WO2022003861A1 (en) Portable power generator
SE512645C2 (en) Portable burner
KR101942040B1 (en) Inner flame type heating equipment
EP2738459A1 (en) Combustion device
CN216203331U (en) Water heater and combustor thereof
JP6002350B1 (en) Combustion equipment
JP2001221508A (en) Hot-air blower
WO2007034880A1 (en) Portable heat transfer unit
JP6728015B2 (en) Portable generator
JP6837945B2 (en) Portable power generator
JP7141574B1 (en) Blower burner device
JP2018091558A (en) Vortex combustor and portable power generator
JPS591916A (en) Compact combustion apparatus
JP3089753B2 (en) Combustion equipment
JP3594458B2 (en) Combustion equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532918

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942473

Country of ref document: EP

Kind code of ref document: A1