WO2022003857A1 - Led display device, led display system, and display method of led display device - Google Patents
Led display device, led display system, and display method of led display device Download PDFInfo
- Publication number
- WO2022003857A1 WO2022003857A1 PCT/JP2020/025806 JP2020025806W WO2022003857A1 WO 2022003857 A1 WO2022003857 A1 WO 2022003857A1 JP 2020025806 W JP2020025806 W JP 2020025806W WO 2022003857 A1 WO2022003857 A1 WO 2022003857A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- led
- unit
- led display
- lighting time
- brightness reduction
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
Definitions
- This disclosure relates to an LED display device, an LED display system, and a display method of the LED display device.
- LED display devices including LED display units in which a plurality of LED elements are arranged in a plane are widely used for indoor and outdoor advertisement display and the like.
- LED display devices were mainly used to display moving images such as natural images or animations.
- the pixel pitch of the LED display device has become smaller due to the miniaturization of the LED element.
- the LED display device has come to be used for applications with a short viewing distance, such as displaying a document image or a surveillance image for a conference indoors.
- the LED display device often displays an image close to a still image input from a personal computer or the like.
- the cumulative lighting time of each LED element included in the LED display device becomes non-uniform depending on the content of the display image of the LED display device.
- the brightness of the LED element decreases as the cumulative lighting time increases. Therefore, the brightness reduction rate of each LED element becomes non-uniform depending on the content of the display image of the LED display device. Therefore, as the operating time of the LED display device becomes longer, there is a problem that the brightness and the color of the LED display unit become non-uniform.
- Patent Document 1 calculates the cumulative lighting time of each LED element, corrects the brightness correction coefficient of the LED element whose cumulative lighting time has reached the threshold value, and corrects the display data according to the corrected brightness correction coefficient. Is created and output to the LED display unit. As a result, the brightness unevenness that may occur due to the difference in the cumulative lighting time of the LED elements is suppressed.
- the LED display device described in Patent Document 2 raises the duty ratio of the drive signal to the LED element whose cumulative lighting time has reached a preset setting time according to the LED brightness reduction rate calculated based on the cumulative lighting time. .. As a result, the brightness unevenness that may occur due to the difference in the cumulative lighting time of the LED elements is suppressed.
- the conventional LED display device calculates the brightness reduction rate based on the cumulative lighting time of the LED element, and corrects the brightness based on the brightness reduction rate. Therefore, even if the brightness of the LED element decreases, it is possible to maintain the brightness and color of the image displayed on the LED display unit uniformly.
- the cumulative lighting time of each LED element is not uniform.
- the cumulative lighting time of a certain LED element may be significantly longer than that of another LED element, and the brightness may be significantly reduced.
- the brightness of the other LED elements is also reduced in accordance with the LED element whose brightness is greatly reduced. There is a problem that the brightness of the LED display unit is excessively lowered.
- the technique of the present disclosure has been made to solve the above-mentioned problems, and an object thereof is to level the luminance reduction rate between LED elements without excessively reducing the luminance of the LED display unit. ..
- the LED display device of one aspect of the present disclosure includes an LED display unit having a plurality of LED elements arranged in a plurality of directions, an LED drive unit that drives each LED element according to a video signal, and a cumulative total of the LED elements.
- Brightness reduction that detects as a target LED element an integrating unit that calculates the lighting time and an LED element that has a longer cumulative lighting time than the first threshold determined based on the shortest cumulative lighting time that is the shortest of the cumulative lighting times of each LED element. It includes a detection unit and an offset processing unit that offsets the video signal when the number of target LED elements is equal to or greater than the second threshold value.
- the video signal is offset when the number of target LED elements is equal to or larger than the second threshold value. Therefore, it is possible to level the brightness reduction rate between the LED elements without excessively reducing the brightness of the LED display unit.
- FIG. It is a block diagram which shows the structure of the LED display device of Embodiment 1.
- FIG. It is a perspective view of the LED display part of Embodiment 1.
- FIG. It is a top view which shows the structure of one LED. It is a figure explaining the waveform of the PWM drive signal of the LED element.
- It is a perspective view of the LED display device of Embodiment 1.
- FIG. It is a perspective view which shows the arrangement example of the pixel in the partial area of the LED display part of Embodiment 1.
- FIG. It is a flowchart which shows the luminance correction operation of the LED display device of Embodiment 1.
- FIG. It is a figure which shows the basic example of the offset processing of the video signal in the partial area of the LED display part of Embodiment 1.
- FIG. 1 is a block diagram showing a configuration of the LED display device 1001 according to the first embodiment.
- the LED display device 1001 includes an input terminal 11, a signal processing unit 12, an LED drive unit 13, an LED display unit 14, an integrating unit 15, a lighting time storage unit 16, a brightness reduction detection unit 17, and a correction amount. It includes a calculation unit 18 and an offset processing unit 19.
- FIG. 2 is a perspective view of the LED display unit 14. As shown in FIG. 2, the LED display unit 14 includes a plurality of LEDs 101 arranged in a matrix. In FIG. 2, 16 LEDs 101 are arranged in 4 in the vertical direction and 4 in the horizontal direction, but the number and arrangement mode of the LEDs 101 in the LED display unit 14 are not limited to those shown in FIG.
- FIG. 3 is a plan view of the LED 101.
- the LED 101 includes LED elements 102r, 102g, 102b.
- One LED 101 constitutes one pixel.
- the LED element 102r emits red light
- the LED element 102g emits green light
- the LED element 102b emits blue light.
- the r, g, and b attached to the end of the reference numerals of the LED elements 102r, 102g, 102b represent the emission colors of the LED elements 102r, 102g, 102b.
- the LED element 102 included in the LED display unit 14 is also referred to as a first LED element.
- a video signal is input to the input terminal 11 from a video signal source such as a video information processing device.
- the video information processing device is, for example, a personal computer.
- the signal processing unit 12 performs various image quality correction processing such as gamma correction on the video signal input from the input terminal 11.
- the offset processing unit 19 performs offset processing on the video signal that has undergone various image quality correction processing by the signal processing unit 12.
- the offset processing unit 19 performs offset processing according to the offset correction amount calculated by the correction amount calculation unit 18.
- the offset processing includes a process of enlarging or reducing the video signal, a process of selecting an area to be displayed on the LED display unit 14 from the enlarged or reduced video signal, and a display position of the LED display unit 14 for displaying the video signal. That is, a process of designating the LED 101, which is a pixel for displaying a video signal, is included.
- the offset processing unit 19 enlarges the video signal by 105% and selects an area necessary for displaying a desired video from the enlarged video signal. Then, the offset processing unit 19 performs a process of shifting the display position of the image in the LED display unit 14 within a range of, for example, 5%, and displays the image on the LED element 102 arranged in the LED 101 at the designated position. Even if the image is shifted in this way, the area where the image is not displayed on the top, bottom, left, and right of the image does not appear on the LED display unit 14.
- the offset processing unit 19 may supplement the surroundings with, for example, a black image in order to reduce the sense of discomfort in the surroundings of the image. Further, the offset processing unit 19 may rotate the image depending on the content of the image.
- the LED drive unit 13 drives a plurality of LEDs 101 of the LED display unit 14 according to the video signal offset processed by the offset processing unit 19.
- the blinking and luminance of each LED element 102 arranged in each LED 101 is controlled by a pulse width modulation (PWM) method.
- PWM pulse width modulation
- the LED drive unit 13 supplies a drive signal having a duty ratio proportional to the signal level of each LED element 102 to each LED element 102.
- Each LED element 102 is turned on during the on period of the supplied drive signal, so that the LED element 102 is turned on with a brightness proportional to the signal level.
- FIG. 4 is a timing chart for explaining the waveform of the PWM drive signal of each LED element 102.
- the waveform W1 is a waveform of a signal including a pulse repeatedly generated in the basic cycle of PWM drive.
- the waveform W2 is a waveform of a drive signal having a duty ratio of 85%.
- the waveform W3 is a waveform of a drive signal having a duty ratio of 80%.
- the basic period of PWM drive indicated by the waveform W1 is one frame period or less of the video signal.
- the drive signal of the waveform W2 includes a pulse that is repeatedly emitted in the basic cycle of PWM drive and has a pulse width PW1 of 85% of the basic cycle of PWM drive.
- the drive signal of the waveform W3 is repeatedly generated in the basic cycle of PWM drive, and includes a pulse having a pulse width PW2 of 80% of the basic cycle of PWM drive.
- the brightness of the LED element 102 to which the drive signal of the waveform W2 is supplied is different from that of the LED element 102 to which the drive signal of the waveform W3 is supplied. Therefore, the LED drive unit 13 adjusts the brightness of each LED element 102 by changing the duty ratio of the drive signal supplied to each LED element 102.
- the integration unit 15 performs an integration process of the lighting time of each LED element 102 to calculate the cumulative lighting time of each LED element 102.
- the lighting time storage unit 16 stores the cumulative lighting time of each LED element 102 calculated by the integration unit 15.
- each LED element 102 When the brightness of each LED element 102 changes at the highest speed, it changes for each frame of the displayed image. Therefore, the following method is assumed as a method for accurately calculating the cumulative lighting time of each LED element 102.
- the integration unit 15 performs integration processing of the lighting time of each LED element 102 every time the basic cycle of PWM drive ends.
- the integration unit 15 integrates the product of the length of the basic cycle of PWM drive and the drive coefficient indicating the ratio of the lighting time of each LED element 102 to the length of the basic cycle of PWM drive.
- the cumulative lighting time of the LED element 102 can be calculated accurately.
- the drive coefficient of each LED element 102 the duty ratio of the drive signal supplied to each LED element 102 can be used.
- the integration unit 15 calculates the cumulative lighting time of each LED element 102 by the method described later in order to efficiently perform the integration process.
- the integrating unit 15 performs an integration process of the lighting time of each LED element 102 every time a preset time (hereinafter referred to as “set time”) elapses, and calculates the cumulative lighting time of each LED element 102. ..
- the set time may be constant or variable, but is longer than the length of the basic period of PWM drive.
- the integration unit 15 stores the cumulative operating time t 1 of the LED display unit 14 in the lighting time storage unit 16. Further, the integration unit 15, in the integration process, the average drive coefficient R 2 of the LED elements 102 that indicates the ratio of the cumulative lighting time S 1 of the LED elements 102 for the cumulative operating time t 1 from the driving condition of the LED elements 102 calculated, and stores the calculated average drive coefficient R 2 to the lighting time storage unit 16. Therefore, the lighting time storage unit 16 stores the cumulative operating time t 1 and the average drive coefficient R 2 .
- the average drive coefficient R 2 is the average duty ratio of the drive signals supplied to each LED element 102 until the integration process is performed.
- the integration unit 15 updates the cumulative lighting time information including the cumulative operating time t 1 and the average drive coefficient R 2 stored in the lighting time storage unit 16 every time the set time elapses.
- the integrating unit 15 updates the cumulative lighting time information of all the pixels, that is, the cumulative lighting time information of each LED element 102 of all the LEDs 101 at once.
- the integration unit 15 the driving conditions of the LED elements 102 for performing the integration process, the driving factor R 1 of the LED elements 102 that indicates the ratio of the lighting time of the LED elements 102 for operating time of the LED display section 14 Is calculated.
- the integration unit 15 sets the cumulative operating time t 1 of the LED display unit 14 stored in the lighting time storage unit 16 in the previous integration process as the previous cumulative operation time t 0, and sets the lighting time storage unit 16 in the previous integration process.
- the average drive coefficient R 2 of each LED element 102 stored in is set to the previous average drive coefficient R 0 .
- the integration unit 15 sets the previous cumulative operating time t 0 , the previous average drive coefficient R 0 , the elapsed time t 1 ⁇ t 0 from the previous integration process to the integration process, and the calculated drive coefficient R 1 of each LED element 102. based on, to calculate the cumulative lighting time S 1 of the LED elements 102.
- the drive coefficient R 1 is the duty ratio of the drive signal supplied to each LED element 102 when the previous integration process is performed.
- the previous average drive coefficient R 0 is the average duty ratio of the drive signals supplied to each LED element 102 until the previous integration process is performed.
- the cumulative lighting time S 0 of each LED element 102 when the previous integration process is performed is the previous cumulative operating time t 0 of the LED display unit 14 and the previous average of each LED element 102. It is represented by the product of the drive coefficient R 0.
- the integration unit 15 was supplied to the drive coefficient of each LED element 102, that is, to each LED element 102 in the entire basic cycle of PWM drive that arrived between the time when the integration process was performed last time and the time when the integration process was performed this time. It is assumed that the duty ratio of the drive signal is R 1 , which is the duty ratio of the drive signal supplied to each LED element 102 when the previous integration process is performed. Therefore, the cumulative lighting time S 1 of each LED element 102 when the integration process is performed is the cumulative lighting time S 0 , the elapsed time t 1 ⁇ t 0, and the drive coefficient R 1 as shown in the equation (2). It is expressed by the product of and the sum of.
- Average drive coefficient R 2 of the LED elements 102 is obtained by dividing, as shown in equation (3), the cumulative lighting time S 1 of the LED elements 102 with the cumulative operating time t 1 of the LED display section 14 It is a coefficient. Therefore, when the equation (1) and the equation (2) are taken into consideration, the average drive coefficient R 2 is the previous cumulative operating time t 0 of the LED display unit 14 and the previous time of each LED element 102, as shown in the equation (3). and the product of the average driving coefficient R 0, the elapsed time t 1 -t 0 and the product of the driving factor R 1 of the LED elements 102, the sum of, obtained by dividing the cumulative operation time t1.
- Integrating unit 15 every time the cumulative operating time t 1 of the LED display unit 14 for the set time elapses from the time point of 0, calculates an average driving factor R 2, previous average drive coefficients stored in the lighting time storage unit 16 R 0 is updated with the average drive coefficient R 2.
- the change in the display pattern displayed on the LED display unit 14 is small, the change in the luminance of each LED element 102 is also small, and the change in the duty ratio of the drive signal supplied to each LED element 102 is also small. Therefore, in this case, be sufficiently longer than the fundamental period of the time setting the PWM drive, the actual lighting time of the LED elements 102, accumulation of the LED elements 102 that integrating unit 15 calculates the average driving factor R 2 The difference between the lighting time S 1 and the lighting time S 1 is sufficiently small. That is, the integrated unit 15 can be accurately calculated from the average driving factor R 2 of the cumulative lighting time S 1 of the LED elements 102.
- Cumulative lighting time S 1 of the LED elements 102 that integrating unit 15 has been calculated is used later to luminance correction.
- the integrated unit 15, the cumulative lighting time S 1 of the LED elements 102 while reducing the amount of arithmetic processing for accumulation process can be accurately calculated.
- Luminance drop detection unit 17 from the cumulative lighting time S 1 of the LED elements 102 stored in the lighting time storage unit 16, extracts the shortest cumulative lighting time S 1 (hereinafter, referred to as the shortest cumulative lighting time). Then, the brightness reduction detection unit 17 sets a threshold value (first threshold value) for the cumulative lighting time based on the shortest cumulative lighting time, and counts the number of LED elements 102 whose cumulative lighting time is equal to or longer than the threshold value.
- the LED element 102 has a characteristic that the brightness decreases with the lighting time. Based on this characteristic, the brightness reduction detection unit 17 considers that the LED element 102 having a longer lighting time has a lower brightness. Then, the brightness reduction detection unit 17 compares the degree of brightness reduction of each LED element 102 by the ratio of the lighting time of each LED element 102. That is, the brightness of the LED element 102 is expressed as a function of the lighting time of the LED element 102, and has a characteristic that it decreases as the lighting time becomes longer.
- FIG. 5 is a perspective view of the LED display device 1001.
- the LED display device 1001 includes four LED display units 14a, 14b, 14c, 14d arranged in a vertical direction 2 ⁇ horizontal direction 2, and has a pixel resolution of 320 ⁇ 360.
- the LED display units 14a, 14b, 14c, and 14d have the same configuration as the LED display unit 14, but the characters ad are added to the end of the reference numerals to distinguish them from each other.
- FIG. 6 is a perspective view showing an example of arrangement of the LED 101 in the partial region 101a constituting a part of the display surface of the LED display unit 14a.
- 16 LEDs 101 are arranged in a length of 4 ⁇ a width of 4.
- FIG. 7 is a flowchart showing the overall operation of the LED display device 1001. Hereinafter, the operation of the LED display device 1001 will be described according to the flow of FIG. 7.
- the integration unit 15 determines whether or not a predetermined set time has elapsed since the previous integration process (step S101).
- the set time is a unit time of luminance correction, and is, for example, 100 hours.
- the integration unit 15 repeats the process of step S101 until the set time elapses from the previous integration process.
- Integrating unit 15 determines that the set time has elapsed from the previous integration processing (Yes at step S101), LED elements 102r, 102 g, by integrating the 102b lighting time of calculating the accumulated lighting time S 1, the lighting time storage It is stored in the unit 16 (step S102).
- LED element 102r, 102 g, the cumulative lighting time S 1 of 102b tr, tg is denoted as tb.
- the brightness reduction detection unit 17 determines the shortest cumulative lighting time tr, tg, tb among the cumulative lighting times tr, tg, tb of the LED elements 102r, 102g, 102b stored in the lighting time storage unit 16. Extraction is performed as the shortest cumulative lighting time tr min , tg min , and tb min (step S103).
- the luminance drop detection unit 17, the following equation (4), by (5), (6), to calculate the threshold TRth the cumulative lighting time S 1, TGth, the TBTH.
- Th is a constant greater than 1.
- the threshold values TRth, TGth, and TBth of the cumulative lighting time S 1 are also referred to as a first threshold value.
- the brightness reduction detection unit 17 determines whether or not there is at least one LED element 102 whose cumulative lighting time tr, tg, and tb exceeds the threshold values TRth, TGth, and TBth (step S104). If there is no LED element 102r whose cumulative lighting time tr exceeds the threshold TRth, an LED element 102g whose cumulative lighting time tg exceeds the threshold TGth, or an LED element 102b whose cumulative lighting time tb exceeds the threshold TBth, the LED display device 1001 steps again. The process of S101 is performed.
- step S105 When the brightness reduction detection unit 17 determines that there is at least one LED element 102 whose cumulative lighting times tr, tg, and tb exceed the threshold values TRth, TGth, and TBth, the process of the LED display device 1001 proceeds to step S105.
- step S104 the brightness reduction detection unit 17 counts the number of LED elements 102 whose cumulative lighting time tr, tg, and tb exceeds the threshold values TRth, TGth, and TBth, and sets a second threshold value for which the number is predetermined. If it exceeds the limit, the process of the LED display device 1001 may proceed to step S105. Further, the LED element 102 in which the cumulative lighting time tr, tg, and tb exceeds the threshold values TRth, TGth, and TBth is also referred to as a target LED element.
- step S105 the correction amount calculation unit 18 calculates the offset amount with respect to the drawing start position of the input video signal, and the offset processing unit 19 performs the offset processing.
- the relative positions of the image and the plurality of LEDs 101 are displaced based on the offset amount.
- the duty ratio of the LED element 102 determined in step S104 that the cumulative lighting time exceeds the threshold value is lowered, and the decrease in brightness is suppressed.
- the duty ratio of the LED element 102 determined in step S104 that the cumulative lighting time is equal to or less than the threshold value increases, and the brightness further decreases.
- the degree of brightness reduction is leveled among the LEDs 101.
- the visual effect of offset processing also depends on the video content. In content such as a system diagram represented by a one-dot line displayed for general monitoring applications, the visual effect due to the leveling of luminance is higher.
- step S105 the LED display device 1001 determines whether or not the video display is completed (step S106). If Yes in step S106, the series of offset processing ends. When the video display is continued (No in step S106), the process of the LED display device 1001 returns to step S101.
- FIG. 8 shows a basic example of offset processing of a video signal in the partial region 101a of the LED display unit 14a.
- S0 in FIG. 8 shows a partial region 101a in a non-lighting state. From this state, when the area 101 becomes the lighting state 1 (S1), the LED elements 102 of the two LED 101s in the center are turned on. When the lighting state 1 (S1) elapses for a long time, the brightness of the LED element 102 of the two LEDs 101 that have been lit decreases.
- the offset processing unit 19 shifts the video signal and performs offset processing as in the lighting state 2 (S2) in order to level the decrease rate of the brightness of the LED element 102.
- the position of the image displayed by the image signal is shifted upward by one pixel.
- the offset processing performed by the offset processing unit 19 is not limited to that shown in FIG.
- the position of the image displayed by the image signal may be moved in either the up, down, left, or right direction in the offset processing, or may be moved in any other direction. Further, the offset processing unit 19 may enlarge or reduce the image, move the image as described above and then enlarge or reduce the image, or rotate the image.
- the LED display device 1001 of the first embodiment has an LED display unit 14 having a plurality of LED elements 102 arranged in a plurality of directions, an LED drive unit 13 for driving each LED element according to a video signal, and each LED element.
- the target LED is the integrating unit 15 that calculates the cumulative lighting time of the 102, and the LED element 102 whose cumulative lighting time is longer than the first threshold determined based on the shortest cumulative lighting time of the cumulative lighting time of each LED element 102. It includes a brightness reduction detection unit 17 that detects as an element, and an offset processing unit 19 that offsets a video signal when the number of target LED elements is equal to or greater than the second threshold value. Therefore, the brightness reduction rate of each LED element 102 is leveled without excessively darkening the entire LED display unit 14. As a result, the uniformity of brightness and the white balance are maintained in the LED display unit 14.
- the LED display device 1001 displays the surveillance image
- usually only a part of the LED elements 102 included in the plurality of LEDs 101 emit light for a long time. Therefore, the brightness of the LED element 102 that emits light for a long time is significantly lower than the brightness of the other LED elements 102.
- the luminance of all of the plurality of LEDs 101 is greatly reduced in accordance with the significantly reduced luminance of the LED element 102. ..
- the LED display device 1001 of the first embodiment when the LED elements 102r, 102g, 102b whose cumulative lighting time tr, tg, tb is longer than the thresholds TRth, TGth, TBth are present, the video signal is present.
- the LED element 102 which emits strong light, the LED element 102 is shifted.
- the degree of brightness reduction is leveled among the plurality of LEDs 101, so that the overall brightness of the LED display unit 14 does not excessively decrease due to the brightness reduction of the specific LED element 102.
- Embodiment 2 In the first embodiment, the basic offset processing has been described. In the offset process, the LED display device 1002 of the second embodiment determines the direction and order of shifting the image based on the degree of decrease in the brightness of each LED element 102. The configuration of the LED display device 1002 is the same as the configuration of the LED display device 1001 of the first embodiment shown in FIG.
- FIG. 9 is a flowchart showing the offset processing of the LED display device 1002.
- the flow of the overall operation of the LED display device 1002 is as shown in FIG. 7, and FIG. 9 corresponds to the detailed flowchart of step S105 in FIG.
- FIG. 10 is a diagram showing a basic example of offset processing of a video signal in the partial region 101a of the LED display unit 14a of the LED display device 1002.
- S0 in FIG. 10 shows a partial region 101a in a non-lighting state. From this state, when the area 101 becomes the lighting state 1 (S21), the LED elements 102 of the two LED 101s in the center are lit. When the lighting state 1 (S1) elapses for a long time, the brightness of the LED element 102 of the two LEDs 101 that have been lit decreases. Therefore, the LED display device 1002 executes the offset processing shown in FIG.
- the correction amount calculation unit 18 calculates the difference in cumulative lighting time between each LED element 102 constituting each LED 101 and the other LED elements 102 adjacent in all directions (step S201).
- the omnidirectional directions are the four directions indicated by the arrows (1), (2), (3), and (4) in the example of FIG.
- the cumulative lighting time of the LED element 102 included in the LED 101 being lit is the cumulative lighting time of the LED element 102 included in the LED 101 in which the LED 101 is adjacent to the direction (1). Longer.
- the correction amount calculation unit 18 calculates the cumulative lighting time difference between these two adjacent LED elements 102 for all the LED elements 102 and all the adjacent directions.
- the correction amount calculation unit 18 adds up the cumulative lighting time difference of each LED element 102 for each direction (step S202).
- the correction amount calculation unit 18 selects the direction in which the sum of the cumulative lighting time differences of the LED elements 102 is maximum as the offset direction (step S205). In this way, the correction amount calculation unit 18 operates as an offset direction determination unit.
- the offset processing unit 19 shifts the image in the direction (1) as shown in the lighting state 2 (S22) in FIG. 10 (step S206).
- the direction adjacent to the LED element 102 in which the offset processing unit 19 calculates the cumulative lighting time difference is not limited to the directions (1), (2), (3), and (4) shown in FIG.
- the offset processing unit 19 may calculate the cumulative lighting time difference between the LED elements 102 adjacent in the diagonal direction.
- the offset processing unit 19 may enlarge or reduce the image, move the image as described above and then enlarge or reduce the image, or rotate the image.
- the offset processing unit 19 may schedule the order of movement.
- the LED display device 1002 of the second embodiment calculates the sum of the cumulative lighting time differences of the plurality of adjacent LED elements 102 in each direction of the plurality of directions in which the plurality of LED elements are arranged, and the sum of the cumulative lighting time differences is calculated.
- a correction amount calculation unit 18 which is an offset direction determination unit whose maximum direction is the offset direction is provided.
- the offset processing unit 19 offsets the video signal in the offset direction. As a result, the image display is shifted from the LED element 102 having a large brightness reduction rate to the LED element 102 having a small brightness reduction rate due to the offset, so that the brightness reduction between the LED elements 102 is efficiently leveled.
- Embodiment 3 In the LED display devices 1001 and 1002 of the first and second embodiments, the degree of decrease in brightness between the LED elements 102 is compared based on the cumulative lighting time of the LED elements 102, and offset processing is performed. In the LED display device 1003 of the third embodiment, the brightness reduction rate of each LED element 102 is measured, and the degree of brightness reduction between the LED elements 102 is precisely determined based on the cumulative lighting time and the brightness reduction rate of each LED element 102. Compared to, offset processing is performed.
- FIG. 11 is a block diagram of the LED display device 1003 according to the third embodiment.
- the LED display device 1003 includes an input terminal 11, a signal processing unit 12, a correction amount calculation unit 18, an offset processing unit 19, a first LED drive unit 21, a first LED display unit 22, a second LED drive unit 23, and a second LED. It includes a display unit 24, a brightness measurement unit 25, a brightness reduction rate storage unit 26, an integration unit 27, a lighting time storage unit 28, a brightness reduction detection unit 29, a correction coefficient calculation unit 30, and a brightness correction unit 31.
- the first LED drive unit 21 and the first LED display unit 22 correspond to the LED drive unit 13 and the LED display unit 14 in the LED display devices 1001 and 1002. Further, the input terminal 11, the signal processing unit 12, the correction amount calculation unit 18, and the offset processing unit 19 in the LED display device 1003 are the input terminal 11, the signal processing unit 12, the correction amount calculation unit 18 and the LED display devices 1001 and 1002. It has the same configuration as the offset processing unit 19. Therefore, the description of these configurations will be omitted.
- the second LED display unit 24 displays for measuring (predicting) the transition of the brightness of the first LED display unit 22.
- the second LED display unit 24 has the same configuration as the first LED display unit 22, and has a plurality of LEDs 101.
- Each LED 101 includes a plurality of LED elements 102r, 102g, 102b.
- Each LED element 102 included in the first LED display unit 22 and each LED element 102 included in the second LED display unit 24 are, for example, LED elements of the same type and have the same luminance reduction characteristics.
- the former is also referred to as a first LED element, and the latter is also referred to as a second LED element.
- the second LED drive unit 23 drives each LED 101 of the second LED display unit 24, and controls the lighting of each LED element 102 constituting each LED 101.
- the brightness measuring unit 25 is arranged to face the second LED display unit 24, and measures the brightness of each LED element 102 of the second LED display unit 24.
- the brightness reduction rate storage unit 26 stores a table (hereinafter, also referred to as “brightness reduction rate information”) showing the relationship between the lighting time and the brightness reduction rate of the LED elements 102r, 102g, 102b of the second LED display unit 24. ..
- the integrating unit 27 performs an integration process of the lighting time of each LED element 102 of the first LED display unit 22 and the second LED display unit 24, and the cumulative lighting of each LED element 102 of the first LED display unit 22 and the second LED display unit 24 is performed. Calculate the time.
- the lighting time storage unit 28 stores the cumulative lighting time of each LED element 102 of the first LED display unit 22 and the second LED display unit 24.
- the second LED display unit 24 is based on the cumulative lighting time of each LED element 102 of the second LED display unit 24 calculated by the integration unit 27 and the brightness of each LED element 102 of the second LED display unit 24 measured by the brightness measurement unit 25.
- a table showing the relationship between the cumulative lighting time and the brightness reduction rate of each of the LED elements 102 of the above is obtained.
- the brightness reduction detection unit 29 has the cumulative lighting time of the first LED display unit 22 stored in the lighting time storage unit 28 and the lighting time of each LED element 102 of the second LED display unit 24 stored in the brightness reduction rate storage unit 26.
- the brightness reduction rate of each LED element 102 of the first LED display unit 22 is obtained from the relationship between the brightness reduction rate and the brightness reduction rate. Further, the brightness reduction detection unit 29 determines the brightness reduction rate based on the smallest brightness reduction rate (hereinafter referred to as “minimum brightness reduction rate”) among the brightness reduction rates of each LED element 102 of the first LED display unit 22. Set a threshold. Then, the brightness reduction detection unit 29 counts the number of LED elements 102 of the first LED display unit 22 whose brightness reduction rate is equal to or higher than the threshold value.
- FIG. 12 shows the relationship between the lighting time of the LED element 102 and the brightness reduction rate.
- the brightness of the LED elements 102r, 102g, 102b is a function of the lighting time t of the LED elements 102r, 102g, 102b, and decreases as the lighting time t becomes longer. Therefore, the brightness reduction rate kr (t) of the LED element 102r is a function of the lighting time t of the LED elements 102r, 102g, and 102b, respectively, and increases as the lighting time t increases.
- the brightness reduction rate is usually obtained by prior measurement.
- the LED display device 1003 of the third embodiment incorporates the second LED drive unit 23, the second LED display unit 24, and the brightness measurement unit 25 described above. Then, the brightness reduction rate of each LED element 102 of the second LED display unit 24 is measured by the second LED drive unit 23, the second LED display unit 24, and the brightness measurement unit 25 incorporated in the LED display device 1003. The relationship between the measured brightness reduction rate of each LED element 102 of the second LED display unit 24 and the lighting time is stored in the brightness reduction rate storage unit 26. In this way, the LED display device 1003 can measure the relationship between the lighting time of each LED element 102 of the second LED display unit 24 and the brightness reduction rate in real time.
- FIG. 13 is a flowchart of the brightness correction operation of the LED display device 1003. The luminance correction operation of the LED display device 1003 will be described along with the flow of FIG.
- Step S301 is the same as step S101 of FIG. 7 described in the first embodiment.
- the integration unit 27 calculates the cumulative lighting time of each LED element 102 of the first LED display unit 22 and the second LED display unit 24 and stores it in the lighting time storage unit 28 (step S302). ).
- the brightness reduction detection unit 29 displays the cumulative lighting time of each LED element 102 of the first LED display unit 22 stored in the lighting time storage unit 28 and the second LED display stored in the brightness reduction rate storage unit 26.
- the brightness reduction rate kr (t) of each LED element 102r, 102g, 102b of the first LED display unit 22. Kg (t), kb (t) are calculated (step S303).
- the brightness reduction detection unit 29 sets the lowest brightness reduction rate kr (t) of the brightness reduction rate kr (t) of the LED element 102r of the first LED display unit 22 calculated in step S303 to the minimum brightness reduction rate kr ( t) Extract as min. Similarly, the brightness reduction detection unit 29 extracts the minimum brightness reduction rate kg (t) min and kb (t) min for the LED elements 102g and 102b of the first LED display unit 22 (step S304).
- the luminance reduction detection unit 29 calculates the thresholds YRth, YGth, and YBth of the luminance reduction rate by the following equations (7), (8), and (9).
- Thb is a constant larger than 1.
- the threshold values of the brightness reduction rate, YRth, YGth, and YBth, are also referred to as a third threshold value.
- the brightness reduction detection unit 29 determines whether or not there is at least one LED element 102 whose brightness reduction rate exceeds the threshold value (step S305).
- the LED display device 1003 executes the offset process in step S306, and then performs the offset processing.
- the luminance correction process of step S307 is executed.
- the offset processing in step S306 is the same as in steps S105 of FIG. 7 described in the first embodiment or steps S201 to S204 of FIG. 9 described in the second embodiment.
- the LED display device 1003 executes the luminance correction process of step S307 without performing the offset process. As described above, the LED display device 1003 of the third embodiment determines whether or not the offset processing needs to be executed based on the brightness reduction rate, not the cumulative lighting time.
- step S307 the luminance correction unit 31 performs the luminance correction.
- step S305 the brightness reduction detection unit 29 counts the number of LED elements 102 whose brightness reduction rates kr (t), kg (t), and kb (t) exceed the threshold values YRth, YGth, and YBth, and the number thereof.
- the process of the LED display device 1003 may proceed to step S106.
- step S307 the LED display device 1003 determines whether or not the video display is completed (step S308). If Yes in step S308, the series of luminance correction processes ends. When the video display is continued (No in step S308), the process of the LED display device 1003 returns to step S301.
- the correction amount calculation unit 18 calculates the difference in brightness reduction rate between the adjacent LED elements 102 for each LED element 102, adds up the difference in brightness reduction rate for each adjacent direction, and reduces the brightness.
- the direction in which the sum of the rate differences is maximum may be the offset direction.
- the LED display device 1003 of the third embodiment includes a first LED display unit 22 having a plurality of first LED elements arranged in a plurality of directions, a first LED drive unit 21 for driving each first LED element according to a video signal, and the like.
- the brightness reduction rate storage unit 26 for storing the brightness reduction rate information indicating the relationship between the lighting time and the brightness reduction rate of the second LED element having the same brightness reduction characteristic as the first LED element, and the cumulative lighting time of each first LED element. Based on the integrated unit 27 to be calculated, the cumulative lighting time of each first LED element, and the brightness reduction rate information of the second LED element, the brightness reduction rate of each first LED element is calculated, and the brightness reduction rate of each second LED element is calculated.
- the brightness reduction detection unit 29 that detects the first LED element whose brightness reduction rate is larger than the third threshold determined based on the minimum minimum brightness reduction rate as the target LED element, and the number of target LED elements is the fourth threshold or more.
- an offset processing unit 19 for offsetting the video signal is provided.
- the LED display device 1003 of the third embodiment is based on the number of LED elements 102 of the first LED drive unit 21 in which the luminance reduction rates kr (t), kg (t), and kb (t) are larger than the threshold values YRth, YGth, and YBth. , Offset processing is performed, and the display position of the image is shifted and displayed. As a result, the brightness reduction rate is leveled between the LED elements 102 of the first LED drive unit 21. As a result, the uniformity of brightness and the white balance can be maintained in the first LED display unit 22 without excessively darkening the entire first LED display unit 22.
- the brightness reduction rate of each LED element 102 is accurately measured, and the offset processing is performed only when the difference in brightness reduction between the LED elements 102 becomes large, so that it is frequent. Offset adjustment is not performed, and the user does not feel uncomfortable.
- the LED display device 1003 of the third embodiment acquires the brightness reduction rate of each LED element 102 from the measurement result of the brightness of the second LED display unit 24 by the brightness measuring unit 25.
- the relationship between the lighting time measured using the LED having average characteristics and the brightness reduction rate is stored in the brightness reduction rate storage unit 26 and stored.
- the brightness reduction detection unit 29 may refer to the relationship between the lighting time and the brightness reduction rate and the measurement result of the brightness measurement unit 25 to detect the brightness reduction of the LED element 102. In this case, an abnormal measured value due to a sudden failure of the LED or the like is not subject to correction.
- the LED display device 1003 performed offset processing and brightness correction of each LED element in order to level the brightness reduction rate between the LED elements, suppress uneven brightness, and maintain good image display quality. However, when the displayed image is relatively moving, the LED display device 1003 may perform only offset processing. Since the luminance correction of each LED element 102 requires a processing load according to the number of display pixels, the processing load of the arithmetic unit can be reduced by performing only the offset processing.
- Embodiment 4 In the first, second, and third embodiments, one LED display device 1001, 1002, 1003 has been described. In the fourth embodiment, an LED display system in which a large screen is configured by a plurality of LED display devices arranged in a matrix will be described.
- FIG. 14 is a configuration diagram of the LED display system 400 of the fourth embodiment.
- the LED display system 400 includes a plurality of LED display devices 1004 arranged in a matrix and a video control device 5.
- 18 LED display devices 1004 are arranged vertically with 3 units and 6 units in the horizontal direction to form a large screen.
- the letters ar are added to the end of the reference code, and the term is referred to as the LED display device 1004a-1004r.
- the LED display device 1004a-1004r is connected to the video control device 5 by a cable 60.
- FIG. 15 shows the connection relationship of each component of the LED display system 400.
- the video control device 5 and the LED display device 1004a-1004r are connected by a video cable 60a such as DVI (Digital Visual Interface) and a communication cable 60b such as LAN (Local Area Network).
- a video cable 60a such as DVI (Digital Visual Interface)
- a communication cable 60b such as LAN (Local Area Network).
- FIG. 16 is a block diagram of the video control device 5.
- the video control device 5 includes an input terminal 51, a generation unit 52, an output unit 53, an output terminal 54, a communication terminal 55, a communication unit 56, a storage unit 57, and a brightness reduction detection unit 58.
- the generation unit 52 performs signal processing for displaying the video signal input from the input terminal 51 on the LED display device 1004a-1004r.
- the output unit 53 processes the video signal processed by the generation unit 52 into a video signal to be displayed on each LED display device 1004a-1004r, and outputs the video signal from the output terminal 54 to each LED display device 1004a-1004r.
- the communication unit 56 transmits / receives information to / from each LED display device 1004a-1004r.
- the storage unit 57 stores the lighting time and the brightness reduction rate of each LED display device 1004a-1004r.
- the brightness reduction detection unit 58 detects the LED element 102 whose brightness has decreased in each LED display device 1004a-1004r.
- FIG. 17 is a block diagram showing the configuration of the LED display device 1004.
- the LED display device 1004 includes a correction amount calculation unit 32 instead of the correction amount calculation unit 18, and further includes a communication unit 33 and a communication terminal 34.
- the communication unit 33 transmits / receives information to / from the video control device 5 via the communication terminal 34.
- the brightness reduction detection unit 29 acquires the cumulative lighting time of the LED element 102 of the first LED display unit 22 from the lighting time storage unit 28, and sets the lighting time of the LED element 102 of the second LED display unit 24 from the brightness reduction rate storage unit 26. The relationship of the brightness reduction rate is acquired, and the brightness reduction rate of the LED element 102 of the first LED display unit 22 is calculated based on these. Then, the brightness reduction detection unit 29 transmits the calculated brightness reduction rate of the LED element 102 of the first LED display unit 22 to the image control device 5 via the communication unit 33 and the communication terminal 34.
- the correction amount calculation unit 32 acquires the brightness reduction rate of the LED element 102 of the first LED display unit 22 from the brightness reduction detection unit 29, and acquires the processing result of the video control device 5 from the communication unit 33. Then, the correction amount calculation unit 32 calculates the offset amount of the video signal based on these.
- FIG. 18 is a flowchart showing the offset processing of the LED display system 400.
- the luminance reduction detection unit 58 of the video control device 5 determines whether or not the set time has elapsed since the previous offset processing (step S401).
- the set time is a unit time of offset processing, and is, for example, 100 hours.
- the brightness reduction detection unit 58 repeats step S401 until the set time elapses from the previous offset process.
- the luminance reduction detection unit 58 displays the cumulative lighting time of each LED element 102 of the first LED display unit 22 and the second LED display from each LED display device 1004. Information representing the relationship between the lighting time of each LED element 102 of the unit 24 and the brightness reduction rate is acquired via the communication unit 56 and stored in the storage unit 57 (step S402).
- the brightness reduction detection unit 58 determines the cumulative lighting time of each LED element 102 of the first LED display unit 22 and the lighting time and brightness reduction of each LED element 102 of the second LED display unit 24 stored in the storage unit 57. Similar to the brightness reduction detection unit 29 of the third embodiment, the minimum brightness reduction rate kr (t) min , kg (t) min , kb (t) min of the LED element 102 is extracted from the information representing the relationship with the rate. Further, the threshold values YRth, YGth, and YBth of the brightness reduction rate are calculated (step S404).
- the brightness reduction detection unit 58 determines whether or not there is an LED element 102 whose brightness reduction rate exceeds the threshold values YRth, YGth, and YBth (step S405).
- the image control device 5 shifts to the process of step S407 without performing the offset process.
- the generation unit 52 performs offset processing on the video signal (step S406).
- the output unit 53 transmits the video generated by the generation unit 52 to each LED display device 1004 via an output terminal 54 such as DVI. In this way, the image is displayed on each LED display device 1004.
- step S406 when there is no LED element 102 whose luminance reduction rate exceeds the threshold values YRth, YGth, YBth, the video control device 5 determines whether or not the video display is completed (step S407). .. If Yes in step S407, the series of offset processing ends. When the video display is continued (No in step S407), the process of the video control device 5 returns to step S401.
- the video control device 5 is a general-purpose information processing device such as a personal computer (PC)
- the video is not enlarged in the offset processing, and the content of the video to be displayed is offset processed or the video to be displayed is arranged. You may make changes and the like.
- the generation unit 52 of the video control device 5 may perform only the minimum offset processing such as enlargement / reduction processing.
- the luminance reduction detection unit 58 transmits the remaining offset processing, for example, an instruction to move the display position of the image in the vertical or horizontal direction to each LED display device 1004 via the communication unit 56.
- the correction amount calculation unit 32 calculates the offset correction amount for each LED display device 1004, and the offset processing unit 19 performs the offset processing.
- the luminance correction unit 31 may be omitted and only the offset processing may be performed.
- the LED display system 400 of the fourth embodiment includes a plurality of LED display devices 1004 and a video control device 5 that communicates with each LED display device 1004.
- Each LED display device 1004 includes a first LED display unit 22 having a plurality of first LED elements arranged in a plurality of directions, a first LED drive unit 21 that drives each first LED element according to a video signal, and a first LED element.
- a brightness reduction rate storage unit 26 that stores brightness reduction rate information indicating the relationship between the lighting time and the brightness reduction rate of the second LED element having the same brightness reduction characteristic, and an integration unit that calculates the cumulative lighting time of each first LED element.
- 27 and a communication unit 33 which is a first communication unit that communicates with the video control device 5.
- the image control device 5 has a communication unit 56 which is a second communication unit that communicates with each LED display device 1004, a cumulative lighting time of each first LED element acquired from each LED display device 1004, and a decrease in brightness of the second LED element.
- the brightness reduction rate of each first LED element is calculated based on the rate information, and the brightness reduction rate is larger than the third threshold value determined based on the minimum minimum brightness reduction rate of the brightness reduction rates of each second LED element. It includes a luminance reduction detection unit 58 that detects one LED element as a target LED element, and a generation unit 52 that is an offset processing unit that offsets a video signal when the number of target LED elements is equal to or greater than the fourth threshold value.
- the luminance reduction rate kr (t), kg (t), kb (t) is larger than the threshold values YRth, YGth, YBth in the LED element 102 of each LED display device 1004.
- the video signal is offset.
- the brightness reduction rate is leveled among the LED elements 102. Therefore, by correcting the brightness according to the LED element 102 whose brightness is extremely lowered, the entire screen of the LED display device 1004 does not become excessively dark. As a result, it becomes easy to maintain the uniformity of the brightness and the white balance, and it is possible to suppress the variation in the brightness of the image display screen.
- the video signal is enlarged to, for example, 105%, and a part necessary for display is selected from the enlarged image, so that the image is displayed on the LED display unit 14 at the time of offset.
- the area where is not displayed did not appear.
- the LED display system 400 of the fourth embodiment if the image control device 5 performs a process of moving the display position of the image in the LED display device 1004 or a process of changing the arrangement of the image, the LED display device The offset processing unit 19 of 1004 does not need to perform image enlargement processing. Therefore, the image quality does not deteriorate due to the image enlargement processing.
- the LED display system 400 by using the video control device 5, it is possible to adopt a processing circuit or processing device related to video signal processing in the LED display device 1004, which is cheaper and has lower processing performance. Therefore, the cost of the LED display system 400 can be reduced.
- the video control device 5 notifies from the LED display device 1004 when there is an LED element 102 having a luminance reduction rate kr (t), kg (t), and kb (t) larger than the threshold values YRth, YGth, and YBth. It may receive and control the image. Since the video control device 5 can use a general-purpose information processing device such as a PC, the flexibility of the function is high. Therefore, the user may set the number of notifications received by the video control device 5 until the video is controlled, or the method of shifting the video (amount, direction, frequency, enlargement / reduction, rotation, etc.) in the offset processing.
- Offset processing unit 19 and the like Various configurations (hereinafter, referred to as “offset processing unit 19 and the like") in the LED display device 1001-1004 and the video control device 5 described above include the LED display unit 14, the first LED display unit 22, and the second LED display unit 24. Except, it is realized by the processing circuit 81 shown in FIG. Dedicated hardware may be applied to the processing circuit 81, or a processor that executes a program stored in the memory may be applied.
- the processor is, for example, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
- the processing circuit 81 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable). GateArray), or a combination of these.
- Each of the functions of each part such as the offset processing unit 19 may be realized by a plurality of processing circuits 81, or the functions of each part may be collectively realized by one processing circuit.
- the processing circuit 81 When the processing circuit 81 is a processor, the functions of the offset processing unit 19 and the like are realized by a combination with software or the like (software, firmware or software and firmware). Software and the like are described as programs and stored in memory. As shown in FIG. 20, the processor 82 applied to the processing circuit 81 realizes the functions of each part by reading and executing the program stored in the memory 83. In other words, it can be said that this program causes the computer to execute the procedure or method of the offset processing unit 19 and the like.
- software or the like software, firmware or software and firmware
- the memory 83 is a non-volatile or non-volatile memory such as a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), a flash memory, an EPROM (ErasableProgrammableReadOnlyMemory), and an EEPROM (ElectricallyErasableProgrammableReadOnlyMemory). Volatile semiconductor memory, HDD (Hard Disk Drive), magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disk) and its drive device, etc., or any storage medium used in the future. You may.
- RAM RandomAccessMemory
- ROM ReadOnlyMemory
- flash memory an EPROM (ErasableProgrammableReadOnlyMemory), and an EEPROM (ElectricallyErasableProgrammableReadOnlyMemory).
- Volatile semiconductor memory Volatile semiconductor memory, HDD (Hard Disk Drive), magnetic disk, flexible disk, optical disk, compact disk
- each function of the offset processing unit 19 and the like is realized by either hardware or software has been described above.
- the present invention is not limited to this, and a configuration may be configured in which a part of the offset processing unit 19 or the like is realized by dedicated hardware and another part is realized by software or the like.
- the offset processing unit 19 realizes its function by a processing circuit as dedicated hardware, and other than that, the processing circuit 81 as a processor 82 reads and executes a program stored in the memory 83 to execute the function. It is possible to realize.
- the processing circuit can realize each of the above-mentioned functions by hardware, software, or a combination thereof.
- the lighting time storage units 16 and 28, the luminance reduction rate storage unit 26, and the storage unit 57 are composed of a memory 83, but they may be composed of a single memory 83, or each of them may be an individual memory. It may be composed of.
- Video control device 11,51 input terminal, 12 signal processing unit, 13 LED drive unit, 14 LED display unit, 15 integration unit, 16,28 lighting time storage unit, 17,29,58 brightness reduction detection unit, 18 correction Quantity calculation unit, 19 offset processing unit, 21 1st LED drive unit, 22 1st LED display unit, 23 2nd LED drive unit, 24 2nd LE display unit, 25 brightness measurement unit, 26 brightness reduction rate storage unit, 27 integration unit, 30 Correction coefficient calculation unit, 31 brightness correction unit, 32 correction amount calculation unit, 33,56 communication unit, 34,55 communication terminal, 52 generation unit, 53 output unit, 54 output terminal, 57 storage unit, 60 cable, 60a video cable , 60b communication cable, 81 processing circuit, 82 processor, 83 memory, 101 LED, 102 LED element, 400 LED display system, 1001-1004 LED display device.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of El Displays (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
The purpose of the present disclosure is to level the brightness decrease rate between LED elements without excessively decreasing the brightness of an LED display unit. An LED display device (1001) is provided with: an LED display unit (14) that has a plurality of LED elements (102) arranged in a plurality of directions; an LED drive unit (13) that drives the LED elements (102) in accordance with a video signal; a summation unit (15) that calculates accumulated lighting times of the LED elements (102); a brightness decrease detection unit (17) that detects, as an object LED element, an LED element (102) having an accumulated lighting time longer than a first threshold value set with the shortest accumulated lighting time among the accumulated lighting times of the LED elements (102) as a reference; and an offset processing unit (19) that offsets the video signal if the number of the object LED elements is a second threshold value or more.
Description
本開示は、LED表示装置、LED表示システムおよびLED表示装置の表示方法に関する。
This disclosure relates to an LED display device, an LED display system, and a display method of the LED display device.
現在、発光ダイオード(Light Emitting Diode:LED)素子の高輝度化、小型化および低コスト化が進んでいる。それに伴い、複数のLED素子が平面状に配置されたLED表示部を備えるLED表示装置は、屋内外における広告表示等に広く使用されている。
Currently, the brightness, miniaturization, and cost reduction of light emitting diode (LED) elements are progressing. Along with this, LED display devices including LED display units in which a plurality of LED elements are arranged in a plane are widely used for indoor and outdoor advertisement display and the like.
かつて、LED表示装置は、主に、自然画、またはアニメーション等の動きのある画像を表示するために使用されていた。しかし、最近では、LED素子の小型化によりLED表示装置の画素ピッチが小さくなった。その結果、LED表示装置は、屋内で会議用の資料画像または監視画像等を表示するなど、視認距離が短い用途にも使用されるようになった。その結果、LED表示装置は、パーソナルコンピュータ等から入力される静止画に近い画像を表示することが多くなった。
In the past, LED display devices were mainly used to display moving images such as natural images or animations. However, recently, the pixel pitch of the LED display device has become smaller due to the miniaturization of the LED element. As a result, the LED display device has come to be used for applications with a short viewing distance, such as displaying a document image or a surveillance image for a conference indoors. As a result, the LED display device often displays an image close to a still image input from a personal computer or the like.
LED表示装置が備える各LED素子の累積点灯時間は、LED表示装置の表示画像の内容に応じて不均一になる。LED素子は、累積点灯時間が長くなるにつれて輝度が低下する。そのため、各LED素子の輝度低下率は、LED表示装置の表示画像の内容に応じて不均一になる。従って、LED表示装置の運用時間が長くなるにつれて、LED表示部の輝度および色が不均一になるという問題があった。
The cumulative lighting time of each LED element included in the LED display device becomes non-uniform depending on the content of the display image of the LED display device. The brightness of the LED element decreases as the cumulative lighting time increases. Therefore, the brightness reduction rate of each LED element becomes non-uniform depending on the content of the display image of the LED display device. Therefore, as the operating time of the LED display device becomes longer, there is a problem that the brightness and the color of the LED display unit become non-uniform.
この問題を解決するため、特許文献1および特許文献2では以下の構成が提案されている。特許文献1に記載されたLED表示装置は、各LED素子の累積点灯時間を演算し、累積点灯時間が閾値に達したLED素子の輝度補正係数を修正し、修正した輝度補正係数に従って補正表示データを作成し、LED表示部に出力する。これにより、LED素子の累積点灯時間の差により生じ得る輝度ムラが抑制される。
In order to solve this problem, the following configurations are proposed in Patent Document 1 and Patent Document 2. The LED display device described in Patent Document 1 calculates the cumulative lighting time of each LED element, corrects the brightness correction coefficient of the LED element whose cumulative lighting time has reached the threshold value, and corrects the display data according to the corrected brightness correction coefficient. Is created and output to the LED display unit. As a result, the brightness unevenness that may occur due to the difference in the cumulative lighting time of the LED elements is suppressed.
特許文献2に記載されたLED表示装置は、累積点灯時間が予め設定された設定時間になったLED素子に対する駆動信号のデューティ比を、累積点灯時間に基づき算出したLED輝度低下率に応じて上げる。これにより、LED素子の累積点灯時間の差により生じ得る輝度ムラが抑制される。
The LED display device described in Patent Document 2 raises the duty ratio of the drive signal to the LED element whose cumulative lighting time has reached a preset setting time according to the LED brightness reduction rate calculated based on the cumulative lighting time. .. As a result, the brightness unevenness that may occur due to the difference in the cumulative lighting time of the LED elements is suppressed.
従来のLED表示装置は、LED素子の累積点灯時間に基づいて輝度低下率を算出し、輝度低下率に基づいて輝度を補正する。従って、LED素子の輝度が低下しても、LED表示部に表示される映像の輝度および色を均一に維持することが可能である。
The conventional LED display device calculates the brightness reduction rate based on the cumulative lighting time of the LED element, and corrects the brightness based on the brightness reduction rate. Therefore, even if the brightness of the LED element decreases, it is possible to maintain the brightness and color of the image displayed on the LED display unit uniformly.
しかし、各LED素子の累積点灯時間は均一ではない。特に、LED表示部が静止画を長時間表示する場合には、あるLED素子の累積点灯時間が他のLED素子よりも著しく長くなり、輝度が大きく低下する場合がある。そして、従来のLED表示装置では、輝度が大きく低下したLED素子が複数のLED表示部に含まれる場合に、輝度が大きく低下したLED素子にあわせて他のLED素子の輝度も低下することにより、LED表示部の輝度が過剰に低下するという問題があった。
However, the cumulative lighting time of each LED element is not uniform. In particular, when the LED display unit displays a still image for a long time, the cumulative lighting time of a certain LED element may be significantly longer than that of another LED element, and the brightness may be significantly reduced. Then, in the conventional LED display device, when the LED element whose brightness is greatly reduced is included in the plurality of LED display units, the brightness of the other LED elements is also reduced in accordance with the LED element whose brightness is greatly reduced. There is a problem that the brightness of the LED display unit is excessively lowered.
本開示の技術は、上述のような課題を解決するためになされたもので、LED表示部の輝度を過剰に低下することなく、LED素子間の輝度低下率を平準化することを目的とする。
The technique of the present disclosure has been made to solve the above-mentioned problems, and an object thereof is to level the luminance reduction rate between LED elements without excessively reducing the luminance of the LED display unit. ..
本開示の1つの態様のLED表示装置は、複数の方向に配列された複数のLED素子を有するLED表示部と、映像信号にしたがって各LED素子を駆動するLED駆動部と、各LED素子の累積点灯時間を算出する積算部と、各LED素子の累積点灯時間のうち最も短い最短累積点灯時間を基準として定められた第1閾値より累積点灯時間が長いLED素子を対象LED素子として検出する輝度低下検出部と、対象LED素子の数が第2閾値以上である場合に、映像信号をオフセットするオフセット処理部と、を備える。
The LED display device of one aspect of the present disclosure includes an LED display unit having a plurality of LED elements arranged in a plurality of directions, an LED drive unit that drives each LED element according to a video signal, and a cumulative total of the LED elements. Brightness reduction that detects as a target LED element an integrating unit that calculates the lighting time and an LED element that has a longer cumulative lighting time than the first threshold determined based on the shortest cumulative lighting time that is the shortest of the cumulative lighting times of each LED element. It includes a detection unit and an offset processing unit that offsets the video signal when the number of target LED elements is equal to or greater than the second threshold value.
本開示の1つの態様のLED表示装置によれば、対象LED素子の数が第2閾値以上である場合に映像信号がオフセットされる。従って、LED表示部の輝度を過剰に低下することなくLED素子間の輝度低下率を平準化することが可能である。本開示の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
According to the LED display device of one aspect of the present disclosure, the video signal is offset when the number of target LED elements is equal to or larger than the second threshold value. Therefore, it is possible to level the brightness reduction rate between the LED elements without excessively reducing the brightness of the LED display unit. The purposes, features, embodiments, and advantages of the present disclosure will be made clearer by the following detailed description and accompanying drawings.
<A.実施の形態1>
<A-1.構成>
図1は、実施の形態1のLED表示装置1001の構成を示すブロック図である。図1に示すように、LED表示装置1001は、入力端子11、信号処理部12、LED駆動部13、LED表示部14、積算部15、点灯時間記憶部16、輝度低下検出部17、補正量演算部18およびオフセット処理部19を備えている。 <A.Embodiment 1>
<A-1. Configuration>
FIG. 1 is a block diagram showing a configuration of theLED display device 1001 according to the first embodiment. As shown in FIG. 1, the LED display device 1001 includes an input terminal 11, a signal processing unit 12, an LED drive unit 13, an LED display unit 14, an integrating unit 15, a lighting time storage unit 16, a brightness reduction detection unit 17, and a correction amount. It includes a calculation unit 18 and an offset processing unit 19.
<A-1.構成>
図1は、実施の形態1のLED表示装置1001の構成を示すブロック図である。図1に示すように、LED表示装置1001は、入力端子11、信号処理部12、LED駆動部13、LED表示部14、積算部15、点灯時間記憶部16、輝度低下検出部17、補正量演算部18およびオフセット処理部19を備えている。 <A.
<A-1. Configuration>
FIG. 1 is a block diagram showing a configuration of the
図2は、LED表示部14の斜視図である。図2に示すように、LED表示部14はマトリクス状に配列された複数のLED101を備えている。図2では、16個のLED101が縦方向に4個かつ横方向に4個で配列されているが、LED表示部14におけるLED101の個数および配列態様は図2に示すものに限らない。
FIG. 2 is a perspective view of the LED display unit 14. As shown in FIG. 2, the LED display unit 14 includes a plurality of LEDs 101 arranged in a matrix. In FIG. 2, 16 LEDs 101 are arranged in 4 in the vertical direction and 4 in the horizontal direction, but the number and arrangement mode of the LEDs 101 in the LED display unit 14 are not limited to those shown in FIG.
図3は、LED101の平面図である。図3に示すように、LED101は、LED素子102r,102g,102bを備えて構成される。1つのLED101が1つの画素を構成する。LED素子102rは赤色光を出射し、LED素子102gは緑色光を出射し、LED素子102bは青色光を出射する。このように、LED素子102r,102g,102bの参照符号の末尾に付されたr,g,bは、LED素子102r,102g,102bの発光色を表している。以下の説明において、特定の発光色に限定せずLED素子に言及する場合、単にLED素子102と称する。また、LED表示部14が有するLED素子102を、第1LED素子とも称する。
FIG. 3 is a plan view of the LED 101. As shown in FIG. 3, the LED 101 includes LED elements 102r, 102g, 102b. One LED 101 constitutes one pixel. The LED element 102r emits red light, the LED element 102g emits green light, and the LED element 102b emits blue light. As described above, the r, g, and b attached to the end of the reference numerals of the LED elements 102r, 102g, 102b represent the emission colors of the LED elements 102r, 102g, 102b. In the following description, when the LED element is referred to without being limited to a specific emission color, it is simply referred to as the LED element 102. Further, the LED element 102 included in the LED display unit 14 is also referred to as a first LED element.
入力端子11には、映像情報処理装置などの映像信号源から映像信号が入力される。映像情報処理装置は、例えばパーソナルコンピュータである。
A video signal is input to the input terminal 11 from a video signal source such as a video information processing device. The video information processing device is, for example, a personal computer.
信号処理部12は、入力端子11から入力された映像信号に対して、ガンマ補正等、各種の画質補正処理を行う。
The signal processing unit 12 performs various image quality correction processing such as gamma correction on the video signal input from the input terminal 11.
オフセット処理部19は、信号処理部12にて各種の画質補正処理が行われた映像信号にオフセット処理を行う。オフセット処理部19は、補正量演算部18で演算されたオフセット補正量に従ってオフセット処理を行う。オフセット処理は、映像信号を拡大または縮小する処理と、拡大または縮小された映像信号のうちLED表示部14に表示すべき領域を選択する処理と、映像信号を表示するLED表示部14の表示位置、すなわち映像信号を表示する画素であるLED101を指定する処理とを含む。
The offset processing unit 19 performs offset processing on the video signal that has undergone various image quality correction processing by the signal processing unit 12. The offset processing unit 19 performs offset processing according to the offset correction amount calculated by the correction amount calculation unit 18. The offset processing includes a process of enlarging or reducing the video signal, a process of selecting an area to be displayed on the LED display unit 14 from the enlarged or reduced video signal, and a display position of the LED display unit 14 for displaying the video signal. That is, a process of designating the LED 101, which is a pixel for displaying a video signal, is included.
例えば、オフセット処理部19は、映像信号を105%拡大し、拡大した映像信号から所望の映像の表示に必要な領域を選択する。そして、オフセット処理部19は、映像のLED表示部14における表示位置を、例えば5%の範囲内でずらす処理を行い、映像を指定の位置のLED101に配置されたLED素子102に表示させる。なお、このように映像をずらしても、LED表示部14において映像の上下左右に映像が表示されないエリアは現れない。オフセット処理部19は、映像信号を縮小した場合は、映像の周囲の違和感を少なくするために、例えば黒の映像を周囲に補填してもよい。また、オフセット処理部19は、映像の内容によっては、映像を回転させてもよい。
For example, the offset processing unit 19 enlarges the video signal by 105% and selects an area necessary for displaying a desired video from the enlarged video signal. Then, the offset processing unit 19 performs a process of shifting the display position of the image in the LED display unit 14 within a range of, for example, 5%, and displays the image on the LED element 102 arranged in the LED 101 at the designated position. Even if the image is shifted in this way, the area where the image is not displayed on the top, bottom, left, and right of the image does not appear on the LED display unit 14. When the image signal is reduced, the offset processing unit 19 may supplement the surroundings with, for example, a black image in order to reduce the sense of discomfort in the surroundings of the image. Further, the offset processing unit 19 may rotate the image depending on the content of the image.
LED駆動部13は、オフセット処理部19でオフセット処理された映像信号に従って、LED表示部14の複数のLED101を駆動する。各LED101に配置された各LED素子102の点滅および輝度は、パルス幅変調(PWM:Pulse Width Modulation)方式により制御される。LED駆動部13は、各LED素子102の信号レベルに比例するデューティ比を有する駆動信号を各LED素子102に供給する。各LED素子102は、供給された駆動信号のオン期間に点灯することで、信号レベルに比例する輝度で点灯する。
The LED drive unit 13 drives a plurality of LEDs 101 of the LED display unit 14 according to the video signal offset processed by the offset processing unit 19. The blinking and luminance of each LED element 102 arranged in each LED 101 is controlled by a pulse width modulation (PWM) method. The LED drive unit 13 supplies a drive signal having a duty ratio proportional to the signal level of each LED element 102 to each LED element 102. Each LED element 102 is turned on during the on period of the supplied drive signal, so that the LED element 102 is turned on with a brightness proportional to the signal level.
図4は、各LED素子102のPWM駆動信号の波形を説明するタイミングチャートである。図4において、波形W1は、PWM駆動の基本周期で繰り返し発せられるパルスを含む信号の波形である。波形W2は、85%のデューティ比を有する駆動信号の波形である。波形W3は、80%のデューティ比を有する駆動信号の波形である。
FIG. 4 is a timing chart for explaining the waveform of the PWM drive signal of each LED element 102. In FIG. 4, the waveform W1 is a waveform of a signal including a pulse repeatedly generated in the basic cycle of PWM drive. The waveform W2 is a waveform of a drive signal having a duty ratio of 85%. The waveform W3 is a waveform of a drive signal having a duty ratio of 80%.
波形W1で示されるPWM駆動の基本周期は、映像信号の1フレーム期間以下である。波形W2の駆動信号は、PWM駆動の基本周期で繰り返し発せられ、PWM駆動の基本周期の85%のパルス幅PW1を有するパルスを含む。波形W3の駆動信号は、PWM駆動の基本周期で繰り返し発せられ、PWM駆動の基本周期の80%のパルス幅PW2を有するパルスを含む。波形W2の駆動信号が供給されるLED素子102と、波形W3の駆動信号が供給されるLED素子102とでは、輝度が異なる。従って、LED駆動部13は、各LED素子102に供給される駆動信号のデューティ比を変更することにより、各LED素子102の輝度を調整する。
The basic period of PWM drive indicated by the waveform W1 is one frame period or less of the video signal. The drive signal of the waveform W2 includes a pulse that is repeatedly emitted in the basic cycle of PWM drive and has a pulse width PW1 of 85% of the basic cycle of PWM drive. The drive signal of the waveform W3 is repeatedly generated in the basic cycle of PWM drive, and includes a pulse having a pulse width PW2 of 80% of the basic cycle of PWM drive. The brightness of the LED element 102 to which the drive signal of the waveform W2 is supplied is different from that of the LED element 102 to which the drive signal of the waveform W3 is supplied. Therefore, the LED drive unit 13 adjusts the brightness of each LED element 102 by changing the duty ratio of the drive signal supplied to each LED element 102.
積算部15は、各LED素子102の点灯時間の積算処理を行って、各LED素子102の累積点灯時間を算出する。点灯時間記憶部16は、積算部15が算出した各LED素子102の累積点灯時間を記憶する。
The integration unit 15 performs an integration process of the lighting time of each LED element 102 to calculate the cumulative lighting time of each LED element 102. The lighting time storage unit 16 stores the cumulative lighting time of each LED element 102 calculated by the integration unit 15.
各LED素子102の輝度は、最も高速に変化する場合には、表示される映像の1フレームごとに変化する。従って、各LED素子102の累積点灯時間を正確に算出する方法として、以下の方法が想定される。
When the brightness of each LED element 102 changes at the highest speed, it changes for each frame of the displayed image. Therefore, the following method is assumed as a method for accurately calculating the cumulative lighting time of each LED element 102.
すなわち、積算部15は、PWM駆動の基本周期が終了するごとに、各LED素子102の点灯時間の積算処理を行う。積算部15は、積算処理において、PWM駆動の基本周期の長さと、PWM駆動の基本周期の長さに対する各LED素子102の点灯時間の比を示す駆動係数との積を積算することにより、各LED素子102の累積点灯時間を正確に算出することができる。各LED素子102の駆動係数としては、各LED素子102に供給された駆動信号のデューティ比を用いることができる。しかし、各LED素子102についてPWM駆動の基本周期が終了するごとに上記の積算処理を行うと、演算処理が膨大になり、不揮発性メモリへのデータの書き込みは高頻度となる。このため、実施の形態1のLED表示装置1001では、積算部15は、積算処理を効率的に行うために、各LED素子102の累積点灯時間を後述の方法で算出する。
That is, the integration unit 15 performs integration processing of the lighting time of each LED element 102 every time the basic cycle of PWM drive ends. In the integration process, the integration unit 15 integrates the product of the length of the basic cycle of PWM drive and the drive coefficient indicating the ratio of the lighting time of each LED element 102 to the length of the basic cycle of PWM drive. The cumulative lighting time of the LED element 102 can be calculated accurately. As the drive coefficient of each LED element 102, the duty ratio of the drive signal supplied to each LED element 102 can be used. However, if the above integration processing is performed for each LED element 102 each time the basic period of PWM drive is completed, the arithmetic processing becomes enormous and the writing of data to the non-volatile memory becomes high frequency. Therefore, in the LED display device 1001 of the first embodiment, the integration unit 15 calculates the cumulative lighting time of each LED element 102 by the method described later in order to efficiently perform the integration process.
積算部15は、予め設定された時間(以下、「設定時間」と称する)が経過するごとに各LED素子102の点灯時間の積算処理を行って、各LED素子102の累積点灯時間を算出する。設定時間は、一定でも可変でもよいが、PWM駆動の基本周期の長さより長い。
The integrating unit 15 performs an integration process of the lighting time of each LED element 102 every time a preset time (hereinafter referred to as “set time”) elapses, and calculates the cumulative lighting time of each LED element 102. .. The set time may be constant or variable, but is longer than the length of the basic period of PWM drive.
積算部15は、積算処理において、LED表示部14の累積稼働時間t1を点灯時間記憶部16に記憶させる。また、積算部15は、積算処理において、各LED素子102の駆動条件から累積稼働時間t1に対する各LED素子102の累積点灯時間S1の比を示す各LED素子102の平均駆動係数R2を算出し、算出した平均駆動係数R2を点灯時間記憶部16に記憶させる。したがって、点灯時間記憶部16は、累積稼働時間t1および平均駆動係数R2を記憶する。実施の形態1においては、平均駆動係数R2は、積算処理が行われるまでに各LED素子102に供給された駆動信号の平均デューティ比である。これにより、積算部15は、設定時間が経過するごとに、点灯時間記憶部16に記憶されている、累積稼働時間t1および平均駆動係数R2を含む累積点灯時間情報を更新する。積算部15は、全画素、すなわち全LED101の各LED素子102の累積点灯時間情報を一度に更新する。
In the integration process, the integration unit 15 stores the cumulative operating time t 1 of the LED display unit 14 in the lighting time storage unit 16. Further, the integration unit 15, in the integration process, the average drive coefficient R 2 of the LED elements 102 that indicates the ratio of the cumulative lighting time S 1 of the LED elements 102 for the cumulative operating time t 1 from the driving condition of the LED elements 102 calculated, and stores the calculated average drive coefficient R 2 to the lighting time storage unit 16. Therefore, the lighting time storage unit 16 stores the cumulative operating time t 1 and the average drive coefficient R 2 . In the first embodiment, the average drive coefficient R 2 is the average duty ratio of the drive signals supplied to each LED element 102 until the integration process is performed. As a result, the integration unit 15 updates the cumulative lighting time information including the cumulative operating time t 1 and the average drive coefficient R 2 stored in the lighting time storage unit 16 every time the set time elapses. The integrating unit 15 updates the cumulative lighting time information of all the pixels, that is, the cumulative lighting time information of each LED element 102 of all the LEDs 101 at once.
また、積算部15は、積算処理を行う際の各LED素子102の駆動条件から、LED表示部14の稼働時間に対する各LED素子102の点灯時間の比を示す各LED素子102の駆動係数R1を算出する。
Further, the integration unit 15, the driving conditions of the LED elements 102 for performing the integration process, the driving factor R 1 of the LED elements 102 that indicates the ratio of the lighting time of the LED elements 102 for operating time of the LED display section 14 Is calculated.
また、積算部15は、前回の積算処理において点灯時間記憶部16に記憶させたLED表示部14の累積稼働時間t1を前回累積稼働時間t0とし、前回の積算処理において点灯時間記憶部16に記憶させた各LED素子102の平均駆動係数R2を前回平均駆動係数R0とする。そして、積算部15は、前回累積稼働時間t0、前回平均駆動係数R0、前回積算処理から積算処理までの経過時間t1-t0、および算出した各LED素子102の駆動係数R1に基づいて、各LED素子102の累積点灯時間S1を算出する。実施の形態1において、駆動係数R1は、前回積算処理が行われる際に各LED素子102に供給された駆動信号のデューティ比である。また、実施の形態1において、前回平均駆動係数R0は、前回積算処理が行われるまでに各LED素子102に供給された駆動信号の平均デューティ比である。
Further, the integration unit 15 sets the cumulative operating time t 1 of the LED display unit 14 stored in the lighting time storage unit 16 in the previous integration process as the previous cumulative operation time t 0, and sets the lighting time storage unit 16 in the previous integration process. The average drive coefficient R 2 of each LED element 102 stored in is set to the previous average drive coefficient R 0 . Then, the integration unit 15 sets the previous cumulative operating time t 0 , the previous average drive coefficient R 0 , the elapsed time t 1 − t 0 from the previous integration process to the integration process, and the calculated drive coefficient R 1 of each LED element 102. based on, to calculate the cumulative lighting time S 1 of the LED elements 102. In the first embodiment, the drive coefficient R 1 is the duty ratio of the drive signal supplied to each LED element 102 when the previous integration process is performed. Further, in the first embodiment, the previous average drive coefficient R 0 is the average duty ratio of the drive signals supplied to each LED element 102 until the previous integration process is performed.
前回積算処理が行われた際の各LED素子102の累積点灯時間S0は、式(1)に示されるように、LED表示部14の前回累積稼働時間t0と各LED素子102の前回平均駆動係数R0との積により表される。
As shown in the equation (1), the cumulative lighting time S 0 of each LED element 102 when the previous integration process is performed is the previous cumulative operating time t 0 of the LED display unit 14 and the previous average of each LED element 102. It is represented by the product of the drive coefficient R 0.
積算部15は、前回積算処理が行われてから今回積算処理が行われるまでの間に到来したPWM駆動の全基本周期において、各LED素子102の駆動係数、すなわち各LED素子102に供給された駆動信号のデューティ比を、前回積算処理が行われる際に各LED素子102に供給された駆動信号のデューティ比であるR1と仮定する。従って、積算処理が行われる際の各LED素子102の累積点灯時間S1は、式(2)に示されるように、累積点灯時間S0と、経過時間t1-t0と駆動係数R1との積と、の和により表される。
The integration unit 15 was supplied to the drive coefficient of each LED element 102, that is, to each LED element 102 in the entire basic cycle of PWM drive that arrived between the time when the integration process was performed last time and the time when the integration process was performed this time. It is assumed that the duty ratio of the drive signal is R 1 , which is the duty ratio of the drive signal supplied to each LED element 102 when the previous integration process is performed. Therefore, the cumulative lighting time S 1 of each LED element 102 when the integration process is performed is the cumulative lighting time S 0 , the elapsed time t 1 − t 0, and the drive coefficient R 1 as shown in the equation (2). It is expressed by the product of and the sum of.
各LED素子102の平均駆動係数R2は、式(3)に示されるように、各LED素子102の累積点灯時間S1をLED表示部14の累積稼働時間t1で除することにより得られる係数である。したがって、平均駆動係数R2は、式(1)および式(2)を考慮すると、式(3)に示されるように、LED表示部14の前回累積稼働時間t0と各LED素子102の前回平均駆動係数R0との積と、経過時間t1-t0と各LED素子102の駆動係数R1との積と、の和を、累積稼働時間t1で除することにより得られる。
Average drive coefficient R 2 of the LED elements 102 is obtained by dividing, as shown in equation (3), the cumulative lighting time S 1 of the LED elements 102 with the cumulative operating time t 1 of the LED display section 14 It is a coefficient. Therefore, when the equation (1) and the equation (2) are taken into consideration, the average drive coefficient R 2 is the previous cumulative operating time t 0 of the LED display unit 14 and the previous time of each LED element 102, as shown in the equation (3). and the product of the average driving coefficient R 0, the elapsed time t 1 -t 0 and the product of the driving factor R 1 of the LED elements 102, the sum of, obtained by dividing the cumulative operation time t1.
積算部15は、LED表示部14の累積稼働時間t1が0の時点から設定時間が経過するごとに、平均駆動係数R2を算出し、点灯時間記憶部16に記憶された前回平均駆動係数R0を平均駆動係数R2で更新する。
Integrating unit 15, every time the cumulative operating time t 1 of the LED display unit 14 for the set time elapses from the time point of 0, calculates an average driving factor R 2, previous average drive coefficients stored in the lighting time storage unit 16 R 0 is updated with the average drive coefficient R 2.
LED表示部14に表示される表示パターンの変化が小さい場合は、各LED素子102の輝度の変化も小さく、各LED素子102に供給される駆動信号のデューティ比の変化も小さい。したがって、この場合は、設定時間がPWM駆動の基本周期より十分に長くても、各LED素子102の実際の点灯時間と、積算部15が平均駆動係数R2から算出する各LED素子102の累積点灯時間S1と、の差は十分に小さい。つまり、積算部15は、平均駆動係数R2から各LED素子102の累積点灯時間S1を正確に算出することができる。
When the change in the display pattern displayed on the LED display unit 14 is small, the change in the luminance of each LED element 102 is also small, and the change in the duty ratio of the drive signal supplied to each LED element 102 is also small. Therefore, in this case, be sufficiently longer than the fundamental period of the time setting the PWM drive, the actual lighting time of the LED elements 102, accumulation of the LED elements 102 that integrating unit 15 calculates the average driving factor R 2 The difference between the lighting time S 1 and the lighting time S 1 is sufficiently small. That is, the integrated unit 15 can be accurately calculated from the average driving factor R 2 of the cumulative lighting time S 1 of the LED elements 102.
積算部15が算出した各LED素子102の累積点灯時間S1は、後述する輝度補正に用いられる。これにより、積算部15は、積算処理を行うための演算処理の量を減らしながら各LED素子102の累積点灯時間S1を正確に算出することができる。
Cumulative lighting time S 1 of the LED elements 102 that integrating unit 15 has been calculated is used later to luminance correction. Thus, the integrated unit 15, the cumulative lighting time S 1 of the LED elements 102 while reducing the amount of arithmetic processing for accumulation process can be accurately calculated.
輝度低下検出部17は、点灯時間記憶部16に記憶された各LED素子102の累積点灯時間S1から、最も短い累積点灯時間S1(以下、最短累積点灯時間と称する)を抽出する。そして、輝度低下検出部17は、最短累積点灯時間を基準として累積点灯時間の閾値(第1閾値)を定め、累積点灯時間が当該閾値以上となるLED素子102の個数をカウントする。
Luminance drop detection unit 17, from the cumulative lighting time S 1 of the LED elements 102 stored in the lighting time storage unit 16, extracts the shortest cumulative lighting time S 1 (hereinafter, referred to as the shortest cumulative lighting time). Then, the brightness reduction detection unit 17 sets a threshold value (first threshold value) for the cumulative lighting time based on the shortest cumulative lighting time, and counts the number of LED elements 102 whose cumulative lighting time is equal to or longer than the threshold value.
LED素子102は、点灯時間と共に輝度が低下していく特性を持つ。この特性に基づき、輝度低下検出部17は、点灯時間のより長いLED素子102は、輝度がより低下しているとみなす。そして、輝度低下検出部17は、各LED素子102の輝度低下の度合いを、各LED素子102の点灯時間の比率によって比較する。つまり、LED素子102の輝度は、LED素子102の点灯時間の関数として表され、点灯時間が長くなるにつれて低下する特性を有する。
The LED element 102 has a characteristic that the brightness decreases with the lighting time. Based on this characteristic, the brightness reduction detection unit 17 considers that the LED element 102 having a longer lighting time has a lower brightness. Then, the brightness reduction detection unit 17 compares the degree of brightness reduction of each LED element 102 by the ratio of the lighting time of each LED element 102. That is, the brightness of the LED element 102 is expressed as a function of the lighting time of the LED element 102, and has a characteristic that it decreases as the lighting time becomes longer.
<A-2.動作>
図5は、LED表示装置1001の斜視図である。図5において、LED表示装置1001は縦2×横2で配列された4個のLED表示部14a,14b,14c,14dを備えており、画素解像度は320×360である。図5において、LED表示部14a,14b,14c,14dはLED表示部14と同一の構成であるが、夫々を区別するため参照符号の末尾にa-dの文字を付記している。 <A-2. Operation>
FIG. 5 is a perspective view of theLED display device 1001. In FIG. 5, the LED display device 1001 includes four LED display units 14a, 14b, 14c, 14d arranged in a vertical direction 2 × horizontal direction 2, and has a pixel resolution of 320 × 360. In FIG. 5, the LED display units 14a, 14b, 14c, and 14d have the same configuration as the LED display unit 14, but the characters ad are added to the end of the reference numerals to distinguish them from each other.
図5は、LED表示装置1001の斜視図である。図5において、LED表示装置1001は縦2×横2で配列された4個のLED表示部14a,14b,14c,14dを備えており、画素解像度は320×360である。図5において、LED表示部14a,14b,14c,14dはLED表示部14と同一の構成であるが、夫々を区別するため参照符号の末尾にa-dの文字を付記している。 <A-2. Operation>
FIG. 5 is a perspective view of the
図6は、LED表示部14aの表示面の一部を構成する部分領域101aにおけるLED101の配置例を示す斜視図である。部分領域101aにおいて、16個のLED101が縦4個×横4個で配置されている。
FIG. 6 is a perspective view showing an example of arrangement of the LED 101 in the partial region 101a constituting a part of the display surface of the LED display unit 14a. In the partial region 101a, 16 LEDs 101 are arranged in a length of 4 × a width of 4.
図7は、LED表示装置1001の全体動作を示すフローチャートである。以下、図7のフローに沿って、LED表示装置1001の動作を説明する。
FIG. 7 is a flowchart showing the overall operation of the LED display device 1001. Hereinafter, the operation of the LED display device 1001 will be described according to the flow of FIG. 7.
まず、積算部15が、前回積算処理から予め定められた設定時間が経過したか否かを判定する(ステップS101)。設定時間は、輝度補正の単位時間であり、例えば100時間である。積算部15は、前回積算処理から設定時間が経過するまでステップS101の処理を繰り返す。積算部15は、前回積算処理から設定時間が経過したと判定すると(ステップS101でYes)、LED素子102r,102g,102bの点灯時間を積算して累積点灯時間S1を算出し、点灯時間記憶部16に記憶させる(ステップS102)。以下、LED素子102r,102g,102bの累積点灯時間S1をtr,tg,tbと表記する。
First, the integration unit 15 determines whether or not a predetermined set time has elapsed since the previous integration process (step S101). The set time is a unit time of luminance correction, and is, for example, 100 hours. The integration unit 15 repeats the process of step S101 until the set time elapses from the previous integration process. Integrating unit 15 determines that the set time has elapsed from the previous integration processing (Yes at step S101), LED elements 102r, 102 g, by integrating the 102b lighting time of calculating the accumulated lighting time S 1, the lighting time storage It is stored in the unit 16 (step S102). Hereinafter, LED element 102r, 102 g, the cumulative lighting time S 1 of 102b tr, tg, is denoted as tb.
次に、輝度低下検出部17が、点灯時間記憶部16に記憶されているLED素子102r,102g,102bの累積点灯時間tr,tg,tbのうち、最も短い累積点灯時間tr,tg,tbを最短累積点灯時間trmin,tgmin,tbminとして抽出する(ステップS103)。また、輝度低下検出部17は、下記の式(4),(5),(6)によって、累積点灯時間S1の閾値TRth,TGth,TBthを算出する。ここで、Thaは1より大きい定数である。また、累積点灯時間S1の閾値TRth,TGth,TBthを第1閾値とも称する。
Next, the brightness reduction detection unit 17 determines the shortest cumulative lighting time tr, tg, tb among the cumulative lighting times tr, tg, tb of the LED elements 102r, 102g, 102b stored in the lighting time storage unit 16. Extraction is performed as the shortest cumulative lighting time tr min , tg min , and tb min (step S103). The luminance drop detection unit 17, the following equation (4), by (5), (6), to calculate the threshold TRth the cumulative lighting time S 1, TGth, the TBTH. Here, Th is a constant greater than 1. Further, the threshold values TRth, TGth, and TBth of the cumulative lighting time S 1 are also referred to as a first threshold value.
次に、輝度低下検出部17は、累積点灯時間tr,tg,tbが閾値TRth,TGth,TBthを超えるLED素子102が1つでもあるか否かを判定する(ステップS104)。累積点灯時間trが閾値TRthを超えるLED素子102r、累積点灯時間tgが閾値TGthを超えるLED素子102g、または累積点灯時間tbが閾値TBthを超えるLED素子102bがなければ、LED表示装置1001は再びステップS101の処理を行う。
Next, the brightness reduction detection unit 17 determines whether or not there is at least one LED element 102 whose cumulative lighting time tr, tg, and tb exceeds the threshold values TRth, TGth, and TBth (step S104). If there is no LED element 102r whose cumulative lighting time tr exceeds the threshold TRth, an LED element 102g whose cumulative lighting time tg exceeds the threshold TGth, or an LED element 102b whose cumulative lighting time tb exceeds the threshold TBth, the LED display device 1001 steps again. The process of S101 is performed.
輝度低下検出部17が、累積点灯時間tr,tg,tbが閾値TRth,TGth,TBthを超えるLED素子102が1つでもあると判定すると、LED表示装置1001の処理はステップS105へ進む。
When the brightness reduction detection unit 17 determines that there is at least one LED element 102 whose cumulative lighting times tr, tg, and tb exceed the threshold values TRth, TGth, and TBth, the process of the LED display device 1001 proceeds to step S105.
なお、ステップS104において、輝度低下検出部17は、累積点灯時間tr,tg,tbが閾値TRth,TGth,TBthを超えるLED素子102の数をカウントし、その数が予め定められた第2閾値を超えた場合に、LED表示装置1001の処理がステップS105へ進むようにしてもよい。また、累積点灯時間tr,tg,tbが閾値TRth,TGth,TBthを超えるLED素子102を対象LED素子とも称する。
In step S104, the brightness reduction detection unit 17 counts the number of LED elements 102 whose cumulative lighting time tr, tg, and tb exceeds the threshold values TRth, TGth, and TBth, and sets a second threshold value for which the number is predetermined. If it exceeds the limit, the process of the LED display device 1001 may proceed to step S105. Further, the LED element 102 in which the cumulative lighting time tr, tg, and tb exceeds the threshold values TRth, TGth, and TBth is also referred to as a target LED element.
ステップS105では、補正量演算部18が入力された映像信号の描画開始位置に対してオフセット量を演算し、オフセット処理部19がオフセット処理を行う。オフセット量に基づいて映像と複数のLED101の相対位置がずれる。これにより、ステップS104において累積点灯時間が閾値を超えると判定されたLED素子102のデューティ比が下がり、輝度の低下が抑えられる。また、ステップS104において累積点灯時間が閾値以下であると判定されたLED素子102のデューティ比が上がり、輝度の低下がより進む。その結果、各LED101間で輝度低下の度合いが平準化する。オフセット処理の視覚効果は映像コンテンツにもよる。一般的な監視用途で表示される1ドットの線で表される系統図などのコンテンツでは、輝度の平準化による視覚効果はより高くなる。
In step S105, the correction amount calculation unit 18 calculates the offset amount with respect to the drawing start position of the input video signal, and the offset processing unit 19 performs the offset processing. The relative positions of the image and the plurality of LEDs 101 are displaced based on the offset amount. As a result, the duty ratio of the LED element 102 determined in step S104 that the cumulative lighting time exceeds the threshold value is lowered, and the decrease in brightness is suppressed. Further, the duty ratio of the LED element 102 determined in step S104 that the cumulative lighting time is equal to or less than the threshold value increases, and the brightness further decreases. As a result, the degree of brightness reduction is leveled among the LEDs 101. The visual effect of offset processing also depends on the video content. In content such as a system diagram represented by a one-dot line displayed for general monitoring applications, the visual effect due to the leveling of luminance is higher.
ステップS105の後、LED表示装置1001は、映像表示が終了したか否かを判断する(ステップS106)。ステップS106でYesの場合、一連のオフセット処理は終了する。映像表示を継続する場合(ステップS106でNo)、LED表示装置1001の処理はステップS101に戻る。
After step S105, the LED display device 1001 determines whether or not the video display is completed (step S106). If Yes in step S106, the series of offset processing ends. When the video display is continued (No in step S106), the process of the LED display device 1001 returns to step S101.
図8は、LED表示部14aの部分領域101aにおける映像信号のオフセット処理の基本的な例を示している。図8のS0は、無点灯状態の部分領域101aを示している。この状態から、領域101が点灯状態1(S1)になると、中央にある2つのLED101のLED素子102が点灯する。点灯状態1(S1)が長時間経過すると、点灯していた2つのLED101のLED素子102の輝度が低下する。
FIG. 8 shows a basic example of offset processing of a video signal in the partial region 101a of the LED display unit 14a. S0 in FIG. 8 shows a partial region 101a in a non-lighting state. From this state, when the area 101 becomes the lighting state 1 (S1), the LED elements 102 of the two LED 101s in the center are turned on. When the lighting state 1 (S1) elapses for a long time, the brightness of the LED element 102 of the two LEDs 101 that have been lit decreases.
オフセット処理部19は、LED素子102の輝度の低下率の平準化を行うため、映像信号をずらして点灯状態2(S2)のようにオフセット処理を行う。点灯状態2(S2)では、映像信号により表示される映像の位置が、画素1つ分だけ上にずらされている。なお、オフセット処理部19が行うオフセット処理は図8に示すものに限らない。映像信号により表示される映像の位置は、オフセット処理において上下左右のいずれの方向に移動してもよいし、それ以外の方向に移動してもよい。また、オフセット処理部19は、映像を拡大または縮小してもよいし、映像を上記のとおり移動してから拡大または縮小してもよいし、映像の回転を行ってもよい。
The offset processing unit 19 shifts the video signal and performs offset processing as in the lighting state 2 (S2) in order to level the decrease rate of the brightness of the LED element 102. In the lighting state 2 (S2), the position of the image displayed by the image signal is shifted upward by one pixel. The offset processing performed by the offset processing unit 19 is not limited to that shown in FIG. The position of the image displayed by the image signal may be moved in either the up, down, left, or right direction in the offset processing, or may be moved in any other direction. Further, the offset processing unit 19 may enlarge or reduce the image, move the image as described above and then enlarge or reduce the image, or rotate the image.
<A-3.効果>
実施の形態1のLED表示装置1001は、複数の方向に配列された複数のLED素子102を有するLED表示部14と、映像信号にしたがって各LED素子を駆動するLED駆動部13と、各LED素子102の累積点灯時間を算出する積算部15と、各LED素子102の累積点灯時間のうち最も短い最短累積点灯時間を基準として定められた第1閾値より累積点灯時間が長いLED素子102を対象LED素子として検出する輝度低下検出部17と、対象LED素子の数が第2閾値以上である場合に、映像信号をオフセットするオフセット処理部19と、を備える。従って、LED表示部14全体を過剰に暗くすることなく、各LED素子102の輝度低下率が平準化される。その結果、LED表示部14において輝度の均一性とホワイトバランスが維持される。 <A-3. Effect>
TheLED display device 1001 of the first embodiment has an LED display unit 14 having a plurality of LED elements 102 arranged in a plurality of directions, an LED drive unit 13 for driving each LED element according to a video signal, and each LED element. The target LED is the integrating unit 15 that calculates the cumulative lighting time of the 102, and the LED element 102 whose cumulative lighting time is longer than the first threshold determined based on the shortest cumulative lighting time of the cumulative lighting time of each LED element 102. It includes a brightness reduction detection unit 17 that detects as an element, and an offset processing unit 19 that offsets a video signal when the number of target LED elements is equal to or greater than the second threshold value. Therefore, the brightness reduction rate of each LED element 102 is leveled without excessively darkening the entire LED display unit 14. As a result, the uniformity of brightness and the white balance are maintained in the LED display unit 14.
実施の形態1のLED表示装置1001は、複数の方向に配列された複数のLED素子102を有するLED表示部14と、映像信号にしたがって各LED素子を駆動するLED駆動部13と、各LED素子102の累積点灯時間を算出する積算部15と、各LED素子102の累積点灯時間のうち最も短い最短累積点灯時間を基準として定められた第1閾値より累積点灯時間が長いLED素子102を対象LED素子として検出する輝度低下検出部17と、対象LED素子の数が第2閾値以上である場合に、映像信号をオフセットするオフセット処理部19と、を備える。従って、LED表示部14全体を過剰に暗くすることなく、各LED素子102の輝度低下率が平準化される。その結果、LED表示部14において輝度の均一性とホワイトバランスが維持される。 <A-3. Effect>
The
監視画像の多くは静止画である。従って、LED表示装置1001が監視画像を表示する際、大抵は複数のLED101に含まれる一部のLED素子102のみが長時間発光する。そのため、長時間発光するLED素子102の輝度が、他のLED素子102の輝度よりも顕著に低下する。このような場合に、複数のLED101の全部の輝度の均一性を維持する従来の輝度制御によれば、顕著に低下したLED素子102の輝度にあわせて複数のLED101の全部の輝度が大きく低下する。これに対して、実施の形態1のLED表示装置1001によれば、累積点灯時間tr,tg,tbが閾値TRth,TGth,TBthより長いLED素子102r,102g,102bが存在する場合に、映像信号にオフセット処理を施すことによって、強く発光しているLED素子102をずらす。これにより、複数のLED101間で輝度低下の度合いが平準化されるため、LED表示部14の全体の輝度が特定のLED素子102の輝度低下に起因して過剰に低下することがない。
Most of the surveillance images are still images. Therefore, when the LED display device 1001 displays the surveillance image, usually only a part of the LED elements 102 included in the plurality of LEDs 101 emit light for a long time. Therefore, the brightness of the LED element 102 that emits light for a long time is significantly lower than the brightness of the other LED elements 102. In such a case, according to the conventional luminance control that maintains the uniformity of the luminance of all of the plurality of LEDs 101, the luminance of all of the plurality of LEDs 101 is greatly reduced in accordance with the significantly reduced luminance of the LED element 102. .. On the other hand, according to the LED display device 1001 of the first embodiment, when the LED elements 102r, 102g, 102b whose cumulative lighting time tr, tg, tb is longer than the thresholds TRth, TGth, TBth are present, the video signal is present. By applying an offset process to the LED element 102, which emits strong light, the LED element 102 is shifted. As a result, the degree of brightness reduction is leveled among the plurality of LEDs 101, so that the overall brightness of the LED display unit 14 does not excessively decrease due to the brightness reduction of the specific LED element 102.
なお、予め定められた一定周期でオフセット処理を施すことも考えられるが、周期が短い場合にはユーザに違和感を与える。しかし、実施の形態1のLED表示装置1001では、LED素子102間で輝度低下の差が大きくなった場合にのみオフセット処理が行われるため、不要なオフセット調整が行われず、ユーザに違和感を与えることがない。
It is possible to perform offset processing at a predetermined fixed cycle, but if the cycle is short, it gives the user a sense of discomfort. However, in the LED display device 1001 of the first embodiment, since the offset processing is performed only when the difference in luminance decrease between the LED elements 102 becomes large, unnecessary offset adjustment is not performed, which gives a user a sense of discomfort. There is no.
<B.実施の形態2>
実施の形態1では基本的なオフセット処理について説明した。実施の形態2のLED表示装置1002は、オフセット処理において、映像をずらす方向と順序を、各LED素子102の輝度低下の程度に基づいて決定する。LED表示装置1002の構成は、図1に示した実施の形態1のLED表示装置1001の構成と同様である。 <B. Embodiment 2>
In the first embodiment, the basic offset processing has been described. In the offset process, the LED display device 1002 of the second embodiment determines the direction and order of shifting the image based on the degree of decrease in the brightness of eachLED element 102. The configuration of the LED display device 1002 is the same as the configuration of the LED display device 1001 of the first embodiment shown in FIG.
実施の形態1では基本的なオフセット処理について説明した。実施の形態2のLED表示装置1002は、オフセット処理において、映像をずらす方向と順序を、各LED素子102の輝度低下の程度に基づいて決定する。LED表示装置1002の構成は、図1に示した実施の形態1のLED表示装置1001の構成と同様である。 <
In the first embodiment, the basic offset processing has been described. In the offset process, the LED display device 1002 of the second embodiment determines the direction and order of shifting the image based on the degree of decrease in the brightness of each
<B-1.動作>
図9は、LED表示装置1002のオフセット処理を示すフローチャートである。LED表示装置1002の全体動作のフローは図7に示す通りであり、図9は図7のステップS105の詳細なフローチャートに相当する。 <B-1. Operation>
FIG. 9 is a flowchart showing the offset processing of the LED display device 1002. The flow of the overall operation of the LED display device 1002 is as shown in FIG. 7, and FIG. 9 corresponds to the detailed flowchart of step S105 in FIG.
図9は、LED表示装置1002のオフセット処理を示すフローチャートである。LED表示装置1002の全体動作のフローは図7に示す通りであり、図9は図7のステップS105の詳細なフローチャートに相当する。 <B-1. Operation>
FIG. 9 is a flowchart showing the offset processing of the LED display device 1002. The flow of the overall operation of the LED display device 1002 is as shown in FIG. 7, and FIG. 9 corresponds to the detailed flowchart of step S105 in FIG.
図10は、LED表示装置1002のLED表示部14aの部分領域101aにおける映像信号のオフセット処理の基本例を示す図である。図10のS0は、無点灯状態の部分領域101aを示している。この状態から、領域101が点灯状態1(S21)になると、中央にある2つのLED101のLED素子102が点灯する。点灯状態1(S1)が長時間経過すると、点灯していた2つのLED101のLED素子102の輝度が低下する。そこで、LED表示装置1002は図9に示すオフセット処理を実行する。
FIG. 10 is a diagram showing a basic example of offset processing of a video signal in the partial region 101a of the LED display unit 14a of the LED display device 1002. S0 in FIG. 10 shows a partial region 101a in a non-lighting state. From this state, when the area 101 becomes the lighting state 1 (S21), the LED elements 102 of the two LED 101s in the center are lit. When the lighting state 1 (S1) elapses for a long time, the brightness of the LED element 102 of the two LEDs 101 that have been lit decreases. Therefore, the LED display device 1002 executes the offset processing shown in FIG.
以下、図9のフローに沿ってLED表示装置1002のオフセット処理を説明する。まず、補正量演算部18は、各LED101を構成する各LED素子102に対して、全方向に隣接する他のLED素子102との間で、累積点灯時間の差を算出する(ステップS201)。ここで、全方向とは、図10の例では、(1)、(2)、(3)、(4)の矢印で示す4方向である。
Hereinafter, the offset processing of the LED display device 1002 will be described according to the flow of FIG. First, the correction amount calculation unit 18 calculates the difference in cumulative lighting time between each LED element 102 constituting each LED 101 and the other LED elements 102 adjacent in all directions (step S201). Here, the omnidirectional directions are the four directions indicated by the arrows (1), (2), (3), and (4) in the example of FIG.
例えば、図10の点灯状態1(S21)において、点灯中のLED101に含まれるLED素子102の累積点灯時間は、当該LED101が方向(1)に隣り合うLED101に含まれるLED素子102の累積点灯時間より長い。これら隣接する2つのLED素子102の累積点灯時間差を、補正量演算部18は、全てのLED素子102かつ全ての隣接方向について算出する。
For example, in the lighting state 1 (S21) of FIG. 10, the cumulative lighting time of the LED element 102 included in the LED 101 being lit is the cumulative lighting time of the LED element 102 included in the LED 101 in which the LED 101 is adjacent to the direction (1). Longer. The correction amount calculation unit 18 calculates the cumulative lighting time difference between these two adjacent LED elements 102 for all the LED elements 102 and all the adjacent directions.
次に、補正量演算部18は、各LED素子102の累積点灯時間差を、方向ごとに合算する(ステップS202)。
Next, the correction amount calculation unit 18 adds up the cumulative lighting time difference of each LED element 102 for each direction (step S202).
次に、補正量演算部18は、各LED素子102の累積点灯時間差の和が最大となる方向を、オフセット方向として選択する(ステップS205)。このように、補正量演算部18は、オフセット方向決定部として動作する。
Next, the correction amount calculation unit 18 selects the direction in which the sum of the cumulative lighting time differences of the LED elements 102 is maximum as the offset direction (step S205). In this way, the correction amount calculation unit 18 operates as an offset direction determination unit.
例えば、方向(1)がオフセット方向として選択されたとすると、オフセット処理部19は図10の点灯状態2(S22)で示すように、映像を方向(1)にずらす(ステップS206)。なお、オフセット処理部19が累積点灯時間差を算出するLED素子102の隣接方向は、図10に示す方向(1)、(2)、(3)、(4)に限らない。例えば、オフセット処理部19は、斜め方向に隣接するLED素子102間で累積点灯時間差を算出してもよい。また、オフセット処理部19は、映像を拡大または縮小してもよいし、映像を上記のとおり移動してから拡大または縮小してもよいし、映像の回転を行ってもよい。オフセット処理部19は、移動の順序をスケジュール化してもよい。
For example, if the direction (1) is selected as the offset direction, the offset processing unit 19 shifts the image in the direction (1) as shown in the lighting state 2 (S22) in FIG. 10 (step S206). The direction adjacent to the LED element 102 in which the offset processing unit 19 calculates the cumulative lighting time difference is not limited to the directions (1), (2), (3), and (4) shown in FIG. For example, the offset processing unit 19 may calculate the cumulative lighting time difference between the LED elements 102 adjacent in the diagonal direction. Further, the offset processing unit 19 may enlarge or reduce the image, move the image as described above and then enlarge or reduce the image, or rotate the image. The offset processing unit 19 may schedule the order of movement.
<B-2.効果>
実施の形態2のLED表示装置1002は、複数のLED素子が配列された複数の方向の各方向について、隣接する複数のLED素子102の累積点灯時間差の和を算出し、累積点灯時間差の和が最大の方向をオフセット方向とするオフセット方向決定部である補正量演算部18を備える。そして、オフセット処理部19は、オフセット方向に映像信号をオフセットする。これにより、オフセットにより輝度低下率の大きいLED素子102から小さいLED素子102に映像表示がシフトするため、LED素子102間の輝度低下の平準化が効率的に行われる。 <B-2. Effect>
The LED display device 1002 of the second embodiment calculates the sum of the cumulative lighting time differences of the plurality ofadjacent LED elements 102 in each direction of the plurality of directions in which the plurality of LED elements are arranged, and the sum of the cumulative lighting time differences is calculated. A correction amount calculation unit 18 which is an offset direction determination unit whose maximum direction is the offset direction is provided. Then, the offset processing unit 19 offsets the video signal in the offset direction. As a result, the image display is shifted from the LED element 102 having a large brightness reduction rate to the LED element 102 having a small brightness reduction rate due to the offset, so that the brightness reduction between the LED elements 102 is efficiently leveled.
実施の形態2のLED表示装置1002は、複数のLED素子が配列された複数の方向の各方向について、隣接する複数のLED素子102の累積点灯時間差の和を算出し、累積点灯時間差の和が最大の方向をオフセット方向とするオフセット方向決定部である補正量演算部18を備える。そして、オフセット処理部19は、オフセット方向に映像信号をオフセットする。これにより、オフセットにより輝度低下率の大きいLED素子102から小さいLED素子102に映像表示がシフトするため、LED素子102間の輝度低下の平準化が効率的に行われる。 <B-2. Effect>
The LED display device 1002 of the second embodiment calculates the sum of the cumulative lighting time differences of the plurality of
<C.実施の形態3>
実施の形態1,2のLED表示装置1001,1002では、各LED素子102の累積点灯時間に基づき各LED素子102間の輝度低下の度合いを比較し、オフセット処理を行った。実施の形態3のLED表示装置1003では、各LED素子102の輝度低下率を計測して、各LED素子102の累積点灯時間および輝度低下率に基づき各LED素子102間の輝度低下の度合いを精密に比較し、オフセット処理を行う。 <C. Embodiment 3>
In theLED display devices 1001 and 1002 of the first and second embodiments, the degree of decrease in brightness between the LED elements 102 is compared based on the cumulative lighting time of the LED elements 102, and offset processing is performed. In the LED display device 1003 of the third embodiment, the brightness reduction rate of each LED element 102 is measured, and the degree of brightness reduction between the LED elements 102 is precisely determined based on the cumulative lighting time and the brightness reduction rate of each LED element 102. Compared to, offset processing is performed.
実施の形態1,2のLED表示装置1001,1002では、各LED素子102の累積点灯時間に基づき各LED素子102間の輝度低下の度合いを比較し、オフセット処理を行った。実施の形態3のLED表示装置1003では、各LED素子102の輝度低下率を計測して、各LED素子102の累積点灯時間および輝度低下率に基づき各LED素子102間の輝度低下の度合いを精密に比較し、オフセット処理を行う。 <
In the
<C-1.構成>
図11は、実施の形態3のLED表示装置1003のブロック図である。図11において、LED表示装置1003は、入力端子11、信号処理部12、補正量演算部18、オフセット処理部19、第1LED駆動部21、第1LED表示部22、第2LED駆動部23、第2LED表示部24、輝度計測部25、輝度低下率記憶部26、積算部27、点灯時間記憶部28、輝度低下検出部29、補正係数演算部30および輝度補正部31を備える。 <C-1. Configuration>
FIG. 11 is a block diagram of theLED display device 1003 according to the third embodiment. In FIG. 11, the LED display device 1003 includes an input terminal 11, a signal processing unit 12, a correction amount calculation unit 18, an offset processing unit 19, a first LED drive unit 21, a first LED display unit 22, a second LED drive unit 23, and a second LED. It includes a display unit 24, a brightness measurement unit 25, a brightness reduction rate storage unit 26, an integration unit 27, a lighting time storage unit 28, a brightness reduction detection unit 29, a correction coefficient calculation unit 30, and a brightness correction unit 31.
図11は、実施の形態3のLED表示装置1003のブロック図である。図11において、LED表示装置1003は、入力端子11、信号処理部12、補正量演算部18、オフセット処理部19、第1LED駆動部21、第1LED表示部22、第2LED駆動部23、第2LED表示部24、輝度計測部25、輝度低下率記憶部26、積算部27、点灯時間記憶部28、輝度低下検出部29、補正係数演算部30および輝度補正部31を備える。 <C-1. Configuration>
FIG. 11 is a block diagram of the
第1LED駆動部21および第1LED表示部22は、LED表示装置1001,1002におけるLED駆動部13およびLED表示部14に相当する。また、LED表示装置1003における入力端子11、信号処理部12、補正量演算部18およびオフセット処理部19は、LED表示装置1001,1002における入力端子11、信号処理部12、補正量演算部18およびオフセット処理部19と同様の構成である。従って、これらの構成については説明を省略する。
The first LED drive unit 21 and the first LED display unit 22 correspond to the LED drive unit 13 and the LED display unit 14 in the LED display devices 1001 and 1002. Further, the input terminal 11, the signal processing unit 12, the correction amount calculation unit 18, and the offset processing unit 19 in the LED display device 1003 are the input terminal 11, the signal processing unit 12, the correction amount calculation unit 18 and the LED display devices 1001 and 1002. It has the same configuration as the offset processing unit 19. Therefore, the description of these configurations will be omitted.
第2LED表示部24は、第1LED表示部22の輝度の推移を計測(予測)するための表示を行う。第2LED表示部24は、第1LED表示部22と同様の構成であり、複数のLED101を有する。各LED101は、複数のLED素子102r,102g,102bを含む。第1LED表示部22が有する各LED素子102と、第2LED表示部24が有する各LED素子102は、例えば同じ品種のLED素子であり、同じ輝度低下特性を有する。以下、両者を区別するために前者を第1LED素子、後者を第2LED素子とも称する。第2LED駆動部23は、第2LED表示部24の各LED101を駆動し、各LED101を構成する各LED素子102の点灯制御を行う。
The second LED display unit 24 displays for measuring (predicting) the transition of the brightness of the first LED display unit 22. The second LED display unit 24 has the same configuration as the first LED display unit 22, and has a plurality of LEDs 101. Each LED 101 includes a plurality of LED elements 102r, 102g, 102b. Each LED element 102 included in the first LED display unit 22 and each LED element 102 included in the second LED display unit 24 are, for example, LED elements of the same type and have the same luminance reduction characteristics. Hereinafter, in order to distinguish between the two, the former is also referred to as a first LED element, and the latter is also referred to as a second LED element. The second LED drive unit 23 drives each LED 101 of the second LED display unit 24, and controls the lighting of each LED element 102 constituting each LED 101.
輝度計測部25は第2LED表示部24と対向配置されており、第2LED表示部24の各LED素子102の輝度を計測する。なお、輝度の推移は、例えば初期輝度を100%として現在の輝度を示す輝度の維持率、または、輝度の維持率と逆の関係である輝度の低下率(=100%-輝度の維持率)などを含む。以下では、輝度の推移に、輝度の低下率が適用されているものとして説明する。
The brightness measuring unit 25 is arranged to face the second LED display unit 24, and measures the brightness of each LED element 102 of the second LED display unit 24. The change in luminance is, for example, the luminance maintenance rate indicating the current luminance with the initial luminance as 100%, or the luminance reduction rate (= 100% -luminance retention rate) which is the opposite relationship to the luminance retention rate. And so on. In the following, it is assumed that the decrease rate of the luminance is applied to the transition of the luminance.
輝度低下率記憶部26は、第2LED表示部24のLED素子102r,102g,102bの、点灯時間と輝度低下率との関係を表すテーブル(以下、「輝度低下率情報」とも称する)を記憶する。
The brightness reduction rate storage unit 26 stores a table (hereinafter, also referred to as “brightness reduction rate information”) showing the relationship between the lighting time and the brightness reduction rate of the LED elements 102r, 102g, 102b of the second LED display unit 24. ..
積算部27は、第1LED表示部22および第2LED表示部24の各LED素子102の点灯時間の積算処理を行って、第1LED表示部22および第2LED表示部24の各LED素子102の累積点灯時間を算出する。点灯時間記憶部28は、第1LED表示部22および第2LED表示部24の各LED素子102の累積点灯時間を記憶する。
The integrating unit 27 performs an integration process of the lighting time of each LED element 102 of the first LED display unit 22 and the second LED display unit 24, and the cumulative lighting of each LED element 102 of the first LED display unit 22 and the second LED display unit 24 is performed. Calculate the time. The lighting time storage unit 28 stores the cumulative lighting time of each LED element 102 of the first LED display unit 22 and the second LED display unit 24.
積算部27が算出した第2LED表示部24の各LED素子102の累積点灯時間と、輝度計測部25が計測した第2LED表示部24の各LED素子102の輝度とに基づき、第2LED表示部24の各LED素子102の、累積点灯時間と輝度低下率との関係を表すテーブルが得られる。
The second LED display unit 24 is based on the cumulative lighting time of each LED element 102 of the second LED display unit 24 calculated by the integration unit 27 and the brightness of each LED element 102 of the second LED display unit 24 measured by the brightness measurement unit 25. A table showing the relationship between the cumulative lighting time and the brightness reduction rate of each of the LED elements 102 of the above is obtained.
輝度低下検出部29は、点灯時間記憶部28に記憶された第1LED表示部22の累積点灯時間、および輝度低下率記憶部26に記憶された第2LED表示部24の各LED素子102の点灯時間と輝度低下率との関係から、第1LED表示部22の各LED素子102の輝度低下率を得る。また、輝度低下検出部29は、第1LED表示部22の各LED素子102の輝度低下率のうち、最も小さい輝度低下率(以下、「最小輝度低下率」と称する)を基準として輝度低下率の閾値を定める。そして、輝度低下検出部29は、輝度低下率が当該閾値以上となる第1LED表示部22のLED素子102の個数をカウントする。
The brightness reduction detection unit 29 has the cumulative lighting time of the first LED display unit 22 stored in the lighting time storage unit 28 and the lighting time of each LED element 102 of the second LED display unit 24 stored in the brightness reduction rate storage unit 26. The brightness reduction rate of each LED element 102 of the first LED display unit 22 is obtained from the relationship between the brightness reduction rate and the brightness reduction rate. Further, the brightness reduction detection unit 29 determines the brightness reduction rate based on the smallest brightness reduction rate (hereinafter referred to as “minimum brightness reduction rate”) among the brightness reduction rates of each LED element 102 of the first LED display unit 22. Set a threshold. Then, the brightness reduction detection unit 29 counts the number of LED elements 102 of the first LED display unit 22 whose brightness reduction rate is equal to or higher than the threshold value.
図12は、LED素子102の点灯時間と輝度低下率との関係を示している。図12を参照して、LED素子102の点灯時間と輝度低下率との関係を説明する。LED素子102r,102g,102bの輝度は、LED素子102r,102g,102bの点灯時間tの関数であり、点灯時間tが長くなるにつれて低下する。従って、LED素子102rの輝度低下率kr(t)は、それぞれLED素子102r,102g,102bの点灯時間tの関数であり、点灯時間tが長くなるにつれて大きくなる。
FIG. 12 shows the relationship between the lighting time of the LED element 102 and the brightness reduction rate. With reference to FIG. 12, the relationship between the lighting time of the LED element 102 and the brightness reduction rate will be described. The brightness of the LED elements 102r, 102g, 102b is a function of the lighting time t of the LED elements 102r, 102g, 102b, and decreases as the lighting time t becomes longer. Therefore, the brightness reduction rate kr (t) of the LED element 102r is a function of the lighting time t of the LED elements 102r, 102g, and 102b, respectively, and increases as the lighting time t increases.
輝度低下率は、通常は、事前の測定により求められる。しかし、実施の形態3のLED表示装置1003には、上述した第2LED駆動部23、第2LED表示部24および輝度計測部25が組み込まれる。そして、LED表示装置1003に組み込まれた第2LED駆動部23、第2LED表示部24および輝度計測部25により、第2LED表示部24の各LED素子102の輝度低下率が計測される。計測された第2LED表示部24の各LED素子102の輝度低下率と点灯時間との関係は、輝度低下率記憶部26に記憶される。このように、LED表示装置1003は、第2LED表示部24の各LED素子102の点灯時間と輝度低下率との関係を実時間で計測することができる。
The brightness reduction rate is usually obtained by prior measurement. However, the LED display device 1003 of the third embodiment incorporates the second LED drive unit 23, the second LED display unit 24, and the brightness measurement unit 25 described above. Then, the brightness reduction rate of each LED element 102 of the second LED display unit 24 is measured by the second LED drive unit 23, the second LED display unit 24, and the brightness measurement unit 25 incorporated in the LED display device 1003. The relationship between the measured brightness reduction rate of each LED element 102 of the second LED display unit 24 and the lighting time is stored in the brightness reduction rate storage unit 26. In this way, the LED display device 1003 can measure the relationship between the lighting time of each LED element 102 of the second LED display unit 24 and the brightness reduction rate in real time.
<C-2.動作>
図13は、LED表示装置1003の輝度補正動作のフローチャートである。図13のフローに沿って、LED表示装置1003の輝度補正動作を説明する。 <C-2. Operation>
FIG. 13 is a flowchart of the brightness correction operation of theLED display device 1003. The luminance correction operation of the LED display device 1003 will be described along with the flow of FIG.
図13は、LED表示装置1003の輝度補正動作のフローチャートである。図13のフローに沿って、LED表示装置1003の輝度補正動作を説明する。 <C-2. Operation>
FIG. 13 is a flowchart of the brightness correction operation of the
ステップS301は、実施の形態1で説明した図7のステップS101と同様である。前回積算処理から設定時間が経過したら、積算部27は、第1LED表示部22および第2LED表示部24の各LED素子102の累積点灯時間を算出し、点灯時間記憶部28に記憶させる(ステップS302)。
Step S301 is the same as step S101 of FIG. 7 described in the first embodiment. After the set time has elapsed from the previous integration process, the integration unit 27 calculates the cumulative lighting time of each LED element 102 of the first LED display unit 22 and the second LED display unit 24 and stores it in the lighting time storage unit 28 (step S302). ).
次に、輝度低下検出部29は、点灯時間記憶部28に記憶されている第1LED表示部22の各LED素子102の累積点灯時間と、輝度低下率記憶部26に記憶されている第2LED表示部24の各LED素子102の輝度低下率と点灯時間との関係を発光色別に表すテーブルとを参照し、第1LED表示部22の各LED素子102r,102g,102bの輝度低下率kr(t),kg(t),kb(t)を算出する(ステップS303)。
Next, the brightness reduction detection unit 29 displays the cumulative lighting time of each LED element 102 of the first LED display unit 22 stored in the lighting time storage unit 28 and the second LED display stored in the brightness reduction rate storage unit 26. With reference to a table showing the relationship between the brightness reduction rate of each LED element 102 of the unit 24 and the lighting time for each emission color, the brightness reduction rate kr (t) of each LED element 102r, 102g, 102b of the first LED display unit 22. , Kg (t), kb (t) are calculated (step S303).
そして、輝度低下検出部29は、ステップS303で算出した第1LED表示部22のLED素子102rの輝度低下率kr(t)のうち、最も低い輝度低下率kr(t)を最小輝度低下率kr(t)minとして抽出する。輝度低下検出部29は、第1LED表示部22のLED素子102g,102bについても同様に、最小輝度低下率kg(t)min,kb(t)minを抽出する(ステップS304)。
Then, the brightness reduction detection unit 29 sets the lowest brightness reduction rate kr (t) of the brightness reduction rate kr (t) of the LED element 102r of the first LED display unit 22 calculated in step S303 to the minimum brightness reduction rate kr ( t) Extract as min. Similarly, the brightness reduction detection unit 29 extracts the minimum brightness reduction rate kg (t) min and kb (t) min for the LED elements 102g and 102b of the first LED display unit 22 (step S304).
また、輝度低下検出部29は、下記の式(7),(8),(9)によって、輝度低下率の閾値YRth,YGth,YBthを算出する。ここで、Thbは1より大きい定数である。輝度低下率の閾値YRth,YGth,YBthを第3閾値とも称する。
Further, the luminance reduction detection unit 29 calculates the thresholds YRth, YGth, and YBth of the luminance reduction rate by the following equations (7), (8), and (9). Here, Thb is a constant larger than 1. The threshold values of the brightness reduction rate, YRth, YGth, and YBth, are also referred to as a third threshold value.
次に、輝度低下検出部29は、輝度低下率が閾値を超えるLED素子102が1つでもあるか否かを判定する(ステップS305)。輝度低下検出部29が、輝度低下率が閾値を超えるLED素子102(以下、対象LED素子とも称する)が1つでもあると判定すると、LED表示装置1003はステップS306のオフセット処理を実行し、その後、ステップS307の輝度補正処理を実行する。ステップS306のオフセット処理は、実施の形態1で説明した図7のステップS105または実施の形態2で説明した図9のステップS201からステップS204と同様である。輝度低下率kr(t)が閾値YRthを超えるLED素子102r、輝度低下率kg(t)が閾値YRthを超えるLED素子102g、または輝度低下率kb(t)が閾値YRthを超えるLED素子102bがなければ、LED表示装置1003はオフセット処理を行わずにステップS307の輝度補正処理を実行する。このように、実施の形態3のLED表示装置1003は、オフセット処理の実行要否の判断を累積点灯時間ではなく輝度低下率に基づき行う。
Next, the brightness reduction detection unit 29 determines whether or not there is at least one LED element 102 whose brightness reduction rate exceeds the threshold value (step S305). When the brightness reduction detection unit 29 determines that there is at least one LED element 102 (hereinafter, also referred to as a target LED element) whose brightness reduction rate exceeds the threshold value, the LED display device 1003 executes the offset process in step S306, and then performs the offset processing. , The luminance correction process of step S307 is executed. The offset processing in step S306 is the same as in steps S105 of FIG. 7 described in the first embodiment or steps S201 to S204 of FIG. 9 described in the second embodiment. There must be an LED element 102r whose brightness reduction rate kr (t) exceeds the threshold value YRth, an LED element 102g whose brightness reduction rate kg (t) exceeds the threshold value YRth, or an LED element 102b whose brightness reduction rate kb (t) exceeds the threshold value YRth. For example, the LED display device 1003 executes the luminance correction process of step S307 without performing the offset process. As described above, the LED display device 1003 of the third embodiment determines whether or not the offset processing needs to be executed based on the brightness reduction rate, not the cumulative lighting time.
ステップS307において、輝度補正部31が輝度補正を行う。
In step S307, the luminance correction unit 31 performs the luminance correction.
なお、ステップS305において、輝度低下検出部29は、輝度低下率kr(t),kg(t),kb(t)が閾値YRth,YGth,YBthを超えるLED素子102の数をカウントし、その数が予め定められた第4閾値以上である場合に、LED表示装置1003の処理がステップS106へ進むようにしてもよい。
In step S305, the brightness reduction detection unit 29 counts the number of LED elements 102 whose brightness reduction rates kr (t), kg (t), and kb (t) exceed the threshold values YRth, YGth, and YBth, and the number thereof. When is equal to or higher than a predetermined fourth threshold value, the process of the LED display device 1003 may proceed to step S106.
ステップS307の後、LED表示装置1003は、映像表示が終了したか否かを判断する(ステップS308)。ステップS308でYesの場合、一連の輝度補正処理は終了する。映像表示を継続する場合(ステップS308でNo)、LED表示装置1003の処理はステップS301に戻る。
After step S307, the LED display device 1003 determines whether or not the video display is completed (step S308). If Yes in step S308, the series of luminance correction processes ends. When the video display is continued (No in step S308), the process of the LED display device 1003 returns to step S301.
なお、実施の形態3は実施の形態2と組み合わせることも可能である。つまり、ステップS306のオフセット処理において、補正量演算部18は、隣接するLED素子102間の輝度低下率差を各LED素子102について算出し、輝度低下率差を隣接方向ごとに合算し、輝度低下率差の和が最大の方向をオフセット方向としてもよい。
It should be noted that the third embodiment can be combined with the second embodiment. That is, in the offset processing in step S306, the correction amount calculation unit 18 calculates the difference in brightness reduction rate between the adjacent LED elements 102 for each LED element 102, adds up the difference in brightness reduction rate for each adjacent direction, and reduces the brightness. The direction in which the sum of the rate differences is maximum may be the offset direction.
<C-3.効果>
実施の形態3のLED表示装置1003は、複数の方向に配列された複数の第1LED素子を有する第1LED表示部22と、映像信号にしたがって各第1LED素子を駆動する第1LED駆動部21と、第1LED素子と同じ輝度低下特性を有する第2LED素子の、点灯時間と輝度低下率との関係を表す輝度低下率情報を記憶する輝度低下率記憶部26と、各第1LED素子の累積点灯時間を算出する積算部27と、各第1LED素子の累積点灯時間と、第2LED素子の輝度低下率情報とに基づき、各第1LED素子の輝度低下率を算出し、各第2LED素子の輝度低下率のうち最小の最小輝度低下率を基準として定められた第3閾値より輝度低下率が大きい第1LED素子を対象LED素子として検出する輝度低下検出部29と、対象LED素子の数が第4閾値以上である場合に、映像信号をオフセットするオフセット処理部19と、を備える。 <C-3. Effect>
TheLED display device 1003 of the third embodiment includes a first LED display unit 22 having a plurality of first LED elements arranged in a plurality of directions, a first LED drive unit 21 for driving each first LED element according to a video signal, and the like. The brightness reduction rate storage unit 26 for storing the brightness reduction rate information indicating the relationship between the lighting time and the brightness reduction rate of the second LED element having the same brightness reduction characteristic as the first LED element, and the cumulative lighting time of each first LED element. Based on the integrated unit 27 to be calculated, the cumulative lighting time of each first LED element, and the brightness reduction rate information of the second LED element, the brightness reduction rate of each first LED element is calculated, and the brightness reduction rate of each second LED element is calculated. Among them, the brightness reduction detection unit 29 that detects the first LED element whose brightness reduction rate is larger than the third threshold determined based on the minimum minimum brightness reduction rate as the target LED element, and the number of target LED elements is the fourth threshold or more. In some cases, an offset processing unit 19 for offsetting the video signal is provided.
実施の形態3のLED表示装置1003は、複数の方向に配列された複数の第1LED素子を有する第1LED表示部22と、映像信号にしたがって各第1LED素子を駆動する第1LED駆動部21と、第1LED素子と同じ輝度低下特性を有する第2LED素子の、点灯時間と輝度低下率との関係を表す輝度低下率情報を記憶する輝度低下率記憶部26と、各第1LED素子の累積点灯時間を算出する積算部27と、各第1LED素子の累積点灯時間と、第2LED素子の輝度低下率情報とに基づき、各第1LED素子の輝度低下率を算出し、各第2LED素子の輝度低下率のうち最小の最小輝度低下率を基準として定められた第3閾値より輝度低下率が大きい第1LED素子を対象LED素子として検出する輝度低下検出部29と、対象LED素子の数が第4閾値以上である場合に、映像信号をオフセットするオフセット処理部19と、を備える。 <C-3. Effect>
The
実施の形態3のLED表示装置1003は、輝度低下率kr(t),kg(t),kb(t)が閾値YRth,YGth,YBthより大きい第1LED駆動部21のLED素子102の数に基づき、オフセット処理を行い、映像の表示位置をずらして表示する。その結果、第1LED駆動部21のLED素子102間で輝度低下率が平準化される。これにより、第1LED表示部22全体を過剰に暗くすることなく、第1LED表示部22において輝度の均一性とホワイトバランスを維持することができる。
The LED display device 1003 of the third embodiment is based on the number of LED elements 102 of the first LED drive unit 21 in which the luminance reduction rates kr (t), kg (t), and kb (t) are larger than the threshold values YRth, YGth, and YBth. , Offset processing is performed, and the display position of the image is shifted and displayed. As a result, the brightness reduction rate is leveled between the LED elements 102 of the first LED drive unit 21. As a result, the uniformity of brightness and the white balance can be maintained in the first LED display unit 22 without excessively darkening the entire first LED display unit 22.
実施の形態3のLED表示装置1003では、各LED素子102の輝度低下率が精密に計測され、LED素子102間で輝度低下の差が大きくなった場合にのみオフセット処理が行われるため、頻繁なオフセット調整が行われず、ユーザに違和感を与えることがない。
In the LED display device 1003 of the third embodiment, the brightness reduction rate of each LED element 102 is accurately measured, and the offset processing is performed only when the difference in brightness reduction between the LED elements 102 becomes large, so that it is frequent. Offset adjustment is not performed, and the user does not feel uncomfortable.
実施の形態3のLED表示装置1003は、各LED素子102の輝度低下率を、輝度計測部25による第2LED表示部24の輝度の計測結果から取得する。しかし、LED表示装置1003が工場から出荷される際に、平均的な特性を有するLEDを用いて計測した点灯時間と輝度低下率との関係を輝度低下率記憶部26に記憶させ、記憶させた点灯時間と輝度低下率との関係と、輝度計測部25の計測結果とを輝度低下検出部29が参照することで、LED素子102の輝度低下を検出する構成としてもよい。この場合、LEDの突発的な故障などによる異常な計測値は補正の対象外となる。
The LED display device 1003 of the third embodiment acquires the brightness reduction rate of each LED element 102 from the measurement result of the brightness of the second LED display unit 24 by the brightness measuring unit 25. However, when the LED display device 1003 is shipped from the factory, the relationship between the lighting time measured using the LED having average characteristics and the brightness reduction rate is stored in the brightness reduction rate storage unit 26 and stored. The brightness reduction detection unit 29 may refer to the relationship between the lighting time and the brightness reduction rate and the measurement result of the brightness measurement unit 25 to detect the brightness reduction of the LED element 102. In this case, an abnormal measured value due to a sudden failure of the LED or the like is not subject to correction.
LED表示装置1003は、LED素子間の輝度低下率を平準化し、輝度のムラを抑え、画像表示の品位を良好に保つためにオフセット処理と各LED素子の輝度補正とを行った。しかし、表示映像が比較的動きのある場合、LED表示装置1003はオフセット処理のみ行っても良い。各LED素子102の輝度補正には表示画素数に応じた処理負荷が必要となるため、オフセット処理のみとすることで、演算装置の処理負荷を減らすことができる。
The LED display device 1003 performed offset processing and brightness correction of each LED element in order to level the brightness reduction rate between the LED elements, suppress uneven brightness, and maintain good image display quality. However, when the displayed image is relatively moving, the LED display device 1003 may perform only offset processing. Since the luminance correction of each LED element 102 requires a processing load according to the number of display pixels, the processing load of the arithmetic unit can be reduced by performing only the offset processing.
<D.実施の形態4>
実施の形態1,2,3では、1台のLED表示装置1001,1002,1003について説明した。実施の形態4では、マトリクス状に配置された複数のLED表示装置により大画面を構成するLED表示システムについて説明する。 <D. Embodiment 4>
In the first, second, and third embodiments, one LED display device 1001, 1002, 1003 has been described. In the fourth embodiment, an LED display system in which a large screen is configured by a plurality of LED display devices arranged in a matrix will be described.
実施の形態1,2,3では、1台のLED表示装置1001,1002,1003について説明した。実施の形態4では、マトリクス状に配置された複数のLED表示装置により大画面を構成するLED表示システムについて説明する。 <
In the first, second, and third embodiments, one
<D-1.構成>
図14は、実施の形態4のLED表示システム400の構成図である。LED表示システム400は、マトリクス状に配置された複数のLED表示装置1004と、映像制御装置5とを備える。図14において、18台のLED表示装置1004が垂直方向に3台、水平方向に6台配置され、大画面を構成する。18台のLED表示装置1004を区別するため、参照符号の末尾にa-rの英字を付し、LED表示装置1004a-1004rと称する。 <D-1. Configuration>
FIG. 14 is a configuration diagram of theLED display system 400 of the fourth embodiment. The LED display system 400 includes a plurality of LED display devices 1004 arranged in a matrix and a video control device 5. In FIG. 14, 18 LED display devices 1004 are arranged vertically with 3 units and 6 units in the horizontal direction to form a large screen. In order to distinguish the 18 LED display devices 1004, the letters ar are added to the end of the reference code, and the term is referred to as the LED display device 1004a-1004r.
図14は、実施の形態4のLED表示システム400の構成図である。LED表示システム400は、マトリクス状に配置された複数のLED表示装置1004と、映像制御装置5とを備える。図14において、18台のLED表示装置1004が垂直方向に3台、水平方向に6台配置され、大画面を構成する。18台のLED表示装置1004を区別するため、参照符号の末尾にa-rの英字を付し、LED表示装置1004a-1004rと称する。 <D-1. Configuration>
FIG. 14 is a configuration diagram of the
LED表示装置1004a-1004rは、ケーブル60により映像制御装置5と接続されている。
The LED display device 1004a-1004r is connected to the video control device 5 by a cable 60.
図15は、LED表示システム400の各構成要素の接続関係を示している。映像制御装置5とLED表示装置1004a-1004rとは、DVI(Digital Visual Interface)などの映像ケーブル60a、および、LAN(Local Area Network)などの通信ケーブル60bで接続されている。
FIG. 15 shows the connection relationship of each component of the LED display system 400. The video control device 5 and the LED display device 1004a-1004r are connected by a video cable 60a such as DVI (Digital Visual Interface) and a communication cable 60b such as LAN (Local Area Network).
図16は、映像制御装置5のブロック図である。図16において、映像制御装置5は、入力端子51、生成部52、出力部53、出力端子54、通信端子55、通信部56、記憶部57および輝度低下検出部58を備える。
FIG. 16 is a block diagram of the video control device 5. In FIG. 16, the video control device 5 includes an input terminal 51, a generation unit 52, an output unit 53, an output terminal 54, a communication terminal 55, a communication unit 56, a storage unit 57, and a brightness reduction detection unit 58.
生成部52は、入力端子51から入力された映像信号に対して、LED表示装置1004a-1004rに表示するための信号処理を行う。出力部53は、生成部52で処理された映像信号を、各LED表示装置1004a-1004rに表示する映像信号に処理し、出力端子54から各LED表示装置1004a-1004rに出力する。
The generation unit 52 performs signal processing for displaying the video signal input from the input terminal 51 on the LED display device 1004a-1004r. The output unit 53 processes the video signal processed by the generation unit 52 into a video signal to be displayed on each LED display device 1004a-1004r, and outputs the video signal from the output terminal 54 to each LED display device 1004a-1004r.
通信部56は、各LED表示装置1004a-1004rと情報を送受信する。記憶部57は、各LED表示装置1004a-1004rの点灯時間と輝度低下率とを記憶する。輝度低下検出部58は、各LED表示装置1004a-1004rにおいて、輝度が低下したLED素子102を検出する。
The communication unit 56 transmits / receives information to / from each LED display device 1004a-1004r. The storage unit 57 stores the lighting time and the brightness reduction rate of each LED display device 1004a-1004r. The brightness reduction detection unit 58 detects the LED element 102 whose brightness has decreased in each LED display device 1004a-1004r.
図17は、LED表示装置1004の構成を示すブロック図である。LED表示装置1004は、実施の形態3のLED表示装置1003の構成と比較すると、補正量演算部18に代えて補正量演算部32を備え、さらに通信部33および通信端子34を備えている。
FIG. 17 is a block diagram showing the configuration of the LED display device 1004. Compared with the configuration of the LED display device 1003 of the third embodiment, the LED display device 1004 includes a correction amount calculation unit 32 instead of the correction amount calculation unit 18, and further includes a communication unit 33 and a communication terminal 34.
通信部33は、通信端子34を介して映像制御装置5と情報を送受信する。輝度低下検出部29は、点灯時間記憶部28から第1LED表示部22のLED素子102の累積点灯時間を取得し、輝度低下率記憶部26から第2LED表示部24のLED素子102の点灯時間と輝度低下率の関係を取得し、これらに基づき第1LED表示部22のLED素子102の輝度低下率を算出する。そして、輝度低下検出部29は、通信部33および通信端子34を介して、算出した第1LED表示部22のLED素子102の輝度低下率を映像制御装置5へ送信する。
The communication unit 33 transmits / receives information to / from the video control device 5 via the communication terminal 34. The brightness reduction detection unit 29 acquires the cumulative lighting time of the LED element 102 of the first LED display unit 22 from the lighting time storage unit 28, and sets the lighting time of the LED element 102 of the second LED display unit 24 from the brightness reduction rate storage unit 26. The relationship of the brightness reduction rate is acquired, and the brightness reduction rate of the LED element 102 of the first LED display unit 22 is calculated based on these. Then, the brightness reduction detection unit 29 transmits the calculated brightness reduction rate of the LED element 102 of the first LED display unit 22 to the image control device 5 via the communication unit 33 and the communication terminal 34.
補正量演算部32は、輝度低下検出部29から第1LED表示部22のLED素子102の輝度低下率を取得し、通信部33から映像制御装置5の処理結果を取得する。そして、補正量演算部32はこれらに基づき映像信号のオフセット量を演算する。
The correction amount calculation unit 32 acquires the brightness reduction rate of the LED element 102 of the first LED display unit 22 from the brightness reduction detection unit 29, and acquires the processing result of the video control device 5 from the communication unit 33. Then, the correction amount calculation unit 32 calculates the offset amount of the video signal based on these.
<D-2.動作>
図18は、LED表示システム400のオフセット処理を示すフローチャートである。以下、図18に沿ってLED表示システム400のオフセット処理を説明する。まず、映像制御装置5の輝度低下検出部58が、前回のオフセット処理から設定時間が経過したか否かを判定する(ステップS401)。ここで、設定時間は、オフセット処理の単位時間であり、例えば100時間である。輝度低下検出部58は、前回のオフセット処理から設定時間が経過するまでステップS401を繰り返す。前回のオフセット処理から設定時間が経過すると(ステップS401でYes)、輝度低下検出部58は、各LED表示装置1004から、第1LED表示部22の各LED素子102の累積点灯時間と、第2LED表示部24の各LED素子102の点灯時間と輝度低下率との関係を表す情報を、通信部56を介して取得し、記憶部57に保存する(ステップS402)。 <D-2. Operation>
FIG. 18 is a flowchart showing the offset processing of theLED display system 400. Hereinafter, the offset processing of the LED display system 400 will be described with reference to FIG. First, the luminance reduction detection unit 58 of the video control device 5 determines whether or not the set time has elapsed since the previous offset processing (step S401). Here, the set time is a unit time of offset processing, and is, for example, 100 hours. The brightness reduction detection unit 58 repeats step S401 until the set time elapses from the previous offset process. When the set time has elapsed since the previous offset processing (Yes in step S401), the luminance reduction detection unit 58 displays the cumulative lighting time of each LED element 102 of the first LED display unit 22 and the second LED display from each LED display device 1004. Information representing the relationship between the lighting time of each LED element 102 of the unit 24 and the brightness reduction rate is acquired via the communication unit 56 and stored in the storage unit 57 (step S402).
図18は、LED表示システム400のオフセット処理を示すフローチャートである。以下、図18に沿ってLED表示システム400のオフセット処理を説明する。まず、映像制御装置5の輝度低下検出部58が、前回のオフセット処理から設定時間が経過したか否かを判定する(ステップS401)。ここで、設定時間は、オフセット処理の単位時間であり、例えば100時間である。輝度低下検出部58は、前回のオフセット処理から設定時間が経過するまでステップS401を繰り返す。前回のオフセット処理から設定時間が経過すると(ステップS401でYes)、輝度低下検出部58は、各LED表示装置1004から、第1LED表示部22の各LED素子102の累積点灯時間と、第2LED表示部24の各LED素子102の点灯時間と輝度低下率との関係を表す情報を、通信部56を介して取得し、記憶部57に保存する(ステップS402)。 <D-2. Operation>
FIG. 18 is a flowchart showing the offset processing of the
次に、輝度低下検出部58は、記憶部57に保存された、第1LED表示部22の各LED素子102の累積点灯時間と、第2LED表示部24の各LED素子102の点灯時間と輝度低下率との関係を表す情報から、実施の形態3の輝度低下検出部29と同様に、LED素子102の最小輝度低下率kr(t)min,kg(t)min,kb(t)minを抽出し、さらに輝度低下率の閾値YRth,YGth,YBthを算出する(ステップS404)。
Next, the brightness reduction detection unit 58 determines the cumulative lighting time of each LED element 102 of the first LED display unit 22 and the lighting time and brightness reduction of each LED element 102 of the second LED display unit 24 stored in the storage unit 57. Similar to the brightness reduction detection unit 29 of the third embodiment, the minimum brightness reduction rate kr (t) min , kg (t) min , kb (t) min of the LED element 102 is extracted from the information representing the relationship with the rate. Further, the threshold values YRth, YGth, and YBth of the brightness reduction rate are calculated (step S404).
次に、輝度低下検出部58は、輝度低下率が閾値YRth,YGth,YBthを超えるLED素子102が存在するか判定する(ステップS405)。輝度低下率が閾値YRth,YGth,YBthを超えるLED素子102が存在しない場合、映像制御装置5はオフセット処理を行うことなくステップS407の処理へ移行する。輝度低下率が閾値YRth,YGth,YBthを超えるLED素子102が存在した場合は、生成部52が映像信号にオフセット処理を施す(ステップS406)。出力部53は、生成部52により生成された映像を、DVIなどの出力端子54を介して各LED表示装置1004に送信する。こうして、各LED表示装置1004で映像が表示される。
Next, the brightness reduction detection unit 58 determines whether or not there is an LED element 102 whose brightness reduction rate exceeds the threshold values YRth, YGth, and YBth (step S405). When there is no LED element 102 whose luminance reduction rate exceeds the threshold values YRth, YGth, and YBth, the image control device 5 shifts to the process of step S407 without performing the offset process. When the LED element 102 whose luminance reduction rate exceeds the threshold values YRth, YGth, and YBth exists, the generation unit 52 performs offset processing on the video signal (step S406). The output unit 53 transmits the video generated by the generation unit 52 to each LED display device 1004 via an output terminal 54 such as DVI. In this way, the image is displayed on each LED display device 1004.
ステップS406の後、またはステップS405において輝度低下率が閾値YRth,YGth,YBthを超えるLED素子102が存在しない場合、映像制御装置5は、映像表示が終了したか否かを判断する(ステップS407)。ステップS407でYesの場合、一連のオフセット処理は終了する。映像表示を継続する場合(ステップS407でNo)、映像制御装置5の処理はステップS401に戻る。
After step S406 or in step S405, when there is no LED element 102 whose luminance reduction rate exceeds the threshold values YRth, YGth, YBth, the video control device 5 determines whether or not the video display is completed (step S407). .. If Yes in step S407, the series of offset processing ends. When the video display is continued (No in step S407), the process of the video control device 5 returns to step S401.
なお、映像制御装置5が、例えばパーソナルコンピュータ(PC)などの汎用の情報処理装置である場合、オフセット処理においては映像を拡大せず、表示する映像のコンテンツのオフセット処理または表示する映像の配置の変更等を行ってもよい。
When the video control device 5 is a general-purpose information processing device such as a personal computer (PC), the video is not enlarged in the offset processing, and the content of the video to be displayed is offset processed or the video to be displayed is arranged. You may make changes and the like.
また、映像制御装置5の生成部52は、例えば拡大縮小処理などの最小限のオフセット処理のみ行ってもよい。この場合、輝度低下検出部58が、通信部56を介して各LED表示装置1004に、残りのオフセット処理、例えば、映像の表示位置の垂直あるいは水平方向への移動の指示を送信する。そして、各LED表示装置1004において、補正量演算部32がLED表示装置1004毎のオフセット補正量を演算し、オフセット処理部19がオフセット処理を行う。
Further, the generation unit 52 of the video control device 5 may perform only the minimum offset processing such as enlargement / reduction processing. In this case, the luminance reduction detection unit 58 transmits the remaining offset processing, for example, an instruction to move the display position of the image in the vertical or horizontal direction to each LED display device 1004 via the communication unit 56. Then, in each LED display device 1004, the correction amount calculation unit 32 calculates the offset correction amount for each LED display device 1004, and the offset processing unit 19 performs the offset processing.
また、LED表示システム400の表示画面が高精細で大きい場合には、オフセット処理に伴う映像のずれが、表示画面の大きさに対して相対的に目立たなくなる。そのため、各LED表示装置1004では輝度補正部31を省略し、オフセット処理のみ行っても良い。
Further, when the display screen of the LED display system 400 is high-definition and large, the deviation of the image due to the offset processing becomes relatively inconspicuous with respect to the size of the display screen. Therefore, in each LED display device 1004, the luminance correction unit 31 may be omitted and only the offset processing may be performed.
上記では、実施の形態3で説明した各LED素子102の輝度低下率の算出に基づくオフセット処理を、LED表示システム400に適用した例を説明した。しかし、実施の形態1,2で説明したオフセット処理をLED表示システム400に適用することも可能である。
In the above, an example in which the offset processing based on the calculation of the luminance reduction rate of each LED element 102 described in the third embodiment is applied to the LED display system 400 has been described. However, it is also possible to apply the offset processing described in the first and second embodiments to the LED display system 400.
<D-3.効果>
実施の形態4のLED表示システム400は、複数のLED表示装置1004と、各LED表示装置1004と通信を行う映像制御装置5と、を備える。各LED表示装置1004は、複数の方向に配列された複数の第1LED素子を有する第1LED表示部22と、映像信号にしたがって各第1LED素子を駆動する第1LED駆動部21と、第1LED素子と同じ輝度低下特性を有する第2LED素子の、点灯時間と輝度低下率との関係を表す輝度低下率情報を記憶する輝度低下率記憶部26と、各第1LED素子の累積点灯時間を算出する積算部27と、映像制御装置5と通信を行う第1通信部である通信部33と、を備える。映像制御装置5は、各LED表示装置1004と通信を行う第2通信部である通信部56と、各LED表示装置1004から取得した各第1LED素子の累積点灯時間と、第2LED素子の輝度低下率情報とに基づき、各第1LED素子の輝度低下率を算出し、各第2LED素子の輝度低下率のうち最小の最小輝度低下率を基準として定められた第3閾値より輝度低下率が大きい第1LED素子を対象LED素子として検出する輝度低下検出部58と、対象LED素子の数が第4閾値以上である場合に、映像信号をオフセットするオフセット処理部である生成部52と、を備える。 <D-3. Effect>
TheLED display system 400 of the fourth embodiment includes a plurality of LED display devices 1004 and a video control device 5 that communicates with each LED display device 1004. Each LED display device 1004 includes a first LED display unit 22 having a plurality of first LED elements arranged in a plurality of directions, a first LED drive unit 21 that drives each first LED element according to a video signal, and a first LED element. A brightness reduction rate storage unit 26 that stores brightness reduction rate information indicating the relationship between the lighting time and the brightness reduction rate of the second LED element having the same brightness reduction characteristic, and an integration unit that calculates the cumulative lighting time of each first LED element. 27 and a communication unit 33, which is a first communication unit that communicates with the video control device 5. The image control device 5 has a communication unit 56 which is a second communication unit that communicates with each LED display device 1004, a cumulative lighting time of each first LED element acquired from each LED display device 1004, and a decrease in brightness of the second LED element. The brightness reduction rate of each first LED element is calculated based on the rate information, and the brightness reduction rate is larger than the third threshold value determined based on the minimum minimum brightness reduction rate of the brightness reduction rates of each second LED element. It includes a luminance reduction detection unit 58 that detects one LED element as a target LED element, and a generation unit 52 that is an offset processing unit that offsets a video signal when the number of target LED elements is equal to or greater than the fourth threshold value.
実施の形態4のLED表示システム400は、複数のLED表示装置1004と、各LED表示装置1004と通信を行う映像制御装置5と、を備える。各LED表示装置1004は、複数の方向に配列された複数の第1LED素子を有する第1LED表示部22と、映像信号にしたがって各第1LED素子を駆動する第1LED駆動部21と、第1LED素子と同じ輝度低下特性を有する第2LED素子の、点灯時間と輝度低下率との関係を表す輝度低下率情報を記憶する輝度低下率記憶部26と、各第1LED素子の累積点灯時間を算出する積算部27と、映像制御装置5と通信を行う第1通信部である通信部33と、を備える。映像制御装置5は、各LED表示装置1004と通信を行う第2通信部である通信部56と、各LED表示装置1004から取得した各第1LED素子の累積点灯時間と、第2LED素子の輝度低下率情報とに基づき、各第1LED素子の輝度低下率を算出し、各第2LED素子の輝度低下率のうち最小の最小輝度低下率を基準として定められた第3閾値より輝度低下率が大きい第1LED素子を対象LED素子として検出する輝度低下検出部58と、対象LED素子の数が第4閾値以上である場合に、映像信号をオフセットするオフセット処理部である生成部52と、を備える。 <D-3. Effect>
The
実施の形態4のLED表示システム400は、各LED表示装置1004のLED素子102の中に、輝度低下率kr(t) ,kg(t),kb(t)が閾値YRth,YGth,YBthより大きいLED素子102が一定数以上存在する場合に、映像信号のオフセット処理を行う。これにより、LED素子102間で輝度低下率が平準化される。従って、極端に輝度が低下したLED素子102に合わせて輝度補正することにより、LED表示装置1004の画面全体が過剰に暗くなることがない。その結果、輝度の均一性およびホワイトバランスを維持しやすくなり、映像表示画面の輝度のばらつきを抑制することができる。
In the LED display system 400 of the fourth embodiment, the luminance reduction rate kr (t), kg (t), kb (t) is larger than the threshold values YRth, YGth, YBth in the LED element 102 of each LED display device 1004. When a certain number or more of the LED elements 102 are present, the video signal is offset. As a result, the brightness reduction rate is leveled among the LED elements 102. Therefore, by correcting the brightness according to the LED element 102 whose brightness is extremely lowered, the entire screen of the LED display device 1004 does not become excessively dark. As a result, it becomes easy to maintain the uniformity of the brightness and the white balance, and it is possible to suppress the variation in the brightness of the image display screen.
実施の形態1-3のLED表示装置1001-1003では、映像信号を例えば105%に拡大し、拡大した映像から表示に必要な部分を選択することにより、オフセットの際にLED表示部14に映像が表示されない領域が現れないようにしていた。これに対して実施の形態4のLED表示システム400では、映像制御装置5は、LED表示装置1004における映像の表示位置の移動処理、または映像の配置などを変更する処理を行えば、LED表示装置1004のオフセット処理部19では映像の拡大処理を行う必要がない。従って、映像の拡大処理による画質低下が発生しない。
In the LED display device 1001-1003 of the first embodiment, the video signal is enlarged to, for example, 105%, and a part necessary for display is selected from the enlarged image, so that the image is displayed on the LED display unit 14 at the time of offset. The area where is not displayed did not appear. On the other hand, in the LED display system 400 of the fourth embodiment, if the image control device 5 performs a process of moving the display position of the image in the LED display device 1004 or a process of changing the arrangement of the image, the LED display device The offset processing unit 19 of 1004 does not need to perform image enlargement processing. Therefore, the image quality does not deteriorate due to the image enlargement processing.
また、LED表示システム400では、映像制御装置5を用いることによって、LED表示装置1004での映像信号処理に関わる処理回路または処理装置に、処理性能が低いより安価なものを採用することができる。従って、LED表示システム400のコストを低くすることができる。
Further, in the LED display system 400, by using the video control device 5, it is possible to adopt a processing circuit or processing device related to video signal processing in the LED display device 1004, which is cheaper and has lower processing performance. Therefore, the cost of the LED display system 400 can be reduced.
また、LED表示システム400の表示画面が、より高精細で大きくなるほど、オフセット処理による輝度のバラつきをより効果的に抑制することができる。さらに、オフセット処理に伴う映像のずれが、表示画面が大きくなるほど相対的に目立たなくなり、ユーザに与える違和感が極めて少なくなる。その為、高精細で大画面を有するLED表示システム400では、LED表示装置1004の輝度補正部31を省略し、オフセット処理のみで同様の効果を得ることができる。
Further, the larger the display screen of the LED display system 400 is, the more effectively the variation in brightness due to the offset processing can be suppressed. Further, the deviation of the image due to the offset processing becomes relatively inconspicuous as the display screen becomes larger, and the discomfort given to the user is extremely reduced. Therefore, in the LED display system 400 having a high-definition and large screen, the same effect can be obtained only by the offset processing by omitting the luminance correction unit 31 of the LED display device 1004.
<D-4.変形例>
なお、映像制御装置5は、閾値YRth、YGthおよびYBthより大きい輝度低下率kr(t)、kg(t)およびkb(t)を有するLED素子102が存在する場合に、LED表示装置1004から通知を受け、映像を制御してもよい。映像制御装置5は、例えばPCなどの汎用の情報処理装置を利用することができるので、機能の柔軟性が高い。そのため、映像制御装置5が映像を制御するまでに受ける通知の回数、またはオフセット処理における映像のずらし方(量、方向、頻度、拡大縮小、回転など)の設定をユーザが行ってもよい。 <D-4. Modification example>
Thevideo control device 5 notifies from the LED display device 1004 when there is an LED element 102 having a luminance reduction rate kr (t), kg (t), and kb (t) larger than the threshold values YRth, YGth, and YBth. It may receive and control the image. Since the video control device 5 can use a general-purpose information processing device such as a PC, the flexibility of the function is high. Therefore, the user may set the number of notifications received by the video control device 5 until the video is controlled, or the method of shifting the video (amount, direction, frequency, enlargement / reduction, rotation, etc.) in the offset processing.
なお、映像制御装置5は、閾値YRth、YGthおよびYBthより大きい輝度低下率kr(t)、kg(t)およびkb(t)を有するLED素子102が存在する場合に、LED表示装置1004から通知を受け、映像を制御してもよい。映像制御装置5は、例えばPCなどの汎用の情報処理装置を利用することができるので、機能の柔軟性が高い。そのため、映像制御装置5が映像を制御するまでに受ける通知の回数、またはオフセット処理における映像のずらし方(量、方向、頻度、拡大縮小、回転など)の設定をユーザが行ってもよい。 <D-4. Modification example>
The
<E.ハードウェア構成>
上述したLED表示装置1001-1004、および映像制御装置5における各種の構成(以下、「オフセット処理部19等」と称する)は、LED表示部14、第1LED表示部22、第2LED表示部24を除き、図19に示す処理回路81により実現される。処理回路81には、専用のハードウェアが適用されてもよいし、メモリに格納されるプログラムを実行するプロセッサが適用されてもよい。プロセッサは、例えば中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)等である。 <E. Hardware configuration>
Various configurations (hereinafter, referred to as "offset processingunit 19 and the like") in the LED display device 1001-1004 and the video control device 5 described above include the LED display unit 14, the first LED display unit 22, and the second LED display unit 24. Except, it is realized by the processing circuit 81 shown in FIG. Dedicated hardware may be applied to the processing circuit 81, or a processor that executes a program stored in the memory may be applied. The processor is, for example, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
上述したLED表示装置1001-1004、および映像制御装置5における各種の構成(以下、「オフセット処理部19等」と称する)は、LED表示部14、第1LED表示部22、第2LED表示部24を除き、図19に示す処理回路81により実現される。処理回路81には、専用のハードウェアが適用されてもよいし、メモリに格納されるプログラムを実行するプロセッサが適用されてもよい。プロセッサは、例えば中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)等である。 <E. Hardware configuration>
Various configurations (hereinafter, referred to as "offset processing
処理回路81が専用のハードウェアである場合、処理回路81は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものが該当する。オフセット処理部19等の各部の機能それぞれは、複数の処理回路81で実現されてもよいし、各部の機能をまとめて一つの処理回路で実現されてもよい。
When the processing circuit 81 is dedicated hardware, the processing circuit 81 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable). GateArray), or a combination of these. Each of the functions of each part such as the offset processing unit 19 may be realized by a plurality of processing circuits 81, or the functions of each part may be collectively realized by one processing circuit.
処理回路81がプロセッサである場合、オフセット処理部19等の機能は、ソフトウェア等(ソフトウェア、ファームウェアまたはソフトウェアとファームウェア)との組み合わせにより実現される。ソフトウェア等はプログラムとして記述され、メモリに格納される。図20に示すように、処理回路81に適用されるプロセッサ82は、メモリ83に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。換言すれば、このプログラムは、オフセット処理部19等の手順または方法をコンピュータに実行させるものであるともいえる。ここで、メモリ83は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)などの、不揮発性または揮発性の半導体メモリ、HDD(Hard Disk Drive)、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disk)及びそのドライブ装置等、または、今後使用されるあらゆる記憶媒体であってもよい。
When the processing circuit 81 is a processor, the functions of the offset processing unit 19 and the like are realized by a combination with software or the like (software, firmware or software and firmware). Software and the like are described as programs and stored in memory. As shown in FIG. 20, the processor 82 applied to the processing circuit 81 realizes the functions of each part by reading and executing the program stored in the memory 83. In other words, it can be said that this program causes the computer to execute the procedure or method of the offset processing unit 19 and the like. Here, the memory 83 is a non-volatile or non-volatile memory such as a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), a flash memory, an EPROM (ErasableProgrammableReadOnlyMemory), and an EEPROM (ElectricallyErasableProgrammableReadOnlyMemory). Volatile semiconductor memory, HDD (Hard Disk Drive), magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disk) and its drive device, etc., or any storage medium used in the future. You may.
以上、オフセット処理部19等の各機能が、ハードウェア及びソフトウェア等のいずれか一方で実現される構成について説明した。しかしこれに限ったものではなく、オフセット処理部19等の一部を専用のハードウェアで実現し、別の一部をソフトウェア等で実現する構成であってもよい。例えばオフセット処理部19については専用のハードウェアとしての処理回路でその機能を実現し、それ以外についてはプロセッサ82としての処理回路81がメモリ83に格納されたプログラムを読み出して実行することによってその機能を実現することが可能である。
The configuration in which each function of the offset processing unit 19 and the like is realized by either hardware or software has been described above. However, the present invention is not limited to this, and a configuration may be configured in which a part of the offset processing unit 19 or the like is realized by dedicated hardware and another part is realized by software or the like. For example, the offset processing unit 19 realizes its function by a processing circuit as dedicated hardware, and other than that, the processing circuit 81 as a processor 82 reads and executes a program stored in the memory 83 to execute the function. It is possible to realize.
以上のように、処理回路は、ハードウェア、ソフトウェア等、またはこれらの組み合わせによって、上述の各機能を実現することができる。なお、点灯時間記憶部16,28、輝度低下率記憶部26、および記憶部57はメモリ83から構成されるが、それらは単一のメモリ83から構成されてもよいし、それぞれが個別のメモリから構成されてもよい。
As described above, the processing circuit can realize each of the above-mentioned functions by hardware, software, or a combination thereof. The lighting time storage units 16 and 28, the luminance reduction rate storage unit 26, and the storage unit 57 are composed of a memory 83, but they may be composed of a single memory 83, or each of them may be an individual memory. It may be composed of.
なお、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。上記の説明は、すべての態様において、例示である。例示されていない無数の変形例が想定され得るものと解される。
It is possible to freely combine each embodiment, and to appropriately modify or omit each embodiment. The above description is exemplary in all embodiments. It is understood that innumerable variations not illustrated can be assumed.
5 映像制御装置、11,51 入力端子、12 信号処理部、13 LED駆動部、14 LED表示部、15 積算部、16,28 点灯時間記憶部、17,29,58 輝度低下検出部、18 補正量演算部、19 オフセット処理部、21 第1LED駆動部、22 第1LED表示部、23 第2LED駆動部、24 第2LE表示部、25 輝度計測部、26 輝度低下率記憶部、27 積算部、30 補正係数演算部、31 輝度補正部、32 補正量演算部、33,56 通信部、34,55 通信端子、52 生成部、53 出力部、54 出力端子、57 記憶部、60 ケーブル、60a 映像ケーブル、60b 通信ケーブル、81 処理回路、82 プロセッサ、83 メモリ、101 LED、102 LED素子、400 LED表示システム、1001-1004 LED表示装置。
5 Video control device, 11,51 input terminal, 12 signal processing unit, 13 LED drive unit, 14 LED display unit, 15 integration unit, 16,28 lighting time storage unit, 17,29,58 brightness reduction detection unit, 18 correction Quantity calculation unit, 19 offset processing unit, 21 1st LED drive unit, 22 1st LED display unit, 23 2nd LED drive unit, 24 2nd LE display unit, 25 brightness measurement unit, 26 brightness reduction rate storage unit, 27 integration unit, 30 Correction coefficient calculation unit, 31 brightness correction unit, 32 correction amount calculation unit, 33,56 communication unit, 34,55 communication terminal, 52 generation unit, 53 output unit, 54 output terminal, 57 storage unit, 60 cable, 60a video cable , 60b communication cable, 81 processing circuit, 82 processor, 83 memory, 101 LED, 102 LED element, 400 LED display system, 1001-1004 LED display device.
Claims (7)
- 複数の方向に配列された複数のLED素子を有するLED表示部と、
映像信号にしたがって各前記LED素子を駆動するLED駆動部と、
各前記LED素子の累積点灯時間を算出する積算部と、
各前記LED素子の前記累積点灯時間のうち最も短い最短累積点灯時間を基準として定められた第1閾値より前記累積点灯時間が長い前記LED素子を対象LED素子として検出する輝度低下検出部と、
前記対象LED素子の数が第2閾値以上である場合に、前記映像信号をオフセットするオフセット処理部と、を備える、
LED表示装置。 An LED display unit having a plurality of LED elements arranged in a plurality of directions,
An LED drive unit that drives each LED element according to a video signal,
An integrating unit that calculates the cumulative lighting time of each LED element,
A brightness reduction detection unit that detects the LED element having a longer cumulative lighting time than the first threshold value determined based on the shortest cumulative lighting time of the cumulative lighting time of each LED element as a target LED element.
An offset processing unit that offsets the video signal when the number of target LED elements is equal to or greater than the second threshold value is provided.
LED display device. - 前記複数のLED素子が配列された前記複数の方向の各方向について、隣接する複数の前記LED素子の累積点灯時間差の和を算出し、前記累積点灯時間差の和が最大の方向をオフセット方向とするオフセット方向決定部をさらに備え、
前記オフセット処理部は、前記オフセット方向に前記映像信号をオフセットする、
請求項1に記載のLED表示装置。 The sum of the cumulative lighting time differences of the plurality of adjacent LED elements is calculated for each direction of the plurality of directions in which the plurality of LED elements are arranged, and the direction in which the sum of the cumulative lighting time differences is maximum is set as the offset direction. With an additional offset direction determination unit,
The offset processing unit offsets the video signal in the offset direction.
The LED display device according to claim 1. - 複数の方向に配列された複数の第1LED素子を有する第1LED表示部と、
映像信号にしたがって各前記第1LED素子を駆動する第1LED駆動部と、
前記第1LED素子と同じ輝度低下特性を有する第2LED素子の、点灯時間と輝度低下率との関係を表す輝度低下率情報を記憶する輝度低下率記憶部と、
各前記第1LED素子の累積点灯時間を算出する積算部と、
各前記第1LED素子の前記累積点灯時間と、前記第2LED素子の前記輝度低下率情報とに基づき、各前記第1LED素子の輝度低下率を算出し、各前記第2LED素子の輝度低下率のうち最小の最小輝度低下率を基準として定められた第3閾値より前記輝度低下率が大きい前記第1LED素子を対象LED素子として検出する輝度低下検出部と、
前記対象LED素子の数が第4閾値以上である場合に、前記映像信号をオフセットするオフセット処理部と、を備える、
LED表示装置。 A first LED display unit having a plurality of first LED elements arranged in a plurality of directions,
A first LED drive unit that drives each of the first LED elements according to a video signal,
A brightness reduction rate storage unit for storing brightness reduction rate information indicating the relationship between the lighting time and the brightness reduction rate of the second LED element having the same brightness reduction characteristics as the first LED element.
An integrating unit that calculates the cumulative lighting time of each of the first LED elements,
Based on the cumulative lighting time of each of the first LED elements and the brightness reduction rate information of the second LED element, the brightness reduction rate of each of the first LED elements is calculated, and the brightness reduction rate of each of the second LED elements is calculated. A brightness reduction detection unit that detects the first LED element whose brightness reduction rate is larger than the third threshold value determined based on the minimum minimum brightness reduction rate as a target LED element.
An offset processing unit that offsets the video signal when the number of target LED elements is equal to or greater than the fourth threshold value is provided.
LED display device. - 前記第2LED素子を有する第2LED表示部と、
前記第2LED素子を駆動する第2LED駆動部と、
前記第2LED素子の輝度を計測する輝度計測部と、をさらに備え、
前記積算部は、前記第2LED素子の累積点灯時間を算出し、
前記輝度低下率情報は、前記輝度計測部が計測した前記第2LED素子の輝度と、前記積算部が算出した前記第2LED素子の累積点灯時間とに基づき得られる、
請求項3に記載のLED表示装置。 A second LED display unit having the second LED element,
A second LED drive unit that drives the second LED element,
A luminance measuring unit for measuring the luminance of the second LED element is further provided.
The integrating unit calculates the cumulative lighting time of the second LED element, and calculates the cumulative lighting time.
The brightness reduction rate information is obtained based on the brightness of the second LED element measured by the brightness measuring unit and the cumulative lighting time of the second LED element calculated by the integrating unit.
The LED display device according to claim 3. - 前記複数のLED素子が配列された前記複数の方向の各方向について、隣接する複数の前記LED素子の輝度低下率差の和を算出し、前記輝度低下率差の和が最大の方向をオフセット方向とするオフセット方向決定部をさらに備え、
前記オフセット処理部は、前記オフセット方向に前記映像信号をオフセットする、
請求項3または請求項4に記載のLED表示装置。 For each direction in the plurality of directions in which the plurality of LED elements are arranged, the sum of the brightness reduction rate differences of the plurality of adjacent LED elements is calculated, and the direction in which the sum of the brightness reduction rate differences is maximum is the offset direction. Further equipped with an offset direction determination unit
The offset processing unit offsets the video signal in the offset direction.
The LED display device according to claim 3 or 4. - 複数のLED表示装置と、
各前記LED表示装置と通信を行う映像制御装置と、を備える
LED表示システムであって、
各前記LED表示装置は、
複数の方向に配列された複数の第1LED素子を有する第1LED表示部と、
映像信号にしたがって各前記第1LED素子を駆動する第1LED駆動部と、
前記第1LED素子と同じ輝度低下特性を有する第2LED素子の、点灯時間と輝度低下率との関係を表す輝度低下率情報を記憶する輝度低下率記憶部と、
各前記第1LED素子の累積点灯時間を算出する積算部と、
前記映像制御装置と通信を行う第1通信部と、を備え、
前記映像制御装置は、
各前記LED表示装置と通信を行う第2通信部と、
各前記LED表示装置から取得した各前記第1LED素子の前記累積点灯時間と、前記第2LED素子の前記輝度低下率情報とに基づき、各前記第1LED素子の輝度低下率を算出し、各前記第2LED素子の輝度低下率のうち最小の最小輝度低下率を基準として定められた第3閾値より前記輝度低下率が大きい前記第1LED素子を対象LED素子として検出する輝度低下検出部と、
前記対象LED素子の数が第4閾値以上である場合に、前記映像信号をオフセットするオフセット処理部と、を備える、
LED表示システム。 With multiple LED display devices
An LED display system including a video control device that communicates with each of the LED display devices.
Each LED display device is
A first LED display unit having a plurality of first LED elements arranged in a plurality of directions,
A first LED drive unit that drives each of the first LED elements according to a video signal,
A brightness reduction rate storage unit for storing brightness reduction rate information indicating the relationship between the lighting time and the brightness reduction rate of the second LED element having the same brightness reduction characteristics as the first LED element.
An integrating unit that calculates the cumulative lighting time of each of the first LED elements,
A first communication unit that communicates with the video control device is provided.
The video control device is
A second communication unit that communicates with each of the LED display devices,
Based on the cumulative lighting time of each of the first LED elements acquired from each of the LED display devices and the brightness reduction rate information of the second LED element, the brightness reduction rate of each of the first LED elements is calculated, and the brightness reduction rate of each of the first LED elements is calculated. A brightness reduction detection unit that detects the first LED element having a brightness reduction rate larger than a third threshold value determined based on the minimum brightness reduction rate of the two LED elements as a target LED element, and a brightness reduction detection unit.
An offset processing unit that offsets the video signal when the number of target LED elements is equal to or greater than the fourth threshold value is provided.
LED display system. - 複数の方向に配列された複数のLED素子を有するLED表示部を備えたLED表示装置の表示方法であって、
映像信号にしたがって各前記LED素子を駆動し、
各前記LED素子の累積点灯時間を算出し、
各前記LED素子の累積点灯時間のうち最も短い最短累積点灯時間を基準として定められた第1閾値より前記累積点灯時間が長い前記LED素子を検出し、
前記第1閾値より前記累積点灯時間が長い前記LED素子の数が第2閾値以上である場合に、前記映像信号をオフセットする、
LED表示装置の表示方法。 It is a display method of an LED display device provided with an LED display unit having a plurality of LED elements arranged in a plurality of directions.
Each LED element is driven according to the video signal,
Calculate the cumulative lighting time of each LED element and calculate
The LED element having a longer cumulative lighting time than the first threshold value determined based on the shortest cumulative lighting time among the cumulative lighting times of each LED element is detected.
When the number of the LED elements whose cumulative lighting time is longer than the first threshold value is equal to or larger than the second threshold value, the video signal is offset.
Display method of LED display device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/025806 WO2022003857A1 (en) | 2020-07-01 | 2020-07-01 | Led display device, led display system, and display method of led display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/025806 WO2022003857A1 (en) | 2020-07-01 | 2020-07-01 | Led display device, led display system, and display method of led display device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022003857A1 true WO2022003857A1 (en) | 2022-01-06 |
Family
ID=79315171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/025806 WO2022003857A1 (en) | 2020-07-01 | 2020-07-01 | Led display device, led display system, and display method of led display device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022003857A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07104702A (en) * | 1993-10-04 | 1995-04-21 | Matsushita Electric Ind Co Ltd | Led information display device |
JP2003263131A (en) * | 2002-03-07 | 2003-09-19 | Sanyo Electric Co Ltd | Display device and display method |
US7564432B1 (en) * | 2000-08-25 | 2009-07-21 | Rockwell Collins, Inc. | Method and apparatus for extending the life of matrix addressed emissive display devices |
JP2017032888A (en) * | 2015-08-05 | 2017-02-09 | 三菱電機株式会社 | LED display device |
-
2020
- 2020-07-01 WO PCT/JP2020/025806 patent/WO2022003857A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07104702A (en) * | 1993-10-04 | 1995-04-21 | Matsushita Electric Ind Co Ltd | Led information display device |
US7564432B1 (en) * | 2000-08-25 | 2009-07-21 | Rockwell Collins, Inc. | Method and apparatus for extending the life of matrix addressed emissive display devices |
JP2003263131A (en) * | 2002-03-07 | 2003-09-19 | Sanyo Electric Co Ltd | Display device and display method |
JP2017032888A (en) * | 2015-08-05 | 2017-02-09 | 三菱電機株式会社 | LED display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9607577B2 (en) | Dynamic power and brightness control for a display screen | |
US11074028B2 (en) | Calibration method and system for tiled displays | |
US11011102B2 (en) | Display apparatus and control method therefor | |
CN104699438B (en) | The apparatus and method handled the picture to be shown of OLED display | |
JP6827594B2 (en) | LED display system and LED display control device | |
US20050140568A1 (en) | Image display control method, apparatus for controlling image display, and program for controlling image display | |
US20130063458A1 (en) | Display apparatus and display method | |
JP6727047B2 (en) | Display device | |
US10971056B2 (en) | Display device | |
JP4982510B2 (en) | Video display device | |
JP5773636B2 (en) | Display control apparatus and control method thereof | |
JP6648932B2 (en) | Display device and control method thereof | |
JP6739151B2 (en) | LED display device | |
KR101981269B1 (en) | Method for reducing burn-in in a display | |
JP6395232B2 (en) | Image display device and light source dimming method | |
WO2022003857A1 (en) | Led display device, led display system, and display method of led display device | |
JP2008185905A (en) | Video display device | |
JP5350105B2 (en) | Display device and digital camera | |
KR102640015B1 (en) | Display device and driving method thereof | |
JP6742562B1 (en) | LED display device and brightness correction method for LED display device | |
JP6548516B2 (en) | IMAGE DISPLAY DEVICE, IMAGE PROCESSING DEVICE, CONTROL METHOD OF IMAGE DISPLAY DEVICE, AND CONTROL METHOD OF IMAGE PROCESSING DEVICE | |
WO2021005811A1 (en) | Led display device and brightness correction method | |
JP2020187306A (en) | Image processing system and image processing method | |
WO2022113154A1 (en) | Video display device and brightness correction method | |
WO2021038794A1 (en) | Led display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20943692 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20943692 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |