WO2022003848A1 - Inspection method, inspection system, and stress luminescence measurement device - Google Patents

Inspection method, inspection system, and stress luminescence measurement device Download PDF

Info

Publication number
WO2022003848A1
WO2022003848A1 PCT/JP2020/025749 JP2020025749W WO2022003848A1 WO 2022003848 A1 WO2022003848 A1 WO 2022003848A1 JP 2020025749 W JP2020025749 W JP 2020025749W WO 2022003848 A1 WO2022003848 A1 WO 2022003848A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
sample
stress
image
stimulated luminescent
Prior art date
Application number
PCT/JP2020/025749
Other languages
French (fr)
Japanese (ja)
Inventor
智生 篠山
啓一郎 兵頭
直継 安藤
Original Assignee
株式会社島津製作所
ユアサシステム機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所, ユアサシステム機器株式会社 filed Critical 株式会社島津製作所
Priority to PCT/JP2020/025749 priority Critical patent/WO2022003848A1/en
Publication of WO2022003848A1 publication Critical patent/WO2022003848A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • G01N3/34Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by mechanical means, e.g. hammer blows
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to an inspection method, an inspection system, and a stress luminescence measuring device.
  • a flexible device is a device in which a semiconductor element, a light emitting element, or the like is formed on a flexible substrate such as a resin substrate, and typical examples thereof include a lighting device, a display, and a sensor.
  • a lighting device such as a resin substrate
  • a display such as a liquid crystal display
  • a sensor such as a senor
  • a product equipped with a flexible display is a foldable mobile terminal (smartphone, tablet, etc.).
  • the flexible display is a touch panel display, and has a display and an input unit that accepts a user's operation.
  • a fold test of a sample is performed by tens of thousands to hundreds of thousands using a deformation tester as shown in, for example, Japanese Patent Application Laid-Open No. 2019-39743 (Patent Document 1). The durability and performance of the sample have been verified by repeating the process several times.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide an inspection method, an inspection system, and a stress luminescence measuring device capable of easily and appropriately identifying an inspection site of a sample. That is.
  • the inspection method includes a step of acquiring a stress-stimulated luminescent image when a sample containing a stress-stimulated luminescent material is deformed, a step of acquiring information on a region of interest of the stress-stimulated luminescent image, and a stress-stimulated luminescent image. It comprises a step of identifying an inspection site on the surface of the sample based on the position of the region of interest within, and a step of generating inspection site information for identifying the identified inspection site.
  • an inspection method it is possible to provide an inspection method, an inspection system, and a mechanoluminescence measuring device that can easily and appropriately identify the inspection location of a sample.
  • FIG. 1 It is a block diagram which shows the whole structure of the inspection system which concerns on embodiment. It is a block diagram which shows the structural example of the stress luminescence measuring apparatus and inspection apparatus shown in FIG. It is a perspective view of a holder. It is a side view of a holder. It is a figure for demonstrating the bending angle and bending radius of a sample. It is a block diagram for demonstrating the functional configuration of a controller. It is a figure which shows a part of a sample and a holder schematically. It is a figure for demonstrating the positional relationship of a sample and a camera. It is a flowchart explaining the procedure of an inspection process. It is a flowchart explaining the procedure of stress luminescence measurement processing.
  • FIG. 1 is a block diagram showing an overall configuration of an inspection system according to an embodiment.
  • the inspection system according to the present embodiment includes a stress luminescence measuring device 100 and an inspection device 200.
  • the stress-stimulated luminescence measuring device 100 is a device that measures the stress (strain) generated in an inspection target (hereinafter, also simply referred to as “sample S”) by utilizing the luminescence phenomenon of the stress-stimulated luminescent material.
  • the stress luminescence measuring device 100 can be used to test the durability against the stress generated in the sample S.
  • Sample S contains at least a stress-stimulated luminescent material on its surface.
  • the stress-stimulated luminescent material refers to a substance obtained by molding a stress-stimulated luminescent material alone or after combining another material (for example, resin).
  • the stress-stimulated luminescent material is a material that emits light by an external mechanical stimulus.
  • the stress-stimulated luminescent material is a solid solution of an element that is the center of luminescence in the skeleton of an inorganic crystal (base material), and a typical example is strontium aluminate doped with europium.
  • zinc sulfide doped with transition metals or rare earths barium / calcium titanate, calcium aluminates / yttrium, and the like.
  • a known stress-stimulated luminescent material can be used.
  • the stress-stimulated luminescent material can be composed of, for example, a luminescent film arranged on the surface of the sample S. Alternatively, the stress-stimulated luminescent material can be mixed with the sample S.
  • the stress-stimulated luminescent material has a property of emitting light by strain energy applied from the outside, and its emission intensity changes according to the magnitude of strain energy.
  • the stress-stimulated luminescence measuring device 100 is configured to acquire a stress-stimulated luminescence image by capturing the luminescence of the stress-stimulated luminescent material when the sample S is deformed by a camera.
  • the deformation of the sample S means that the shape and state of the sample S change as the load applied to the sample S changes.
  • the change in load includes applying a load to the sample S and removing the load applied to the sample S.
  • ROI Region Of Interest
  • the stress-stimulated luminescence measuring device 100 will inspect the surface of the sample S based on the position of the ROI in the stress-stimulated luminescence image. Is configured to identify.
  • the stress-stimulated luminescence measuring device 100 has a correspondence relationship between each position on the surface of the sample S and each position in the stress-stimulated luminescence image in advance.
  • the stress-stimulated luminescence measuring device 100 calculates the position of the inspection point on the surface of the sample S based on the position of the ROI in the stress-stimulated luminescence image by referring to the correspondence.
  • the stress luminescence measuring device 100 generates inspection location information for identifying the specified inspection location, and outputs the generated inspection location information.
  • the inspection device 200 acquires the inspection location information output from the stress luminescence measuring device 100.
  • the inspection device 200 is communication-connected to the mechanoluminescence measuring device 100, and receives data indicating inspection location information transmitted from the mechanoluminescence measuring device 100.
  • the inspection device 200 is configured to inspect the sample S by observing the inspection location specified by the inspection location information when the inspection location information is acquired. Observation of the inspection site can be performed, for example, using a microscope (optical microscope, electron microscope, etc.) or a camera.
  • the inspection system when a defect such as a minute crack occurs in the sample S due to the application of a load, stress (strain) is locally concentrated around the defect, so that the stress-strain luminescence measuring device is used.
  • a luminescence intensity distribution having a luminescence intensity corresponding to this stress distribution is observed.
  • the stress-stimulated luminescence measuring device 100 derives the position of the surface of the sample S corresponding to the portion. , Specify the position as an inspection point.
  • the inspection device 200 by observing the inspection points of the sample S specified by the stress luminescence measuring device 100, it is possible to inspect in detail the state of occurrence of defects inside the sample S.
  • the inspection portion on the surface of the sample S is specified based on the stress-stimulated luminescent image when the sample S is deformed, and the inspection for identifying the specified inspection portion is performed. Location information is generated.
  • the user can observe the two-dimensional stress distribution when a load is applied to the sample S in a non-destructive state by using the stress-stimulated luminescent image.
  • the state of the sample S local defects, etc.
  • the user can verify the mechanism by which the sample S is destroyed by applying the load in chronological order.
  • the stress luminescence measuring device 100 and the inspection device 200 are shown as separate bodies in the example of FIG. 1, the stress luminescence measuring device 100 and the inspection device 200 may be integrally configured. Further, the stress luminescence measuring device 100 and the inspection device 200 may be connected by wire or wirelessly. The stress luminescence measuring device 100 and the inspection device 200 may be communicated and connected via an external communication network such as the Internet.
  • a flexible device is a device in which a semiconductor element, a light emitting element, or the like is formed on a flexible substrate such as a resin substrate.
  • FIG. 2 is a block diagram showing a configuration example of the stress luminescence measuring device 100 and the inspection device 200 shown in FIG.
  • sample S is a foldable or foldable flexible sheet.
  • the flexible sheet can form a part of a flexible display or wearable device of a communication terminal such as a smartphone or tablet.
  • the sample S has a rectangular shape and has a first surface Sa and a second surface Sb opposite to the first surface Sa.
  • a predetermined region of the first surface Sa of the sample S is covered with a stress-stimulated luminescent material.
  • the predetermined region can be set to include the central portion of bending of the sample S when a bending load is applied.
  • the stress-stimulated luminescent material can be formed by attaching the stress-stimulated luminescent material to the predetermined region on the stress-stimulated luminescent sheet.
  • the stress-stimulated luminescent material can be formed by applying a resin material containing the stress-stimulated luminescent material to the predetermined region and drying it.
  • the stress luminescence measuring device 100 has a “load application mechanism” for applying a load (bending load) to the sample S.
  • a load bending load
  • the stress-stimulated luminescence measuring device 100 is configured to measure the light-emitting state of the stress-stimulated luminescent material at least when a bending load is applied.
  • the stress luminescence measuring device 100 includes a holder 10 for holding the sample S, a light source 30, a camera 40, a first driver 20, a second driver 42, a third driver 32, and a controller 50. Has.
  • the holder 10 is configured to support the sample S by contacting at least two points of the sample S.
  • the holder 10 is configured to support the first end S1 and the second end S2 of the sample S facing each other.
  • the first driver 20 is connected to the holder 10 and by moving the holder 10 between the "first holder position" and the "second holder position", the first end S1 and the second end. The distance between the portions S2 can be expanded and contracted.
  • the first driver 20 is connected to the holder 10 and has an actuator 21 that reciprocates the second end S2 of the sample S.
  • the actuator 21 is, for example, a cylinder.
  • the sample S can be bent by reducing the distance between the first end S1 and the second end S2 by the first driver 20 and the holder 10. Further, the sample S can be extended by extending the distance between the first end portion S1 and the second end portion S2 by the first driver 20 and the holder 10.
  • the holder 10 and the first driver 20 form a "load application mechanism".
  • FIG. 3 is a perspective view of the holder 10.
  • FIG. 4 is a side view of the holder 10.
  • the holder 10 includes a frame 1, a fixed wall 2, a moving wall 3, mounting portions 5, 6, holding plates 7, 8, hinges 9, leaf springs 12, and connecting portions. It has 13, a rail 14, sliders 15A and 15B, bars 16 and 17, a bracket 18, and top plates 22 and 23.
  • the frame 1 has a box shape with each surface open.
  • the width direction is the X-axis direction
  • the depth direction is the Y-axis direction
  • the height direction is the Z-axis direction.
  • the fixed wall 2 and the moving wall 3 are installed inside the frame 1 so as to face each other in the X-axis direction.
  • the fixed wall 2 is arranged close to the first side 1A extending in the Y-axis direction of the frame 1, and the moving wall 3 is arranged with the first side 1A.
  • the fixed wall 2 is fixed to the frame 1.
  • the moving wall 3 is configured to be able to move toward or away from the fixed wall 2 by receiving an external force from the first driver 20 (see FIG. 1).
  • rails 14 are installed on each of the third side 1C and the fourth side 1D extending in the X-axis direction.
  • Two sliders 15A and 15B are movably attached to each rail 14.
  • the first slider 15A is installed between the fixed wall 2 and the first side 1A of the frame 1.
  • the second slider 15B is installed between the moving wall 3 and the second side 1B of the frame 1.
  • a bar 16 is connected between the first slider 15A on the third side 1C of the frame 1 and the first slider 15A on the fourth side 1D.
  • the bar 16 is connected to the fixed wall 2.
  • the bracket 18 is arranged so as to extend from both ends of the bar 16 in the Y-axis direction toward the frame 1.
  • the first end of the bracket 18 in the Y-axis direction is fixed to the bar 16, and the second end is fixed to the frame 1.
  • the first slider 15 is fixed to the rail 14, so that the fixing wall 2 can be fixed to the frame 1.
  • a bar 17 is connected between the second slider 15B on the third side 1C of the frame 1 and the second slider 15B on the fourth side 1D.
  • the bar 17 is connected to the moving wall 3. Since the bar 17 is not fixed to the frame 1, the second slider 15B can move on the rail 14. As a result, the moving wall 3 can be moved relative to the fixed wall 2 in the X-axis direction.
  • the downward hanging 3a of the moving wall 3 is provided with a connecting portion 13 for connecting the first driver 20 (see FIG. 2).
  • the first driver 20 has an actuator 21.
  • the actuator 21 is, for example, a cylinder.
  • the top plate 22 is attached to the upper end of the fixed wall 2 in the Z-axis direction.
  • the top plate 22 extends perpendicular to the fixed wall 2.
  • the mounting portion 5 is rotatably connected to the top plate 22 by a hinge 9.
  • the mounting portion 5 is configured to be rotatable between a position horizontal to the top plate 22 and a position perpendicular to the top plate 22 in conjunction with the movement of the moving wall 3. ..
  • the presser plate 7 is detachably configured with respect to the mounting portion 5. By mounting the presser plate 7 to the mounting portion 6 with the first end portion S1 of the sample S sandwiched between the mounting portion 5 and the holding plate 7, the mounting portion 5 becomes the first end portion of the sample S. S1 can be gripped.
  • the first end portion S1 may be fixed to the mounting portion 5 by using an adhesive tape or the like.
  • the top plate 23 is attached to the upper end of the moving wall 3 in the Z-axis direction.
  • the top plate 23 extends perpendicular to the moving wall 3.
  • the mounting portion 6 is rotatably connected to the top plate 23 by a hinge 9.
  • the mounting portion 6 is configured to be rotatable between a position horizontal to the top plate 23 and a position perpendicular to the top plate 23 in conjunction with the movement of the moving wall 3. ..
  • the presser plate 8 is detachably configured with respect to the mounting portion 6. By mounting the presser plate 8 to the mounting portion 6 with the second end portion S2 of the sample S sandwiched between the mounting portion 6 and the holding plate 8, the mounting portion 6 becomes the second end portion of the sample S. S2 can be gripped.
  • the second end portion S2 may be fixed to the mounting portion 6 by using an adhesive tape or the like.
  • FIG. 4 shows the states of the gripper and the sample S when the moving wall 3 is moved so as to approach the fixed wall 2 in three stages.
  • the position X1 indicates the position of the moving wall 3 in the X-axis direction in the extended state of the sample S
  • the positions X2 and X3 indicate the positions of the moving wall 3 in the X-axis direction in the bent state of the sample S. show.
  • the position X0 indicates the position of the fixed wall 2 in the X-axis direction.
  • the mounting portions 5 and 6 are all located horizontally to the top plates 22 and 23. Therefore, no stress is applied to the sample S.
  • the distance between the position X1 of the moving wall 3 and the position X0 of the fixed wall 2 is determined according to the length of the sample S in the X-axis direction.
  • the position X1 corresponds to one embodiment of the "first holder position".
  • the moving wall 3 When the moving wall 3 is moved from the position X1 to the position X2 along the X-axis direction, the distance between the moving wall 3 and the fixed wall 2 is shortened, and a bending load is applied to the sample S. At this time, the mounting portion 5 rotates toward the fixed wall 2, and the mounting portion 6 rotates toward the moving wall 3.
  • the range of rotation angles of the mounting portions 5 and 6 is 0 rad or more and ⁇ / 2 rad or less.
  • the load applied to the sample S is only the bending load, and other loads (for example, frictional force or tensile force) are the sample S. It is possible to suppress the action on. Therefore, it is possible to accurately measure the bending load applied to the sample S.
  • the first driver 20 can periodically move the holder 10 by periodically operating the actuator 21. Specifically, the first driver 20 moves the moving wall 3 from the first holder position X1 to the second holder position X3 in the first half of one operation cycle of the holder 10. As a result, the sample S is bent at a bending angle and a bending radius according to the second holder position X3. Further, the first driver 20 can move the moving wall 3 from the second holder position X3 to the first holder position X1 in the latter half of one operation cycle of the holder 10.
  • FIG. 5 is a diagram for explaining the bending angle and bending radius of the sample S.
  • the bending angle of the sample S corresponds to the magnitude of the angle formed by the linear portions of the first end S1 and the second end S2 of the sample S changed from 180 ° ( ⁇ rad). ..
  • the bending radius of the sample S corresponds to the radius of a circle C that draws a curve having the same size as the central portion of the bending of the sample S.
  • the bending load applied to the sample S increases. Further, as the bending radius of the sample S becomes smaller, the bending load applied to the sample S becomes larger.
  • at least one of the bending angle and the bending radius of the sample S can be changed by changing the second holder position X3 of the holder 10. That is, the magnitude of the bending load applied to the sample S can be changed by changing the second holder position X3.
  • a leaf spring 12 having the same length in the X-axis direction as the sample S is connected between both ends of the mounting portion 5 in the Y-axis direction and both ends of the mounting portion 6 in the Y-axis direction. ing.
  • the leaf spring 12 has a property of tending to have a uniform radius of curvature when bent. As a result, when the sample S is bent, the sample S can be uniformly bent following the bending of the leaf spring 12.
  • the sample S is supported by the holder 10 so that the first surface Sa is on the upper side. As described above, a predetermined region of the first surface Sa is covered with a stress-stimulated luminescent material.
  • the light source 30 is arranged above the Z-axis direction of the sample S, and is configured to irradiate the stress-stimulated luminescent material on the first surface Sa of the sample S with excitation light. Upon receiving the excitation light, the stress-stimulated luminescent material transitions to the luminescent state.
  • the excitation light is, for example, ultraviolet light or visible light.
  • the first surface Sa of the sample S is irradiated with the excitation light from two directions, but the light source 30 emits the excitation light to the sample S from one direction or three or more directions. It may be configured to irradiate.
  • the third driver 32 supplies electric power for driving the light source 30.
  • the third driver 32 can control the amount of excitation light emitted from the light source 30, the irradiation time of the excitation light, and the like by controlling the electric power supplied to the light source 30 in response to a command received from the controller 50.
  • the camera 40 is arranged above the sample S in the Z-axis direction so as to include at least a predetermined region of the first surface Sa in the imaging field of view. Specifically, the camera 40 is arranged so that the focus position is located at at least one point in a predetermined region of the first surface Sa. It is preferable that at least one point in the predetermined region is located at the central portion of the bending of the sample S.
  • the camera 40 includes an optical system such as a lens and an image sensor.
  • the image pickup device is realized by, for example, a CCD (Charge Coupled Device) sensor, a CMOS (Complementary Metal Oxide Semiconductor) sensor, or the like.
  • the image pickup device generates an image pickup image by converting the light incident from the first surface Sa via the optical system into an electric signal.
  • the camera 40 is configured to capture the light emission of the stress-stimulated luminescent material on the first surface Sa at least when a load is applied to the sample S.
  • the stress-stimulated luminescence image data generated by the image pickup of the camera 40 is transmitted to the controller 50.
  • the second driver 42 is configured to be able to change the focus position of the camera 40 in response to a command received from the controller 50.
  • the second driver 42 can adjust the focus position of the camera 40 by moving the camera 40 along the Z-axis direction and the X-axis direction.
  • the second driver 42 has a motor that rotates a feed screw that moves the camera 40 in the Z-axis direction and the X-axis direction, and a motor driver that drives the motor.
  • the feed screw is rotationally driven by a motor to position the camera 40 at a designated position within a predetermined range in each of the Z-axis and X-axis directions.
  • the second driver 42 transmits the position information indicating the position of the camera 40 to the controller 50.
  • the controller 50 controls the entire stress luminescence measuring device 100.
  • the controller 50 has a processor 501, a memory 502, an input / output interface (I / F) 503, and a communication I / F 504 as main components. Each of these parts is communicably connected to each other via a bus (not shown).
  • the processor 501 is typically an arithmetic processing unit such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
  • the processor 501 controls the operation of each part of the mechanoluminescence measuring device 100 by reading and executing the program stored in the memory 502. Specifically, the processor 501 realizes each of the processes of the stress luminescence measuring device 100 described later by executing the program.
  • FIG. 2 illustrates a configuration in which the number of processors is singular, the controller 50 may be configured to have a plurality of processors.
  • the memory 502 is realized by a non-volatile memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), and a flash memory.
  • the memory 502 stores a program executed by the processor 501, data used by the processor 501, and the like.
  • the input / output I / F 503 is an interface for exchanging various data between the processor 501 and the first driver 20, the third driver 32, the camera 40, and the second driver 42.
  • the communication I / F 504 is a communication interface for exchanging various data between the stress luminescence measuring device 100 and other devices including the inspection device 200, and is realized by an adapter or a connector.
  • the communication method may be a wireless communication method using a wireless LAN (Local Area Network) or the like, or a wired communication method using USB (Universal Serial Bus) or the like.
  • the data transmitted from the stress luminescence measuring device 100 to the inspection device 200 includes data indicating inspection location information.
  • a display 60 and an operation unit 70 are connected to the controller 50.
  • the display 60 is composed of a liquid crystal panel or the like capable of displaying an image.
  • the operation unit 70 receives a user's operation input to the stress luminescence measuring device 100.
  • the operation unit 70 is typically composed of a touch panel, a keyboard, a mouse, and the like.
  • the controller 50 is communicatively connected to the first driver 20, the third driver 32, the camera 40, and the second driver 42.
  • the communication between the controller 50 and the first driver 20, the third driver 32, the camera 40 and the second driver 42 may be realized by wireless communication or wired communication.
  • FIG. 6 is a block diagram for explaining the functional configuration of the controller 50.
  • the controller 50 includes a stress control unit 51, a light source control unit 52, an image pickup control unit 53, a measurement control unit 54, a data acquisition unit 55, a data processing unit 56, a storage unit 57, and an output unit 58. .. These are functional blocks realized based on the processor 501 executing a program stored in memory 502.
  • the stress control unit 51 controls the operation of the first driver 20. Specifically, the stress control unit 51 controls the operating speed, operating time, and the like of the first driver 20 according to preset measurement conditions. By controlling the operating speed and operating time of the first driver 20, the moving speed, moving time, moving distance, and the like of the moving wall 3 (see FIGS. 3 and 4) in the holder 10 can be adjusted.
  • the light source control unit 52 controls the drive of the light source 30 by the third driver 32. Specifically, the light source control unit 52 generates a command for instructing the magnitude of the electric power supplied to the light source 30 and the supply time of the electric power to the light source 30 based on the preset measurement conditions. , The generated command is output to the third driver 32. By controlling the electric power supplied to the light source 30 by the third driver 32 in accordance with the command, it is possible to adjust the amount of excitation light emitted from the light source 30, the irradiation time of the excitation light, and the like.
  • the image pickup control unit 53 controls the movement of the camera 40 by the second driver 42. Specifically, the image pickup control unit 53 follows the movement of the predetermined region of the sample S to move the camera 40 based on the preset measurement conditions and the position information of the camera 40 input from the second driver 42. Generate a command to move. The image pickup control unit 53 outputs the generated command to the second driver 42. By moving the camera 40 according to the command, the second driver 42 can maintain the focus position of the camera 40 at at least one point in the predetermined region of the sample S.
  • the image pickup control unit 53 further controls the image pickup by the camera 40. Specifically, the image pickup control unit 53 controls the camera 40 so as to capture the light emitted from the stress-stimulated luminescent material at least when stress is applied, according to preset measurement conditions.
  • the measurement conditions for imaging include the frame rate of the camera 40.
  • the data acquisition unit 55 acquires the mechanoluminescent image data generated by the imaging of the camera 40, and transfers the acquired mechanoluminescent image data to the data processing unit 56.
  • the data processing unit 56 performs known image processing on the stress-stimulated luminescence image data obtained by imaging the camera 40 to generate an image showing the distribution of the luminescence intensity on the first surface Sa of the sample S.
  • the data processing unit 56 can store the measurement result including the image captured by the camera 40 and the image showing the distribution of the emission intensity on the first surface Sa in the storage unit 57 and display it on the display 60.
  • the data processing unit 56 derives the position of the surface of the sample S corresponding to the ROI and specifies the position as an inspection point.
  • the ROI can be set based on the user input received by the operation unit 70.
  • the data processing unit 56 can automatically set the ROI based on the distribution of the luminescence intensity appearing in the stress luminescence image.
  • the data processing unit 56 generates inspection location information for identifying the specified inspection location.
  • the output unit 58 outputs the generated inspection location information.
  • the measurement control unit 54 comprehensively controls the stress control unit 51, the light source control unit 52, the image pickup control unit 53, the data acquisition unit 55, and the data processing unit 56. Specifically, the measurement control unit 54 gives a control command to each unit based on the measurement conditions input to the operation unit 70 and the information of the device to be the sample S.
  • the inspection device 200 includes an observation device 210, a controller 220, a display 230, and an operation unit 240.
  • the observation device 210 is a device for observing the inspection point of the sample S, and has, for example, a microscope (optical microscope, electron microscope, etc.) and / or a camera, and is configured to be able to acquire an observation image of the inspection point. Will be done.
  • the controller 220 controls the entire inspection device 200.
  • the controller 220 has a processor 222, a memory 224, an input / output I / F 226, and a communication I / F 228 as main components. Each of these parts is communicably connected to each other via a bus (not shown).
  • the processor 222 is typically an arithmetic processing unit such as a CPU or MPU.
  • the processor 222 controls the operation of each part of the inspection device 200 by reading and executing the program stored in the memory 224. Specifically, the processor 222 realizes each of the processes of the inspection device 200 described later by executing the program.
  • FIG. 2 illustrates a configuration in which the number of processors is singular, the controller 220 may be configured to have a plurality of processors.
  • Memory 224 is realized by non-volatile memory such as RAM, ROM and flash memory.
  • the memory 224 stores a program executed by the processor 222, data used by the processor 222, and the like.
  • the input / output I / F 226 is an interface for exchanging various data between the processor 222 and the observation device 210.
  • the communication I / F 228 is a communication interface for exchanging various data between the inspection device 200 and other devices including the stress luminescence measuring device 100, and is realized by an adapter or a connector.
  • the communication method may be a wireless communication method using a wireless LAN or the like, or a wired communication method using USB or the like.
  • a display 230 and an operation unit 240 are connected to the controller 220.
  • the display 230 is composed of a liquid crystal panel or the like capable of displaying an image.
  • the operation unit 240 receives a user's operation input to the inspection device 200.
  • the operation unit 240 is typically composed of a touch panel, a keyboard, a mouse, and the like.
  • FIG. 7 is a diagram schematically showing a part of the sample S and the holder 10.
  • FIG. 7A shows the sample S before the load is applied
  • FIG. 7B shows the sample S when the load is applied.
  • the first and second end portions S1 and S2 of the sample S in the X-axis direction are gripped by the mounting portions 5 and 6 of the holder 10 and the pressing plates 7 and 8.
  • a stress-stimulated luminescent body ML is arranged on a predetermined region of the first surface Sa of the sample S.
  • the light source 30 excites the stress-stimulated luminescent material ML by irradiating the stress-stimulated luminescent material ML with excitation light.
  • FIG. 7B shows how the mounting portion 6 and the holding plate 8 move in the direction of the arrow A in conjunction with the movement of the moving wall 3.
  • the camera 40 takes an image of a predetermined region (including the central portion of bending) of the sample S in accordance with the timing of applying the load to the sample S. That is, the camera 40 captures the light emission of the stress-stimulated luminescent material ML.
  • the sample S is subjected to the bending.
  • the bending load can be repeatedly applied.
  • the durability against the repeated load applied to the sample S can be evaluated.
  • the central portion of the bending of the sample S moves in the Z-axis direction and the X-axis direction. Specifically, when the sample S is bent, the central portion of the bend moves in the direction toward the fixed wall 2 along the X-axis direction and moves away from the camera 40 along the Z-axis direction. On the other hand, when the sample S is stretched, the central portion of the bending moves in the direction away from the fixed wall 2 along the X-axis direction and in the direction approaching the camera 40 along the Z-axis direction.
  • the controller 50 controls the second driver 42 so that the focus position of the camera 40 is maintained at at least one point in the predetermined region of the sample S at least during imaging by the camera 40.
  • the second driver 42 moves the camera 40 according to the movement of the predetermined area of the sample S according to the command received from the controller 50, so that the focus position of the camera 40 is at least one in the predetermined area. It is configured to be maintained at a point.
  • FIG. 8 is a diagram for explaining the positional relationship between the sample S and the camera 40.
  • X0 indicates the X coordinate of the first end portion S1 of the sample S
  • X1 to X6 indicate the X coordinate of the second end portion S2 of the sample S
  • Z0 indicates the Z coordinates of the first and second ends S1 and S2 of the sample S.
  • the first end S1 of the sample S is a fixed end and the second end S2 is a free end.
  • the rotation angle ⁇ can be changed within the range of 0 rad or more and ⁇ / 2 rad or less.
  • the rotation angle ⁇ changes from 0 rad to ⁇ / 2 rad
  • the second end S2 moves toward the first end S1, so that the bending angle of the sample S becomes large and the bending radius becomes small. ..
  • the bending radius of the sample S becomes further smaller.
  • the bending load applied to the sample S gradually increases.
  • one point (in the figure) in a predetermined region (including the central portion of bending) of the sample S as the second end S2 (free end) of the sample S moves in the X-axis direction.
  • the point R1) also moves in the X-axis direction and the Z-axis direction.
  • the X coordinate of the point R1 approaches X0, and the Z coordinate of the point R1 moves away from Z0.
  • the second driver 42 moves the camera 40 according to the movement of the point R1 in the predetermined area of the sample S. Specifically, the second driver 42 moves the camera 40 in the X-axis direction so that the X coordinate of the position of the camera 40 (point C in the figure) matches the X coordinate of the point R1.
  • the X coordinate of the second end S2 of the sample S transitions in the order of X1 ⁇ X2 ⁇ ... ⁇ X6, the X coordinate of the position (point C) of the camera 40 is X1 / 2 ⁇ X2.
  • the transition is made in the order of / 2 ⁇ ... ⁇ X6 / 2.
  • the second driver 42 also aligns the camera 40 with the Z axis so that the distance D between the Z coordinate of the position (point C) of the camera 40 and the Z coordinate of the point R1 in the predetermined region of the sample S maintains a predetermined distance. Move in the direction.
  • the Z coordinate of the position (point C) of the camera 40 is Z1 ⁇ Z2 ⁇ . ⁇ ⁇ Transitions in the order of ⁇ Z6.
  • the predetermined distance is determined according to the focus position of the camera 40.
  • the focus position of the camera 40 is always focused on the point R1 in the predetermined region of the sample S. Can be done. Therefore, when the sample S is bent at a predetermined bending angle, the focus position of the camera 40 can be focused on at least one point in the predetermined region of the sample S. As a result, the camera 40 can accurately image the light emission in the predetermined region at the predetermined bending angle, so that the bending load applied to the predetermined region can be accurately measured.
  • the focus position of the camera 40 is always focused on the point R1 of the predetermined region of the sample S has been described, but the focus position of the camera 40 is set to the predetermined region of the sample S at least at a predetermined bending angle.
  • the focus position of the camera 40 is set to the predetermined region of the sample S at least at a predetermined bending angle.
  • FIG. 9 is a flowchart illustrating the procedure of the inspection process.
  • a flexible sheet to be a sample S is prepared by step S10. Further, in step S10, a process for acquiring the correspondence between each position on the surface of the sample S and each position in the stress-stimulated luminescent image is executed.
  • the correspondence between each position on the surface of the sample S and each position in the image captured by the camera 40 is acquired.
  • the stress luminescence measuring device 100 applies a load to the sample S using the load applying mechanism, and the surface of the sample S at the time of applying the load is imaged by the camera 40.
  • the data processing unit 56 acquires the correspondence between each position in the acquired captured image and each position on the surface of the sample S.
  • the sample S is gradually bent from the stretched state, and the bending thereof is performed. At least one of the angle and bending radius changes gradually. At this time, since each position on the surface of the sample S moves with the change in the bending angle and the bending radius, the correspondence between each position on the surface of the sample S and each position in the captured image gradually changes.
  • the controller 50 obtains a correspondence between each position on the surface of the sample S and each position in the captured image when a bending load is applied, and stores the obtained correspondence in the memory 502. For example, the controller 50 can derive a relational expression or a map representing the corresponding relationship for each combination of the bending angle and the bending radius of the sample S, and can store the derived relational expression or the map in the memory 502.
  • the stress-stimulated luminescent material ML is further arranged in a predetermined region on the surface of the sample S.
  • the stress-stimulated luminescent material ML has, for example, a rectangular shape having a size similar to that of a flexible sheet.
  • the stress-stimulated luminescent material ML can be formed by applying a resin material containing the stress-stimulated luminescent material to a predetermined region on the surface of the sample S and drying it.
  • step S20 the stress luminescence measurement process is executed.
  • FIG. 10 is a flowchart illustrating a procedure of stress luminescence measurement processing.
  • the sample S is set in the holder 10 by step S21.
  • the holder 10 is configured to support at least two points of the sample S. In the example of FIG. 2, the holder 10 grips the first end S1 and the second end S2 of the sample S facing each other.
  • step S22 the first surface Sa of the sample S is irradiated with excitation light from the light source 30.
  • the stress-stimulated luminescent material ML By irradiating the stress-stimulated luminescent material ML arranged in a predetermined region of the first surface Sa of the sample S with excitation light, the stress-stimulated luminescent material ML is brought into an excited state (see FIG. 7A).
  • step S23 the sample S is bent at a predetermined bending angle by driving the first driver 20 to move the holder 10 from the first holder position to the second holder position. At this time, a bending load is applied to the sample S and the stress-stimulated luminescent material ML.
  • the moving wall 3 of the holder 10 is moved relative to the fixed wall 2 by driving the actuator 21 included in the first driver 20.
  • the sample S can be bent at a predetermined bending angle by reducing the distance between the first end portion S1 and the second end portion S2 of the sample S by moving the holder 10.
  • step S24 the controller 50 acquires a mechanoluminescent image by capturing the light emitted from the stress-stimulated luminescent material ML on the first surface Sa of the sample S by the camera 40 at least at a predetermined bending angle (FIG. 7 (FIG. 7).
  • FIG. 11 is a diagram schematically showing an example of a stress-stimulated luminescent image.
  • the intensity of luminescence intensity is expressed by brightness on a two-dimensional plane.
  • the intensity of luminescence may be represented by at least one of chromaticity, saturation, and lightness.
  • the intensity of light emission is drawn by different hatching for convenience. Therefore, on the right side of the stress-stimulated luminescence image 300, a bar indicating the range of hatching assigned according to the luminescence intensity is shown.
  • the stress-stimulated luminescence pattern extends in the vertical direction (Y-axis direction) in the central portion (that is, the central portion of bending) in the lateral direction (X-axis direction) of the sample S. Appears in a band shape.
  • This stress-stimulated luminescence pattern corresponds to the strain generated in the sample S. Therefore, by analyzing the stress-stimulated luminescence pattern, it is possible to visualize and quantify the two-dimensional stress distribution in a predetermined region of the sample S. Specifically, in the stress-stimulated luminescence pattern, a portion having a high emission intensity indicates a portion having a large strain, and a portion having a small emission intensity indicates a portion having a small strain.
  • step S25 the controller 50 stores the mechanoluminescent image captured by the camera 40 in the memory 502 and displays it on the display 60 (see FIG. 2).
  • FIG. 12 is a flowchart illustrating the procedure of the inspection location specifying process.
  • the captured image of the sample S is acquired by reading out the image data stored in the memory 502.
  • the captured image includes a stress-stimulated luminescent image that captures the emission of the stress-stimulated luminescent material ML at at least a predetermined bending angle.
  • step S32 a stress-stimulated luminescent image at a predetermined bending angle is extracted from the captured image of the sample S.
  • ROI information for the extracted stress-stimulated luminescent image is acquired.
  • the ROI can be set manually by a user (for example, an inspector) using the operation unit 240.
  • ROI information is input to the controller 50 from the operation unit 24.
  • the controller 50 can acquire ROI information by automatically setting the ROI based on the distribution of the emission intensity appearing in the stress-stimulated luminescent image.
  • the part with the highest emission intensity (the part with the largest strain) in the stress-stimulated luminescence image can be set to ROI.
  • FIG. 13 is a flowchart illustrating a procedure as an example of a process for acquiring ROI information (S33 in FIG. 12).
  • a threshold range is set for the emission intensity distribution of the stress emission image based on the emission intensity distribution appearing in the reference emission image.
  • step S331 the emission intensity distribution is compared between the reference emission image and the stress emission image of the sample S. For each position in the stress-stimulated luminescence image, a deviation in luminescence intensity from the luminescence intensity at the corresponding position in the reference luminescence image is detected.
  • step S332 it is determined whether or not the deviation of the luminescence intensity detected in step S331 is within the threshold range for each position in the stress luminescence image. If the deviation of the emission intensity exceeds the threshold range at any position in the stress-stimulated luminescence image (NO in S332), that position is set to ROI.
  • the portion where the emission intensity is increased or the portion where the emission intensity is decreased can be set as the ROI as compared with the emission intensity distribution in the reference emission image.
  • the emission intensity is increased by concentrating the stress on the peripheral portion of the defect. Therefore, in the stress-stimulated luminescence image, the emission intensity distribution changes as compared with the reference luminescence image.
  • the portion where the emission intensity changes beyond the threshold range with respect to the reference emission image is set in the ROI, the portion can be specified as the portion to be inspected. As a result, it becomes possible to pay attention to the defective portion and inspect it efficiently.
  • the inspection location of the sample S is specified by step S34.
  • the controller 50 has each position on the surface of the sample S and each position in the image captured by the camera 40, which is acquired in the process of preparing the sample S (S10 in FIG. 9) and stored in the memory 502. Use the correspondence with the position.
  • each position R in the captured image is represented by coordinates (X, Y) on a two-dimensional plane consisting of an X axis and a Y axis.
  • each position P on the surface of the sample S can be represented by coordinates (X, Y) on a two-dimensional plane having one of the four corners of the sample S as the origin O.
  • the correspondence relationship can be obtained by specifying the position R in the captured image corresponding to each position P on the surface of the sample S.
  • the obtained correspondence is stored in the memory 502 as a relational expression or a map.
  • the controller 50 inspects the surface of the sample S based on the position R (X, Y) of the ROI in the stress-stimulated luminescent image by referring to the relational expression or map representing the correspondence stored in the memory 502.
  • the position P (X, Y) of the place is calculated.
  • step S35 inspection location information for identifying the specified inspection location is generated, and the generated inspection location information is output.
  • the inspection location information includes information indicating coordinates (X, Y) indicating the calculated position P of the inspection location.
  • the controller 50 transmits data indicating inspection location information to the inspection device 200. Further, the controller 50 can display the inspection location information on the display 60.
  • step S40 the inspection location specified by the inspection location information is observed in the inspection device 200.
  • Observation of the inspection site is performed using an observation device 210 (for example, a microscope or a camera). By observing the inspection site in detail, defects such as minute cracks generated inside the sample S can be detected.
  • FIG. 15 is a block diagram showing the configuration of the stress luminescence measuring device 100 according to the modified example of the present embodiment.
  • the mechanoluminescent measuring device 100 according to the modified example is the mechanoluminescent measuring device 100 shown in FIG. 2 with the camera 80 and the fourth driver 82 added. In the following, only the parts different from FIG. 2 will be described, and the common parts will not be repeated.
  • the camera 80 is configured to take an image of the inspection portion of the sample S in the inspection step (S40 in FIG. 9).
  • the camera 80 includes an optical system such as a lens and an image pickup device.
  • the optical system has a high-magnification lens capable of observing the inspection portion of the sample S in detail.
  • the image pickup device generates an image pickup image by converting the light incident from the first surface Sa of the sample S via the optical system into an electric signal.
  • the image data generated by the image pickup of the camera 80 is transmitted to the controller 50.
  • the fourth driver 82 is configured so that the focus position of the camera 80 can be changed.
  • the fourth driver 82 moves the camera 80 so that its focus position is located at the inspection point of the sample S in response to a command received from the controller 50.
  • the controller 50 generates a control command for matching the focus position of the camera 80 with the position P (X, Y) of the inspection point on the surface of the sample S, and the generated control command is used as the fourth driver 82.
  • the fourth driver 82 adjusts the focus position by moving the camera 80 according to the control command.
  • the fourth driver 82 retracts the camera 80 from the surface of the sample S.
  • Inspection point information In the above-described embodiment, a configuration example for generating data including coordinate information indicating the position of the inspection point of the sample S has been described as the inspection point information, but the form of the inspection point information is the data. Not limited.
  • a marking M such as a figure may be formed on the inspection portion on the surface of the sample S.
  • the marking M may be configured to be manually performed by the user, or may be configured such that the marking M is automatically formed at the inspection location by controlling a marker device (not shown) by the controller 50.
  • the inspection location can be easily specified by the marking M. Further, it is also possible to adopt a configuration in which the inspection device 200 automatically reads the marking M to adjust the observation field of view of the observation device 210. This makes it possible to carry out an efficient and appropriate inspection.
  • the inspection method includes a step of acquiring a stress-stimulated luminescent image when a sample containing a stress-stimulated luminescent material is deformed, a step of acquiring information on a region of interest of the stress-stimulated luminescent image, and a stress-stimulated luminescent image. It comprises a step of identifying an inspection site on the surface of the sample based on the position of the region of interest within, and a step of generating inspection site information for identifying the identified inspection site.
  • the inspection location on the sample surface is specified based on the stress-stimulated luminescent image when the sample is deformed, and inspection location information for identifying the identified inspection location is generated. Therefore, the inspection point can be easily specified without the need for the work of visually specifying the inspection point by the user. Further, since the inspection portion is specified based on the region of interest in the stress-stimulated luminescent image, the portion of the sample corresponding to the region of interest can be appropriately observed. As a result, the user can perform the inspection efficiently and appropriately.
  • the user can observe the two-dimensional stress distribution when the sample is deformed in a non-destructive state by using the stress luminescence image, and among the stress distributions.
  • the condition of the sample local defects, etc.
  • This allows the user to verify in chronological order the mechanism by which the sample is destroyed by the application of the load.
  • the step to specify is attention in the stress-stimulated luminescent image by referring to the correspondence between each position on the surface of the sample and each position in the stress-stimulated luminescent image.
  • the inspection point is specified at the position corresponding to the region of interest in the stress-stimulated luminescent image, the user can efficiently and appropriately observe the state of the sample in the region of interest.
  • the generated step includes, as inspection location information, a step of generating coordinate information indicating the position of the inspection location on the surface of the sample.
  • the inspection method further comprises a step of outputting data indicating the generated coordinate information.
  • the inspection location can be easily identified by using the data indicating the inspection location information.
  • the data can be used to efficiently observe the inspection site.
  • the generated step includes a step of forming a marking at the position of the inspection location on the surface of the sample as inspection location information.
  • the inspection location can be easily identified using the marking.
  • the marking can be used to efficiently observe the inspection site.
  • the setting step includes a step of setting a region of interest based on the distribution of the emission intensity in the stress-stimulated luminescent image.
  • the inspection location is specified based on the distribution of emission intensity, it is possible to appropriately observe the portion where the stress is abnormal. As a result, the user can perform the inspection efficiently and appropriately.
  • the step to be set is a step of setting a region of interest based on the deviation of the emission intensity distribution in the stress-stimulated luminescent image with respect to the reference emission intensity distribution.
  • the part where the emission intensity is different from the reference emission intensity distribution is specified as the inspection point, so that the part where the stress is abnormal can be appropriately observed.
  • the user can perform the inspection efficiently and appropriately.
  • the inspection method according to paragraphs 1 to 6 further includes a step of inspecting a sample by observing the inspection location specified by the inspection location information.
  • the user can observe the two-dimensional stress distribution when a load is applied to the sample in a non-destructive state by using the stress luminescence image, and the stress distribution is specified.
  • the condition of the sample local defects, etc.
  • the user can verify the mechanism by which the sample is destroyed by applying the load in chronological order.
  • the step of inspection includes a step of observing the inspection site with a microscope.
  • condition of the specified inspection site (local defects, etc.) can be inspected in detail.
  • the inspection step includes a step of imaging the inspection site with a camera.
  • condition of the specified inspection site (local defects, etc.) can be inspected in detail.
  • the inspection system includes a plurality of processors, a memory, and at least one program stored in the memory and executed by at least one processor among the plurality of processors.
  • At least one program includes a step of acquiring a stress-stimulated luminescent image when a sample containing a stress-stimulated luminescent material is deformed, a step of acquiring information on a region of interest in the stress-stimulated luminescent image, and a step of acquiring information on the region of interest in the stress-stimulated luminescent image at the position of the region of interest in the stress-stimulated luminescent image.
  • at least one processor is made to perform a step of identifying the inspection location of the sample and a step of generating inspection location information for identifying the identified inspection location.
  • the inspection location on the sample surface is specified based on the stress-stimulated luminescent image when a load is applied to the sample, and inspection location information for identifying the identified inspection location is generated. Therefore, it is not necessary to visually identify the inspection location by the user, and the inspection location can be easily identified. Further, since the inspection portion is specified based on the region of interest in the stress-stimulated luminescent image, the portion of the sample corresponding to the region of interest can be appropriately observed. As a result, the user can perform the inspection efficiently and appropriately.
  • At least one program causes at least one processor to perform a step of inspecting a sample by observing the inspection site specified by the inspection site information. ..
  • the user can observe the two-dimensional stress distribution when a load is applied to the sample in a non-destructive state by using the stress luminescence image, and the stress distribution is specified.
  • the condition of the sample local defects, etc.
  • the user can verify the mechanism by which the sample is destroyed by applying the load in chronological order.
  • the inspection location on the sample surface is specified based on the stress luminescence image when a load is applied to the sample, and the inspection location information for identifying the identified inspection location is specified. Is generated, so that it is not necessary to visually identify the inspection location by the user, and the inspection location can be easily specified. Further, since the inspection portion is specified based on the region of interest in the stress-stimulated luminescent image, the portion of the sample corresponding to the region of interest can be appropriately observed. As a result, the user can perform the inspection efficiently and appropriately.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

An inspection method according to a first embodiment of the present invention comprises a step for acquiring a stress luminescence image of a deformed sample including a stress luminescent material, a step for acquiring information about an area of interest in the stress luminescence image, a step for specifying an inspection location on the surface of the sample on the basis of the position of the area of interest in the stress luminescence image, and a step for generating inspection location information for identifying the specified inspection location.

Description

検査方法、検査システムおよび応力発光測定装置Inspection method, inspection system and stress luminescence measuring device
 本発明は、検査方法、検査システムおよび応力発光測定装置に関する。 The present invention relates to an inspection method, an inspection system, and a stress luminescence measuring device.
 フレキシブルデバイスは、樹脂基板などの可撓性を有する基板上に半導体素子または発光素子などが形成されたデバイスであり、代表的には、照明装置、ディスプレイおよびセンサなどが挙げられる。近年では、折り畳みまたは折り曲げが可能なフレキシブルディスプレイを搭載した製品が種々開発されている。 A flexible device is a device in which a semiconductor element, a light emitting element, or the like is formed on a flexible substrate such as a resin substrate, and typical examples thereof include a lighting device, a display, and a sensor. In recent years, various products equipped with a foldable or foldable flexible display have been developed.
 フレキシブルディスプレイ搭載製品の一例として、折り畳み型の携帯端末(スマートフォン、タブレット等)がある。このような携帯端末において、フレキシブルディスプレイはタッチパネルディスプレイであり、ディスプレイと、ユーザの操作を受け付ける入力部とを有している。 An example of a product equipped with a flexible display is a foldable mobile terminal (smartphone, tablet, etc.). In such a mobile terminal, the flexible display is a touch panel display, and has a display and an input unit that accepts a user's operation.
 折り畳み型の携帯端末の開発現場においては、一般的に、例えば特開2019-39743号公報(特許文献1)に示されるような変形試験器を用いてサンプルの折り畳み試験を数万~数十万回繰り返し実行することにより、サンプルの耐久性および性能を検証することが行なわれている。 In the development site of a foldable mobile terminal, generally, a fold test of a sample is performed by tens of thousands to hundreds of thousands using a deformation tester as shown in, for example, Japanese Patent Application Laid-Open No. 2019-39743 (Patent Document 1). The durability and performance of the sample have been verified by repeating the process several times.
特開2019-39743号公報Japanese Unexamined Patent Publication No. 2019-39743
 上述した折り畳み試験においては、サンプルに微小な亀裂などの欠陥が生じると、この欠陥の周辺にひずみが発生し、最終的にサンプルが破断に至る可能性がある。しかしながら、上述した折り畳み試験では、サンプルが破断して初めてサンプルの欠陥箇所および耐久性が明らかとなるため、非破壊の状態でこれらを評価することが困難である。また、サンプル内部のひずみの発生部分を目視で確認することができないため、どのタイミングでサンプルに欠陥が生じたのかを特定することが難しいという課題がある。 In the above-mentioned folding test, if a defect such as a minute crack occurs in the sample, strain is generated around this defect, and the sample may eventually break. However, in the above-mentioned folding test, it is difficult to evaluate the defective part and durability of the sample in a non-destructive state only after the sample is broken. Further, since it is not possible to visually confirm the part where the strain is generated inside the sample, there is a problem that it is difficult to identify at what timing the defect has occurred in the sample.
 なお、破断に至るまでのサンプルの状態を確認するためには、折り畳み試験時に顕微鏡を用いてサンプルの状態を観察する手法を採ることができる。この手法では、ユーザが目視によって適切な観察箇所を特定することが必要となる。しかしながら、微小な亀裂などを目視で検出することは必ずしも容易でないため、ユーザの作業が煩雑なものとなることが懸念される。 In addition, in order to confirm the state of the sample until it breaks, it is possible to adopt a method of observing the state of the sample using a microscope during the folding test. This method requires the user to visually identify an appropriate observation point. However, since it is not always easy to visually detect minute cracks and the like, there is a concern that the user's work will be complicated.
 本発明はこのような課題を解決するためになされたものであって、その目的は、サンプルの検査箇所を容易かつ適切に特定することができる検査方法、検査システムおよび応力発光測定装置を提供することである。 The present invention has been made to solve such a problem, and an object of the present invention is to provide an inspection method, an inspection system, and a stress luminescence measuring device capable of easily and appropriately identifying an inspection site of a sample. That is.
 本発明の第1の態様に係る検査方法は、応力発光体を含むサンプルが変形したときの応力発光画像を取得するステップと、応力発光画像の注目領域の情報を取得するステップと、応力発光画像内の注目領域の位置に基づいて、サンプルの表面の検査箇所を特定するステップと、特定した検査箇所を識別するための検査箇所情報を生成するステップとを備える。 The inspection method according to the first aspect of the present invention includes a step of acquiring a stress-stimulated luminescent image when a sample containing a stress-stimulated luminescent material is deformed, a step of acquiring information on a region of interest of the stress-stimulated luminescent image, and a stress-stimulated luminescent image. It comprises a step of identifying an inspection site on the surface of the sample based on the position of the region of interest within, and a step of generating inspection site information for identifying the identified inspection site.
 本発明によれば、サンプルの検査箇所を容易かつ適切に特定することができる検査方法、検査システムおよび応力発光測定装置を提供することができる。 According to the present invention, it is possible to provide an inspection method, an inspection system, and a mechanoluminescence measuring device that can easily and appropriately identify the inspection location of a sample.
実施の形態に係る検査システムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the inspection system which concerns on embodiment. 図1に示した応力発光測定装置および検査装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the stress luminescence measuring apparatus and inspection apparatus shown in FIG. ホルダの斜視図である。It is a perspective view of a holder. ホルダの側面図である。It is a side view of a holder. サンプルの曲げ角度および曲げ半径を説明するための図である。It is a figure for demonstrating the bending angle and bending radius of a sample. コントローラの機能的構成を説明するためのブロック図である。It is a block diagram for demonstrating the functional configuration of a controller. サンプルおよびホルダの一部を模式的に示した図である。It is a figure which shows a part of a sample and a holder schematically. サンプルおよびカメラの位置関係を説明するための図である。It is a figure for demonstrating the positional relationship of a sample and a camera. 検査処理の手順を説明するフローチャートである。It is a flowchart explaining the procedure of an inspection process. 応力発光測定処理の手順を説明するフローチャートである。It is a flowchart explaining the procedure of stress luminescence measurement processing. 応力発光画像の一例を模式的に示す図である。It is a figure which shows an example of a stress-stimulated luminescence image schematically. 検査箇所特定処理の手順を説明するフローチャートである。It is a flowchart explaining the procedure of inspection part identification processing. ROIを設定する処理の一例を手順を説明するフローチャートである。It is a flowchart explaining the procedure as an example of the process of setting ROI. サンプルの表面を模式的に示す図である。It is a figure which shows the surface of a sample schematically. 本実施の形態の変更例に係る応力発光測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the stress luminescence measuring apparatus which concerns on the modification of this Embodiment. 検査箇所情報の他の例を説明するための図である。It is a figure for demonstrating another example of inspection part information.
 以下に、本発明の実施の形態について図面を参照して詳細に説明する。なお、以下では、図中の同一または相当部分には同一符号を付してその説明は原則的に繰り返さないものとする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following, the same or corresponding parts in the figure are designated by the same reference numerals, and the description thereof will not be repeated in principle.
 [検査システムの構成]
 図1は、実施の形態に係る検査システムの全体構成を示すブロック図である。本実施の形態に係る検査システムは、応力発光測定装置100と、検査装置200とを備える。
[Inspection system configuration]
FIG. 1 is a block diagram showing an overall configuration of an inspection system according to an embodiment. The inspection system according to the present embodiment includes a stress luminescence measuring device 100 and an inspection device 200.
 応力発光測定装置100は、応力発光体の発光現象を利用して、検査対象(以下、単に「サンプルS」とも称する)に発生する応力(ひずみ)を測定する装置である。応力発光測定装置100は、サンプルSに発生する応力に対する耐久性を試験するために用いることができる。 The stress-stimulated luminescence measuring device 100 is a device that measures the stress (strain) generated in an inspection target (hereinafter, also simply referred to as “sample S”) by utilizing the luminescence phenomenon of the stress-stimulated luminescent material. The stress luminescence measuring device 100 can be used to test the durability against the stress generated in the sample S.
 サンプルSは、少なくともその表面に応力発光体を含有する。応力発光体は、応力発光材料を単独で、または別の素材(例えば樹脂など)を組み合わせた後、成形して得られるものをいう。応力発光材料は、外部からの機械的な刺激によって発光する材料である。応力発光材料は、無機結晶(母材)の骨格中に発光中心となる元素を固溶したものであり、代表的なものに、ユーロピウムをドープしたアルミン酸ストロンチウムがある。その他、遷移金属または希土類をドープした硫化亜鉛、チタン酸バリウム・カルシウム、アルミン酸カルシウム・イットリウムなどがある。本実施の形態では、応力発光材料は公知のものを用いることができる。 Sample S contains at least a stress-stimulated luminescent material on its surface. The stress-stimulated luminescent material refers to a substance obtained by molding a stress-stimulated luminescent material alone or after combining another material (for example, resin). The stress-stimulated luminescent material is a material that emits light by an external mechanical stimulus. The stress-stimulated luminescent material is a solid solution of an element that is the center of luminescence in the skeleton of an inorganic crystal (base material), and a typical example is strontium aluminate doped with europium. In addition, there are zinc sulfide doped with transition metals or rare earths, barium / calcium titanate, calcium aluminates / yttrium, and the like. In the present embodiment, a known stress-stimulated luminescent material can be used.
 応力発光体は、例えば、サンプルSの表面に配置された発光膜により構成することができる。あるいは、応力発光体は、サンプルSに混入させることができる。応力発光体は、外部から印加されるひずみエネルギーによって発光するという性質を有しており、その発光強度はひずみエネルギーの大きさに応じて変化する。 The stress-stimulated luminescent material can be composed of, for example, a luminescent film arranged on the surface of the sample S. Alternatively, the stress-stimulated luminescent material can be mixed with the sample S. The stress-stimulated luminescent material has a property of emitting light by strain energy applied from the outside, and its emission intensity changes according to the magnitude of strain energy.
 応力発光測定装置100は、サンプルSが変形したときの応力発光体の発光をカメラによる撮像することにより、応力発光画像を取得するように構成される。サンプルSの変形とは、サンプルSに印加される荷重が変化することによりサンプルSの形状および状態が変化することを示している。荷重の変化には、サンプルSに対して荷重を印加すること、および、サンプルSに印加されている荷重を除去することを含む。さらに、取得された応力発光画像において注目領域(ROI:Region Of Interest)が設定されると、応力発光測定装置100は、応力発光画像内のROIの位置に基づいて、サンプルSの表面の検査箇所を特定するように構成される。 The stress-stimulated luminescence measuring device 100 is configured to acquire a stress-stimulated luminescence image by capturing the luminescence of the stress-stimulated luminescent material when the sample S is deformed by a camera. The deformation of the sample S means that the shape and state of the sample S change as the load applied to the sample S changes. The change in load includes applying a load to the sample S and removing the load applied to the sample S. Further, when a region of interest (ROI: Region Of Interest) is set in the acquired stress-stimulated luminescence image, the stress-stimulated luminescence measuring device 100 will inspect the surface of the sample S based on the position of the ROI in the stress-stimulated luminescence image. Is configured to identify.
 具体的には、応力発光測定装置100は、サンプルSの表面の各位置と応力発光画像内の各位置との対応関係を予め有している。応力発光測定装置100は、当該対応関係を参照することにより、応力発光画像内のROIの位置に基づいて、サンプルSの表面における検査箇所の位置を算出する。応力発光測定装置100は、特定した検査箇所を識別するための検査箇所情報を生成し、生成した検査箇所情報を出力する。 Specifically, the stress-stimulated luminescence measuring device 100 has a correspondence relationship between each position on the surface of the sample S and each position in the stress-stimulated luminescence image in advance. The stress-stimulated luminescence measuring device 100 calculates the position of the inspection point on the surface of the sample S based on the position of the ROI in the stress-stimulated luminescence image by referring to the correspondence. The stress luminescence measuring device 100 generates inspection location information for identifying the specified inspection location, and outputs the generated inspection location information.
 検査装置200は、応力発光測定装置100から出力される検査箇所情報を取得する。例えば、検査装置200は、応力発光測定装置100に通信接続されており、応力発光測定装置100から送信される検査箇所情報を示すデータを受信する。 The inspection device 200 acquires the inspection location information output from the stress luminescence measuring device 100. For example, the inspection device 200 is communication-connected to the mechanoluminescence measuring device 100, and receives data indicating inspection location information transmitted from the mechanoluminescence measuring device 100.
 検査装置200は、検査箇所情報を取得すると、この検査箇所情報により特定される検査箇所を観察することにより、サンプルSを検査するように構成される。検査箇所の観察は、例えば、顕微鏡(光学顕微鏡、電子顕微鏡など)またはカメラを用いて行なうことができる。 The inspection device 200 is configured to inspect the sample S by observing the inspection location specified by the inspection location information when the inspection location information is acquired. Observation of the inspection site can be performed, for example, using a microscope (optical microscope, electron microscope, etc.) or a camera.
 本実施の形態に係る検査システムによると、荷重の印加によってサンプルSに微小な亀裂などの欠陥が生じた場合、この欠陥の周辺に局所的に応力(ひずみ)が集中するため、応力発光測定装置100において、この応力分布に応じた発光強度を有する発光強度分布が観察される。例えば、応力発光画像において、発光強度分布のうち発光強度が大きい部分(応力集中部分)がROIに設定された場合、応力発光測定装置100は、当該部分に対応するサンプルSの表面の位置を導き出し、その位置を検査箇所として特定する。 According to the inspection system according to the present embodiment, when a defect such as a minute crack occurs in the sample S due to the application of a load, stress (strain) is locally concentrated around the defect, so that the stress-strain luminescence measuring device is used. At 100, a luminescence intensity distribution having a luminescence intensity corresponding to this stress distribution is observed. For example, in a stress-stimulated luminescence image, when a portion of the emission intensity distribution having a large emission intensity (stress concentration portion) is set to ROI, the stress-stimulated luminescence measuring device 100 derives the position of the surface of the sample S corresponding to the portion. , Specify the position as an inspection point.
 検査装置200では、応力発光測定装置100により特定されたサンプルSの検査箇所を観察することにより、サンプルS内部の欠陥の発生状態などを詳細に検査することが可能となる。 In the inspection device 200, by observing the inspection points of the sample S specified by the stress luminescence measuring device 100, it is possible to inspect in detail the state of occurrence of defects inside the sample S.
 このように、本実施の形態に係る検査システムにおいては、サンプルSが変形したときの応力発光画像に基づいてサンプルSの表面の検査箇所が特定され、特定された検査箇所を識別するための検査箇所情報が生成される。 As described above, in the inspection system according to the present embodiment, the inspection portion on the surface of the sample S is specified based on the stress-stimulated luminescent image when the sample S is deformed, and the inspection for identifying the specified inspection portion is performed. Location information is generated.
 このような構成とすることにより、ユーザ(例えば検査者)の目視による検査箇所を特定する作業を必要とせず、容易に検査箇所を特定することができる。また、発光強度の分布に基づいて検査箇所が特定されることから、サンプルの応力集中部分を適切に観察することができる。その結果、ユーザは、効率良くかつ適切にサンプルSを検査することが可能となる。 With such a configuration, it is possible to easily identify the inspection location without the need for the work of visually identifying the inspection location by the user (for example, the inspector). In addition, since the inspection site is specified based on the distribution of the emission intensity, the stress concentration portion of the sample can be appropriately observed. As a result, the user can inspect the sample S efficiently and appropriately.
 さらに、本実施の形態に係る検査システムによれば、ユーザは、応力発光画像を用いて、サンプルSに荷重を印加したときの2次元的な応力分布を非破壊の状態で観察することができるとともに、その応力分布のうちの特定されたサンプルSの検査箇所を観察することによって、サンプルSの状態(局所的な欠陥など)を詳細に検査することができる。これによると、ユーザは、荷重の印加によってサンプルSが破壊に至るメカニズムを時系列で検証することが可能となる。 Further, according to the inspection system according to the present embodiment, the user can observe the two-dimensional stress distribution when a load is applied to the sample S in a non-destructive state by using the stress-stimulated luminescent image. At the same time, by observing the inspection points of the specified sample S in the stress distribution, the state of the sample S (local defects, etc.) can be inspected in detail. According to this, the user can verify the mechanism by which the sample S is destroyed by applying the load in chronological order.
 なお、図1の例では、応力発光測定装置100と検査装置200とが別体として示されているが、応力発光測定装置100および検査装置200は一体的に構成されてもよい。また、応力発光測定装置100と検査装置200とは有線で通信接続されてもよいし、無線で通信接続されてもよい。応力発光測定装置100および検査装置200は、インターネットなどの外部通信網を介して通信接続されてもよい。 Although the stress luminescence measuring device 100 and the inspection device 200 are shown as separate bodies in the example of FIG. 1, the stress luminescence measuring device 100 and the inspection device 200 may be integrally configured. Further, the stress luminescence measuring device 100 and the inspection device 200 may be connected by wire or wirelessly. The stress luminescence measuring device 100 and the inspection device 200 may be communicated and connected via an external communication network such as the Internet.
 以下、本実施の形態に係る検査システムの構成例について説明する。以下の説明では、サンプルSをフレキシブルデバイスであるとする。フレキシブルデバイスは、樹脂基板などの可撓性を有する基板上に半導体素子または発光素子などが形成されたデバイスである。 Hereinafter, a configuration example of the inspection system according to the present embodiment will be described. In the following description, it is assumed that the sample S is a flexible device. A flexible device is a device in which a semiconductor element, a light emitting element, or the like is formed on a flexible substrate such as a resin substrate.
 図2は、図1に示した応力発光測定装置100および検査装置200の構成例を示すブロック図である。図2の例では、サンプルSは、折り畳みまたは折り曲げが可能なフレキシブルシートである。フレキシブルシートは、スマートフォンまたはタブレットなどの通信端末のフレキシブルディスプレイまたはウェアラブルデバイスの一部分を構成することができる。 FIG. 2 is a block diagram showing a configuration example of the stress luminescence measuring device 100 and the inspection device 200 shown in FIG. In the example of FIG. 2, sample S is a foldable or foldable flexible sheet. The flexible sheet can form a part of a flexible display or wearable device of a communication terminal such as a smartphone or tablet.
 サンプルSは、矩形形状を有しており、第1の面Saと、第1の面Saと反対側の第2の面Sbとを有する。サンプルSの第1の面Saの所定領域は、応力発光体で被覆されている。所定領域は、曲げ荷重を印加したときのサンプルSの曲げの中心部分を含むように設定することができる。応力発光体は、当該所定領域に応力発光シートに貼り付けることによって形成することができる。あるいは、応力発光体は、応力発光材料を含有する樹脂材料を当該所定領域に塗布し、乾燥させることによって形成することができる。 The sample S has a rectangular shape and has a first surface Sa and a second surface Sb opposite to the first surface Sa. A predetermined region of the first surface Sa of the sample S is covered with a stress-stimulated luminescent material. The predetermined region can be set to include the central portion of bending of the sample S when a bending load is applied. The stress-stimulated luminescent material can be formed by attaching the stress-stimulated luminescent material to the predetermined region on the stress-stimulated luminescent sheet. Alternatively, the stress-stimulated luminescent material can be formed by applying a resin material containing the stress-stimulated luminescent material to the predetermined region and drying it.
 [応力発光装置の構成例]
 図2を参照して、応力発光測定装置100は、サンプルSに荷重(曲げ荷重)を印加するための「荷重印加機構」を有している。荷重印加機構による曲げ荷重の印加時には、サンプルSの第1の面Saを覆っている応力発光体にも曲げ荷重が印加されるため、応力発光体が発光する。応力発光測定装置100は、少なくとも曲げ荷重の印加時における応力発光体の発光状態を測定するように構成される。
[Structure example of stress-stimulated luminescent device]
With reference to FIG. 2, the stress luminescence measuring device 100 has a “load application mechanism” for applying a load (bending load) to the sample S. When the bending load is applied by the load application mechanism, the bending load is also applied to the stress-stimulated luminescent material covering the first surface Sa of the sample S, so that the stress-stimulated luminescent material emits light. The stress-stimulated luminescence measuring device 100 is configured to measure the light-emitting state of the stress-stimulated luminescent material at least when a bending load is applied.
 具体的には、応力発光測定装置100は、サンプルSを保持するホルダ10と、光源30と、カメラ40と、第1ドライバ20と、第2ドライバ42と、第3ドライバ32と、コントローラ50とを有する。 Specifically, the stress luminescence measuring device 100 includes a holder 10 for holding the sample S, a light source 30, a camera 40, a first driver 20, a second driver 42, a third driver 32, and a controller 50. Has.
 ホルダ10は、サンプルSの少なくとも2点に接触することにより、サンプルSを支持するように構成される。図2の例では、ホルダ10は、サンプルSの互いに対向する第1の端部S1および第2の端部S2を支持するように構成される。 The holder 10 is configured to support the sample S by contacting at least two points of the sample S. In the example of FIG. 2, the holder 10 is configured to support the first end S1 and the second end S2 of the sample S facing each other.
 第1ドライバ20は、ホルダ10に接続され、ホルダ10を「第1のホルダ位置」と「第2のホルダ位置」との間で移動させることにより、第1の端部S1および第2の端部S2の間の距離を伸縮可能に構成される。第1ドライバ20は、ホルダ10に接続され、サンプルSの第2の端部S2を往復移動させるアクチュエータ21を有する。アクチュエータ21は、たとえばシリンダである。 The first driver 20 is connected to the holder 10 and by moving the holder 10 between the "first holder position" and the "second holder position", the first end S1 and the second end. The distance between the portions S2 can be expanded and contracted. The first driver 20 is connected to the holder 10 and has an actuator 21 that reciprocates the second end S2 of the sample S. The actuator 21 is, for example, a cylinder.
 第1ドライバ20およびホルダ10によって第1の端部S1および第2の端部S2間の距離を縮めることにより、サンプルSを曲げることができる。また、第1ドライバ20およびホルダ10によって第1の端部S1および第2の端部S2間の距離を伸ばすことにより、サンプルSを伸ばすことができる。ホルダ10および第1ドライバ20は「荷重印加機構」を構成する。 The sample S can be bent by reducing the distance between the first end S1 and the second end S2 by the first driver 20 and the holder 10. Further, the sample S can be extended by extending the distance between the first end portion S1 and the second end portion S2 by the first driver 20 and the holder 10. The holder 10 and the first driver 20 form a "load application mechanism".
 次に、図1に示すホルダ10の構成例について説明する。
 図3は、ホルダ10の斜視図である。図4は、ホルダ10の側面図である。
Next, a configuration example of the holder 10 shown in FIG. 1 will be described.
FIG. 3 is a perspective view of the holder 10. FIG. 4 is a side view of the holder 10.
 図3を参照して、ホルダ10は、フレーム1と、固定壁2と、移動壁3と、取付部5,6と、押え板7,8と、蝶番9と、板バネ12と、接続部13と、レール14と、スライダ15A,15Bと、バー16,17と、ブラケット18と、天板22,23とを有する。 With reference to FIG. 3, the holder 10 includes a frame 1, a fixed wall 2, a moving wall 3, mounting portions 5, 6, holding plates 7, 8, hinges 9, leaf springs 12, and connecting portions. It has 13, a rail 14, sliders 15A and 15B, bars 16 and 17, a bracket 18, and top plates 22 and 23.
 フレーム1は、各面が開口した箱型の形状を有する。図3および図4では、フレーム1を載置した状態において、幅方向をX軸方向とし、奥行き方向をY軸方向とし、高さ方向をZ軸方向とする。 The frame 1 has a box shape with each surface open. In FIGS. 3 and 4, in the state where the frame 1 is placed, the width direction is the X-axis direction, the depth direction is the Y-axis direction, and the height direction is the Z-axis direction.
 固定壁2および移動壁3は、フレーム1の内側に、X軸方向に互いに対向するように設置される。フレーム1を上側(Z軸方向)から見た平面視において、固定壁2はフレーム1のY軸方向に延びる第1の辺1Aに近接して配置され、移動壁3は第1の辺1Aと、第1の辺1AとX軸方向に対向する第2の辺1Bとの中間部分に配置される。固定壁2はフレーム1に固定される。一方、移動壁3は、第1ドライバ20(図1参照)から外力を受けて、固定壁2に近づく、または固定壁2から離れるように移動することが可能に構成される。 The fixed wall 2 and the moving wall 3 are installed inside the frame 1 so as to face each other in the X-axis direction. In a plan view of the frame 1 viewed from above (Z-axis direction), the fixed wall 2 is arranged close to the first side 1A extending in the Y-axis direction of the frame 1, and the moving wall 3 is arranged with the first side 1A. , Is arranged in the intermediate portion between the first side 1A and the second side 1B facing in the X-axis direction. The fixed wall 2 is fixed to the frame 1. On the other hand, the moving wall 3 is configured to be able to move toward or away from the fixed wall 2 by receiving an external force from the first driver 20 (see FIG. 1).
 具体的には、フレーム1を上側から見た平面視において、X軸方向に延びる第3の辺1Cおよび第4の辺1Dの各々にはレール14が設置される。各レール14には2個のスライダ15A,15Bが移動可能に組み付けられている。2個のスライダ15A,15Bのうち第1のスライダ15Aは固定壁2とフレーム1の第1の辺1Aとの間に設置される。第2のスライダ15Bは、移動壁3とフレーム1の第2の辺1Bとの間に設置される。 Specifically, in a plan view of the frame 1 from above, rails 14 are installed on each of the third side 1C and the fourth side 1D extending in the X-axis direction. Two sliders 15A and 15B are movably attached to each rail 14. Of the two sliders 15A and 15B, the first slider 15A is installed between the fixed wall 2 and the first side 1A of the frame 1. The second slider 15B is installed between the moving wall 3 and the second side 1B of the frame 1.
 フレーム1の第3の辺1C上の第1のスライダ15Aと、第4の辺1D上の第1のスライダ15Aとの間にはバー16が接続される。バー16は固定壁2と接続される。ブラケット18は、バー16のY軸方向の両端部からフレーム1に向かって伸びるように配置される。ブラケット18のY軸方向の第1の端部はバー16に固定され、第2の端部はフレーム1に固定される。これにより、第1のスライダ15がレール14に固定されるため、固定壁2をフレーム1に固定することができる。 A bar 16 is connected between the first slider 15A on the third side 1C of the frame 1 and the first slider 15A on the fourth side 1D. The bar 16 is connected to the fixed wall 2. The bracket 18 is arranged so as to extend from both ends of the bar 16 in the Y-axis direction toward the frame 1. The first end of the bracket 18 in the Y-axis direction is fixed to the bar 16, and the second end is fixed to the frame 1. As a result, the first slider 15 is fixed to the rail 14, so that the fixing wall 2 can be fixed to the frame 1.
 フレーム1の第3の辺1C上の第2のスライダ15Bと、第4の辺1D上の第2のスライダ15Bとの間にはバー17が接続される。バー17は移動壁3と接続される。バー17はフレーム1に固定されていないため、第2のスライダ15Bはレール14上を移動することができる。これにより、移動壁3を固定壁2に対してX軸方向に相対的に移動させることができる。 A bar 17 is connected between the second slider 15B on the third side 1C of the frame 1 and the second slider 15B on the fourth side 1D. The bar 17 is connected to the moving wall 3. Since the bar 17 is not fixed to the frame 1, the second slider 15B can move on the rail 14. As a result, the moving wall 3 can be moved relative to the fixed wall 2 in the X-axis direction.
 移動壁3の下方垂れ3aには、第1ドライバ20(図2参照)を接続するための接続部13が設けられている。第1ドライバ20は、アクチュエータ21を有する。アクチュエータ21は、たとえばシリンダである。シリンダ内のピストンをX軸方向に沿って往復動作させることにより、移動壁3を固定壁2に近づける、または移動壁3を固定壁2から遠ざけることができる。 The downward hanging 3a of the moving wall 3 is provided with a connecting portion 13 for connecting the first driver 20 (see FIG. 2). The first driver 20 has an actuator 21. The actuator 21 is, for example, a cylinder. By reciprocating the piston in the cylinder along the X-axis direction, the moving wall 3 can be brought closer to the fixed wall 2 or the moving wall 3 can be moved away from the fixed wall 2.
 固定壁2のZ軸方向の上端部には天板22が取り付けられる。天板22は固定壁2に対して垂直に延在する。図3に示すように、取付部5は、蝶番9により、天板22に対して回動可能に接続される。具体的には、取付部5は、移動壁3の移動に連動して、天板22に対して水平な位置と天板22に対して垂直な位置との間で回動可能に構成される。 The top plate 22 is attached to the upper end of the fixed wall 2 in the Z-axis direction. The top plate 22 extends perpendicular to the fixed wall 2. As shown in FIG. 3, the mounting portion 5 is rotatably connected to the top plate 22 by a hinge 9. Specifically, the mounting portion 5 is configured to be rotatable between a position horizontal to the top plate 22 and a position perpendicular to the top plate 22 in conjunction with the movement of the moving wall 3. ..
 押え板7は、取付部5に対して着脱自在に構成される。取付部5と押え板7との間にサンプルSの第1の端部S1を挟み込んだ状態で、押え板7を取付部6に取り付けることにより、取付部5はサンプルSの第1の端部S1を把持することができる。なお、押え板7に代えて、粘着テープなどを用いて第1の端部S1を取付部5に固定する構成としてもよい。 The presser plate 7 is detachably configured with respect to the mounting portion 5. By mounting the presser plate 7 to the mounting portion 6 with the first end portion S1 of the sample S sandwiched between the mounting portion 5 and the holding plate 7, the mounting portion 5 becomes the first end portion of the sample S. S1 can be gripped. In addition, instead of the pressing plate 7, the first end portion S1 may be fixed to the mounting portion 5 by using an adhesive tape or the like.
 移動壁3のZ軸方向の上端部には天板23が取り付けられる。天板23は移動壁3に対して垂直に延在する。図4に示すように、取付部6は、蝶番9により、天板23に対して回動可能に接続される。具体的には、取付部6は、移動壁3の移動に連動して、天板23に対して水平な位置と天板23に対して垂直な位置との間で回動可能に構成される。 The top plate 23 is attached to the upper end of the moving wall 3 in the Z-axis direction. The top plate 23 extends perpendicular to the moving wall 3. As shown in FIG. 4, the mounting portion 6 is rotatably connected to the top plate 23 by a hinge 9. Specifically, the mounting portion 6 is configured to be rotatable between a position horizontal to the top plate 23 and a position perpendicular to the top plate 23 in conjunction with the movement of the moving wall 3. ..
 押え板8は、取付部6に対して着脱自在に構成される。取付部6と押え板8との間にサンプルSの第2の端部S2を挟み込んだ状態で、押え板8を取付部6に取り付けることにより、取付部6はサンプルSの第2の端部S2を把持することができる。なお、押え板8に代えて、粘着テープなどを用いて第2の端部S2を取付部6に固定する構成としてもよい。 The presser plate 8 is detachably configured with respect to the mounting portion 6. By mounting the presser plate 8 to the mounting portion 6 with the second end portion S2 of the sample S sandwiched between the mounting portion 6 and the holding plate 8, the mounting portion 6 becomes the second end portion of the sample S. S2 can be gripped. In addition, instead of the pressing plate 8, the second end portion S2 may be fixed to the mounting portion 6 by using an adhesive tape or the like.
 図4には、固定壁2に近づくように移動壁3を移動させたときのグリッパおよびサンプルSの状態が3段階で示されている。図4において、位置X1はサンプルSを伸ばした状態での移動壁3のX軸方向の位置を示し、位置X2,X3はサンプルSを曲げた状態での移動壁3のX軸方向の位置を示す。位置X0は固定壁2のX軸方向の位置を示す。 FIG. 4 shows the states of the gripper and the sample S when the moving wall 3 is moved so as to approach the fixed wall 2 in three stages. In FIG. 4, the position X1 indicates the position of the moving wall 3 in the X-axis direction in the extended state of the sample S, and the positions X2 and X3 indicate the positions of the moving wall 3 in the X-axis direction in the bent state of the sample S. show. The position X0 indicates the position of the fixed wall 2 in the X-axis direction.
 移動壁3が位置X1にある場合、取付部5,6はいずれも天板22,23に水平な位置にある。そのため、サンプルSには応力が印加されていない。なお、移動壁3の位置X1と固定壁2の位置X0との間の距離は、サンプルSのX軸方向の長さに応じて決まる。位置X1は「第1のホルダ位置」の一実施例に対応する。 When the moving wall 3 is located at the position X1, the mounting portions 5 and 6 are all located horizontally to the top plates 22 and 23. Therefore, no stress is applied to the sample S. The distance between the position X1 of the moving wall 3 and the position X0 of the fixed wall 2 is determined according to the length of the sample S in the X-axis direction. The position X1 corresponds to one embodiment of the "first holder position".
 移動壁3をX軸方向に沿って位置X1から位置X2に移動させると、移動壁3と固定壁2との間の距離が縮まり、サンプルSに曲げ荷重が加わる。このとき、取付部5は固定壁2に向かって回動し、取付部6は移動壁3に向かって回動する。 When the moving wall 3 is moved from the position X1 to the position X2 along the X-axis direction, the distance between the moving wall 3 and the fixed wall 2 is shortened, and a bending load is applied to the sample S. At this time, the mounting portion 5 rotates toward the fixed wall 2, and the mounting portion 6 rotates toward the moving wall 3.
 図4の例では、取付部5,6の回動角度の範囲は0rad以上π/2rad以下である。移動壁3をさらに位置X3に移動させると、取付部5は天板22に垂直な位置となり、取付部6は天板23に垂直な位置となる。位置X3は「第2のホルダ位置」の一実施例に対応する。 In the example of FIG. 4, the range of rotation angles of the mounting portions 5 and 6 is 0 rad or more and π / 2 rad or less. When the moving wall 3 is further moved to the position X3, the mounting portion 5 is in a position perpendicular to the top plate 22, and the mounting portion 6 is in a position perpendicular to the top plate 23. The position X3 corresponds to one embodiment of the "second holder position".
 このように移動壁3の移動に連動して取付部5,6が回動することにより、サンプルSにかかる負荷は曲げ荷重のみとなり、その他の荷重(たとえば、摩擦力または引っ張り力)がサンプルSに作用することを抑制することができる。したがって、サンプルSに印加される曲げ荷重を正確に測定することが可能となる。 By rotating the mounting portions 5 and 6 in conjunction with the movement of the moving wall 3 in this way, the load applied to the sample S is only the bending load, and other loads (for example, frictional force or tensile force) are the sample S. It is possible to suppress the action on. Therefore, it is possible to accurately measure the bending load applied to the sample S.
 第1ドライバ20は、アクチュエータ21を周期的に動作させることで、ホルダ10を周期的に移動させることができる。具体的には、第1ドライバ20は、ホルダ10の1動作周期の前半で、移動壁3を第1のホルダ位置X1から第2のホルダ位置X3に移動させる。これにより、サンプルSは、第2のホルダ位置X3に応じた曲げ角度および曲げ半径で曲げられる。また、第1ドライバ20は、ホルダ10の1動作周期の後半で、移動壁3を第2のホルダ位置X3から第1のホルダ位置X1に移動させることができる。 The first driver 20 can periodically move the holder 10 by periodically operating the actuator 21. Specifically, the first driver 20 moves the moving wall 3 from the first holder position X1 to the second holder position X3 in the first half of one operation cycle of the holder 10. As a result, the sample S is bent at a bending angle and a bending radius according to the second holder position X3. Further, the first driver 20 can move the moving wall 3 from the second holder position X3 to the first holder position X1 in the latter half of one operation cycle of the holder 10.
 図5は、サンプルSの曲げ角度および曲げ半径を説明するための図である。
 図5を参照して、サンプルSの曲げ角度は、サンプルSの第1の端部S1および第2の端部S2の直線部分のなす角度が180°(πrad)から変化した大きさに相当する。サンプルSの曲げ半径は、サンプルSの曲げの中心部分と同じ大きさのカーブを描く円Cの半径に相当する。
FIG. 5 is a diagram for explaining the bending angle and bending radius of the sample S.
With reference to FIG. 5, the bending angle of the sample S corresponds to the magnitude of the angle formed by the linear portions of the first end S1 and the second end S2 of the sample S changed from 180 ° (πrad). .. The bending radius of the sample S corresponds to the radius of a circle C that draws a curve having the same size as the central portion of the bending of the sample S.
 サンプルSの曲げ角度が大きくなるに従って、サンプルSに印加される曲げ荷重が大きくなる。また、サンプルSの曲げ半径が小さくなるに従って、サンプルSに印加される曲げ荷重が大きくなる。図4の構成例では、ホルダ10の第2のホルダ位置X3を変えることによって、サンプルSの曲げ角度および曲げ半径の少なくとも一方を変えることができる。すなわち、第2のホルダ位置X3を変えることによって、サンプルSに印加する曲げ荷重の大きさを変えることができる。 As the bending angle of the sample S increases, the bending load applied to the sample S increases. Further, as the bending radius of the sample S becomes smaller, the bending load applied to the sample S becomes larger. In the configuration example of FIG. 4, at least one of the bending angle and the bending radius of the sample S can be changed by changing the second holder position X3 of the holder 10. That is, the magnitude of the bending load applied to the sample S can be changed by changing the second holder position X3.
 図3に戻って、取付部5のY軸方向の両端部と取付部6のY軸方向の両端部との間には、サンプルSとX軸方向の長さが等しい板バネ12が接続されている。板バネ12は、曲がるときに一様な曲率半径になろうとする性質がある。これにより、サンプルSを曲げるときには、板バネ12の曲げに倣って、サンプルSを一様に曲げることができる。 Returning to FIG. 3, a leaf spring 12 having the same length in the X-axis direction as the sample S is connected between both ends of the mounting portion 5 in the Y-axis direction and both ends of the mounting portion 6 in the Y-axis direction. ing. The leaf spring 12 has a property of tending to have a uniform radius of curvature when bent. As a result, when the sample S is bent, the sample S can be uniformly bent following the bending of the leaf spring 12.
 図2に戻って、サンプルSは、第1の面Saが上側となるようにホルダ10によって支持される。上述したように、第1の面Saの所定領域は応力発光体で被覆されている。光源30は、サンプルSのZ軸方向の上方に配置されており、サンプルSの第1の面Sa上の応力発光体に対して励起光を照射するように構成される。励起光を受けて、応力発光体は発光状態に遷移する。励起光は、たとえば、紫外線または可視光線である。なお、図2の例では、サンプルSの第1の面Saに対して2方向から励起光を照射する構成としたが、光源30は1方向または3方向以上からサンプルSに対して励起光を照射する構成としてもよい。 Returning to FIG. 2, the sample S is supported by the holder 10 so that the first surface Sa is on the upper side. As described above, a predetermined region of the first surface Sa is covered with a stress-stimulated luminescent material. The light source 30 is arranged above the Z-axis direction of the sample S, and is configured to irradiate the stress-stimulated luminescent material on the first surface Sa of the sample S with excitation light. Upon receiving the excitation light, the stress-stimulated luminescent material transitions to the luminescent state. The excitation light is, for example, ultraviolet light or visible light. In the example of FIG. 2, the first surface Sa of the sample S is irradiated with the excitation light from two directions, but the light source 30 emits the excitation light to the sample S from one direction or three or more directions. It may be configured to irradiate.
 第3ドライバ32は、光源30を駆動するための電力を供給する。第3ドライバ32は、コントローラ50から受ける指令に応じて光源30に供給する電力を制御することにより、光源30から照射される励起光の光量および励起光の照射時間などを制御することができる。 The third driver 32 supplies electric power for driving the light source 30. The third driver 32 can control the amount of excitation light emitted from the light source 30, the irradiation time of the excitation light, and the like by controlling the electric power supplied to the light source 30 in response to a command received from the controller 50.
 カメラ40は、サンプルSのZ軸方向の上方に、第1の面Saの少なくとも所定領域を撮像視野に含むように配置される。具体的には、カメラ40は、フォーカス位置が第1の面Saの所定領域内の少なくとも1点に位置するように配置される。所定領域内の少なくとも1点は、サンプルSの曲げの中心部分に位置することが好ましい。 The camera 40 is arranged above the sample S in the Z-axis direction so as to include at least a predetermined region of the first surface Sa in the imaging field of view. Specifically, the camera 40 is arranged so that the focus position is located at at least one point in a predetermined region of the first surface Sa. It is preferable that at least one point in the predetermined region is located at the central portion of the bending of the sample S.
 カメラ40は、レンズなどの光学系および撮像素子を含む。撮像素子は、たとえばCCD(Charge Coupled Device)センサ、CMOS(Complementary Metal Oxide Semiconductor)センサなどにより実現される。撮像素子は、光学系を介して第1の面Saから入射される光を電気信号に変換することによって撮像画像を生成する。 The camera 40 includes an optical system such as a lens and an image sensor. The image pickup device is realized by, for example, a CCD (Charge Coupled Device) sensor, a CMOS (Complementary Metal Oxide Semiconductor) sensor, or the like. The image pickup device generates an image pickup image by converting the light incident from the first surface Sa via the optical system into an electric signal.
 カメラ40は、少なくともサンプルSに対する荷重印加時において、第1の面Sa上の応力発光体の発光を撮像するように構成される。カメラ40の撮像により生成された応力発光画像データはコントローラ50へ送信される。 The camera 40 is configured to capture the light emission of the stress-stimulated luminescent material on the first surface Sa at least when a load is applied to the sample S. The stress-stimulated luminescence image data generated by the image pickup of the camera 40 is transmitted to the controller 50.
 第2ドライバ42は、コントローラ50から受ける指令に応じて、カメラ40のフォーカス位置を変更可能に構成される。具体的には、第2ドライバ42は、カメラ40をZ軸方向およびX軸方向に沿って移動させることにより、カメラ40のフォーカス位置を調整することができる。例えば、第2ドライバ42は、カメラ40をZ軸方向およびX軸方向に移動させる送りねじを回転させるモータと、モータを駆動するモータドライバとを有する。送りねじがモータによって回転駆動されることにより、カメラ40は、Z軸およびX軸の各方向の所定範囲内の指定された位置に位置決めされる。また、第2ドライバ42は、カメラ40の位置を示す位置情報をコントローラ50へ送信する。 The second driver 42 is configured to be able to change the focus position of the camera 40 in response to a command received from the controller 50. Specifically, the second driver 42 can adjust the focus position of the camera 40 by moving the camera 40 along the Z-axis direction and the X-axis direction. For example, the second driver 42 has a motor that rotates a feed screw that moves the camera 40 in the Z-axis direction and the X-axis direction, and a motor driver that drives the motor. The feed screw is rotationally driven by a motor to position the camera 40 at a designated position within a predetermined range in each of the Z-axis and X-axis directions. Further, the second driver 42 transmits the position information indicating the position of the camera 40 to the controller 50.
 コントローラ50は、応力発光測定装置100全体を制御する。コントローラ50は、主な構成要素として、プロセッサ501と、メモリ502と、入出力インターフェイス(I/F)503と、通信I/F504とを有する。これらの各部は、図示しないバスを介して互いに通信可能に接続される。 The controller 50 controls the entire stress luminescence measuring device 100. The controller 50 has a processor 501, a memory 502, an input / output interface (I / F) 503, and a communication I / F 504 as main components. Each of these parts is communicably connected to each other via a bus (not shown).
 プロセッサ501は、典型的には、CPU(Central Processing Unit)またはMPU(Micro Processing Unit)などの演算処理部である。プロセッサ501は、メモリ502に記憶されたプログラムを読み出して実行することで、応力発光測定装置100の各部の動作を制御する。具体的には、プロセッサ501は、当該プログラムを実行することによって、後述する応力発光測定装置100の処理の各々を実現する。なお、図2の例では、プロセッサが単数である構成を例示しているが、コントローラ50は複数のプロセッサを有する構成としてもよい。 The processor 501 is typically an arithmetic processing unit such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit). The processor 501 controls the operation of each part of the mechanoluminescence measuring device 100 by reading and executing the program stored in the memory 502. Specifically, the processor 501 realizes each of the processes of the stress luminescence measuring device 100 described later by executing the program. Although the example of FIG. 2 illustrates a configuration in which the number of processors is singular, the controller 50 may be configured to have a plurality of processors.
 メモリ502は、RAM(Random Access Memory)、ROM(Read Only Memory)およびフラッシュメモリなどの不揮発性メモリによって実現される。メモリ502は、プロセッサ501によって実行されるプログラム、またはプロセッサ501によって用いられるデータなどを記憶する。 The memory 502 is realized by a non-volatile memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), and a flash memory. The memory 502 stores a program executed by the processor 501, data used by the processor 501, and the like.
 入出力I/F503は、プロセッサ501と、第1ドライバ20、第3ドライバ32、カメラ40および第2ドライバ42との間で各種データをやり取りするためのインターフェイスである。 The input / output I / F 503 is an interface for exchanging various data between the processor 501 and the first driver 20, the third driver 32, the camera 40, and the second driver 42.
 通信I/F504は、応力発光測定装置100と、検査装置200を含む他の装置との間で各種データをやり取りするための通信インターフェイスであり、アダプタまたはコネクタなどによって実現される。なお、通信方式は、無線LAN(Local Area Network)などによる無線通信方式であってもよいし、USB(Universal Serial Bus)などを利用した有線通信方式であってもよい。応力発光測定装置100から検査装置200に送信されるデータには、検査箇所情報を示すデータが含まれる。 The communication I / F 504 is a communication interface for exchanging various data between the stress luminescence measuring device 100 and other devices including the inspection device 200, and is realized by an adapter or a connector. The communication method may be a wireless communication method using a wireless LAN (Local Area Network) or the like, or a wired communication method using USB (Universal Serial Bus) or the like. The data transmitted from the stress luminescence measuring device 100 to the inspection device 200 includes data indicating inspection location information.
 コントローラ50には、ディスプレイ60および操作部70が接続される。ディスプレイ60は、画像を表示可能な液晶パネルなどで構成される。操作部70は、応力発光測定装置100に対するユーザの操作入力を受け付ける。操作部70は、典型的には、タッチパネル、キーボード、マウスなどで構成される。 A display 60 and an operation unit 70 are connected to the controller 50. The display 60 is composed of a liquid crystal panel or the like capable of displaying an image. The operation unit 70 receives a user's operation input to the stress luminescence measuring device 100. The operation unit 70 is typically composed of a touch panel, a keyboard, a mouse, and the like.
 コントローラ50は、第1ドライバ20、第3ドライバ32、カメラ40および第2ドライバ42と通信接続されている。コントローラ50と第1ドライバ20、第3ドライバ32、カメラ40および第2ドライバ42との間の通信は、無線通信で実現されてもよいし、有線通信で実現されてもよい。 The controller 50 is communicatively connected to the first driver 20, the third driver 32, the camera 40, and the second driver 42. The communication between the controller 50 and the first driver 20, the third driver 32, the camera 40 and the second driver 42 may be realized by wireless communication or wired communication.
 図6は、コントローラ50の機能的構成を説明するためのブロック図である。
 図6を参照して、コントローラ50は、応力制御部51、光源制御部52、撮像制御部53、測定制御部54、データ取得部55、データ処理部56、記憶部57および出力部58を有する。これらは、プロセッサ501がメモリ502に格納されたプログラムを実行することに基づいて実現される機能ブロックである。
FIG. 6 is a block diagram for explaining the functional configuration of the controller 50.
With reference to FIG. 6, the controller 50 includes a stress control unit 51, a light source control unit 52, an image pickup control unit 53, a measurement control unit 54, a data acquisition unit 55, a data processing unit 56, a storage unit 57, and an output unit 58. .. These are functional blocks realized based on the processor 501 executing a program stored in memory 502.
 応力制御部51は、第1ドライバ20の動作を制御する。具体的には、応力制御部51は、予め設定されている測定条件に従って、第1ドライバ20の動作速度および動作時間などを制御する。第1ドライバ20の動作速度および動作時間を制御することによって、ホルダ10における移動壁3(図3および図4参照)の移動速度、移動時間および移動距離などを調整することができる。 The stress control unit 51 controls the operation of the first driver 20. Specifically, the stress control unit 51 controls the operating speed, operating time, and the like of the first driver 20 according to preset measurement conditions. By controlling the operating speed and operating time of the first driver 20, the moving speed, moving time, moving distance, and the like of the moving wall 3 (see FIGS. 3 and 4) in the holder 10 can be adjusted.
 光源制御部52は、第3ドライバ32による光源30の駆動を制御する。具体的には、光源制御部52は、予め設定されている測定条件に基づいて、光源30に供給する電力の大きさおよび光源30への電力の供給時間などを指示するための指令を生成し、生成した指令を第3ドライバ32へ出力する。第3ドライバ32が当該指令に従って光源30に供給する電力を制御することにより、光源30から照射される励起光の光量および励起光の照射時間などを調整することができる。 The light source control unit 52 controls the drive of the light source 30 by the third driver 32. Specifically, the light source control unit 52 generates a command for instructing the magnitude of the electric power supplied to the light source 30 and the supply time of the electric power to the light source 30 based on the preset measurement conditions. , The generated command is output to the third driver 32. By controlling the electric power supplied to the light source 30 by the third driver 32 in accordance with the command, it is possible to adjust the amount of excitation light emitted from the light source 30, the irradiation time of the excitation light, and the like.
 撮像制御部53は、第2ドライバ42によるカメラ40の移動を制御する。具体的には、撮像制御部53は、予め設定されている測定条件および第2ドライバ42から入力されるカメラ40の位置情報に基づいて、サンプルSの所定領域の移動に追従してカメラ40を移動させるための指令を生成する。撮像制御部53は、生成した指令を第2ドライバ42へ出力する。第2ドライバ42が当該指令に従ってカメラ40を移動させることにより、カメラ40のフォーカス位置をサンプルSの所定領域の少なくとも1点に維持することができる。 The image pickup control unit 53 controls the movement of the camera 40 by the second driver 42. Specifically, the image pickup control unit 53 follows the movement of the predetermined region of the sample S to move the camera 40 based on the preset measurement conditions and the position information of the camera 40 input from the second driver 42. Generate a command to move. The image pickup control unit 53 outputs the generated command to the second driver 42. By moving the camera 40 according to the command, the second driver 42 can maintain the focus position of the camera 40 at at least one point in the predetermined region of the sample S.
 撮像制御部53はさらに、カメラ40による撮像を制御する。具体的には、撮像制御部53は、予め設定されている測定条件に従って、少なくとも応力印加時における応力発光体の発光を撮像するようにカメラ40を制御する。撮像に関する測定条件は、カメラ40のフレームレートを含む。 The image pickup control unit 53 further controls the image pickup by the camera 40. Specifically, the image pickup control unit 53 controls the camera 40 so as to capture the light emitted from the stress-stimulated luminescent material at least when stress is applied, according to preset measurement conditions. The measurement conditions for imaging include the frame rate of the camera 40.
 データ取得部55は、カメラ40の撮像により生成された応力発光画像データを取得し、取得した応力発光画像データをデータ処理部56へ転送する。 The data acquisition unit 55 acquires the mechanoluminescent image data generated by the imaging of the camera 40, and transfers the acquired mechanoluminescent image data to the data processing unit 56.
 データ処理部56は、カメラ40の撮像により得られた応力発光画像データに対して公知の画像処理を施すことにより、サンプルSの第1の面Saにおける発光強度の分布を示す画像を生成する。データ処理部56は、カメラ40による撮像画像および、第1の面Saにおける発光強度の分布を示す画像を含む測定結果を記憶部57に保存するとともに、ディスプレイ60に表示することができる。 The data processing unit 56 performs known image processing on the stress-stimulated luminescence image data obtained by imaging the camera 40 to generate an image showing the distribution of the luminescence intensity on the first surface Sa of the sample S. The data processing unit 56 can store the measurement result including the image captured by the camera 40 and the image showing the distribution of the emission intensity on the first surface Sa in the storage unit 57 and display it on the display 60.
 さらに、データ処理部56は、応力発光画像内においてROIが設定されると、ROIに対応するサンプルSの表面の位置を導き出し、その位置を検査箇所として特定する。なお、ROIの設定は、操作部70が受け付けたユーザ入力に基づいて行なうことができる。もしくは、データ処理部56が応力発光画像に現れる発光強度の分布に基づいて、自動的にROIを設定することができる。 Further, when the ROI is set in the stress-stimulated luminescent image, the data processing unit 56 derives the position of the surface of the sample S corresponding to the ROI and specifies the position as an inspection point. The ROI can be set based on the user input received by the operation unit 70. Alternatively, the data processing unit 56 can automatically set the ROI based on the distribution of the luminescence intensity appearing in the stress luminescence image.
 データ処理部56は、特定された検査箇所を識別するための検査箇所情報を生成する。出力部58は、生成された検査箇所情報を出力する。 The data processing unit 56 generates inspection location information for identifying the specified inspection location. The output unit 58 outputs the generated inspection location information.
 測定制御部54は、応力制御部51、光源制御部52、撮像制御部53、データ取得部55およびデータ処理部56を統括的に制御する。具体的には、測定制御部54は、操作部70に入力される測定条件およびサンプルSとなるデバイスの情報などに基づいて、各部に対して制御指令を与える。 The measurement control unit 54 comprehensively controls the stress control unit 51, the light source control unit 52, the image pickup control unit 53, the data acquisition unit 55, and the data processing unit 56. Specifically, the measurement control unit 54 gives a control command to each unit based on the measurement conditions input to the operation unit 70 and the information of the device to be the sample S.
 [検査装置の構成例]
 図2を参照して、検査装置200は、観察装置210と、コントローラ220と、ディスプレイ230と、操作部240とを有する。観察装置210は、サンプルSの検査箇所を観察するための装置であり、例えば、顕微鏡(光学顕微鏡、電子顕微鏡など)および/またはカメラを有しており、検査箇所の観察画像を取得可能に構成される。
[Configuration example of inspection device]
With reference to FIG. 2, the inspection device 200 includes an observation device 210, a controller 220, a display 230, and an operation unit 240. The observation device 210 is a device for observing the inspection point of the sample S, and has, for example, a microscope (optical microscope, electron microscope, etc.) and / or a camera, and is configured to be able to acquire an observation image of the inspection point. Will be done.
 コントローラ220は、検査装置200全体を制御する。コントローラ220は、主な構成要素として、プロセッサ222と、メモリ224と、入出力I/F226と、通信I/F228とを有する。これらの各部は、図示しないバスを介して互いに通信可能に接続される。 The controller 220 controls the entire inspection device 200. The controller 220 has a processor 222, a memory 224, an input / output I / F 226, and a communication I / F 228 as main components. Each of these parts is communicably connected to each other via a bus (not shown).
 プロセッサ222は、典型的には、CPUまたはMPUなどの演算処理部である。プロセッサ222は、メモリ224に記憶されたプログラムを読み出して実行することで、検査装置200の各部の動作を制御する。具体的には、プロセッサ222は、当該プログラムを実行することによって、後述する検査装置200の処理の各々を実現する。なお、図2の例では、プロセッサが単数である構成を例示しているが、コントローラ220は複数のプロセッサを有する構成としてもよい。 The processor 222 is typically an arithmetic processing unit such as a CPU or MPU. The processor 222 controls the operation of each part of the inspection device 200 by reading and executing the program stored in the memory 224. Specifically, the processor 222 realizes each of the processes of the inspection device 200 described later by executing the program. Although the example of FIG. 2 illustrates a configuration in which the number of processors is singular, the controller 220 may be configured to have a plurality of processors.
 メモリ224は、RAM、ROMおよびフラッシュメモリなどの不揮発性メモリによって実現される。メモリ224は、プロセッサ222によって実行されるプログラム、またはプロセッサ222によって用いられるデータなどを記憶する。 Memory 224 is realized by non-volatile memory such as RAM, ROM and flash memory. The memory 224 stores a program executed by the processor 222, data used by the processor 222, and the like.
 入出力I/F226は、プロセッサ222と観察装置210との間で各種データをやり取りするためのインターフェイスである。 The input / output I / F 226 is an interface for exchanging various data between the processor 222 and the observation device 210.
 通信I/F228は、検査装置200と、応力発光測定装置100を含む他の装置との間で各種データをやり取りするための通信インターフェイスであり、アダプタまたはコネクタなどによって実現される。なお、通信方式は、無線LANなどによる無線通信方式であってもよいし、USBなどを利用した有線通信方式であってもよい。 The communication I / F 228 is a communication interface for exchanging various data between the inspection device 200 and other devices including the stress luminescence measuring device 100, and is realized by an adapter or a connector. The communication method may be a wireless communication method using a wireless LAN or the like, or a wired communication method using USB or the like.
 コントローラ220には、ディスプレイ230および操作部240が接続される。ディスプレイ230は、画像を表示可能な液晶パネルなどで構成される。操作部240は、検査装置200に対するユーザの操作入力を受け付ける。操作部240は、典型的には、タッチパネル、キーボード、マウスなどで構成される。 A display 230 and an operation unit 240 are connected to the controller 220. The display 230 is composed of a liquid crystal panel or the like capable of displaying an image. The operation unit 240 receives a user's operation input to the inspection device 200. The operation unit 240 is typically composed of a touch panel, a keyboard, a mouse, and the like.
 [検査システムの動作]
 次に、本実施の形態に係る検査システムの動作について説明する。
[Operation of inspection system]
Next, the operation of the inspection system according to the present embodiment will be described.
 (応力発光測定)
 最初に、図7および図8を用いて、応力発光測定装置100による応力発光の測定原理について説明する。図7は、サンプルSおよびホルダ10の一部を模式的に示した図である。図7(A)には、荷重印加前のサンプルSが示され、図7(B)には荷重印加時のサンプルSが示される。
(Mechanoluminescence measurement)
First, the principle of measuring stress luminescence by the stress luminescence measuring device 100 will be described with reference to FIGS. 7 and 8. FIG. 7 is a diagram schematically showing a part of the sample S and the holder 10. FIG. 7A shows the sample S before the load is applied, and FIG. 7B shows the sample S when the load is applied.
 図7(A)に示すように、サンプルSのX軸方向の第1および第2の端部S1,S2は、ホルダ10の取付部5,6および押え板7,8によって把持されている。サンプルSの第1の面Saの所定領域上には応力発光体MLが配置されている。光源30は、応力発光体MLに励起光を照射することにより、応力発光体MLを励起させる。 As shown in FIG. 7A, the first and second end portions S1 and S2 of the sample S in the X-axis direction are gripped by the mounting portions 5 and 6 of the holder 10 and the pressing plates 7 and 8. A stress-stimulated luminescent body ML is arranged on a predetermined region of the first surface Sa of the sample S. The light source 30 excites the stress-stimulated luminescent material ML by irradiating the stress-stimulated luminescent material ML with excitation light.
 次に、図7(B)に示すように、図示しない第1ドライバ20によって移動壁3を固定壁2に向かってX軸方向に移動させることにより、サンプルSに曲げ荷重を加える。図7(B)では、移動壁3の移動に連動して取付部6および押え板8が矢印Aの方向に移動する様子が示されている。 Next, as shown in FIG. 7B, a bending load is applied to the sample S by moving the moving wall 3 toward the fixed wall 2 in the X-axis direction by a first driver 20 (not shown). FIG. 7B shows how the mounting portion 6 and the holding plate 8 move in the direction of the arrow A in conjunction with the movement of the moving wall 3.
 カメラ40は、サンプルSに対する荷重印加のタイミングに合わせて、サンプルSの所定領域(曲げの中心部分を含む)を撮像する。すなわち、カメラ40は応力発光体MLの発光を撮像する。 The camera 40 takes an image of a predetermined region (including the central portion of bending) of the sample S in accordance with the timing of applying the load to the sample S. That is, the camera 40 captures the light emission of the stress-stimulated luminescent material ML.
 なお、上述したサンプルSの曲げ(図7(B))およびサンプルSの伸ばし(図7(A))を一定周期(第1ドライバ20の動作周期)で繰り返し実行することにより、サンプルSに対して曲げ荷重を繰り返し印加することができる。そして、この曲げ伸ばしの繰り返し動作中における応力発光体MLの発光をカメラ40で撮像することにより、サンプルSにかかる繰り返し荷重に対する耐久性を評価することができる。 By repeatedly executing the bending of the sample S (FIG. 7 (B)) and the stretching of the sample S (FIG. 7 (A)) described above in a fixed cycle (operation cycle of the first driver 20), the sample S is subjected to the bending. The bending load can be repeatedly applied. Then, by capturing the light emitted from the stress-stimulated luminescent material ML during the repeated bending and stretching operation with the camera 40, the durability against the repeated load applied to the sample S can be evaluated.
 ここで、図4に示したように、ホルダ10に支持されたサンプルSを曲げると、サンプルSの曲げの中心部分がZ軸方向およびX軸方向に移動する。具体的には、サンプルSを曲げると、曲げの中心部分は、X軸方向に沿って固定壁2に近づく方向に移動するとともに、Z軸方向に沿ってカメラ40から離れる方向に移動する。一方、サンプルSを伸ばすと、曲げの中心部分は、X軸方向に沿って固定壁2から離れる方向に移動するとともに、Z軸方向に沿ってカメラ40に近づく方向に移動する。 Here, as shown in FIG. 4, when the sample S supported by the holder 10 is bent, the central portion of the bending of the sample S moves in the Z-axis direction and the X-axis direction. Specifically, when the sample S is bent, the central portion of the bend moves in the direction toward the fixed wall 2 along the X-axis direction and moves away from the camera 40 along the Z-axis direction. On the other hand, when the sample S is stretched, the central portion of the bending moves in the direction away from the fixed wall 2 along the X-axis direction and in the direction approaching the camera 40 along the Z-axis direction.
 コントローラ50は、少なくともカメラ40による撮像時においてカメラ40のフォーカス位置をサンプルSの所定領域の少なくとも1点に維持するように、第2ドライバ42を制御する。具体的には、第2ドライバ42は、コントローラ50から受ける指令に従って、サンプルSの所定領域の移動に応じて、カメラ40を移動させることにより、カメラ40のフォーカス位置を当該所定領域内の少なくとも1点に維持するように構成される。 The controller 50 controls the second driver 42 so that the focus position of the camera 40 is maintained at at least one point in the predetermined region of the sample S at least during imaging by the camera 40. Specifically, the second driver 42 moves the camera 40 according to the movement of the predetermined area of the sample S according to the command received from the controller 50, so that the focus position of the camera 40 is at least one in the predetermined area. It is configured to be maintained at a point.
 図8は、サンプルSおよびカメラ40の位置関係を説明するための図である。図8において、X0はサンプルSの第1の端部S1のX座標を示し、X1~X6はサンプルSの第2の端部S2のX座標を示す。Z0はサンプルSの第1および第2の端部S1,S2のZ座標を示す。サンプルSの第1の端部S1は固定端であり、第2の端部S2は自由端である。 FIG. 8 is a diagram for explaining the positional relationship between the sample S and the camera 40. In FIG. 8, X0 indicates the X coordinate of the first end portion S1 of the sample S, and X1 to X6 indicate the X coordinate of the second end portion S2 of the sample S. Z0 indicates the Z coordinates of the first and second ends S1 and S2 of the sample S. The first end S1 of the sample S is a fixed end and the second end S2 is a free end.
 図8では、X0,Z0を中心として第1の端部S1が回動する角度をθとすると、回動角度θは0rad以上π/2rad以下の範囲内で変化させることができる。回動角度θが0radからπ/2radに変化すると、第2の端部S2が第1の端部S1に向かって移動するため、サンプルSの曲げ角度が大きくなり、かつ、曲げ半径が小さくなる。回動角度θ=π/2radの状態で第2の端部S2がさらに第1の端部S1に向かって移動すると、サンプルSの曲げ半径がさらに小さくなる。その結果、第2の端部S2のX座標がX1→X2→・・・→X6の順に遷移するに伴い、サンプルSに印加される曲げ荷重は徐々に大きくなる。 In FIG. 8, assuming that the angle at which the first end S1 rotates around X0 and Z0 is θ, the rotation angle θ can be changed within the range of 0 rad or more and π / 2 rad or less. When the rotation angle θ changes from 0 rad to π / 2 rad, the second end S2 moves toward the first end S1, so that the bending angle of the sample S becomes large and the bending radius becomes small. .. When the second end portion S2 further moves toward the first end portion S1 in the state of the rotation angle θ = π / 2rad, the bending radius of the sample S becomes further smaller. As a result, as the X coordinate of the second end S2 transitions in the order of X1 → X2 → ... → X6, the bending load applied to the sample S gradually increases.
 図8に示すように、サンプルSの第2の端部S2(自由端)のX軸方向の移動に伴って、サンプルSの所定領域(曲げの中心部分を含む)における1点(図中の点R1)もX軸方向およびZ軸方向に移動する。点R1のX座標はX0に近づき、点R1のZ座標はZ0から離れる。 As shown in FIG. 8, one point (in the figure) in a predetermined region (including the central portion of bending) of the sample S as the second end S2 (free end) of the sample S moves in the X-axis direction. The point R1) also moves in the X-axis direction and the Z-axis direction. The X coordinate of the point R1 approaches X0, and the Z coordinate of the point R1 moves away from Z0.
 第2ドライバ42は、サンプルSの所定領域内の点R1の移動に応じて、カメラ40を移動させる。具体的には、第2ドライバ42は、カメラ40の位置(図中の点C)のX座標が点R1のX座標に一致するように、カメラ40をX軸方向に移動させる。図8の例では、サンプルSの第2の端部S2のX座標がX1→X2→・・・→X6の順に遷移すると、カメラ40の位置(点C)のX座標はX1/2→X2/2→・・・→X6/2の順に遷移する。 The second driver 42 moves the camera 40 according to the movement of the point R1 in the predetermined area of the sample S. Specifically, the second driver 42 moves the camera 40 in the X-axis direction so that the X coordinate of the position of the camera 40 (point C in the figure) matches the X coordinate of the point R1. In the example of FIG. 8, when the X coordinate of the second end S2 of the sample S transitions in the order of X1 → X2 → ... → X6, the X coordinate of the position (point C) of the camera 40 is X1 / 2 → X2. The transition is made in the order of / 2 → ... → X6 / 2.
 第2ドライバ42はまた、カメラ40の位置(点C)のZ座標とサンプルSの所定領域内の点R1のZ座標との間の距離Dが所定距離を保つように、カメラ40をZ軸方向に移動させる。図8の例では、サンプルSの第2の端部S2のX座標がX1→X2→・・・→X6の順に遷移すると、カメラ40の位置(点C)のZ座標はZ1→Z2→・・・→Z6の順に遷移する。所定距離は、カメラ40のフォーカス位置に応じて決められる。 The second driver 42 also aligns the camera 40 with the Z axis so that the distance D between the Z coordinate of the position (point C) of the camera 40 and the Z coordinate of the point R1 in the predetermined region of the sample S maintains a predetermined distance. Move in the direction. In the example of FIG. 8, when the X coordinate of the second end S2 of the sample S transitions in the order of X1 → X2 → ... → X6, the Z coordinate of the position (point C) of the camera 40 is Z1 → Z2 →.・ ・ Transitions in the order of → Z6. The predetermined distance is determined according to the focus position of the camera 40.
 このようにサンプルSへの曲げ荷重の印加時において、ホルダ10の移動に連動してカメラ40を移動させることにより、カメラ40のフォーカス位置を常にサンプルSの所定領域の点R1に合焦させることができる。したがって、サンプルSが所定の曲げ角度で曲げられているときに、カメラ40のフォーカス位置をサンプルSの所定領域の少なくとも1点に合焦させることができる。これにより、カメラ40は、所定の曲げ角度における所定領域の発光を精度良く撮像することができるため、当該所定領域に印加される曲げ荷重を精度良く測定することが可能となる。 By moving the camera 40 in conjunction with the movement of the holder 10 when the bending load is applied to the sample S in this way, the focus position of the camera 40 is always focused on the point R1 in the predetermined region of the sample S. Can be done. Therefore, when the sample S is bent at a predetermined bending angle, the focus position of the camera 40 can be focused on at least one point in the predetermined region of the sample S. As a result, the camera 40 can accurately image the light emission in the predetermined region at the predetermined bending angle, so that the bending load applied to the predetermined region can be accurately measured.
 なお、図8の例では、カメラ40のフォーカス位置を常にサンプルSの所定領域の点R1に合焦させる構成について説明したが、少なくとも所定の曲げ角度においてカメラ40のフォーカス位置をサンプルSの所定領域の点R1に合焦させる構成とすることで、所定の曲げ角度における所定領域の発光を精度良く撮像することができる。 In the example of FIG. 8, the configuration in which the focus position of the camera 40 is always focused on the point R1 of the predetermined region of the sample S has been described, but the focus position of the camera 40 is set to the predetermined region of the sample S at least at a predetermined bending angle. By setting the focus on the point R1, it is possible to accurately image the light emission in a predetermined region at a predetermined bending angle.
 (検査処理)
 次に、上述した応力発光測定を利用した検査処理について説明する。図9は、検査処理の手順を説明するフローチャートである。
(Inspection processing)
Next, an inspection process using the above-mentioned stress-stimulated luminescence measurement will be described. FIG. 9 is a flowchart illustrating the procedure of the inspection process.
 図9を参照して、最初にステップS10により、サンプルSとなるフレキシブルシートが準備される。さらにステップS10では、サンプルSの表面の各位置と、応力発光画像内の各位置との対応関係を取得するための処理が実行される。 With reference to FIG. 9, first, a flexible sheet to be a sample S is prepared by step S10. Further, in step S10, a process for acquiring the correspondence between each position on the surface of the sample S and each position in the stress-stimulated luminescent image is executed.
 この処理では、サンプルSの表面の各位置と、カメラ40による撮像画像内の各位置との対応関係が取得される。具体的には、応力発光測定装置100は、荷重印加機構を用いてサンプルSに荷重を印加し、荷重印加時のサンプルSの表面をカメラ40により撮像する。データ処理部56は、取得された撮像画像内の各位置と、サンプルSの表面の各位置との対応関係を取得する。 In this process, the correspondence between each position on the surface of the sample S and each position in the image captured by the camera 40 is acquired. Specifically, the stress luminescence measuring device 100 applies a load to the sample S using the load applying mechanism, and the surface of the sample S at the time of applying the load is imaged by the camera 40. The data processing unit 56 acquires the correspondence between each position in the acquired captured image and each position on the surface of the sample S.
 本実施の形態では、図8に示したように、ホルダ10を第1のホルダ位置から第2のホルダ位置に移動させる期間中、サンプルSは、伸ばされた状態から徐々に曲げられ、その曲げ角度および曲げ半径の少なくとも一方が徐々に変化する。このとき、曲げ角度および曲げ半径の変化とともにサンプルSの表面の各位置が移動するため、サンプルSの表面の各位置と撮像画像内の各位置との対応関係も徐々に変化することになる。 In the present embodiment, as shown in FIG. 8, during the period of moving the holder 10 from the first holder position to the second holder position, the sample S is gradually bent from the stretched state, and the bending thereof is performed. At least one of the angle and bending radius changes gradually. At this time, since each position on the surface of the sample S moves with the change in the bending angle and the bending radius, the correspondence between each position on the surface of the sample S and each position in the captured image gradually changes.
 コントローラ50は、曲げ荷重の印加時におけるサンプルSの表面の各位置と撮像画像内の各位置との対応関係を求め、求めた対応関係をメモリ502に格納する。例えば、コントローラ50は、サンプルSの曲げ角度および曲げ半径の組み合わせごとに、上記対応関係を表す関係式またはマップを導出し、導出した関係式またはマップをメモリ502に格納することができる。 The controller 50 obtains a correspondence between each position on the surface of the sample S and each position in the captured image when a bending load is applied, and stores the obtained correspondence in the memory 502. For example, the controller 50 can derive a relational expression or a map representing the corresponding relationship for each combination of the bending angle and the bending radius of the sample S, and can store the derived relational expression or the map in the memory 502.
 なお、上記対応関係を取得する処理は、同じ種類の複数のサンプルSに対して1回実施すれば足りる。導出した関係式またはマップをサンプルSの種類と対応づけてメモリ502に保存しておくことにより、同じ種類の複数のサンプルの間で関係式またはマップを共用することができる。 It is sufficient to perform the process of acquiring the above correspondence relationship once for a plurality of samples S of the same type. By storing the derived relational expression or map in the memory 502 in association with the type of sample S, the relational expression or map can be shared among a plurality of samples of the same type.
 ステップS10ではさらに、サンプルSの表面の所定領域に応力発光体MLが配置される。図7の例では、応力発光体MLは、例えば、フレキシブルシートと同程度のサイズの矩形形状を有している。応力発光体MLは、応力発光材料を含有する樹脂材料をサンプルSの表面の所定領域に塗布し、乾燥させることにより形成することができる。 In step S10, the stress-stimulated luminescent material ML is further arranged in a predetermined region on the surface of the sample S. In the example of FIG. 7, the stress-stimulated luminescent material ML has, for example, a rectangular shape having a size similar to that of a flexible sheet. The stress-stimulated luminescent material ML can be formed by applying a resin material containing the stress-stimulated luminescent material to a predetermined region on the surface of the sample S and drying it.
 ステップS20では、応力発光測定処理が実行される。図10は、応力発光測定処理の手順を説明するフローチャートである。図10を参照して、最初にステップS21により、サンプルSがホルダ10にセットされる。ホルダ10は、サンプルSの少なくとも2点を支持するように構成される。図2の例では、ホルダ10は、サンプルSの互いに対向する第1の端部S1および第2の端部S2を把持する。 In step S20, the stress luminescence measurement process is executed. FIG. 10 is a flowchart illustrating a procedure of stress luminescence measurement processing. With reference to FIG. 10, first, the sample S is set in the holder 10 by step S21. The holder 10 is configured to support at least two points of the sample S. In the example of FIG. 2, the holder 10 grips the first end S1 and the second end S2 of the sample S facing each other.
 ステップS22では、サンプルSの第1の面Saに対して、光源30から励起光が照射される。サンプルSの第1の面Saの所定領域に配置された応力発光体MLに励起光を照射することにより、応力発光体MLが励起状態とされる(図7(A)参照)。 In step S22, the first surface Sa of the sample S is irradiated with excitation light from the light source 30. By irradiating the stress-stimulated luminescent material ML arranged in a predetermined region of the first surface Sa of the sample S with excitation light, the stress-stimulated luminescent material ML is brought into an excited state (see FIG. 7A).
 ステップS23では、第1ドライバ20を駆動してホルダ10を第1のホルダ位置から第2のホルダ位置に移動させることにより、サンプルSが所定の曲げ角度で曲げられる。このとき、サンプルSおよび応力発光体MLには曲げ荷重が印加される。図2の例では、第1ドライバ20が有するアクチュエータ21を駆動することにより、ホルダ10の移動壁3を固定壁2に対して相対的に移動させる。ホルダ10の移動によってサンプルSの第1の端部S1および第2の端部S2間の距離を縮めることにより、サンプルSを所定の曲げ角度で曲げることができる。 In step S23, the sample S is bent at a predetermined bending angle by driving the first driver 20 to move the holder 10 from the first holder position to the second holder position. At this time, a bending load is applied to the sample S and the stress-stimulated luminescent material ML. In the example of FIG. 2, the moving wall 3 of the holder 10 is moved relative to the fixed wall 2 by driving the actuator 21 included in the first driver 20. The sample S can be bent at a predetermined bending angle by reducing the distance between the first end portion S1 and the second end portion S2 of the sample S by moving the holder 10.
 ステップS24では、コントローラ50は、少なくとも所定の曲げ角度において、サンプルSの第1の面Sa上の応力発光体MLの発光をカメラ40により撮像することにより、応力発光画像を取得する(図7(B)参照)。図11は、応力発光画像の一例を模式的に示す図である。応力発光画像300では、発光強度の強さが2次元平面上に明度で表現される。なお、応力発光画像300において、発光強度の強弱は、色度、彩度および明度の少なくとも1つによって表現されてもよい。図11では、発光強度の強弱を便宜的に異なるハッチングで描いている。そのため、応力発光画像300の右側に、発光強度に応じて割り当てられるハッチングの範囲を示すバーを示す。 In step S24, the controller 50 acquires a mechanoluminescent image by capturing the light emitted from the stress-stimulated luminescent material ML on the first surface Sa of the sample S by the camera 40 at least at a predetermined bending angle (FIG. 7 (FIG. 7). B) See). FIG. 11 is a diagram schematically showing an example of a stress-stimulated luminescent image. In the stress-stimulated luminescence image 300, the intensity of luminescence intensity is expressed by brightness on a two-dimensional plane. In the stress-stimulated luminescence image 300, the intensity of luminescence may be represented by at least one of chromaticity, saturation, and lightness. In FIG. 11, the intensity of light emission is drawn by different hatching for convenience. Therefore, on the right side of the stress-stimulated luminescence image 300, a bar indicating the range of hatching assigned according to the luminescence intensity is shown.
 図11に示すように、応力発光画像300には、応力発光パターンが、サンプルSの横方向(X軸方向)の中央部分(すなわち、曲げの中心部分)に縦方向(Y軸方向)に延びる帯状の形状となって現れる。この応力発光パターンは、サンプルSに発生するひずみと対応している。したがって、応力発光パターンを解析することにより、サンプルSの所定領域における2次元的な応力分布を可視化および定量化することが可能できる。具体的には、応力発光パターンのうち発光強度の大きい部分はひずみが大きい部分を示し、発光強度の小さい部分はひずみが小さい部分を示している。 As shown in FIG. 11, in the stress-stimulated luminescence image 300, the stress-stimulated luminescence pattern extends in the vertical direction (Y-axis direction) in the central portion (that is, the central portion of bending) in the lateral direction (X-axis direction) of the sample S. Appears in a band shape. This stress-stimulated luminescence pattern corresponds to the strain generated in the sample S. Therefore, by analyzing the stress-stimulated luminescence pattern, it is possible to visualize and quantify the two-dimensional stress distribution in a predetermined region of the sample S. Specifically, in the stress-stimulated luminescence pattern, a portion having a high emission intensity indicates a portion having a large strain, and a portion having a small emission intensity indicates a portion having a small strain.
 ステップS25では、コントローラ50は、カメラ40により撮像された応力発光画像をメモリ502に保存するとともに、ディスプレイ60(図2参照)に表示する。 In step S25, the controller 50 stores the mechanoluminescent image captured by the camera 40 in the memory 502 and displays it on the display 60 (see FIG. 2).
 図9に戻って、ステップS30では、サンプルSの検査箇所を特定する処理が実行される。図12は、検査箇所特定処理の手順を説明するフローチャートである。図12を参照して、最初にステップS31により、メモリ502に保存されている画像データを読み出すことにより、サンプルSの撮像画像が取得される。撮像画像は、少なくとも所定の曲げ角度における応力発光体MLの発光を撮像した応力発光画像を含んでいる。 Returning to FIG. 9, in step S30, a process of specifying the inspection location of the sample S is executed. FIG. 12 is a flowchart illustrating the procedure of the inspection location specifying process. With reference to FIG. 12, first, in step S31, the captured image of the sample S is acquired by reading out the image data stored in the memory 502. The captured image includes a stress-stimulated luminescent image that captures the emission of the stress-stimulated luminescent material ML at at least a predetermined bending angle.
 ステップS32では、サンプルSの撮像画像から、所定の曲げ角度のときの応力発光画像が抽出される。 In step S32, a stress-stimulated luminescent image at a predetermined bending angle is extracted from the captured image of the sample S.
 ステップS33では、抽出された応力発光画像に対するROIの情報が取得される。ROIは、ユーザ(例えば検査者)が操作部240を用いて手動で設定することができる。この場合、コントローラ50には、操作部24からROIの情報が入力される。あるいは、コントローラ50が、応力発光画像に現れる発光強度の分布に基づいて自動的にROIを設定することにより、ROIの情報を取得することも可能である。 In step S33, ROI information for the extracted stress-stimulated luminescent image is acquired. The ROI can be set manually by a user (for example, an inspector) using the operation unit 240. In this case, ROI information is input to the controller 50 from the operation unit 24. Alternatively, the controller 50 can acquire ROI information by automatically setting the ROI based on the distribution of the emission intensity appearing in the stress-stimulated luminescent image.
 例えば、応力発光画像内の発光強度の最も大きい部分(ひずみが最も大きい部分)をROIに設定することができる。 For example, the part with the highest emission intensity (the part with the largest strain) in the stress-stimulated luminescence image can be set to ROI.
 あるいは、正常品であるフレキシブルシートに曲げ荷重を印加したときの応力発光画像を基準発光画像に予め定めておき、サンプルSの応力発光画像のうち、基準発光画像に対して発光強度が異なる部分をROIに設定することができる。図13は、ROIの情報を取得する処理(図12のS33)の一例を手順を説明するフローチャートである。 Alternatively, a stress-stimulated luminescent image when a bending load is applied to a normal flexible sheet is set in advance as a reference luminescence image, and a portion of the stress luminescence image of sample S whose emission intensity is different from that of the reference luminescence image is defined. It can be set to ROI. FIG. 13 is a flowchart illustrating a procedure as an example of a process for acquiring ROI information (S33 in FIG. 12).
 図13を参照して、最初にステップS330により、基準発光画像に現れる発光強度分布に基づいて、応力発光画像の発光強度分布について閾値範囲が設定される。 With reference to FIG. 13, first, in step S330, a threshold range is set for the emission intensity distribution of the stress emission image based on the emission intensity distribution appearing in the reference emission image.
 次に、ステップS331により、基準発光画像とサンプルSの応力発光画像との間で発光強度分布が比較される。応力発光画像内の各位置について、基準発光画像の対応する位置の発光強度に対する発光強度の偏差が検出される。 Next, in step S331, the emission intensity distribution is compared between the reference emission image and the stress emission image of the sample S. For each position in the stress-stimulated luminescence image, a deviation in luminescence intensity from the luminescence intensity at the corresponding position in the reference luminescence image is detected.
 ステップS332では、応力発光画像内の各位置について、ステップS331にて検出された発光強度の偏差が閾値範囲内に収まっているか否かが判定される。応力発光画像内のいずれかの位置において、発光強度の偏差が閾値範囲を超えている場合(S332にてNO)、当該位置がROIに設定される。 In step S332, it is determined whether or not the deviation of the luminescence intensity detected in step S331 is within the threshold range for each position in the stress luminescence image. If the deviation of the emission intensity exceeds the threshold range at any position in the stress-stimulated luminescence image (NO in S332), that position is set to ROI.
 これによると、基準発光画像における発光強度分布と比較して、発光強度が増加している部分または、発光強度が低下している部分をROIに設定することができる。曲げ荷重の印加によって局所的な欠陥が生じた場合、欠陥の周辺部分に応力が集中することによって発光強度が増加する。そのため、応力発光画像では、基準発光画像と比較して発光強度分布が変化する。図13の例では、基準発光画像に対して発光強度が閾値範囲を超えて変化している部分がROIに設定されるため、当該部分を検査すべき箇所として特定することができる。その結果、欠陥部分に注目して効率良く検査することが可能となる。 According to this, the portion where the emission intensity is increased or the portion where the emission intensity is decreased can be set as the ROI as compared with the emission intensity distribution in the reference emission image. When a local defect is generated by applying a bending load, the emission intensity is increased by concentrating the stress on the peripheral portion of the defect. Therefore, in the stress-stimulated luminescence image, the emission intensity distribution changes as compared with the reference luminescence image. In the example of FIG. 13, since the portion where the emission intensity changes beyond the threshold range with respect to the reference emission image is set in the ROI, the portion can be specified as the portion to be inspected. As a result, it becomes possible to pay attention to the defective portion and inspect it efficiently.
 応力発光画像内にROIが設定されると、ステップS34により、サンプルSの検査箇所が特定される。具体的には、コントローラ50は、サンプルSを準備する処理(図9のS10)で取得されてメモリ502に格納されている、サンプルSの表面の各位置と、カメラ40による撮像画像内の各位置との対応関係を用いる。 When the ROI is set in the stress-stimulated luminescent image, the inspection location of the sample S is specified by step S34. Specifically, the controller 50 has each position on the surface of the sample S and each position in the image captured by the camera 40, which is acquired in the process of preparing the sample S (S10 in FIG. 9) and stored in the memory 502. Use the correspondence with the position.
 図11に示すように、撮像画像内の各位置Rは、X軸およびY軸からなる2次元平面上の座標(X,Y)で表される。一方、図13に示すように、サンプルSの表面の各位置Pは、サンプルSの四隅のうちの1つを原点Oとする2次元平面上の座標(X,Y)で表すことができる。 As shown in FIG. 11, each position R in the captured image is represented by coordinates (X, Y) on a two-dimensional plane consisting of an X axis and a Y axis. On the other hand, as shown in FIG. 13, each position P on the surface of the sample S can be represented by coordinates (X, Y) on a two-dimensional plane having one of the four corners of the sample S as the origin O.
 所定の曲げ角度でサンプルSが折り曲げられている状態において、サンプルSの表面の各位置Pに対応する撮像画像内の位置Rを特定することにより、対応関係を求めることができる。求められた対応関係は、関係式またはマップとしてメモリ502に格納される。コントローラ50は、メモリ502に格納されている当該対応関係を表す関係式またはマップを参照することにより、応力発光画像内のROIの位置R(X,Y)に基づいて、サンプルSの表面の検査箇所の位置P(X,Y)を算出する。 In a state where the sample S is bent at a predetermined bending angle, the correspondence relationship can be obtained by specifying the position R in the captured image corresponding to each position P on the surface of the sample S. The obtained correspondence is stored in the memory 502 as a relational expression or a map. The controller 50 inspects the surface of the sample S based on the position R (X, Y) of the ROI in the stress-stimulated luminescent image by referring to the relational expression or map representing the correspondence stored in the memory 502. The position P (X, Y) of the place is calculated.
 図12に戻って、ステップS35では、特定された検査箇所を識別するための検査箇所情報が生成され、生成された検査箇所情報が出力される。検査箇所情報は、算出された検査箇所の位置Pを示す座標(X,Y)を示す情報を含んでいる。コントローラ50は、検査箇所情報を示すデータを検査装置200へ送信する。さらに、コントローラ50は、検査箇所情報をディスプレイ60に表示させることができる。 Returning to FIG. 12, in step S35, inspection location information for identifying the specified inspection location is generated, and the generated inspection location information is output. The inspection location information includes information indicating coordinates (X, Y) indicating the calculated position P of the inspection location. The controller 50 transmits data indicating inspection location information to the inspection device 200. Further, the controller 50 can display the inspection location information on the display 60.
 図3に戻って、ステップS40では、検査装置200において、検査箇所情報により特定される検査箇所が観察される。検査箇所の観察は、観察装置210(例えば、顕微鏡またはカメラ)を用いて行なわれる。検査箇所を詳細に観察することにより、サンプルS内部で発生した微小な亀裂などの欠陥を検出することができる。 Returning to FIG. 3, in step S40, the inspection location specified by the inspection location information is observed in the inspection device 200. Observation of the inspection site is performed using an observation device 210 (for example, a microscope or a camera). By observing the inspection site in detail, defects such as minute cracks generated inside the sample S can be detected.
 [その他の構成例]
 (1)検査システム
 上述した実施の形態では、検査装置200と応力発光測定装置100とを別体する構成例について説明したが、応力発光測定装置100および検査装置200は一体的に構成されてもよい。
[Other configuration examples]
(1) Inspection System In the above-described embodiment, a configuration example in which the inspection device 200 and the mechanoluminescence measuring device 100 are separated has been described, but the mechanoluminescence measuring device 100 and the inspection device 200 may be integrally configured. good.
 図15は、本実施の形態の変更例に係る応力発光測定装置100の構成を示すブロック図である。図15を参照して、本変更例に係る応力発光測定装置100は、図2に示した応力発光測定装置100に対して、カメラ80および第4ドライバ82を追加したものである。以下では、図2と異なる部分についてのみ説明し、共通する部分については説明を繰り返さない。 FIG. 15 is a block diagram showing the configuration of the stress luminescence measuring device 100 according to the modified example of the present embodiment. With reference to FIG. 15, the mechanoluminescent measuring device 100 according to the modified example is the mechanoluminescent measuring device 100 shown in FIG. 2 with the camera 80 and the fourth driver 82 added. In the following, only the parts different from FIG. 2 will be described, and the common parts will not be repeated.
 カメラ80は、検査するステップ(図9のS40)において、サンプルSの検査箇所を撮像するように構成される。カメラ80は、レンズなどの光学系および撮像素子を含む。光学系は、サンプルSの検査箇所を詳細に観察することができる高倍率のレンズを有している。撮像素子は、光学系を介してサンプルSの第1の面Saから入射される光を電気信号に変換することによって撮像画像を生成する。カメラ80の撮像により生成された画像データはコントローラ50へ送信される。 The camera 80 is configured to take an image of the inspection portion of the sample S in the inspection step (S40 in FIG. 9). The camera 80 includes an optical system such as a lens and an image pickup device. The optical system has a high-magnification lens capable of observing the inspection portion of the sample S in detail. The image pickup device generates an image pickup image by converting the light incident from the first surface Sa of the sample S via the optical system into an electric signal. The image data generated by the image pickup of the camera 80 is transmitted to the controller 50.
 第4ドライバ82は、カメラ80のフォーカス位置を変更可能に構成される。第4ドライバ82は、コントローラ50から受ける指令に応じて、そのフォーカス位置がサンプルSの検査箇所に位置するようにカメラ80を移動させる。具体的には、コントローラ50は、サンプルSの表面の検査箇所の位置P(X,Y)にカメラ80のフォーカス位置を一致させるための制御指令を生成し、生成した制御指令を第4ドライバ82に出力する。第4ドライバ82は、制御指令に従ってカメラ80を移動させることにより、フォーカス位置を調整する。 The fourth driver 82 is configured so that the focus position of the camera 80 can be changed. The fourth driver 82 moves the camera 80 so that its focus position is located at the inspection point of the sample S in response to a command received from the controller 50. Specifically, the controller 50 generates a control command for matching the focus position of the camera 80 with the position P (X, Y) of the inspection point on the surface of the sample S, and the generated control command is used as the fourth driver 82. Output to. The fourth driver 82 adjusts the focus position by moving the camera 80 according to the control command.
 カメラ80による検査箇所の撮像が終了すると、第4ドライバ82は、カメラ80をサンプルSの表面から退避させる。 When the imaging of the inspection portion by the camera 80 is completed, the fourth driver 82 retracts the camera 80 from the surface of the sample S.
 (2)検査箇所情報
 上述した実施の形態では、検査箇所情報として、サンプルSの検査箇所の位置を示す座標情報を含むデータを生成する構成例について説明したが、検査箇所情報の形態はデータに限定されるものではない。
(2) Inspection point information In the above-described embodiment, a configuration example for generating data including coordinate information indicating the position of the inspection point of the sample S has been described as the inspection point information, but the form of the inspection point information is the data. Not limited.
 例えば、図16に示すように、サンプルSの表面の検査箇所に対して図形などのマーキングMを形成する構成としてもよい。マーキングMは、ユーザが手動で行なう構成としてもよいし、コントローラ50が図示しないマーカ装置を制御することにより、検査箇所に自動的にマーキングMが形成される構成としてもよい。 For example, as shown in FIG. 16, a marking M such as a figure may be formed on the inspection portion on the surface of the sample S. The marking M may be configured to be manually performed by the user, or may be configured such that the marking M is automatically formed at the inspection location by controlling a marker device (not shown) by the controller 50.
 本変更例によれば、マーキングMによって検査箇所を容易に特定することができる。また、検査装置200において、マーキングMを自動的に読み取って観察装置210の観察視野を調整する制御を行なう構成を採用することも可能である。これにより、効率的かつ適切な検査を実行することができる。 According to this modified example, the inspection location can be easily specified by the marking M. Further, it is also possible to adopt a configuration in which the inspection device 200 automatically reads the marking M to adjust the observation field of view of the observation device 210. This makes it possible to carry out an efficient and appropriate inspection.
 [態様]
 上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
[Aspect]
It will be understood by those skilled in the art that the plurality of exemplary embodiments described above are specific examples of the following embodiments.
 (第1項)一態様に係る検査方法は、応力発光体を含むサンプルが変形したときの応力発光画像を取得するステップと、応力発光画像の注目領域の情報を取得するステップと、応力発光画像内の注目領域の位置に基づいて、サンプルの表面の検査箇所を特定するステップと、特定した検査箇所を識別するための検査箇所情報を生成するステップとを備える。 (Clause 1) The inspection method according to one embodiment includes a step of acquiring a stress-stimulated luminescent image when a sample containing a stress-stimulated luminescent material is deformed, a step of acquiring information on a region of interest of the stress-stimulated luminescent image, and a stress-stimulated luminescent image. It comprises a step of identifying an inspection site on the surface of the sample based on the position of the region of interest within, and a step of generating inspection site information for identifying the identified inspection site.
 第1項に記載の検査方法によれば、サンプルが変形したときの応力発光画像に基づいてサンプル表面の検査箇所が特定され、特定された検査箇所を識別するための検査箇所情報が生成されるため、ユーザの目視による検査箇所を特定する作業を必要とせず、容易に検査箇所を特定することができる。また、応力発光画像内の注目領域を基に検査箇所が特定されることから、注目領域に対応するサンプルの部分を適切に観察することができる。その結果、ユーザは、効率良くかつ適切に検査を行なうことができる。 According to the inspection method described in paragraph 1, the inspection location on the sample surface is specified based on the stress-stimulated luminescent image when the sample is deformed, and inspection location information for identifying the identified inspection location is generated. Therefore, the inspection point can be easily specified without the need for the work of visually specifying the inspection point by the user. Further, since the inspection portion is specified based on the region of interest in the stress-stimulated luminescent image, the portion of the sample corresponding to the region of interest can be appropriately observed. As a result, the user can perform the inspection efficiently and appropriately.
 また、上記検査方法によれば、ユーザは、応力発光画像を用いて、サンプルが変形したときの2次元的な応力分布を非破壊の状態で観察することができるとともに、その応力分布のうちの特定された検査箇所を観察することにより、サンプルの状態(局所的な欠陥など)を詳細に検査することができる。これにより、ユーザは、荷重の印加によってサンプルが破壊に至るメカニズムを時系列で検証することが可能となる。 Further, according to the above inspection method, the user can observe the two-dimensional stress distribution when the sample is deformed in a non-destructive state by using the stress luminescence image, and among the stress distributions. By observing the identified inspection site, the condition of the sample (local defects, etc.) can be inspected in detail. This allows the user to verify in chronological order the mechanism by which the sample is destroyed by the application of the load.
 (第2項)第1項に記載の検査方法において、特定するステップは、サンプルの表面の各位置と応力発光画像内の各位置との対応関係を参照することにより、応力発光画像内の注目領域の位置に基づいて、サンプルの表面における検査箇所の位置を算出するステップを含む。 (Clause 2) In the inspection method described in paragraph 1, the step to specify is attention in the stress-stimulated luminescent image by referring to the correspondence between each position on the surface of the sample and each position in the stress-stimulated luminescent image. Includes the step of calculating the location of the inspection site on the surface of the sample based on the location of the region.
 これによると、応力発光画像内の注目領域に対応する位置に検査箇所が特定されるため、ユーザは、注目領域におけるサンプルの状態を効率良くかつ適切に観察することができる。 According to this, since the inspection point is specified at the position corresponding to the region of interest in the stress-stimulated luminescent image, the user can efficiently and appropriately observe the state of the sample in the region of interest.
 (第3項)第1項または第2項に記載の検査方法において、生成するステップは、検査箇所情報として、サンプルの表面における検査箇所の位置を示す座標情報を生成するステップを含む。検査方法は、生成した座標情報を示すデータを出力するステップをさらに備える。 (Clause 3) In the inspection method described in paragraph 1 or 2, the generated step includes, as inspection location information, a step of generating coordinate information indicating the position of the inspection location on the surface of the sample. The inspection method further comprises a step of outputting data indicating the generated coordinate information.
 これによると、検査箇所情報を示すデータを用いて、検査箇所を容易に特定することができる。また、当該データを用いて検査箇所の観察を効率良く行なうことができる。 According to this, the inspection location can be easily identified by using the data indicating the inspection location information. In addition, the data can be used to efficiently observe the inspection site.
 (第4項)第1項または第2項に記載の検査方法において、生成するステップは、検査箇所情報として、サンプルの表面における検査箇所の位置にマーキングを形成するステップを含む。 (Clause 4) In the inspection method according to paragraph 1 or 2, the generated step includes a step of forming a marking at the position of the inspection location on the surface of the sample as inspection location information.
 これによると、マーキングを用いて検査箇所を容易に特定することができる。また、当該マーキングを用いて検査箇所の観察を効率良く行なうことができる。 According to this, the inspection location can be easily identified using the marking. In addition, the marking can be used to efficiently observe the inspection site.
 (第5項)第1項から第4項に記載の検査方法において、設定するステップは、応力発光画像における発光強度の分布に基づいて、注目領域を設定するステップを含む。 (Clause 5) In the inspection method according to the first to fourth paragraphs, the setting step includes a step of setting a region of interest based on the distribution of the emission intensity in the stress-stimulated luminescent image.
 これによると、発光強度の分布を基に検査箇所が特定されることから、応力が異常な部分を適切に観察することができる。その結果、ユーザは、効率良くかつ適切に検査を行なうことができる。 According to this, since the inspection location is specified based on the distribution of emission intensity, it is possible to appropriately observe the portion where the stress is abnormal. As a result, the user can perform the inspection efficiently and appropriately.
 (第6項)第5項に記載の検査方法において、設定するステップは、基準となる発光強度の分布に対する、応力発光画像における発光強度の分布の偏差に基づいて、注目領域を設定するステップを含む。 (Clause 6) In the inspection method described in Section 5, the step to be set is a step of setting a region of interest based on the deviation of the emission intensity distribution in the stress-stimulated luminescent image with respect to the reference emission intensity distribution. include.
 これによると、基準となる発光強度の分布に対して発光強度が異なる部分が検査箇所として特定されることから、応力が異常な部分を適切に観察することができる。その結果、ユーザは、効率良くかつ適切に検査を行なうことができる。 According to this, the part where the emission intensity is different from the reference emission intensity distribution is specified as the inspection point, so that the part where the stress is abnormal can be appropriately observed. As a result, the user can perform the inspection efficiently and appropriately.
 (第7項)第1項から第6項に記載の検査方法は、検査箇所情報により特定される検査箇所を観察することにより、サンプルを検査するステップをさらに備える。 (Section 7) The inspection method according to paragraphs 1 to 6 further includes a step of inspecting a sample by observing the inspection location specified by the inspection location information.
 これによると、ユーザは、応力発光画像を用いて、サンプルに荷重を印加したときの2次元的な応力分布を非破壊の状態で観察することができるとともに、その応力分布のうちの特定された検査箇所を観察することにより、サンプルの状態(局所的な欠陥など)を詳細に検査することができる。その結果、ユーザは、荷重の印加によってサンプルが破壊に至るメカニズムを時系列で検証することが可能となる。 According to this, the user can observe the two-dimensional stress distribution when a load is applied to the sample in a non-destructive state by using the stress luminescence image, and the stress distribution is specified. By observing the inspection site, the condition of the sample (local defects, etc.) can be inspected in detail. As a result, the user can verify the mechanism by which the sample is destroyed by applying the load in chronological order.
 (第8項)第7項に記載の検査方法において、検査するステップは、検査箇所を顕微鏡により観察するステップを含む。 (Section 8) In the inspection method described in paragraph 7, the step of inspection includes a step of observing the inspection site with a microscope.
 これによると、特定された検査箇所の状態(局所的な欠陥など)を詳細に検査することができる。 According to this, the condition of the specified inspection site (local defects, etc.) can be inspected in detail.
 (第9項)第7項に記載の検査方法において、検査するステップは、検査箇所をカメラにより撮像するステップを含む。 (Section 9) In the inspection method described in paragraph 7, the inspection step includes a step of imaging the inspection site with a camera.
 これによると、特定された検査箇所の状態(局所的な欠陥など)を詳細に検査することができる。 According to this, the condition of the specified inspection site (local defects, etc.) can be inspected in detail.
 (第10項)一態様に係る検査システムは、複数のプロセッサと、メモリと、メモリに格納され、複数のプロセッサのうちの少なくとも1つのプロセッサによって実行される少なくとも1つのプログラムとを備える。少なくとも1つのプログラムは、応力発光体を含むサンプルが変形したときの応力発光画像を取得するステップと、応力発光画像の注目領域の情報を取得するステップと、応力発光画像内の注目領域の位置に基づいて、サンプルの検査箇所を特定するステップと、特定した検査箇所を識別するための検査箇所情報を生成するステップとを少なくとも1つのプロセッサに実行させる。 (Item 10) The inspection system according to one aspect includes a plurality of processors, a memory, and at least one program stored in the memory and executed by at least one processor among the plurality of processors. At least one program includes a step of acquiring a stress-stimulated luminescent image when a sample containing a stress-stimulated luminescent material is deformed, a step of acquiring information on a region of interest in the stress-stimulated luminescent image, and a step of acquiring information on the region of interest in the stress-stimulated luminescent image at the position of the region of interest in the stress-stimulated luminescent image. Based on this, at least one processor is made to perform a step of identifying the inspection location of the sample and a step of generating inspection location information for identifying the identified inspection location.
 第10項に記載の検査システムによれば、サンプルに荷重を印加したときの応力発光画像に基づいてサンプル表面の検査箇所が特定され、特定された検査箇所を識別するための検査箇所情報が生成されるため、ユーザの目視による検査箇所を特定する作業を必要とせず、容易に検査箇所を特定することができる。また、応力発光画像内の注目領域を基に検査箇所が特定されることから、注目領域に対応するサンプルの部分を適切に観察することができる。その結果、ユーザは、効率良くかつ適切に検査を行なうことができる。 According to the inspection system described in Section 10, the inspection location on the sample surface is specified based on the stress-stimulated luminescent image when a load is applied to the sample, and inspection location information for identifying the identified inspection location is generated. Therefore, it is not necessary to visually identify the inspection location by the user, and the inspection location can be easily identified. Further, since the inspection portion is specified based on the region of interest in the stress-stimulated luminescent image, the portion of the sample corresponding to the region of interest can be appropriately observed. As a result, the user can perform the inspection efficiently and appropriately.
 (第11項)第10項に記載の検査システムにおいて、少なくとも1つのプログラムは、検査箇所情報により特定される検査箇所を観察することにより、サンプルを検査するステップをさらに少なくとも1つのプロセッサに実行させる。 (Section 11) In the inspection system according to paragraph 10, at least one program causes at least one processor to perform a step of inspecting a sample by observing the inspection site specified by the inspection site information. ..
 これによると、ユーザは、応力発光画像を用いて、サンプルに荷重を印加したときの2次元的な応力分布を非破壊の状態で観察することができるとともに、その応力分布のうちの特定された検査箇所を観察することにより、サンプルの状態(局所的な欠陥など)を詳細に検査することができる。その結果、ユーザは、荷重の印加によってサンプルが破壊に至るメカニズムを時系列で検証することが可能となる。 According to this, the user can observe the two-dimensional stress distribution when a load is applied to the sample in a non-destructive state by using the stress luminescence image, and the stress distribution is specified. By observing the inspection site, the condition of the sample (local defects, etc.) can be inspected in detail. As a result, the user can verify the mechanism by which the sample is destroyed by applying the load in chronological order.
 (第12項)一態様に係る応力発光測定装置は、第1項から第9項に記載の検査方法を実行する。 (Section 12) The stress luminescence measuring device according to one aspect executes the inspection method according to paragraphs 1 to 9.
 第12項に記載の応力発光測定装置によれば、サンプルに荷重を印加したときの応力発光画像に基づいてサンプル表面の検査箇所が特定され、特定された検査箇所を識別するための検査箇所情報が生成されるため、ユーザの目視による検査箇所を特定する作業を必要とせず、容易に検査箇所を特定することができる。また、応力発光画像内の注目領域を基に検査箇所が特定されることから、注目領域に対応するサンプルの部分を適切に観察することができる。その結果、ユーザは、効率良くかつ適切に検査を行なうことができる。 According to the stress luminescence measuring device according to Item 12, the inspection location on the sample surface is specified based on the stress luminescence image when a load is applied to the sample, and the inspection location information for identifying the identified inspection location is specified. Is generated, so that it is not necessary to visually identify the inspection location by the user, and the inspection location can be easily specified. Further, since the inspection portion is specified based on the region of interest in the stress-stimulated luminescent image, the portion of the sample corresponding to the region of interest can be appropriately observed. As a result, the user can perform the inspection efficiently and appropriately.
 なお、上述した実施の形態および変更例について、明細書内で言及されていない組み合わせを含めて、不都合または矛盾が生じない範囲内で、実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。 At the time of filing, it is not necessary to appropriately combine the configurations described in the embodiments with respect to the above-described embodiments and modifications, including combinations not mentioned in the specification, within a range that does not cause any inconvenience or contradiction. Scheduled from.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1 フレーム、2 固定壁、3 移動壁、5,6 取付部、7,8 押え板、9 蝶番、10 ホルダ、12 板バネ、13 接続部、14 レール、15A,15B スライダ、16,17 バー、18 ブラケット、20 第1ドライバ、21 アクチュエータ、22,23 天板、30 光源、32 第3ドライバ、40,80 カメラ、42 第2ドライバ、50,220 コントローラ、51 応力制御部、52 光源制御部、53 撮像制御部、54 測定制御部、55 データ取得部、56 データ処理部、57 記憶部、58 出力部、60,230 ディスプレイ、70,240 操作部、82 第4ドライバ、100 応力発光測定装置、200 検査装置、210 観察装置、222,501 プロセッサ、224,502 メモリ、226,503 入出力I/F、228,504 通信I/F、300 応力発光画像、S サンプル、ML 応力発光体。 1 frame, 2 fixed wall, 3 moving wall, 5, 6 mounting part, 7, 8 holding plate, 9 hinge, 10 holder, 12 leaf spring, 13 connection part, 14 rail, 15A, 15B slider, 16, 17 bar, 18 bracket, 20 1st driver, 21 actuator, 22, 23 top plate, 30 light source, 32 3rd driver, 40, 80 camera, 42 2nd driver, 50, 220 controller, 51 stress control unit, 52 light source control unit, 53 Imaging control unit, 54 Measurement control unit, 55 Data acquisition unit, 56 Data processing unit, 57 Storage unit, 58 Output unit, 60, 230 display, 70, 240 Operation unit, 82 4th driver, 100 Mechanoluminescence measuring device, 200 inspection device, 210 observation device, 222,501 processor, 224,502 memory, 226,503 input / output I / F, 228,504 communication I / F, 300 mechanoluminescent image, S sample, ML mechanoluminescent body.

Claims (12)

  1.  応力発光体を含むサンプルが変形したときの応力発光画像を取得するステップと、
     前記応力発光画像の注目領域の情報を取得するステップと、
     前記応力発光画像内の前記注目領域の位置に基づいて、前記サンプルの表面の検査箇所を特定するステップと、
     特定した前記検査箇所を識別するための検査箇所情報を生成するステップとを備える、検査方法。
    Steps to acquire a stress-stimulated luminescent image when a sample containing a stress-stimulated luminescent material is deformed,
    The step of acquiring information on the region of interest of the stress-stimulated luminescent image,
    A step of identifying an inspection site on the surface of the sample based on the position of the region of interest in the stress-stimulated image.
    An inspection method comprising a step of generating inspection location information for identifying the identified inspection location.
  2.  前記特定するステップは、前記サンプルの前記表面の各位置と前記応力発光画像内の各位置との対応関係を参照することにより、前記応力発光画像内の前記注目領域の位置に基づいて、前記サンプルの前記表面における前記検査箇所の位置を算出するステップを含む、請求項1に記載の検査方法。 The identifying step is based on the position of the region of interest in the stress-stimulated image by referring to the correspondence between each position on the surface of the sample and each position in the stress-stimulated image. The inspection method according to claim 1, further comprising the step of calculating the position of the inspection site on the surface of the above.
  3.  前記生成するステップは、前記検査箇所情報として、前記サンプルの前記表面における前記検査箇所の位置を示す座標情報を生成するステップを含み、
     生成した前記座標情報を示すデータを出力するステップをさらに備える、請求項1または2に記載の検査方法。
    The generation step includes, as the inspection location information, a step of generating coordinate information indicating the position of the inspection location on the surface of the sample.
    The inspection method according to claim 1 or 2, further comprising a step of outputting data indicating the generated coordinate information.
  4.  前記生成するステップは、前記検査箇所情報として、前記サンプルの前記表面における前記検査箇所の位置にマーキングを形成するステップを含む、請求項1または2に記載の検査方法。 The inspection method according to claim 1 or 2, wherein the generated step includes, as the inspection location information, a step of forming a marking at the position of the inspection location on the surface of the sample.
  5.  前記設定するステップは、前記応力発光画像における発光強度の分布に基づいて、前記注目領域を設定するステップを含む、請求項1から4のいずれか1項に記載の検査方法。 The inspection method according to any one of claims 1 to 4, wherein the step to be set includes a step to set the region of interest based on the distribution of the emission intensity in the stress-stimulated luminescent image.
  6.  前記設定するステップは、基準となる発光強度の分布に対する、前記応力発光画像における発光強度の分布の偏差に基づいて、前記注目領域を設定するステップを含む、請求項5に記載の検査方法。 The inspection method according to claim 5, wherein the step to be set includes a step of setting the region of interest based on the deviation of the distribution of the emission intensity in the stress-stimulated luminescent image with respect to the distribution of the emission intensity as a reference.
  7.  前記検査箇所情報により特定される前記検査箇所を観察することにより、前記サンプルを検査するステップをさらに備える、請求項1から6のいずれか1項に記載の検査方法。 The inspection method according to any one of claims 1 to 6, further comprising a step of inspecting the sample by observing the inspection location specified by the inspection location information.
  8.  前記検査するステップは、前記検査箇所を顕微鏡により観察するステップを含む、請求項7に記載の検査方法。 The inspection method according to claim 7, wherein the inspection step includes a step of observing the inspection site with a microscope.
  9.  前記検査するステップは、前記検査箇所をカメラにより撮像するステップを含む、請求項7に記載の検査方法。 The inspection method according to claim 7, wherein the inspection step includes a step of photographing the inspection portion with a camera.
  10.  検査システムであって、
     複数のプロセッサと、
     メモリと、
     前記メモリに格納され、前記複数のプロセッサのうちの少なくとも1つのプロセッサによって実行される少なくとも1つのプログラムとを備え、
     前記少なくとも1つのプログラムは、
     応力発光体を含むサンプルが変形したときの応力発光画像を取得するステップと、
     前記応力発光画像の注目領域の情報を取得するステップと、
     前記応力発光画像内の前記注目領域の位置に基づいて、前記サンプルの検査箇所を特定するステップと、
     特定した前記検査箇所を識別するための検査箇所情報を生成するステップとを前記少なくとも1つのプロセッサに実行させる、検査システム。
    It ’s an inspection system,
    With multiple processors
    With memory
    It comprises at least one program stored in the memory and executed by at least one of the plurality of processors.
    The at least one program
    Steps to acquire a stress-stimulated luminescent image when a sample containing a stress-stimulated luminescent material is deformed,
    The step of acquiring information on the region of interest of the stress-stimulated luminescent image,
    A step of identifying the inspection site of the sample based on the position of the region of interest in the stress-stimulated luminescent image.
    An inspection system that causes at least one processor to perform a step of generating inspection location information for identifying the identified inspection location.
  11.  前記少なくとも1つのプログラムは、
     前記検査箇所情報により特定される前記検査箇所を観察することにより、前記サンプルを検査するステップをさらに前記少なくとも1つのプロセッサに実行させる、請求項10に記載の検査システム。
    The at least one program
    10. The inspection system of claim 10, wherein by observing the inspection location identified by the inspection location information, the step of inspecting the sample is further performed by the at least one processor.
  12.  請求項1から9のいずれか1項に記載の検査方法を実行する、応力発光測定装置。 A stress luminescence measuring device that executes the inspection method according to any one of claims 1 to 9.
PCT/JP2020/025749 2020-07-01 2020-07-01 Inspection method, inspection system, and stress luminescence measurement device WO2022003848A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/025749 WO2022003848A1 (en) 2020-07-01 2020-07-01 Inspection method, inspection system, and stress luminescence measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/025749 WO2022003848A1 (en) 2020-07-01 2020-07-01 Inspection method, inspection system, and stress luminescence measurement device

Publications (1)

Publication Number Publication Date
WO2022003848A1 true WO2022003848A1 (en) 2022-01-06

Family

ID=79314942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025749 WO2022003848A1 (en) 2020-07-01 2020-07-01 Inspection method, inspection system, and stress luminescence measurement device

Country Status (1)

Country Link
WO (1) WO2022003848A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284393A (en) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology Stress measurement system
JP2009092644A (en) * 2007-09-21 2009-04-30 National Institute Of Advanced Industrial & Technology Method and system for detecting defect of structure
CN101526453A (en) * 2009-04-20 2009-09-09 南京工业大学 Method for quantitatively measuring inhomogeneous deformation of nano-crystal material
US20160299046A1 (en) * 2014-09-25 2016-10-13 East China University Of Science And Technology A method of measurement and determination on fracture toughness of structural materials at high temperature
JP2016180637A (en) * 2015-03-24 2016-10-13 株式会社日立製作所 Defect inspection device and method
CN206311435U (en) * 2016-12-28 2017-07-07 华中科技大学 A kind of flexible electronic stretch-proof and warp resistance performance testing device
WO2019026753A1 (en) * 2017-07-31 2019-02-07 日東電工株式会社 Layered body for flexible image display device, and flexible image display device
WO2019130689A1 (en) * 2017-12-26 2019-07-04 国立研究開発法人産業技術総合研究所 Fracture-visualization sensor and fracture-visualization system using same
JP2020073863A (en) * 2017-03-09 2020-05-14 国立研究開発法人産業技術総合研究所 Crack tip end position detecting method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284393A (en) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology Stress measurement system
JP2009092644A (en) * 2007-09-21 2009-04-30 National Institute Of Advanced Industrial & Technology Method and system for detecting defect of structure
CN101526453A (en) * 2009-04-20 2009-09-09 南京工业大学 Method for quantitatively measuring inhomogeneous deformation of nano-crystal material
US20160299046A1 (en) * 2014-09-25 2016-10-13 East China University Of Science And Technology A method of measurement and determination on fracture toughness of structural materials at high temperature
JP2016180637A (en) * 2015-03-24 2016-10-13 株式会社日立製作所 Defect inspection device and method
CN206311435U (en) * 2016-12-28 2017-07-07 华中科技大学 A kind of flexible electronic stretch-proof and warp resistance performance testing device
JP2020073863A (en) * 2017-03-09 2020-05-14 国立研究開発法人産業技術総合研究所 Crack tip end position detecting method
WO2019026753A1 (en) * 2017-07-31 2019-02-07 日東電工株式会社 Layered body for flexible image display device, and flexible image display device
WO2019130689A1 (en) * 2017-12-26 2019-07-04 国立研究開発法人産業技術総合研究所 Fracture-visualization sensor and fracture-visualization system using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IZUMI, HAYATO: "183-1: Evaluation of bending deformation and fracture behaviour on multilayered thin film structure using mechanoluminescene", PROCEEDINGS OF THE 67TH TERM MEETING OF JSME TOKAI, 13 March 2018 (2018-03-13), JP , pages 722 - 723, XP009534325, ISSN: 2424-2748 *

Similar Documents

Publication Publication Date Title
US9111332B2 (en) Method and apparatus for hardness tester
US8566735B2 (en) Hardness tester with a user interface for setting test locations
CN103900919A (en) Hardness tester and method for hardness test
CN103123313B (en) Sclerometer and hardness measuring method
US9417171B2 (en) Hardness tester
US9032784B2 (en) Hardness tester for maintaining image resolution by using image clipping
JP5977556B2 (en) Hardness testing machine
US20210356400A1 (en) Stress luminescence measurement device and stress luminescence measurement method
JP5955716B2 (en) Hardness tester and hardness test method
CN105651598A (en) High-speed strain testing apparatus and high-speed strain testing method based on line scan camera
US8887558B2 (en) Hardness tester and testing method
JP2000180330A (en) Durometer
WO2022003848A1 (en) Inspection method, inspection system, and stress luminescence measurement device
JP7334664B2 (en) Mechanoluminescence measurement method and mechanoluminescence measurement device
CN106525624A (en) Hardness test apparatus and hardness testing method
JP2007033372A (en) Visual inspection device
WO2020230473A1 (en) Stress light-emission measuring device, stress light-emission measuring method, and stress light-emission measuring system
JP7099634B2 (en) Stress luminescence measuring device, stress luminescence measuring method and stress luminescence measuring system
JP2013242253A (en) Displacement measurement method and material testing machine
JP7332044B2 (en) Strain measuring device and strain measuring method
WO2021157656A1 (en) Method for inspecting flexible display installed product, method for manufacturing flexible display installed product, inspection system for flexible display installed product, and flexible display installed product
JP4616631B2 (en) Sample analyzer
JP2021004752A (en) Stress luminescence measuring device, stress luminescence measuring method, and stress luminescence measuring system
TWM445688U (en) Up and down alignment inspection system
JP2021004753A (en) Stress luminescence measuring device, stress luminescence measuring method, and stress luminescence measuring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP