WO2022003223A1 - Use of crystalline microporous zeolitic material with stw structure in hydrocarbon adsorption and separation processes - Google Patents

Use of crystalline microporous zeolitic material with stw structure in hydrocarbon adsorption and separation processes Download PDF

Info

Publication number
WO2022003223A1
WO2022003223A1 PCT/ES2021/070475 ES2021070475W WO2022003223A1 WO 2022003223 A1 WO2022003223 A1 WO 2022003223A1 ES 2021070475 W ES2021070475 W ES 2021070475W WO 2022003223 A1 WO2022003223 A1 WO 2022003223A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid component
component comprises
stw
branched
branches
Prior art date
Application number
PCT/ES2021/070475
Other languages
Spanish (es)
French (fr)
Inventor
Andres SALA GASCON
Eduardo PÉREZ BOTELLA
Susana Valencia Valencia
Avelino CORMA CANÓS
Fernando REY GARCÍA
Miguel Palomino Roca
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Universitat Politècnica De València
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Universitat Politècnica De València filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2022003223A1 publication Critical patent/WO2022003223A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • C10G25/03Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • C07C7/13Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers by molecular-sieve technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • B01D2253/1085Zeolites characterized by a silicon-aluminium ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons

Definitions

  • the present invention belongs to the technical field of microporous crystalline materials of a zeolitic nature, useful in the production of gasoline.
  • Gasoline is one of the most widely used fuels and is composed mainly of hydrocarbons from the C5-C10 fractions. Its combustion efficiency is evaluated based on the octane number, or octane number, which increases with the quality of the fuel.
  • Hydroisomerization of short chain linear paraffins is an effective method of obtaining higher octane components for gasoline blends.
  • the feedstock for this process is a refinery stream consisting mainly of linear normal paraffins of the C5 - C10 fractions.
  • Hydrogenation catalysts of highly active supported metals and hydrogen are required for the desired reactions to take place. The reaction is limited by chemical equilibrium, the use of low temperatures being preferable to minimize hydrocracking of the more reactive branched products (Pet. Sci. Technol. 2013, 31, 580-595; Energy & Fuels 2019, 33, 3828-3843 ; Coord. Chem. Rev. 2011, 255, 1558-1580).
  • T Si, Al
  • the presence of aluminum in coordination tetrahedral gives rise to the negative charge in the lattice, which is offset by extrareticular cationic species.
  • the atoms in the center of the tetrahedra are Si or Al
  • zeotypic materials with a wide range of compositions are known, including Ti, Ge, B, P, etc.
  • Zeolites can be classified structurally according to the opening of their channels, giving rise to zeolites with extra large, large, medium or small pores.
  • Small pore zeolites have channels with openings formed by rings of 8 tetrahedra (8-rings, 8R), while those with medium pores have 10R channels, large 12R and finally, extra large ones have channels with openings greater than 12R.
  • the small pore zeolite 5A was the first to be used and continues to be widely used industrially for the separation of linear and branched hydrocarbons, although other commercial zeolites with larger pore size have also been used, such as MFI type zeolites (ZSM -5 and silicalite-1) and FAU-type zeolites (X and Y zeolites) (Ch. 7, Zeolites and other adsorbents, in Nanoporous Materials for Gas Storage, Springer Singapore, Singapore, 2019, pp. 173-208). Small pore zeolites are effective in separating linear hydrocarbons from mono-, di-, and poly-branched hydrocarbons.
  • the separation of mono-branched hydrocarbons from multi-branched is the ideal objective, since this separation carried out after the hydroisomerization unit would enhance the efficiency of the process, allowing the obtaining of a raffinate enriched in multi-branched hydrocarbons of higher octane number.
  • the low octane compounds that is, the linear and monobranched hydrocarbons, would be recirculated together with the feed of the unit.
  • the structure of the STW zeolite is a medium-pore structure, containing 10R helical channels with openings of 5.2 c 5.7 ⁇ (minimum and maximum aperture, respectively) in one direction, interconnected perpendicularly by 8R windows of 3.0 c 4.4 ⁇ (J. Am. Chem. Soc. 2013, 135, 11975-11.
  • This invention patent describes the use of a purely siliceous zeolitic material with STW structure, which we will call Si-STW as an adsorbent that can act as a molecular sieve, surprisingly separating multi-branched hydrocarbons through the selective adsorption of linear molecules. and monobranches of a stream that contains them.
  • the selectivity in this case is observed both under thermodynamic and kinetic control conditions, since some of the multi-branched species are adsorbed on the Si-STW material in less quantity and at a lower adsorption rate than the linear and mono-branched isomers.
  • Si-STW material outperforms silicalite-1 both in selectivity and in adsorption capacity of linear or monobranched hydrocarbons.
  • the relative position of the branches allows differentiation of adsorption.
  • the Si-STW material because it is purely siliceous and does not contain trivalent elements in its composition, minimizes the formation of oligomers or other products derived from reactions of hydrocarbons adsorbed on acid centers that could lead to pore blocking.
  • the purely siliceous material is chemically and thermally more stable than materials of the same structure but different composition, such as germanosilicates. In this way, the material has a longer life time than others of different composition.
  • the Si-STW material is a medium-pore zeolite containing 10R helical channels with 5.2 c 5.7 ⁇ openings in one direction, interconnected perpendicularly by 3.0 c 4.4 ⁇ 8R windows.
  • a microporous crystalline material of a zeolitic nature and STW structure in processes for the separation of hydrocarbons present in the outlet stream of a naphtha hydroisomerization unit, more specifically for the separation of allenes from the linear C5-C10 fractions and monobranches of multibranches.
  • This zeolite also allows the separation of linear and monobranched from multibranched olefins.
  • the present invention refers to a process for the separation of hydrocarbon fluids that comprises, at least, the following steps:
  • Si-STW zeolite is characterized by its adsorption capacities in thermodynamic equilibrium and considerably different adsorption rates for linear, monobranched and multibranched alloys with between five and ten carbons, such as 2-methylbutane and 2,2-dimethylpropane, between others, which makes their separation possible.
  • the equilibrium condition is reached when the amount of adsorbate does not increase with time at fixed conditions of adsorbate pressure and temperature.
  • the efficiency or thermodynamic selectivity (c3 ⁇ 4) of an adsorbent in separation processes is determined from the value of the quotient of the adsorption capacities of the products to be separated under equilibrium conditions.
  • the efficiency or kinetic selectivity (a c ) of an adsorbent in a separation process is determined from the value of the quotient of the diffusion time constants determined from adsorption rate experiments and the fitting of the resulting curves by means of a appropriate model (Ch. 6, Sorption Kinetics, in Diffusion in Nanoporous Materials (eds J. Kárger, DM Ruthven and DN Theodorou), 2012, pp. 143-189).
  • the zeolites have high values of thermodynamic or kinetic selectivity and high adsorption capacities.
  • step (d) of recovering the adsorbed product comprises, at least, (a) modifying at least the temperature or pressure of the adsorbent, (b) putting the adsorbent containing the Si-STW zeolitic material with a third fluid component (carrier gas), of which at least a fraction is adsorbed by the adsorbent containing the Si-STW zeolitic material or (c) a combination of the above.
  • a third fluid component carrier gas
  • the hydrocarbon separation process described above is preferably carried out using oscillation adsorption techniques (generally known as “Swing Adsorption” techniques), by contacting the inlet stream with an adsorbent (comprising a certain amount of Si-STW zeolite) in a swing adsorption bed, more specifically under pressure swing adsorption conditions (pressure drop generally called “Pressure Swing Adsorption”), or under temperature swing adsorption conditions ( increase of temperature, generally referred to as “Temperature Swing Adsorption”), or a combination of the above.
  • Swing Adsorption oscillation adsorption
  • the multi-branched compounds especially those having quaternary carbons, which are excluded.
  • the hydrocarbon mixture and the Si-STW (adsorbent) zeolite are kept in contact for a certain time to ensure that the adsorption process of linear and monobranched compounds takes place and, finally, the hydrocarbon mixture that has not been adsorbed is withdraw.
  • the fraction adsorbed on the zeolite is recovered by means of techniques such as entrainment with another gas, increasing the temperature (adsorption by temperature oscillation, generally called “Temperature Swing Adsorption”), pressure decrease (adsorption by pressure oscillation , generally referred to as “Pressure Swing Adsorption”) or a combination of the above methods.
  • the hydrocarbon input stream according to the present invention is composed of hydrocarbons of the C5-C10 fractions.
  • the process described in the present invention can be carried out at a temperature between 0 and 200 ° C, preferably between 0 and 100 ° C, more preferably between 0 ° C and 60 ° C and at a hydrocarbon partial pressure between 0.0001 and 10 bar, preferably between 0.0001 and 5 bar, more preferably between 0.0001 and 1 bar.
  • composition of the hydrocarbon mixture is important for the process.
  • the first fluid component comprises paraffins and definitions that can be linear, monobranched, multibranched or combinations thereof.
  • the first fluid component comprises monobranched, multibranched paraffins and definines or combinations of the foregoing, the branches present being methyl groups.
  • the first fluid component comprises linear paraffins, monobranched, multibranched, or combinations of the above.
  • the first fluid component comprises monobranched, multibranched paraffins or combinations of the foregoing, the branches present being methyl groups.
  • the first fluid component comprises linear, monobranched, multibranched or combinations of the foregoing.
  • the first fluid component comprises monobranched, multibranched or combinations of the foregoing, the branches present being methyl groups.
  • the multi-branched hydrocarbons of the first fluid component preferably have 3 or fewer branches.
  • the multi-branched hydrocarbons of the first fluid component do not have quaternary carbons.
  • the multi-branched hydrocarbons of the first component have branches that are at chain distances greater than 2 carbons.
  • the second fluid component comprises paraffins and definines that can be monobranched, multibranched or combinations of the above.
  • the second fluid component comprises monobranched paraffins and definines, the branches being groups that include more than one carbon, such as, for example, ethyl, 1-propyl or 2-propyl.
  • the second fluid component comprises multibranched paraffins and definitions, at least one of the branches being a group that includes more than one carbon.
  • the second fluid component comprises paraffins and multi-branched defined having at least one quaternary carbon.
  • the second fluid component comprises multi-branched paraffins and definitions whose branches are at chain distances less than (n-5), where n is the total number of carbons in the molecule.
  • the second fluid component comprises monobranched, multibranched paraffins or combinations of the foregoing.
  • the second fluid component comprises monobranched paraffins, the branches being groups that include more than one carbon.
  • the second fluid component comprises multi-branched paraffins, at least one of the branches being a group that includes more than one carbon.
  • the second fluid component comprises multi-branched paraffins having at least one quaternary carbon.
  • the second fluid component comprises multi-branched paraffins whose branches are at chain distances less than (n-5), where n is the total carbon number of the molecule.
  • the second fluid component comprises single-branched, multi-branched or combinations of the foregoing.
  • the second fluid component comprises monobranched definitions, the branches being groups that include more than one carbon.
  • the second fluid component comprises multibranched definitions, at least one of the branches being a group that includes more than one carbon.
  • the second fluid component comprises multibranched definitions that have at least one quaternary carbon.
  • the second fluid component comprises multibranched definitions whose branches are at chain distances less than (n-5), where n is the total number of carbons in the molecule.
  • the inlet stream is brought into contact with the adsorbent containing the Si-STW zeolitic material under suitable conditions to carry out a separation of the first fluid component under kinetic control, or in the which the inlet stream is brought into contact with the adsorbent containing the Si-STW zeolitic material under suitable conditions to carry out a separation of the first fluid component under thermodynamic control, or a combination of the above.
  • n-pentane is preferentially adsorbed and 2,2-dimethylpropane is not preferentially adsorbed.
  • 2-methylbutane is preferentially adsorbed and 2,2-dimethylpropane is not preferentially adsorbed.
  • n-hexane is preferentially adsorbed and 2,2-dimethylbutane is not preferentially adsorbed.
  • 2-methylpentane is preferentially adsorbed and 2,2-dimethylbutane is not preferentially adsorbed.
  • 3-methylpentane is preferentially adsorbed and 2,2-dimethylbutane is not preferentially adsorbed.
  • 2,3-dimethylbutane is preferentially adsorbed and 2,2-dimethylbutane is not preferentially adsorbed.
  • 1-hexene is preferentially adsorbed and 3,3-dimethyl-1-butene is not preferentially adsorbed.
  • 4-methyl-1-pentene is preferentially adsorbed and 3,3-dimethyl-1-butene is not preferentially adsorbed.
  • n-heptane is preferentially adsorbed and 2,2-dimethylpentane is not preferentially adsorbed.
  • n-heptane is preferentially adsorbed and 2,3-dimethylpentane is not preferentially adsorbed.
  • n-heptane is preferentially adsorbed and 3,3-dimethylpentane is not preferentially adsorbed.
  • 2-methylhexane is preferentially adsorbed and 2,2-dimethylpentane is not preferentially adsorbed.
  • 2-methylhexane is preferentially adsorbed and 2,3-dimethylpentane is not preferentially adsorbed.
  • 2-methylhexane is preferentially adsorbed and 3,3-dimethylpentane is not preferentially adsorbed.
  • 3-methylhexane is preferentially adsorbed and 2,2-dimethylpentane is not preferentially adsorbed.
  • 3-methylhexane is preferentially adsorbed and 2,3-dimethylpentane is not preferentially adsorbed.
  • 3-methylhexane is preferentially adsorbed and 3,3-dimethylpentane is not preferentially adsorbed.
  • 2,4-dimethylpentane is preferentially adsorbed and 2,2-dimethylpentane is not preferentially adsorbed.
  • 2,4-dimethylpentane is preferentially adsorbed and 2,3-dimethylpentane is not preferentially adsorbed.
  • 2,4-dimethylpentane is preferentially adsorbed and 3,3-dimethylpentane is not preferentially adsorbed.
  • 2,3-dimethylpentane is preferentially adsorbed and 2,2-dimethylpentane is not preferentially adsorbed.
  • 2,3-dimethylpentane is preferentially adsorbed and 3,3-dimethylpentane is not preferentially adsorbed.
  • 1-heptene is preferentially adsorbed and 4,4-dimethyl-1-pentene is not preferentially adsorbed.
  • 2,3-dimethylbutane is preferentially adsorbed and 2,3-dimethylpentane is not preferentially adsorbed.
  • n-pentane adsorbs faster than 2,2-dimethylpropane at low pressure.
  • 2-methylbutane adsorbs faster than 2,2-dimethylpropane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
  • n-hexane adsorbs faster than 2,2-dimethylbutane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 2-methylpentane adsorbs faster than 2,2-dimethylbutane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 3-methylpentane adsorbs faster than 2,2-dimethylbutane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 2,3-dimethylbutane adsorbs faster than 2,2-dimethylbutane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 1-hexene adsorbs faster than 3,3-dimethyl-1-butene at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 4-methyl-1-pentene adsorbs faster than 3,3-dimethyl-1-butene at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
  • n-heptane adsorbs faster than 2,2-dimethylpentane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
  • n-heptane adsorbs faster than 2,3-dimethylpentane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
  • n-heptane adsorbs faster than 3,3-dimethylpentane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 2-methylhexane adsorbs faster than 2,2-dimethylpentane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 2-methylhexane adsorbs faster than 2,3-dimethylpentane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 2-methylhexane adsorbs faster than 3,3-dimethylpentane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 3-methylhexane adsorbs faster than 2,2-dimethylpentane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity. According to another particular embodiment, 3-methylhexane adsorbs faster than 2,3-dimethylpentane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 3-methylhexane adsorbs faster than 3,3-dimethylpentane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 2,4-dimethylpentane is adsorbed faster than
  • 2,4-dimethylpentane is adsorbed faster than
  • 2,4-dimethylpentane is adsorbed faster than
  • 2,3-dimethylpentane is adsorbed faster than
  • 2,3-dimethylpentane is adsorbed faster than
  • 1-heptene adsorbs faster than 4,4-dimethyl-1-pentene at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 2,3-dimethylbutane adsorbs faster than 2,3-dimethylpentane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
  • n-pentane adsorbs faster than 2,2-dimethylpropane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 2-methylbutane adsorbs faster than 2,2-dimethylpropane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
  • n-hexane adsorbs faster than 2,2-dimethylbutane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 2-methylpentane adsorbs faster than 2,2-dimethylbutane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 3-methylpentane adsorbs faster than 2,2-dimethylbutane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 2,3-dimethylbutane adsorbs faster than 2,2-dimethylbutane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 1-hexene adsorbs faster than 3,3-dimethyl-1-butene at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 4-methyl-1-pentene adsorbs faster than 3,3-dimethyl-1-butene at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
  • n-heptane adsorbs faster than 2,2-dimethylpentane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity. According to another particular embodiment, n-heptane adsorbs faster than 2,3-dimethylpentane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
  • n-heptane adsorbs faster than 3,3-dimethylpentane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 2-methylhexane adsorbs faster than 2,2-dimethylpentane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 2-methylhexane adsorbs faster than 2,3-dimethylpentane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 2-methylhexane adsorbs faster than 3,3-dimethylpentane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 3-methylhexane adsorbs faster than 2,2-dimethylpentane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 3-methylhexane adsorbs faster than 2,3-dimethylpentane at pressures above 50% of the pressure necessary to achieve the maximum adsorption capacity.
  • 3-methylhexane adsorbs faster than 3,3-dimethylpentane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 2,4-dimethylpentane adsorbs faster than 2,2-dimethylpentane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity. According to another particular embodiment, 2,4-dimethylpentane is adsorbed faster than
  • 2,4-dimethylpentane is adsorbed faster than
  • 2,3-dimethylpentane is adsorbed faster than
  • 2,3-dimethylpentane is adsorbed faster than
  • 1-heptene adsorbs faster than 4,4-dimethyl-1-pentene at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
  • 2,3-dimethylbutane adsorbs faster than 2,3-dimethylpentane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
  • the Si-STW zeolite has considerably different capacities and adsorption rates for hydrocarbons in the gasoline range, depending on the number and relative position of its branches.
  • the kinetic and thermodynamic selectivities favor the adsorption of linear and mono-branched compounds over multi-branched ones.
  • the adsorption preference decreases as the substituents are closer to each other, being the compounds that present quaternary carbons the most thermodynamically and kinetically disadvantaged. Therefore, Si-STW zeolite is a very suitable adsorbent to carry out hydrocarbon separation processes at the outlet of a hydroisomerization unit.
  • the separation process of this invention comprises the use of oscillation adsorption techniques (generally known as "Swing Adsorption” techniques).
  • Swing Adsorption oscillation adsorption techniques
  • the hydrocarbon mixture and the Si-STW zeolite are kept in contact for a certain time to ensure that the adsorption process of linear and monobranched compounds takes place and, finally, the hydrocarbon mixture that has not been adsorbed is removed.
  • the fraction adsorbed on the zeolite is recovered by means of techniques such as entrainment with another gas, increasing the temperature (adsorption by temperature oscillation, generally called “Temperature Swing Adsorption”), pressure decrease (adsorption by pressure oscillation , generally referred to as “Pressure Swing Adsorption”) or a combination of the above methods.
  • This separation process can also be carried out in columns, in which case different hydrocarbon fronts are obtained depending on whether they are more or less strongly retained and also according to their adsorption speed on the Si-STW zeolite bed.
  • FIG. 1 Adsorption isotherms of compounds of fraction C5 in Si-STW.
  • Figure 4 Adsorption kinetics at 25 ° C and 1 mbar.
  • Figure 5 adsorption kinetics at 25 ° C and 300, 150 or 50 mbar, depending on whether the compound belongs to the C5, C6 or C7 fractions, respectively.
  • Example 1 Preparation of the directing agent of the structure (ADE) for the subsequent synthesis of the Si-STW material.
  • 1,2-Dimethylimidazole (16.64 g, 0.168 mol) was dissolved in ethanol (50 i) and 1,4-dibromobutane (8.00 ml, 0.067 mol) was added. The mixture was kept under stirring at 70 ° C for 72 h. The product was filtered off, washed with ether, and dried in vacuo (26.47 g, 97%).
  • the bromide salt of ADE was finally converted to the hydroxide form by ion exchange with Amberlite-IRN-78 (OH) and the corresponding hydroxide concentration was determined by titration using phenolphthalein as a pH indicator.
  • the Si-STW material was hydrothermally synthesized. Specifically, tetraethylorthorsilicate (4.17 g, 20 mmol), a hydroxide solution of ADE (OH) 2 (42.00 g, 3.36 wt%, 5 mmol) and hydrofluoric acid (50 wt%, 10 mmol) were mixed and the mixture was homogenized to form a gel with the following molar composition:
  • the mixture was distributed in Teflon tubes that were placed in stainless steel autoclaves and heated at 175 ° C for 7 days with rotation (60 rpm). After this time, the autoclaves were cooled and the solid was filtered, washed with deionized water and dried at 100 ° C. The zeolite was calcined in air at 550 ° C for five hours in order to remove the entrapped organic.
  • the measurement of the adsorption capacity of n-pentane in the Si-STW material, prepared according to Example 2 at 25 ° C and 300 mbar corresponds to 2.17 mmol / g.
  • the value obtained after 50 adsorption / desorption cycles with this and other compounds remains the same, which shows that the Si-STW material retains its adsorption capacity.
  • the diffusion time constant calculated from an adsorption kinetic experiment is of the order of 3-10 3 s _1 .
  • Example 4 Adsorption of 2-methylbutane at 300 mbar on the Si-STW material at 25 ° C.
  • the measurement of the pentane adsorption capacity in the Si-STW material, prepared according to Example 2 at 25 ° C and 300 mbar corresponds to 1.70 mmol / g.
  • the diffusion time constant calculated from an adsorption kinetic experiment is of the order of 2-10 3 s -1 .
  • Example 5 Adsorption of 2,2-dimethylpropane at 300 mbar on the Si-STW material at 25 ° C.
  • the measurement of the adsorption capacity of 2,2-dimethylpropane on the Si-STW material, prepared according to Example 2 at 25 ° C and 300 mbar corresponds to 1.22 mmol / g.
  • the diffusion time constant calculated from an adsorption kinetic experiment is of the order of 2-10 5 s- 1 .
  • the measurement of the adsorption capacity of n-hexane on the Si-STW material, prepared according to Example 2 at 25 ° C and 150 mbar corresponds to 1.77 mmol / g.
  • the diffusion time constant calculated from an adsorption kinetic experiment is of the order of 2-10 3 s _1 .
  • Example 7 Adsorption of 2-methylpentane at 150 mbar on the Si-STW material at 25 ° C.
  • the measurement of the adsorption capacity of 2-methylpentane on the Si-STW material, prepared according to Example 2 at 25 ° C and 150 mbar corresponds to 1.66 mmol / g.
  • the diffusion time constant calculated from a kinetic adsorption experiment is of the order of 2-10 3 s _
  • Example 8 Adsorption of 2,2-dimethylbutane at 300 mbar on the Si-STW material at 25 ° C.
  • the measurement of the adsorption capacity of 2,2-dimethylbutane on the Si-STW material, prepared according to Example 2 at 25 ° C and 150 mbar corresponds to 1.00 mmol / g.
  • the diffusion time constant calculated from a kinetic adsorption experiment is of the order of 3-10- 6 s- 1 .
  • Example 9 Adsorption of 2,3-dimethylbutane at 150 mbar on the Si-STW material at 25 ° C.
  • the measurement of the adsorption capacity of 2,3-dimethylbutane on the Si-STW material, prepared according to Example 2 at 25 ° C and 150 mbar corresponds to 1.64 mmol / g.
  • the diffusion time constant calculated from an adsorption kinetic experiment is of the order of 1 10 5 s- 1 .
  • Example 10 Adsorption of 1-hexene at 150 mbar on the Si-STW material at 25 ° C.
  • the measurement of the adsorption capacity of 1-hexene on the Si-STW material, prepared according to Example 2 at 25 ° C and 150 mbar corresponds to 1.80 mmol / g.
  • the diffusion time constant calculated from an adsorption kinetic experiment is of the order of 2-10 3 s -1 .
  • Example 11 Adsorption of 4-methyl-1-pentene at 150 mbar on the Si-STW material at 25 ° C.
  • the measurement of the adsorption capacity of 4-methyl-1-pentene on the Si-STW material, prepared according to Example 2 at 25 ° C and 150 mbar corresponds to 1.67 mmol / g.
  • the diffusion time constant calculated from an adsorption kinetic experiment is of the order of 2-10 3 s- 1 .
  • the measure of the adsorption capacity of 3,3-dimethyl-1-butene in the Si-STW material, prepared according to Example 2 at 25 ° C and 150 mbar is greater than 1.0 mmol / g, but the slowness of the process of adsorption prevents determining the maximum capacity accurately.
  • the diffusion time constant calculated from a kinetic adsorption experiment is of the order of 5-10- 6 s- 1 .
  • the measurement of the adsorption capacity of n-heptane in the Si-STW material, prepared according to Example 2 at 25 ° C and 50 mbar corresponds to 1.70 mmol / g.
  • the diffusion time constant calculated from an adsorption kinetic experiment is of the order of 2- 10 3 s -1 .
  • Example 14 Adsorption of 3-methylhexane at 50 mbar on the Si-STW material at 25 ° C.
  • the measurement of the adsorption capacity of 3-methylhexane on the Si-STW material, prepared according to Example 2 at 25 ° C and 50 mbar corresponds to 1.64 mmol / g.
  • the diffusion time constant calculated from an adsorption kinetic experiment is of the order of 2-10 3 s _1 .
  • Example 15 Adsorption of 2,3-dimethylpentane at 50 mbar on the Si-STW material at 25 ° C.
  • the measurement of the adsorption capacity of 2,3-dimethylpentane on the Si-STW material, prepared according to Example 2 at 25 ° C and 50 mbar is greater than 1.0 mmol / g, but the slowness of the adsorption process makes it impossible to determine the maximum capacity accurately.
  • the diffusion time constant calculated from an adsorption kinetic experiment is less than 5-10- 6 s- 1 .
  • Example 16 Adsorption of 2,4-dimethylpentane at 50 mbar on the Si-STW material at 25 ° C.
  • the measurement of the adsorption capacity of 2,4-dimethylpentane on the Si-STW material, prepared according to Example 2 at 25 ° C and 50 mbar is greater than 1.60 mmol / g, but the slowness of the adsorption process makes it impossible to determine the maximum capacity accurately.
  • the diffusion time constant calculated from an adsorption kinetic experiment is less than 2 -10 -3 s 1 .
  • Example 17 Adsorption of 1-heptene at 50 mbar on the Si-STW material at 25 ° C.
  • the measurement of the adsorption capacity of 1-heptene on the Si-STW material, prepared according to Example 2 at 25 ° C and 50 mbar corresponds to 1.73 mmol / g.
  • the diffusion time constant calculated from an adsorption kinetic experiment is of the order of 2-10 3 s _1 .
  • Example 18 Adsorption of 4,4-dimethyl-1-pentene at 50 mbar on the Si-STW material at 25 ° C.
  • the measurement of the adsorption capacity of 4,4-dimethyl-1-pentene in the Si-STW material, prepared according to Example 2 at 25 ° C and 50 mbar is greater than 0.9 mmol / g, but the slowness of the process of adsorption prevents determining the maximum capacity accurately.
  • the diffusion time constant calculated from a kinetic adsorption experiment is less than 3- 10- 6 s- 1 .

Abstract

The present invention describes the use of purely siliceous zeolite with an STW structure in processes of adsorption and separation of gasoline-range hydrocarbons.

Description

DESCRIPCIÓN DESCRIPTION
USO DEL MATERIAL CRISTALINO MICROPOROSO DE NATURALEZA ZEOLÍTICA CON ESTRUCTURA STW EN PROCESOS DE ADSORCIÓN Y SEPARACIÓN DEUSE OF MICROPOROUS CRYSTAL MATERIAL OF ZEOLITHIC NATURE WITH STW STRUCTURE IN PROCESSES OF ADSORPTION AND SEPARATION OF
HIDROCARBUROS HYDROCARBONS
CAMPO TÉCNICO DE LA INVENCIÓN TECHNICAL FIELD OF THE INVENTION
La presente invención pertenece al campo técnico de los materiales cristalinos microporosos de naturaleza zeolítica, útiles en la producción de gasolina. The present invention belongs to the technical field of microporous crystalline materials of a zeolitic nature, useful in the production of gasoline.
ESTADO DE LA TÉCNICA ANTERIOR A LA INVENCIÓN STATE OF THE ART PRIOR TO THE INVENTION
La gasolina es uno de los combustibles más ampliamente utilizados y está compuesta principalmente por hidrocarburos de las fracciones C5-C10. Su eficiencia en la combustión se evalúa según el número de octano, u octanaje, que aumenta con la calidad del combustible. Gasoline is one of the most widely used fuels and is composed mainly of hydrocarbons from the C5-C10 fractions. Its combustion efficiency is evaluated based on the octane number, or octane number, which increases with the quality of the fuel.
La hidroisomerización de parafinas lineales de cadena corta es un método efectivo para obtener componentes de mayor octanaje para la mezcla de gasolina. La materia prima de este proceso es una corriente de refinería que consiste principalmente en parafinas normales lineales de las fracciones C5 - C10. Se requieren catalizadores de hidrogenación de metales soportados altamente activos e hidrógeno para que tengan lugar las reacciones deseadas. La reacción está limitada por equilibrio químico, siendo preferible el empleo de bajas temperaturas para minimizar el hidrocraqueo de los productos ramificados más reactivos (Pet. Sci. Technol. 2013, 31 , 580-595; Energy & Fuels 2019, 33, 3828-3843; Coord. Chem. Rev. 2011, 255, 1558-1580). La separación de los productos multirramificados del efluente y el reciclaje de los lineales y monorramificados es otra forma de maximizar el rendimiento y la productividad de la unidad (Advanced Solutions for Paraffins Isomerization, Washington, DC, 2004; Angew. Chemie - Int. Ed. 2005, 44, 400-403). Hydroisomerization of short chain linear paraffins is an effective method of obtaining higher octane components for gasoline blends. The feedstock for this process is a refinery stream consisting mainly of linear normal paraffins of the C5 - C10 fractions. Hydrogenation catalysts of highly active supported metals and hydrogen are required for the desired reactions to take place. The reaction is limited by chemical equilibrium, the use of low temperatures being preferable to minimize hydrocracking of the more reactive branched products (Pet. Sci. Technol. 2013, 31, 580-595; Energy & Fuels 2019, 33, 3828-3843 ; Coord. Chem. Rev. 2011, 255, 1558-1580). Separating multi-branched products from effluent and recycling linear and single-branched products is another way to maximize unit performance and productivity (Advanced Solutions for Paraffins Isomerization, Washington, DC, 2004; Angew. Chemie - Int. Ed. 2005, 44, 400-403).
La separación de hidrocarburos lineales de ramificados se conoce y utiliza desde hace años en la industria (US Patent 3070542, 1962). En la mayoría de los casos, esta separación se lleva a cabo mediante un proceso de adsorción, empleando un adsorbente zeolítico. The separation of linear from branched hydrocarbons has been known and used for years in the industry (US Patent 3070542, 1962). In most cases, this separation is carried out through an adsorption process, using a zeolitic adsorbent.
Las zeolitas son aluminosilicatos cristalinos microporosos cuya red está formada por tetraedros TO4 (T = Si, Al) que comparten vértices. La presencia de aluminio en coordinación tetraédrica da lugar a la carga negativa en la red, que es compensada por especies catiónicas extrarreticulares. Si bien, lo más usual es que los átomos en el centro de los tetraedros sean Si o Al, se conoce un gran número de materiales zeotípicos con una amplia gama de composiciones, incluyendo Ti, Ge, B, P, etc. Las características mencionadas, con especial mención a la porosidad estructural, hacen de las zeolitas materiales muy versátiles que encuentran aplicación como intercambiadores iónicos, catalizadores y adsorbentes. Zeolites are microporous crystalline aluminosilicates whose lattice is formed by TO4 tetrahedra (T = Si, Al) that share vertices. The presence of aluminum in coordination tetrahedral gives rise to the negative charge in the lattice, which is offset by extrareticular cationic species. Although, the most usual is that the atoms in the center of the tetrahedra are Si or Al, a great number of zeotypic materials with a wide range of compositions are known, including Ti, Ge, B, P, etc. The characteristics mentioned, with special mention of structural porosity, make zeolites very versatile materials that find application as ion exchangers, catalysts and adsorbents.
Las zeolitas se pueden clasificar estructuralmente según la apertura de sus canales, dando lugar a zeolitas de poro extragrande, grande, medio o pequeño. Las zeolitas de poro pequeño tienen canales con aperturas formadas por anillos de 8 tetraedros (8-rings, 8R), mientras que las de poro medio tienen canales 10R, las grandes 12R y finalmente, las extragrandes poseen canales con aperturas mayores de 12R. Zeolites can be classified structurally according to the opening of their channels, giving rise to zeolites with extra large, large, medium or small pores. Small pore zeolites have channels with openings formed by rings of 8 tetrahedra (8-rings, 8R), while those with medium pores have 10R channels, large 12R and finally, extra large ones have channels with openings greater than 12R.
La zeolita 5A, de poro pequeño, fue la primera en ser empleada y sigue siendo ampliamente utilizada industrialmente para la separación de hidrocarburos lineales de ramificados, aunque también se han utilizado otras zeolitas comerciales de mayor tamaño de poro, tales como zeolitas tipo MFI (ZSM-5 y silicalita-1) y zeolitas tipo FAU (zeolitas X e Y) (Ch. 7, Zeolites and other adsorbents, en Nanoporous Materials for Gas Storage, Springer Singapore, Singapore, 2019, pp. 173-208). Las zeolitas de poro pequeño son efectivas en la separación de hidrocarburos lineales de hidrocarburos mono-, di- y poli-ramificados. Sin embargo, la separación de hidrocarburos monorramificados de multirramificados es el objetivo ideal, ya que esta separación realizada a continuación de la unidad de hidroisomerización potenciaría la eficiencia del proceso permitiendo la obtención un refinado enriquecido en hidrocarburos multirramificados de mayor octanaje. Por otro lado, los compuestos de bajo octanaje, es decir, los hidrocarburos lineales y monorramificados, serían recirculados junto con el alimento de la unidad. The small pore zeolite 5A was the first to be used and continues to be widely used industrially for the separation of linear and branched hydrocarbons, although other commercial zeolites with larger pore size have also been used, such as MFI type zeolites (ZSM -5 and silicalite-1) and FAU-type zeolites (X and Y zeolites) (Ch. 7, Zeolites and other adsorbents, in Nanoporous Materials for Gas Storage, Springer Singapore, Singapore, 2019, pp. 173-208). Small pore zeolites are effective in separating linear hydrocarbons from mono-, di-, and poly-branched hydrocarbons. However, the separation of mono-branched hydrocarbons from multi-branched is the ideal objective, since this separation carried out after the hydroisomerization unit would enhance the efficiency of the process, allowing the obtaining of a raffinate enriched in multi-branched hydrocarbons of higher octane number. On the other hand, the low octane compounds, that is, the linear and monobranched hydrocarbons, would be recirculated together with the feed of the unit.
La separación de hidrocarburos monorramificados de multirramificados también es más complicada técnicamente, debido principalmente a que no existen adsorbentes que diferencien eficazmente entre ambos tipos de hidrocarburos (Recent Patents Chem. Eng. 2012, 5, 153-173). Los materiales más ampliamente propuestos para este fin presentan una baja polaridad, es decir, poseen alta relación Si/Al y un tamaño de poro medio (10R). La silicalita-1 y la zeolita ZSM-5 se han estudiado y patentado como adsorbentes y membranas para esta separación, sin embargo, su selectividad hacia el componente dirramificado sobre el monorramificado parece ser insuficiente. (US Patent 6069289 A, 2000; Phys. Chem. Chem. Phys. 2001, 3, 4390-4398; Angew. Chemie - Int. Ed. 2012, 51 , 11867-11871; Sep. Purif. Technol. 2013, 106, 56-62; Ind. Eng. Chem. Res. 1997, 36, 137-143; US Patent 6156950, 2000; Oil Gas Sci. Technol. - Rev. I’IFP 2009, 64, 759-771 ; US Patent 6809228 B2, 2004; US Patent 6338791 B1, 2002; AIChE J. 2002, 48, 1927-1937). Otros materiales con estructuras MWW, EUO, NES (US Patent 6809228 B2, 2004; US Patent 6784334 B2.2004; US Patent 7435865 B2, 2008; Recent Patents Chem. Eng. 2012, 5, 153-173) AFI (US Patent 5107052, 1992), BEA, FER, FAU, ATO, AEL (US Patent 6069289 A, 2000; US Patent 3706813, 1972), MEL, MTT, MRE, (US Patent 6338791 B1, 2002) ATS y CFI (US Patent 7029572 B2, 2006; US Patent 7037422 B2, 2006) se pueden encontrar en la literatura de patentes para este propósito, si bien, ninguno de ellos ha mejorado significativamente el comportamiento de las zeolitas tipo MFI. The separation of mono-branched from multi-branched hydrocarbons is also more technically complicated, mainly due to the fact that there are no adsorbents that effectively differentiate between both types of hydrocarbons (Recent Patents Chem. Eng. 2012, 5, 153-173). The most widely proposed materials for this purpose have low polarity, that is, they have a high Si / Al ratio and a medium pore size (10R). Silicalite-1 and zeolite ZSM-5 have been studied and patented as adsorbents and membranes for this separation, however, their selectivity towards the dirbranched component over the monobranched seems to be insufficient. (US Patent 6069289 A, 2000; Phys. Chem. Chem. Phys. 2001, 3, 4390-4398; Angew. Chemie-Int. Ed. 2012, 51, 11867-11871; Sep. Purif. Technol. 2013, 106, 56-62; Ind. Eng. Chem. Res. 1997, 36, 137-143; US Patent 6156950, 2000; Oil Gas Sci. Technol. - Rev. I'IFP 2009, 64, 759-771; US Patent 6809228 B2, 2004; US Patent 6338791 B1, 2002; AIChE J. 2002, 48, 1927-1937). Other materials with structures MWW, EUO, NES (US Patent 6809228 B2, 2004; US Patent 6784334 B2.2004; US Patent 7435865 B2, 2008; Recent Patents Chem. Eng. 2012, 5, 153-173) AFI (US Patent 5107052) , 1992), BEA, FER, FAU, ATO, AEL (US Patent 6069289 A, 2000; US Patent 3706813, 1972), MEL, MTT, MRE, (US Patent 6338791 B1, 2002) ATS and CFI (US Patent 7029572 B2 , 2006; US Patent 7037422 B2, 2006) can be found in the patent literature for this purpose, although none of them have significantly improved the performance of MFI-type zeolites.
Una dificultad adicional en la separación de corrientes de hidrocarburos es la presencia de definas en su composición, ya que la presencia de centros ácidos puede producir la formación de oligómeros por reacción de estas definas, resultando en una fuerte disminución de la capacidad de adsorción del adsorbente. An additional difficulty in the separation of hydrocarbon streams is the presence of definas in their composition, since the presence of acid centers can produce the formation of oligomers by reaction of these definas, resulting in a strong decrease in the adsorption capacity of the adsorbent. .
Entre las estructuras zeolíticas encontramos la estructura de la zeolita STW. Se trata de una estructura de poro medio, que contiene canales helicoidales de 10R con aperturas de 5.2 c 5.7 Á (apertura mínima y máxima, respectivamente) en una dirección, interconectadas perpendicularmente por ventanas de 8R de 3.0 c 4.4 Á (J. Am. Chem. Soc. 2013, 135, 11975- 11. Se ha descrito la síntesis de zeolita con estructura STW y alta relación Si/Al, como HPM- 1 o SSZ-110, llegando incluso a pura sílice, (Korean Patent KR101636142 B1, 2016; US Patent 2019/0224655 A1, 2019; Angew. Chem. Int. Ed. 2012, 51 , 3854 -3856). Los materiales con estructura STW han sido empleados en procesos catalíticos de refino y de separación de alcoholes quirales con anterioridad tanto en artículos científicos como en patentes (Korean Patent KR101636142 B1, 2016; Proceedings of the National Academy of Sciences May 2017, 114 (20) 5101-5106; Chem. Eur. J. 2018, 24, 4121 ; US Patent 2019/0224655 Al, 2019). Among the zeolitic structures we find the structure of the STW zeolite. It is a medium-pore structure, containing 10R helical channels with openings of 5.2 c 5.7 Á (minimum and maximum aperture, respectively) in one direction, interconnected perpendicularly by 8R windows of 3.0 c 4.4 Á (J. Am. Chem. Soc. 2013, 135, 11975-11. The synthesis of zeolite with STW structure and high Si / Al ratio, such as HPM-1 or SSZ-110, even reaching pure silica, has been described (Korean Patent KR101636142 B1, 2016; US Patent 2019/0224655 A1, 2019; Angew. Chem. Int. Ed. 2012, 51, 3854-3856). Materials with the STW structure have previously been used in catalytic refining and separation processes of chiral alcohols both in scientific articles and patents (Korean Patent KR101636142 B1, 2016; Proceedings of the National Academy of Sciences May 2017, 114 (20) 5101-5106; Chem. Eur. J. 2018, 24, 4121; US Patent 2019/0224655 Al , 2019).
En esta patente de invención se describe el uso de un material zeolítico puramente silíceo de estructura STW, al que denominaremos Si-STW como un adsorbente que puede actuar como un tamiz molecular, separando, sorprendentemente, los hidrocarburos multirramificados mediante la adsorción selectiva de moléculas lineales y monorramificadas de una corriente que los contenga. La selectividad en este caso se observa tanto en condiciones de control termodinámico como cinético, ya que algunas de las especies multirramificadas son adsorbidos en el material Si-STW en menor cantidad y a menor velocidad de adsorción que los isómeros lineales y monorramificados. Además, el material Si-STW supera a la silicalita-1 tanto en selectividad como en capacidad de adsorción de hidrocarburos lineales o monorramificadas. Hemos encontrado que en esta zeolita, en el caso de los isómeros de hexano, heptano y otros hidrocarburos multirramificados de mayor número de carbono, la posición relativa de las ramificaciones permite diferenciar la adsorción. El material Si-STW, por ser puramente silíceo y no contener elementos trivalentes en su composición, minimiza la formación de oligómeros u otros productos derivados de reacciones de los hidrocarburos adsorbidos sobre centros ácidos que pudieran llevar al bloqueo de los poros. Además, el material puramente silíceo es química y térmicamente más estable que materiales de esta misma estructura pero diferente composición, tales como germanosilicatos. De esta forma, el material presenta un tiempo de vida superior a otros de composición diferente. This invention patent describes the use of a purely siliceous zeolitic material with STW structure, which we will call Si-STW as an adsorbent that can act as a molecular sieve, surprisingly separating multi-branched hydrocarbons through the selective adsorption of linear molecules. and monobranches of a stream that contains them. The selectivity in this case is observed both under thermodynamic and kinetic control conditions, since some of the multi-branched species are adsorbed on the Si-STW material in less quantity and at a lower adsorption rate than the linear and mono-branched isomers. Furthermore, Si-STW material outperforms silicalite-1 both in selectivity and in adsorption capacity of linear or monobranched hydrocarbons. We have found that in this zeolite, in the case of isomers of hexane, heptane and other multi-branched hydrocarbons with a higher carbon number, the relative position of the branches allows differentiation of adsorption. The Si-STW material, because it is purely siliceous and does not contain trivalent elements in its composition, minimizes the formation of oligomers or other products derived from reactions of hydrocarbons adsorbed on acid centers that could lead to pore blocking. Furthermore, the purely siliceous material is chemically and thermally more stable than materials of the same structure but different composition, such as germanosilicates. In this way, the material has a longer life time than others of different composition.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
El material Si-STW es una zeolita de poro medio que contiene canales helicoidales de 10R con aberturas de 5.2 c 5.7 Á en una dirección, interconectadas perpendicularmente por ventanas de 8R de 3.0 c 4.4 Á. The Si-STW material is a medium-pore zeolite containing 10R helical channels with 5.2 c 5.7 Á openings in one direction, interconnected perpendicularly by 3.0 c 4.4 Á 8R windows.
Aquí se describe empleo de un material cristalino microporoso de naturaleza zeolítica y estructura STW en procesos de separación de hidrocarburos presentes en la corriente de salida de una unidad de hidroisomerización de nafta, más específicamente para la separación de aléanos de las fracciones C5-C10 lineales y monorramificados de multirramificados. Esta zeolita permite también la separación de olefinas lineales y monorramificadas de multirramifi cadas. Here we describe the use of a microporous crystalline material of a zeolitic nature and STW structure in processes for the separation of hydrocarbons present in the outlet stream of a naphtha hydroisomerization unit, more specifically for the separation of allenes from the linear C5-C10 fractions and monobranches of multibranches. This zeolite also allows the separation of linear and monobranched from multibranched olefins.
Concretamente, la presente invención se refiere a un proceso de separación de fluidos de hidrocarburos que comprende, al menos, las siguientes etapas: Specifically, the present invention refers to a process for the separation of hydrocarbon fluids that comprises, at least, the following steps:
(a) poner en contacto una corriente de hidrocarburos de entrada, que consiste en un primer componente fluido y un segundo componente fluido, con un adsorbente que contiene el material zeolítico Si-STW, produciéndose un producto fluido no adsorbido en el que la relación molar del primer componente fluido frente al segundo componente fluido es menor que la relación molar del primer componente fluido frente al segundo componente fluido en la corriente de entrada, (a) contacting an inlet hydrocarbon stream, consisting of a first fluid component and a second fluid component, with an adsorbent containing the Si-STW zeolitic material, producing a non-adsorbed fluid product in which the molar ratio of the first fluid component versus the second fluid component is less than the molar ratio of the first fluid component versus the second fluid component in the input stream,
(b) recuperación del producto fluido no adsorbido, (b) recovery of the non-adsorbed fluid product,
(c) formación de un producto fluido adsorbido cuya relación molar del primer componente fluido frente al segundo componente fluido es mayor que la relación molar del primer componente fluido frente al segundo componente fluido en la corriente de entrada, (d)recuperación del producto fluido adsorbido. (c) formation of an adsorbed fluid product whose molar ratio of the first fluid component to the second fluid component is greater than the molar ratio of the first fluid component to the second fluid component in the input stream, (d) recovery of the adsorbed fluid product.
La zeolita Si-STW se caracteriza por presentar capacidades de adsorción en el equilibrio termodinámico y velocidades de adsorción considerablemente diferentes para aléanos lineales, monorramificados y multirramificados con entre cinco y diez carbonos, como por ejemplo 2-metilbutano y 2,2-dimetilpropano, entre otros, lo que posibilita su separación. La condición de equilibrio se alcanza cuando la cantidad de adsorbato no aumenta con el tiempo a unas condiciones fijas de presión de adsorbato y temperatura. La eficiencia o selectividad termodinámica (c¾), de un adsorbente en procesos de separación se determina a partir del valor del cociente de las capacidades de adsorción de los productos que se pretenden separar en condiciones de equilibrio. La eficiencia o selectividad cinética (ac), de un adsorbente en un proceso de separación se determina a partir del valor del cociente de las constantes difusionales de tiempo determinadas a partir de experimentos de velocidad de adsorción y el ajuste de las curvas resultantes mediante un modelo apropiado (Ch. 6, Sorption Kinetics, en Diffusion in Nanoporous Materials (eds J. Kárger, D.M. Ruthven and D.N. Theodorou), 2012, pp. 143-189). Si-STW zeolite is characterized by its adsorption capacities in thermodynamic equilibrium and considerably different adsorption rates for linear, monobranched and multibranched alloys with between five and ten carbons, such as 2-methylbutane and 2,2-dimethylpropane, between others, which makes their separation possible. The equilibrium condition is reached when the amount of adsorbate does not increase with time at fixed conditions of adsorbate pressure and temperature. The efficiency or thermodynamic selectivity (c¾) of an adsorbent in separation processes is determined from the value of the quotient of the adsorption capacities of the products to be separated under equilibrium conditions. The efficiency or kinetic selectivity (a c ) of an adsorbent in a separation process is determined from the value of the quotient of the diffusion time constants determined from adsorption rate experiments and the fitting of the resulting curves by means of a appropriate model (Ch. 6, Sorption Kinetics, in Diffusion in Nanoporous Materials (eds J. Kárger, DM Ruthven and DN Theodorou), 2012, pp. 143-189).
Por otro lado, cuanto mayor sea la capacidad de adsorción de una zeolita, menor cantidad de adsorbente se requerirá para separar un volumen dado de adsorbato. Así, en un proceso de separación como el descrito se prefiere que las zeolitas presenten altos valores de selectividad termodinámica o cinética y capacidades de adsorción altas. On the other hand, the higher the adsorption capacity of a zeolite, the less adsorbent will be required to separate a given volume of adsorbate. Thus, in a separation process such as that described, it is preferred that the zeolites have high values of thermodynamic or kinetic selectivity and high adsorption capacities.
Según una realización particular de la presente invención la etapa (d) de recuperación del producto adsorbido comprende, al menos, (a) la modificación de al menos la temperatura o la presión del adsorbente, (b) poner en contacto el adsorbente que contiene el material zeolítico Si-STW con un tercer componente fluido (gas de arrastre), del cual al menos una fracción es adsorbida por el adsorbente que contiene el material zeolítico Si-STW o (c) una combinación de las anteriores. According to a particular embodiment of the present invention, step (d) of recovering the adsorbed product comprises, at least, (a) modifying at least the temperature or pressure of the adsorbent, (b) putting the adsorbent containing the Si-STW zeolitic material with a third fluid component (carrier gas), of which at least a fraction is adsorbed by the adsorbent containing the Si-STW zeolitic material or (c) a combination of the above.
El proceso de separación de hidrocarburos descrito anteriormente, se lleva a cabo de manera preferente empleando técnicas de adsorción por oscilación (generalmente conocidos como técnicas de “Swing Adsorption”), poniendo en contacto la corriente de entrada con un adsorbente (que comprende una determinada cantidad de zeolita Si-STW) en un lecho de adsorción por oscilación, más concretamente en condiciones de adsorción por oscilación de la presión (disminución de la presión generalmente denominado “Pressure Swing Adsorption”), o en condiciones de adsorción por oscilación de la temperatura (aumento de temperatura, generalmente denominado “Temperature Swing Adsorption”), o una combinación de las anteriores. The hydrocarbon separation process described above is preferably carried out using oscillation adsorption techniques (generally known as "Swing Adsorption" techniques), by contacting the inlet stream with an adsorbent (comprising a certain amount of Si-STW zeolite) in a swing adsorption bed, more specifically under pressure swing adsorption conditions (pressure drop generally called “Pressure Swing Adsorption”), or under temperature swing adsorption conditions ( increase of temperature, generally referred to as "Temperature Swing Adsorption"), or a combination of the above.
De manera preferente, son los compuestos multirramificados, especialmente aquellos que presentan carbonos cuaternarios, los que son excluidos. Se mantiene en contacto la mezcla de hidrocarburos y la zeolita Si-STW (adsorbente) durante un tiempo determinado para garantizar que el proceso de adsorción de los compuestos lineales y monorramificados tenga lugar y, finalmente, la mezcla de hidrocarburos que no han sido adsorbidos se retira. Preferably, it is the multi-branched compounds, especially those having quaternary carbons, which are excluded. The hydrocarbon mixture and the Si-STW (adsorbent) zeolite are kept in contact for a certain time to ensure that the adsorption process of linear and monobranched compounds takes place and, finally, the hydrocarbon mixture that has not been adsorbed is withdraw.
La fracción adsorbida en la zeolita es recuperada por medio de técnicas tales como arrastre con otro gas, aumento de temperatura (adsorción por oscilación de la temperatura, generalmente denominado “Temperature Swing Adsorption”), disminución de la presión (adsorción por oscilación de la presión, generalmente denominado “Pressure Swing Adsorption”) o combinación de los métodos anteriores. The fraction adsorbed on the zeolite is recovered by means of techniques such as entrainment with another gas, increasing the temperature (adsorption by temperature oscillation, generally called "Temperature Swing Adsorption"), pressure decrease (adsorption by pressure oscillation , generally referred to as "Pressure Swing Adsorption") or a combination of the above methods.
De manera preferente, la corriente de entrada de hidrocarburos según la presente invención, está compuesta por hidrocarburos de las fracciones C5-C10. Preferably, the hydrocarbon input stream according to the present invention is composed of hydrocarbons of the C5-C10 fractions.
Si bien las condiciones de separación dependerán de la composición de la mezcla de hidrocarburos que se pretenda separar, el procedimiento descrito en la presente invención se puede llevar a cabo a una temperatura entre 0 y 200°C, preferentemente entre 0 y 100°C, más preferentemente entre 0°C y 60°C y a una presión parcial de hidrocarburo entre 0.0001 y 10 bar, preferentemente entre 0.0001 y 5 bar, más preferentemente entre 0.0001 y 1 bar. Although the separation conditions will depend on the composition of the hydrocarbon mixture to be separated, the process described in the present invention can be carried out at a temperature between 0 and 200 ° C, preferably between 0 and 100 ° C, more preferably between 0 ° C and 60 ° C and at a hydrocarbon partial pressure between 0.0001 and 10 bar, preferably between 0.0001 and 5 bar, more preferably between 0.0001 and 1 bar.
Como ya se ha comentado anteriormente, la composición de la mezcla de hidrocarburos es importante para el proceso. As already mentioned above, the composition of the hydrocarbon mixture is important for the process.
Según una realización particular, el primer componente fluido comprende parafinas y definas que pueden ser lineales, monorramificadas, multirramificadas o combinaciones de las mismas. According to a particular embodiment, the first fluid component comprises paraffins and definitions that can be linear, monobranched, multibranched or combinations thereof.
Según otra realización particular, el primer componente fluido comprende parafinas y definas monorramificadas, multirramificadas o combinaciones de las anteriores, siendo las ramificaciones presentes grupos metilo. According to another particular embodiment, the first fluid component comprises monobranched, multibranched paraffins and definines or combinations of the foregoing, the branches present being methyl groups.
Según otra realización particular, el primer componente fluido comprende parafinas lineales, monorramificadas, multirramificadas o combinaciones de las anteriores. According to another particular embodiment, the first fluid component comprises linear paraffins, monobranched, multibranched, or combinations of the above.
Según otra realización particular, el primer componente fluido comprende parafinas monorramificadas, multirramificadas o combinaciones de las anteriores, siendo las ramificaciones presentes grupos metilo. According to another particular embodiment, the first fluid component comprises monobranched, multibranched paraffins or combinations of the foregoing, the branches present being methyl groups.
Según otra realización particular, el primer componente fluido comprende definas lineales, monorramificadas, multirramificadas o combinaciones de las anteriores. According to another particular embodiment, the first fluid component comprises linear, monobranched, multibranched or combinations of the foregoing.
Según otra realización particular, el primer componente fluido comprende definas monorramificadas, multirramificadas o combinaciones de las anteriores, siendo las ramificaciones presentes grupos metilo. According to another particular embodiment, the first fluid component comprises monobranched, multibranched or combinations of the foregoing, the branches present being methyl groups.
Según otra realización particular, en el proceso de separación de hidrocarburos descrito anteriormente, los hidrocarburos multirramificados del primer componente fluido presentan de manera preferente 3 o menos ramificaciones. According to another particular embodiment, in the hydrocarbon separation process described above, the multi-branched hydrocarbons of the first fluid component preferably have 3 or fewer branches.
Según otra realización particular, los hidrocarburos multirramificados del primer componente fluido no presentan carbonos cuaternarios. According to another particular embodiment, the multi-branched hydrocarbons of the first fluid component do not have quaternary carbons.
Según otra realización particular, los hidrocarburos multirramificados del primer componente presentan ramificaciones que se encuentran a distancias de cadena superiores a 2 carbonos. According to another particular embodiment, the multi-branched hydrocarbons of the first component have branches that are at chain distances greater than 2 carbons.
Según el procedimiento de la presente invención, el segundo componente fluido comprende parafinas y definas que pueden ser monorramificadas, multirramificadas o combinaciones de las anteriores. According to the process of the present invention, the second fluid component comprises paraffins and definines that can be monobranched, multibranched or combinations of the above.
Según una realización particular, el segundo componente fluido comprende parafinas y definas monorramificadas, siendo las ramificaciones grupos que incluyan más de un carbono, como por ejemplo etilo, 1-propilo o 2-propilo. According to a particular embodiment, the second fluid component comprises monobranched paraffins and definines, the branches being groups that include more than one carbon, such as, for example, ethyl, 1-propyl or 2-propyl.
Según otra realización particular, el segundo componente fluido comprende parafinas y definas multirramificadas, siendo por lo menos una de las ramificaciones un grupo que incluya más de un carbono. According to another particular embodiment, the second fluid component comprises multibranched paraffins and definitions, at least one of the branches being a group that includes more than one carbon.
Según otra realización particular, el segundo componente fluido comprende parafinas y definas multirramificadas que tengan al menos un carbono cuaternario. According to another particular embodiment, the second fluid component comprises paraffins and multi-branched defined having at least one quaternary carbon.
Según otra realización particular, el segundo componente fluido comprende parafinas y definas multirramificadas cuyas ramificaciones están a distancias de cadena menores a (n - 5) siendo n el número de carbonos total de la molécula. According to another particular embodiment, the second fluid component comprises multi-branched paraffins and definitions whose branches are at chain distances less than (n-5), where n is the total number of carbons in the molecule.
Según otra realización particular, el segundo componente fluido comprende parafinas monorramificadas, multirramificadas o combinaciones de las anteriores. According to another particular embodiment, the second fluid component comprises monobranched, multibranched paraffins or combinations of the foregoing.
Según otra realización particular, el segundo componente fluido comprende parafinas monorramificadas, siendo las ramificaciones grupos que incluyan más de un carbono. According to another particular embodiment, the second fluid component comprises monobranched paraffins, the branches being groups that include more than one carbon.
Según otra realización particular, el segundo componente fluido comprende parafinas multirramificadas, siendo por lo menos una de las ramificaciones un grupo que incluya más de un carbono. According to another particular embodiment, the second fluid component comprises multi-branched paraffins, at least one of the branches being a group that includes more than one carbon.
Según otra realización particular, el segundo componente fluido comprende parafinas multirramificadas que tengan al menos un carbono cuaternario. According to another particular embodiment, the second fluid component comprises multi-branched paraffins having at least one quaternary carbon.
Según otra realización particular, el segundo componente fluido comprende parafinas multirramificadas cuyas ramificaciones estén a distancias de cadena menores a (n - 5) siendo n el número de carbonos total de la molécula. According to another particular embodiment, the second fluid component comprises multi-branched paraffins whose branches are at chain distances less than (n-5), where n is the total carbon number of the molecule.
Según otra realización particular, el segundo componente fluido comprende definas monorramificadas, multirramificadas o combinaciones de las anteriores. According to another particular embodiment, the second fluid component comprises single-branched, multi-branched or combinations of the foregoing.
Según otra realización particular, el segundo componente fluido comprende definas monorramificadas, siendo las ramificaciones grupos que incluyan más de un carbono According to another particular embodiment, the second fluid component comprises monobranched definitions, the branches being groups that include more than one carbon.
Según otra realización particular, el segundo componente fluido comprende definas multirramificadas, siendo por lo menos una de las ramificaciones un grupo que incluya más de un carbono. According to another particular embodiment, the second fluid component comprises multibranched definitions, at least one of the branches being a group that includes more than one carbon.
Según otra realización particular, el segundo componente fluido comprende definas multirramificadas que tengan al menos un carbono cuaternario. Según otra realización particular, el segundo componente fluido comprende definas multirramificadas cuyas ramificaciones estén a distancias de cadena menores a (n - 5) siendo n el número de carbonos total de la molécula. According to another particular embodiment, the second fluid component comprises multibranched definitions that have at least one quaternary carbon. According to another particular embodiment, the second fluid component comprises multibranched definitions whose branches are at chain distances less than (n-5), where n is the total number of carbons in the molecule.
Según el proceso de separación de hidrocarburos descrito anteriormente, la corriente de entrada se pone en contacto con el adsorbente que contiene el material zeolítico Si-STW en las condiciones adecuadas para llevar a cabo una separación del primer componente fluido bajo control cinético, o en el cual la corriente de entrada se pone en contacto con el adsorbente que contiene el material zeolítico Si-STW en las condiciones adecuadas para llevar a cabo una separación del primer componente fluido bajo control termodinámico, o una combinación de las anteriores. According to the hydrocarbon separation process described above, the inlet stream is brought into contact with the adsorbent containing the Si-STW zeolitic material under suitable conditions to carry out a separation of the first fluid component under kinetic control, or in the which the inlet stream is brought into contact with the adsorbent containing the Si-STW zeolitic material under suitable conditions to carry out a separation of the first fluid component under thermodynamic control, or a combination of the above.
Según una realización particular, el n-pentano se adsorbe preferentemente y el 2,2- dimetilpropano no se adsorbe preferentemente. According to a particular embodiment, n-pentane is preferentially adsorbed and 2,2-dimethylpropane is not preferentially adsorbed.
Según otra realización particular, el 2-metilbutano se adsorbe preferentemente y el 2,2- dimetilpropano no se adsorbe preferentemente. According to another particular embodiment, 2-methylbutane is preferentially adsorbed and 2,2-dimethylpropane is not preferentially adsorbed.
Según otra realización particular, el n-hexano se adsorbe preferentemente y el 2,2- dimetilbutano no se adsorbe preferentemente. According to another particular embodiment, n-hexane is preferentially adsorbed and 2,2-dimethylbutane is not preferentially adsorbed.
Según otra realización particular, el 2-metilpentano se adsorbe preferentemente y el 2,2- dimetilbutano no se adsorbe preferentemente. According to another particular embodiment, 2-methylpentane is preferentially adsorbed and 2,2-dimethylbutane is not preferentially adsorbed.
Según otra realización particular, el 3-metilpentano se adsorbe preferentemente y el 2,2- dimetilbutano no se adsorbe preferentemente. According to another particular embodiment, 3-methylpentane is preferentially adsorbed and 2,2-dimethylbutane is not preferentially adsorbed.
Según otra realización particular, el 2,3-dimetilbutano se adsorbe preferentemente y el 2,2- dimetilbutano no se adsorbe preferentemente. According to another particular embodiment, 2,3-dimethylbutane is preferentially adsorbed and 2,2-dimethylbutane is not preferentially adsorbed.
Según otra realización particular, el 1-hexeno se adsorbe preferentemente y el 3,3-dimetil-1- buteno no se adsorbe preferentemente. According to another particular embodiment, 1-hexene is preferentially adsorbed and 3,3-dimethyl-1-butene is not preferentially adsorbed.
Según otra realización particular, el 4-metil-1-penteno se adsorbe preferentemente y el 3,3- dimetil-1-buteno no se adsorbe preferentemente. Según otra realización particular, el n-heptano se adsorbe preferentemente y el 2,2- dimetilpentano no se adsorbe preferentemente. According to another particular embodiment, 4-methyl-1-pentene is preferentially adsorbed and 3,3-dimethyl-1-butene is not preferentially adsorbed. According to another particular embodiment, n-heptane is preferentially adsorbed and 2,2-dimethylpentane is not preferentially adsorbed.
Según otra realización particular, el n-heptano se adsorbe preferentemente y el 2,3- dimetilpentano no se adsorbe preferentemente. According to another particular embodiment, n-heptane is preferentially adsorbed and 2,3-dimethylpentane is not preferentially adsorbed.
Según otra realización particular, el n-heptano se adsorbe preferentemente y el 3,3- dimetilpentano no se adsorbe preferentemente. According to another particular embodiment, n-heptane is preferentially adsorbed and 3,3-dimethylpentane is not preferentially adsorbed.
Según otra realización particular, el 2-metilhexano se adsorbe preferentemente y el 2,2- dimetilpentano no se adsorbe preferentemente. According to another particular embodiment, 2-methylhexane is preferentially adsorbed and 2,2-dimethylpentane is not preferentially adsorbed.
Según otra realización particular, el 2-metilhexano se adsorbe preferentemente y el 2,3- dimetilpentano no se adsorbe preferentemente. According to another particular embodiment, 2-methylhexane is preferentially adsorbed and 2,3-dimethylpentane is not preferentially adsorbed.
Según otra realización particular, el 2-metilhexano se adsorbe preferentemente y el 3,3- dimetilpentano no se adsorbe preferentemente. According to another particular embodiment, 2-methylhexane is preferentially adsorbed and 3,3-dimethylpentane is not preferentially adsorbed.
Según otra realización particular, el 3-metilhexano se adsorbe preferentemente y el 2,2- dimetilpentano no se adsorbe preferentemente. According to another particular embodiment, 3-methylhexane is preferentially adsorbed and 2,2-dimethylpentane is not preferentially adsorbed.
Según otra realización particular, el 3-metilhexano se adsorbe preferentemente y el 2,3- dimetilpentano no se adsorbe preferentemente. According to another particular embodiment, 3-methylhexane is preferentially adsorbed and 2,3-dimethylpentane is not preferentially adsorbed.
Según otra realización particular, el 3-metilhexano se adsorbe preferentemente y el 3,3- dimetilpentano no se adsorbe preferentemente. According to another particular embodiment, 3-methylhexane is preferentially adsorbed and 3,3-dimethylpentane is not preferentially adsorbed.
Según otra realización particular, el 2,4-dimetilpentano se adsorbe preferentemente y el 2,2- dimetilpentano no se adsorbe preferentemente. According to another particular embodiment, 2,4-dimethylpentane is preferentially adsorbed and 2,2-dimethylpentane is not preferentially adsorbed.
Según otra realización particular, el 2,4-dimetilpentano se adsorbe preferentemente y el 2,3- dimetilpentano no se adsorbe preferentemente. According to another particular embodiment, 2,4-dimethylpentane is preferentially adsorbed and 2,3-dimethylpentane is not preferentially adsorbed.
Según otra realización particular, el 2,4-dimetilpentano se adsorbe preferentemente y el 3,3- dimetilpentano no se adsorbe preferentemente. Según otra realización particular, el 2,3-dimetilpentano se adsorbe preferentemente y el 2,2- dimetilpentano no se adsorbe preferentemente. According to another particular embodiment, 2,4-dimethylpentane is preferentially adsorbed and 3,3-dimethylpentane is not preferentially adsorbed. According to another particular embodiment, 2,3-dimethylpentane is preferentially adsorbed and 2,2-dimethylpentane is not preferentially adsorbed.
Según otra realización particular, el 2,3-dimetilpentano se adsorbe preferentemente y el 3,3- dimetilpentano no se adsorbe preferentemente. According to another particular embodiment, 2,3-dimethylpentane is preferentially adsorbed and 3,3-dimethylpentane is not preferentially adsorbed.
Según otra realización particular, el 1-hepteno se adsorbe preferentemente y el 4,4-dimetil-1- penteno no se adsorbe preferentemente. According to another particular embodiment, 1-heptene is preferentially adsorbed and 4,4-dimethyl-1-pentene is not preferentially adsorbed.
Según otra realización particular, el 2,3-dimetilbutano se adsorbe preferentemente y el 2,3- dimetilpentano no se adsorbe preferentemente. According to another particular embodiment, 2,3-dimethylbutane is preferentially adsorbed and 2,3-dimethylpentane is not preferentially adsorbed.
Según una realización particular, el n-pentano se adsorbe más rápidamente que el 2,2- dimetilpropano a baja presión. According to a particular embodiment, n-pentane adsorbs faster than 2,2-dimethylpropane at low pressure.
Según otra realización particular, el 2-metilbutano se adsorbe más rápidamente que el 2,2- dimetilpropano a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 2-methylbutane adsorbs faster than 2,2-dimethylpropane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el n-hexano se adsorbe más rápidamente que el 2,2- dimetilbutano a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, n-hexane adsorbs faster than 2,2-dimethylbutane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 2-metilpentano se adsorbe más rápidamente que el 2,2- dimetilbutano a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 2-methylpentane adsorbs faster than 2,2-dimethylbutane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 3-metilpentano se adsorbe más rápidamente que el 2,2- dimetilbutano a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 3-methylpentane adsorbs faster than 2,2-dimethylbutane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 2,3-dimetilbutano se adsorbe más rápidamente que el 2,2- dimetilbutano a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. Según otra realización particular, el 1-hexeno se adsorbe más rápidamente que el 3,3-dimetil- 1-buteno a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 2,3-dimethylbutane adsorbs faster than 2,2-dimethylbutane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity. According to another particular embodiment, 1-hexene adsorbs faster than 3,3-dimethyl-1-butene at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 4-metil-1-penteno se adsorbe más rápidamente que el 3,3-dimetil-1-buteno a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 4-methyl-1-pentene adsorbs faster than 3,3-dimethyl-1-butene at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el n-heptano se adsorbe más rápidamente que el 2,2- dimetilpentano a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, n-heptane adsorbs faster than 2,2-dimethylpentane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el n-heptano se adsorbe más rápidamente que el 2,3- dimetilpentano a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, n-heptane adsorbs faster than 2,3-dimethylpentane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el n-heptano se adsorbe más rápidamente que el 3,3- dimetilpentano a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, n-heptane adsorbs faster than 3,3-dimethylpentane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 2-metilhexano se adsorbe más rápidamente que el 2,2- dimetilpentano a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 2-methylhexane adsorbs faster than 2,2-dimethylpentane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 2-metilhexano se adsorbe más rápidamente que el 2,3- dimetilpentano a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 2-methylhexane adsorbs faster than 2,3-dimethylpentane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 2-metilhexano se adsorbe más rápidamente que el 3,3- dimetilpentano a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 2-methylhexane adsorbs faster than 3,3-dimethylpentane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 3-metilhexano se adsorbe más rápidamente que el 2,2- dimetilpentano a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. Según otra realización particular, el 3-metilhexano se adsorbe más rápidamente que el 2,3- dimetilpentano a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 3-methylhexane adsorbs faster than 2,2-dimethylpentane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity. According to another particular embodiment, 3-methylhexane adsorbs faster than 2,3-dimethylpentane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 3-metilhexano se adsorbe más rápidamente que el 3,3- dimetilpentano a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 3-methylhexane adsorbs faster than 3,3-dimethylpentane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 2,4-dimetilpentano se adsorbe más rápidamente que elAccording to another particular embodiment, 2,4-dimethylpentane is adsorbed faster than
2.2-dimetilpentano a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. 2.2-dimethylpentane at pressures below 50% of the pressure necessary to achieve maximum adsorption capacity.
Según otra realización particular, el 2,4-dimetilpentano se adsorbe más rápidamente que elAccording to another particular embodiment, 2,4-dimethylpentane is adsorbed faster than
2.3-dimetilpentano a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. 2.3-dimethylpentane at pressures below 50% of the pressure necessary to achieve maximum adsorption capacity.
Según otra realización particular, el 2,4-dimetilpentano se adsorbe más rápidamente que elAccording to another particular embodiment, 2,4-dimethylpentane is adsorbed faster than
3.3-dimetilpentano a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. 3.3-dimethylpentane at pressures below 50% of the pressure necessary to achieve maximum adsorption capacity.
Según otra realización particular, el 2,3-dimetilpentano se adsorbe más rápidamente que elAccording to another particular embodiment, 2,3-dimethylpentane is adsorbed faster than
2.2-dimetilpentano a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. 2.2-dimethylpentane at pressures below 50% of the pressure necessary to achieve maximum adsorption capacity.
Según otra realización particular, el 2,3-dimetilpentano se adsorbe más rápidamente que elAccording to another particular embodiment, 2,3-dimethylpentane is adsorbed faster than
3.3-dimetilpentano a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. 3.3-dimethylpentane at pressures below 50% of the pressure necessary to achieve maximum adsorption capacity.
Según otra realización particular, el 1-hepteno se adsorbe más rápidamente que el 4,4-dimetil- 1-penteno a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 1-heptene adsorbs faster than 4,4-dimethyl-1-pentene at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 2,3-dimetilbutano se adsorbe más rápidamente que el 2,3- dimetilpentano a presiones por debajo del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. Según una realización particular, el n-pentano se adsorbe más rápidamente que el 2,2- dimetilpropano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 2,3-dimethylbutane adsorbs faster than 2,3-dimethylpentane at pressures below 50% of the pressure necessary to reach the maximum adsorption capacity. According to a particular embodiment, n-pentane adsorbs faster than 2,2-dimethylpropane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 2-metilbutano se adsorbe más rápidamente que el 2,2- dimetilpropano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 2-methylbutane adsorbs faster than 2,2-dimethylpropane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el n-hexano se adsorbe más rápidamente que el 2,2- dimetilbutano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, n-hexane adsorbs faster than 2,2-dimethylbutane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 2-metilpentano se adsorbe más rápidamente que el 2,2- dimetilbutano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 2-methylpentane adsorbs faster than 2,2-dimethylbutane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 3-metilpentano se adsorbe más rápidamente que el 2,2- dimetilbutano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 3-methylpentane adsorbs faster than 2,2-dimethylbutane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 2,3-dimetilbutano se adsorbe más rápidamente que el 2,2- dimetilbutano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 2,3-dimethylbutane adsorbs faster than 2,2-dimethylbutane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 1-hexeno se adsorbe más rápidamente que el 3,3-dimetil- 1-buteno a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 1-hexene adsorbs faster than 3,3-dimethyl-1-butene at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 4-metil-1-penteno se adsorbe más rápidamente que el 3,3-dimetil-1-buteno a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 4-methyl-1-pentene adsorbs faster than 3,3-dimethyl-1-butene at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el n-heptano se adsorbe más rápidamente que el 2,2- dimetilpentano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. Según otra realización particular, el n-heptano se adsorbe más rápidamente que el 2,3- dimetilpentano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, n-heptane adsorbs faster than 2,2-dimethylpentane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity. According to another particular embodiment, n-heptane adsorbs faster than 2,3-dimethylpentane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el n-heptano se adsorbe más rápidamente que el 3,3- dimetilpentano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, n-heptane adsorbs faster than 3,3-dimethylpentane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 2-metilhexano se adsorbe más rápidamente que el 2,2- dimetilpentano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 2-methylhexane adsorbs faster than 2,2-dimethylpentane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 2-metilhexano se adsorbe más rápidamente que el 2,3- dimetilpentano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 2-methylhexane adsorbs faster than 2,3-dimethylpentane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 2-metilhexano se adsorbe más rápidamente que el 3,3- dimetilpentano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 2-methylhexane adsorbs faster than 3,3-dimethylpentane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 3-metilhexano se adsorbe más rápidamente que el 2,2- dimetilpentano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 3-methylhexane adsorbs faster than 2,2-dimethylpentane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 3-metilhexano se adsorbe más rápidamente que el 2,3- dimetilpentano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 3-methylhexane adsorbs faster than 2,3-dimethylpentane at pressures above 50% of the pressure necessary to achieve the maximum adsorption capacity.
Según otra realización particular, el 3-metilhexano se adsorbe más rápidamente que el 3,3- dimetilpentano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 3-methylhexane adsorbs faster than 3,3-dimethylpentane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 2,4-dimetilpentano se adsorbe más rápidamente que el 2,2-dimetilpentano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. Según otra realización particular, el 2,4-dimetilpentano se adsorbe más rápidamente que elAccording to another particular embodiment, 2,4-dimethylpentane adsorbs faster than 2,2-dimethylpentane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity. According to another particular embodiment, 2,4-dimethylpentane is adsorbed faster than
2.3-dimetilpentano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. 2.3-dimethylpentane at pressures above 50% of the pressure necessary to achieve maximum adsorption capacity.
Según otra realización particular, el 2,4-dimetilpentano se adsorbe más rápidamente que elAccording to another particular embodiment, 2,4-dimethylpentane is adsorbed faster than
3.3-dimetilpentano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. 3.3-dimethylpentane at pressures above 50% of the pressure necessary to achieve maximum adsorption capacity.
Según otra realización particular, el 2,3-dimetilpentano se adsorbe más rápidamente que elAccording to another particular embodiment, 2,3-dimethylpentane is adsorbed faster than
2.2-dimetilpentano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. 2.2-dimethylpentane at pressures above 50% of the pressure necessary to achieve maximum adsorption capacity.
Según otra realización particular, el 2,3-dimetilpentano se adsorbe más rápidamente que elAccording to another particular embodiment, 2,3-dimethylpentane is adsorbed faster than
3.3-dimetilpentano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. 3.3-dimethylpentane at pressures above 50% of the pressure necessary to achieve maximum adsorption capacity.
Según otra realización particular, el 1-hepteno se adsorbe más rápidamente que el 4,4-dimetil- 1-penteno a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 1-heptene adsorbs faster than 4,4-dimethyl-1-pentene at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
Según otra realización particular, el 2,3-dimetilbutano se adsorbe más rápidamente que el 2,3- dimetilpentano a presiones por encima del 50% de la presión necesaria para alcanzar la capacidad máxima de adsorción. According to another particular embodiment, 2,3-dimethylbutane adsorbs faster than 2,3-dimethylpentane at pressures above 50% of the pressure necessary to reach the maximum adsorption capacity.
En la presente invención, se muestra que la zeolita Si-STW presenta capacidades y velocidades de adsorción considerablemente diferentes para hidrocarburos en el rango de la gasolina, dependiendo del número y posición relativa de sus ramificaciones. Las selectividades cinética y termodinámica favorecen la adsorción de los compuestos lineales y monorramificados sobre los multirramificados. Dentro de los multirramificados, la preferencia de adsorción disminuye conforme más cercanos estén los sustituyentes entre sí, siendo los compuestos que presentan carbonos cuaternarios los más desfavorecidos termodinámica y cinéticamente. Por lo tanto, la zeolita Si-STW es un adsorbente muy adecuado para llevar a cabo procesos de separación de hidrocarburos a la salida de una unidad de hidroisomerización. Como ya se ha comentado anteriormente, el proceso de separación de esta invención comprende el empleo de técnicas de adsorción por oscilación (generalmente conocidos como técnicas de “Swing Adsorption”). Esto implica que una determinada cantidad de zeolita Si- STW se pone en contacto con una mezcla de hidrocarburos, preferentemente en las fracciones C5-C10 y los compuestos multirramificados, especialmente aquellos que presentan carbonos cuaternarios, son excluidos. Se mantiene en contacto la mezcla de hidrocarburos y la zeolita Si-STW durante un tiempo determinado para garantizar que el proceso de adsorción de los compuestos lineales y monorramificados tenga lugar y, finalmente, la mezcla de hidrocarburos que no han sido adsorbidos se retira. La fracción adsorbida en la zeolita es recuperada por medio de técnicas tales como arrastre con otro gas, aumento de temperatura (adsorción por oscilación de la temperatura, generalmente denominado “Temperature Swing Adsorption”), disminución de la presión (adsorción por oscilación de la presión, generalmente denominado “Pressure Swing Adsorption”) o combinación de los métodos anteriores. In the present invention, it is shown that the Si-STW zeolite has considerably different capacities and adsorption rates for hydrocarbons in the gasoline range, depending on the number and relative position of its branches. The kinetic and thermodynamic selectivities favor the adsorption of linear and mono-branched compounds over multi-branched ones. Among the multibranches, the adsorption preference decreases as the substituents are closer to each other, being the compounds that present quaternary carbons the most thermodynamically and kinetically disadvantaged. Therefore, Si-STW zeolite is a very suitable adsorbent to carry out hydrocarbon separation processes at the outlet of a hydroisomerization unit. As already mentioned above, the separation process of this invention comprises the use of oscillation adsorption techniques (generally known as "Swing Adsorption" techniques). This implies that a certain amount of Si-STW zeolite is brought into contact with a mixture of hydrocarbons, preferably in the C5-C10 fractions and multi-branched compounds, especially those that have quaternary carbons, are excluded. The hydrocarbon mixture and the Si-STW zeolite are kept in contact for a certain time to ensure that the adsorption process of linear and monobranched compounds takes place and, finally, the hydrocarbon mixture that has not been adsorbed is removed. The fraction adsorbed on the zeolite is recovered by means of techniques such as entrainment with another gas, increasing the temperature (adsorption by temperature oscillation, generally called “Temperature Swing Adsorption”), pressure decrease (adsorption by pressure oscillation , generally referred to as "Pressure Swing Adsorption") or a combination of the above methods.
Este proceso de separación también puede llevarse a cabo en columnas, en cuyo caso se obtienen distintos frentes de hidrocarburos según sean retenidos más o menos fuertemente y también según su velocidad de adsorción sobre el lecho de zeolita Si-STW. This separation process can also be carried out in columns, in which case different hydrocarbon fronts are obtained depending on whether they are more or less strongly retained and also according to their adsorption speed on the Si-STW zeolite bed.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes (consiste en, conlleva) no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Throughout the description and claims the word "comprises" and its variants (consists of, entails) are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and characteristics of the invention will emerge in part from the description and in part from the practice of the invention. The following examples are provided by way of illustration, and are not intended to be limiting of the present invention.
Breve descripción de las figuras: Brief description of the figures:
Figura 1 : Isotermas de adsorción de compuestos de la fracción C5 en Si-STW. Figure 1: Adsorption isotherms of compounds of fraction C5 in Si-STW.
Figura 2: Isotermas de adsorción de compuestos de la fracción C6 en Si-STW Figure 2: Adsorption isotherms of compounds of fraction C6 in Si-STW
Figura 3: Isotermas de adsorción de compuestos de la fracción C7 en Si-STW Figure 3: Adsorption isotherms of compounds of fraction C7 in Si-STW
Figura 4: Cinéticas de adsorción a 25 °C y 1 mbar. Figura 5: cinéticas de adsorción a 25 °C y 300, 150 o 50 mbar, dependiendo de si el compuesto pertenece a las fracciones C5, C6 o C7, respectivamente. Figure 4: Adsorption kinetics at 25 ° C and 1 mbar. Figure 5: adsorption kinetics at 25 ° C and 300, 150 or 50 mbar, depending on whether the compound belongs to the C5, C6 or C7 fractions, respectively.
EJEMPLOS EXAMPLES
Ejemplo 1. Preparación del agente director de la estructura (ADE) para la posterior síntesis del material Si-STW. Example 1. Preparation of the directing agent of the structure (ADE) for the subsequent synthesis of the Si-STW material.
Se disolvió 1 ,2-dimetilimidazol (16.64 g, 0.168 mol) en etanol (50 i) y se añadió 1,4- dibromobutano (8.00 mi, 0.067 mol). La mezcla se mantuvo bajo agitación a 70 °C durante 72 h. El producto se separó por filtración, se lavó con éter y se secó a vacío (26.47 g, 97 %).1,2-Dimethylimidazole (16.64 g, 0.168 mol) was dissolved in ethanol (50 i) and 1,4-dibromobutane (8.00 ml, 0.067 mol) was added. The mixture was kept under stirring at 70 ° C for 72 h. The product was filtered off, washed with ether, and dried in vacuo (26.47 g, 97%).
La sal de bromuro del ADE se convirtió finalmente en la forma de hidróxido mediante el intercambio iónico con Amberlite-IRN-78 (OH) y la concentración de hidróxido correspondiente se determinó mediante valoración utilizando la fenolftaleína como indicador de pH. The bromide salt of ADE was finally converted to the hydroxide form by ion exchange with Amberlite-IRN-78 (OH) and the corresponding hydroxide concentration was determined by titration using phenolphthalein as a pH indicator.
Ejemplo 2. Preparación del material Si-STW. Example 2. Preparation of the Si-STW material.
El material Si-STW fue sintetizado hidrotermalmente. Específicamente, se mezcló tetraetiloortorsilicato (4.17 g, 20 mmol), una solución de hidróxido de ADE(OH)2 (42.00 g, 3.36 wt%, 5 mmol) y ácido fluorhídrico (50 wt%, 10 mmol) y se homogeneizó la mezcla para formar un gel con la siguiente composición molar: The Si-STW material was hydrothermally synthesized. Specifically, tetraethylorthorsilicate (4.17 g, 20 mmol), a hydroxide solution of ADE (OH) 2 (42.00 g, 3.36 wt%, 5 mmol) and hydrofluoric acid (50 wt%, 10 mmol) were mixed and the mixture was homogenized to form a gel with the following molar composition:
Si02 : 0.25 ADE(OH)2 : 0.5 HF : 4 H20 Si0 2 : 0.25 ADE (OH) 2 : 0.5 HF: 4 H 2 0
La mezcla se distribuyó en tubos de teflón que se introdujeron en autoclaves de acero inoxidable y se calentó a 175 °C durante 7 días con rotación (60 rpm). Después de este tiempo, los autoclaves se enfriaron y el sólido se filtró, lavó con agua desionizada y se secó a 100 °C. La zeolita se sometió a calcinación en aire a 550 °C durante cinco horas con el fin de eliminar el orgánico ocluido. The mixture was distributed in Teflon tubes that were placed in stainless steel autoclaves and heated at 175 ° C for 7 days with rotation (60 rpm). After this time, the autoclaves were cooled and the solid was filtered, washed with deionized water and dried at 100 ° C. The zeolite was calcined in air at 550 ° C for five hours in order to remove the entrapped organic.
Ejemplo 3. Adsorción de n-pentano a 300 mbar en el material Si-STW a 25°C. Example 3. Adsorption of n-pentane at 300 mbar on the Si-STW material at 25 ° C.
La medida de la capacidad de adsorción de n-pentano en el material Si-STW, preparado según el Ejemplo 2 a 25°C y 300 mbar corresponde a 2.17 mmol/g. Asimismo, el valor obtenido después de realizar 50 ciclos de adsorción/desorción con este y otros compuestos sigue siendo el mismo, lo que demuestra que el material Si-STW conserva su capacidad de adsorción. La constante difusional de tiempo calculada a partir de un experimento cinético de adsorción es del orden de 3-103 s_1. The measurement of the adsorption capacity of n-pentane in the Si-STW material, prepared according to Example 2 at 25 ° C and 300 mbar corresponds to 2.17 mmol / g. Likewise, the value obtained after 50 adsorption / desorption cycles with this and other compounds remains the same, which shows that the Si-STW material retains its adsorption capacity. The diffusion time constant calculated from an adsorption kinetic experiment is of the order of 3-10 3 s _1 .
Ejemplo 4. Adsorción de 2-metilbutano a 300 mbar en el material Si-STW a 25°C. La medida de la capacidad de adsorción de pentano en el material Si-STW, preparado según el Ejemplo 2 a 25°C y 300 mbar corresponde a 1.70 mmol/g. La constante difusional de tiempo calculada a partir de un experimento cinético de adsorción es del orden de 2-103 s-1. Example 4. Adsorption of 2-methylbutane at 300 mbar on the Si-STW material at 25 ° C. The measurement of the pentane adsorption capacity in the Si-STW material, prepared according to Example 2 at 25 ° C and 300 mbar corresponds to 1.70 mmol / g. The diffusion time constant calculated from an adsorption kinetic experiment is of the order of 2-10 3 s -1 .
Ejemplo 5. Adsorción de 2,2-dimetilpropano a 300 mbar en el material Si-STW a 25°C. Example 5. Adsorption of 2,2-dimethylpropane at 300 mbar on the Si-STW material at 25 ° C.
La medida de la capacidad de adsorción de 2,2-dimetilpropano en el material Si-STW, preparado según el Ejemplo 2 a 25°C y 300 mbar corresponde a 1.22 mmol/g. La constante difusional de tiempo calculada a partir de un experimento cinético de adsorción es del orden de 2-105 s-1. The measurement of the adsorption capacity of 2,2-dimethylpropane on the Si-STW material, prepared according to Example 2 at 25 ° C and 300 mbar corresponds to 1.22 mmol / g. The diffusion time constant calculated from an adsorption kinetic experiment is of the order of 2-10 5 s- 1 .
Ejemplo 6. Adsorción de n-hexano a 150 mbar en el material Si-STW a 25°C. Example 6. Adsorption of n-hexane at 150 mbar on the Si-STW material at 25 ° C.
La medida de la capacidad de adsorción de n-hexano en el material Si-STW, preparado según el Ejemplo 2 a 25°C y 150 mbar corresponde a 1.77 mmol/g. La constante difusional de tiempo calculada a partir de un experimento cinético de adsorción es del orden de 2-103 s_1. The measurement of the adsorption capacity of n-hexane on the Si-STW material, prepared according to Example 2 at 25 ° C and 150 mbar corresponds to 1.77 mmol / g. The diffusion time constant calculated from an adsorption kinetic experiment is of the order of 2-10 3 s _1 .
Ejemplo 7. Adsorción de 2-metilpentano a 150 mbar en el material Si-STW a 25°C.Example 7. Adsorption of 2-methylpentane at 150 mbar on the Si-STW material at 25 ° C.
La medida de la capacidad de adsorción de 2-metilpentano en el material Si-STW, preparado según el Ejemplo 2 a 25°C y 150 mbar corresponde a 1.66 mmol/g. La constante difusional de tiempo calculada a partir de un experimento cinético de adsorción es del orden de 2-103 s_ The measurement of the adsorption capacity of 2-methylpentane on the Si-STW material, prepared according to Example 2 at 25 ° C and 150 mbar corresponds to 1.66 mmol / g. The diffusion time constant calculated from a kinetic adsorption experiment is of the order of 2-10 3 s _
1 one
Ejemplo 8. Adsorción de 2,2-dimetilbutano a 300 mbar en el material Si-STW a 25°C. Example 8. Adsorption of 2,2-dimethylbutane at 300 mbar on the Si-STW material at 25 ° C.
La medida de la capacidad de adsorción de 2,2-dimetilbutano en el material Si-STW, preparado según el Ejemplo 2 a 25°C y 150 mbar corresponde a 1.00 mmol/g. La constante difusional de tiempo calculada a partir de un experimento cinético de adsorción es del orden de 3-10-6 s-1. The measurement of the adsorption capacity of 2,2-dimethylbutane on the Si-STW material, prepared according to Example 2 at 25 ° C and 150 mbar corresponds to 1.00 mmol / g. The diffusion time constant calculated from a kinetic adsorption experiment is of the order of 3-10- 6 s- 1 .
Ejemplo 9. Adsorción de 2,3-dimetilbutano a 150 mbar en el material Si-STW a 25°C. Example 9. Adsorption of 2,3-dimethylbutane at 150 mbar on the Si-STW material at 25 ° C.
La medida de la capacidad de adsorción de 2,3-dimetilbutano en el material Si-STW, preparado según el Ejemplo 2 a 25°C y 150 mbar corresponde a 1.64 mmol/g. La constante difusional de tiempo calculada a partir de un experimento cinético de adsorción es del orden de 1 105 s-1. The measurement of the adsorption capacity of 2,3-dimethylbutane on the Si-STW material, prepared according to Example 2 at 25 ° C and 150 mbar corresponds to 1.64 mmol / g. The diffusion time constant calculated from an adsorption kinetic experiment is of the order of 1 10 5 s- 1 .
Ejemplo 10. Adsorción de 1-hexeno a 150 mbar en el material Si-STW a 25°C. La medida de la capacidad de adsorción de 1-hexeno en el material Si-STW, preparado según el Ejemplo 2 a 25°C y 150 mbar corresponde a 1.80 mmol/g. La constante difusional de tiempo calculada a partir de un experimento cinético de adsorción es del orden de 2-103 s-1. Example 10. Adsorption of 1-hexene at 150 mbar on the Si-STW material at 25 ° C. The measurement of the adsorption capacity of 1-hexene on the Si-STW material, prepared according to Example 2 at 25 ° C and 150 mbar corresponds to 1.80 mmol / g. The diffusion time constant calculated from an adsorption kinetic experiment is of the order of 2-10 3 s -1 .
Ejemplo 11. Adsorción de 4-metil-1-penteno a 150 mbar en el material Si-STW a 25°C. Example 11. Adsorption of 4-methyl-1-pentene at 150 mbar on the Si-STW material at 25 ° C.
La medida de la capacidad de adsorción de 4-metil-1-penteno en el material Si-STW, preparado según el Ejemplo 2 a 25°C y 150 mbar corresponde a 1.67 mmol/g. La constante difusional de tiempo calculada a partir de un experimento cinético de adsorción es del orden de 2-103 s-1. The measurement of the adsorption capacity of 4-methyl-1-pentene on the Si-STW material, prepared according to Example 2 at 25 ° C and 150 mbar corresponds to 1.67 mmol / g. The diffusion time constant calculated from an adsorption kinetic experiment is of the order of 2-10 3 s- 1 .
Ejemplo 12. Adsorción de 3,3-dimetil-1-buteno a 150 mbar en el material Si-STW a 25°C. Example 12. Adsorption of 3,3-dimethyl-1-butene at 150 mbar on the Si-STW material at 25 ° C.
La medida de la capacidad de adsorción de 3,3-dimetil-1-buteno en el material Si-STW, preparado según el Ejemplo 2 a 25°C y 150 mbar es mayor de 1.0 mmol/g, pero la lentitud del proceso de adsorción impide determinar la capacidad máxima con exactitud. La constante difusional de tiempo calculada a partir de un experimento cinético de adsorción es del orden de 5-10-6 s-1. The measure of the adsorption capacity of 3,3-dimethyl-1-butene in the Si-STW material, prepared according to Example 2 at 25 ° C and 150 mbar is greater than 1.0 mmol / g, but the slowness of the process of adsorption prevents determining the maximum capacity accurately. The diffusion time constant calculated from a kinetic adsorption experiment is of the order of 5-10- 6 s- 1 .
Ejemplo 13. Adsorción de n-heptano a 50 mbar en el material Si-STW a 25°C. Example 13. Adsorption of n-heptane at 50 mbar on the Si-STW material at 25 ° C.
La medida de la capacidad de adsorción de n-heptano en el material Si-STW, preparado según el Ejemplo 2 a 25°C y 50 mbar corresponde a 1.70 mmol/g. La constante difusional de tiempo calculada a partir de un experimento cinético de adsorción es del orden de 2- 103 s-1. The measurement of the adsorption capacity of n-heptane in the Si-STW material, prepared according to Example 2 at 25 ° C and 50 mbar corresponds to 1.70 mmol / g. The diffusion time constant calculated from an adsorption kinetic experiment is of the order of 2- 10 3 s -1 .
Ejemplo 14. Adsorción de 3-metilhexano a 50 mbar en el material Si-STW a 25°C.Example 14. Adsorption of 3-methylhexane at 50 mbar on the Si-STW material at 25 ° C.
La medida de la capacidad de adsorción de 3-metilhexano en el material Si-STW, preparado según el Ejemplo 2 a 25°C y 50 mbar corresponde a 1.64 mmol/g. La constante difusional de tiempo calculada a partir de un experimento cinético de adsorción es del orden de 2- 103 s_1. The measurement of the adsorption capacity of 3-methylhexane on the Si-STW material, prepared according to Example 2 at 25 ° C and 50 mbar corresponds to 1.64 mmol / g. The diffusion time constant calculated from an adsorption kinetic experiment is of the order of 2-10 3 s _1 .
Ejemplo 15. Adsorción de 2,3-dimetilpentano a 50 mbar en el material Si-STW a 25°C. Example 15. Adsorption of 2,3-dimethylpentane at 50 mbar on the Si-STW material at 25 ° C.
La medida de la capacidad de adsorción de 2,3-dimetilpentano en el material Si-STW, preparado según el Ejemplo 2 a 25°C y 50 mbar es mayor de 1.0 mmol/g, pero la lentitud del proceso de adsorción impide determinar la capacidad máxima con exactitud. La constante difusional de tiempo calculada a partir de un experimento cinético de adsorción es menor de 5-10-6 s-1. The measurement of the adsorption capacity of 2,3-dimethylpentane on the Si-STW material, prepared according to Example 2 at 25 ° C and 50 mbar is greater than 1.0 mmol / g, but the slowness of the adsorption process makes it impossible to determine the maximum capacity accurately. The diffusion time constant calculated from an adsorption kinetic experiment is less than 5-10- 6 s- 1 .
Ejemplo 16. Adsorción de 2,4-dimetilpentano a 50 mbar en el material Si-STW a 25°C. La medida de la capacidad de adsorción de 2,4-dimetilpentano en el material Si-STW, preparado según el Ejemplo 2 a 25°C y 50 mbar es mayor que 1.60 mmol/g, pero la lentitud del proceso de adsorción impide determinar la capacidad máxima con exactitud. La constante difusional de tiempo calculada a partir de un experimento cinético de adsorción es menor de 2 -10-3 s 1. Example 16. Adsorption of 2,4-dimethylpentane at 50 mbar on the Si-STW material at 25 ° C. The measurement of the adsorption capacity of 2,4-dimethylpentane on the Si-STW material, prepared according to Example 2 at 25 ° C and 50 mbar is greater than 1.60 mmol / g, but the slowness of the adsorption process makes it impossible to determine the maximum capacity accurately. The diffusion time constant calculated from an adsorption kinetic experiment is less than 2 -10 -3 s 1 .
Ejemplo 17. Adsorción de 1-hepteno a 50 mbar en el material Si-STW a 25°C. Example 17. Adsorption of 1-heptene at 50 mbar on the Si-STW material at 25 ° C.
La medida de la capacidad de adsorción de 1-hepteno en el material Si-STW, preparado según el Ejemplo 2 a 25°C y 50 mbar corresponde a 1.73 mmol/g. La constante difusional de tiempo calculada a partir de un experimento cinético de adsorción es del orden de 2-103 s_1. The measurement of the adsorption capacity of 1-heptene on the Si-STW material, prepared according to Example 2 at 25 ° C and 50 mbar corresponds to 1.73 mmol / g. The diffusion time constant calculated from an adsorption kinetic experiment is of the order of 2-10 3 s _1 .
Ejemplo 18. Adsorción de 4,4-dimetil-1-penteno a 50 mbar en el material Si-STW a 25°C. Example 18. Adsorption of 4,4-dimethyl-1-pentene at 50 mbar on the Si-STW material at 25 ° C.
La medida de la capacidad de adsorción de 4,4-dimetil-1-penteno en el material Si-STW, preparado según el Ejemplo 2 a 25°C y 50 mbar es mayor de 0.9 mmol/g, pero la lentitud del proceso de adsorción impide determinar la capacidad máxima con exactitud. La constante difusional de tiempo calculada a partir de un experimento cinético de adsorción es menor de 3- 10-6 s-1. The measurement of the adsorption capacity of 4,4-dimethyl-1-pentene in the Si-STW material, prepared according to Example 2 at 25 ° C and 50 mbar is greater than 0.9 mmol / g, but the slowness of the process of adsorption prevents determining the maximum capacity accurately. The diffusion time constant calculated from a kinetic adsorption experiment is less than 3- 10- 6 s- 1 .

Claims

REIVINDICACIONES
1. Proceso de separación de fluidos de hidrocarburos caracterizado porque comprende, al menos, las siguientes etapas: 1. Hydrocarbon fluid separation process characterized in that it comprises, at least, the following stages:
(a) poner en contacto una corriente de hidrocarburos de entrada, que consiste en un primer componente fluido y un segundo componente fluido, con un adsorbente que contiene el material zeolítico Si-STW, produciéndose un producto fluido no adsorbido en el que la relación molar del primer componente fluido frente al segundo componente fluido es menor que la relación molar del primer componente fluido frente al segundo componente fluido en la corriente de entrada, (a) contacting an inlet hydrocarbon stream, consisting of a first fluid component and a second fluid component, with an adsorbent containing the Si-STW zeolitic material, producing a non-adsorbed fluid product in which the molar ratio of the first fluid component versus the second fluid component is less than the molar ratio of the first fluid component versus the second fluid component in the input stream,
(b) recuperación del producto fluido no adsorbido, (b) recovery of the non-adsorbed fluid product,
(c) formación de un producto fluido adsorbido cuya relación molar del primer componente fluido frente al segundo componente fluido es mayor que la relación molar del primer componente fluido frente al segundo componente fluido en la corriente de entrada,(c) formation of an adsorbed fluid product whose molar ratio of the first fluid component to the second fluid component is greater than the molar ratio of the first fluid component to the second fluid component in the input stream,
(d)recuperación del producto fluido adsorbido. (d) recovery of the adsorbed fluid product.
2. Proceso de separación de hidrocarburos según la reivindicación 1 , caracterizado porque la etapa (d) de recuperación del producto adsorbido comprende, al menos, (a) la modificación de al menos la temperatura o la presión del adsorbente, (b) poner en contacto el adsorbente que contiene el material zeolítico Si-STW con un tercer componente fluido, del cual al menos una fracción es adsorbida por el adsorbente que contiene el material zeolítico Si-STW o (c) una combinación de las anteriores. 2. Process for separating hydrocarbons according to claim 1, characterized in that the step (d) of recovering the adsorbed product comprises, at least, (a) modifying at least the temperature or pressure of the adsorbent, (b) putting into contacting the adsorbent containing the Si-STW zeolitic material with a third fluid component, of which at least a fraction is adsorbed by the adsorbent containing the Si-STW zeolitic material or (c) a combination of the above.
3. Proceso de separación de hidrocarburos según una de las reivindicaciones anteriores, caracterizado porque comprende poner en contacto la corriente de entrada con un adsorbente en un lecho de adsorción por oscilación. Hydrocarbon separation process according to one of the preceding claims, characterized in that it comprises contacting the input stream with an adsorbent in an adsorption bed by oscillation.
4. Proceso de separación de hidrocarburos según la reivindicación 3, caracterizado porque las condiciones del lecho de adsorción por oscilación están seleccionadas entre, condiciones de adsorción por oscilación de la presión, condiciones de adsorción por oscilación de la temperatura, o una combinación de las anteriores. 4. The hydrocarbon separation process according to claim 3, characterized in that the conditions of the swing adsorption bed are selected from pressure swing adsorption conditions, temperature swing adsorption conditions, or a combination of the above .
5. Proceso de separación de hidrocarburos según una de las reivindicaciones anteriores, caracterizado porque la corriente de entrada está compuesta por hidrocarburos de las fracciones C5-C10. 5. Process for separating hydrocarbons according to one of the preceding claims, characterized in that the input stream consists of hydrocarbons of the C5-C10 fractions.
6. Proceso de separación de hidrocarburos según una de las reivindicaciones anteriores, caracterizado porque la corriente de entrada se pone en contacto con el adsorbente que contiene el material zeolítico Si-STW a una presión parcial de hidrocarburos de 0.0001 a 10 bar. Hydrocarbon separation process according to one of the preceding claims, characterized in that the input stream is brought into contact with the adsorbent containing the Si-STW zeolitic material at a hydrocarbon partial pressure of 0.0001 to 10 bar.
7. Proceso de separación de hidrocarburos según la reivindicación 6, caracterizado porque la presión parcial de hidrocarburos está entre 0.0001 y 5 bar. Hydrocarbon separation process according to claim 6, characterized in that the hydrocarbon partial pressure is between 0.0001 and 5 bar.
8. Proceso de separación de hidrocarburos según una de las reivindicaciones anteriores, caracterizado porque la corriente de entrada se expone al adsorbente a temperaturas entre 0 y 200 °C. The hydrocarbon separation process according to one of the preceding claims, characterized in that the input stream is exposed to the adsorbent at temperatures between 0 and 200 ° C.
9. Proceso de separación de hidrocarburos según la reivindicación 8, caracterizado porque la temperatura está entre 0 y 100 °C. 9. Hydrocarbon separation process according to claim 8, characterized in that the temperature is between 0 and 100 ° C.
10. Proceso de separación de hidrocarburos según una de las reivindicaciones, caracterizado porque el primer componente fluido comprende parafinas y definas que pueden ser lineales, monorramificadas, multirramificadas o combinaciones de las mismas. 10. Hydrocarbon separation process according to one of the claims, characterized in that the first fluid component comprises paraffins and definines that can be linear, single-branched, multi-branched or combinations thereof.
11. Proceso de separación de hidrocarburos según la reivindicación 10, caracterizado porque el primer componente fluido comprende parafinas y definas monorramificadas, multirramificadas o combinaciones de las anteriores, siendo las ramificaciones presentes grupos metilo. 11. Hydrocarbon separation process according to claim 10, characterized in that the first fluid component comprises monobranched, multibranched paraffins and definas, or combinations of the above, the branches present being methyl groups.
12. Proceso de separación de hidrocarburos según la reivindicación 10, caracterizado porque el primer componente fluido comprende parafinas lineales, monorramificadas, multirramificadas o combinaciones de las anteriores. 12. Hydrocarbon separation process according to claim 10, characterized in that the first fluid component comprises linear, monobranched, multibranched paraffins or combinations of the above.
13. Proceso de separación de hidrocarburos según la reivindicación 12, caracterizado porque el primer componente fluido comprende parafinas monorramificadas, multirramificadas o combinaciones de las anteriores, siendo las ramificaciones presentes grupos metilo. 13. Hydrocarbon separation process according to claim 12, characterized in that the first fluid component comprises monobranched, multibranched paraffins or combinations of the above, the branches present being methyl groups.
14. Proceso de separación de hidrocarburos según la reivindicación 10, caracterizado porque el primer componente fluido comprende definas lineales, monorramificadas, multirramificadas o combinaciones de las anteriores. 14. Hydrocarbon separation process according to claim 10, characterized in that the first fluid component comprises linear, monobranched, multibranched or combinations of the above.
15. Proceso de separación de hidrocarburos según la reivindicación 14, caracterizado porque el primer componente fluido comprende definas monorramificadas, multirramificadas o combinaciones de las anteriores, siendo las ramificaciones presentes grupos metilo. 15. Hydrocarbon separation process according to claim 14, characterized in that the first fluid component comprises monobranched, multi-branched or combinations of the above, the branches present being methyl groups.
16. Proceso de separación de hidrocarburos según una de las reivindicaciones anteriores, caracterizado porque los hidrocarburos multirramificados del primer componente fluido presentan 3 o menos ramificaciones. 16. Process for separating hydrocarbons according to one of the preceding claims, characterized in that the multi-branched hydrocarbons of the first fluid component have 3 or fewer branches.
17. Proceso de separación de hidrocarburos según una de las reivindicaciones anteriores, caracterizado porque los hidrocarburos multirramificados del primer componente fluido no presentan carbonos cuaternarios. 17. Process for separating hydrocarbons according to one of the preceding claims, characterized in that the multi-branched hydrocarbons of the first fluid component do not have quaternary carbons.
18. Proceso de separación de hidrocarburos según una de las reivindicaciones anteriores, caracterizado porque los hidrocarburos multirramificados del primer componente presentan ramificaciones que se encuentran a distancias de cadena superiores a 2 carbonos. 18. Process for separating hydrocarbons according to one of the preceding claims, characterized in that the multi-branched hydrocarbons of the first component have branches that are at chain distances greater than 2 carbons.
19. Proceso de separación de hidrocarburos según una de las reivindicaciones anteriores, caracterizado porque el segundo componente fluido comprende parafinas y definas que pueden ser monorramificadas, multirramificadas o combinaciones de las anteriores. 19. Process for separating hydrocarbons according to one of the preceding claims, characterized in that the second fluid component comprises paraffins and definines that can be monobranched, multibranched or combinations of the foregoing.
20. Proceso de separación de hidrocarburos según la reivindicación 19, caracterizado porque segundo componente fluido comprende parafinas y definas monorramificadas, siendo las ramificaciones grupos que incluyan más de un carbono. 20. Hydrocarbon separation process according to claim 19, characterized in that the second fluid component comprises monobranched paraffins and definines, the branches being groups that include more than one carbon.
21. Proceso de separación de hidrocarburos según una de las reivindicaciones 19 y 20, caracterizado porque el segundo componente fluido comprende parafinas y definas multirramificadas, siendo por lo menos una de las ramificaciones un grupo que incluya más de un carbono. 21. Process for separating hydrocarbons according to one of claims 19 and 20, characterized in that the second fluid component comprises multi-branched paraffins and definines, at least one of the branches being a group that includes more than one carbon.
22. Proceso de separación de hidrocarburos según una de las reivindicaciones 19 a 21, caracterizado porque el segundo componente fluido comprende parafinas y definas multirramificadas que tengan al menos un carbono cuaternario. 22. Process for separating hydrocarbons according to one of claims 19 to 21, characterized in that the second fluid component comprises multibranched paraffins and definitions having at least one quaternary carbon.
23. Proceso de separación de hidrocarburos según una de las reivindicaciones 19 a 22, caracterizado porque el segundo componente fluido comprende parafinas y definas multirramificadas cuyas ramificaciones están a distancias de cadena menores a (n - 5) siendo n el número de carbonos total de la molécula. 23. Process for separating hydrocarbons according to one of claims 19 to 22, characterized in that the second fluid component comprises multibranched paraffins and definines whose branches are at chain distances less than (n-5) being n the total number of carbons in the molecule.
24. Proceso de separación de hidrocarburos según la reivindicación 19, caracterizado porque el segundo componente fluido comprende parafinas monorramificadas, multirramificadas o combinaciones de las anteriores. 24. Hydrocarbon separation process according to claim 19, characterized in that the second fluid component comprises monobranched, multibranched paraffins or combinations of the above.
25. Proceso de separación de hidrocarburos según la reivindicación 24, caracterizado porque el segundo componente fluido comprende parafinas monorramificadas, siendo las ramificaciones grupos que incluyan más de un carbono. 25. Process for separating hydrocarbons according to claim 24, characterized in that the second fluid component comprises monobranched paraffins, the branches being groups that include more than one carbon.
26. Proceso de separación de hidrocarburos según una de las reivindicaciones 24 y 25, caracterizado porque el segundo componente fluido comprende parafinas multirramificadas, siendo por lo menos una de las ramificaciones un grupo que incluya más de un carbono. 26. Process for separating hydrocarbons according to one of claims 24 and 25, characterized in that the second fluid component comprises multi-branched paraffins, at least one of the branches being a group that includes more than one carbon.
27. Proceso de separación de hidrocarburos según una de las reivindicaciones 24 a 26, en el cual el segundo componente fluido comprende parafinas multirramificadas que tengan al menos un carbono cuaternario. 27. The hydrocarbon separation process according to one of claims 24 to 26, in which the second fluid component comprises multi-branched paraffins having at least one quaternary carbon.
28. Proceso de separación de hidrocarburos según una de las reivindicaciones 24 a 27, caracterizado porque el segundo componente fluido comprende parafinas multirramificadas cuyas ramificaciones estén a distancias de cadena menores a (n - 5) siendo n el número de carbonos total de la molécula. 28. Process for separating hydrocarbons according to one of claims 24 to 27, characterized in that the second fluid component comprises multi-branched paraffins whose branches are at chain distances less than (n-5), where n is the total carbon number of the molecule.
29. Proceso de separación de hidrocarburos según la reivindicación 19, caracterizado porque el segundo componente fluido comprende definas monorramificadas, multirramificadas o combinaciones de las anteriores. 29. Process for separating hydrocarbons according to claim 19, characterized in that the second fluid component comprises defined monobranches, multibranches or combinations of the above.
30. Proceso de separación de hidrocarburos según la reivindicación 29, en el cual el segundo componente fluido comprende definas monorramificadas, siendo las ramificaciones grupos que incluyan más de un carbono 30. The hydrocarbon separation process according to claim 29, in which the second fluid component comprises monobranched definitions, the branches being groups that include more than one carbon.
31. Proceso de separación de hidrocarburos según una de las reivindicaciones 29 y 30, caracterizado porque el segundo componente fluido comprende definas multirramificadas, siendo por lo menos una de las ramificaciones un grupo que incluya más de un carbono. 31. Process for separating hydrocarbons according to one of claims 29 and 30, characterized in that the second fluid component comprises multi-branched defined lines, at least one of the branches being a group that includes more than one carbon.
32. Proceso de separación de hidrocarburos según una de las reivindicaciones 29 y 31, en el cual el segundo componente fluido comprende olefinas multirramificadas que tengan al menos un carbono cuaternario. 32. Process for the separation of hydrocarbons according to one of claims 29 and 31, wherein the second fluid component comprises multi-branched olefins having at least one quaternary carbon.
33. Proceso de separación de hidrocarburos según una de las reivindicaciones 29 y 32, caracterizado porque el segundo componente fluido comprende olefinas multirramificadas cuyas ramificaciones estén a distancias de cadena menores a (n - 5) siendo n el número de carbonos total de la molécula. 33. Process for separating hydrocarbons according to one of claims 29 and 32, characterized in that the second fluid component comprises multi-branched olefins whose branches are at chain distances less than (n-5), where n is the total carbon number of the molecule.
34. Proceso de separación de hidrocarburos según cualquiera una de las reivindicaciones anteriores, caracterizado porque la corriente de entrada se pone en contacto con el adsorbente que contiene el material zeolítico Si-STW en las condiciones adecuadas para llevar a cabo una separación del primer componente fluido bajo control cinético, o en el cual la corriente de entrada se pone en contacto con el adsorbente que contiene el material zeolítico Si-STW en las condiciones adecuadas para llevar a cabo una separación del primer componente fluido bajo control termodinámico, o una combinación de las anteriores. 34. Hydrocarbon separation process according to any one of the preceding claims, characterized in that the input stream is brought into contact with the adsorbent containing the Si-STW zeolitic material under the appropriate conditions to carry out a separation of the first fluid component under kinetic control, or in which the input stream is brought into contact with the adsorbent containing the Si-STW zeolitic material under suitable conditions to carry out a separation of the first fluid component under thermodynamic control, or a combination of the previous.
PCT/ES2021/070475 2020-06-29 2021-06-29 Use of crystalline microporous zeolitic material with stw structure in hydrocarbon adsorption and separation processes WO2022003223A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP202030649 2020-06-29
ES202030649A ES2888923A1 (en) 2020-06-29 2020-06-29 USE OF MICROPOROUS CRYSTAL MATERIAL OF ZEOLITHIC NATURE WITH STW STRUCTURE IN HYDROCARBON ADSORPTION AND SEPARATION PROCESSES (Machine-translation by Google Translate, not legally binding)

Publications (1)

Publication Number Publication Date
WO2022003223A1 true WO2022003223A1 (en) 2022-01-06

Family

ID=77226829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070475 WO2022003223A1 (en) 2020-06-29 2021-06-29 Use of crystalline microporous zeolitic material with stw structure in hydrocarbon adsorption and separation processes

Country Status (2)

Country Link
ES (1) ES2888923A1 (en)
WO (1) WO2022003223A1 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3070542A (en) 1960-06-24 1962-12-25 Exxon Research Engineering Co Hydrocarbon separation process
US3706813A (en) 1971-07-08 1972-12-19 Universal Oil Prod Co Selectively adsorbing multibranched paraffins
US5107052A (en) 1990-12-31 1992-04-21 Uop Extraction of dimethyl paraffins from isomerates
US6069289A (en) 1998-08-31 2000-05-30 Uop Llc Process for separating and recovering multimethyl-branched alkanes
US6156950A (en) 1997-11-25 2000-12-05 Institut Francais Du Petrole Process for separating a C5-C8 feed or an intermediate feed into three effluents, respectively rich in straight chain, non-branched and multi-branched paraffins
US6338791B1 (en) 1997-11-25 2002-01-15 Institut Francais Du Petrole High octane number gasolines and their production using a process associating hydro-isomerization and separation
US6353144B1 (en) * 1998-02-04 2002-03-05 Institut Francais Du Petrole Process for chromatographic separation of a C5-C8 feed or an intermediate feed into three effluents, respectively rich in straight chain, mono-branched and multi-branched paraffins
US6784334B2 (en) 2000-08-25 2004-08-31 Institut Francais Du Petrole Process for separating multibranched paraffins using a zeolitic adsorbent with a mixed structure
US6809228B2 (en) 2000-08-25 2004-10-26 Institut Francais Dupetrole Process combining hydroisomerisation and separation using a zeolitic adsorbent with a mixed structure for the production of high octane number gasolines
US7029572B2 (en) 2003-02-25 2006-04-18 Chevron U.S.A. Inc Process for producing high RON gasoline using ATS zeolite
US7037422B2 (en) 2003-02-25 2006-05-02 Chevron U.S.A. Inc Process for producing high RON gasoline using CFI Zeolite
US7435865B2 (en) 2003-08-18 2008-10-14 Vrije Universiteit Brussel Method for separating hydrocarbons and use of a zeolite therefor
US20150110712A1 (en) * 2013-10-18 2015-04-23 California Institute Of Technology Crystalline molecular sieves and related structure-directing agents, methods and systems
KR101636142B1 (en) 2014-08-27 2016-07-04 포항공과대학교 산학협력단 The aluminosilicate zeolite Al-HPM-1, its manufacturing process and application as a 1-butene isomerization catalyst
US20190224655A1 (en) 2018-01-24 2019-07-25 Chevron U.S.A. Inc. Molecular sieve ssz-110, its synthesis and use

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6488741B2 (en) * 2001-01-23 2002-12-03 The Trustess Of The University Of Pennsylvania Light hydrocarbon separation using 8-member ring zeolites

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3070542A (en) 1960-06-24 1962-12-25 Exxon Research Engineering Co Hydrocarbon separation process
US3706813A (en) 1971-07-08 1972-12-19 Universal Oil Prod Co Selectively adsorbing multibranched paraffins
US5107052A (en) 1990-12-31 1992-04-21 Uop Extraction of dimethyl paraffins from isomerates
US6156950A (en) 1997-11-25 2000-12-05 Institut Francais Du Petrole Process for separating a C5-C8 feed or an intermediate feed into three effluents, respectively rich in straight chain, non-branched and multi-branched paraffins
US6338791B1 (en) 1997-11-25 2002-01-15 Institut Francais Du Petrole High octane number gasolines and their production using a process associating hydro-isomerization and separation
US6353144B1 (en) * 1998-02-04 2002-03-05 Institut Francais Du Petrole Process for chromatographic separation of a C5-C8 feed or an intermediate feed into three effluents, respectively rich in straight chain, mono-branched and multi-branched paraffins
US6069289A (en) 1998-08-31 2000-05-30 Uop Llc Process for separating and recovering multimethyl-branched alkanes
US6784334B2 (en) 2000-08-25 2004-08-31 Institut Francais Du Petrole Process for separating multibranched paraffins using a zeolitic adsorbent with a mixed structure
US6809228B2 (en) 2000-08-25 2004-10-26 Institut Francais Dupetrole Process combining hydroisomerisation and separation using a zeolitic adsorbent with a mixed structure for the production of high octane number gasolines
US7029572B2 (en) 2003-02-25 2006-04-18 Chevron U.S.A. Inc Process for producing high RON gasoline using ATS zeolite
US7037422B2 (en) 2003-02-25 2006-05-02 Chevron U.S.A. Inc Process for producing high RON gasoline using CFI Zeolite
US7435865B2 (en) 2003-08-18 2008-10-14 Vrije Universiteit Brussel Method for separating hydrocarbons and use of a zeolite therefor
US20150110712A1 (en) * 2013-10-18 2015-04-23 California Institute Of Technology Crystalline molecular sieves and related structure-directing agents, methods and systems
KR101636142B1 (en) 2014-08-27 2016-07-04 포항공과대학교 산학협력단 The aluminosilicate zeolite Al-HPM-1, its manufacturing process and application as a 1-butene isomerization catalyst
US20190224655A1 (en) 2018-01-24 2019-07-25 Chevron U.S.A. Inc. Molecular sieve ssz-110, its synthesis and use

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
"Sorption Kinetics, en Diffusion in Nanoporous Materials", 2012, pages: 143 - 189
"Zeolites and other adsorbents, en Nanoporous Materials for Gas Storage", 2019, SPRINGER, pages: 173 - 208
ADVANCED SOLUTIONS FOR PARAFFINS ISOMERIZATION, WASHINGTON, DC, 2004
ALCHE J., vol. 48, 2002, pages 1927 - 1937
ANGEW. CHEM. INT. ED., vol. 51, 2012, pages 3854 - 3856
ANGEW. CHEMIE - INT. ED., vol. 44, 2005, pages 400 - 403
ANGEW. CHEMIE - INT. ED., vol. 51, 2012, pages 11867 - 11871
CHEM. EUR. J., vol. 24, 2018, pages 4121
COORD. CHEM. REV., vol. 255, 2011, pages 1558 - 1580
ENERGY & FUELS, vol. 33, 2019, pages 3828 - 3843
IND. ENG. CHEM. RES., vol. 36, 1997, pages 137 - 143
J. AM. CHEM. SOC., vol. 135, 2013, pages 11975 - 11
OIL GAS SCI. TECHNOL. - REV. I'IFP, vol. 64, 2009, pages 759 - 771
PÉREZ-BOTELLA EDUARDO ET AL: "Insights into Adsorption of Linear, Monobranched, and Dibranched Alkanes on Pure Silica STW Zeolite as a Promising Material for Their Separation", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 124, no. 49, 10 December 2020 (2020-12-10), US, pages 26821 - 26829, XP055838986, ISSN: 1932-7447, DOI: 10.1021/acs.jpcc.0c08517 *
PET. SCI. TECHNOL., vol. 31, 2013, pages 580 - 595
PHYS. CHEM. CHEM. PHYS., vol. 3, 2001, pages 4390 - 4398
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 114, no. 20, 2017, pages 5101 - 5106
RECENT PATENTS CHEM. ENG., vol. 5, 2012, pages 153 - 173
TECHNOL, vol. 106, 2013, pages 56 - 62

Also Published As

Publication number Publication date
ES2888923A1 (en) 2022-01-10

Similar Documents

Publication Publication Date Title
Wang et al. Zeolite nanosheets for catalysis
US6500404B1 (en) Zeolite ITQ-3
US7820869B2 (en) Binderless adsorbents and their use in the adsorptive separation of para-xylene
US10493440B2 (en) Methods to produce molecular sieves with LTA topology and compositions derived therefrom
US20090326308A1 (en) Binderless adsorbents comprising nano-size zeolite x and their use in the adsorptive separation of para-xylene
US20090111959A1 (en) High silica DDR-type molecular sieve, its synthesis and use
US20070287874A1 (en) Intergrown molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins
US20100076243A1 (en) Binderless adsorbents with improved mass transfer properties and their use in the adsorptive separation of para-xylene
Gücüyener et al. Facile synthesis of the DD3R zeolite: performance in the adsorptive separation of buta-1, 3-diene and but-2-ene isomers
KR20040108791A (en) Crystalline aluminosilicate zeolytic composition: uzm-4m
JP2000501735A (en) Use of transition metal containing small pore molecular sieve catalysts in the conversion of oxygen binding compounds.
EA015997B1 (en) Method for preparing metalloaluminophosphate (meapo) molecular sieve
BR112012023262B1 (en) SIMULTANEOUS DEHYDRATATION AND ISOMERIZATION OF ISOBUTANOL SKELETON IN ACID CATALYZERS
US10773250B2 (en) Modified crystalline aluminosilicate for dehydration of alcohols
US20140179971A1 (en) Catalyst for the conversion of oxygenates to olefins and a process for preparing said catalyst
US7939043B2 (en) Synthesis of chabazite structure-containing molecular sieves and their use in the conversion of oxygenates to olefins
EP1825901B1 (en) Gas separation method using an itq-29 zeolite material
Pérez-Botella et al. Zeolites and other adsorbents
WO2022003223A1 (en) Use of crystalline microporous zeolitic material with stw structure in hydrocarbon adsorption and separation processes
US7622417B2 (en) Synthesis and use of AEI structure-type molecular sieves
CN113277927B (en) Application of microporous molecular sieve in adsorption and separation of n-butane and isobutane
Claessens et al. Efficient Downstream Processing of Renewable Alcohols Using Zeolite Adsorbents
JP2017127857A (en) Catalyst for producing aromatic compound and method for producing aromatic compound
US11571653B2 (en) Ethylene separations using small pore zeolite SSZ-45
US11873226B2 (en) Sheet-like particles of zeolite and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21751597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21751597

Country of ref document: EP

Kind code of ref document: A1