WO2022002573A1 - Three-phase ac/dc voltage converter with only two electrical conversion modules - Google Patents

Three-phase ac/dc voltage converter with only two electrical conversion modules Download PDF

Info

Publication number
WO2022002573A1
WO2022002573A1 PCT/EP2021/066000 EP2021066000W WO2022002573A1 WO 2022002573 A1 WO2022002573 A1 WO 2022002573A1 EP 2021066000 W EP2021066000 W EP 2021066000W WO 2022002573 A1 WO2022002573 A1 WO 2022002573A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical conversion
voltage converter
terminals
electrical
alternating
Prior art date
Application number
PCT/EP2021/066000
Other languages
French (fr)
Inventor
Pierre-Baptiste STECKLER
Original Assignee
Supergrid Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Supergrid Institute filed Critical Supergrid Institute
Priority to EP21731198.4A priority Critical patent/EP4173128A1/en
Publication of WO2022002573A1 publication Critical patent/WO2022002573A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4803Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode with means for reducing DC component from AC output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present invention relates to the technical field of AC voltage converters to DC voltage and vice versa, also called AC / DC voltage converters.
  • This type of converter is particularly suitable for installation in high voltage direct current power supply installations (HVDC for "High Voltage Direct Current”).
  • HVDC power supply installations typically consist of a continuous power supply network that allows electricity to be transported over long distances using direct current lines several hundred kilometers long. They also include an alternative electricity supply network, for example connected to an offshore wind farm. AC / DC voltage converters allow the connection of such an AC power supply network with a DC power supply network.
  • Three-phase AC / DC voltage converters are known, such as the converter described in EP 2 569 858 A1.
  • This converter comprises an arm extending between first and second DC terminals in which three electrical conversion modules are connected in series.
  • This converter further comprises a transformer comprising three primary windings and three secondary windings. Each of the secondary windings of the transformer is electrically connected to one of the three electrical conversion modules.
  • a disadvantage of this three-phase converter is that it has a very large number of components and is very bulky. This is because the high voltage application imposes minimum distances between the electrical conversion modules of this converter. This converter, provided with three electrical conversion modules therefore has a large size and bulk.
  • each of the three electrical conversion modules of this converter comprises several tens of submodules connected in a phase branch.
  • this converter is very heavy, bulky and bulky.
  • its manufacture is particularly difficult and expensive.
  • significant resources must be used in order to control all of the control elements of this converter. Controlling the converter is therefore particularly expensive and complex.
  • An object of the present invention is to provide a voltage converter overcoming the aforementioned problems and in particular making it possible to reduce the number of components of said voltage converter.
  • the invention relates to a voltage converter making it possible to convert an AC voltage into a DC voltage and vice versa, the voltage converter comprising: first and second DC terminals configured to be electrically connected to a power supply network continued ; first, second and third AC terminals configured to be electrically connected to an AC power supply network; an arm extending between the first and second DC terminals and having a first electrical conversion module and a second electrical conversion module connected in series in said arm or in parallel with each other, the first and second electrical conversion modules each having a first DC terminal and a second DC terminal between which it extends, as well as a first AC terminal and a second AC terminal; a device for transforming electrical energy comprising a first primary winding connected between the first and second alternating terminals and a second primary winding connected between the second and third alternating terminals, the device for transforming electrical energy further comprising a first secondary winding connected between the first and second AC terminals of the first electrical conversion module and a second secondary winding connected between the first and second AC terminals of the second electrical
  • the voltage converter according to the invention can be easily connected in an HVDC electrical installation, between an AC power supply network and a DC power supply network.
  • the voltage converter is advantageously reversible, so that it makes it possible to convert an alternating voltage into a direct voltage but also to convert a direct voltage into an alternating voltage.
  • each of the electrical conversion modules is connected in the arm through its first and second continuous terminals.
  • Each secondary winding of the electrical transformation device is associated with an electrical conversion module.
  • the first and second power conversion modules can be connected either in series in the arm or in parallel with each other.
  • the two power conversion modules When the converter is controlled to absorb or supply reactive power to the AC power supply network, the two power conversion modules absorb different active powers. When they are connected in series in the arm, the first and second electrical conversion modules are crossed by the same current. In order to control the level of energy stored in their submodules, it is appropriate either to introduce an AC component to this current or to impose different DC components for the voltages at the terminals of the electrical conversion modules.
  • An advantage of the parallel connection of the first and second electrical conversion modules is to facilitate the control of the energy stored in said first and second electrical conversion modules by circulating different DC components of current at the level of the first DC terminals of the electrical conversion modules. This eliminates the need to generate an alternating balancing current when reactive power appears in the alternating part of the converter, at the primary windings.
  • paralleling the first and second electrical conversion modules can reduce the sizing and therefore the size of the components.
  • each of the primary windings of the voltage converter according to the invention is connected between two alternative terminals, and are therefore configured to be connected directly to the AC power supply network.
  • the first and second electrical conversion modules make it possible to generate respectively a first inserted DC voltage and a second inserted DC voltage controllable in the arm between their respective first and second DC terminals. These first and second inserted DC voltages make it possible to control a direct current flowing in the arm.
  • the first and second electrical conversion modules further make it possible to generate respectively a first inserted AC voltage and a second inserted AC voltage which can be controlled between their respective first and second AC terminals.
  • first and second inserted alternating voltages make it possible to generate respectively said first alternating current h circulating in the first secondary winding and said second alternating current circulating in the second secondary winding.
  • the electrical energy transformation device has a transformation ratio r corresponding to the ratio between the number of turns of the first secondary winding and the number of turns of the first primary winding. As a first approximation, this transformation ratio is approximately equal to the ratio between the voltage at the terminals of the first secondary winding and the voltage at the terminals of the first primary winding.
  • the electric power transforming device From the first and second alternating currents flowing in the first and second secondary windings, the electric power transforming device supplies first and second alternating currents flowing in the first and second primary windings, which are images, at the transformation ratio r close to said first and second alternating currents flowing in the first and second secondary windings.
  • the voltage converter according to the invention makes it possible to construct a three-phase system of three alternating phase currents.
  • This three-phase system comprises first, second and third alternating phase currents laJ b c flowing respectively to the first, second and third AC terminals of the voltage converter.
  • These alternating phase currents are controllable in phase and amplitude, so that the active power and the reactive power of the voltage converter can also be controlled.
  • the electrical energy transforming device of the voltage converter according to the invention achieves a three-phase distribution of three alternating phase currents from two alternating currents flowing in the secondary windings of the electrical energy transforming device.
  • phase and amplitude of the first alternating current flowing through the first secondary winding and the phase and magnitude of the second alternating current flowing through the second secondary winding of the electrical energy transforming device form four degrees of freedom of the given three-phase system above.
  • this three-phase system can be decomposed into a sum of three three-phase systems, namely a direct balanced system, an inverse balanced system and a zero sequence system.
  • the direct balanced system allows the active power and the reactive power of the voltage converter to be imposed.
  • the inverse balanced system and the homopolar system must each have a real part and a zero imaginary part. In fact, this makes it possible to keep only the direct system, which is a balanced three-phase system formed by the three alternating phase currents IAJBJC, which are then phase-shifted by 120 ° and have the same amplitude.
  • These three systems therefore impose six constraints to be satisfied, namely the control of the active power, the control of the reactive power, the cancellation of the real and imaginary parts of the inverse balanced system, the cancellation of the real and imaginary parts of the homopolar system. .
  • the coupling of the primary windings of the energy transforming device of the voltage converter according to the invention allows to cancel the real part and the imaginary part of the homopolar system, by construction.
  • the zero sequence current is defined as the sum of the three alternating phase currents. Thanks to the three equations given previously, it can be seen that the sum of the three alternating phase currents is zero. There is no zero sequence current, and the real and imaginary parts of the zero sequence system are therefore zero.
  • the control module is advantageously configured to adjust the phase shift between the first and second alternating currents flowing in the first and second secondary windings, so as to impose a phase shift of approximately 120 ° between each of the three alternating phase currents l a , U c
  • the voltage converter according to the invention therefore makes it possible to obtain a balanced three-phase distribution of three alternating phase currents UbJc from two currents passing through the secondary windings of the device for transforming electrical energy, namely the first and second alternating currents circulating in the first and second secondary windings.
  • balanced is meant that the first, second and third alternating phase currents U bc have substantially the same amplitude and are phase-shifted by approximately 120 ° or 2TT / 3.
  • the voltage converter according to the invention makes it possible to obtain a balanced three-phase distribution of three alternating phase currents from two electrical conversion modules connected in series in the arm, or in parallel one by one. compared to each other.
  • the voltage converter comprises exactly two electrical conversion modules, and therefore strictly less than three electrical conversion modules, unlike prior art voltage converters which include at least three electrical conversion modules.
  • the voltage converter according to the invention comprises a reduced number of components, and in particular of electrical conversion modules, reduced.
  • One benefit is to reduce the size and bulk of the voltage converter by reducing the number of power converter modules.
  • each of the electrical conversion modules of the voltage converter according to the invention is able to generate AC and DC inserted voltages greater than those generated by each of the conversion modules of the voltage converters provided with three conversion modules according to l prior art. Indeed, the total voltage to be produced is distributed over two electrical conversion modules instead of three. On the other hand, each of the electrical conversion modules is required to withstand lower currents than the electrical conversion modules of the prior art. Also, the size of these electrical conversion modules can be reduced.
  • the voltage converter according to the invention therefore has a much smaller weight and bulk than the voltage converters of the prior art, as well as a reduced manufacturing cost.
  • the voltage converter according to the invention can be provided with only two primary windings and two secondary windings, which further reduces the size of the voltage converter.
  • control module is configured to control the first and second electrical conversion modules, so that the first AC current flowing in the first secondary winding and the second AC current flowing in the second secondary winding are of the same frequency.
  • the first primary winding is connected directly to the first and second alternating terminals.
  • the second primary winding is connected directly to the second and third alternating terminals.
  • the first and second primary windings each include only two terminals. Each of these terminals is then electrically connected to an AC terminal.
  • At least one of the first, second and third AC terminals is electrically connected both to a terminal of the first primary winding and to a terminal of the second primary winding.
  • the first and second secondary windings include only two terminals.
  • the first and second secondary windings are separate and are not electrically connected to each other.
  • control module is configured to control the first and second electrical conversion modules so that the first current AC flowing in the first secondary winding and the second AC current flowing in the second secondary winding are phase-shifted by an angle between 55 ° and 65 °, preferably by an angle substantially equal to 60 °.
  • One interest is to improve the balance of the three-phase system formed by the first, second and third phase AC currents, built from the first and second AC currents flowing in the first and second secondary windings. This allows for a phase shift of approximately 120 ° between the first and second AC phase currents, as well as between the second and third AC phase currents and between the third and first AC phase currents.
  • control module controls the first and second electrical conversion modules so as to regulate the first and second AC voltages inserted between the first and second AC terminals of the first and second electrical conversion modules, which makes it possible to adjust the voltage. phase and amplitude of the first and second alternating currents flowing in the secondary windings of the device for transforming electrical energy.
  • the first alternating current flowing in the first secondary winding is advantageously in phase with the first alternating phase current.
  • the first and second electrical conversion modules each comprise a main branch extending between the first and second continuous terminals of the corresponding electrical conversion module and in which is connected a chain of sub-modules, each of the sub-chains.
  • -modules comprising a plurality of individually controllable submodules by a control member specific to each submodule and each submodule comprising a capacitor, the control member of each submodule being able to take at least a first state in which the capacitor is inserted into the main branch and a second state in which the capacitor is not inserted into said main branch.
  • the control module advantageously controls the control members of the first and second electrical conversion modules.
  • control members of the sub-modules can comprise controllable switching elements of the IGBT switch type and an antiparallel diode.
  • control members can be placed in the first state and in the second state in response to a control command, originating for example from the control module, or even according to the sign of the current flowing in the arm.
  • the submodules can be ordered in a sequence chosen to gradually vary the number of capacitors that are connected in series in the main branch of the corresponding electrical conversion module and therefore in the arm of the voltage converter, so as to provide several voltage levels.
  • control module is configured to control the control members of the sub-modules of the chains of sub-modules of the first and second electrical conversion modules, so as to regulate the voltages at the terminals of said chains of sub-modules.
  • the control of the submodules of the electrical conversion modules makes it possible to adjust the direct voltages inserted in the arm but also the alternating voltages inserted between the alternating terminals of the electrical conversion modules, and therefore to regulate, in phase and in amplitude, the alternating currents flowing in the primary and secondary windings of the device for transforming electrical energy. This makes it possible to regulate, in phase and in amplitude, the three alternating phase currents flowing to the alternating terminals of the voltage converter.
  • At least one of the first and second electrical conversion modules comprises an upper electrical connection, electrically connecting the first DC terminal and the first AC terminal of said electrical conversion module, and a lower electrical connection, electrically connecting the second DC terminal and the second alternating terminal of said electrical conversion module, said electrical conversion module comprising at least one capacitor connected in said upper electrical link and / or in said lower electrical link.
  • the first electrical conversion module and the second electrical conversion module each comprise at least one capacitor connected in its upper electrical connection and / or in its lower electrical connection.
  • the first and / or the second electrical conversion module can comprise a single capacitor connected in its upper electrical connection or in its lower electrical connection.
  • the first and / or the second electrical conversion module may include a first capacitor connected in the upper electrical link and a second capacitor connected in the lower electrical link.
  • At least one of the first and second electrical conversion modules comprises a secondary branch, extending between the first and second continuous terminals of said electrical conversion module, and in which are connected in series a chain of sub-modules comprising a plurality of controllable submodules, and an H-shaped bridge comprising a first sub-branch in which are connected two switches and a second sub-branch, connected in parallel with the first sub-branch, and in which are connected two switches, the first and second alternating terminals of said electrical conversion module being electrically connected respectively to the first sub-branch and to the second sub-branch.
  • the secondary branch is connected in parallel with the main branch of said electrical conversion module.
  • the first sub-branch is connected to a first terminal of the corresponding secondary winding, while the second sub-branch is connected to a second terminal of said corresponding secondary winding.
  • the two switches of the first sub-branch are connected to each other at a first intermediate point, the first alternating terminal of said electrical conversion module being electrically connected to said first intermediate point.
  • the two switches of the second sub-branch are connected to each other at a second intermediate point, the second alternating terminal of said electrical conversion module being electrically connected to said second intermediate point.
  • the switches of the H-bridge are advantageously controlled by the control module.
  • the switches of the H-bridge are advantageously high-voltage switches.
  • the H-bridge adjusts the direction of flow of the first or second alternating current flowing in the corresponding secondary winding of the electrical energy transformation device.
  • the submodules of the submodule chains of the first and second electrical conversion modules have a half-bridge topology or a full-bridge topology.
  • the electrical conversion modules may include a combination of half-bridge submodules and full-bridge submodules.
  • the controller of a half-bridge submodule comprises a first electronic switching element connected in series with the energy storage device and a second electronic switching element coupled between the input and output terminals of the submodule.
  • the control unit of a full bridge sub-module has four switching elements.
  • the control unit advantageously comprises an antiparallel diode connected in parallel with each of the switching elements.
  • the voltage converter further comprises a starting module configured to charge the capacitors of the submodules of the first and second electrical conversion modules, when it is placed in a first state.
  • the starter module is preferably connected between the AC terminals of the voltage converter and an AC power supply network to which said voltage converter is connected.
  • the starter module can be connected between the DC terminals of the voltage converter and a DC power supply network to which said voltage converter is connected.
  • the starting module comprises at least a first switch connected to one of the AC or DC terminals of the voltage converter and a limiting resistor connected in parallel with said switch, said switch being open when the starting module is placed in the first. state.
  • an uncontrolled current appears in the arm.
  • This uncontrolled current is limited by the limiting resistor and gradually charges the capacitors of the submodules of the first and second electrical conversion modules, up to a predefined pre-charge value.
  • This predefined pre-charge value is in particular chosen so as to allow power to the control module.
  • the starter module can be placed in a second state, in which said at least one switch is closed, so as to short-circuit said limiting resistor.
  • the limiting module is first kept in the first state until the capacitors of the submodules of the electrical conversion modules reach the preset pre-charge value.
  • the chains of submodules are then controllable and can be ordered to progressively increase the energy stored in their capacitors.
  • the starting module is placed in the second state. All of the capacitors of the submodules of the first and second electrical conversion modules are then charged to a final charge value and the voltage converter then operates normally.
  • said voltage converter comprises only two primary windings and two secondary windings.
  • the converter comprises exactly two primary windings and two secondary windings, each being associated with a single electrical conversion module.
  • voltage converter transformers are generally fitted with particularly bulky terminations called “bushings”.
  • the voltage converter according to the invention also makes it possible to reduce the number of these terminations, which further reduces the size of the voltage converter.
  • the voltage converter according to the invention comprises only a device for transforming electrical energy.
  • the voltage converter according to the invention comprises only two primary windings and two secondary windings.
  • the electrical energy transformation device comprises a single transformer comprising said first and second primary windings as well as said first and second secondary windings.
  • the device for transforming electrical energy comprises: a first transformer comprising the first primary winding and the first secondary winding; and a second transformer comprising the second primary winding and the second secondary winding.
  • These first and second transformers are single phase transformers.
  • One advantage is to allow better galvanic isolation between the windings of the first and second transformers.
  • the size of a transformer with multiple primary and secondary windings may be such that it will be difficult to manufacture and transport.
  • the use of several single-phase transformers facilitates the manufacture and transport of the device for transforming electrical energy and therefore of the voltage converter.
  • the first and second transformers are preferably substantially identical. They advantageously have the same number of terminals at the level of the secondary windings and at the level of the secondary windings.
  • the voltage converter comprises at least one filter module connected in series with the arm and configured to limit the AC component of a current flowing in said arm.
  • the voltage resulting from the sum of the voltages inserted into the arm, generated by the first and second power converter modules, has a residual AC component so that an alternating current remains in the arm.
  • One advantage of the filtering module is to filter and therefore to reduce, preferably eliminate, this AC component of the total voltage in the arm so as to favor the circulation in the arm of a direct current. This makes it possible to have no AC component in the current flowing in the DC power supply network and therefore to protect this network.
  • the filtering module comprises at least one passive component and / or one active component.
  • passive component is meant a component whose condition and / or behavior cannot be controlled.
  • Such a passive component makes it possible to store or conserve energy. Without limitation, it can be a resistance or an inductance.
  • the filter module may only include passive components so that it forms a passive filter module.
  • the passive components are then advantageously dimensioned so that the filtering module has a high impedance at its resonant frequency, in order to effectively filter the AC component of the current in the arm.
  • active component is meant a controllable component whose condition and / or behavior can be monitored.
  • it may be a switch, a semiconductor, such as a transistor, or even a submodule comprising at least one semiconductor.
  • the filter module can include at least one active component, so that it forms an active filter module.
  • the filter module comprises an inductor and a capacitor connected in parallel with each other. More preferably, the filter module consists of an inductor and a capacitor connected in parallel with each other.
  • the filter module then forms a filter preventing the flow of alternating current in the arm. Said inductance and said capacitance so that the resonant frequency of the filter module coincides with that of the AC power supply network.
  • the filtering module comprises an additional chain of sub-modules comprising a plurality of individually controllable sub-modules by a control member specific to each sub-module and each sub-module of said chain of additional sub-modules comprising at least a capacitor connectable in series with the arm when the control member of the submodule is in a first state.
  • the invention also relates to a high voltage direct current transmission installation comprising a direct electric power supply network, an alternating electric power supply network and a voltage converter as described above, said voltage converter being configured to electrically connect said AC and DC power supply networks between them.
  • the DC power supply network is electrically connected to the first and second DC terminals.
  • the AC power supply network is electrically connected to the first, second and third AC terminals of the voltage converter.
  • the invention further relates to a method of controlling a voltage converter making it possible to convert an alternating voltage into a direct voltage and vice versa, the voltage converter comprising: first and second DC terminals configured to be electrically connected to a network continuous power supply; first, second and third AC terminals configured to be electrically connected to an AC power supply network; an arm extending between the first and second DC terminals and having a first electrical conversion module and a second electrical conversion module connected in series in said arm or in parallel with each other, the first and second electrical conversion modules each having a first DC terminal and a second DC terminal between which it extends, as well as a first AC terminal and a second AC terminal; a device for transforming electrical energy comprising a first primary winding connected between the first and second alternating terminals and a second primary winding connected between the second and third alternating terminals, the device for transforming electrical energy further comprising a first secondary winding connected between the first and second AC terminals of the first electrical conversion module and a second secondary winding connected between the first and second AC terminals of
  • the first and second electrical conversion modules are controlled so that the first alternating current flowing in the first secondary winding and the second alternating current flowing in the second secondary winding are phase-shifted by an angle between 55 ° and 65 ° , preferably at an angle substantially equal to 60 °.
  • Figure 1 illustrates an HVDC installation comprising a voltage converter according to the invention
  • FIG. 2 illustrates a first embodiment of the voltage converter of FIG. 1;
  • Figure 3 illustrates a half-bridge topology submodule
  • Figure 4 illustrates a full bridge topology submodule
  • Figure 5 illustrates a reconstruction of the three-phase distribution of the three AC phase currents flowing to the AC terminals of the converter of Figure 2;
  • Figure 6 illustrates a first variant of a filter module of the voltage converter of Figure 2;
  • Figure 7 illustrates a second variant of a filter module of the voltage converter of Figure 2;
  • FIG. 8 illustrates a second embodiment of the voltage converter of Figure 1;
  • FIG. 9 illustrates a first variant of the voltage converter of FIG. 2;
  • FIG. 10 illustrates a second variant of the voltage converter of FIG. 2.
  • the invention relates to a voltage converter for converting an alternating voltage to a direct voltage and vice versa and comprising only two electrical conversion modules.
  • FIG. 1 illustrates an HVDC installation 8 comprising a first embodiment of a voltage converter 10 according to the invention, connecting between them a DC power supply network 12 and an AC power supply network 14 of the installation .
  • the AC power supply network 14 is a three-phase network comprising three phases.
  • the voltage converter 10 comprises a first DC terminal 16 and a second DC terminal 18 configured to be electrically connected to the DC power supply network 12.
  • the voltage VDC of the DC power supply network 12 is shown between the first continuous terminal 16 and the second continuous terminal 18.
  • the converter includes an arm 20 extending between the first DC terminal 16 and the second DC terminal 18.
  • the arm 20 includes a first electrical conversion module 22 and a second electrical conversion module 24 connected in series with one of the two. another in the arm 20, between the first and second continuous terminals 16,18.
  • the first electrical conversion module 22 includes a first continuous terminal 22a and a second continuous terminal 22b between which it extends. It is connected in the arm 20 through said first and second continuous terminals 22a, 22b.
  • the second electrical conversion module 24 includes a first continuous terminal 24a and a second continuous terminal 24b between which it extends. It is connected in the arm 20 through said first and second continuous terminals 24a, 24b.
  • the first electrical conversion module 22 comprises a first AC terminal 23a and a second AC terminal 23b.
  • the second electrical conversion module 24 includes a first AC terminal 25a and a second AC terminal 25b.
  • the voltage converter 10 comprises only and exactly two conversion modules 22, 24, unlike converters prior art voltage which comprises at least three electrical conversion modules.
  • the voltage converter 10 also includes a first AC terminal 30, a second AC terminal 32 and a third AC terminal 34.
  • Each of the first, second and third AC terminals 30,32,34 is configured to be electrically connected to one of the three phases of the AC power supply network 14.
  • the voltage converter 10 further comprises an electrical energy transformation device 40 comprising, in this non-limiting example, a single two-phase transformer comprising first 41a and second 42a primary windings associated respectively with first 41b and second 42b secondary windings.
  • the electrical energy transformation device 40 comprises only and exactly two primary windings 41a, 42a and only and exactly two secondary windings 41b, 42b.
  • the voltage converter 10 comprises only and exactly two primary windings 41a, 42a and only and exactly two secondary windings 41b, 42b
  • the first secondary winding 41b is connected between the first and second alternating terminals 23a, 23b of the first electrical conversion module 22.
  • the second secondary winding 42b is connected between the first and second alternating terminals 25a, 25b of the second electrical conversion module 24.
  • the first primary winding 41a is connected between the first and second alternating terminals 30, 32 of the voltage converter 10.
  • the first primary winding 41a comprises a first terminal 43 electrically connected to the first alternating terminal. 30 and a second terminal 45 electrically connected to the second AC terminal 32.
  • the first primary winding is connected directly to the first and second AC terminals.
  • the second primary winding 42a is connected between the second and third AC terminals 32,34 of the voltage converter 10.
  • the second primary winding 42a comprises a first terminal 47 electrically connected to the second AC terminal 32 and a second terminal 49 electrically connected to the third AC terminal 34.
  • the second primary winding 42a is connected directly to the second and third AC terminals.
  • the first and second primary windings 41a, 42a each include only two terminals.
  • the first and second secondary windings 41b, 42b each comprise only two terminals.
  • the second AC terminal is electrically connected to both the second terminal 45 of the first primary winding and the first terminal 47 of the second primary winding.
  • Figure 2 illustrates a first embodiment of the voltage converter of Figure 1 provided with a first variant of the electrical conversion modules.
  • the first electrical conversion module 22 and the second electrical conversion module 24 are substantially identical.
  • the first electrical conversion module 22 comprises a main branch 46 connected between the first and second continuous terminals 22a, 22b of the first electrical conversion module 22.
  • the first electrical conversion module 22 comprises a chain of SM submodules connected in said branch.
  • Each of the chains of submodules comprises a plurality of submodules SM connected in series with each other in the corresponding main branch and which can be controlled in a desired sequence.
  • FIG. 2 only two submodules per chain are shown. However, each chain of submodules can comprise from two to several dozen SM submodules.
  • each submodule SM comprises an energy storage device comprising in this example a capacitor CSM, and a control member for selectively connecting this capacitor in series between the terminals of the submodule SM or to bypass it.
  • FIG. 3 illustrates a submodule having a half-bridge topology.
  • the control unit comprises a first electronic switching element T1 such as an insulated gate bipolar transistor (“IGBT: Insulated Gâte Bipolar Transistor”) connected in series with the capacitor CSM-
  • IGBT Insulated Gâte Bipolar Transistor
  • This first switching element T1 and this capacitor CSM are connected in parallel with a second electronic switching element T2, also an insulated gate bipolar transistor (IGBT).
  • This second electronic switching element T2 is coupled between the input and output terminals of the SM submodule.
  • the first and second switching elements T1 and T2 are both associated with an antiparallel diode D shown in Figures 3 and 4.
  • the submodule can be placed in two distinct states.
  • a first state called “on” or inserted state
  • the first switching element T1 and the second switching element T2 are configured so as to insert the capacitor CSM into the main branch 46,48, in series with the other submodules. of the submodule chain.
  • a second state called the “off” or non-inserted state
  • the first switching element T1 and the second switching element T2 are configured so as to bypass the capacitor CSM and not to insert it into the main branch 46,48.
  • the submodules are controlled according to a sequence chosen to gradually vary the number of energy storage elements, and therefore the number of capacitors, which are connected in series in the corresponding chain of submodules and therefore in the arm. 20 of the voltage converter 10, so as to provide several voltage levels.
  • FIG. 4 illustrates a variant of the submodule of FIG. 3, in which the submodule has a full bridge topology (“Full-bridge” in English).
  • the submodule comprises four switching elements T’1, T’2, T’3, T’4, each associated in parallel with an antiparallel diode D.
  • the first electrical conversion module 22 comprises an upper electrical connection 50, electrically connecting the first DC terminal 22a and the first AC terminal 23a of said first electrical conversion module 22.
  • the first electrical conversion module 22 also comprises a lower electrical connection 52, electrically connecting the second DC terminal 22b and the second AC terminal 23b of said first electrical conversion module 22.
  • the upper electrical connection 50 is provided with a first capacitor 54. The capacitor makes it possible to block the flow of a direct current in said upper electrical connection 50 and in the first secondary winding 41b.
  • the second electrical conversion module 24 comprises an upper electrical connection 56, electrically connecting the first DC terminal 24a and the first AC terminal 25a of said second electrical conversion module.
  • the second electrical conversion module 24 also comprises a lower electrical connection 58, electrically connecting the second DC terminal 24b and the second AC terminal 25b of said second electrical conversion module 24.
  • the upper electrical connection 56 is provided with 'a second capacitor 60.
  • the capacitor 60 makes it possible to block the flow of a direct current in said upper electrical connection 56 and in the second secondary winding 42b.
  • the chain of submodules SM of the first electrical conversion module 22 makes it possible to generate a first DC voltage Vci controllable inserted in the arm between the first and second DC terminals 22a, 22b of the first electrical conversion module 22.
  • the chain of sub- SM modules of the second electrical conversion module 24 makes it possible to generate a second DC voltage inserted Vc 2 which can be controlled in the arm between the first and second DC terminals 24a, 24b of the second electrical conversion module 24.
  • a total voltage V SU m appears in the arm 20, between the first continuous terminal 22a of the first electrical conversion module 22 and the second continuous terminal 24b of the second electrical conversion module 24.
  • Said first and second inserted direct voltages Vci, Vc 2 make it possible to control a direct current IDC flowing in the arm.
  • the chain of submodules SM of the first electrical conversion module 22 also makes it possible to generate a first inserted AC voltage Vi controllable between the first and second AC terminals 23a, 23b of the first electrical conversion module 22.
  • the chain of submodules SM of the second electrical conversion module 24 makes it possible to generate a second inserted AC voltage V 2 which can be controlled between the first and second AC terminals 25a, 25b of the second electrical conversion module 24.
  • Said first inserted alternating voltage Vi makes it possible to generate a first alternating current flowing in the upper electrical connection 50 and therefore in the capacitor 54 and in the first secondary winding 41b.
  • Said second inserted alternating voltage V 2 also makes it possible to generate a second alternating current I 2 flowing in the upper electrical connection 56 and therefore in the capacitor 60 and in the first secondary winding 42b.
  • the device for transforming electrical energy 40 supplies first and second alternating currents l pi , l p2 circulating in the first and second primary windings 41a, 42a. From these two alternating currents, the voltage converter according to the invention makes it possible to reconstruct from the first IA, second IB and third the alternating phase currents flowing to the alternating terminals 30,32,34 of the voltage converter, and therefore to the AC power supply network 14.
  • the first AC phase current IA flows from the first terminal 43 of the first primary winding 41a to the first AC terminal 30.
  • the third AC phase current flows from the second terminal 49 of the second primary winding 42a to the third terminal alternating 34.
  • the second alternating phase current IB is a current resulting from the difference between the second alternating current l p2 flowing in the second primary winding 42a and the first alternating current l pi flowing in the first primary winding 41a.
  • the second AC phase current IB flows from an electrical node 51 to the second AC terminal 32.
  • the electrical node extends between the second terminal 45 of the first primary winding and the first terminal 47 of the second primary winding 42a.
  • Said first and second alternating currents li, l 2 , and therefore the first, second and third alternating phase currents IA BC are controllable in phase and in amplitude.
  • the voltage converter 10 comprises a control module 100 configured in particular to control the first and second conversion modules 22, 24, and more precisely the switching elements of the control members of the submodules SM of said conversion modules in order to adjust the first and second inserted direct voltages V c -i, V C2 , said first and second inserted alternating voltages V 1 V 2 and consequently the first and second alternating currents, l 2 , as well as the first, second and third phase currents alternatives IA B C-
  • r is the transformation ratio of the device for transforming electrical energy.
  • the three alternating phase currents IA B C are used to define a three-phase system.
  • Applying a Fortescue transformation to this system also known as the symmetric component method, decomposes this system into a sum of three three-phase systems, namely a direct balanced system, an inverse balanced system, and a zero sequence system.
  • the coupling of the first and second primary windings 41a, 42a of the electrical energy transformation device 40 to the alternating terminals 30,32,34 of the voltage converter according to the invention, in which the first primary winding 41a is connected between the first and second AC terminals 30,32 and the second primary winding 42a is connected between the second and third AC terminals 32,34, allows to cancel the real part and the imaginary part of the homopolar system.
  • phase and the amplitude of the first alternating current and of the second alternating current h flowing in the secondary windings 41b, 42b form four degrees of freedom of the three-phase system.
  • degrees of freedom must satisfy four system constraints, which are the control of active and reactive power and the cancellation of the real and imaginary parts of the reverse system.
  • the electrical energy transforming device 40 of the voltage converter 10 according to the invention enables a three-phase distribution of three alternating phase currents to be obtained from two alternating currents flowing in the secondary windings.
  • the coupling of the primary windings 41a, 42a of the voltage converter 10 according to the invention makes it possible to obtain a balanced three-phase distribution of three alternating phase currents IA B C-
  • the control module 100 is configured to control the control member of the sub-modules of the first and second electrical conversion modules 20, 24 so as to impose a phase shift chosen between the first and second alternating currents li 2- In a non-limiting manner , this phase shift is preferably an angle of between 55 ° and 65 °, preferably an angle substantially equal to 60 °. This makes it possible to obtain a phase shift of approximately 120 ° between the first, second and third AC phase currents IA B C and thus to obtain a balanced three-phase current system.
  • the alternating phase currents advantageously have the same frequency.
  • the reconstruction of the three-phase distribution of the three AC phase currents IA BC from the first and second AC currents I1 2 is shown in FIG. 5. It can be seen in this FIG. 5 that a phase shift of approximately 60 ° between the first and second alternating currents I1 2 improves the balance of the three-phase system obtained and makes it possible to obtain a phase shift of approximately 120 ° between the first and second alternating phase currents IA, IB, between the second and third alternating phase currents IB C and between the third and first alternating phase currents IC, IA-
  • the control module controls the control modules electrical conversion so that the first AC current flowing in the first secondary winding 41b is in phase with the first AC phase current IA.
  • the voltage converter 10 further comprises a filter module 80 connected in series with the arm 20, between the first and second DC terminals 16,18, and more precisely between the first DC terminal 16 and the first DC terminal 22a of the first electrical conversion module 22.
  • the filter module 80 is configured to filter the AC component of the first and second DC voltages inserted Vci, Vc2 in the arm 20, so as to prevent the flow of a current alternating current in the arm and to guarantee the circulation in the arm of a single direct current IDC-
  • FIG. 6 A first variant of a filter module is illustrated in FIG. 6.
  • the filter module 80 comprises an inductor 82 and a capacitor 84 connected in parallel with each other. These two components are passive so that the filter module 80 is also passive.
  • Said inductor 82 and said capacitor 84 form a filter making it possible to reduce, preferably eliminate, the AC component circulating in the arm 20. They are dimensioned so that the resonant frequency of the filter module 80 coincides with that of the supply network. AC electric 14 and so that the filter module 80 has a high impedance at said resonant frequency.
  • FIG. 7 illustrates a second variant of a filtering module 80.
  • the filtering module 80 comprises an additional chain of submodules comprising a plurality of submodules SM which can be individually controlled by a control member specific to each. submodule.
  • Each submodule of said chain of additional submodules comprises at least one capacitor connectable in series with the arm 20 when the controller of the submodule is in a first state.
  • the chain of additional submodules makes it possible to generate an alternating voltage v SUpp at its terminals having an amplitude equal to that of the alternating component of the total voltage at the terminals of all the chains of submodules of the arm 20, and having an opposite phase.
  • the sub-modules of this chain of additional submodules are advantageously of the full bridge type.
  • the voltage converter 10 further comprises a starting module 90.
  • the starting module 90 comprises a switch 92 connected to the second DC terminal 18 of the voltage converter and a resistor of limitation 94 connected in parallel with said switch 92.
  • the starting module 90 is configured to charge the capacitors of the SM submodules of the first and second electrical conversion modules 22,24 in order to allow the starting of the voltage converter 10 and the control of the direct and alternating currents flowing through the voltage converter.
  • the CSM capacitors of the arm submodules charge and the voltage across the first and second power converter modules 22,24 gradually increases until it reaches its nominal value.
  • the submodules are then controlled to gradually increase the energy stored in their capacitors.
  • the switch 92 is then closed so as to bypass and thus bypass said limiting resistor 94.
  • the starting module is then placed in a second state.
  • Control of the direct current flowing in the arm and of the alternating currents flowing in the windings of the electrical energy transformation device 40 is then re-established and the voltage converter then operates normally.
  • the starter module 90 could be connected between the AC power supply network and the AC terminals of the converter.
  • FIG. 8 illustrates a second embodiment of the voltage converter of FIG. 1 comprising a second variant of the electrical conversion modules 22, 24.
  • the first and second electrical conversion modules 22,24 also each comprise a main branch 46,48 in which is connected a chain of submodules SM.
  • the first electrical conversion module 22 further comprises a secondary branch 62, connected between the first and second continuous terminals 22a, 23a, in parallel with the main branch 46.
  • the second electrical conversion module 24 also comprises a secondary branch 64, connected. between the first and second continuous terminals 22a, 23a, in parallel with the main branch 46.
  • a chain of submodules SM and an H-bridge 66 are connected in series.
  • a chain of SM submodules and an H-bridge 68 are connected in series.
  • Said H-bridges 66,68 each comprise a first sub-branch 66a, 68a and a second sub-branch 66b, 68b, connected in parallel with one of the other.
  • Said sub-branches 66a, 66b, 68a, 68b each comprise two switches 70 electrically connected to one another in said sub-branches.
  • the two switches 70 of the first sub-branch 66a of the first electrical conversion module 22 are connected to one another at a first intermediate point 72.
  • the two switches 70 of the second sub-branch 66b of the first electrical conversion module 22 are connected between them at a second intermediate point 74.
  • the first intermediate point 72 is electrically connected to the first alternating terminal 23a of the first electrical conversion module 22 and to a first terminal of the first secondary winding 41b.
  • the second intermediate point 74 is electrically connected to the second alternating terminal 23b of the first electrical conversion module 22, and to a second terminal of the first secondary winding 41b.
  • the two switches 70 of the first sub-branch 68a of the second electrical conversion module 24 are connected to one another at a first intermediate point 72.
  • the two switches 70 of the second sub-branch 68b of the second electrical conversion module 24 are connected to each other at a second intermediate point 74.
  • the first intermediate point 72 is electrically connected to the first AC terminal 25a of the second electrical conversion module 24 and to a first terminal of the second secondary winding 42b.
  • the second intermediate point 74 is electrically connected to the second AC terminal 25b of the second electrical conversion module 22 and to a second terminal of the second secondary winding 42b.
  • the switches of the two H-bridges 66.68 are controlled by the control module 100. Said H-bridges 66.68 make it possible to adjust the direction of flow of the first or second alternating current flowing in the corresponding secondary winding of the device. transformation of electrical energy.
  • Figure 9 illustrates a first variant of the voltage converter of Figure 2.
  • the first and second electrical conversion modules 22, 24 are connected in parallel with respect to each other, between the first and second continuous terminals.
  • the first continuous terminals 22a, 24a of the first and second electrical conversion modules are interconnected in a upper point 76.
  • the second continuous terminals 22b, 24b of the first and second electrical conversion modules are interconnected at a lower point 78.
  • the first electrical conversion module 22 further comprises a first electrical adaptation element 75 connected upstream of the main branch 46, between said main branch and the first continuous terminal 22a of the first electrical conversion module.
  • the second electrical conversion module 24 comprises a second electrical adaptation element 77 connected upstream of the main branch 48, between said main branch and the first continuous terminal 24a of the second electrical conversion module.
  • the first and second electrical adaptation elements can be an inductor or an active filter.
  • Figure 10 illustrates a second variant of the voltage converter of Figure 2.
  • the first and second electrical conversion modules 22,24 are also connected in parallel with each other.
  • the converter includes a coupling element 79 of the first and second electrical conversion modules. This coupling element 79 is connected between the filter module 80, the first continuous terminal 22a of the first electrical conversion module 22 and the first continuous terminal 24a of the second electrical conversion module 24.

Abstract

The invention relates to a voltage converter (10) for converting AC voltage to DC voltage and vice versa, the voltage converter comprising first and second electrical conversion modules (22, 24) connected in series in an arm (20); an electrical power conversion device (40) having a first primary winding (41a) connected between first and second AC terminals (30, 32) and a second primary winding (42a) connected between second and third AC terminals (32, 34), as well as first and second secondary windings (41b, 42b); and a control module (100) configured to control the first and second electrical conversion modules so that a first alternating current (I1) flowing in the first secondary winding and a second alternating current (I2) flowing in the second secondary winding are out of phase, the voltage converter comprising only two electrical conversion modules.

Description

DESCRIPTION DESCRIPTION
CONVERTISSEUR DE TENSION AC/DC TRIPHASE COMPRENANT UNIQUEMENT DEUX MODULES DE CONVERSION ELECTRIQUE THREE-PHASE AC / DC VOLTAGE CONVERTER INCLUDING ONLY TWO ELECTRIC CONVERSION MODULES
Domaine Technique Technical area
La présente invention concerne le domaine technique des convertisseurs de tension alternative en tension continue et inversement, également appelés convertisseurs de tension AC/DC. Ce type de convertisseurs est particulièrement adapté pour être implanté dans des installations d’alimentation électrique en courant continu haute tension (HVDC pour « High Voltage Direct Current » en langue anglaise). The present invention relates to the technical field of AC voltage converters to DC voltage and vice versa, also called AC / DC voltage converters. This type of converter is particularly suitable for installation in high voltage direct current power supply installations (HVDC for "High Voltage Direct Current").
Les installations d’alimentation électrique HVDC comprennent généralement un réseau d’alimentation électrique continu permettant le transport d’électricité sur de longues distances au moyen de lignes à courant continu de plusieurs centaines de kilomètres. Elles comprennent également un réseau d’alimentation électrique alternatif, par exemple relié à un parc éolien offshore. Les convertisseurs de tension AC/DC permettent la connexion d’un tel réseau d’alimentation électrique alternatif avec un réseau d’alimentation électrique continu. HVDC power supply installations typically consist of a continuous power supply network that allows electricity to be transported over long distances using direct current lines several hundred kilometers long. They also include an alternative electricity supply network, for example connected to an offshore wind farm. AC / DC voltage converters allow the connection of such an AC power supply network with a DC power supply network.
Technique antérieure Prior art
On connaît des convertisseurs de tension AC/DC triphasés, tels que le convertisseur décrit dans EP 2 569 858 A1. Ce convertisseur comprend un bras s’étendant entre des premier et second terminaux continus dans lequel sont connectées en série trois modules de conversion électrique. Ce convertisseur comprend en outre un transformateur comportant trois enroulements primaires et trois enroulements secondaires. Chacun des enroulements secondaires du transformateur est connecté électriquement à un des trois modules de conversion électrique. Three-phase AC / DC voltage converters are known, such as the converter described in EP 2 569 858 A1. This converter comprises an arm extending between first and second DC terminals in which three electrical conversion modules are connected in series. This converter further comprises a transformer comprising three primary windings and three secondary windings. Each of the secondary windings of the transformer is electrically connected to one of the three electrical conversion modules.
Un inconvénient de ce convertisseur triphasé est qu’il comprend un nombre de composants très important et qu’il se révèle très encombrant. En effet, l’application haute tension impose des distances minimales entre les modules de conversion électrique de ce convertisseur. Ce convertisseur, muni de trois modules de conversion électrique présente par conséquent une taille et un encombrement important. A disadvantage of this three-phase converter is that it has a very large number of components and is very bulky. This is because the high voltage application imposes minimum distances between the electrical conversion modules of this converter. This converter, provided with three electrical conversion modules therefore has a large size and bulk.
Par ailleurs, chacun des trois modules de conversion électrique de ce convertisseur comprend plusieurs dizaines de sous-modules connectés dans une branche de phase. Aussi, ce convertisseur est très lourd, volumineux et encombrant. En outre, sa fabrication est particulièrement difficile et coûteuse. De plus, d’importantes ressources doivent être utilisées afin de contrôler l’ensemble des éléments de commande de ce convertisseur. Le contrôle du convertisseur est donc particulièrement coûteux et complexe. Furthermore, each of the three electrical conversion modules of this converter comprises several tens of submodules connected in a phase branch. Also, this converter is very heavy, bulky and bulky. In addition, its manufacture is particularly difficult and expensive. In addition, significant resources must be used in order to control all of the control elements of this converter. Controlling the converter is therefore particularly expensive and complex.
Exposé de l’invention Disclosure of the invention
Un but de la présente invention est de proposer un convertisseur de tension remédiant aux problèmes précités et permettant notamment de réduire le nombre de composants dudit convertisseur de tension. An object of the present invention is to provide a voltage converter overcoming the aforementioned problems and in particular making it possible to reduce the number of components of said voltage converter.
Pour ce faire, l’invention porte sur un convertisseur de tension permettant de convertir une tension alternative en une tension continue et inversement, le convertisseur de tension comprenant : des premier et second terminaux continus configurés pour être reliés électriquement à un réseau d’alimentation électrique continu ; des premier, deuxième et troisième terminaux alternatifs configurés pour être reliés électriquement à un réseau d’alimentation électrique alternatif ; un bras s’étendant entre les premier et second terminaux continus et comportant un premier module de conversion électrique et un second module de conversion électrique connectés en série dans ledit bras ou en parallèle l’un par rapport à l’autre, les premier et second modules de conversion électrique présentant chacun une première borne continue et une seconde borne continue entre lesquelles il s’étend, ainsi qu’une première borne alternative et une seconde borne alternative; un dispositif de transformation d’énergie électrique comportant un premier enroulement primaire connecté entre les premier et deuxième terminaux alternatifs et un second enroulement primaire connecté entre les deuxième et troisième terminaux alternatifs, le dispositif de transformation d’énergie électrique comportant en outre un premier enroulement secondaire connecté entre les première et seconde bornes alternatives du premier module de conversion électrique et un second enroulement secondaire connecté entre les première et seconde bornes alternatives du second module de conversion électrique, le premier module de conversion électrique étant configuré pour générer un premier courant alternatif contrôlable circulant dans le premier enroulement secondaire, le second module de conversion électrique étant configuré pour générer un second courant alternatif contrôlable circulant dans le second enroulement secondaire ; un module de contrôle configuré pour commander les premier et second modules de conversion électrique de sorte que le premier courant alternatif circulant dans le premier enroulement secondaire et le second courant alternatif circulant dans le second enroulement secondaire sont déphasés, le convertisseur de tension comprenant uniquement deux modules de conversion électrique. To do this, the invention relates to a voltage converter making it possible to convert an AC voltage into a DC voltage and vice versa, the voltage converter comprising: first and second DC terminals configured to be electrically connected to a power supply network continued ; first, second and third AC terminals configured to be electrically connected to an AC power supply network; an arm extending between the first and second DC terminals and having a first electrical conversion module and a second electrical conversion module connected in series in said arm or in parallel with each other, the first and second electrical conversion modules each having a first DC terminal and a second DC terminal between which it extends, as well as a first AC terminal and a second AC terminal; a device for transforming electrical energy comprising a first primary winding connected between the first and second alternating terminals and a second primary winding connected between the second and third alternating terminals, the device for transforming electrical energy further comprising a first secondary winding connected between the first and second AC terminals of the first electrical conversion module and a second secondary winding connected between the first and second AC terminals of the second electrical conversion module, the first electrical conversion module being configured to generate a first controllable AC current flowing in the first secondary winding, the second electrical conversion module being configured to generate a second controllable alternating current flowing in the second secondary winding; a control module configured to control the first and second electrical conversion modules so that the first AC current flowing in the first secondary winding and the second AC current flowing in the second secondary winding are out of phase, the voltage converter comprising only two electrical conversion modules.
Le convertisseur de tension selon l’invention peut être aisément connecté dans une installation électrique HVDC, entre un réseau d’alimentation électrique alternatif et un réseau d’alimentation électrique continu. Le convertisseur de tension est avantageusement réversible, de sorte qu’il permet de convertir une tension alternative en une tension continue mais également de convertir une tension continue en tension alternative. The voltage converter according to the invention can be easily connected in an HVDC electrical installation, between an AC power supply network and a DC power supply network. The voltage converter is advantageously reversible, so that it makes it possible to convert an alternating voltage into a direct voltage but also to convert a direct voltage into an alternating voltage.
On comprend que chacun des modules de conversion électrique est connecté dans le bras par l’intermédiaire de ses première et seconde bornes continues. A chaque enroulement secondaire du dispositif de transformation électrique est associé un module de conversion électrique. It is understood that each of the electrical conversion modules is connected in the arm through its first and second continuous terminals. Each secondary winding of the electrical transformation device is associated with an electrical conversion module.
Les premier et second modules de conversion électrique peuvent être connectés soit en série dans le bras, soit en parallèle l’un par rapport à l’autre. The first and second power conversion modules can be connected either in series in the arm or in parallel with each other.
Lorsque le convertisseur est contrôlé de manière à absorber ou fournir de la puissance réactive au réseau d’alimentation électrique alternatif, les deux modules de conversion électrique absorbent des puissances actives différentes. Lorsqu’ils sont connectés en série dans le bras, les premier et second modules de conversion électrique sont traversés par un même courant. Afin de contrôler le niveau d’énergie stockée dans leurs sous-modules, il convient soit d’introduire une composante alternative à ce courant soit d’imposer des composantes continues différentes pour les tensions aux bornes des modules de conversion électrique. When the converter is controlled to absorb or supply reactive power to the AC power supply network, the two power conversion modules absorb different active powers. When they are connected in series in the arm, the first and second electrical conversion modules are crossed by the same current. In order to control the level of energy stored in their submodules, it is appropriate either to introduce an AC component to this current or to impose different DC components for the voltages at the terminals of the electrical conversion modules.
Un intérêt de la connexion en parallèle des premier et second modules de conversion électrique est de faciliter le contrôle de l’énergie stockée dans lesdits premier et second modules de conversion électrique en faisant circuler des composantes continues de courant différentes au niveau des premières bornes continues des modules de conversion électrique. Ceci permet de s’affranchir de la génération d’un courant d’équilibrage alternatif lorsqu’une puissance réactive apparaît en partie alternative du convertisseur, au niveau des enroulements primaires. An advantage of the parallel connection of the first and second electrical conversion modules is to facilitate the control of the energy stored in said first and second electrical conversion modules by circulating different DC components of current at the level of the first DC terminals of the electrical conversion modules. This eliminates the need to generate an alternating balancing current when reactive power appears in the alternating part of the converter, at the primary windings.
En outre, la mise en parallèle des premier et second modules de conversion électrique peut permettre de réduire le dimensionnement et donc l’encombrement des composants. In addition, paralleling the first and second electrical conversion modules can reduce the sizing and therefore the size of the components.
Contrairement aux convertisseurs de tension de l’art antérieur, dans lesquels les enroulements primaires sont couplés en étoile, et présentent chacun une borne reliée au neutre, ou en triangle, chacun des enroulements primaires du convertisseur de tension selon l’invention est connecté entre deux terminaux alternatifs, et sont donc configurés pour être reliés directement au réseau d’alimentation électrique alternatif. Unlike the voltage converters of the prior art, in which the primary windings are coupled in a star, and each have a terminal connected to neutral, or in delta, each of the primary windings of the voltage converter according to the invention is connected between two alternative terminals, and are therefore configured to be connected directly to the AC power supply network.
Les premier et second modules de conversion électrique permettent de générer respectivement une première tension continue insérée et une seconde tension continue insérée contrôlables dans le bras entre leurs premières et secondes bornes continues respectives. Ces première et seconde tensions continues insérées permettent de contrôler un courant continu circulant dans le bras. The first and second electrical conversion modules make it possible to generate respectively a first inserted DC voltage and a second inserted DC voltage controllable in the arm between their respective first and second DC terminals. These first and second inserted DC voltages make it possible to control a direct current flowing in the arm.
Les premier et second modules de conversion électrique permettent en outre de générer respectivement une première tension alternative insérée et une seconde alternative insérée contrôlables entre leurs premières et secondes bornes alternatives respectives. The first and second electrical conversion modules further make it possible to generate respectively a first inserted AC voltage and a second inserted AC voltage which can be controlled between their respective first and second AC terminals.
Ces première et seconde tensions alternatives insérées permettent de générer respectivement ledit premier courant alternatif h circulant dans le premier enroulement secondaire et ledit second courant alternatif circulant dans le second enroulement secondaire. These first and second inserted alternating voltages make it possible to generate respectively said first alternating current h circulating in the first secondary winding and said second alternating current circulating in the second secondary winding.
Le dispositif de transformation d’énergie électrique présente un rapport de transformation r correspondant au rapport entre le nombre de spires du premier enroulement secondaire et le nombre de spires du premier enroulement primaire. En première approximation, ce rapport de transformation est environ égal au rapport entre la tension aux bornes du premier enroulement secondaire et la tension aux bornes du premier enroulement primaire. The electrical energy transformation device has a transformation ratio r corresponding to the ratio between the number of turns of the first secondary winding and the number of turns of the first primary winding. As a first approximation, this transformation ratio is approximately equal to the ratio between the voltage at the terminals of the first secondary winding and the voltage at the terminals of the first primary winding.
A partir des premier et second courants alternatifs circulant dans les premier et second enroulements secondaires, le dispositif de transformation d’énergie électrique fournit des premier et second courants alternatifs circulant dans les premier et second enroulements primaires, qui sont des images, au rapport de transformation r près, desdits premier et second courants alternatifs circulant dans les premier et second enroulements secondaires. From the first and second alternating currents flowing in the first and second secondary windings, the electric power transforming device supplies first and second alternating currents flowing in the first and second primary windings, which are images, at the transformation ratio r close to said first and second alternating currents flowing in the first and second secondary windings.
A partir des premier et second courants alternatifs circulant dans les premier et second enroulements primaires, le convertisseur de tension selon l’invention permet de construire un système triphasé de trois courants de phase alternatifs. Ce système triphasé comprend des premier, deuxième et troisième courants de phase alternatifs laJb c circulant respectivement vers les premier, deuxième et troisième terminaux alternatifs du convertisseur de tension. Ces courants de phase alternatifs sont contrôlables en phase et en amplitude, de sorte que la puissance active et la puissance réactive du convertisseur de tension peuvent également être contrôlées. From the first and second alternating currents flowing in the first and second primary windings, the voltage converter according to the invention makes it possible to construct a three-phase system of three alternating phase currents. This three-phase system comprises first, second and third alternating phase currents laJ b c flowing respectively to the first, second and third AC terminals of the voltage converter. These alternating phase currents are controllable in phase and amplitude, so that the active power and the reactive power of the voltage converter can also be controlled.
Les relations entre les premier et second courants alternatifs I1 2 circulant dans les premier et second enroulements secondaires et les premier, deuxième et troisième courants de phase alternatifs B C sont les suivantes : The relationships between the first and second alternating currents I1 2 flowing in the first and second secondary windings and the first, second and third alternating phase currents B C are as follows:
[Math. 1]
Figure imgf000007_0001
[Math. 1]
Figure imgf000007_0001
[Math. 2]
Figure imgf000007_0002
[Math. 2]
Figure imgf000007_0002
[Math. 3]
Figure imgf000007_0003
[Math. 3]
Figure imgf000007_0003
Le dispositif de transformation d’énergie électrique du convertisseur de tension selon l’invention permet d’obtenir une distribution triphasée de trois courants de phase alternatifs à partir de deux courants alternatifs circulant dans les enroulements secondaires du dispositif de transformation d’énergie électrique. The electrical energy transforming device of the voltage converter according to the invention achieves a three-phase distribution of three alternating phase currents from two alternating currents flowing in the secondary windings of the electrical energy transforming device.
Ces trois courants de phase alternatifs IAJBJC définissent un système triphasé.These three IAJBJC alternating phase currents define a three-phase system.
La phase et l’amplitude du premier courant alternatif circulant dans le premier enroulement secondaire et la phase et l’amplitude du second courant alternatif circulant dans le second enroulement secondaire du dispositif de transformation d’énergie électrique forment quatre degrés de liberté du système triphasé donné ci- dessus. The phase and amplitude of the first alternating current flowing through the first secondary winding and the phase and magnitude of the second alternating current flowing through the second secondary winding of the electrical energy transforming device form four degrees of freedom of the given three-phase system above.
En appliquant une transformation de Fortescue à ce système, également appelée méthode des composantes symétriques, ce système triphasé peut être décomposé en une somme de trois systèmes triphasés, à savoir un système équilibré direct, un système équilibré inverse et un système homopolaire. By applying a Fortescue transformation to this system, also called the symmetric component method, this three-phase system can be decomposed into a sum of three three-phase systems, namely a direct balanced system, an inverse balanced system and a zero sequence system.
Le système équilibré direct permet d’imposer la puissance active et la puissance réactive du convertisseur de tension. Pour que le système triphasé composé par les trois courants de phase alternatif soit équilibré, le système équilibré inverse et le système homopolaire doivent chacun présenter une partie réelle et une partie imaginaire nulle. En effet, ceci permet de ne conserver que le système direct, qui est un système triphasé équilibré formé par les trois courants de phase alternatifs IAJBJC, qui sont alors déphasés de 120° et présentent une même amplitude. Ces trois systèmes imposent donc six contraintes à satisfaire, à savoir le contrôle de la puissance active, le contrôle de la puissance réactive, l’annulation des parties réelle et imaginaire du système équilibré inverse, l’annulation des parties réelle et imaginaire du système homopolaire. The direct balanced system allows the active power and the reactive power of the voltage converter to be imposed. In order for the three-phase system made up of the three alternating phase currents to be balanced, the inverse balanced system and the homopolar system must each have a real part and a zero imaginary part. In fact, this makes it possible to keep only the direct system, which is a balanced three-phase system formed by the three alternating phase currents IAJBJC, which are then phase-shifted by 120 ° and have the same amplitude. These three systems therefore impose six constraints to be satisfied, namely the control of the active power, the control of the reactive power, the cancellation of the real and imaginary parts of the inverse balanced system, the cancellation of the real and imaginary parts of the homopolar system. .
Le couplage des enroulements primaires du dispositif transformation d’énergie du convertisseur de tension selon l’invention, dans lequel le premier enroulement primaire est connecté entre les premier et deuxième terminaux alternatifs et le second enroulement primaire est connecté entre les deuxième et troisième terminaux alternatifs, permet d’annuler la partie réelle et la partie imaginaire du système homopolaire, par construction. En effet, le courant homopolaire est définit comme la somme des trois courants de phase alternatifs. Grâce aux trois équations données précédemment, on constate que la somme des trois courants de phase alternatifs est nulle. Il n’y a pas de courant homopolaire, et les parties réelles et imaginaires du système homopolaire sont donc nulles. Aussi, grâce à ce couplage des enroulements primaire du dispositif de transformation électrique selon l’invention, seules quatre contraintes, à savoir le contrôle des puissances active et réactive et l’annulation des parties réelle et imaginaire du système inverse, doivent être satisfaites au moyen des quatre degrés de libertés précités. La résolution des trois systèmes équilibrés est donc permise grâce au couplage particulièrement astucieux des enroulements primaires du convertisseur de tension selon l’invention. Le module de contrôle est avantageusement configuré pour ajuster le déphasage entre les premier et second courants alternatifs circulant dans les premier et second enroulements secondaires, de manière à imposer un déphasage d’environ 120° entre chacun des trois courants de phase alternatifs la,Uc· The coupling of the primary windings of the energy transforming device of the voltage converter according to the invention, in which the first primary winding is connected between the first and second alternating terminals and the second primary winding is connected between the second and third alternative terminals, allows to cancel the real part and the imaginary part of the homopolar system, by construction. In fact, the zero sequence current is defined as the sum of the three alternating phase currents. Thanks to the three equations given previously, it can be seen that the sum of the three alternating phase currents is zero. There is no zero sequence current, and the real and imaginary parts of the zero sequence system are therefore zero. Also, thanks to this coupling of the primary windings of the electrical transformation device according to the invention, only four constraints, namely the control of the active and reactive powers and the cancellation of the real and imaginary parts of the inverse system, must be satisfied by means of of the aforementioned four degrees of freedom. The resolution of the three balanced systems is therefore made possible by virtue of the particularly clever coupling of the primary windings of the voltage converter according to the invention. The control module is advantageously configured to adjust the phase shift between the first and second alternating currents flowing in the first and second secondary windings, so as to impose a phase shift of approximately 120 ° between each of the three alternating phase currents l a , U c
Le convertisseur de tension selon l’invention permet donc d’obtenir une distribution triphasée équilibrée de trois courants de phase alternatifs UbJc à partir de deux courants traversant les enroulements secondaires du dispositif de transformation d’énergie électrique, à savoir les premier et deuxième courants alternatifs circulant dans les premier et deuxième enroulements secondaires. Par équilibré on entend que les premier, deuxième et troisième courants de phase alternatifs Ub c présentent sensiblement la même amplitude et sont déphasés d’environ 120° ou 2TT/3. The voltage converter according to the invention therefore makes it possible to obtain a balanced three-phase distribution of three alternating phase currents UbJc from two currents passing through the secondary windings of the device for transforming electrical energy, namely the first and second alternating currents circulating in the first and second secondary windings. By balanced is meant that the first, second and third alternating phase currents U bc have substantially the same amplitude and are phase-shifted by approximately 120 ° or 2TT / 3.
En d’autres mots, le convertisseur de tension selon l’invention permet d’obtenir une distribution triphasée équilibrée de trois courants de phase alternatifs à partir de deux modules de conversion électrique connectés en série dans le bras, ou en parallèle l’un par rapport à l’autre. In other words, the voltage converter according to the invention makes it possible to obtain a balanced three-phase distribution of three alternating phase currents from two electrical conversion modules connected in series in the arm, or in parallel one by one. compared to each other.
Grâce à l’invention, le convertisseur de tension comprend exactement deux modules de conversion électrique, et donc strictement moins de trois modules de conversion électrique, contrairement aux convertisseurs de tension de l’art antérieur qui comprennent au moins trois modules de conversion électrique. Thanks to the invention, the voltage converter comprises exactly two electrical conversion modules, and therefore strictly less than three electrical conversion modules, unlike prior art voltage converters which include at least three electrical conversion modules.
Par conséquent, le convertisseur de tension selon l’invention comprend un nombre de composants, et notamment de modules de conversion électrique, réduit. Un intérêt est de réduire la taille et l’encombrement du convertisseur de tension en réduisant le nombre de modules de conversion électrique. Therefore, the voltage converter according to the invention comprises a reduced number of components, and in particular of electrical conversion modules, reduced. One benefit is to reduce the size and bulk of the voltage converter by reducing the number of power converter modules.
En outre, il présente un nombre réduit de sous-modules, lorsque les modules de conversion en sont pourvus. Ceci permet également de réduire le nombre de connexions électriques entre les différents composants, pouvant s’avérer coûteuses et complexes à réaliser, et de simplifier ainsi l’agencement du convertisseur de tension. In addition, it has a reduced number of submodules, when the conversion modules are provided with them. This also makes it possible to reduce the number of electrical connections between the various components, which can prove to be costly and complex to make, and thus simplify the arrangement of the voltage converter.
En outre, chacun des modules de conversion électrique du convertisseur de tension selon l’invention est apte à générer des tensions alternatives et continues insérées plus importantes que celles générées par chacun des modules de conversion des convertisseurs de tension munis de trois modules de conversion selon l’art antérieur. En effet, la tension totale à produire est répartie sur deux modules de conversion électrique au lieu de trois. En revanche, chacun des modules de conversion électrique est amené à supporter des courants moins importants que les modules de conversion électrique de l’art antérieur. Aussi, la taille de ces modules de conversion électrique peut être réduite. In addition, each of the electrical conversion modules of the voltage converter according to the invention is able to generate AC and DC inserted voltages greater than those generated by each of the conversion modules of the voltage converters provided with three conversion modules according to l prior art. Indeed, the total voltage to be produced is distributed over two electrical conversion modules instead of three. On the other hand, each of the electrical conversion modules is required to withstand lower currents than the electrical conversion modules of the prior art. Also, the size of these electrical conversion modules can be reduced.
Le convertisseur de tension selon l’invention présente donc un poids et un encombrement très inférieur aux convertisseurs de tension de l’art antérieur, ainsi qu’un coût de fabrication réduit. The voltage converter according to the invention therefore has a much smaller weight and bulk than the voltage converters of the prior art, as well as a reduced manufacturing cost.
Par ailleurs, le convertisseur de tension selon l’invention peut n’être muni que de deux enroulements primaires et deux enroulements secondaires, ce qui réduit encore l’encombrement du convertisseur de tension. Furthermore, the voltage converter according to the invention can be provided with only two primary windings and two secondary windings, which further reduces the size of the voltage converter.
De préférence, le module de contrôle est configuré pour commander les premier et second modules de conversion électrique, de sorte que le premier courant alternatif circulant dans le premier enroulement secondaire et le second courant alternatif circulant dans le second enroulement secondaire sont de même fréquence. Preferably, the control module is configured to control the first and second electrical conversion modules, so that the first AC current flowing in the first secondary winding and the second AC current flowing in the second secondary winding are of the same frequency.
Avantageusement, le premier enroulement primaire est relié directement aux premier et deuxième terminaux alternatifs. Avantageusement, le second enroulement primaire est relié directement aux deuxième et troisième terminaux alternatifs. Advantageously, the first primary winding is connected directly to the first and second alternating terminals. Advantageously, the second primary winding is connected directly to the second and third alternating terminals.
De préférence, les premier et second enroulements primaires comprennent chacun uniquement deux bornes. Chacune de ces bornes est alors reliée électriquement à un terminal alternatif. Preferably, the first and second primary windings each include only two terminals. Each of these terminals is then electrically connected to an AC terminal.
De manière avantageuse, au moins l’un des premier, deuxième et troisième terminaux alternatifs est relié électriquement à la fois à une borne du premier enroulement primaire et à une borne du second enroulement primaire. Advantageously, at least one of the first, second and third AC terminals is electrically connected both to a terminal of the first primary winding and to a terminal of the second primary winding.
Préférentiellement, les premier et second enroulements secondaires comprennent uniquement deux bornes. Preferably, the first and second secondary windings include only two terminals.
De préférence, les premier et second enroulements secondaires sont distincts et ne sont pas reliés électriquement l’un à l’autre. Preferably, the first and second secondary windings are separate and are not electrically connected to each other.
De préférence, le module de contrôle est configuré pour commander les premier et second modules de conversion électrique de sorte que le premier courant alternatif circulant dans le premier enroulement secondaire et le second courant alternatif circulant dans le second enroulement secondaire sont déphasés d’un angle compris entre 55° et 65°, de préférence d’un angle sensiblement égal à 60°. Preferably, the control module is configured to control the first and second electrical conversion modules so that the first current AC flowing in the first secondary winding and the second AC current flowing in the second secondary winding are phase-shifted by an angle between 55 ° and 65 °, preferably by an angle substantially equal to 60 °.
Un intérêt est d’améliorer l’équilibre du système triphasé formé par les premier, deuxième et troisième courants de phase alternatifs, construits à partir des premier et second courants alternatifs circulant dans les premier et second enroulements secondaires. Ceci permet d’imposer un déphasage d’environ 120° entre les premier et deuxième courants de phase alternatifs, ainsi qu’entre les deuxième et troisième courants de phase alternatifs et entre les troisième et premier courants de phase alternatifs. One interest is to improve the balance of the three-phase system formed by the first, second and third phase AC currents, built from the first and second AC currents flowing in the first and second secondary windings. This allows for a phase shift of approximately 120 ° between the first and second AC phase currents, as well as between the second and third AC phase currents and between the third and first AC phase currents.
De préférence, le module de contrôle commande les premier et second modules de conversion électrique de manière à réguler les première et seconde tensions alternatives insérées entre les première et seconde bornes alternatives des premier et second modules de conversion électrique, ce qui permet d’ajuster la phase et l’amplitude des premier et second courants alternatifs circulant dans les enroulements secondaires du dispositif de transformation d’énergie électrique. Preferably, the control module controls the first and second electrical conversion modules so as to regulate the first and second AC voltages inserted between the first and second AC terminals of the first and second electrical conversion modules, which makes it possible to adjust the voltage. phase and amplitude of the first and second alternating currents flowing in the secondary windings of the device for transforming electrical energy.
Le premier courant alternatif circulant dans le premier enroulement secondaire est avantageusement en phase avec le premier courant de phase alternatif. The first alternating current flowing in the first secondary winding is advantageously in phase with the first alternating phase current.
De manière avantageuse, les premier et second modules de conversion électrique comprennent chacun une branche principale s’étendant entre les première et seconde bornes continues du module de conversion électrique correspondant et dans laquelle est connectée une chaîne de sous-modules, chacune des chaînes de sous-modules comprenant une pluralité de sous-modules commandables individuellement par un organe de commande propre à chaque sous-module et chaque sous-module comprenant un condensateur, l’organe de commande de chaque sous-module pouvant prendre au moins un premier état dans lequel le condensateur est inséré dans la branche principale et un deuxième état dans lequel le condensateur n’est pas inséré dans ladite branche principale. Advantageously, the first and second electrical conversion modules each comprise a main branch extending between the first and second continuous terminals of the corresponding electrical conversion module and in which is connected a chain of sub-modules, each of the sub-chains. -modules comprising a plurality of individually controllable submodules by a control member specific to each submodule and each submodule comprising a capacitor, the control member of each submodule being able to take at least a first state in which the capacitor is inserted into the main branch and a second state in which the capacitor is not inserted into said main branch.
Le module de contrôle commande avantageusement les organes de commande des premier et second modules de conversion électrique. The control module advantageously controls the control members of the first and second electrical conversion modules.
De manière non limitative, les organes de commandes des sous-modules peuvent comprendre des éléments de commutation commandables de type interrupteur IGBT et une diode antiparallèle. De manière non limitative, les organes de commandes peuvent être placés dans le premier état et dans le deuxième état en réponse à un ordre de commande, provenant par exemple du module de contrôle, ou encore en fonction du signe du courant circulant dans le bras. In a non-limiting manner, the control members of the sub-modules can comprise controllable switching elements of the IGBT switch type and an antiparallel diode. In a nonlimiting manner, the control members can be placed in the first state and in the second state in response to a control command, originating for example from the control module, or even according to the sign of the current flowing in the arm.
Les sous-modules peuvent être commandés selon une séquence choisie pour faire varier progressivement le nombre de condensateurs qui sont connectés en série dans la branche principale du module de conversion électrique correspondant et donc dans le bras du convertisseur de tension, de façon à fournir plusieurs niveaux de tension. The submodules can be ordered in a sequence chosen to gradually vary the number of capacitors that are connected in series in the main branch of the corresponding electrical conversion module and therefore in the arm of the voltage converter, so as to provide several voltage levels.
Avantageusement, le module de contrôle est configuré pour commander les organes de commande des sous-modules des chaînes de sous-modules des premier et second modules de conversion électrique, de manière à réguler les tensions aux bornes desdites chaînes de sous-modules. La commande des sous- modules des modules de conversion électrique permet d’ajuster les tensions continues insérées dans le bras mais également les tensions alternatives insérées entre les bornes alternatives des modules de conversion électrique, et donc de réguler, en phase et en amplitude, les courants alternatifs circulant dans les enroulements primaires et secondaires du dispositif de transformation d’énergie électrique. Ceci permet de réguler, en phase et en amplitude, les trois courants de phase alternatifs circulant vers les terminaux alternatifs du convertisseur de tension. Advantageously, the control module is configured to control the control members of the sub-modules of the chains of sub-modules of the first and second electrical conversion modules, so as to regulate the voltages at the terminals of said chains of sub-modules. The control of the submodules of the electrical conversion modules makes it possible to adjust the direct voltages inserted in the arm but also the alternating voltages inserted between the alternating terminals of the electrical conversion modules, and therefore to regulate, in phase and in amplitude, the alternating currents flowing in the primary and secondary windings of the device for transforming electrical energy. This makes it possible to regulate, in phase and in amplitude, the three alternating phase currents flowing to the alternating terminals of the voltage converter.
Préférentiellement, au moins un des premier et second modules de conversion électrique comprend une liaison électrique supérieure, reliant électriquement la première borne continue et la première borne alternative dudit module de conversion électrique, et une liaison électrique inférieure, reliant électriquement la seconde borne continue et la seconde borne alternative dudit module de conversion électrique, ledit module de conversion électrique comprenant au moins un condensateur connecté dans ladite liaison électrique supérieure et/ou dans ladite liaison électrique inférieure. Un intérêt est de bloquer la circulation d’un courant continu dans les enroulements secondaires du dispositif de transformation électrique tout en autorisant la circulation d’un courant alternatif. Preferably, at least one of the first and second electrical conversion modules comprises an upper electrical connection, electrically connecting the first DC terminal and the first AC terminal of said electrical conversion module, and a lower electrical connection, electrically connecting the second DC terminal and the second alternating terminal of said electrical conversion module, said electrical conversion module comprising at least one capacitor connected in said upper electrical link and / or in said lower electrical link. One advantage is to block the flow of a direct current in the secondary windings of the electrical transformation device while allowing the flow of an alternating current.
Avantageusement, le premier module de conversion électrique et le second module de conversion électrique comprennent chacun au moins un condensateur connecté dans sa liaison électrique supérieure et/ou dans sa liaison électrique inférieure. Advantageously, the first electrical conversion module and the second electrical conversion module each comprise at least one capacitor connected in its upper electrical connection and / or in its lower electrical connection.
Le premier et/ou le second module de conversion électrique peut comprendre un unique condensateur connecté dans sa liaison électrique supérieure ou dans sa liaison électrique inférieure. En variante, le premier et/ou le second module de conversion électrique peut comprendre un premier condensateur connecté dans la liaison électrique supérieure et un second condensateur connecté dans la liaison électrique inférieure. The first and / or the second electrical conversion module can comprise a single capacitor connected in its upper electrical connection or in its lower electrical connection. Alternatively, the first and / or the second electrical conversion module may include a first capacitor connected in the upper electrical link and a second capacitor connected in the lower electrical link.
De manière avantageuse, au moins un des premier et second modules de conversion électrique comprend une branche secondaire, s’étendant entre les première et seconde bornes continues dudit module de conversion électrique, et dans laquelle sont connectés en série une chaîne de sous-modules comprenant une pluralité de sous-modules commandables, et un pont en H comprenant une première sous-branche dans laquelle sont connectés deux interrupteurs et une seconde sous- branche, connectée en parallèle de la première sous-branche, et dans laquelle sont connectés deux interrupteurs, les première et seconde bornes alternatives dudit module de conversion électrique étant reliées électriquement respectivement à la première sous-branche et à la seconde sous-branche. Advantageously, at least one of the first and second electrical conversion modules comprises a secondary branch, extending between the first and second continuous terminals of said electrical conversion module, and in which are connected in series a chain of sub-modules comprising a plurality of controllable submodules, and an H-shaped bridge comprising a first sub-branch in which are connected two switches and a second sub-branch, connected in parallel with the first sub-branch, and in which are connected two switches, the first and second alternating terminals of said electrical conversion module being electrically connected respectively to the first sub-branch and to the second sub-branch.
La branche secondaire est connectée en parallèle de la branche principale dudit module de conversion électrique. La première sous-branche est reliée à une première borne de l’enroulement secondaire correspondant, tandis que la seconde sous-branche est reliée à une seconde borne dudit enroulement secondaire correspondant. The secondary branch is connected in parallel with the main branch of said electrical conversion module. The first sub-branch is connected to a first terminal of the corresponding secondary winding, while the second sub-branch is connected to a second terminal of said corresponding secondary winding.
Avantageusement, les deux interrupteurs de la première sous-branche sont connectés l’un à l’autre en un premier point intermédiaire, la première borne alternative dudit module de conversion électrique étant reliée électriquement audit premier point intermédiaire. Avantageusement, les deux interrupteurs de la seconde sous-branche sont connectés l’un à l’autre en un second point intermédiaire, la seconde borne alternative dudit module de conversion électrique étant reliée électriquement audit second point intermédiaire. Advantageously, the two switches of the first sub-branch are connected to each other at a first intermediate point, the first alternating terminal of said electrical conversion module being electrically connected to said first intermediate point. Advantageously, the two switches of the second sub-branch are connected to each other at a second intermediate point, the second alternating terminal of said electrical conversion module being electrically connected to said second intermediate point.
Les interrupteurs du pont en H sont avantageusement commandés par le module de contrôle. Les interrupteurs du pont en H sont avantageusement des interrupteurs haute-tension. Le pont en H permet d’ajuster le sens de circulation du premier ou second courant alternatif circulant dans l’enroulement secondaire correspondant du dispositif de transformation d’énergie électrique. The switches of the H-bridge are advantageously controlled by the control module. The switches of the H-bridge are advantageously high-voltage switches. The H-bridge adjusts the direction of flow of the first or second alternating current flowing in the corresponding secondary winding of the electrical energy transformation device.
De préférence, les sous-modules des chaînes de sous-modules des premier et second modules de conversion électrique présentent une topologie en demi-pont ou une topologie en pont complet. Sans sortir du cadre de l’invention, d’autres topologies de sous-modules peuvent être envisagées. Chacun des modules de conversion électrique peut comprendre une combinaison de sous-modules en demi- pont et de sous-modules en pont complet. Preferably, the submodules of the submodule chains of the first and second electrical conversion modules have a half-bridge topology or a full-bridge topology. Without departing from the scope of the invention, other topologies of submodules can be envisaged. Each of the electrical conversion modules may include a combination of half-bridge submodules and full-bridge submodules.
L’organe de commande d’un sous-module en demi-pont (« Half Bridge » en langue anglaise) comporte un premier élément de commutation électronique connecté en série avec le dispositif de stockage d’énergie et un deuxième élément de commutation électronique couplé entre les bornes d’entrée et de sortie du sous- module. The controller of a half-bridge submodule comprises a first electronic switching element connected in series with the energy storage device and a second electronic switching element coupled between the input and output terminals of the submodule.
L’organe de commande d’un sous-module pont-complet (« Full Bridge » en langue anglaise) comporte quatre éléments de commutation. Dans ces deux topologies, l’organe de commande comprend avantageusement une diode antiparallèle connectée en parallèle de chacun des éléments de commutation. The control unit of a full bridge sub-module has four switching elements. In these two topologies, the control unit advantageously comprises an antiparallel diode connected in parallel with each of the switching elements.
Préférentiellement, le convertisseur de tension comprend en outre un module de démarrage configuré pour charger les condensateurs des sous-modules des premier et second modules de conversion électrique, lorsqu’il est placé dans un premier état. Preferably, the voltage converter further comprises a starting module configured to charge the capacitors of the submodules of the first and second electrical conversion modules, when it is placed in a first state.
Lors de la charge desdits condensateurs, la tension aux bornes des chaînes de sous-modules augmente progressivement jusqu’à atteindre une valeur nominale. When charging said capacitors, the voltage across the chains of submodules gradually increases until it reaches a nominal value.
Le module de démarrage est de préférence connecté entre les terminaux alternatifs du convertisseur de tension et un réseau d’alimentation électrique alternatif auquel est connecté ledit convertisseur de tension. En variante, le module de démarrage peut être connecté entre les terminaux continus du convertisseur de tension et un réseau d’alimentation électrique continu auquel est connecté ledit convertisseur de tension The starter module is preferably connected between the AC terminals of the voltage converter and an AC power supply network to which said voltage converter is connected. Alternatively, the starter module can be connected between the DC terminals of the voltage converter and a DC power supply network to which said voltage converter is connected.
De préférence, le module de démarrage comprend au moins un premier interrupteur connecté à un des terminaux alternatifs ou continus du convertisseur de tension et une résistance de limitation connectée en parallèle dudit interrupteur, ledit interrupteur étant ouvert lorsque le module de démarrage est placé dans le premier état. Preferably, the starting module comprises at least a first switch connected to one of the AC or DC terminals of the voltage converter and a limiting resistor connected in parallel with said switch, said switch being open when the starting module is placed in the first. state.
Aussi, dans le premier état, un courant non-contrôlé apparaît dans le bras. Ce courant non-contrôlé est limité par la résistance de limitation et charge progressivement les condensateurs des sous-modules des premier et second modules de conversion électrique, jusqu’à une valeur de pré-charge prédéfinie. Also, in the first state, an uncontrolled current appears in the arm. This uncontrolled current is limited by the limiting resistor and gradually charges the capacitors of the submodules of the first and second electrical conversion modules, up to a predefined pre-charge value.
Cette valeur de pré-charge prédéfinie est notamment choisie de manière à permettre l’alimentation du module de contrôle. This predefined pre-charge value is in particular chosen so as to allow power to the control module.
De préférence, le module de démarrage peut être placé dans un second état, dans lequel ledit au moins un interrupteur est fermé, de manière à court-circuiter ladite résistance de limitation. Preferably, the starter module can be placed in a second state, in which said at least one switch is closed, so as to short-circuit said limiting resistor.
Le module de limitation est d’abord maintenu dans le premier état jusqu’à ce que les condensateurs des sous-modules des modules de conversion électrique atteignent la valeur de pré-charge prédéfinie. Les chaînes de sous-modules sont alors commandables et peuvent être commandées pour augmenter progressivement l’énergie stockée dans leurs condensateurs. Lorsque la tension aux bornes de chaque chaîne de sous-modules atteint une valeur finale sensiblement égale à la tension du réseau d’alimentation électrique continu, le module de démarrage est placé dans le second état. L’ensemble des condensateurs des sous-modules des premier et second modules de conversion électrique sont chargés alors à une valeur de charge finale et le convertisseur de tension fonctionne alors normalement. The limiting module is first kept in the first state until the capacitors of the submodules of the electrical conversion modules reach the preset pre-charge value. The chains of submodules are then controllable and can be ordered to progressively increase the energy stored in their capacitors. When the voltage at the terminals of each string of submodules reaches a final value substantially equal to the voltage of the DC power supply network, the starting module is placed in the second state. All of the capacitors of the submodules of the first and second electrical conversion modules are then charged to a final charge value and the voltage converter then operates normally.
De préférence, ledit convertisseur de tension comprend uniquement deux enroulements primaires et deux enroulements secondaires. Un intérêt est là-encore de réduire le nombre de composants du convertisseur et notamment le nombre de terminaisons appelées « bushings » formant des connexions externes dudit dispositif de transformation d’énergie électrique. Ceci permet encore de réduire le poids, l’encombrement et le coût de fabrication du convertisseur de tension, par rapport aux convertisseurs de l’art antérieur qui comprennent au moins trois enroulements primaires et trois enroulements secondaires. On comprend que le convertisseur comprend exactement deux enroulements primaires et deux enroulements secondaires, chacun étant associé à un unique module de conversion électrique. Preferably, said voltage converter comprises only two primary windings and two secondary windings. Here again, it is of interest to reduce the number of components of the converter and in particular the number of terminations called "bushings" forming external connections of said electrical energy transformation device. This further reduces the weight, bulk and cost of manufacturing the voltage converter, compared to prior art converters which include at least three primary windings and three secondary windings. It will be understood that the converter comprises exactly two primary windings and two secondary windings, each being associated with a single electrical conversion module.
En outre, les transformateurs des convertisseurs de tension sont généralement munis de terminaison appelées « bushings » particulièrement encombrantes. En réduisant le nombre d’enroulements primaires et secondaires, et donc le nombre de transformateurs utilisés, le convertisseur de tension selon l’invention permet également de réduire le nombre de ces terminaisons, ce qui réduit encore l’encombrement du convertisseur de tension. In addition, voltage converter transformers are generally fitted with particularly bulky terminations called “bushings”. By reducing the number of primary and secondary windings, and therefore the number of transformers used, the voltage converter according to the invention also makes it possible to reduce the number of these terminations, which further reduces the size of the voltage converter.
Avantageusement, le convertisseur de tension selon l’invention comprend uniquement un dispositif de transformation d’énergie électrique. Advantageously, the voltage converter according to the invention comprises only a device for transforming electrical energy.
Avantageusement, le convertisseur de tension selon l’invention comprend uniquement deux enroulements primaires et deux enroulements secondaires. Advantageously, the voltage converter according to the invention comprises only two primary windings and two secondary windings.
Selon une première variante avantageuse, le dispositif de transformation d’énergie électrique comprend un unique transformateur comprenant lesdits premier et second enroulements primaires ainsi que lesdits premier et second enroulements secondaires. Un intérêt est de réduire le coût et l’encombrement du convertisseur de tension en limitant le nombre de composants qu’il comprend. According to a first advantageous variant, the electrical energy transformation device comprises a single transformer comprising said first and second primary windings as well as said first and second secondary windings. One advantage is to reduce the cost and size of the voltage converter by limiting the number of components it includes.
Selon une seconde variante avantageuse, le dispositif de transformation d’énergie électrique comprend : un premier transformateur comprenant le premier enroulement primaire et le premier enroulement secondaire ; et un second transformateur comprenant le second enroulement primaire et le second enroulement secondaire. Ces premier et second transformateurs sont des transformateurs monophasés. Un intérêt est de permettre une meilleure isolation galvanique entre les enroulements du premier et du second transformateurs. En outre, pour les applications de très forte puissance, la taille d’un transformateur à plusieurs enroulements primaires et secondaires peut être telle qu’il sera difficile à fabriquer et à transporter. L’utilisation de plusieurs transformateurs monophasés facilite la fabrication et le transport du dispositif de transformation d’énergie électrique et donc du convertisseur de tension. According to a second advantageous variant, the device for transforming electrical energy comprises: a first transformer comprising the first primary winding and the first secondary winding; and a second transformer comprising the second primary winding and the second secondary winding. These first and second transformers are single phase transformers. One advantage is to allow better galvanic isolation between the windings of the first and second transformers. Additionally, for very high power applications, the size of a transformer with multiple primary and secondary windings may be such that it will be difficult to manufacture and transport. The use of several single-phase transformers facilitates the manufacture and transport of the device for transforming electrical energy and therefore of the voltage converter.
Les premier et second transformateurs sont de préférence sensiblement identiques. Ils présentent avantageusement un même nombre de bornes au niveau des enroulements secondaires et au niveau des enroulements secondaires. The first and second transformers are preferably substantially identical. They advantageously have the same number of terminals at the level of the secondary windings and at the level of the secondary windings.
De préférence, le convertisseur de tension comprend au moins un module de filtrage connecté en série avec le bras et configuré pour limiter la composante alternative d’un courant circulant dans ledit bras. La tension résultant de la somme des tensions insérées dans le bras, générées par les premier et second modules de conversion électrique, présente une composante alternative résiduelle de sorte qu’un courant alternatif subsiste dans le bras. Preferably, the voltage converter comprises at least one filter module connected in series with the arm and configured to limit the AC component of a current flowing in said arm. The voltage resulting from the sum of the voltages inserted into the arm, generated by the first and second power converter modules, has a residual AC component so that an alternating current remains in the arm.
Un intérêt du module de filtrage est de filtrer et donc de réduire, de préférence supprimer, cette composante alternative de la tension totale dans le bras de manière à privilégier la circulation dans le bras d’un courant continu. Ceci permet de ne pas avoir de composante alternative dans le courant circulant dans le réseau d’alimentation électrique continu et donc de protéger ce réseau. One advantage of the filtering module is to filter and therefore to reduce, preferably eliminate, this AC component of the total voltage in the arm so as to favor the circulation in the arm of a direct current. This makes it possible to have no AC component in the current flowing in the DC power supply network and therefore to protect this network.
Avantageusement, le module de filtrage comprend au moins un composant passif et/ou un composant actif. On entend par composant passif un composant dont l’état et/ou le comportement ne peut être contrôlé. Un tel composant passif permet de stocker ou conserver une énergie. De manière non limitative, il peut s’agir d’une résistance ou d’une inductance. Advantageously, the filtering module comprises at least one passive component and / or one active component. By passive component is meant a component whose condition and / or behavior cannot be controlled. Such a passive component makes it possible to store or conserve energy. Without limitation, it can be a resistance or an inductance.
Le module de filtrage peut ne comprendre que des composants passifs de sorte qu’il forme un module de filtrage passif. Les composants passifs sont alors avantageusement dimensionnés de sorte que le module de filtrage présente une grande impédance à sa fréquence de résonance, afin de filtrer efficacement la composante alternative du courant dans le bras. The filter module may only include passive components so that it forms a passive filter module. The passive components are then advantageously dimensioned so that the filtering module has a high impedance at its resonant frequency, in order to effectively filter the AC component of the current in the arm.
On entend par composant actif un composant commandable dont l’état et/ou le comportement peut être contrôlé. De manière non limitative, il peut s’agir d’un interrupteur, d’un semi-conducteur, tel un transistor ou encore d’un sous-module comprenant au moins un semi-conducteur. By active component is meant a controllable component whose condition and / or behavior can be monitored. In a nonlimiting manner, it may be a switch, a semiconductor, such as a transistor, or even a submodule comprising at least one semiconductor.
Le module de filtrage peut comprendre au moins un composant actif, de sorte qu’il forme un module de filtrage actif. The filter module can include at least one active component, so that it forms an active filter module.
De préférence, le module de filtrage comprend une inductance et une capacité connectées en parallèle l’une de l’autre. Encore de préférence, le module de filtrage consiste en une inductance et une capacité connectées en parallèle l’une de l’autre. Preferably, the filter module comprises an inductor and a capacitor connected in parallel with each other. More preferably, the filter module consists of an inductor and a capacitor connected in parallel with each other.
Le module de filtrage forme alors un filtre empêchant la circulation du courant alternatif dans le bras. On choisit avantageusement ladite inductance et ladite capacité de sorte que la fréquence de résonance du module de filtrage coïncide avec celle du réseau d’alimentation électrique alternatif. The filter module then forms a filter preventing the flow of alternating current in the arm. Said inductance and said capacitance so that the resonant frequency of the filter module coincides with that of the AC power supply network.
Préférentiellement, le module de filtrage comprend une chaîne de sous-modules supplémentaire comprenant une pluralité de sous-modules commandables individuellement par un organe de commande propre à chaque sous-module et chaque sous-module de ladite chaîne de sous-modules supplémentaire comprenant au moins un condensateur connectable en série avec le bras lorsque l’organe de commande du sous-module est dans un premier état. Preferably, the filtering module comprises an additional chain of sub-modules comprising a plurality of individually controllable sub-modules by a control member specific to each sub-module and each sub-module of said chain of additional sub-modules comprising at least a capacitor connectable in series with the arm when the control member of the submodule is in a first state.
L’invention porte également sur une installation de transport de courant continu haute tension comprenant un réseau d’alimentation électrique continu, un réseau d’alimentation électrique alternatif et un convertisseur de tension tel que décrit précédemment, ledit convertisseur de tension étant configuré pour connecter électriquement lesdits réseaux d’alimentation électrique alternatif et continu entre eux. The invention also relates to a high voltage direct current transmission installation comprising a direct electric power supply network, an alternating electric power supply network and a voltage converter as described above, said voltage converter being configured to electrically connect said AC and DC power supply networks between them.
Le réseau d’alimentation électrique continu est connecté électriquement aux premier et second terminaux continus. Le réseau d’alimentation électrique alternatif est connecté électriquement aux premier, deuxième et troisième terminaux alternatifs du convertisseur de tension. The DC power supply network is electrically connected to the first and second DC terminals. The AC power supply network is electrically connected to the first, second and third AC terminals of the voltage converter.
L’invention porte par ailleurs sur un procédé de contrôle d’un convertisseur de tension permettant de convertir une tension alternative en une tension continue et inversement, le convertisseur de tension comprenant : des premier et second terminaux continus configurés pour être reliés électriquement à un réseau d’alimentation électrique continu ; des premier, deuxième et troisième terminaux alternatifs configurés pour être reliés électriquement à un réseau d’alimentation électrique alternatif ; un bras s’étendant entre les premier et second terminaux continus et comportant un premier module de conversion électrique et un second module de conversion électrique connectés en série dans ledit bras ou en parallèle l’un par rapport à l’autre, les premier et second modules de conversion électrique présentant chacun une première borne continue et une seconde borne continue entre lesquelles il s’étend, ainsi qu’une première borne alternative et une seconde borne alternative; un dispositif de transformation d’énergie électrique comportant un premier enroulement primaire connecté entre les premier et deuxième terminaux alternatifs et un second enroulement primaire connecté entre les deuxième et troisième terminaux alternatifs, le dispositif de transformation d’énergie électrique comportant en outre un premier enroulement secondaire connecté entre les première et seconde bornes alternatives du premier module de conversion électrique et un second enroulement secondaire connecté entre les première et seconde bornes alternatives du second module de conversion électrique, le convertisseur de tension comprenant uniquement deux modules de conversion électrique, le procédé comprenant les étapes selon lesquelles : on génère un premier courant alternatif contrôlable circulant dans le premier enroulement secondaire, à l’aide du premier module de conversion électrique ; on génère un second courant alternatif contrôlable circulant dans le second enroulement secondaire, à l’aide du second module de conversion électrique ; on contrôle les premier et second modules de conversion électrique de sorte que le premier courant alternatif circulant dans le premier enroulement secondaire et le second courant alternatif circulant dans le second enroulement secondaire sont déphasés. The invention further relates to a method of controlling a voltage converter making it possible to convert an alternating voltage into a direct voltage and vice versa, the voltage converter comprising: first and second DC terminals configured to be electrically connected to a network continuous power supply; first, second and third AC terminals configured to be electrically connected to an AC power supply network; an arm extending between the first and second DC terminals and having a first electrical conversion module and a second electrical conversion module connected in series in said arm or in parallel with each other, the first and second electrical conversion modules each having a first DC terminal and a second DC terminal between which it extends, as well as a first AC terminal and a second AC terminal; a device for transforming electrical energy comprising a first primary winding connected between the first and second alternating terminals and a second primary winding connected between the second and third alternating terminals, the device for transforming electrical energy further comprising a first secondary winding connected between the first and second AC terminals of the first electrical conversion module and a second secondary winding connected between the first and second AC terminals of the second electrical conversion module, the voltage converter comprising only two electrical conversion modules, the method comprising the steps of: generating a first controllable alternating current flowing in the first secondary winding, using the first module electrical conversion; generating a second controllable alternating current flowing in the second secondary winding, using the second electrical conversion module; the first and second electrical conversion modules are controlled so that the first alternating current flowing in the first secondary winding and the second alternating current flowing in the second secondary winding are out of phase.
De préférence, on contrôle les premier et second modules de conversion électrique de sorte que le premier courant alternatif circulant dans le premier enroulement secondaire et le second courant alternatif circulant dans le second enroulement secondaire sont déphasés d’un angle compris entre 55° et 65°, de préférence d’un angle sensiblement égal à 60°. Preferably, the first and second electrical conversion modules are controlled so that the first alternating current flowing in the first secondary winding and the second alternating current flowing in the second secondary winding are phase-shifted by an angle between 55 ° and 65 ° , preferably at an angle substantially equal to 60 °.
Brève description des dessins Brief description of the drawings
L’invention sera mieux comprise à la lecture de la description qui suit de modes de réalisation de l'invention donnés à titre d'exemples non limitatifs, en référence aux dessins annexés, sur lesquels : The invention will be better understood on reading the following description of embodiments of the invention given by way of non-limiting examples, with reference to the accompanying drawings, in which:
[Fig. 1]La figure 1 illustre une installation HVDC comprenant un convertisseur de tension selon l’invention ; [Fig. 1] Figure 1 illustrates an HVDC installation comprising a voltage converter according to the invention;
[Fig. 2]La figure 2 illustre un premier mode de réalisation du convertisseur de tension de la figure 1 ; [Fig. 2] FIG. 2 illustrates a first embodiment of the voltage converter of FIG. 1;
[Fig. 3]La figure 3 illustre un sous-module de topologie en demi-pont ; [Fig. 3] Figure 3 illustrates a half-bridge topology submodule;
[Fig. 4]La figure 4 illustre un sous-module de topologie en pont complet ; [Fig. 4] Figure 4 illustrates a full bridge topology submodule;
[Fig. 5]La figure 5 illustre une reconstruction de la distribution triphasée des trois courant de phase alternatifs circulant vers les terminaux alternatifs du convertisseur de la figure 2 ; [Fig. 5] Figure 5 illustrates a reconstruction of the three-phase distribution of the three AC phase currents flowing to the AC terminals of the converter of Figure 2;
[Fig. 6]La figure 6 illustre une première variante d’un module de filtrage du convertisseur de tension de la figure 2 ; [Fig. 6] Figure 6 illustrates a first variant of a filter module of the voltage converter of Figure 2;
[Fig. 7]La figure 7 illustre une seconde variante d’un module de filtrage du convertisseur de tension de la figure 2 ; [Fig. 7] Figure 7 illustrates a second variant of a filter module of the voltage converter of Figure 2;
[Fig. 8]La figure 8 illustre un second mode de réalisation du convertisseur de tension de la figure 1 ; [Fig. 9]La figure 9 illustre une première variante du convertisseur de tension de la figure 2 ; et [Fig. 8] Figure 8 illustrates a second embodiment of the voltage converter of Figure 1; [Fig. 9] FIG. 9 illustrates a first variant of the voltage converter of FIG. 2; and
[Fig. 10]La figure 10 illustre une seconde variante du convertisseur de tension de la figure 2. [Fig. 10] FIG. 10 illustrates a second variant of the voltage converter of FIG. 2.
Description des modes de réalisation Description of the embodiments
L’invention porte sur un convertisseur de tension permettant de convertir une tension alternative en une tension continue et inversement et comprenant uniquement deux modules de conversion électrique. The invention relates to a voltage converter for converting an alternating voltage to a direct voltage and vice versa and comprising only two electrical conversion modules.
La figure 1 illustre une installation HVDC 8 comprenant un premier mode de réalisation d’un convertisseur de tension 10 selon l’invention, connectant entre eux un réseau d’alimentation électrique continu 12 et un réseau d’alimentation électrique alternatif 14 de l’installation. Le réseau d’alimentation électrique alternatif 14 est un réseau triphasé comprenant trois phases. FIG. 1 illustrates an HVDC installation 8 comprising a first embodiment of a voltage converter 10 according to the invention, connecting between them a DC power supply network 12 and an AC power supply network 14 of the installation . The AC power supply network 14 is a three-phase network comprising three phases.
Comme on le constate sur la figure 1 , le convertisseur de tension 10 comprend un premier terminal continu 16 et un second terminal continu 18 configurés pour être reliés électriquement au réseau d’alimentation électrique continu 12. La tension VDC du réseau d’alimentation électrique continu 12 est illustrée entre le premier terminal continu 16 et le second terminal continu 18. As can be seen in Figure 1, the voltage converter 10 comprises a first DC terminal 16 and a second DC terminal 18 configured to be electrically connected to the DC power supply network 12. The voltage VDC of the DC power supply network 12 is shown between the first continuous terminal 16 and the second continuous terminal 18.
Le convertisseur comprend un bras 20 s’étendant entre le premier terminal continu 16 et le second terminal continu 18. Le bras 20 comprend un premier module de conversion électrique 22 et un second module de conversion électrique 24 connectés en série l’un de l’autre dans le bras 20, entre les premier et second terminaux continus 16,18. The converter includes an arm 20 extending between the first DC terminal 16 and the second DC terminal 18. The arm 20 includes a first electrical conversion module 22 and a second electrical conversion module 24 connected in series with one of the two. another in the arm 20, between the first and second continuous terminals 16,18.
Le premier module de conversion électrique 22 comprend une première borne continue 22a et une seconde borne continue 22b entre lesquelles il s’étend. Il est connecté dans le bras 20 par l’intermédiaire desdites première et secondes bornes continues 22a, 22b. De même, le second module de conversion électrique 24 comprend une première borne continue 24a et une seconde borne continue 24b entre lesquelles il s’étend. Il est connecté dans le bras 20 par l’intermédiaire desdites première et secondes bornes continues 24a, 24b. The first electrical conversion module 22 includes a first continuous terminal 22a and a second continuous terminal 22b between which it extends. It is connected in the arm 20 through said first and second continuous terminals 22a, 22b. Likewise, the second electrical conversion module 24 includes a first continuous terminal 24a and a second continuous terminal 24b between which it extends. It is connected in the arm 20 through said first and second continuous terminals 24a, 24b.
Par ailleurs, le premier module de conversion électrique 22 comprend une première borne alternative 23a et une seconde borne alternative 23b. Le second module de conversion électrique 24 comprend une première borne alternative 25a et une seconde borne alternative 25b. Furthermore, the first electrical conversion module 22 comprises a first AC terminal 23a and a second AC terminal 23b. The second electrical conversion module 24 includes a first AC terminal 25a and a second AC terminal 25b.
Selon l’invention, le convertisseur de tension 10 comprend uniquement et exactement deux modules de conversion 22,24, contrairement aux convertisseurs de tension de l’art antérieur qui comprennent au moins trois modules de conversion électrique. According to the invention, the voltage converter 10 comprises only and exactly two conversion modules 22, 24, unlike converters prior art voltage which comprises at least three electrical conversion modules.
Sur la figure 1, on constate que le convertisseur de tension 10 comprend également un premier terminal alternatif 30, un deuxième terminal alternatif 32 et un troisième terminal alternatif 34. Chacun des premier, deuxième et troisième terminaux alternatifs 30,32,34 est configuré pour être relié électriquement à l’une des trois phases du réseau d’alimentation électrique alternatif 14. In Figure 1, it can be seen that the voltage converter 10 also includes a first AC terminal 30, a second AC terminal 32 and a third AC terminal 34. Each of the first, second and third AC terminals 30,32,34 is configured to be electrically connected to one of the three phases of the AC power supply network 14.
Le convertisseur de tension 10 comprend en outre un dispositif de transformation d’énergie électrique 40 comprenant, dans cet exemple non limitatif, un unique transformateur biphasé comprenant des premier 41a et second 42a enroulements primaires associés respectivement à des premier 41b et second 42b enroulements secondaires. Le dispositif de transformation d’énergie électrique 40 comprend uniquement et exactement deux enroulements primaires 41a, 42a et uniquement et exactement deux enroulements secondaires 41 b, 42b. Le convertisseur de tension 10 comprend uniquement et exactement deux enroulements primaires 41 a, 42a et uniquement et exactement deux enroulements secondaires 41 b, 42b The voltage converter 10 further comprises an electrical energy transformation device 40 comprising, in this non-limiting example, a single two-phase transformer comprising first 41a and second 42a primary windings associated respectively with first 41b and second 42b secondary windings. The electrical energy transformation device 40 comprises only and exactly two primary windings 41a, 42a and only and exactly two secondary windings 41b, 42b. The voltage converter 10 comprises only and exactly two primary windings 41a, 42a and only and exactly two secondary windings 41b, 42b
Comme on le constate sur la figure 1, le premier enroulement secondaire 41b est connecté entre les première et seconde bornes alternatives 23a, 23b du premier module de conversion électrique 22. Le second enroulement secondaire 42b est connecté entre les première et seconde bornes alternatives 25a, 25b du second module de conversion électrique 24. As can be seen in Figure 1, the first secondary winding 41b is connected between the first and second alternating terminals 23a, 23b of the first electrical conversion module 22. The second secondary winding 42b is connected between the first and second alternating terminals 25a, 25b of the second electrical conversion module 24.
Selon l’invention, le premier enroulement primaire 41a est connecté entre les premier et deuxième terminaux alternatifs 30,32 du convertisseur de tension 10. En d’autres mots, le premier enroulement primaire 41a comprend une première borne 43 reliée électriquement au premier terminal alternatif 30 et une seconde borne 45 reliée électriquement au deuxième terminal alternatif 32. Le premier enroulement primaire est relié directement aux premier et deuxième terminaux alternatifs. Le second enroulement primaire 42a est connecté entre les deuxième et troisième terminaux alternatifs 32,34 du convertisseur de tension 10. En d’autres mots, le second enroulement primaire 42a comprend une première borne 47 reliée électriquement au deuxième terminal alternatif 32 et une seconde borne 49 reliée électriquement au troisième terminal alternatif 34. Le second enroulement primaire 42a est relié directement aux deuxième et troisième terminaux alternatifs. According to the invention, the first primary winding 41a is connected between the first and second alternating terminals 30, 32 of the voltage converter 10. In other words, the first primary winding 41a comprises a first terminal 43 electrically connected to the first alternating terminal. 30 and a second terminal 45 electrically connected to the second AC terminal 32. The first primary winding is connected directly to the first and second AC terminals. The second primary winding 42a is connected between the second and third AC terminals 32,34 of the voltage converter 10. In other words, the second primary winding 42a comprises a first terminal 47 electrically connected to the second AC terminal 32 and a second terminal 49 electrically connected to the third AC terminal 34. The second primary winding 42a is connected directly to the second and third AC terminals.
Les premier et second enroulements primaires 41a, 42a comprennent chacun uniquement deux bornes. De même, les premier et second enroulements secondaires 41 b, 42b comprennent chacun uniquement deux bornes. Le deuxième terminal alternatif est relié électriquement à la fois à la seconde borne 45 du premier enroulement primaire et à la première borne 47 du second enroulement primaire. The first and second primary windings 41a, 42a each include only two terminals. Likewise, the first and second secondary windings 41b, 42b each comprise only two terminals. The second AC terminal is electrically connected to both the second terminal 45 of the first primary winding and the first terminal 47 of the second primary winding.
La figure 2 illustre un premier mode de réalisation du convertisseur de tension de la figure 1 muni d’une première variante des modules de conversion électrique. Dans ce mode de réalisation, le premier module de conversion électrique 22 et le second module de conversion électrique 24 sont sensiblement identiques. Le premier module de conversion électrique 22 comprend une branche principale 46 connectée entre les première et seconde bornes continues 22a, 22b du premier module de conversion électrique 22. Le premier module de conversion électrique 22 comprend une chaîne de sous-modules SM connectée dans ladite branche principale 46. De même, le second module de conversion électrique 24 comprend une branche principale 48 connectée entre les première et seconde bornes continues 24a, 24b du second module de conversion électrique 24 et dans laquelle est également connectée une chaîne de sous-modules SM. Figure 2 illustrates a first embodiment of the voltage converter of Figure 1 provided with a first variant of the electrical conversion modules. In this embodiment, the first electrical conversion module 22 and the second electrical conversion module 24 are substantially identical. The first electrical conversion module 22 comprises a main branch 46 connected between the first and second continuous terminals 22a, 22b of the first electrical conversion module 22. The first electrical conversion module 22 comprises a chain of SM submodules connected in said branch. main 46. Likewise, the second electrical conversion module 24 comprises a main branch 48 connected between the first and second continuous terminals 24a, 24b of the second electrical conversion module 24 and in which is also connected a chain of submodules SM.
Chacune des chaînes de sous-modules comprend une pluralité de sous-modules SM connectés en série les uns des autres dans la branche principale correspondante et qui peuvent être commandés suivant une séquence souhaitée. Sur la figure 2, seuls deux sous-modules par chaîne sont représentés. Toutefois, chaque chaîne de sous-modules peut comprendre de deux à plusieurs dizaines de sous-modules SM. Each of the chains of submodules comprises a plurality of submodules SM connected in series with each other in the corresponding main branch and which can be controlled in a desired sequence. In FIG. 2, only two submodules per chain are shown. However, each chain of submodules can comprise from two to several dozen SM submodules.
Comme illustré en figure 3 et 4, chaque sous-module SM comporte un dispositif de stockage d’énergie comprenant dans cet exemple un condensateur CSM, et un organe de commande pour connecter sélectivement ce condensateur en série entre les bornes du sous-module SM ou pour le contourner. As illustrated in FIGS. 3 and 4, each submodule SM comprises an energy storage device comprising in this example a capacitor CSM, and a control member for selectively connecting this capacitor in series between the terminals of the submodule SM or to bypass it.
La figure 3 illustre un sous-module ayant une topologie en demi-pont (« Half- bridge » en langue anglaise). Dans ce sous-module en demi-pont, l’organe de commande comporte un premier élément de commutation électronique T1 tel qu’un transistor bipolaire à grille isolée (« IGBT : Insulated Gâte Bipolar Transistor » en langue anglaise) connecté en série avec le condensateur CSM- Ce premier élément de commutation T1 et ce condensateur CSM sont montés en parallèle d’un deuxième élément de commutation électronique T2, également un transistor bipolaire à grille isolée (IGBT). Ce deuxième élément de commutation électronique T2 est couplé entre les bornes d’entrée et de sortie du sous-module SM. Les premier et deuxième éléments de commutation T1 et T2 sont tous deux associés à une diode antiparallèle D représentée sur les figures 3 et 4. FIG. 3 illustrates a submodule having a half-bridge topology. In this half-bridge submodule, the control unit comprises a first electronic switching element T1 such as an insulated gate bipolar transistor (“IGBT: Insulated Gâte Bipolar Transistor”) connected in series with the capacitor CSM- This first switching element T1 and this capacitor CSM are connected in parallel with a second electronic switching element T2, also an insulated gate bipolar transistor (IGBT). This second electronic switching element T2 is coupled between the input and output terminals of the SM submodule. The first and second switching elements T1 and T2 are both associated with an antiparallel diode D shown in Figures 3 and 4.
En fonctionnement, le sous-module peut être placé dans deux états distincts. Dans un premier état dit état « on » ou inséré, le premier élément de commutation T1 et le deuxième élément de commutation T2 sont configurés de manière à insérer le condensateur CSM dans la branche principale 46,48, en série avec les autres sous-modules de la chaîne de sous-modules. Dans un deuxième état dit état « off » ou non-inséré, le premier élément de commutation T1 et le deuxième élément de commutation T2 sont configurés de sorte à contourner le condensateur CSM et ne pas l’insérer dans la branche principale 46,48. In operation, the submodule can be placed in two distinct states. In a first state called “on” or inserted state, the first switching element T1 and the second switching element T2 are configured so as to insert the capacitor CSM into the main branch 46,48, in series with the other submodules. of the submodule chain. In a second state called the “off” or non-inserted state, the first switching element T1 and the second switching element T2 are configured so as to bypass the capacitor CSM and not to insert it into the main branch 46,48.
Les sous-modules sont commandés selon une séquence choisie pour faire varier progressivement le nombre d’éléments de stockage d’énergie, et donc le nombre de condensateurs, qui sont connectés en série dans la chaîne de sous-modules correspondante et donc dans le bras 20 du convertisseur de tension 10, de façon à fournir plusieurs niveaux de tension. The submodules are controlled according to a sequence chosen to gradually vary the number of energy storage elements, and therefore the number of capacitors, which are connected in series in the corresponding chain of submodules and therefore in the arm. 20 of the voltage converter 10, so as to provide several voltage levels.
La figure 4 illustre une variante du sous-module de la figure 3, dans laquelle le sous-module présente une topologie en pont complet (« Full-bridge » en langue anglaise). Dans cette topologie, le sous-module comprend quatre éléments de commutation T’1,T’2,T’3,T’4, chacun étant associé en parallèle avec une diode antiparallèle D. FIG. 4 illustrates a variant of the submodule of FIG. 3, in which the submodule has a full bridge topology (“Full-bridge” in English). In this topology, the submodule comprises four switching elements T’1, T’2, T’3, T’4, each associated in parallel with an antiparallel diode D.
En se référant de nouveau à la figure 2, on constate que le premier module de conversion électrique 22 comprend une liaison électrique supérieure 50, reliant électriquement la première borne continue 22a et la première borne alternative 23a dudit premier module de conversion électrique 22. Le premier module de conversion électrique 22 comprend également une liaison électrique inférieure 52, reliant électriquement la seconde borne continue 22b et la seconde borne alternative 23b dudit premier module de conversion électrique 22. Dans cet exemple non limitatif, la liaison électrique supérieure 50 est munie d’un premier condensateur 54. Le condensateur permet de bloquer la circulation d’un courant continu dans ladite liaison électrique supérieure 50 et dans le premier enroulement secondaire 41b. Referring again to Figure 2, it can be seen that the first electrical conversion module 22 comprises an upper electrical connection 50, electrically connecting the first DC terminal 22a and the first AC terminal 23a of said first electrical conversion module 22. The first electrical conversion module 22 also comprises a lower electrical connection 52, electrically connecting the second DC terminal 22b and the second AC terminal 23b of said first electrical conversion module 22. In this non-limiting example, the upper electrical connection 50 is provided with a first capacitor 54. The capacitor makes it possible to block the flow of a direct current in said upper electrical connection 50 and in the first secondary winding 41b.
De même, le second module de conversion électrique 24 comprend une liaison électrique supérieure 56, reliant électriquement la première borne continue 24a et la première borne alternative 25a dudit second module de conversion électrique. Le second module de conversion électrique 24 comprend également une liaison électrique inférieure 58, reliant électriquement la seconde borne continue 24b et la seconde borne alternative 25b dudit second module de conversion électrique 24. Dans cet exemple non limitatif, la liaison électrique supérieure 56 est munie d’un second condensateur 60. Le condensateur 60 permet de bloquer la circulation d’un courant continu dans ladite liaison électrique supérieure 56 et dans le second enroulement secondaire 42b. La chaîne de sous-modules SM du premier module de conversion électrique 22 permet de générer une première tension continue insérée Vci contrôlable dans le bras entre les première et seconde bornes continues 22a, 22b du premier module de conversion électrique 22. La chaîne de sous-modules SM du second module de conversion électrique 24 permet de générer une seconde tension continue insérée Vc2 contrôlable dans le bras entre les première et seconde bornes continues 24a, 24b du second module de conversion électrique 24. Une tension totale VSUm apparaît dans le bras 20, entre la première borne continue 22a du premier module de conversion électrique 22 et la seconde borne continue 24b du second module de conversion électrique 24. Likewise, the second electrical conversion module 24 comprises an upper electrical connection 56, electrically connecting the first DC terminal 24a and the first AC terminal 25a of said second electrical conversion module. The second electrical conversion module 24 also comprises a lower electrical connection 58, electrically connecting the second DC terminal 24b and the second AC terminal 25b of said second electrical conversion module 24. In this non-limiting example, the upper electrical connection 56 is provided with 'a second capacitor 60. The capacitor 60 makes it possible to block the flow of a direct current in said upper electrical connection 56 and in the second secondary winding 42b. The chain of submodules SM of the first electrical conversion module 22 makes it possible to generate a first DC voltage Vci controllable inserted in the arm between the first and second DC terminals 22a, 22b of the first electrical conversion module 22. The chain of sub- SM modules of the second electrical conversion module 24 makes it possible to generate a second DC voltage inserted Vc 2 which can be controlled in the arm between the first and second DC terminals 24a, 24b of the second electrical conversion module 24. A total voltage V SU m appears in the arm 20, between the first continuous terminal 22a of the first electrical conversion module 22 and the second continuous terminal 24b of the second electrical conversion module 24.
Lesdites première et seconde tensions continues insérées Vci,Vc2 permettent de contrôler un courant continu IDC circulant dans le bras. Said first and second inserted direct voltages Vci, Vc 2 make it possible to control a direct current IDC flowing in the arm.
La chaîne de sous-modules SM du premier module de conversion électrique 22 permet en outre de générer une première tension alternative insérée Vi contrôlable entre les première et seconde bornes alternatives 23a, 23b du premier module de conversion électrique 22. La chaîne de sous-modules SM du second module de conversion électrique 24 permet de générer une seconde tension alternative insérée V2 contrôlable entre les première et seconde bornes alternatives 25a, 25b du second module de conversion électrique 24. The chain of submodules SM of the first electrical conversion module 22 also makes it possible to generate a first inserted AC voltage Vi controllable between the first and second AC terminals 23a, 23b of the first electrical conversion module 22. The chain of submodules SM of the second electrical conversion module 24 makes it possible to generate a second inserted AC voltage V 2 which can be controlled between the first and second AC terminals 25a, 25b of the second electrical conversion module 24.
Ladite première tension alternative insérée Vi permet de générer un premier courant alternatif circulant dans la liaison électrique supérieure 50 et donc dans le condensateur 54 et dans le premier enroulement secondaire 41b. Ladite seconde tension alternative insérée V2 permet en outre de générer un second courant alternatif l2 circulant dans la liaison électrique supérieure 56 et donc dans le condensateur 60 et dans le premier enroulement secondaire 42b. Said first inserted alternating voltage Vi makes it possible to generate a first alternating current flowing in the upper electrical connection 50 and therefore in the capacitor 54 and in the first secondary winding 41b. Said second inserted alternating voltage V 2 also makes it possible to generate a second alternating current I 2 flowing in the upper electrical connection 56 and therefore in the capacitor 60 and in the first secondary winding 42b.
A partir des premier et second courant alternatifs h, l2 circulant dans les premier et second enroulements secondaires 41 b, 42b, le dispositif de transformation d’énergie électrique 40 fournit des premier et second courants alternatifs lpi,lp2 circulant dans les premier et second enroulements primaires 41a, 42a . A partir de ces deux courants alternatifs, le convertisseur de tension selon l’invention permet de reconstruire des premier IA, deuxième IB et troisième le courants de phase alternatifs circulant vers les terminaux alternatifs 30,32,34 du convertisseur de tension, et donc vers le réseau d’alimentation électrique alternatif 14. From the first and second alternating currents h, l 2 circulating in the first and second secondary windings 41 b, 42b, the device for transforming electrical energy 40 supplies first and second alternating currents l pi , l p2 circulating in the first and second primary windings 41a, 42a. From these two alternating currents, the voltage converter according to the invention makes it possible to reconstruct from the first IA, second IB and third the alternating phase currents flowing to the alternating terminals 30,32,34 of the voltage converter, and therefore to the AC power supply network 14.
Plus précisément, le premier courant de phase alternatif IA circule depuis la première borne 43 du premier enroulement primaire 41a vers le premier terminal alternatif 30. Le troisième courant de phase alternatif le circule depuis la seconde borne 49 du second enroulement primaire 42a vers le troisième terminal alternatif 34. Le deuxième courant de phase alternatif IB est un courant résultant de la différence entre le second courant alternatif lp2 circulant dans le second enroulement primaire 42a et le premier courant alternatif lpi circulant dans le premier enroulement primaire 41a. Le deuxième courant de phase alternatif IB circule depuis un nœud électrique 51 vers le deuxième terminal alternatif 32. Le nœud électrique s’étend entre la seconde borne 45 du premier enroulement primaire et la première borne 47 du second enroulement primaire 42a. More precisely, the first AC phase current IA flows from the first terminal 43 of the first primary winding 41a to the first AC terminal 30. The third AC phase current flows from the second terminal 49 of the second primary winding 42a to the third terminal alternating 34. The second alternating phase current IB is a current resulting from the difference between the second alternating current l p2 flowing in the second primary winding 42a and the first alternating current l pi flowing in the first primary winding 41a. The second AC phase current IB flows from an electrical node 51 to the second AC terminal 32. The electrical node extends between the second terminal 45 of the first primary winding and the first terminal 47 of the second primary winding 42a.
Les relations liant les premier et second courants alternatifs circulant dans les premier et second enroulements primaires 41 a, 42a sont les suivantes : The relationships between the first and second alternating currents flowing in the first and second primary windings 41a, 42a are as follows:
[Math. 4]
Figure imgf000023_0001
[Math. 4]
Figure imgf000023_0001
[Math. 5] h = IP2 ~ pi [Math. 5] h = I P 2 ~ pi
[Math. 6]
Figure imgf000023_0002
[Math. 6]
Figure imgf000023_0002
Lesdits premier et second courants alternatifs li,l2, et par conséquent les premier, deuxième et troisième courants de phase alternatifs IA B C sont contrôlables en phase et en amplitude. Said first and second alternating currents li, l 2 , and therefore the first, second and third alternating phase currents IA BC are controllable in phase and in amplitude.
Le convertisseur de tension 10 comprend un module de contrôle 100 configuré notamment pour commander les premier et second modules de conversion 22,24, et plus précisément les éléments de commutation des organes de commande des sous-modules SM desdits modules de conversion afin d’ajuster les première et seconde tensions continues insérées Vc-i,VC2, lesdites première et second tensions alternatives insérées V1 V2 et par conséquent les premier et second courants alternatifs ,l2, ainsi que les premier, deuxième et troisième courants de phase alternatifs IA B C-The voltage converter 10 comprises a control module 100 configured in particular to control the first and second conversion modules 22, 24, and more precisely the switching elements of the control members of the submodules SM of said conversion modules in order to adjust the first and second inserted direct voltages V c -i, V C2 , said first and second inserted alternating voltages V 1 V 2 and consequently the first and second alternating currents, l 2 , as well as the first, second and third phase currents alternatives IA B C-
Les relations entre les premier et second courants alternatifs ,l2 circulant dans les premier et second enroulements secondaires et les premier, deuxième et troisième courants de phase alternatifs IA B C sont les suivantes : The relationships between the first and second AC currents, l 2 flowing in the first and second secondary windings and the first, second and third AC phase currents IA BC are as follows:
[Math. 7]
Figure imgf000023_0003
Dans ces relations, r est le rapport de transformation du dispositif de transformation d’énergie électrique.
[Math. 7]
Figure imgf000023_0003
In these relations, r is the transformation ratio of the device for transforming electrical energy.
Les trois courants de phase alternatifs IA B C permettent de définir un système triphasé. L’application d’une transformation de Fortescue à ce système, également appelée méthode des composantes symétriques, permet de décomposer ce système en une somme de trois systèmes triphasés, à savoir un système équilibré direct, un système équilibré inverse et un système homopolaire. The three alternating phase currents IA B C are used to define a three-phase system. Applying a Fortescue transformation to this system, also known as the symmetric component method, decomposes this system into a sum of three three-phase systems, namely a direct balanced system, an inverse balanced system, and a zero sequence system.
Le couplage des premier et second enroulements primaires 41a, 42a du dispositif transformation d’énergie électrique 40 aux terminaux alternatifs 30,32,34 du convertisseur de tension selon l’invention, dans lequel le premier enroulement primaire 41a est connecté entre les premier et deuxième terminaux alternatifs 30,32 et le second enroulement primaire 42a est connecté entre les deuxième et troisième terminaux alternatifs 32,34, permet d’annuler la partie réelle et la partie imaginaire du système homopolaire. The coupling of the first and second primary windings 41a, 42a of the electrical energy transformation device 40 to the alternating terminals 30,32,34 of the voltage converter according to the invention, in which the first primary winding 41a is connected between the first and second AC terminals 30,32 and the second primary winding 42a is connected between the second and third AC terminals 32,34, allows to cancel the real part and the imaginary part of the homopolar system.
La phase et l’amplitude du premier courant alternatif et du second courant alternatif h circulant dans les enroulements secondaires 41 b, 42b forment quatre degrés de liberté du système triphasé. Pour fournir un système triphasé équilibré, ces degrés de libertés doivent satisfaire quatre contraintes du système, qui sont le contrôle des puissances active et réactive et l’annulation des parties réelle et imaginaire du système inverse. The phase and the amplitude of the first alternating current and of the second alternating current h flowing in the secondary windings 41b, 42b form four degrees of freedom of the three-phase system. To provide a balanced three-phase system, these degrees of freedom must satisfy four system constraints, which are the control of active and reactive power and the cancellation of the real and imaginary parts of the reverse system.
Le dispositif de transformation d’énergie électrique 40 du convertisseur de tension 10 selon l’invention permet d’obtenir une distribution triphasée de trois courants de phase alternatifs à partir de deux courants alternatifs circulant dans les enroulements secondaires. Le couplage des enroulements primaires 41 a, 42a du convertisseur de tension 10 selon l’invention permet d’obtenir une distribution triphasée équilibrée de trois courants de phase alternatifs IA B C-The electrical energy transforming device 40 of the voltage converter 10 according to the invention enables a three-phase distribution of three alternating phase currents to be obtained from two alternating currents flowing in the secondary windings. The coupling of the primary windings 41a, 42a of the voltage converter 10 according to the invention makes it possible to obtain a balanced three-phase distribution of three alternating phase currents IA B C-
Le module de contrôle 100 est configuré pour commander l’organe de commande des sous-modules des premier et second modules de conversion électrique 20,24 de manière à imposer un déphasage choisi entre les premier et second courants alternatifs li 2- De manière non limitative, ce déphase est de préférence d’un angle compris entre 55° et 65°, de préférence d’un angle sensiblement égal à 60°. Ceci permet d’obtenir un déphasage d’environ 120° entre les premier, deuxième et troisième courants de phase alternatifs IA B C et donc d’obtenir un système de courant triphasé équilibré. The control module 100 is configured to control the control member of the sub-modules of the first and second electrical conversion modules 20, 24 so as to impose a phase shift chosen between the first and second alternating currents li 2- In a non-limiting manner , this phase shift is preferably an angle of between 55 ° and 65 °, preferably an angle substantially equal to 60 °. This makes it possible to obtain a phase shift of approximately 120 ° between the first, second and third AC phase currents IA B C and thus to obtain a balanced three-phase current system.
Les courants de phase alternatifs présentent avantageusement une même fréquence. The alternating phase currents advantageously have the same frequency.
La reconstruction de la distribution triphasée des trois courant de phase alternatifs IA B C à partir des premier et second courants alternatifs I1 2 est illustrée sur la figure 5. On constate sur cette figure 5 qu’un déphasage d’environ 60° entre les premier et second courants alternatifs I1 2 améliore l’équilibre du système triphasé obtenu et permet d’obtenir un déphasage d’environ 120° entre le premier et deuxième courants de phase alternatifs IA,IB, entre les deuxième et troisième courants de phase alternatifs IB C et entre les troisième et premier courants de phase alternatifs IC,IA- De manière non limitative, le module de contrôle commande les modules de conversion électrique de sorte que le premier courant alternatif circulant dans le premier enroulement secondaire 41b est en phase avec le premier courant de phase alternatif IA. The reconstruction of the three-phase distribution of the three AC phase currents IA BC from the first and second AC currents I1 2 is shown in FIG. 5. It can be seen in this FIG. 5 that a phase shift of approximately 60 ° between the first and second alternating currents I1 2 improves the balance of the three-phase system obtained and makes it possible to obtain a phase shift of approximately 120 ° between the first and second alternating phase currents IA, IB, between the second and third alternating phase currents IB C and between the third and first alternating phase currents IC, IA- In a non-limiting manner, the control module controls the control modules electrical conversion so that the first AC current flowing in the first secondary winding 41b is in phase with the first AC phase current IA.
Sur la figure 2, on remarque que le convertisseur de tension 10 comprend par ailleurs un module de filtrage 80 connecté en série avec le bras 20, entre les premier et second terminaux continus 16,18, et plus précisément entre le premier terminal continu 16 et la première borne continue 22a du premier module de conversion électrique 22. Le module de filtrage 80 est configuré pour filtrer la composante alternative des première et seconde tensions continues insérées Vci,Vc2 dans le bras 20, de manière à empêcher la circulation d’un courant alternatif dans le bras et à garantir la circulation dans le bras d’un unique courant continu IDC-In Figure 2, we note that the voltage converter 10 further comprises a filter module 80 connected in series with the arm 20, between the first and second DC terminals 16,18, and more precisely between the first DC terminal 16 and the first DC terminal 22a of the first electrical conversion module 22. The filter module 80 is configured to filter the AC component of the first and second DC voltages inserted Vci, Vc2 in the arm 20, so as to prevent the flow of a current alternating current in the arm and to guarantee the circulation in the arm of a single direct current IDC-
Une première variante d’un module de filtrage est illustrée en figure 6. Dans cet exemple, le module de filtrage 80 comprend une inductance 82 et une capacité 84 connectées en parallèle l’une de l’autre. Ces deux composants sont passifs de sorte que le module de filtrage 80 est également passif. A first variant of a filter module is illustrated in FIG. 6. In this example, the filter module 80 comprises an inductor 82 and a capacitor 84 connected in parallel with each other. These two components are passive so that the filter module 80 is also passive.
Ladite inductance 82 et ladite capacité 84 forment un filtre permettant de réduire, de préférence supprimer, la composante alternative circulant dans le bras 20. Elles sont dimensionnées de sorte que la fréquence de résonance du module de filtrage 80 coïncide avec celle du réseau d’alimentation électrique alternatif 14 et pour que le module de filtrage 80 présente une grande impédance à ladite fréquence de résonance. Said inductor 82 and said capacitor 84 form a filter making it possible to reduce, preferably eliminate, the AC component circulating in the arm 20. They are dimensioned so that the resonant frequency of the filter module 80 coincides with that of the supply network. AC electric 14 and so that the filter module 80 has a high impedance at said resonant frequency.
La figure 7 illustre une seconde variante d’un module de filtrage 80. Dans cet exemple, le module de filtrage 80 comprend une chaîne de sous-modules supplémentaire comprenant une pluralité de sous-modules SM commandables individuellement par un organe de commande propre à chaque sous-module. Chaque sous-module de ladite chaîne de sous-modules supplémentaire comprend au moins un condensateur connectable en série avec le bras 20 lorsque l’organe de commande du sous-module est dans un premier état. FIG. 7 illustrates a second variant of a filtering module 80. In this example, the filtering module 80 comprises an additional chain of submodules comprising a plurality of submodules SM which can be individually controlled by a control member specific to each. submodule. Each submodule of said chain of additional submodules comprises at least one capacitor connectable in series with the arm 20 when the controller of the submodule is in a first state.
La chaîne de sous-modules supplémentaire permet de générer une tension alternative vSUpp à ses bornes ayant une amplitude égale à celle de la composante alternative de la tension totale aux bornes de l’ensemble des chaînes de sous- modules du bras 20, et ayant une phase opposée. Les sous-modules de cette chaîne de sous-modules supplémentaire sont avantageusement de type en pont complet. The chain of additional submodules makes it possible to generate an alternating voltage v SUpp at its terminals having an amplitude equal to that of the alternating component of the total voltage at the terminals of all the chains of submodules of the arm 20, and having an opposite phase. The sub-modules of this chain of additional submodules are advantageously of the full bridge type.
On constate sur la figure 2 que le convertisseur de tension 10 comprend en outre un module de démarrage 90. Dans cet exemple non limitatif, le module de démarrage 90 comprend un interrupteur 92 connecté au second terminal continu 18 du convertisseur de tension et une résistance de limitation 94 connectée en parallèle dudit interrupteur 92. Le module de démarrage 90 est configuré pour charger les condensateurs des sous-modules SM des premier et second modules de conversion électrique 22,24 afin de permettre le démarrage du convertisseur de tension 10 et le contrôle des courants continu et alternatifs circulant dans le convertisseur de tension. It can be seen in FIG. 2 that the voltage converter 10 further comprises a starting module 90. In this non-limiting example, the starting module 90 comprises a switch 92 connected to the second DC terminal 18 of the voltage converter and a resistor of limitation 94 connected in parallel with said switch 92. The starting module 90 is configured to charge the capacitors of the SM submodules of the first and second electrical conversion modules 22,24 in order to allow the starting of the voltage converter 10 and the control of the direct and alternating currents flowing through the voltage converter.
Lorsque le module de démarrage est placé dans un premier état, ledit interrupteur 92 est ouvert de sorte qu’un courant non-contrôlé apparaît et circule dans le bras 20. When the starter module is placed in a first state, said switch 92 is opened so that an uncontrolled current appears and flows in the arm 20.
Les condensateurs CSM des sous-modules du bras se chargent et la tension aux bornes des premier et second modules de conversion électrique 22,24 augmente progressivement jusqu’à atteindre sa valeur nominale. Les sous-modules sont ensuite commandés pour augmenter progressivement l’énergie stockée dans leurs condensateurs. Lorsque la tension aux bornes de chaque chaîne de sous-modules atteint une valeur finale prédéterminée, l’interrupteur 92 est alors fermé de manière à court-circuiter et ainsi contourner ladite résistance de limitation 94. Le module de démarrage est alors placé dans un second état. The CSM capacitors of the arm submodules charge and the voltage across the first and second power converter modules 22,24 gradually increases until it reaches its nominal value. The submodules are then controlled to gradually increase the energy stored in their capacitors. When the voltage at the terminals of each string of submodules reaches a predetermined final value, the switch 92 is then closed so as to bypass and thus bypass said limiting resistor 94. The starting module is then placed in a second state.
Le contrôle du courant continu circulant dans le bras et des courants alternatifs circulant dans les enroulements du dispositif de transformation d’énergie électrique 40 est alors rétabli et le convertisseur de tension fonctionne alors normalement. Control of the direct current flowing in the arm and of the alternating currents flowing in the windings of the electrical energy transformation device 40 is then re-established and the voltage converter then operates normally.
En variante, le module de démarrage 90 pourrait être connecté entre le réseau d’alimentation électrique alternatif et les terminaux alternatifs du convertisseur. Alternatively, the starter module 90 could be connected between the AC power supply network and the AC terminals of the converter.
La figure 8 illustre un second mode de réalisation du convertisseur de tension de la figure 1 comprenant une deuxième variante des modules de conversion électrique 22,24. Dans ce mode de réalisation, les premier et second modules de conversion électrique 22,24 comprennent également chacun une branche principale 46,48 dans laquelle est connectée une chaîne de sous-modules SM. FIG. 8 illustrates a second embodiment of the voltage converter of FIG. 1 comprising a second variant of the electrical conversion modules 22, 24. In this embodiment, the first and second electrical conversion modules 22,24 also each comprise a main branch 46,48 in which is connected a chain of submodules SM.
Le premier module de conversion électrique 22 comprend en outre une branche secondaire 62, connectée entre les première et seconde bornes continues 22a, 23a, en parallèle de la branche principale 46. Le second module de conversion électrique 24 comprend également une branche secondaire 64, connectée entre les première et seconde bornes continues 22a, 23a, en parallèle de la branche principale 46. Dans la branche secondaire 62 du premier module de conversion électrique 22, sont connectés en série une chaîne de sous-modules SM et un pont en H 66. De même, dans la branche secondaire 64 du second module de conversion électrique 24 sont connectés en série une chaîne de sous-modules SM et un pont en H 68. Lesdits ponts en H 66,68 comprennent chacun une première sous-branche 66a, 68a et une seconde sous-branche 66b, 68b, connectées en parallèle l’une de l’autre. Lesdites sous-branches 66a, 66b, 68a, 68b comprennent chacune deux interrupteurs 70 reliés électriquement l’un à l’autre dans lesdites sous-branches. The first electrical conversion module 22 further comprises a secondary branch 62, connected between the first and second continuous terminals 22a, 23a, in parallel with the main branch 46. The second electrical conversion module 24 also comprises a secondary branch 64, connected. between the first and second continuous terminals 22a, 23a, in parallel with the main branch 46. In the secondary branch 62 of the first electrical conversion module 22, a chain of submodules SM and an H-bridge 66 are connected in series. Likewise, in the secondary branch 64 of the second electrical conversion module 24 are connected in series. a chain of SM submodules and an H-bridge 68. Said H-bridges 66,68 each comprise a first sub-branch 66a, 68a and a second sub-branch 66b, 68b, connected in parallel with one of the other. Said sub-branches 66a, 66b, 68a, 68b each comprise two switches 70 electrically connected to one another in said sub-branches.
Les deux interrupteurs 70 de la première sous-branche 66a du premier module de conversion électrique 22 sont connectés entre eux en un premier point intermédiaire 72. Les deux interrupteurs 70 de la seconde sous-branche 66b du premier module de conversion électrique 22 sont connectés entre eux en un second point intermédiaire 74. Le premier point intermédiaire 72 est relié électriquement à la première borne alternative 23a du premier module de conversion électrique 22 et à une première borne du premier enroulement secondaire 41b. Le second point intermédiaire 74 est relié électriquement à la seconde borne alternative 23b du premier module de conversion électrique 22, et à une seconde borne du premier enroulement secondaire 41b. The two switches 70 of the first sub-branch 66a of the first electrical conversion module 22 are connected to one another at a first intermediate point 72. The two switches 70 of the second sub-branch 66b of the first electrical conversion module 22 are connected between them at a second intermediate point 74. The first intermediate point 72 is electrically connected to the first alternating terminal 23a of the first electrical conversion module 22 and to a first terminal of the first secondary winding 41b. The second intermediate point 74 is electrically connected to the second alternating terminal 23b of the first electrical conversion module 22, and to a second terminal of the first secondary winding 41b.
De même, les deux interrupteurs 70 de la première sous-branche 68a du second module de conversion électrique 24 sont connectés entre eux en un premier point intermédiaire 72. Les deux interrupteurs 70 de la seconde sous-branche 68b du second module de conversion électrique 24 sont connectés entre eux en un second point intermédiaire 74. Le premier point intermédiaire 72 est relié électriquement à la première borne alternative 25a du second module de conversion électrique 24 et à une première borne du second enroulement secondaire 42b. Le second point intermédiaire 74 est relié électriquement à la seconde borne alternative 25b du second module de conversion électrique 22 et à une seconde borne du second enroulement secondaire 42b. Likewise, the two switches 70 of the first sub-branch 68a of the second electrical conversion module 24 are connected to one another at a first intermediate point 72. The two switches 70 of the second sub-branch 68b of the second electrical conversion module 24 are connected to each other at a second intermediate point 74. The first intermediate point 72 is electrically connected to the first AC terminal 25a of the second electrical conversion module 24 and to a first terminal of the second secondary winding 42b. The second intermediate point 74 is electrically connected to the second AC terminal 25b of the second electrical conversion module 22 and to a second terminal of the second secondary winding 42b.
Les interrupteurs des deux ponts en H 66,68 sont commandés par le module de contrôle 100. Lesdits ponts en H 66,68 permettent d’ajuster le sens de circulation du premier ou second courant alternatif circulant dans l’enroulement secondaire correspondant du dispositif de transformation d’énergie électrique. The switches of the two H-bridges 66.68 are controlled by the control module 100. Said H-bridges 66.68 make it possible to adjust the direction of flow of the first or second alternating current flowing in the corresponding secondary winding of the device. transformation of electrical energy.
La figure 9 illustre une première variante du convertisseur de tension de la figure 2. Dans cette première variante, les premier et second modules de conversion électrique 22,24 sont connectés en parallèle l’un par rapport à l’autre, entre les premier et second terminaux continus. Les premières bornes continues 22a, 24a des premier et second modules de conversion électrique sont reliées entre elles en un point supérieur 76. Les secondes bornes continues 22b, 24b des premier et second modules de conversion électrique sont reliées entre elles en un point inférieur 78. Figure 9 illustrates a first variant of the voltage converter of Figure 2. In this first variant, the first and second electrical conversion modules 22, 24 are connected in parallel with respect to each other, between the first and second continuous terminals. The first continuous terminals 22a, 24a of the first and second electrical conversion modules are interconnected in a upper point 76. The second continuous terminals 22b, 24b of the first and second electrical conversion modules are interconnected at a lower point 78.
Dans cet exemple non limitatif, le premier module de conversion électrique 22 comprend en outre un premier élément d’adaptation électrique 75 connecté en amont de la branche principale 46, entre ladite branche principale et la première borne continue 22a du premier module de conversion électrique. En outre, le second module de conversion électrique 24 comprend un second élément d’adaptation électrique 77 connecté en amont de la branche principale 48, entre ladite branche principale et la première borne continue 24a du second module de conversion électrique. Les premier et deuxième éléments d’adaptation électrique peuvent être une inductance ou encore un filtre actif. In this non-limiting example, the first electrical conversion module 22 further comprises a first electrical adaptation element 75 connected upstream of the main branch 46, between said main branch and the first continuous terminal 22a of the first electrical conversion module. Furthermore, the second electrical conversion module 24 comprises a second electrical adaptation element 77 connected upstream of the main branch 48, between said main branch and the first continuous terminal 24a of the second electrical conversion module. The first and second electrical adaptation elements can be an inductor or an active filter.
La figure 10 illustre une seconde variante du convertisseur de tension de la figure 2. Dans cette seconde variante, les premier et second modules de conversion électrique 22,24 sont également connectés en parallèle l’un par rapport à l’autre. En outre, le convertisseur comprend un élément de couplage 79 des premier et second modules de conversion électrique. Cet élément de couplage 79 est connecté entre le module de filtrage 80, la première borne continue 22a du premier module de conversion électrique 22 et la première borne continue 24a du second module de conversion électrique 24. Figure 10 illustrates a second variant of the voltage converter of Figure 2. In this second variant, the first and second electrical conversion modules 22,24 are also connected in parallel with each other. Further, the converter includes a coupling element 79 of the first and second electrical conversion modules. This coupling element 79 is connected between the filter module 80, the first continuous terminal 22a of the first electrical conversion module 22 and the first continuous terminal 24a of the second electrical conversion module 24.

Claims

REVENDICATIONS
1. Convertisseur de tension (10) permettant de convertir une tension alternative en une tension continue et inversement, le convertisseur de tension comprenant : des premier et second terminaux continus (16,18) configurés pour être reliés électriquement à un réseau d’alimentation électrique continu (12) ; des premier, deuxième et troisième terminaux alternatifs (30,32,34) configurés pour être reliés électriquement à un réseau d’alimentation électrique alternatif ; un bras (20) s’étendant entre les premier et second terminaux continus et comportant un premier module de conversion électrique (22) et un second module de conversion électrique (24) connectés en série dans ledit bras ou en parallèle l’un par rapport à l’autre, les premier et second modules de conversion électrique présentant chacun une première borne continue (22a, 24a) et une seconde borne continue (22b, 24b) entre lesquelles il s’étend, ainsi qu’une première borne alternative (23a, 25a) et une seconde borne alternative (23b, 25b) ; un dispositif de transformation d’énergie électrique (40) comportant un premier enroulement primaire (41a) connecté entre les premier et deuxième terminaux alternatifs et un second enroulement primaire (42a) connecté entre les deuxième et troisième terminaux alternatifs, le dispositif de transformation d’énergie électrique comportant en outre un premier enroulement secondaire (41b) connecté entre les première et seconde bornes alternatives du premier module de conversion électrique et un second enroulement secondaire (42b) connecté entre les première et seconde bornes alternatives du second module de conversion électrique, le premier module de conversion électrique étant configuré pour générer un premier courant alternatif (h) contrôlable circulant dans le premier enroulement secondaire, le second module de conversion électrique étant configuré pour générer un second courant alternatif ( ) contrôlable circulant dans le second enroulement secondaire ; un module de contrôle (100) configuré pour commander les premier et second modules de conversion électrique de sorte que le premier courant alternatif circulant dans le premier enroulement secondaire et le second courant alternatif circulant dans le second enroulement secondaire sont déphasés, le convertisseur de tension comprenant uniquement deux modules de conversion électrique. 1. Voltage converter (10) for converting an alternating voltage into a direct voltage and vice versa, the voltage converter comprising: first and second direct current terminals (16,18) configured to be electrically connected to a power supply network continuous (12); first, second and third AC terminals (30,32,34) configured to be electrically connected to an AC power supply network; an arm (20) extending between the first and second DC terminals and having a first electrical conversion module (22) and a second electrical conversion module (24) connected in series in said arm or in parallel with each other to the other, the first and second electrical conversion modules each having a first DC terminal (22a, 24a) and a second DC terminal (22b, 24b) between which it extends, as well as a first AC terminal (23a , 25a) and a second alternating terminal (23b, 25b); an electrical energy transforming device (40) comprising a first primary winding (41a) connected between the first and second AC terminals and a second primary winding (42a) connected between the second and third AC terminals, the device for transforming electrical energy further comprising a first secondary winding (41b) connected between the first and second AC terminals of the first electrical conversion module and a second secondary winding (42b) connected between the first and second AC terminals of the second electrical conversion module, the first electrical conversion module configured to generate a first controllable alternating current (h) flowing in the first secondary winding, the second electrical conversion module being configured to generate a second controllable alternating current (h) flowing in the second secondary winding; a control module (100) configured to control the first and second electrical conversion modules so that the first AC current flowing in the first secondary winding and the second AC current flowing in the second secondary winding are out of phase, the voltage converter comprising only two electrical conversion modules.
2. Convertisseur de tension selon la revendication 1, dans lequel le module de contrôle (100) est configuré pour commander les premier et second modules de conversion électrique (22,24) de sorte que le premier courant alternatif (h) circulant dans le premier enroulement secondaire (41b) et le second courant alternatif (I2) circulant dans le second enroulement secondaire (42b) sont déphasés d’un angle compris entre 55° et 65°, de préférence d’un angle sensiblement égal à 60°. 2. Voltage converter according to claim 1, wherein the control module (100) is configured to control the first and second electrical conversion modules (22,24) so that the first alternating current (h) flowing in the first secondary winding (41b) and the second alternating current (I2) flowing in the second secondary winding (42b) are phase-shifted by an angle between 55 ° and 65 °, preferably by an angle substantially equal to 60 °.
3. Convertisseur de tension selon la revendication 1 ou 2, dans lequel les premier et second modules de conversion électrique (22,24) comprennent chacun une branche principale (46,48) s’étendant entre les première (22a, 24a) et seconde (22b, 24b) bornes continues du module de conversion électrique correspondant et dans laquelle est connectée une chaîne de sous-modules (SM), chacune des chaînes de sous-modules comprenant une pluralité de sous-modules commandables individuellement par un organe de commande (T1 ,T2) propre à chaque sous-module et chaque sous-module comprenant un condensateur (CSM), l’organe de commande de chaque sous-module pouvant prendre au moins un premier état dans lequel le condensateur est inséré dans la branche principale et un deuxième état dans lequel le condensateur n’est pas inséré dans ladite branche principale. 3. Voltage converter according to claim 1 or 2, wherein the first and second electrical conversion modules (22,24) each comprise a main branch (46,48) extending between the first (22a, 24a) and second. (22b, 24b) continuous terminals of the corresponding electrical conversion module and in which is connected a chain of submodules (SM), each of the chains of submodules comprising a plurality of submodules individually controllable by a control member ( T1, T2) specific to each submodule and each submodule comprising a capacitor (CSM), the control unit of each submodule being able to take at least a first state in which the capacitor is inserted into the main branch and a second state in which the capacitor is not inserted into said main branch.
4. Convertisseur de tension selon la revendication 3, dans lequel le module de contrôle (100) est configuré pour commander les organes de commande (T1 ,T2) des sous-modules (SM) des chaînes de sous-modules des premier et second modules de conversion électrique (22,24), de manière à réguler les tensions aux bornes desdites chaînes de sous- modules. 4. Voltage converter according to claim 3, wherein the control module (100) is configured to control the control members (T1, T2) of the submodules (SM) of the chains of submodules of the first and second modules. of electrical conversion (22,24), so as to regulate the voltages at the terminals of said chains of submodules.
5. Convertisseur de tension selon l’une quelconque des revendications 1 à 4, dans lequel au moins un des premier et second modules de conversion électrique (22,24) comprend une liaison électrique supérieure (50), reliant électriquement la première borne continue (22a, 24a) et la première borne alternative (23a, 25a) dudit module de conversion électrique, et une liaison électrique inférieure (52), reliant électriquement la seconde borne continue (22b, 24b) et la seconde borne alternative (23b, 25b) dudit module de conversion électrique, ledit module de conversion électrique comprenant au moins un condensateur (54,60) connecté dans ladite liaison électrique supérieure ou dans ladite liaison électrique inférieure. 5. Voltage converter according to any one of claims 1 to 4, wherein at least one of the first and second electrical conversion modules (22,24) comprises an upper electrical connection (50), electrically connecting the first continuous terminal ( 22a, 24a) and the first AC terminal (23a, 25a) of said electrical conversion module, and a lower electrical link (52), electrically connecting the second DC terminal (22b, 24b) and the second AC terminal (23b, 25b) of said electrical conversion module, said electrical conversion module comprising at least one capacitor (54,60) connected in said upper electrical link or in said lower electrical link.
6. Convertisseur de tension selon l’une quelconque des revendications 1 à 4, dans lequel au moins un des premier et second modules de conversion électrique (22,24) comprend une branche secondaire (62,64), s’étendant entre les première (22a, 24a) et seconde (22b, 24b) bornes continues dudit module de conversion électrique, et dans laquelle sont connectés en série une chaîne de sous-modules (SM) comprenant une pluralité de sous- modules commandables, et un pont en H (66,68) comprenant une première sous-branche (66a, 68a) dans laquelle sont connectés deux interrupteurs (70) et une seconde sous-branche (66b, 68b), connectée en parallèle de la première sous-branche, et dans laquelle sont connectés deux interrupteurs (70), les première (23a, 25a) et seconde (23b, 25b) bornes alternatives dudit module de conversion électrique étant reliées électriquement respectivement à la première sous-branche et à la seconde sous-branche. 6. Voltage converter according to any one of claims 1 to 4, wherein at least one of the first and second electrical conversion modules (22,24) comprises a secondary branch (62,64), extending between the first (22a, 24a) and second (22b, 24b) continuous terminals of said electrical conversion module, and in which are connected in series a chain of submodules (SM) comprising a plurality of controllable submodules, and an H-bridge (66,68) comprising a first sub-branch (66a, 68a) in which are connected two switches (70) and a second sub-branch (66b, 68b), connected in parallel with the first sub-branch, and in which two switches (70) are connected, the first (23a, 25a) and second (23b, 25b) alternating terminals of said electrical conversion module being electrically connected respectively to the first sub-branch and to the second sub-branch.
7. Convertisseur de tension selon l’une quelconque des revendications 1 à 6, dans lequel les sous-modules (SM) des chaînes de sous-modules des premier et second modules de conversion électrique (22,24) présentent une topologie en demi-pont ou une topologie en pont complet. 7. Voltage converter according to any one of claims 1 to 6, wherein the submodules (SM) of the submodule strings of the first and second electrical conversion modules (22,24) have a topology in half. bridge or a full bridge topology.
8. Convertisseur de tension selon l’une quelconque des revendications 3 à 7, comprenant en outre un module de démarrage (90) configuré pour charger les condensateurs (CSM) des sous-modules (SM) des premier et second modules de conversion électrique (22,24), lorsqu’il est placé dans un premier état. 8. A voltage converter according to any one of claims 3 to 7, further comprising a starter module (90) configured to charge the capacitors (CSM) of the submodules (SM) of the first and second electrical conversion modules ( 22,24), when it is placed in a first state.
9. Convertisseur de tension selon l’une quelconque des revendications 1 à 8, dans lequel ledit convertisseur de tension (10) comprend uniquement deux enroulements primaires (41 a, 42a) et deux enroulements secondaires (41 b, 42b). 9. A voltage converter according to any one of claims 1 to 8, wherein said voltage converter (10) comprises only two primary windings (41a, 42a) and two secondary windings (41b, 42b).
10. Convertisseur de tension selon l’une quelconque des revendications 1 à 9, dans lequel le dispositif de transformation d’énergie électrique (40) comprend un unique transformateur comprenant lesdits premier et second enroulements primaires (41 a, 42a) ainsi que lesdits premier et second enroulements secondaires (41 b, 42b). 10. A voltage converter according to any one of claims 1 to 9, wherein the device for transforming electrical energy (40) comprises a single transformer comprising said first and second. primary windings (41 a, 42a) as well as said first and second secondary windings (41 b, 42b).
11.Convertisseur de tension selon l’une quelconque des revendications 1 à 9, dans lequel le dispositif de transformation d’énergie électrique (40) comprend : un premier transformateur comprenant le premier enroulement primaire (41a) et le premier enroulement secondaire (41b) ; et un second transformateur comprenant le second enroulement primaire (42a) et le second enroulement secondaire (42b). 11. A voltage converter according to any one of claims 1 to 9, wherein the device for transforming electrical energy (40) comprises: a first transformer comprising the first primary winding (41a) and the first secondary winding (41b) ; and a second transformer comprising the second primary winding (42a) and the second secondary winding (42b).
12. Convertisseur de tension selon l’une quelconque des revendications 1 à 11 , comprenant au moins un module de filtrage (80) connecté en série avec le bras (20) et configuré pour limiter la composante alternative d’un courant (IDC) circulant dans ledit bras. 12. Voltage converter according to any one of claims 1 to 11, comprising at least one filter module (80) connected in series with the arm (20) and configured to limit the AC component of a current (IDC) flowing. in said arm.
13. Convertisseur de tension selon la revendication 12, dans lequel le module de filtrage (80) comprend au moins un composant passif et/ou un composant actif. 13. Voltage converter according to claim 12, in which the filtering module (80) comprises at least one passive component and / or one active component.
14. Convertisseur de tension selon la revendication 12 ou 13, dans lequel le module de filtrage (80) comprend une chaîne de sous-modules supplémentaire comprenant une pluralité de sous-modules (SM) commandables individuellement par un organe de commande propre à chaque sous-module et chaque sous-module de ladite chaîne de sous- modules supplémentaire comprenant au moins un condensateur connectable en série avec le bras (20) lorsque l’organe de commande du sous-module est dans un premier état. 14. Voltage converter according to claim 12 or 13, wherein the filtering module (80) comprises an additional chain of sub-modules comprising a plurality of sub-modules (SM) individually controllable by a control member specific to each sub. -module and each submodule of said chain of additional submodules comprising at least one capacitor connectable in series with the arm (20) when the control member of the submodule is in a first state.
15. Installation de transport de courant continu haute tension (8) comprenant un réseau d’alimentation électrique continu (12), un réseau d’alimentation électrique alternatif (14) et un convertisseur de tension (10) selon l’une quelconque des revendications 1 à 14, ledit convertisseur de tension étant configuré pour connecter électriquement lesdits réseaux d’alimentation électrique alternatif et continu entre eux. 15. High voltage direct current transmission installation (8) comprising a direct electric power supply network (12), an alternating electric power supply network (14) and a voltage converter (10) according to any one of claims 1 to 14, said voltage converter being configured to electrically connect said AC and DC power supply networks to one another.
16. Procédé de contrôle d’un convertisseur de tension (10) permettant de convertir une tension alternative en une tension continue et inversement, le convertisseur de tension comprenant : des premier et second terminaux continus (16,18) configurés pour être reliés électriquement à un réseau d’alimentation électrique continu (12) ; des premier, deuxième et troisième terminaux alternatifs (30,32,34) configurés pour être reliés électriquement à un réseau d’alimentation électrique alternatif (14); un bras (20) s’étendant entre les premier et second terminaux continus et comportant un premier module de conversion électrique (22) et un second module de conversion électrique (24) connectés en série dans ledit bras ou en parallèle l’un par rapport à l’autre, les premier et second modules de conversion électrique présentant chacun une première borne continue (22a, 24a) et une seconde borne continue (22b, 24b) entre lesquelles il s’étend, ainsi qu’une première borne alternative (23a, 25a) et une seconde borne alternative (23b, 25b); un dispositif de transformation d’énergie électrique (40) comportant un premier enroulement primaire (41a) connecté entre les premier et deuxième terminaux alternatifs et un second enroulement primaire (42a) connecté entre les deuxième et troisième terminaux alternatifs, le dispositif de transformation d’énergie électrique comportant en outre un premier enroulement secondaire (41a) connecté entre les première et seconde bornes alternatives (23a, 23b) du premier module de conversion électrique et un second enroulement secondaire (42b) connecté entre les première et seconde bornes alternatives (25a, 25b) du second module de conversion électrique, le convertisseur de tension comprenant uniquement deux modules de conversion électrique, le procédé comprenant les étapes selon lesquelles : on génère un premier courant alternatif (h) contrôlable circulant dans le premier enroulement secondaire, à l’aide du premier module de conversion électrique ; on génère un second courant alternatif ( ) contrôlable circulant dans le second enroulement secondaire, à l’aide du second module de conversion électrique ; on contrôle les premier et second modules de conversion électrique de sorte que le premier courant alternatif circulant dans le premier enroulement secondaire et le second courant alternatif circulant dans le second enroulement secondaire sont déphasés. 16. A method of controlling a voltage converter (10) making it possible to convert an alternating voltage into a direct voltage and vice versa, the voltage converter comprising: first and second DC terminals (16,18) configured to be electrically connected to a DC power supply network (12); first, second and third AC terminals (30,32,34) configured to be electrically connected to an AC power supply network (14); an arm (20) extending between the first and second DC terminals and having a first electrical conversion module (22) and a second electrical conversion module (24) connected in series in said arm or in parallel with each other to the other, the first and second electrical conversion modules each having a first DC terminal (22a, 24a) and a second DC terminal (22b, 24b) between which it extends, as well as a first AC terminal (23a , 25a) and a second alternating terminal (23b, 25b); an electrical energy transforming device (40) comprising a first primary winding (41a) connected between the first and second alternating terminals and a second primary winding (42a) connected between the second and third alternating terminals, the transforming device of electrical power further comprising a first secondary winding (41a) connected between the first and second AC terminals (23a, 23b) of the first electrical conversion module and a second secondary winding (42b) connected between the first and second AC terminals (25a, 25b) of the second electrical conversion module, the voltage converter comprising only two electrical conversion modules, the method comprising the steps of: generating a first controllable alternating current (h) flowing in the first secondary winding, using the first electrical conversion module; generating a second controllable alternating current () flowing in the second secondary winding, using the second electrical conversion module; the first and second electrical conversion modules are controlled so that the first alternating current flowing in the first secondary winding and the second alternating current flowing in the second secondary winding are out of phase.
7. Procédé de contrôle selon la revendication 16, dans lequel on contrôle les premier et second modules de conversion électrique (22,24) de sorte que le premier courant alternatif (h) circulant dans le premier enroulement secondaire (41b) et le second courant alternatif (I2) circulant dans le second enroulement secondaire (42b) sont déphasés d’un angle compris entre 55° et 65°, de préférence d’un angle sensiblement égal à 60°. 7. The control method according to claim 16, wherein the first and second electrical conversion modules (22,24) are controlled so that the first alternating current (h) flowing in the first secondary winding (41b) and the second current AC (I2) circulating in the second secondary winding (42b) are phase-shifted by an angle between 55 ° and 65 °, preferably by an angle substantially equal to 60 °.
PCT/EP2021/066000 2020-06-29 2021-06-14 Three-phase ac/dc voltage converter with only two electrical conversion modules WO2022002573A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21731198.4A EP4173128A1 (en) 2020-06-29 2021-06-14 Three-phase ac/dc voltage converter with only two electrical conversion modules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2006806 2020-06-29
FR2006806A FR3112042B1 (en) 2020-06-29 2020-06-29 Three-phase AC/DC voltage converter including only two electrical conversion modules

Publications (1)

Publication Number Publication Date
WO2022002573A1 true WO2022002573A1 (en) 2022-01-06

Family

ID=72801638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/066000 WO2022002573A1 (en) 2020-06-29 2021-06-14 Three-phase ac/dc voltage converter with only two electrical conversion modules

Country Status (3)

Country Link
EP (1) EP4173128A1 (en)
FR (1) FR3112042B1 (en)
WO (1) WO2022002573A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2569858A1 (en) 2010-05-11 2013-03-20 ABB Research Ltd. An ac/dc converter
EP3096446A1 (en) * 2015-05-22 2016-11-23 General Electric Technology GmbH A method of controlling a converter
EP3361619A1 (en) * 2017-02-09 2018-08-15 General Electric Technology GmbH Voltage source converter
WO2020011339A1 (en) * 2018-07-10 2020-01-16 Siemens Aktiengesellschaft Apparatus and method for supplying power to a high-performance load

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2569858A1 (en) 2010-05-11 2013-03-20 ABB Research Ltd. An ac/dc converter
EP3096446A1 (en) * 2015-05-22 2016-11-23 General Electric Technology GmbH A method of controlling a converter
EP3361619A1 (en) * 2017-02-09 2018-08-15 General Electric Technology GmbH Voltage source converter
WO2020011339A1 (en) * 2018-07-10 2020-01-16 Siemens Aktiengesellschaft Apparatus and method for supplying power to a high-performance load

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AMANKWAH EMMANUEL ET AL: "The Series Bridge Converter (SBC): A hybrid modular multilevel converter for HVDC applications", 2016 18TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE'16 ECCE EUROPE), JOINTLY OWNED BY IEEE-PELS AND EPE ASSOCIATION, 5 September 2016 (2016-09-05), pages 1 - 9, XP032985078, DOI: 10.1109/EPE.2016.7695361 *
SHI XIAOJIE ET AL: "Startup schemes for modular multilevel converter under different load conditions", 2015 IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION (APEC), IEEE, 15 March 2015 (2015-03-15), pages 2174 - 2180, XP032775189, DOI: 10.1109/APEC.2015.7104650 *
STEFAN MILOVANOVI ET AL: "MMC-based High Power DC-DC Converter Employing Scott Transformer", 5 June 2018 (2018-06-05), XP055565499, Retrieved from the Internet <URL:https://ieeexplore.ieee.org/ielx7/8402798/8402799/08402846.pdf?tp=&arnumber=8402846&isnumber=8402799> [retrieved on 20190306] *
TANTA MOHAMED ET AL: "Simplified rail power conditioner based on a half-bridge indirect AC/DC/AC Modular Multilevel Converter and a V/V power transformer", IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, IEEE, 29 October 2017 (2017-10-29), pages 6431 - 6436, XP033277007, DOI: 10.1109/IECON.2017.8217120 *

Also Published As

Publication number Publication date
EP4173128A1 (en) 2023-05-03
FR3112042B1 (en) 2023-10-27
FR3112042A1 (en) 2021-12-31

Similar Documents

Publication Publication Date Title
FR2888396A1 (en) METHOD AND DEVICE FOR SUPPLYING A MAGNETIC COUPLER
FR2990309A1 (en) DEVICE FOR NON-LINEAR CONTROL OF DC / DC CONVERTER FOR APPLICATION TO HVDC CURRENT TRANSPORT.
WO1993002501A1 (en) Electronic device for converting electrical energy
FR3019699A1 (en) MULTI-LEVEL POWER CONVERTER
EP3939152A1 (en) Isolated and reconfigurable power converter
EP2562903B1 (en) Reactive power compensator comprising N inverters in parallel, N banks of capacitor(s) and a means for connecting the banks via passive electrical components
CA3041876A1 (en) Isolated and bidirectional dc dc converter with hybrid control
EP3075059B1 (en) Device and method for dc/dc reversible conversion allowing an exchange of energy between two dc electric networks
EP4173128A1 (en) Three-phase ac/dc voltage converter with only two electrical conversion modules
FR3059855B1 (en) DC / DC CONVERTER FOR ELECTRICAL NETWORKS
WO2018202353A1 (en) Optimizing shared-bus photovoltaic chains
WO2021259624A1 (en) Dc/dc voltage converter comprising an upper module and a lower module
FR3096848A1 (en) AC / DC voltage converter including a transformer
FR3096849A1 (en) DC / DC voltage converter including a transformer
FR3096846A1 (en) Connection device for HVDC networks
WO2019016449A1 (en) Power flow control device for controlling the distribution of currents in a mesh network
FR3122296A1 (en) Non-isolated DC/DC voltage converter
WO2023232671A1 (en) Electrical system comprising three electrical converters
FR2970127A1 (en) HIGH POWER RECTIFIER WITH LOW IMBALANCE
FR3131131A1 (en) Conversion module comprising an electrical energy recovery circuit
WO2017081386A1 (en) Reversible dc voltage energy conversion device
FR3089361A1 (en) Alternating arm converter current source, power conversion system and method for controlling such a converter
WO2021122187A1 (en) Dc/dc voltage converter provided with a circuit-breaker device
EP2683070B1 (en) Modular power conversion system based on an asymmetrical bridge with primary isolation diode and multiple syitches.
FR3087054A1 (en) MULTI-LEVEL MODULAR VOLTAGE CONVERTER FOR MANAGING AN INSULATION FAULT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21731198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021731198

Country of ref document: EP

Effective date: 20230130