WO2022002407A1 - Measuring an no concentration in a gas mixture containing at least one interfering gas component - Google Patents

Measuring an no concentration in a gas mixture containing at least one interfering gas component Download PDF

Info

Publication number
WO2022002407A1
WO2022002407A1 PCT/EP2020/068681 EP2020068681W WO2022002407A1 WO 2022002407 A1 WO2022002407 A1 WO 2022002407A1 EP 2020068681 W EP2020068681 W EP 2020068681W WO 2022002407 A1 WO2022002407 A1 WO 2022002407A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
radiation
concentration
detector
gas
Prior art date
Application number
PCT/EP2020/068681
Other languages
German (de)
French (fr)
Inventor
Gerhard Wiegleb
Sebastian WIEGLEB
Original Assignee
Wi.Tec-Sensorik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wi.Tec-Sensorik GmbH filed Critical Wi.Tec-Sensorik GmbH
Priority to PCT/EP2020/068681 priority Critical patent/WO2022002407A1/en
Publication of WO2022002407A1 publication Critical patent/WO2022002407A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • G01N21/3518Devices using gas filter correlation techniques; Devices using gas pressure modulation techniques
    • G01N2021/3527Devices using gas filter correlation techniques; Devices using gas pressure modulation techniques and using one filter cell as attenuator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention relates to a device for measuring an NO concentration in a gas mixture containing at least one interfering gas component, having at least one measuring chamber receiving the gas mixture and at least one optoelectronic measuring arrangement for measuring the NO concentration, the measuring arrangement being set up, the measuring chamber To measure the NO concentration with a suitable UV radiation and to detect the UV radiation emerging from the measuring chamber, and wherein the measuring arrangement for generating the UV radiation has at least one UV light emitting diode.
  • the invention also relates to a method for measuring an NO concentration in a gas mixture containing at least one interfering gas component, the gas mixture being introduced into a measuring chamber, the measuring chamber filled with the gas mixture for measuring the NO concentration with UV radiation suitable for this purpose is transilluminated and the UV radiation emerging from the measuring chamber is detected.
  • Combustion exhaust gases are generated during combustion processes in systems and machines, which as a rule, due to legal requirements, are not allowed to get into the vicinity of a system or machine untreated.
  • its combustion exhaust gases can be analyzed, whereby a concentration of at least one specific gaseous pollutant in the combustion exhaust gases can be determined.
  • the concentration is measured by nondispersive radiation absorption in the infrared (NDIR) or ultraviolet spectral range (NDUV).
  • NDIR infrared
  • NDUV ultraviolet spectral range
  • a special electrodeless gas discharge lamp (EDL) is used as the radiation source for this application.
  • a lamp body of the EDL is filled with an oxygen-nitrogen mixture and is ignited by an inductive high-frequency excitation and then emits selective radiation that is absorbed by NO. This radiation is in resonance with the spectral absorption of the NO.
  • EDL electrodeless gas discharge lamp
  • UV light-emitting diodes have also been discussed for some time as an alternative to gas discharge lamps.
  • the first test set-ups are available. UV light-emitting diodes are very suitable for use in measuring SO 2 and NO 2 , since the bandwidth of the emission of a UV light-emitting diode is smaller than the bandwidth of the absorption band of SO 2 or NO 2 . This results in a large measuring effect due to the total absorption of radiation.
  • One object of the invention is to reduce cross-sensitivities of a measurement of an NO concentration in a gas mixture containing at least one interfering gas component.
  • a device for measuring an NO concentration in a gas mixture containing at least one interfering gas component has at least one measuring chamber receiving the gas mixture and at least one optoelectronic measuring arrangement for measuring the NO concentration, the measuring arrangement being set up, the measuring chamber To measure the NO concentration with UV radiation suitable for this purpose and to detect the UV radiation emerging from the measuring chamber, the measuring arrangement having at least one UV light emitting diode for generating the UV radiation.
  • the device according to the invention has at least one reference measuring unit which is arranged downstream of the measuring chamber with regard to a radiation direction of the UV radiation illuminating the measuring chamber is arranged to be acted upon, at least one gas cell filled with NO, which is arranged to be transilluminated with a part of the UV radiation emanating from the beam splitter, and at least one reference detector, which is arranged to be acted upon by a UV radiation emerging from the gas cell.
  • a UV light-emitting diode is used to measure the NO concentration in the gas mixture and gas-specific filtering is carried out using the NO-filled gas cell in order to improve the sensitivity of the measurement and at the same time reduce the cross-sensitivity of the measurement to the at least one interfering gas component .
  • an interfering gas component is understood to be a gas component of the gas mixture which interferes with the measurement of the NO concentration in the gas mixture. This interference is caused by an overlap of the absorption spectrum of NO with the absorption spectrum of the at least one interfering component, which leads to an interfering cross-sensitivity of the NO concentration measurement to the interfering component.
  • the gas mixture can, for example, be an exhaust gas from an internal combustion engine of a motor vehicle, in particular a motor vehicle.
  • a number of different interfering gas components are usually present in such an exhaust gas, such as, for example, SO 2 , NO 2 , unburned hydrocarbons, which interfere with an NO concentration measurement in a similar way to SO 2 and NO 2 , and the like.
  • the UV radiation emanating from the beam splitter passes through the gas cell filled with NO, all of the UV radiation within the NO band is absorbed. Only the wavelength edge areas of the UV radiation from the UV light-emitting diode are let through by the gas cell filled with NO and hit the reference detector, which detects this transmitted UV radiation as reference radiation. These wavelength edge regions of the UV radiation are absorbed by the at least one interfering gas component present in the measurement gas that is present in the measurement chamber, which leads to a weakening of the UV radiation at the reference detector.
  • This weakening of the UV radiation also occurs in the same way on a measuring detector of the measuring arrangement on which a further part of the UV radiation emanating from the beam splitter impinges, so that this influencing effect (weakening) when a difference is formed and a subsequent one Quotient formation can be eliminated in evaluation electronics or in software executed with it. Overall, this reduces the cross-sensitivities of the measurement of the NO concentration in a gas mixture containing the at least one interfering gas component.
  • the measuring arrangement can be designed as a photometer or have one.
  • the measuring chamber can be designed as a gas cuvette or measuring cuvette which can be transilluminated in the longitudinal direction with electromagnetic radiation in the form of UV radiation by means of at least one radiation source of the measuring arrangement.
  • the device can have at least one gas supply device connected to the measuring chamber, which is set up to supply the measuring chamber with the gas mixture.
  • the gas supply device can communicate with at least one Have gas supply line connected to the measuring chamber and at least one gas discharge line communicating with the measuring chamber.
  • Closing valves can be arranged on these lines, which can be closed after the measuring chamber has been flushed out with the gas mixture in order to have and measure static gas component concentration values, in particular a static NO concentration value, in the measuring chamber.
  • the closing valves can be open or not present, so that the gas mixture flows continuously and evenly through the measuring chamber during the measurement of the respective gas component concentration, in particular NO concentration, whereby dynamic gas component concentration values, in particular a dynamic NO concentration value , exist and can be measured.
  • the UV light emitting diode can be designed as an SMD module or as a microchip.
  • the UV light-emitting diode is preferably arranged in the area of the optical axis of the measuring arrangement, as a result of which the optical imaging is simplified or more efficient.
  • Reference values in particular reference voltage values U Ref.
  • U Ref. can be generated by means of the reference measuring unit.
  • measured values in particular measured voltage values U Mess.
  • These detectors each record an integral value of the radiation power P of the UV light-emitting diode.
  • the detectors can output the reference values or measured values via a preamplifier, which can also be part of the device.
  • the voltage values U Ref. And U Mess. can be in a range around 1 volt.
  • the beam splitter of the reference measuring unit can have a splitting ratio of 50:50, so that 50% of the UV radiation emerging from the measuring chamber reaches the gas cell filled with NO and 50% of this UV radiation reaches the measuring detector of the measuring arrangement.
  • the gas cell of the reference measuring unit filled with NO can be designed as a gas cuvette or measuring cuvette which can be transilluminated with the part of the UV radiation emerging from the measuring chamber from the beam splitter.
  • the measuring arrangement can additionally have at least one reference measuring device upstream of the measuring chamber, which has at least one beam splitter and at least one reference detector to which UV radiation emanating from the beam splitter can be applied in order to carry out a reference measurement.
  • the beam splitter of the reference measuring device can be designed and arranged in such a way that it decouples 10% of the UV radiation incident on it and uses it to act on the reference detector of the reference measuring device. In order to detect lower gas component concentrations, in particular NO concentrations, it is necessary to obtain a very good signal stability at the zero point.
  • the upstream reference measurement device By using the upstream reference measurement device and a comparison of the measurement signals from the upstream reference measurement device with measurement signals from the measurement detector of the measurement arrangement downstream of the measurement chamber, additional information is obtained about the contamination status of the interior of the measurement chamber. These changes in the measuring chamber can lead to an undesirable zero point drift, which must be prevented.
  • the use of the upstream reference measuring device thus creates an improvement in the zero point stability of the gas component concentration measurement, in particular also of the NO concentration measurement.
  • the device according to the invention can be used, for example, to analyze a combustion exhaust gas from a system or machine or in pollutant emission measurement technology.
  • the device according to the invention can be used for measuring an NO concentration in an exhaust gas of an internal combustion engine of a motor vehicle, in particular a motor vehicle.
  • the device has at least one evaluation electronics connected to the measuring arrangement, which are set up, when a zero gas is present in the measuring chamber, measured values of the reference detector and measured values of a measuring detector of the measuring arrangement, which is connected to a further part extending from the beam splitter the UV radiation is arranged to be acted upon, to detect and store, to record measured values of the reference detector and measured values of a measuring detector when the gas mixture is present in the measuring chamber, normalized measured values each as a quotient of a currently recorded measured value of the measuring detector and the stored measured value of the measurement detector, to determine normalized reference values in each case as a quotient of a currently detected measurement value of the reference detector and the stored measurement value of the reference detector, modulation values in each case by Dividing a difference between the respective normalized reference value of the reference detector and the respective normalized measured value of the measuring detector by the respective normalized reference value of the reference detector to determine a modulation function that depends on the NO concentration from the modulation values, an NO con- to determine the
  • the zero gas is first introduced into the measurement chamber and x-rayed.
  • the zero gas can be nitrogen or room air, for example.
  • the zero gas does not cause any weakening of the UV radiation of the UV light-emitting diode in the measuring channel by NO and the at least one interfering gas component.
  • the reference measuring unit can be used to generate a reference voltage value U Ref . can be generated. After these voltage values have stabilized, they can be accepted and stored as values U * Ref or U * Mess , for example in a microcontroller of the device. Then the measurement signals or voltage values recorded in the following are divided by the assigned stored voltage value U * so that a normalized measured value or normalized reference value of “1” is available immediately after this zeroing.
  • U * the measurement signals or voltage values recorded in the following are divided by the assigned stored voltage value U * so that a normalized measured value or normalized reference value of “1” is available immediately after this zeroing.
  • modulation values are included in the calculation of modulation values as follows: This value is equal to 0 after zeroing. If the value U Mess changes. as a result of an increasing NO concentration, the modulation value increases.
  • the modulation value is always between 0 and 1 and satisfies a modulation function Mod (c) of the NO concentration c in the gas mixture.
  • the NO concentration c can then be calculated from this modulation function by forming the inverse function of Mod (c).
  • This function is then given by a higher degree polynomial approximated, whose coefficients a-1, ..., a n are stored and are available for the NO concentration calculation using this polynomial.
  • the calculated concentration c (Mod) will thus also be equal to 0 after zeroing, since the modulation Mod (c) is then equal to 0.
  • the UV light-emitting diode is arranged on a metal core circuit board. This allows the thermal power loss of the UV light emitting diode to be dissipated better and faster by the UV light emitting diode, which extends the service life of the UV light emitting diode and enables the radiation characteristics of the UV light emitting diode to be affected as little as possible by temperature fluctuations in the UV light emitting diode. is pregnant.
  • At least one Peltier element is arranged on the metal core circuit board.
  • the Peltier element can be arranged, for example, on one side of the metal core circuit board which is opposite that side of the metal core circuit board on which the UV light-emitting diode is arranged.
  • the UV light-emitting diode can be kept at a constant temperature by means of the Peltier element.
  • the device has at least one temperature sensor which is arranged to measure a temperature of the UV light-emitting diode.
  • the temperature sensor for example a platinum temperature sensor, which has a nominal resistance of 100 ohms at a temperature of 0 ° C., can also be arranged on the metal core circuit board.
  • the temperature sensor is preferably arranged in the immediate vicinity of the UV light-emitting diode.
  • the Peltier element can be controlled by means of the temperature information from the temperature sensor in order to keep the UV light-emitting diode at a constant temperature.
  • the measuring arrangement has at least one further UV light-emitting diode for generating UV radiation with which the measuring chamber can be transilluminated and which has a measuring wavelength that corresponds to a wavelength of a maximum of an absorption band specific for the interfering gas component.
  • the measuring arrangement can also have two further UV light emitting diodes, for example a UV light emitting diode for measuring an SO 2 concentration and a UV light emitting diode for measuring the NO 2 concentration in the gas mixture.
  • a measuring detector of the measuring arrangement can be set up to detect the various UV rays. Alternatively, the measuring arrangement can have its own measuring detector for each UV radiation.
  • the at least one further UV light-emitting diode can be designed as an SMD module or as a microchip.
  • the UV light-emitting diodes are preferably arranged as close to one another as possible, preferably in the area of the optical axis of the measuring arrangement. This simplifies or makes the optical imaging more efficient.
  • the above-mentioned reference measurement using the reference measuring device upstream of the measuring chamber is advantageous, in particular to be able to compensate for contamination of the measuring chamber when determining the concentration of the interfering gas component in the gas mixture.
  • all UV light-emitting diodes are arranged on the metal core circuit board.
  • the gas mixture is introduced into a measuring chamber which illuminates the measuring chamber filled with the gas mixture for measuring the NO concentration with a suitable UV radiation which UV radiation emerging from the measuring chamber is detected, a gas cell filled with NO is illuminated with part of the UV radiation emerging from the measuring chamber and the UV radiation emerging from the gas cell is detected by means of a reference detector.
  • the device when a zero gas is present in the measuring chamber, measuring signals from the reference detector and measuring signals from a measuring detector that can be acted upon by a further part of the UV radiation emerging from the measuring chamber are electronically recorded and stored; when the gas mixture is present in the measuring chamber, measured values from the reference detector and measured values are recorded of a measuring detector, normalized measured values are determined as a quotient of a currently recorded measured value of the measuring detector and the stored measured value of the measuring detector, normalized reference values are each determined as the quotient of a currently recorded measured value of the reference detector and the stored measured value of the reference - Detector determined, modulation values are each divided by dividing a difference between the respective normalized reference value of the reference detector and the respective normalized measured value of the measuring detector by the respective Determine
  • FIG. 2 shows an enlargement of the spectral range from FIG. 1 in the region of the absorption band of nitrogen monoxide
  • FIG. 3 shows a schematic representation of an exemplary embodiment for a device according to the invention
  • FIG. 4 shows a schematic representation of a detail of the device shown in FIG. 3;
  • FIG. 5 shows an exemplary spectral distribution of a UV radiation emitted by a UV light-emitting diode which can be used for measuring the NO concentration
  • FIG. 7 shows diagrams of an exemplary embodiment for a modulation function Mod (c) and an NO concentration function c (M).
  • FIG. 1 shows a spectrum of absorption spectra of SO 2 (graph 1), NO (graph 2) and NO 2 (graph 3) recorded in transmission.
  • the radiation intensity T, measured in transmission, of an electromagnetic radiation guided through a gas mixture is plotted in% against the wavelength l of the electromagnetic radiation in nm, the gas mixture containing the interfering gas components SO 2 and NO 2 .
  • 226 nm
  • FIG 3 shows a schematic representation of an exemplary embodiment for a device 8 according to the invention for measuring an NO concentration in a gas mixture containing the interfering gas components SO 2 and NO 2.
  • the device 8 has a measuring chamber 9 that receives the gas mixture and has a gas inlet 10 and a gas outlet 11.
  • the measuring chamber 9 is designed as a measuring cuvette with a hollow cylindrical jacket 12 and radiation-permeable end windows 13 and 14.
  • the device 8 has an optoelectronic measuring arrangement 15 for measuring the NO concentration.
  • the measuring arrangement 15 is set up to illuminate the measuring chamber 9 for measuring the NO concentration with UV radiation suitable for this purpose and to detect the UV radiation emerging from the measuring chamber 9.
  • the measuring arrangement 15 has a UV light-emitting diode, not shown in FIG. 3, for generating the UV radiation corresponding to the radiation spectrum 4 from FIGS. 1 and 2, a UV light-emitting diode, not shown in FIG. 3, for generating the UV radiation corresponding to the radiation spectrum 5 from FIGS. 1 and 2 and a UV light-emitting diode, not shown in FIG. 3, for generating the UV radiation corresponding to the radiation spectrum 6 from FIGS. 1 and 2 on.
  • These UV light-emitting diodes are arranged on a front side of a metal core printed circuit board 16, on the rear side of which a Peltier element 17 is arranged, on which in turn a cooling rib structure 18 is arranged.
  • a temperature sensor 19 for measuring the temperature of the UV light-emitting diodes is also arranged on the front side of the metal core circuit board 16.
  • the UV light-emitting diodes and their arrangement on the metal circuit board 16 is shown in FIG. 4.
  • the device 8 has evaluation electronics, not shown, connected to the measuring arrangement 15, which are connected to the temperature sensor 19 and the Peltier element 17 in order to be able to keep the temperature of the UV light-emitting diodes constant by dissipating heat.
  • the evaluation electronics are connected to the UV light-emitting diodes in order to be able to control them in phase opposition or to activate and deactivate them, as is indicated by the two control signal curves 20 and 21.
  • the UV light-emitting diodes are activated sequentially. After a first control cycle [1 -2-3-4] there is a dark phase [0] in order to be able to detect a zero point of a detector / amplifier unit.
  • the measuring arrangement 15 also has a collecting lens 22 which collects the UV radiation emanating from the UV light-emitting diodes and directs it onto a beam splitter 23 of the measuring arrangement 15. Part of the UV radiation impinging on the beam splitter 23 is decoupled by means of the beam splitter 23 and directed onto a reference detector 25 of the measuring arrangement 15 by means of a further converging lens 24 of the measuring arrangement 15. The other part of the UV radiation striking the beam splitter 23 passes through the measuring chamber 9.
  • the UV radiation After exiting the measuring chamber 9, the UV radiation is directed onto a beam splitter 27 of a reference measuring unit 28 of the device 8 by means of a further collecting lens 26 of the measuring arrangement 15.
  • the reference measuring unit 28 is arranged downstream of the measuring chamber 9 with regard to a direction of radiation of the UV radiation transilluminating the measuring chamber 9.
  • the other part of the UV radiation impinging on the beam splitter 27 is decoupled by means of the beam splitter 27 and directed onto a gas cell 30 of the reference measuring unit 28 filled with NO.
  • the gas cell 30 is permeable to radiation and arranged to be transilluminatable with the part of the UV radiation proceeding from the beam splitter 27. To this end, the gas cell 30 has radiation-permeable windows 31 and 31 at the end
  • the reference measuring unit 28 also has a reference detector 33, which is arranged so that it can be acted upon by UV radiation emerging from the gas cell 30.
  • the evaluation electronics are set up to record and store measurement signals from reference detector 33 and measurement signals from measurement detector 29 of measurement arrangement 15 when a zero gas is present in measurement chamber 9. Furthermore, the evaluation electronics are set up to record measured values from the reference detector 33 and measured values from a measurement detector 29 when the gas mixture is present in the measuring chamber 9. In addition, the evaluation electronics are set up to determine normalized measured values as the quotient of a currently recorded measured value of the measurement detector 29 and the stored measured value of the measurement detector 29 and normalized reference values as a quotient of a currently recorded measured value of the reference detector 33 and the stored measured value of the reference detector 33 to be determined. Furthermore, the evaluation electronics are set up, modulation values in each case by dividing a difference between the respective normalized reference value of the reference detector 33 and the respective normalized measured value of the measuring detector 29 by the respective normalized reference value of the reference detector
  • the evaluation electronics are set up to determine a modulation function dependent on the NO concentration from the modulation values, to determine an NO concentration function by inversion of the modulation function, to approximate a polynomial of degree> 2 to the NO concentration function, the coefficients of the poly - To store noms and to determine the NO concentration in the gas mixture using the coefficients of the polynomial.
  • FIG. 4 shows a schematic representation of a detail of the device 8 shown in FIG. 3.
  • the front side of the metal core circuit board 16 is shown, on which four UV light-emitting diodes
  • the UV light-emitting diodes 34 to 37 and the temperature sensor 19 are arranged.
  • the UV light-emitting diodes 34 to 37 are arranged close to one another and in the area of the optical axis of the measuring arrangement (not shown).
  • the UV light-emitting diodes 34 to 37 each generate UV radiation, as shown in FIGS. 1 and 2 are shown, which is indicated by the wavelengths li, l2, fo and l4.
  • the UV light-emitting diode 34 is used to generate UV radiation with which the measuring chamber shown in FIG. 3 can be transilluminated and which has a measuring wavelength li which corresponds to a wavelength of a maximum of an absorption band specific for NO.
  • the UV light-emitting diode 35 is used to generate UV radiation with which the measuring chamber shown in FIG.
  • the UV light emitting diode 36 is used to generate a UV reference radiation with which the measuring chamber shown in FIG. 3 can be transilluminated and which has a measuring wavelength ⁇ 2 .
  • the UV light emitting diode 37 is used to generate UV radiation with which the measuring chamber shown in FIG. 3 can be transilluminated and which has a measuring wavelength ⁇ 4 which corresponds to a wavelength of a maximum of an absorption band specific for NO 2.
  • FIG. 5 shows an exemplary spectral distribution of a UV radiation emitted by a UV light-emitting diode which can be used for measuring the NO concentration.
  • the optical radiation power P ( ⁇ ) in mW is plotted against the wavelength l in nm.
  • the optical radiation power P ( ⁇ ) is identical to the radiation flux ⁇ .
  • the detectors of the device not shown in FIG The absorption of radiation in the measuring chamber by NO 2 , SO 2 and NO, the intensity Io of the UV radiation of the UV light-emitting diodes is weakened according to the Lambert-Beer law:
  • 1 (c) is an intensity (W / m 2 ) impinging on the detector surface of the respective detector
  • ⁇ ( ⁇ ) is a wavelength-dependent absorption coefficient of the respective gas component in the measuring chamber
  • c is a concentration of the respective gas component in the measuring chamber
  • L is the length of the distance covered by the UV radiation through the gas mixture in the measuring chamber.
  • ⁇ 1.1 , ⁇ 1.2 , ⁇ 1.3 and ⁇ 1.4 are the absorption coefficients of NO 2 at the wavelength ⁇ 1 , ⁇ 2 , ⁇ 3 and ⁇ 4
  • ⁇ 2.1 , ⁇ 2.2 and ⁇ 2.3 are the absorption coefficients of SO 2 at the wavelength ⁇ 1 , ⁇ 2 and ⁇ 3, respectively.
  • ⁇ NO is the absorption coefficient of NO at wavelength ⁇ 1
  • O NO (2) is the absorption coefficient of NO at wavelength ⁇ 2
  • Ci is the concentration of NO 2
  • C 2 is the concentration of SO 2
  • C NO is the The concentration of NO and L is the length of the distance covered by the UV radiation through the gas mixture in the measuring chamber.
  • the irradiance E Ref which can be detected with the reference detector of the reference measuring device from FIG. 3 connected upstream of the measuring chamber.
  • the irradiance E Ref .5 which can be detected with the reference detector of the reference measuring unit from FIG. 3 connected downstream of the measuring chamber during the NO measurement corresponds to where LG is the length of the distance covered by the UV radiation through the NO gas in the gas cell 30. Since there is a very high NO concentration CNO.G in the gas cell, for example 100%, this integral radiation output changes only slightly due to the significantly lower NO concentration in the measuring chamber, so that the factor versus the factor can be neglected.
  • the measured irradiance E of the different detectors can be normalized and offset by forming a quotient. This measure compensates for the signal change in the NO gas concentration CNO to be measured in the presence of NO 2 and SO 2.
  • the spectral distributions B result when a gas mixture with a certain NO concentration, but without SO 2 and without NO 2, is in the measuring chamber. There is now a weakening of the UV radiation in the measuring channel MK. The change in the radiation absorption responsible for this weakening is proportional (Lambert-Beer’s law) to the NO concentration in the measuring chamber.
  • the spectral distributions C result when there is a gas mixture with NO, NO 2 and SO 2 in the measuring chamber. This results in radiation absorption in the reference channel RK and in the measurement channel MK both at lo by NO, NO 2 and SO 2 and radiation absorption in flanks of the UV radiation by NO 2 and SO 2 .
  • FIG. 7 shows diagrams of an exemplary embodiment for a modulation function Mod (c) and an exemplary embodiment for an NO concentration function c (Mod), which result when the device from FIGS. 3 and 4 can result.
  • the modulation function Mod (c) results from the modulation advertising calculation described above.
  • the modulation function Mod (c) is inverted to obtain the NO concentration function c (Mod). List of reference symbols

Abstract

The invention relates to a device (8) for measuring an NO concentration (cNO) in a gas mixture containing at least one interfering gas component, the device having at least one measuring chamber (9), which accommodates the gas mixture, and at least one optoelectronic measuring assembly (15) for measuring the NO concentration (cNO), the measuring assembly (15) being designed, in order to measure the NO concentration (cNO), to transilluminate the measuring chamber (9) with UV radiation suitable for this and to detect the UV radiation exiting the measuring chamber (9), the measuring assembly (15) having at least one UV light-emitting diode (34, 35, 36, 37) for generating the UV radiation. In order to reduce cross-sensitivities when measuring an NO concentration (cNO) in a gas mixture containing SO2 and/or NO2, the device (8) has at least one reference measuring unit (28), which is arranged downstream of the measuring chamber (9) with respect to a radiation direction of the UV radiation transilluminating the measuring chamber (9), the reference measuring unit (28) having: at least one beam splitter (27), which is arranged such that the UV radiation exiting the measuring chamber (9) can be incident upon it; at least one gas cell (30) which is filled with NO and is arranged such that it can be transilluminated with some of the UV radiation exiting the beam splitter (27); and at least one reference detector (33), which is arranged such that the UV radiation exiting the gas cell (30) can be incident upon it.

Description

Messen einer NO-Konzentration in einem wenigstens eine Störgaskomponente enthaltenden Gasgemisch Measuring a NO concentration in a gas mixture containing at least one interfering gas component
Technisches Gebiet Technical area
Die Erfindung betrifft eine Vorrichtung zum Messen einer NO-Konzentration in einem wenigs- tens eine Störgaskomponente enthaltenden Gasgemisch, aufweisend wenigstens eine das Gasgemisch aufnehmende Messkammer und wenigstens eine optoelektronische Messan- ordnung zum Messen der NO-Konzentration, wobei die Messanordnung eingerichtet ist, die Messkammer zum Messen der NO-Konzentration mit einer hierzu geeigneten UV-Strahlung zu durchleuchten und die aus der Messkammer austretende UV-Strahlung zu detektieren, und wobei die Messanordnung zur Erzeugung der UV-Strahlung wenigstens eine UV-Leucht- diode aufweist. The invention relates to a device for measuring an NO concentration in a gas mixture containing at least one interfering gas component, having at least one measuring chamber receiving the gas mixture and at least one optoelectronic measuring arrangement for measuring the NO concentration, the measuring arrangement being set up, the measuring chamber To measure the NO concentration with a suitable UV radiation and to detect the UV radiation emerging from the measuring chamber, and wherein the measuring arrangement for generating the UV radiation has at least one UV light emitting diode.
Zudem betrifft die Erfindung ein Verfahren zum Messen einer NO-Konzentration in einem wenigstens eine Störgaskomponente enthaltenden Gasgemisch, wobei das Gasgemisch in eine Messkammer eingeführt wird, die mit dem Gasgemisch gefüllte Messkammer zum Mes- sen der NO-Konzentration mit einer hierzu geeigneten UV-Strahlung durchleuchtet wird und die aus der Messkammer austretende UV-Strahlung detektiert wird. The invention also relates to a method for measuring an NO concentration in a gas mixture containing at least one interfering gas component, the gas mixture being introduced into a measuring chamber, the measuring chamber filled with the gas mixture for measuring the NO concentration with UV radiation suitable for this purpose is transilluminated and the UV radiation emerging from the measuring chamber is detected.
Stand der Technik State of the art
Bei Verbrennungsvorgängen in Anlagen und Maschinen werden Verbrennungsabgase er- zeugt, die in der Regel aufgrund gesetzlicher Vorgaben nicht unbehandelt in die Umgebung einer Anlage bzw. Maschine gelangen dürfen. Um überwachen zu können, ob Schadstof- femissionen einer solchen Anlage bzw. Maschine gesetzlichen Vorgaben genügen, können deren Verbrennungsabgase analysiert werden, wodurch eine Konzentration von wenigstens einem bestimmten gasförmigen Schadstoff in den Verbrennungsabgasen ermittelt werden kann. Der gasförmige Schadstoff kann beispielsweise Schwefeldioxid (SO2), Stickstoffdioxid (NO2), Stickstoffmonoxid (NO) oder Stickoxid (NO+NO2=NOX) sein. Combustion exhaust gases are generated during combustion processes in systems and machines, which as a rule, due to legal requirements, are not allowed to get into the vicinity of a system or machine untreated. In order to be able to monitor whether pollutant emissions from such a system or machine meet legal requirements, its combustion exhaust gases can be analyzed, whereby a concentration of at least one specific gaseous pollutant in the combustion exhaust gases can be determined. The gaseous pollutant can be, for example, sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), nitrogen monoxide (NO) or nitrogen oxide (NO + NO 2 = NO X ).
Typischerweise erfolgt die Konzentrationsmessung durch nichtdispersive Strahlungsabsorp- tion im infraroten (NDIR) oder ultravioletten Spektralbereich (NDUV). Insbesondere für geringere Gaskonzentrationen in Gegenwart von Feuchtigkeit (FhO-Dampf), hat sich die NDUV-Gasanalyse seit vielen Jahren als Standardmethode bewährt. Als Strahlungsquelle wird für diese Anwendung eine spezielle elektrodenlose Gasentladungslampe (EDL) einge- setzt. Ein Lampenkörper der EDL ist mit einem Sauerstoff-Stickstoff-Gemisch gefüllt und wird durch eine induktive Hochfrequenzanregung gezündet und emittiert dann selektive Strah- lung, die von NO absorbiert wird. Diese Strahlung ist in Resonanz mit der spektralen Absorp- tion des NO. Man spricht in diesem Zusammenhang dann auch von einer UV-Resonanz- absorption. Typically, the concentration is measured by nondispersive radiation absorption in the infrared (NDIR) or ultraviolet spectral range (NDUV). Especially for lower gas concentrations in the presence of moisture (FhO vapor), the NDUV gas analysis has proven itself as a standard method for many years. A special electrodeless gas discharge lamp (EDL) is used as the radiation source for this application. A lamp body of the EDL is filled with an oxygen-nitrogen mixture and is ignited by an inductive high-frequency excitation and then emits selective radiation that is absorbed by NO. This radiation is in resonance with the spectral absorption of the NO. In this context, one speaks of UV resonance absorption.
Nachteile einer solchen EDL sind eine limitierte Lebensdauer von ca. 10 000 Stunden im Dauerbetrieb, eine hohe Leistungsaufnahme (4 Watt) sowie ein großes Bauvolumen und ho- hes Gewicht. Insbesondere die Geräteintegration wird dadurch erschwert und mobile Anwen- dungen sind nur begrenzt möglich. Disadvantages of such an EDL are a limited service life of approx. 10,000 hours in continuous operation, a high power consumption (4 watts) as well as a large construction volume and high weight. Device integration in particular is made more difficult and mobile applications are only possible to a limited extent.
Der Einsatz von UV-Leuchtdioden wird seit einiger Zeit auch als Alternative zu Gasentla- dungslampen diskutiert. Erste Versuchsaufbauten liegen vor. Für den Einsatz zur Messung von SO2 und NO2 eignen sich UV-Leuchtdioden sehr gut, da die Bandbreite der Emission einer UV-Leuchtdiode kleiner ist als die Bandbreite der Absorptionsbande von SO2 bzw. NO2. Dadurch ergibt sich aufgrund der gesamten Strahlungsabsorption ein großer Messeffekt.The use of UV light-emitting diodes has also been discussed for some time as an alternative to gas discharge lamps. The first test set-ups are available. UV light-emitting diodes are very suitable for use in measuring SO 2 and NO 2 , since the bandwidth of the emission of a UV light-emitting diode is smaller than the bandwidth of the absorption band of SO 2 or NO 2 . This results in a large measuring effect due to the total absorption of radiation.
Bei der NO-Konzentrationsmessung ist das allerdings umgekehrt. Die Absorptionsbande von NO um A=226nm ist wesentlich schmaler als die Bandbreite der UV-Strahlung der zur NO- Konzentrationsmessung verwendeten UV-Leuchtdiode. Zudem gibt es Überlappungen mit den Absorptionsspektren von SO2 und NO2, was zu großen Querempfindlichkeiten der NO- Konzentrationsmessung auf SO2 und NO2 führt. Die Störgaskomponenten SO2 und NO2 ab- sorbieren sowohl im Zentrum der NO-Bande als auch in den Randbereichen der UV-Strah- lung der zur NO-Konzentrationsmessung verwendeten UV-Leuchtdiode. Die NO-Konzentra- tionsmessung mit einer UV-Leuchtdiode gestaltet sich zudem problematisch, da Absorpti- onslinien und Emissionslinien von NO nicht deckungsgleich sind. Es wird also viel Strahlung der UV-Leuchtdiode nicht von der NO-Bande absorbiert, was zu einem geringeren Messef- fekt führt. In the case of NO concentration measurement, however, it is the other way around. The absorption band of NO around A = 226nm is much narrower than the bandwidth of the UV radiation of the UV light-emitting diode used to measure the NO concentration. In addition, there is an overlap with the absorption spectra of SO 2 and NO 2 , which leads to great cross-sensitivities of the NO concentration measurement to SO 2 and NO 2 . The interfering gas components SO 2 and NO 2 absorb both in the center of the NO band and in the edge areas of the UV radiation of the UV light-emitting diode used to measure the NO concentration. Measuring the NO concentration with a UV light emitting diode is also problematic because the absorption lines and emission lines of NO are not congruent. Much of the radiation from the UV light-emitting diode is not absorbed by the NO band, which leads to a lower measurement effect.
Offenbarung der Erfindung Eine Aufgabe der Erfindung ist es, Querempfindlichkeiten einer Messung einer NO-Konzen- tration in einem wenigstens eine Störgaskomponente enthaltenden Gasgemisch zu reduzie- ren. Disclosure of the invention One object of the invention is to reduce cross-sensitivities of a measurement of an NO concentration in a gas mixture containing at least one interfering gas component.
Diese Aufgabe wird durch die unabhängigen Patentansprüche gelöst. Vorteilhafte Ausgestal- tungen sind in den abhängigen Patentansprüchen, der nachfolgenden Beschreibung und den Figuren wiedergegeben, wobei diese Ausgestaltungen jeweils für sich genommen oder in verschiedenen Kombinationen von wenigstens zwei dieser Ausgestaltungen miteinander ei- nen weiterbildenden oder vorteilhaften Aspekt der Erfindung darstellen können. Vorteilhafte Ausgestaltungen der Vorrichtung können dabei vorteilhaften Ausgestaltungen des Verfah- rens entsprechen, und umgekehrt, selbst wenn hierauf im Folgenden nicht explizit hingewie- sen wird. This problem is solved by the independent patent claims. Advantageous configurations are given in the dependent claims, the following description and the figures, these configurations each taken individually or in various combinations of at least two of these configurations with one another being able to represent a further or advantageous aspect of the invention. Advantageous configurations of the device can correspond to advantageous configurations of the method, and vice versa, even if this is not explicitly referred to in the following.
Eine erfindungsgemäße Vorrichtung zum Messen einer NO-Konzentration in einem wenigs- tens eine Störgaskomponente enthaltenden Gasgemisch weist wenigstens eine das Gasge- misch aufnehmende Messkammer und wenigstens eine optoelektronische Messanordnung zum Messen der NO-Konzentration auf, wobei die Messanordnung eingerichtet ist, die Mess- kammer zum Messen der NO-Konzentration mit einer hierzu geeigneten UV-Strahlung zu durchleuchten und die aus der Messkammer austretende UV-Strahlung zu detektieren, wo- bei die Messanordnung zur Erzeugung der UV-Strahlung wenigstens eine UV-Leuchtdiode aufweist. Zudem weist die erfindungsgemäße Vorrichtung wenigstens eine Referenzmess- einheit auf, die hinsichtlich einer Strahlungsrichtung der die Messkammer durchleuchtenden UV-Strahlung der Messkammer nachgeschaltet angeordnet ist, wobei die Referenzmessein- heit wenigstens einen Strahlteiler, der mit der aus der Messkammer austretenden UV-Strah- lung beaufschlagbar angeordnet ist, wenigstens eine mit NO gefüllte Gaszelle, die mit einem von dem Strahlteiler ausgehenden Teil der UV-Strahlung durchleuchtbar angeordnet ist, und wenigstens einen Referenzdetektor, der mit einer aus der Gaszelle austretenden UV-Strah- lung beaufschlagbar angeordnet ist, aufweist. A device according to the invention for measuring an NO concentration in a gas mixture containing at least one interfering gas component has at least one measuring chamber receiving the gas mixture and at least one optoelectronic measuring arrangement for measuring the NO concentration, the measuring arrangement being set up, the measuring chamber To measure the NO concentration with UV radiation suitable for this purpose and to detect the UV radiation emerging from the measuring chamber, the measuring arrangement having at least one UV light emitting diode for generating the UV radiation. In addition, the device according to the invention has at least one reference measuring unit which is arranged downstream of the measuring chamber with regard to a radiation direction of the UV radiation illuminating the measuring chamber is arranged to be acted upon, at least one gas cell filled with NO, which is arranged to be transilluminated with a part of the UV radiation emanating from the beam splitter, and at least one reference detector, which is arranged to be acted upon by a UV radiation emerging from the gas cell.
Erfindungsgemäß wird zur Messung der NO-Konzentration in dem Gasgemisch eine UV- Leuchtdiode einsetzt und mittels der mit NO gefüllten Gaszelle eine gasspezifische Filterung vorgenommen, um die Empfindlichkeit der Messung zu verbessern und gleichzeitig die Quer- empfindlichkeiten der Messung auf die wenigstens eine Störgaskomponente zu reduzieren. Unter einer Störgaskomponente wird im Rahmen der Erfindung eine Gaskomponente des Gasgemischs verstanden, die die Messung der NO-Konzentration in dem Gasgemisch stört. Diese Störung wird durch eine Überlappung des Absorptionsspektrums von NO mit dem Ab- sorptionsspektrum der wenigstens einen Störkomponente begründet, was zu einer störenden Querempfindlichkeit der NO-Konzentrationsmessung auf die Störkomponente führt. According to the invention, a UV light-emitting diode is used to measure the NO concentration in the gas mixture and gas-specific filtering is carried out using the NO-filled gas cell in order to improve the sensitivity of the measurement and at the same time reduce the cross-sensitivity of the measurement to the at least one interfering gas component . In the context of the invention, an interfering gas component is understood to be a gas component of the gas mixture which interferes with the measurement of the NO concentration in the gas mixture. This interference is caused by an overlap of the absorption spectrum of NO with the absorption spectrum of the at least one interfering component, which leads to an interfering cross-sensitivity of the NO concentration measurement to the interfering component.
Das Gasgemisch kann beispielsweise ein Abgas eines Verbrennungsmotors eines Kraftfahr- zeugs, insbesondere Kraftwagens, sein. In einem solchen Abgas sind meist mehrere ver- schiedene Störgaskomponenten vorhanden, wie beispielsweise SO2, NO2, unverbrannte Kohlenwasserstoffe, die eine NO-Konzentrationsmessung ähnlich stören wie SO2 und NO2, und dergleichen. The gas mixture can, for example, be an exhaust gas from an internal combustion engine of a motor vehicle, in particular a motor vehicle. A number of different interfering gas components are usually present in such an exhaust gas, such as, for example, SO 2 , NO 2 , unburned hydrocarbons, which interfere with an NO concentration measurement in a similar way to SO 2 and NO 2 , and the like.
Beim Durchgang der von dem Strahlteiler ausgehenden UV-Strahlung durch die mit NO ge- füllte Gaszelle wird die gesamte UV-Strahlung innerhalb der NO-Bande absorbiert. Lediglich Wellenlängenrandbereiche der UV-Strahlung der UV-Leuchtdiode werden von der mit NO gefüllten Gaszelle durchgelassen und treffen auf den Referenzdetektor, der diese durchge- lassene UV-Strahlung als Referenzstrahlung erfasst. Diese Wellenlängenrandbereiche der UV-Strahlung werden durch die im Messgas, das in der Messkammer vorhanden ist, vorhan- dene wenigstens eine Störgaskomponente absorbiert, was zu einer Schwächung der UV- Strahlung am Referenzdetektor führt. Diese Schwächung der UV-Strahlung tritt in gleicher Art und Weise auch an einem Messdetektor der Messanordnung auf, auf den ein weiterer Teil der von dem Strahlteiler ausgehenden UV-Strahlung auftrifft, so dass dieser Einflussef- fekt (Schwächung) bei einer Differenzbildung und einer anschließenden Quotientenbildung in einer Auswerteelektronik bzw. einer damit ausgeführten Software eliminiert werden kann. Insgesamt werden dadurch die Querempfindlichkeiten der Messung der NO-Konzentration in einem die wenigstens eine Störgaskomponente enthaltenden Gasgemisch reduziert.When the UV radiation emanating from the beam splitter passes through the gas cell filled with NO, all of the UV radiation within the NO band is absorbed. Only the wavelength edge areas of the UV radiation from the UV light-emitting diode are let through by the gas cell filled with NO and hit the reference detector, which detects this transmitted UV radiation as reference radiation. These wavelength edge regions of the UV radiation are absorbed by the at least one interfering gas component present in the measurement gas that is present in the measurement chamber, which leads to a weakening of the UV radiation at the reference detector. This weakening of the UV radiation also occurs in the same way on a measuring detector of the measuring arrangement on which a further part of the UV radiation emanating from the beam splitter impinges, so that this influencing effect (weakening) when a difference is formed and a subsequent one Quotient formation can be eliminated in evaluation electronics or in software executed with it. Overall, this reduces the cross-sensitivities of the measurement of the NO concentration in a gas mixture containing the at least one interfering gas component.
Die Messanordnung kann als Photometer ausgebildet sein oder ein solches aufweisen. Die Messkammer kann als Gasküvette bzw. Messküvette ausgebildet sein, die mittels wenigs- tens einer Strahlungsquelle der Messanordnung in Längsrichtung mit elektromagnetischer Strahlung in Form von UV-Strahlung durchleuchtbar ist. The measuring arrangement can be designed as a photometer or have one. The measuring chamber can be designed as a gas cuvette or measuring cuvette which can be transilluminated in the longitudinal direction with electromagnetic radiation in the form of UV radiation by means of at least one radiation source of the measuring arrangement.
Die Vorrichtung kann wenigstens eine mit der Messkammer verbundene Gasversorgungs- einrichtung aufweisen, die zum Versorgen der Messkammer mit dem Gasgemisch eingerich- tet ist. Die Gasversorgungseinrichtung kann wenigstens eine kommunizierend mit der Messkammer verbundene Gaszuführleitung und wenigstens eine kommunizierend mit der Messkammer verbundene Gasabführleitung aufweisen. An diesen Leitungen können Schließventile angeordnet sein, die nach einem Ausspülen der Messkammer mit dem Gas- gemisch geschlossen werden können, um statische Gaskomponentenkonzentrationswerte, insbesondere einen statischen NO-Konzentrationswert, in der Messkammer vorliegen zu ha- ben und messen zu können. Alternativ können die Schließventile geöffnet oder nicht vorhan- den sein, so dass das Gasgemisch während der Messung der jeweiligen Gaskomponenten- konzentration, insbesondere NO-Konzentration, kontinuierlich und gleichmäßig durch die Messkammer strömt, wodurch dynamische Gaskomponentenkonzentrationswerte, insbe- sondere ein dynamischer NO-Konzentrationswert, vorliegen und gemessen werden können.The device can have at least one gas supply device connected to the measuring chamber, which is set up to supply the measuring chamber with the gas mixture. The gas supply device can communicate with at least one Have gas supply line connected to the measuring chamber and at least one gas discharge line communicating with the measuring chamber. Closing valves can be arranged on these lines, which can be closed after the measuring chamber has been flushed out with the gas mixture in order to have and measure static gas component concentration values, in particular a static NO concentration value, in the measuring chamber. Alternatively, the closing valves can be open or not present, so that the gas mixture flows continuously and evenly through the measuring chamber during the measurement of the respective gas component concentration, in particular NO concentration, whereby dynamic gas component concentration values, in particular a dynamic NO concentration value , exist and can be measured.
Die UV-Leuchtdiode der Messanordnung kann beispielsweise eine UV-Strahlung mit einem Maximum bei A=226nm erzeugen. Die UV-Leuchtdiode kann als SMD-Baustein oder als Microchip ausgebildet sein. Vorzugsweise ist die UV-Leuchtdiode im Bereich der optischen Achse der Messanordnung angeordnet, wodurch die optische Abbildung vereinfacht bzw. effizienter wird. The UV light-emitting diode of the measuring arrangement can, for example, generate UV radiation with a maximum at A = 226 nm. The UV light emitting diode can be designed as an SMD module or as a microchip. The UV light-emitting diode is preferably arranged in the area of the optical axis of the measuring arrangement, as a result of which the optical imaging is simplified or more efficient.
Mittels der Referenzmesseinheit können Referenzwerte, insbesondere Referenzspannungs- werte URef., erzeugt werden. Mittels des Messdetektors der Messanordnung, auf den der wei- tere Teil der von dem Strahlteiler ausgehenden UV-Strahlung auftrifft, können Messwerte, insbesondere Messspannungswerte U Mess., erzeugt werden. Dabei erfassen diese Detekto- ren jeweils einen integralen Wert der Strahlungsleistung P der UV-Leuchtdiode. Die Detek- toren können die Referenzwerte bzw. Messwerte übereinen Vorverstärker, der ebenfalls Teil der Vorrichtung sein kann, ausgeben. Die Spannungswerte URef. und U Mess. können in einem Bereich um 1 Volt liegen. Reference values, in particular reference voltage values U Ref. , Can be generated by means of the reference measuring unit. By means of the measuring detector of the measuring arrangement, on which the further part of the UV radiation emanating from the beam splitter impinges, measured values, in particular measured voltage values U Mess. , be generated. These detectors each record an integral value of the radiation power P of the UV light-emitting diode. The detectors can output the reference values or measured values via a preamplifier, which can also be part of the device. The voltage values U Ref. And U Mess. can be in a range around 1 volt.
Der Strahlteiler der Referenzmesseinheit kann ein Teilungsverhältnis von 50:50 aufweisen, so dass 50% der aus der Messkammer austretenden UV-Strahlung auf die mit NO gefüllte Gaszelle und 50% dieser UV-Strahlung zu dem Messdetektor der Messanordnung gelangt.The beam splitter of the reference measuring unit can have a splitting ratio of 50:50, so that 50% of the UV radiation emerging from the measuring chamber reaches the gas cell filled with NO and 50% of this UV radiation reaches the measuring detector of the measuring arrangement.
Die mit NO gefüllte Gaszelle der Referenzmesseinheit kann als Gasküvette bzw. Mess- küvette ausgebildet sein, die mit dem von dem Strahlteiler ausgehenden Teil der aus der Messkammer austretenden UV-Strahlung durchleuchtbar ist. Die Messanordnung kann zusätzlich wenigstens eine der Messkammer vorgeschaltete Re- ferenzmesseinrichtung aufweisen, die wenigstens einen Strahlteiler und wenigstens einen Referenzdetektor aufweist, der mit einer von dem Strahlteiler ausgehenden UV-Strahlung beaufschlagbar ist, um eine Referenzmessung durchzuführen. Der Strahlteiler der Referenz- messeinrichtung kann derart ausgebildet und angeordnet sein, dass mit ihm 10% der auf ihn einfallenden UV-Strahlung ausgekoppelt und zum Beaufschlagen des Referenzdetektors der Referenzmesseinrichtung verwendet wird. Zur Erfassung geringerer Gaskomponentenkon- zentrationen, insbesondere NO-Konzentrationen, ist es erforderlich, eine sehr gute Signal- stabilität im Nullpunkt zu erhalten. Durch den Einsatz der vorgeschalteten Referenzmessein- richtung und einen Vergleich der Messignale der vorgeschalteten Referenzmesseinrichtung mit Messsignalen des der Messkammer nachgeschalteten Messdetektors der Messanord- nung erhält man eine Zusatzinformation über einen Verschmutzungszustand des Inneren der Messkammer. Diese Veränderungen in der Messkammer kann zu einem unerwünschten Nullpunkt-Drift führen, was es zu unterbinden gilt. Die Verwendung der vorgeschalteten Re- ferenzmesseinrichtung schafft somit eine Verbesserung der Nullpunktstabilität der Gaskom- ponentenkonzentrationsmessung, insbesondere auch der NO-Konzentrationsmessung.The gas cell of the reference measuring unit filled with NO can be designed as a gas cuvette or measuring cuvette which can be transilluminated with the part of the UV radiation emerging from the measuring chamber from the beam splitter. The measuring arrangement can additionally have at least one reference measuring device upstream of the measuring chamber, which has at least one beam splitter and at least one reference detector to which UV radiation emanating from the beam splitter can be applied in order to carry out a reference measurement. The beam splitter of the reference measuring device can be designed and arranged in such a way that it decouples 10% of the UV radiation incident on it and uses it to act on the reference detector of the reference measuring device. In order to detect lower gas component concentrations, in particular NO concentrations, it is necessary to obtain a very good signal stability at the zero point. By using the upstream reference measurement device and a comparison of the measurement signals from the upstream reference measurement device with measurement signals from the measurement detector of the measurement arrangement downstream of the measurement chamber, additional information is obtained about the contamination status of the interior of the measurement chamber. These changes in the measuring chamber can lead to an undesirable zero point drift, which must be prevented. The use of the upstream reference measuring device thus creates an improvement in the zero point stability of the gas component concentration measurement, in particular also of the NO concentration measurement.
Die erfindungsgemäße Vorrichtung kann beispielsweise zur Analyse eines Verbrennungsab- gases einer Anlage oder Maschine bzw. in der Schadstoffemissionsmesstechnik eingesetzt werden. Insbesondere kann die erfindungsgemäße Vorrichtung zum Messen einer NO-Kon- zentration in einem Abgas eines Verbrennungsmotors eines Kraftfahrzeugs, insbesondere Kraftwagens, eingesetzt werden. The device according to the invention can be used, for example, to analyze a combustion exhaust gas from a system or machine or in pollutant emission measurement technology. In particular, the device according to the invention can be used for measuring an NO concentration in an exhaust gas of an internal combustion engine of a motor vehicle, in particular a motor vehicle.
Gemäß einer vorteilhaften Ausgestaltung weist die Vorrichtung wenigstens eine mit der Messanordnung verbundene Auswerteelektronik auf, die eingerichtet ist, bei Vorhandensein eines Nullgases in der Messkammer Messwerte des Referenzdetektors und Messwerte ei- nes Messdetektors der Messanordnung, der mit einem weiteren von dem Strahlteiler ausge- henden Teil der UV-Strahlung beaufschlagbar angeordnet ist, zu erfassen und zu speichern, bei Vorhandensein des Gasgemischs in der Messkammer Messwerte des Referenzdetektors und Messwerte eines Messdetektors zu erfassen, normierte Messwerte jeweils als Quotient aus einem jeweilig momentan erfassten Messwert des Messdetektors und dem gespeicher- ten Messwert des Messdetektors zu ermitteln, normierte Referenzwerte jeweils als Quotient aus einem jeweilig momentan erfassten Messwert des Referenzdetektors und dem gespei- cherten Messwert des Referenzdetektors zu ermitteln, Modulationswerte jeweils durch Dividieren einer Differenz aus dem jeweiligen normierten Referenzwert des Referenzdetek- tors und dem jeweiligen normierten Messwert des Messdetektors durch den jeweiligen nor- mierten Referenzwert des Referenzdetektors zu ermitteln, eine von der NO-Konzentration abhängende Modulationsfunktion aus den Modulationswerten zu ermitteln, eine NO-Kon- zentrationsfunktion durch Inversion der Modulationsfunktion zu ermitteln, ein Polynom des Grades ≥ 2 an die NO-Konzentrationsfunktion anzunähern, die Koeffizienten des Polynoms zu speichern und die NO-Konzentration in dem Gasgemisch unter Verwendung der Koeffi- zienten des Polynoms zu ermitteln. According to an advantageous embodiment, the device has at least one evaluation electronics connected to the measuring arrangement, which are set up, when a zero gas is present in the measuring chamber, measured values of the reference detector and measured values of a measuring detector of the measuring arrangement, which is connected to a further part extending from the beam splitter the UV radiation is arranged to be acted upon, to detect and store, to record measured values of the reference detector and measured values of a measuring detector when the gas mixture is present in the measuring chamber, normalized measured values each as a quotient of a currently recorded measured value of the measuring detector and the stored measured value of the measurement detector, to determine normalized reference values in each case as a quotient of a currently detected measurement value of the reference detector and the stored measurement value of the reference detector, modulation values in each case by Dividing a difference between the respective normalized reference value of the reference detector and the respective normalized measured value of the measuring detector by the respective normalized reference value of the reference detector to determine a modulation function that depends on the NO concentration from the modulation values, an NO con- to determine the centering function by inversion of the modulation function, to approximate a polynomial of degree ≥ 2 to the NO concentration function, to store the coefficients of the polynomial and to determine the NO concentration in the gas mixture using the coefficients of the polynomial.
Zur Erfassung der Messignale der Detektoren wird zunächst das Nullgas in die Messkammer eingeleitet und durchleuchtet. Bei dem Nullgas kann es sich beispielsweise um Stickstoff oder Raumluft handeln. Das Nullgas verursacht im Messkanal keine Schwächung der UV- Strahlung der UV-Leuchtdiode durch NO und die wenigstens eine Störgaskomponente. Mit- tels der Referenzmesseinheit kann in diesem Zustand der Vorrichtung ein Referenzspan- nungswert URef. erzeugt werden, wohingegen mittels des Messdetektors der Messanordnung, auf den der weitere Teil der von dem Strahlteiler ausgehenden UV-Strahlung auftrifft, ein Messspannungswert U Mess. erzeugt werden kann. Nachdem sich diese Spannungswerte sta- bilisiert haben, können sie übernommen und als Werte U* Ref bzw. U* Mess gespeichert werden, beispielsweise in einem Mikrokontroller der Vorrichtung. Dann werden die im Weiteren er- fassten Messsignale bzw. Spannungswerte durch den zugeordneten gespeicherten Span- nungswert U* dividiert, so dass direkt nach dieser Nullung jeweils ein normierter Messwert bzw. normierter Referenzwert von „1“ vorliegt. Für die normierten Werte gilt:
Figure imgf000009_0001
To record the measurement signals from the detectors, the zero gas is first introduced into the measurement chamber and x-rayed. The zero gas can be nitrogen or room air, for example. The zero gas does not cause any weakening of the UV radiation of the UV light-emitting diode in the measuring channel by NO and the at least one interfering gas component. In this state of the device, the reference measuring unit can be used to generate a reference voltage value U Ref . can be generated. After these voltage values have stabilized, they can be accepted and stored as values U * Ref or U * Mess , for example in a microcontroller of the device. Then the measurement signals or voltage values recorded in the following are divided by the assigned stored voltage value U * so that a normalized measured value or normalized reference value of “1” is available immediately after this zeroing. The following applies to the standardized values:
Figure imgf000009_0001
Diese Werte gehen in die Berechnung von Modulationswerten wie folgt ein:
Figure imgf000009_0002
Dieser Wert ist nach der Nullung gleich 0. Ändert sich der Wert UMess. infolge einer anstei- genden NO-Konzentration, so steigt der Modulationswert an. Der Modulationswert liegt im- mer zwischen 0 und 1 und genügt einer Modulationsfunktion Mod(c) der NO-Konzentration c in dem Gasgemisch. Aus dieser Modulationsfunktion kann dann die NO-Konzentration c be- rechnet werden, indem die inverse Funktion zu Mod(c) gebildet wird. Diese Funktion wird dann durch ein Polynom höheren Grades
Figure imgf000010_0001
angenähert, dessen Koeffizienten a-1,... , an gespeichert werden und für die NO-Konzentrati- onsberechnung über dieses Polynom zur Verfügung stehen. Die berechnete Konzentration c(Mod) wird somit nach der Nullung ebenfalls gleich 0 sein, da die Modulation Mod(c) dann gleich 0 ist.
These values are included in the calculation of modulation values as follows:
Figure imgf000009_0002
This value is equal to 0 after zeroing. If the value U Mess changes. as a result of an increasing NO concentration, the modulation value increases. The modulation value is always between 0 and 1 and satisfies a modulation function Mod (c) of the NO concentration c in the gas mixture. The NO concentration c can then be calculated from this modulation function by forming the inverse function of Mod (c). This function is then given by a higher degree polynomial
Figure imgf000010_0001
approximated, whose coefficients a-1, ..., a n are stored and are available for the NO concentration calculation using this polynomial. The calculated concentration c (Mod) will thus also be equal to 0 after zeroing, since the modulation Mod (c) is then equal to 0.
Gemäß einer weiteren vorteilhaften Ausgestaltung ist die UV-Leuchtdiode an einer Metall- kernleiterplatine angeordnet. Hierdurch kann die thermische Verlustleistung der UV-Leucht- diode besser und schneller von der UV-Leuchtdiode abgeführt werden, was die Lebensdauer der UV-Leuchtdiode verlängert und ermöglicht, dass die Strahlungscharakteristik der UV- Leuchtdiode möglichst wenig durch Temperaturschwankungen der UV-Leuchtdiode beein- trächtigt wird. According to a further advantageous embodiment, the UV light-emitting diode is arranged on a metal core circuit board. This allows the thermal power loss of the UV light emitting diode to be dissipated better and faster by the UV light emitting diode, which extends the service life of the UV light emitting diode and enables the radiation characteristics of the UV light emitting diode to be affected as little as possible by temperature fluctuations in the UV light emitting diode. is pregnant.
Gemäß einer weiteren vorteilhaften Ausgestaltung ist an der Metallkernleiterplatine wenigs- tens ein Peltier-Element angeordnet. Das Peltier-Element kann beispielsweise an einer Seite der Metallkernleiterplatine angeordnet sein, die derjenigen Seite der Metallkernleiterplatine gegenüberliegt, an der die UV-Leuchtdiode angeordnet ist. Mittels des Peltier-Elements kann die UV-Leuchtdiode auf eine konstante Temperatur gehalten werden. According to a further advantageous embodiment, at least one Peltier element is arranged on the metal core circuit board. The Peltier element can be arranged, for example, on one side of the metal core circuit board which is opposite that side of the metal core circuit board on which the UV light-emitting diode is arranged. The UV light-emitting diode can be kept at a constant temperature by means of the Peltier element.
Gemäß einer weiteren vorteilhaften Ausgestaltung weist die Vorrichtung wenigstens einen Temperatursensor auf, der zum Messen einer Temperatur der UV-Leuchtdiode angeordnet ist. Der Temperatursensor, beispielsweise ein Platintemperatursensor, der bei einer Tempe- ratur von 0 °C einen Nennwiderstand von 100 Ohm aufweist, kann ebenfalls an der Metall- kernleiterplatine angeordnet sein. Vorzugsweise ist der Temperatursensor in unmittelbarer Nähe zu der UV-Leuchtdiode angeordnet. Mittels der Temperaturinformationen des Tempe- ratursensors kann das Peltier-Element angesteuert werden, um die UV-Leuchtdiode auf ei- ner konstanten Temperatur zu halten. Gemäß einer weiteren vorteilhaften Ausgestaltung weist die Messanordnung wenigstens eine weitere UV-Leuchtdiode zum Erzeugen einer UV-Strahlung auf, mit der die Messkam- mer durchleuchtbar ist und die eine Messwellenlänge aufweist, die einer Wellenlänge eines Maximums einer für die Störgaskomponente spezifischen Absorptionsbande entspricht. Die Messanordnung kann auch zwei weitere UV-Leuchtdioden aufweisen, beispielsweise eine UV-Leuchtdiode zum Messen einer SO2-Konzentration und eine UV-Leuchtdiode zum Mes- sen der NO2-Konzentration in dem Gasgemisch. Ein Messdetektor der Messanordnung kann dabei zum Erfassen der verschiedenen UV-Strahlungen eingerichtet sein. Alternativ kann die Messanordnung für jede UV-Strahlung einen eigenen Messdetektor aufweisen. Die wenigs- tens eine weitere UV-Leuchtdiode kann als SMD-Baustein oder als Microchip ausgebildet sein. Vorzugsweise sind die UV-Leuchtdioden möglichst nahe aneinander angeordnet, be- vorzugt im Bereich der optischen Achse der Messanordnung. Dadurch wird die optische Ab- bildung vereinfacht bzw. effizienter. Für die Messung der Konzentration der wenigstens einen Störgaskomponente ist die oben genannte Referenzmessung mittels der der Messkammer vorgeschalteten Referenzmesseinrichtung von Vorteil, insbesondere um eine Verunreini- gung der Messkammer bei der Ermittlung der Konzentration der Störgaskomponente in dem Gasgemisch kompensieren zu können. According to a further advantageous embodiment, the device has at least one temperature sensor which is arranged to measure a temperature of the UV light-emitting diode. The temperature sensor, for example a platinum temperature sensor, which has a nominal resistance of 100 ohms at a temperature of 0 ° C., can also be arranged on the metal core circuit board. The temperature sensor is preferably arranged in the immediate vicinity of the UV light-emitting diode. The Peltier element can be controlled by means of the temperature information from the temperature sensor in order to keep the UV light-emitting diode at a constant temperature. According to a further advantageous embodiment, the measuring arrangement has at least one further UV light-emitting diode for generating UV radiation with which the measuring chamber can be transilluminated and which has a measuring wavelength that corresponds to a wavelength of a maximum of an absorption band specific for the interfering gas component. The measuring arrangement can also have two further UV light emitting diodes, for example a UV light emitting diode for measuring an SO 2 concentration and a UV light emitting diode for measuring the NO 2 concentration in the gas mixture. A measuring detector of the measuring arrangement can be set up to detect the various UV rays. Alternatively, the measuring arrangement can have its own measuring detector for each UV radiation. The at least one further UV light-emitting diode can be designed as an SMD module or as a microchip. The UV light-emitting diodes are preferably arranged as close to one another as possible, preferably in the area of the optical axis of the measuring arrangement. This simplifies or makes the optical imaging more efficient. For measuring the concentration of the at least one interfering gas component, the above-mentioned reference measurement using the reference measuring device upstream of the measuring chamber is advantageous, in particular to be able to compensate for contamination of the measuring chamber when determining the concentration of the interfering gas component in the gas mixture.
Gemäß einer weiteren vorteilhaften Ausgestaltung sind alle UV-Leuchtdioden an der Metall- kernleiterplatine angeordnet. According to a further advantageous embodiment, all UV light-emitting diodes are arranged on the metal core circuit board.
Gemäß einem erfindungsgemäßen Verfahren zum Messen einer NO-Konzentration in einem wenigstens eine Störgaskomponente enthaltenden Gasgemisch wird das Gasgemisch in eine Messkammer eingeführt wird, die mit dem Gasgemisch gefüllte Messkammer zum Mes- sen der NO-Konzentration mit einer hierzu geeigneten UV-Strahlung durchleuchtet, die aus der Messkammer austretende UV-Strahlung detektiert, eine mit NO gefüllte Gaszelle mit ei- nem Teil der aus der Messkammer austretenden UV-Strahlung durchleuchtet und die aus der Gaszelle austretende UV-Strahlung mittels eines Referenzdetektors detektiert. According to a method according to the invention for measuring an NO concentration in a gas mixture containing at least one interfering gas component, the gas mixture is introduced into a measuring chamber which illuminates the measuring chamber filled with the gas mixture for measuring the NO concentration with a suitable UV radiation which UV radiation emerging from the measuring chamber is detected, a gas cell filled with NO is illuminated with part of the UV radiation emerging from the measuring chamber and the UV radiation emerging from the gas cell is detected by means of a reference detector.
Mit dem Verfahren sind die oben mit Bezug auf die Vorrichtung genannten Vorteile entspre- chend verbunden. Insbesondere kann die Vorrichtung gemäß einer der obengenannten Aus- gestaltungen oder einer Kombination von wenigstens zwei dieser Ausgestaltungen miteinan- der zur Durchführung des Verfahrens verwendet werden. Gemäß einer vorteilhaften Ausgestaltung werden bei Vorhandensein eines Nullgases in der Messkammer Messsignale des Referenzdetektors und Messignale eines mit einem weiteren Teil der aus der Messkammer austretenden UV-Strahlung beaufschlagbaren Messdetektors elektronisch erfasst und gespeichert, werden bei Vorhandensein des Gasgemischs in der Messkammer Messwerte des Referenzdetektors und Messwerte eines Messdetektors er- fasst, werden normierte Messwerte jeweils als Quotient aus einem jeweilig momentan er- fassten Messwert des Messdetektors und dem gespeicherten Messwert des Messdetektors ermittelt, werden normierte Referenzwerte jeweils als Quotient aus einem jeweilig momentan erfassten Messwert des Referenzdetektors und dem gespeicherten Messwert des Referenz- detektors ermittelt, werden Modulationswerte jeweils durch Dividieren einer Differenz aus dem jeweiligen normierten Referenzwert des Referenzdetektors und dem jeweiligen normier- ten Messwert des Messdetektors durch den jeweiligen normierten Referenzwert des Refe- renzdetektors ermittelt, wird eine von der NO-Konzentration abhängende Modulationsfunk- tion aus den Modulationswerten elektronisch ermittelt, wird eine NO-Konzentrationsfunktion durch Inversion der Modulationsfunktion elektronisch ermittelt, wird ein Polynom des Grades ≥ 2 an die NO-Konzentrationsfunktion elektronisch angenähert, werden die Koeffizienten des Polynoms elektronisch gespeichert und wird die NO-Konzentration in dem Gasgemisch unter Verwendung der Koeffizienten des Polynoms elektronisch ermittelt. Mit dieser Ausgestaltung sind die oben mit Bezug auf die entsprechende Ausgestaltung der Vorrichtung genannten Vorteile entsprechend verbunden. The advantages mentioned above with reference to the device are correspondingly associated with the method. In particular, the device according to one of the above-mentioned configurations or a combination of at least two of these configurations with one another can be used to carry out the method. According to an advantageous embodiment, when a zero gas is present in the measuring chamber, measuring signals from the reference detector and measuring signals from a measuring detector that can be acted upon by a further part of the UV radiation emerging from the measuring chamber are electronically recorded and stored; when the gas mixture is present in the measuring chamber, measured values from the reference detector and measured values are recorded of a measuring detector, normalized measured values are determined as a quotient of a currently recorded measured value of the measuring detector and the stored measured value of the measuring detector, normalized reference values are each determined as the quotient of a currently recorded measured value of the reference detector and the stored measured value of the reference - Detector determined, modulation values are each divided by dividing a difference between the respective normalized reference value of the reference detector and the respective normalized measured value of the measuring detector by the respective Determined from the standardized reference value of the reference detector, a modulation function dependent on the NO concentration is determined electronically from the modulation values, if an NO concentration function is determined electronically by inversion of the modulation function, a polynomial of the degree ≥ 2 is attached to the NO concentration function electronically approximated, the coefficients of the polynomial are electronically stored and the NO concentration in the gas mixture is determined electronically using the coefficients of the polynomial. The advantages mentioned above with reference to the corresponding embodiment of the device are correspondingly associated with this embodiment.
Im Folgenden wird die Erfindung unter Bezugnahme auf die beigefügten Figuren anhand bevorzugter Ausführungsbeispiele exemplarisch erläutert, wobei die nachfolgend erläuterten Merkmale sowohl jeweils für sich genommen als auch in unterschiedlicher Kombination mit- einander einen weiterbildenden oder vorteilhaften Aspekt der Erfindung darstellen können.In the following, the invention is explained by way of example with reference to the attached figures using preferred exemplary embodiments, the features explained below being able to represent a further-developing or advantageous aspect of the invention both individually and in different combinations with one another.
Kurze Beschreibung der Figuren Brief description of the figures
Es zeigt: It shows:
Fig. 1 einen Spektra Ibereich von in Transmission erfassten Absorptionsspektren von Schwefeldioxid, Stickstoffmonoxid und Stickstoffdioxid; 1 shows a spectrum of absorption spectra of sulfur dioxide, nitrogen monoxide and nitrogen dioxide recorded in transmission;
Fig. 2 eine Vergrößerung des Spektralbereichs aus Fig. 1 im Bereich der Absorptions- bande von Stickstoffmonoxid; Fig. 3 eine schematische Darstellung eines Ausführungsbeispiels für eine erfindungsge- mäße Vorrichtung; FIG. 2 shows an enlargement of the spectral range from FIG. 1 in the region of the absorption band of nitrogen monoxide; FIG. 3 shows a schematic representation of an exemplary embodiment for a device according to the invention;
Fig. 4 eine schematische Darstellung eines Details der in Fig. 3 gezeigten Vorrichtung;FIG. 4 shows a schematic representation of a detail of the device shown in FIG. 3;
Fig. 5 eine beispielhafte spektrale Verteilung einer von einer zur NO-Konzentrationsmes- sung verwendbaren UV-Leuchtdiode abgegebenen UV-Strahlung; 5 shows an exemplary spectral distribution of a UV radiation emitted by a UV light-emitting diode which can be used for measuring the NO concentration;
Fig. 6 drei verschiedene spektrale Verteilungen der UV-Strahlung am Messdetektor und am Referenzdetektor, hervorgerufen durch unterschiedliche Gase in der Mess- kammer; und 6 shows three different spectral distributions of the UV radiation on the measuring detector and on the reference detector, caused by different gases in the measuring chamber; and
Fig. 7 Diagramme eines Ausführungsbeispiels für eine Modulationsfunktion Mod(c) und eine NO-Konzentrationsfunktion c(M). 7 shows diagrams of an exemplary embodiment for a modulation function Mod (c) and an NO concentration function c (M).
Ausführliche Beschreibung der Figuren Detailed description of the figures
In den Figuren sind gleiche bzw. funktionsgleiche Komponenten mit denselben Bezugszei- chen versehen. Eine wiederholte Beschreibung solcher Komponenten kann im Folgenden weggelassen sein. Identical or functionally identical components are provided with the same reference symbols in the figures. A repeated description of such components can be omitted in the following.
Fig. 1 zeigt einen Spektra Ibereich von in Transmission erfassten Absorptionsspektren von SO2 (Graph 1), NO (Graph 2) und NO2 (Graph 3). Es ist die in Transmission gemessene Strahlungsintensität T einer durch ein Gasgemisch geführten elektromagnetischen Strahlung in % gegenüber der Wellenlänge l der elektromagnetischen Strahlung in nm aufgetragen, wobei das Gasgemisch die Störgaskomponenten SO2 und NO2 enthält. 1 shows a spectrum of absorption spectra of SO 2 (graph 1), NO (graph 2) and NO 2 (graph 3) recorded in transmission. The radiation intensity T, measured in transmission, of an electromagnetic radiation guided through a gas mixture is plotted in% against the wavelength l of the electromagnetic radiation in nm, the gas mixture containing the interfering gas components SO 2 and NO 2 .
An den Graphen 1 , 2 bzw. 3 lässt sich ablesen, dass die Störgaskomponente SO2 eine Ab- sorptionsbande mit einem Maximum bei λ3=285 nm aufweist, die Gaskomponente NO eine Absorptionsbande mit einem Maximum bei λ1=226 nm aufweist und die Störgaskomponente NO2 eine Absorptionsbande mit einem Maximum bei λ4=405 nm aufweist. From graphs 1, 2 and 3 it can be seen that the interfering gas component SO 2 has an absorption band with a maximum at λ 3 = 285 nm, the gas component NO has an absorption band with a maximum at λ 1 = 226 nm and the Interfering gas component NO 2 has an absorption band with a maximum at λ 4 = 405 nm.
In das Diagramm aus Fig. 1 sind zudem die Strahlungsspektren 4, 5 bzw. 6 von UV-Leucht- dioden eingetragen, deren Maxima ebenfalls bei den Wellenlängen λ1, λ3 bzw. λ4 liegen. Des Weiteren ist ein Referenzstrahlungsspektrum 7 einer weiteren UV-Leuchtdiode gezeigt, des- sen Maximum bei einer Wellenlänge λ2=240 nm liegt. Fig. 1 zeigt, dass die Bandbreite der UV-Strahlung der UV-Leuchtdioden zu den Strahlungs- spektren 5 und 6 jeweils kleiner ist als die Bandbreite der jeweiligen Absorptionsbande von SO2 bzw. NO2. Dadurch ergibt sich aufgrund der gesamten Strahlungsabsorption ein großer Messeffekt. Hingegen ist die Absorptionsbande von NO um λ=226nm wesentlich schmaler als die Bandbreite der UV-Strahlung der UV-Leuchtdiode zu dem Strahlungsspektrum 4. Zu- dem gibt es Überlappungen des Absorptionsspektrums von NO mit den Absorptionsspektren von SO2 und NO2, was zu großen Querempfindlichkeiten bei einer Messung der NO-Kon- zentration führt. The diagram from FIG. 1 also shows the radiation spectra 4, 5 and 6 of UV light-emitting diodes, the maxima of which are also at the wavelengths λ 1 , λ 3 and λ 4 . Furthermore, a reference radiation spectrum 7 of a further UV light-emitting diode is shown, the maximum of which is at a wavelength λ 2 = 240 nm. 1 shows that the bandwidth of the UV radiation of the UV light-emitting diodes for the radiation spectra 5 and 6 is in each case smaller than the bandwidth of the respective absorption band of SO 2 or NO 2 . This results in a large measuring effect due to the total absorption of radiation. In contrast, the absorption band of NO is much narrower by λ = 226 nm than the bandwidth of the UV radiation of the UV light-emitting diode to the radiation spectrum 4. In addition, there is an overlap of the absorption spectrum of NO with the absorption spectra of SO 2 and NO 2 , which leads to large cross-sensitivities when measuring the NO concentration.
Fig. 2 zeigt eine Vergrößerung des Spektralbereichs aus Fig. 1 im Bereich der Absorptions- bande von NO bei λ=226 nm. Aus Fig. 2 ist besser ersichtlich, dass die Absorptionsbande von NO wesentlich schmaler als die Bandbreite der UV-Strahlung der UV-Leuchtdiode zu dem Strahlungsspektrum 4 ist. Zudem sind die Überlappungen des Absorptionsspektrums von NO mit den Absorptionsspektren von SO2 und NO2 deutlicher zu erkennen. FIG. 2 shows an enlargement of the spectral range from FIG. 1 in the region of the absorption band of NO at λ = 226 nm. From FIG -LED to the radiation spectrum 4 is. In addition, the overlapping of the absorption spectrum of NO with the absorption spectra of SO 2 and NO 2 can be seen more clearly.
Fig. 3 zeigt eine schematische Darstellung eines Ausführungsbeispiels für eine erfindungs- gemäße Vorrichtung 8 zum Messen einer NO-Konzentration in einem die Störgaskomponen- ten SO2 und NO2 enthaltenden Gasgemisch. 3 shows a schematic representation of an exemplary embodiment for a device 8 according to the invention for measuring an NO concentration in a gas mixture containing the interfering gas components SO 2 and NO 2.
Die Vorrichtung 8 weist eine das Gasgemisch aufnehmende Messkammer 9 mit einem Ga- seingang 10 und einem Gasausgang 11 auf. Die Messkammer 9 ist als Messküvette mit einem hohlzylindrischen Mantel 12 und strahlungsdurchlässigen endseitigen Fenstern 13 und 14 ausgebildet. The device 8 has a measuring chamber 9 that receives the gas mixture and has a gas inlet 10 and a gas outlet 11. The measuring chamber 9 is designed as a measuring cuvette with a hollow cylindrical jacket 12 and radiation-permeable end windows 13 and 14.
Zudem weist die Vorrichtung 8 eine optoelektronische Messanordnung 15 zum Messen der NO-Konzentration auf. Die Messanordnung 15 ist eingerichtet, die Messkammer 9 zum Mes- sen der NO-Konzentration mit einer hierzu geeigneten UV-Strahlung zu durchleuchten und die aus der Messkammer 9 austretende UV-Strahlung zu detektieren. In addition, the device 8 has an optoelectronic measuring arrangement 15 for measuring the NO concentration. The measuring arrangement 15 is set up to illuminate the measuring chamber 9 for measuring the NO concentration with UV radiation suitable for this purpose and to detect the UV radiation emerging from the measuring chamber 9.
Hierzu weist die Messanordnung 15 eine in Fig. 3 nicht gezeigte UV-Leuchtdiode zur Erzeu- gung der UV-Strahlung entsprechend dem Strahlungsspektrum 4 aus den Fign. 1 und 2, eine in Fig. 3 nicht gezeigte UV-Leuchtdiode zur Erzeugung der UV-Strahlung entsprechend dem Strahlungsspektrum 5 aus den Fign. 1 und 2 und eine in Fig. 3 nicht gezeigte UV-Leuchtdiode zur Erzeugung der UV-Strahlung entsprechend dem Strahlungsspektrum 6 aus den Fign. 1 und 2 auf. Diese UV-Leuchtdioden sind an einer Vorderseite einer Metallkernleiterplatine 16 angeord- net, an deren Rückseite ein Peltier-Element 17 angeordnet ist, an dem wiederum eine Kühl- rippen Struktur 18 angeordnet ist. An der Vorderseite der Metallkernleiterplatine 16 ist zudem ein Temperatursensor 19 zum Messen der Temperatur der UV-Leuchtdioden angeordnet. Die UV-Leuchtdioden und deren Anordnung an der Metallleiterplatine 16 ist in Fig. 4 gezeigt.For this purpose, the measuring arrangement 15 has a UV light-emitting diode, not shown in FIG. 3, for generating the UV radiation corresponding to the radiation spectrum 4 from FIGS. 1 and 2, a UV light-emitting diode, not shown in FIG. 3, for generating the UV radiation corresponding to the radiation spectrum 5 from FIGS. 1 and 2 and a UV light-emitting diode, not shown in FIG. 3, for generating the UV radiation corresponding to the radiation spectrum 6 from FIGS. 1 and 2 on. These UV light-emitting diodes are arranged on a front side of a metal core printed circuit board 16, on the rear side of which a Peltier element 17 is arranged, on which in turn a cooling rib structure 18 is arranged. A temperature sensor 19 for measuring the temperature of the UV light-emitting diodes is also arranged on the front side of the metal core circuit board 16. The UV light-emitting diodes and their arrangement on the metal circuit board 16 is shown in FIG. 4.
Die Vorrichtung 8 weist eine mit der Messanordnung 15 verbundene, nicht gezeigte Auswer- teelektronik auf, die mit dem Temperatursensor 19 und dem Peltier-Element 17 verbunden ist, um die Temperatur der UV-Leuchtdioden durch Wärmeabführung konstant halten zu kön- nen. The device 8 has evaluation electronics, not shown, connected to the measuring arrangement 15, which are connected to the temperature sensor 19 and the Peltier element 17 in order to be able to keep the temperature of the UV light-emitting diodes constant by dissipating heat.
Zudem ist die Auswerteelektronik mit den UV-Leuchtdioden verbunden, um diese gegenpha- sig ansteuern bzw. aktivieren und deaktivieren zu können, wie es durch die beiden Steuer- signalverläufe 20 und 21 angedeutet ist. Die Ansteuerung der UV-Leuchtdioden erfolgt dabei sequenziell. Nach einem ersten Ansteuerungsdurchlauf [1 -2-3-4] ist eine Dunkelphase [0] vorhanden, um einen Nullpunkt einer Detektor/Verstärkereinheit erfassen zu können. In addition, the evaluation electronics are connected to the UV light-emitting diodes in order to be able to control them in phase opposition or to activate and deactivate them, as is indicated by the two control signal curves 20 and 21. The UV light-emitting diodes are activated sequentially. After a first control cycle [1 -2-3-4] there is a dark phase [0] in order to be able to detect a zero point of a detector / amplifier unit.
Die Messanordnung 15 weist zudem eine Sammellinse 22 auf, die die von den UV-Leucht- dioden jeweilig ausgehende UV-Strahlung sammelt und auf einen Strahlteiler 23 der Messan- ordnung 15 richtet. Ein Teil der auf den Strahlteiler 23 auftreffenden UV-Strahlung wird mit- tels des Strahlteilers 23 ausgekoppelt und mittels einer weiteren Sammellinse 24 der Messanordnung 15 auf einen Referenzdetektor 25 der Messanordnung 15 gerichtet. Der an- dere Teil der auf den Strahlteiler 23 auftreffenden UV-Strahlung durchläuft die Messkammer 9. The measuring arrangement 15 also has a collecting lens 22 which collects the UV radiation emanating from the UV light-emitting diodes and directs it onto a beam splitter 23 of the measuring arrangement 15. Part of the UV radiation impinging on the beam splitter 23 is decoupled by means of the beam splitter 23 and directed onto a reference detector 25 of the measuring arrangement 15 by means of a further converging lens 24 of the measuring arrangement 15. The other part of the UV radiation striking the beam splitter 23 passes through the measuring chamber 9.
Nach dem Austritt aus der Messkammer 9 wird die UV-Strahlung mittels einer weiteren Sam- mellinse 26 der Messanordnung 15 auf einen Strahlteiler 27 einer Referenzmesseinheit 28 der Vorrichtung 8 gerichtet. Die Referenzmesseinheit 28 ist hinsichtlich einer Strahlungsrich- tung der die Messkammer 9 durchleuchtenden UV-Strahlung der Messkammer 9 nachge- schaltet angeordnet. After exiting the measuring chamber 9, the UV radiation is directed onto a beam splitter 27 of a reference measuring unit 28 of the device 8 by means of a further collecting lens 26 of the measuring arrangement 15. The reference measuring unit 28 is arranged downstream of the measuring chamber 9 with regard to a direction of radiation of the UV radiation transilluminating the measuring chamber 9.
Ein Teil der auf den Strahlteiler 27 auftreffenden UV-Strahlung wird auf einen Messdetektor 29 der Messanordnung 15 gerichtet. Der andere Teil der auf den Strahlteiler 27 auftreffenden UV-Strahlung wird mittels des Strahlteilers 27 ausgekoppelt und auf eine mit NO gefüllte Gaszelle 30 der Referenzmesseinheit 28 gerichtet. Die Gaszelle 30 ist strahlungsdurchlässig und mit dem von dem Strahlteiler 27 ausgehenden Teil der UV-Strahlung durchleuchtbar angeordnet. Hierzu weist die Gaszelle 30 endseitige strahlungsdurchlässige Fenster 31 undPart of the UV radiation striking the beam splitter 27 is directed onto a measuring detector 29 of the measuring arrangement 15. The other part of the UV radiation impinging on the beam splitter 27 is decoupled by means of the beam splitter 27 and directed onto a gas cell 30 of the reference measuring unit 28 filled with NO. The gas cell 30 is permeable to radiation and arranged to be transilluminatable with the part of the UV radiation proceeding from the beam splitter 27. To this end, the gas cell 30 has radiation-permeable windows 31 and 31 at the end
32 auf. Die Referenzmesseinheit 28 weist ferner einen Referenzdetektor 33 auf, der mit einer aus der Gaszelle 30 austretenden UV-Strahlung beaufschlagbar angeordnet ist. 32 on. The reference measuring unit 28 also has a reference detector 33, which is arranged so that it can be acted upon by UV radiation emerging from the gas cell 30.
Die Auswerteelektronik ist eingerichtet, bei Vorhandensein eines Nullgases in der Messkam- mer 9 Messsignale des Referenzdetektors 33 und Messignale eines Messdetektors 29 der Messanordnung 15 zu erfassen und zu speichern. Des Weiteren ist die Auswerteelektronik eingerichtet, bei Vorhandensein des Gasgemischs in der Messkammer 9 Messwerte des Re- ferenzdetektors 33 und Messwerte eines Messdetektors 29 zu erfassen. Zudem ist die Aus- werteelektronik eingerichtet, normierte Messwerte jeweils als Quotient aus einem jeweilig momentan erfassten Messwert des Messdetektors 29 und dem gespeicherten Messwert des Messdetektors 29 zu ermitteln und normierte Referenzwerte jeweils als Quotient aus einem jeweilig momentan erfassten Messwert des Referenzdetektors 33 und dem gespeicherten Messwert des Referenzdetektors 33 zu ermitteln. Des Weiteren ist die Auswerteelektronik eingerichtet, Modulationswerte jeweils durch Dividieren einer Differenz aus dem jeweiligen normierten Referenzwert des Referenzdetektors 33 und dem jeweiligen normierten Messwert des Messdetektors 29 durch den jeweiligen normierten Referenzwert des ReferenzdetektorsThe evaluation electronics are set up to record and store measurement signals from reference detector 33 and measurement signals from measurement detector 29 of measurement arrangement 15 when a zero gas is present in measurement chamber 9. Furthermore, the evaluation electronics are set up to record measured values from the reference detector 33 and measured values from a measurement detector 29 when the gas mixture is present in the measuring chamber 9. In addition, the evaluation electronics are set up to determine normalized measured values as the quotient of a currently recorded measured value of the measurement detector 29 and the stored measured value of the measurement detector 29 and normalized reference values as a quotient of a currently recorded measured value of the reference detector 33 and the stored measured value of the reference detector 33 to be determined. Furthermore, the evaluation electronics are set up, modulation values in each case by dividing a difference between the respective normalized reference value of the reference detector 33 and the respective normalized measured value of the measuring detector 29 by the respective normalized reference value of the reference detector
33 zu ermitteln. Zudem ist die Auswerteelektronik eingerichtet, eine von der NO-Konzentra- tion abhängende Modulationsfunktion aus den Modulationswerten zu ermitteln, eine NO- Konzentrationsfunktion durch Inversion der Modulationsfunktion zu ermitteln, ein Polynom des Grades > 2 an die NO-Konzentrationsfunktion anzunähern, die Koeffizienten des Poly- noms zu speichern und die NO-Konzentration in dem Gasgemisch unter Verwendung der Koeffizienten des Polynoms zu ermitteln. 33 to be determined. In addition, the evaluation electronics are set up to determine a modulation function dependent on the NO concentration from the modulation values, to determine an NO concentration function by inversion of the modulation function, to approximate a polynomial of degree> 2 to the NO concentration function, the coefficients of the poly - To store noms and to determine the NO concentration in the gas mixture using the coefficients of the polynomial.
Fig. 4 zeigt eine schematische Darstellung eines Details der in Fig. 3 gezeigten Vorrichtung 8. Es ist die Vorderseite der Metallkernleiterplatine 16 gezeigt, an der vier UV-LeuchtdiodenFIG. 4 shows a schematic representation of a detail of the device 8 shown in FIG. 3. The front side of the metal core circuit board 16 is shown, on which four UV light-emitting diodes
34 bis 37 und der Temperatursensor 19 angeordnet sind. Die UV-Leuchtdioden 34 bis 37 sind nahe beieinander und im Bereich der optischen Achse der nicht gezeigten Messanord- nung angeordnet. Die UV-Leuchtdioden 34 bis 37 erzeugen jeweils UV-Strahlungen, wie sie in den Fign. 1 und 2 gezeigt sind, was durch die Wellenlängen li, l2, fo und l4 angedeutet ist. Die UV-Leuchtdiode 34 dient dem Erzeugen einer UV-Strahlung, mit der die in Fig. 3 gezeigte Messkammer durchleuchtbar ist und die eine Messwellenlänge li aufweist, die einer Wellen- länge eines Maximums einer für NO spezifischen Absorptionsbande entspricht. Die UV- Leuchtdiode 35 dient dem Erzeugen einer UV-Strahlung, mit der die in Fig. 3 gezeigte Mess- kammer durchleuchtbar ist und die eine Messwellenlänge λ3 aufweist, die einer Wellenlänge eines Maximums einer für SO2 spezifischen Absorptionsbande entspricht. Die UV-Leuchtdi- ode 36 dient dem Erzeugen einer UV-Referenzstrahlung, mit der die in Fig. 3 gezeigte Mess- kammer durchleuchtbar ist und die eine Messwellenlänge λ2 aufweist. Die UV-Leuchtdiode 37 dient dem Erzeugen einer UV-Strahlung, mit der die in Fig. 3 gezeigte Messkammer durchleuchtbar ist und die eine Messwellenlänge λ4 aufweist, die einer Wellenlänge eines Maximums einer für NO2 spezifischen Absorptionsbande entspricht. 34 to 37 and the temperature sensor 19 are arranged. The UV light-emitting diodes 34 to 37 are arranged close to one another and in the area of the optical axis of the measuring arrangement (not shown). The UV light-emitting diodes 34 to 37 each generate UV radiation, as shown in FIGS. 1 and 2 are shown, which is indicated by the wavelengths li, l2, fo and l4. The UV light-emitting diode 34 is used to generate UV radiation with which the measuring chamber shown in FIG. 3 can be transilluminated and which has a measuring wavelength li which corresponds to a wavelength of a maximum of an absorption band specific for NO. The UV light-emitting diode 35 is used to generate UV radiation with which the measuring chamber shown in FIG. 3 can be transilluminated and which has a measuring wavelength λ 3 which corresponds to a wavelength of a maximum of an absorption band specific for SO 2. The UV light emitting diode 36 is used to generate a UV reference radiation with which the measuring chamber shown in FIG. 3 can be transilluminated and which has a measuring wavelength λ 2 . The UV light emitting diode 37 is used to generate UV radiation with which the measuring chamber shown in FIG. 3 can be transilluminated and which has a measuring wavelength λ 4 which corresponds to a wavelength of a maximum of an absorption band specific for NO 2.
Fig. 5 zeigt eine beispielhafte spektrale Verteilung einer von einer zur NO-Konzentrations- messung verwendbaren UV-Leuchtdiode abgegebenen UV-Strahlung. Es ist die optische Strahlungsleistung P(λ) in mW gegenüber der Wellenlänge l in nm aufgetragen. Die optische Strahlungsleistung P(λ) ist mit dem Strahlungsfluss Φ identisch. 5 shows an exemplary spectral distribution of a UV radiation emitted by a UV light-emitting diode which can be used for measuring the NO concentration. The optical radiation power P (λ) in mW is plotted against the wavelength l in nm. The optical radiation power P (λ) is identical to the radiation flux Φ.
Die Detektoren der in Fig. 5 nicht gezeigten Vorrichtung erfassen jeweils nicht die spektrale Verteilung der auf sie jeweilig einfallenden UV-Strahlung, sondern die gesamte optische Strahlungsleistung, die auf die Detektorfläche des jeweiligen Detektors gelangt, also die Be- strahlungsstärke E. Durch die in der Messkammer stattfindende Strahlungsabsorption durch NO2, SO2 und NO wird die Intensität Io der UV-Strahlungen der UV-Leuchtdioden entspre- chend dem Lambert-Beer'schen-Gesetz abgeschwächt:
Figure imgf000017_0001
The detectors of the device not shown in FIG The absorption of radiation in the measuring chamber by NO 2 , SO 2 and NO, the intensity Io of the UV radiation of the UV light-emitting diodes is weakened according to the Lambert-Beer law:
Figure imgf000017_0001
Hierbei ist 1(c) eine auf die Detektorfläche des jeweiligen Detektors auftreffende Intensität (W/m2), α(λ) ein wellenlängenabhängiger Absorptionskoeffizient der jeweiligen Gaskompo- nente in der Messkammer, c eine Konzentration der jeweiligen Gaskomponente in der Mess- kammer und L eine Länge der von der UV-Strahlung durch das Gasgemisch in der Mess- kammer zurückgelegten Strecke. Here, 1 (c) is an intensity (W / m 2 ) impinging on the detector surface of the respective detector, α (λ) is a wavelength-dependent absorption coefficient of the respective gas component in the measuring chamber, c is a concentration of the respective gas component in the measuring chamber and L is the length of the distance covered by the UV radiation through the gas mixture in the measuring chamber.
Mit dem Messdetektor der Messanordnung der Vorrichtung werden dann folgende integrale Strahlungsleistungen bzw. Bestrahlungsstärken E Mess. erfasst: Im Spektralbereich der UV-Strahlung der zur NO-Messung verwendeten UV-Leuchtdiode um λ1 .
Figure imgf000018_0001
With the measuring detector of the measuring arrangement of the device, the following integral radiation powers or radiation intensities E Mess. recorded: In the spectral range of the UV radiation of the UV light-emitting diode used for NO measurement around λ 1 .
Figure imgf000018_0001
Im Spektral bereich der UV-Strahlung der zur Referenzmessung verwendeten UV-Leuchtdi- ode um λ2 :
Figure imgf000018_0002
In the spectral range of the UV radiation of the UV light-emitting diode used for the reference measurement around λ 2 :
Figure imgf000018_0002
Im Spektra Ibereich der UV-Strahlung der zur SO2-Messung verwendeten UV-Leuchtdiode um λ3 :
Figure imgf000018_0003
Im Spektralbereich der UV-Strahlung der zur NO2-Messung verwendeten UV-Leuchtdiode um λ4:
Figure imgf000018_0004
In the spectra of the UV radiation of the UV light-emitting diode used for SO 2 measurement around λ 3:
Figure imgf000018_0003
In the spectral range of the UV radiation of the UV light-emitting diode used for NO 2 measurement around λ 4:
Figure imgf000018_0004
Hierbei sind α1.1, α1.2, α1.3 und α1.4 die Absorptionskoeffizienten von NO2 bei der Wellenlänge λ1, λ2 , λ3 bzw. λ4, α2.1, α2.2 und α2.3 die Absorptionskoeffizienten von SO2 bei der Wellenlänge λ1 , λ2 bzw. λ3. αNO ist der Absorptionskoeffizient von NO bei der Wellenlänge λ1 , ONO(2) ist der Absorptionskoeffizient von NO bei der Wellenlänge λ2 , Ci ist die Konzentration von NO2, C2 ist die Konzentration von SO2, CNO ist die Konzentration von NO und L ist die Länge der von der UV-Strahlung durch das Gasgemisch in der Messkammer zurückgelegten Strecke ist.Here, α 1.1 , α 1.2 , α 1.3 and α 1.4 are the absorption coefficients of NO 2 at the wavelength λ 1 , λ 2 , λ 3 and λ 4 , α 2.1 , α 2.2 and α 2.3 are the absorption coefficients of SO 2 at the wavelength λ 1 , λ 2 and λ 3, respectively. α NO is the absorption coefficient of NO at wavelength λ 1 , O NO (2) is the absorption coefficient of NO at wavelength λ 2 , Ci is the concentration of NO 2 , C 2 is the concentration of SO 2 , C NO is the The concentration of NO and L is the length of the distance covered by the UV radiation through the gas mixture in the measuring chamber.
Die mit dem Referenzdetektor der der Messkammer vorgeschalteten Referenzmesseinrich- tung aus Fig. 3 erfassbaren Bestrahlungsstärken E Ref. The irradiance E Ref which can be detected with the reference detector of the reference measuring device from FIG. 3 connected upstream of the measuring chamber.
Figure imgf000019_0001
Die mit dem Referenzdetektor der der Messkammer nachgeschalteten Referenzmesseinheit aus Fig. 3 bei der NO-Messung erfassbare Bestrahlungsstärke ERef.5 entspricht
Figure imgf000019_0002
wobei LG die Länge der von der UV-Strahlung durch das NO-Gas in der Gaszelle 30 zurück- gelegte Strecke ist. Da in der Gaszelle eine sehr hohe NO-Konzentration CNO.G, beispiels- weise 100 %, vorhanden ist, ändert sich diese integrale Strahlungsleistung durch die deut- lich geringere NO-Konzentration in der Messkammer nur wenig, so dass der Faktor
Figure imgf000019_0005
gegenüber dem Faktor
Figure imgf000019_0004
vernachlässigt werden kann.
Figure imgf000019_0001
The irradiance E Ref .5 which can be detected with the reference detector of the reference measuring unit from FIG. 3 connected downstream of the measuring chamber during the NO measurement corresponds to
Figure imgf000019_0002
where LG is the length of the distance covered by the UV radiation through the NO gas in the gas cell 30. Since there is a very high NO concentration CNO.G in the gas cell, for example 100%, this integral radiation output changes only slightly due to the significantly lower NO concentration in the measuring chamber, so that the factor
Figure imgf000019_0005
versus the factor
Figure imgf000019_0004
can be neglected.
In der Auswertelektronik der Vorrichtung aus den Fign. 3 und 4 können die gemessenen Bestrahlungsstärken E der unterschiedlichen Detektoren normiert und durch eine Quotien- tenbildung verrechnet werden. Durch diese Maßnahme wird die Signaländerung der zu mes- senden NO-Gaskonzentration CNO in Gegenwart von NO2 und SO2 kompensiert. In the evaluation electronics of the device from FIGS. 3 and 4, the measured irradiance E of the different detectors can be normalized and offset by forming a quotient. This measure compensates for the signal change in the NO gas concentration CNO to be measured in the presence of NO 2 and SO 2.
Es gilt dann für die NO-Modulationswerte:
Figure imgf000019_0003
The following then applies to the NO modulation values:
Figure imgf000019_0003
Figure imgf000020_0001
Figure imgf000020_0001
Fig. 6 zeigt verschiedene spektrale Verteilungen A, B und C der UV-Strahlung am Messde- tektor und am Referenzdetektor, hervorgerufen durch unterschiedliche Gase in der Mess- kammer. Die UV-Strahlung dient zur NO-Konzentrationsmessung und hat ein Maximum bei λ1=226 nm. 6 shows different spectral distributions A, B and C of the UV radiation on the measuring detector and on the reference detector, caused by different gases in the measuring chamber. The UV radiation is used to measure the NO concentration and has a maximum at λ 1 = 226 nm.
Die spektralen Verteilungen A ergeben sich, wenn sich in der Messkammer ein Nullgas, bei- spielsweise Stickstoff oder Raumluft, befindet. Im Messkanal MK gibt es keine Schwächung der UV-Strahlung. Im Referenzkanal, der die mit NO gefüllte Gaszelle aufweist, gibt es eine Schwächung der UV-Strahlung bei λ0. Hieraus ergibt sich eine Differenz D=RK-MK. The spectral distributions A result when there is a zero gas, for example nitrogen or room air, in the measuring chamber. There is no weakening of the UV radiation in the measuring channel MK. In the reference channel, which has the gas cell filled with NO, there is a weakening of the UV radiation at λ 0 . This results in a difference D = RK-MK.
Die spektralen Verteilungen B ergeben sich, wenn sich in der Messkammer ein Gasgemisch mit einer bestimmten NO-Konzentration, jedoch ohne SO2 und ohne NO2 befindet. Im Mess- kanal MK gibt es nun eine Schwächung der UV-Strahlung. Die Änderung der für diese Schwächung verantwortlichen Strahlungsabsorption ist proportional (Lambert-Beer'sches- Gesetz) zu der NO-Konzentration in der Messkammer. The spectral distributions B result when a gas mixture with a certain NO concentration, but without SO 2 and without NO 2, is in the measuring chamber. There is now a weakening of the UV radiation in the measuring channel MK. The change in the radiation absorption responsible for this weakening is proportional (Lambert-Beer’s law) to the NO concentration in the measuring chamber.
Die spektralen Verteilungen C ergeben sich, wenn sich in der Messkammer ein Gasgemisch mit NO, NO2 und SO2 befindet. Dadurch erfolgt im Referenzkanal RK und im Messkanal MK eine Strahlungsabsorption sowohl bei lo durch NO, NO2 und SO2 als auch eine Strahlungs- absorption in Flanken der UV-Strahlung durch NO2 und SO2. The spectral distributions C result when there is a gas mixture with NO, NO 2 and SO 2 in the measuring chamber. This results in radiation absorption in the reference channel RK and in the measurement channel MK both at lo by NO, NO 2 and SO 2 and radiation absorption in flanks of the UV radiation by NO 2 and SO 2 .
Fig. 7 zeigt Diagramme eines Ausführungsbeispiels für eine Modulationsfunktion Mod(c) und ein Ausführungsbeispiel für eine NO-Konzentrationsfunktion c(Mod), die sich bei Anwendung der Vorrichtung aus den Fign. 3 und 4 ergeben kann. Die Modulationsfunktion Mod(c) ergibt sich durch die oben beschriebene Modulationswerberechnung. Die Modulationsfunktion Mod(c) wird invertiert, um die NO-Konzentrationsfunktion c(Mod) zu erhalten. Bezugszeichenliste7 shows diagrams of an exemplary embodiment for a modulation function Mod (c) and an exemplary embodiment for an NO concentration function c (Mod), which result when the device from FIGS. 3 and 4 can result. The modulation function Mod (c) results from the modulation advertising calculation described above. The modulation function Mod (c) is inverted to obtain the NO concentration function c (Mod). List of reference symbols
1 Graph (SO2) 1 graph (SO 2 )
2 Graph (NO) 2 graph (NO)
3 Graph (N02) 3 graph (N0 2 )
4 Strahlungsspektrum (NO-UV-Leuchtdiode) 4 radiation spectrum (NO-UV light-emitting diode)
5 Strahlungsspektrum (S02-UV-Leuchtdiode) 5 radiation spectrum (S0 2 UV light-emitting diode)
6 Strahlungsspektrum (N02-UV-Leuchtdiode) 6 radiation spectrum (N0 2 UV light-emitting diode)
7 Referenzstrahlungsspektrum (UV-Leuchtdiode) 7 Reference radiation spectrum (UV light-emitting diode)
8 Vorrichtung 8 device
9 Messkammer 9 measuring chamber
10 Gaseingang von 9 10 gas inlet from 9
11 Gasausgang von 9 11 gas outlet from 9
12 Mantel von 9 12 coat of 9
13 Fenster von 9 13 windows from 9
14 Fenster von 9 14 windows from 9
15 Messanordnung 15 Measurement setup
16 Metallkernleiterplatine 16 metal core circuit board
17 Peltier-Element 17 Peltier element
18 Kühlrippenstruktur 18 cooling fin structure
19 Temperatursensor 19 temperature sensor
20 Steuersignalverlauf 20 Control waveform
21 Steuersignalverlauf 21 Control signal curve
22 Sammellinse von 15 22 converging lens from 15
23 Strahlteiler von 15 23 beamsplitters from 15
24 Sammellinse von 15 24 converging lens from 15
25 Referenzdetektor von 15 25 reference detector from 15
26 Sammellinse von 15 26 converging lens from 15
27 Strahlteiler von 28 27 beamsplitters from 28
28 Referenzmesseinheit 28 Reference measuring unit
29 Messdetektor von 15 29 measuring detector from 15
30 Gaszelle von 28 30 gas cell from 28
31 Fenster von 30 32 Fenster von 30 31 windows from 30 32 windows from 30
33 Referenzdetektor von 28 33 reference detector from 28
34 UV-Leuchtdiode (NO) 34 UV light emitting diode (NO)
35 UV-Leuchtdiode (SO2) 35 UV light emitting diode (SO 2 )
36 UV-Leuchtdiode (Referenz) 36 UV light emitting diode (reference)
37 UV-Leuchtdiode (N02) 37 UV light emitting diode (N0 2 )
38 Steuersignalverlauf 38 Control waveform
39 Steuersignalverlauf c Konzentration 39 Control signal curve c concentration
C1 NO2-Konzentration c2 SO2-Konzentration CNO NO-Konzentration D Differenz RK-MK M Modulation Mod Modulation MK Messkanal P Strahlungsleistung RK Referenzkanal C 1 NO 2 concentration c 2 SO 2 concentration C NO NO concentration D Difference RK-MK M Modulation Mod Modulation MK Measurement channel P Radiated power RK reference channel
T Strahlungsintensität in Transmission l Wellenlänge lo Wellenlänge (Maximum NO-Absorption) li WellenlOnge (NO) l2 Wellenlänge (Referenz) h Wellenlänge (SO2) l4 Wellenlänge (NO2) T radiation intensity in transmission l wavelength lo wavelength (maximum NO absorption) li wavelength (NO) l 2 wavelength (reference) h wavelength (SO 2 ) l4 wavelength (NO 2 )

Claims

Patentansprüche Claims
1. Vorrichtung (8) zum Messen einer NO-Konzentration (CNO) in einem wenigstens eine Störgaskomponente enthaltenden Gasgemisch, aufweisend wenigstens eine das Gasge- misch aufnehmende Messkammer (9) und wenigstens eine optoelektronische Messanord- nung (15) zum Messen der NO-Konzentration (CNO), wobei die Messanordnung (15) einge- richtet ist, die Messkammer (9) zum Messen der NO-Konzentration (CNO) mit einer hierzu geeigneten UV-Strahlung zu durchleuchten und die aus der Messkammer (9) austretende UV-Strahlung zu detektieren, wobei die Messanordnung (15) zur Erzeugung der UV-Strah- lung wenigstens eine UV-Leuchtdiode (34, 35, 36, 37) aufweist, gekennzeichnet durch we- nigstens eine Referenzmesseinheit (28), die hinsichtlich einer Strahlungsrichtung der die Messkammer (9) durchleuchtenden UV-Strahlung der Messkammer (9) nachgeschaltet an- geordnet ist, wobei die Referenzmesseinheit (28) wenigstens einen Strahlteiler (27), der mit der aus der Messkammer (9) austretenden UV-Strahlung beaufschlagbar angeordnet ist, we- nigstens eine mit NO gefüllte Gaszelle (30), die mit einem von dem Strahlteiler (27) ausge- henden Teil der UV-Strahlung durchleuchtbar angeordnet ist, und wenigstens einen Refe- renzdetektor (33), der mit einer aus der Gaszelle (30) austretenden UV-Strahlung beauf- schlagbar angeordnet ist, aufweist. 1. Device (8) for measuring an NO concentration (CNO) in a gas mixture containing at least one interfering gas component, having at least one measuring chamber (9) receiving the gas mixture and at least one optoelectronic measuring arrangement (15) for measuring the NO Concentration (CNO), the measuring arrangement (15) being set up to illuminate the measuring chamber (9) for measuring the NO concentration (CNO) with UV radiation suitable for this purpose and the UV radiation emitted from the measuring chamber (9). To detect radiation, the measuring arrangement (15) for generating the UV radiation having at least one UV light-emitting diode (34, 35, 36, 37), characterized by at least one reference measuring unit (28) which, with regard to a radiation direction, of the the measuring chamber (9) transilluminating UV radiation is arranged downstream of the measuring chamber (9), the reference measuring unit (28) having at least one beam splitter (27) which beau with the UV radiation emerging from the measuring chamber (9) at least one gas cell (30) filled with NO, which is arranged to be transilluminated with part of the UV radiation emanating from the beam splitter (27), and at least one reference detector (33) which is connected to a UV radiation emerging from the gas cell (30) is arranged to be acted upon.
2. Vorrichtung (8) nach Anspruch 1 , gekennzeichnet durch wenigstens eine mit der Messanordnung (15) verbundene Auswerteelektronik, die eingerichtet ist, bei Vorhandensein eines Nullgases in der Messkammer (9) Messwerte des Referenzdetektors (33) und Mess- werte eines Messdetektors (29) der Messanordnung (15), der mit einem weiteren von dem Strahlteiler (27) ausgehenden Teil der UV-Strahlung beaufschlagbar angeordnet ist, zu er- fassen und zu speichern, bei Vorhandensein des Gasgemischs in der Messkammer (9) Messwerte des Referenzdetektors (33) und Messwerte eines Messdetektors (29) zu erfas- sen, normierte Messwerte jeweils als Quotient aus einem jeweilig momentan erfassten Mess- wert des Messdetektors (29) und dem gespeicherten Messwert des Messdetektors (29) zu ermitteln, normierte Referenzwerte jeweils als Quotient aus einem jeweilig momentan erfass- ten Messwert des Referenzdetektors (33) und dem gespeicherten Messwert des Referenz- detektors (33) zu ermitteln, Modulationswerte jeweils durch Dividieren einer Differenz aus dem jeweiligen normierten Referenzwert des Referenzdetektors (33) und dem jeweiligen nor- mierten Messwert des Messdetektors (29) durch den jeweiligen normierten Referenzwert des Referenzdetektors (33) zu ermitteln, eine von der NO-Konzentration (CNO) abhängende Modulationsfunktion aus den Modulationswerten zu ermitteln, eine NO-Konzentrationsfunk- tion durch Inversion der Modulationsfunktion zu ermitteln, ein Polynom des Grades > 2 an die NO-Konzentrationsfunktion anzunähern, die Koeffizienten des Polynoms zu speichern und die NO-Konzentration in dem Gasgemisch unter Verwendung der Koeffizienten des Po- lynoms zu ermitteln. 2. Device (8) according to claim 1, characterized by at least one evaluation electronics connected to the measuring arrangement (15), which are set up, in the presence of a zero gas in the measuring chamber (9), measured values of the reference detector (33) and measured values of a measuring detector ( 29) of the measuring arrangement (15), which can be acted upon by a further part of the UV radiation emanating from the beam splitter (27), to acquire and store, if the gas mixture is present in the measuring chamber (9), measured values of the reference detector ( 33) and measured values of a measuring detector (29) to determine normalized measured values in each case as a quotient of a currently recorded measured value of the measuring detector (29) and the stored measured value of the measuring detector (29), normalized reference values in each case as a quotient to determine a respective momentarily recorded measured value of the reference detector (33) and the stored measured value of the reference detector (33), modulation values each because by dividing a difference between the respective normalized reference value of the reference detector (33) and the respective normalized measured value of the measuring detector (29) by the respective normalized reference value of the reference detector (33) to determine one of the NO concentration (C NO ) dependent To determine the modulation function from the modulation values, to determine an NO concentration function by inversion of the modulation function, to approximate a polynomial of degree> 2 to the NO concentration function, to store the coefficients of the polynomial and to store the NO concentration in the gas mixture using the To determine the coefficients of the polynomial.
3. Vorrichtung (8) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die UV-Leucht- diode (34, 35, 36, 37) an einer Metallkernleiterplatine (16) angeordnet ist. 3. Device (8) according to claim 1 or 2, characterized in that the UV light emitting diode (34, 35, 36, 37) is arranged on a metal core circuit board (16).
4. Vorrichtung (8) nach Anspruch 3, dadurch gekennzeichnet, dass an der Metallkern- leiterplatine (16) wenigstens ein Peltier-Element (17) angeordnet ist. 4. Device (8) according to claim 3, characterized in that at least one Peltier element (17) is arranged on the metal core printed circuit board (16).
5. Vorrichtung (8) nach Anspruch 4, gekennzeichnet durch wenigstens einen Tempera- tursensor (19), der zum Messen einer Temperatur der UV-Leuchtdiode (34, 35, 36, 37) an- geordnet ist. 5. Device (8) according to claim 4, characterized by at least one temperature sensor (19) which is arranged to measure a temperature of the UV light-emitting diode (34, 35, 36, 37).
6. Vorrichtung (8) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Messanordnung (15) wenigstens eine weitere UV-Leuchtdiode (35) zum Erzeugen einer UV- Strahlung aufweist, mit der die Messkammer (9) durchleuchtbar ist und die eine Messwellen- länge aufweist, die einer Wellenlänge eines Maximums einer für die Störgaskomponente spezifischen Absorptionsbande entspricht. 6. Device (8) according to one of claims 1 to 5, characterized in that the measuring arrangement (15) has at least one further UV light emitting diode (35) for generating UV radiation with which the measuring chamber (9) can be transilluminated and which has a measurement wavelength which corresponds to a wavelength of a maximum of an absorption band specific for the interfering gas component.
7. Vorrichtung (8) nach Anspruch 6, dadurch gekennzeichnet, dass alle UV-Leuchtdioden (34, 35, 36, 37) an der Metallkernleiterplatine (16) angeordnet sind. 7. Device (8) according to claim 6, characterized in that all UV light-emitting diodes (34, 35, 36, 37) are arranged on the metal core circuit board (16).
8. Verfahren zum Messen einer NO-Konzentration (CNO) in einem wenigstens eine Stör- gaskomponente enthaltenden Gasgemisch, wobei das Gasgemisch in eine Messkammer (9) eingeführt wird und die mit dem Gasgemisch gefüllte Messkammer (9) zum Messen der NO- Konzentration (CNO) mit einer hierzu geeigneten UV-Strahlung durchleuchtet wird, wobei die aus der Messkammer (9) austretende UV-Strahlung detektiert wird, dadurch gekennzeich- net, dass eine mit NO gefüllte Gaszelle (30) mit einem Teil der aus der Messkammer (9) austretenden UV-Strahlung durchleuchtet und die aus der Gaszelle (30) austretende UV- Strahlung mittels eines Referenzdetektors (33) detektiert wird. 8. A method for measuring an NO concentration (CNO) in a gas mixture containing at least one interfering gas component, the gas mixture being introduced into a measuring chamber (9) and the measuring chamber (9) filled with the gas mixture for measuring the NO concentration ( CNO) is transilluminated with a suitable UV radiation, whereby the UV radiation emerging from the measuring chamber (9) is detected, characterized in that a gas cell (30) filled with NO is connected to part of the gas cell (30) from the measuring chamber (9) ) exiting UV radiation is transilluminated and the UV radiation emerging from the gas cell (30) is detected by means of a reference detector (33).
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass bei Vorhandensein eines Nullgases in der Messkammer (9) Messsignale des Referenzdetektors (33) und Messignale eines mit einem weiteren Teil der aus der Messkammer (9) austretenden UV-Strahlung be- aufschlagbaren Messdetektors (29) elektronisch erfasst und gespeichert werden, bei Vor- handensein des Gasgemischs in der Messkammer (9) Messwerte des Referenzdetektors (33) und Messwerte eines Messdetektors (29) erfasst werden, normierte Messwerte jeweils als Quotient aus einem jeweilig momentan erfassten Messwert des Messdetektors (29) und dem gespeicherten Messwert des Messdetektors (29) ermittelt werden, normierte Referenz- werte jeweils als Quotient aus einem jeweilig momentan erfassten Messwert des Referenz- detektors (33) und dem gespeicherten Messwert des Referenzdetektors (33) ermittelt wer- den, Modulationswerte jeweils durch Dividieren einer Differenz aus dem jeweiligen normier- ten Referenzwert des Referenzdetektors (33) und dem jeweiligen normierten Messwert des Messdetektors (29) durch den jeweiligen normierten Referenzwert des Referenzdetektors (33) ermittelt werden, eine von der NO-Konzentration (CNO) abhängende Modulationsfunktion aus den Modulationswerten elektronisch ermittelt wird, eine NO-Konzentrationsfunktion durch Inversion der Modulationsfunktion elektronisch ermittelt wird, ein Polynom des Grades > 2 an die NO-Konzentrationsfunktion elektronisch angenähert wird, die Koeffizienten des9. The method according to claim 8, characterized in that when a zero gas is present in the measuring chamber (9), measurement signals from the reference detector (33) and measurement signals a measuring detector (29) which can be acted upon by a further part of the UV radiation emerging from the measuring chamber (9) can be electronically recorded and stored Measuring detector (29) are recorded, normalized measured values are determined as the quotient of a currently recorded measured value of the measuring detector (29) and the stored measured value of the measuring detector (29), normalized reference values are each determined as the quotient of a currently recorded measured value of the reference - Detector (33) and the stored measured value of the reference detector (33) are determined, modulation values in each case by dividing a difference between the respective normalized reference value of the reference detector (33) and the respective normalized measured value of the measuring detector (29) by the respective normalized reference value of the reference detector (33) can be determined, one of the NO-Ko The modulation function dependent on the concentration (CNO) is determined electronically from the modulation values, an NO concentration function is determined electronically by inversion of the modulation function, a polynomial of the degree> 2 is electronically approximated to the NO concentration function, the coefficients of the
Polynoms elektronisch gespeichert werden und die NO-Konzentration in dem Gasgemisch unter Verwendung der Koeffizienten des Polynoms elektronisch ermittelt wird. Polynomial are stored electronically and the NO concentration in the gas mixture is determined electronically using the coefficients of the polynomial.
PCT/EP2020/068681 2020-07-02 2020-07-02 Measuring an no concentration in a gas mixture containing at least one interfering gas component WO2022002407A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2020/068681 WO2022002407A1 (en) 2020-07-02 2020-07-02 Measuring an no concentration in a gas mixture containing at least one interfering gas component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2020/068681 WO2022002407A1 (en) 2020-07-02 2020-07-02 Measuring an no concentration in a gas mixture containing at least one interfering gas component

Publications (1)

Publication Number Publication Date
WO2022002407A1 true WO2022002407A1 (en) 2022-01-06

Family

ID=71620398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/068681 WO2022002407A1 (en) 2020-07-02 2020-07-02 Measuring an no concentration in a gas mixture containing at least one interfering gas component

Country Status (1)

Country Link
WO (1) WO2022002407A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1176412A2 (en) * 2000-07-26 2002-01-30 Sensors, Inc. Vehicle emission sampling and analysis assembly
US8143580B1 (en) * 2009-04-14 2012-03-27 Jacob Y Wong Crossed biased filtering NDIR gas sensing methodology
DE102014212564A1 (en) * 2014-07-29 2016-02-04 Robert Bosch Gmbh Measuring device for the determination of gaseous components of the air
EP3270045A1 (en) * 2016-07-11 2018-01-17 Bluepoint Medical GmbH & Co. KG Assembly for the measurement of gas concentrations
DE202019101137U1 (en) * 2019-02-28 2019-03-13 Wi.Tec - Sensorik GmbH Simultaneous measurement of SO2 concentration, NO2 concentration and NO concentration in a gas mixture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1176412A2 (en) * 2000-07-26 2002-01-30 Sensors, Inc. Vehicle emission sampling and analysis assembly
US8143580B1 (en) * 2009-04-14 2012-03-27 Jacob Y Wong Crossed biased filtering NDIR gas sensing methodology
DE102014212564A1 (en) * 2014-07-29 2016-02-04 Robert Bosch Gmbh Measuring device for the determination of gaseous components of the air
EP3270045A1 (en) * 2016-07-11 2018-01-17 Bluepoint Medical GmbH & Co. KG Assembly for the measurement of gas concentrations
DE202019101137U1 (en) * 2019-02-28 2019-03-13 Wi.Tec - Sensorik GmbH Simultaneous measurement of SO2 concentration, NO2 concentration and NO concentration in a gas mixture

Similar Documents

Publication Publication Date Title
DE19925196C2 (en) Gas sensor arrangement
EP2307876B1 (en) Method for detection of gases by laser spectroscopy
DE2433980C2 (en) Fluorescence analyzer
DE102012223874B3 (en) Method for measuring the concentration of a gas component in a sample gas
DE102017213196A1 (en) Gas analyzer for the measurement of nitrogen oxides and sulfur dioxide in exhaust gases
DE3044959C2 (en) Flame photometer
DE102005053121A1 (en) Particle sensor e.g. photo-acoustic soot sensor, for use in exhaust gas system of e.g. passenger car, has laser diode emitting laser radiations, and acoustic sensor partially designed as piezoelectric unit that is arranged within chamber
WO2016074773A1 (en) Optical gas sensor comprising an led emitter for the emission of light of a narrow bandwidth
DE2543726A1 (en) DEVICE FOR DETECTION OF GAS-FORMED POLLUTION
DE10392663T5 (en) A photo-acoustic detection method for measuring the concentration of non-hydrocarbon components of a methane-containing gas mixture
DE202019101137U1 (en) Simultaneous measurement of SO2 concentration, NO2 concentration and NO concentration in a gas mixture
DE10255022A1 (en) Resonator-enhanced absorption spectrometer
DE102016108267B4 (en) Device and method for determining a concentration of at least one gas component of a gas mixture
DE3938142C2 (en)
WO2022002407A1 (en) Measuring an no concentration in a gas mixture containing at least one interfering gas component
DE2430011C3 (en) Two-beam photometer with interference filter
DE19848120C2 (en) Device for measuring the radiation absorption of gases
AT518433B1 (en) Spectrometer and method for assaying the ingredients of a fluid
DE2546565B2 (en) METHOD AND DEVICE FOR DETERMINING THE CONCENTRATION OF SULFUR DIOXIDE
DE102011002080A1 (en) Apparatus and method for determining the concentration of fluorophores in a sample
DE102018101766A1 (en) Method for monitoring at least one infrared radiation source and device for monitoring the state of aging of an infrared radiation source
DE10144808A1 (en) Infrared gas analysis instrument includes adjustable grating in beam path between transmitter and receiver, which can adopt differing angular positions
AT520428B1 (en) Method and device for measuring a in a raw gas
DE102017202640A1 (en) Microspectrometer, method and controller for operating a microspectrometer
EP1463929A1 (en) Method and array for the detection of foreign gas in optical imaging and/or beam control systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20740547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20740547

Country of ref document: EP

Kind code of ref document: A1