WO2022002228A1 - 部分带宽切换方法、通信网络系统,基站和用户设备 - Google Patents

部分带宽切换方法、通信网络系统,基站和用户设备 Download PDF

Info

Publication number
WO2022002228A1
WO2022002228A1 PCT/CN2021/104151 CN2021104151W WO2022002228A1 WO 2022002228 A1 WO2022002228 A1 WO 2022002228A1 CN 2021104151 W CN2021104151 W CN 2021104151W WO 2022002228 A1 WO2022002228 A1 WO 2022002228A1
Authority
WO
WIPO (PCT)
Prior art keywords
partial bandwidth
base station
user equipment
bandwidth
inactive
Prior art date
Application number
PCT/CN2021/104151
Other languages
English (en)
French (fr)
Inventor
冯爱娟
生嘉
Original Assignee
Tcl通讯(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl通讯(宁波)有限公司 filed Critical Tcl通讯(宁波)有限公司
Publication of WO2022002228A1 publication Critical patent/WO2022002228A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a partial bandwidth switching method, which is applied to a communication network system including at least one base station and at least one user equipment.
  • the fifth-generation mobile communication network system includes three major application scenarios, namely Enhanced Mobile Broadband (eMBB), Massive Machine Type Communication (mMTC), and low-latency high-reliability communication (Ultra-reliable low-latency communication, URLLC).
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Ultra-reliable low-latency communication
  • industrial IoT sensors such as pressure sensors, humidity sensors, thermometers, motion sensors, accelerometers, actuators, etc.
  • URLLC/eMBB in terms of reliability, performance, device size, cost, battery life, etc.
  • LPWA i.e. LTE-M/NB-IOT
  • smart monitoring in smart cities enables smart cities to vertically cover data collection and processing to more effectively monitor and control city resources and provide services to city residents
  • Wearable device use cases include smart watches, wristbands, eHealth-related devices, and medical monitoring devices.
  • RedCap UE Reduced Capability UE
  • the bandwidth of the new IoT device (Reduced Capability UE, referred to as RedCap UE) will be greatly reduced.
  • the IoT device the Redcap UE has a large number in a cell. ), the load is heavy.
  • the complexity of Redcap UE is reduced, such as the reduction of the number of antennas, which will affect the coverage rate.
  • the network transmits the broadcast channel with low bit rate or retransmission technology. This application, coupled with the huge number of RedCap UEs, is even worse.
  • the load of the initial part of the bandwidth, and the prior art does not solve the problem of the load of the initial part of the bandwidth.
  • the present application discloses a partial bandwidth switching method, and a communication network system, base station and user equipment using the partial bandwidth switching method.
  • the partial bandwidth switching method enables at least one base station in the network system to communicate with at least one user equipment through at least a partial bandwidth.
  • First introduced in the embodiment of solution 1 is a partial bandwidth switching method initiated by the base station.
  • the base station and the user equipment perform a random access procedure.
  • the base station selects a target partial bandwidth according to an inactive channel state of at least one inactive partial bandwidth.
  • the base station transmits a handover instruction to the user equipment, so that the user equipment is handed over to the target partial bandwidth.
  • the random access procedure uses a common partial bandwidth, that is, the initial partial bandwidth.
  • the target partial bandwidth is one of the exclusive partial bandwidths selected from all the inactive exclusive partial bandwidths. This embodiment achieves the purpose of reducing the bandwidth burden of the initial part through innovative switching steps.
  • the base station may decide whether to switch the partial bandwidth according to a current channel state of at least one current partial bandwidth.
  • the base station only selects the target partial bandwidth after deciding to switch the partial bandwidth.
  • the base station acquires the current channel state. Specifically, the base station can actively trigger a measurement procedure, in addition to statistics related information about the number of users, and collects the channel related information reported to the base station after measurement by the user equipment to obtain the current channel state.
  • the base station judges that the current channel state is poor, it will decide to switch part of the bandwidth.
  • the current channel state may be a combination of one or more of the following: the number of access users, the number of users in the RRC connected state, the noise floor, the signal-to-noise ratio, the received reference signal quality, the received reference signal energy, the channel quality indicator, or is any factor related to channel quality.
  • the judgment criteria for poor conditions can be one or more of the following combinations: the number of access users in the current partial bandwidth is greater than a number of users, the number of users in the connected state is greater than a value, the signal-to-noise ratio is lower than a threshold, the reference signal The received quality is below a quality, the reference signal received energy is below an energy, and the channel quality indicator is below an index.
  • the inactive channel state may be obtained by triggering a measurement procedure by the base station before deciding whether to switch part of the bandwidth, or the base station may buffer the previous measurement result.
  • the base station may first determine whether at least the downlink inactive part of the bandwidth is bound with a synchronization signal block (Synchronization Signal Block; SSB) resource, and then decide whether to switch the part of the bandwidth.
  • SSB Synchronization Signal Block
  • the base station can also determine whether at least one uplink inactive partial bandwidth is bound with a physical random access channel (PRACH) resource, and decide whether to switch the uplink partial bandwidth.
  • PRACH physical random access channel
  • the random access procedure may be a contention-based random access.
  • the base station sends the handover instruction to the user equipment only after the contention and collision are successful.
  • the base station may use a first activated uplink partial bandwidth identifier, a default uplink partial bandwidth identifier, or a custom field carrying an uplink partial bandwidth switching instruction, which defines a target uplink partial bandwidth bandwidth.
  • the base station may use a first activated downlink partial bandwidth identifier, a default downlink partial bandwidth identifier, or a custom field to carry a downlink partial bandwidth switching indication, wherein a target downlink partial bandwidth is defined.
  • the handover indication may be carried by a conflict resolution message MSG4 in the random access procedure.
  • the random access procedure may be a non-contention based random access.
  • the base station carries the handover instruction in a random access response, and transmits the random access response to the user equipment.
  • the user equipment may switch to the target partial bandwidth immediately after the random access procedure is completed, or may start a timer, and then switch to the target partial bandwidth after the timer expires.
  • the base station can specify the timer duration, and the handover instruction can carry it and transmit it to the user equipment.
  • the timer duration can also be customized by the user equipment.
  • the inactive channel state may include one or a combination of the following: the number of accessed users, the number of users in the RRC connected state, the noise floor, the signal-to-noise ratio, the reference signal received quality, the reference signal received energy, the channel quality indicator, and factors related to channel quality.
  • the base station may select the target partial bandwidth only when judging that the inactive channel state satisfies at least one better condition.
  • the inactive channel state includes a combination of one or more of the following: the number of connected users, the number of users in the RRC connected state, the noise floor, the signal-to-noise ratio, the received reference signal quality, the received reference signal energy, the channel quality indicator, or Any factor related to channel quality.
  • a better condition may be one of the following conditions: the number of access users in at least one inactive part of the bandwidth is less than the number of users, the number of users in the connected state is less than a value, the signal-to-noise ratio is higher than a threshold, the reference signal reception quality Above a quality, the reference signal received energy is lower than an energy, or the channel quality indicator is higher than an index.
  • the base station may send a measurement command to make the user equipment report the inactive channel state.
  • the inactive channel state may also be information retained by the base station through history, or information reported by other user equipments in the cell where it is located.
  • the base station may determine the downlink target partial bandwidth only when determining that at least the downlink inactive partial bandwidth is bound with SSB resources. In contrast, the base station determines an uplink target partial bandwidth only after judging whether at least one uplink inactive partial bandwidth is bound with PRACH resources.
  • the handover indication may be a non-service scheduling downlink control information (Downlink Control Information; DCI), which is simplified information that does not involve transmission resource allocation.
  • DCI Downlink Control Information
  • This application also discloses a second solution, a method for partial bandwidth switching initiated by user equipment, and a communication network system and user equipment involved in the solution.
  • the user equipment can form a communication network system with at least one base station, and communicate through at least a part of the bandwidth.
  • the user equipment selects a target partial bandwidth according to an inactive channel state of at least one inactive partial bandwidth. After selection, the user equipment switches to the target partial bandwidth.
  • the establishment of the RRC connected state may be achieved through a random access procedure, the details of which will be described later.
  • each user equipment only activates a partial bandwidth to communicate with the base station.
  • the inactive part of the bandwidth mentioned in this application generally refers to all the inactive part of the bandwidth, not limited to the initial, shared or exclusive part of the bandwidth. More specifically, the above-mentioned various types of partial bandwidths are further divided into uplink and downlink, and the switching mechanism depends on the communication system, and may be performed separately or in pairs.
  • the user equipment may decide whether to switch the partial bandwidth according to a current channel state of at least one current partial bandwidth. After deciding to switch the partial bandwidth, decide and switch to the target partial bandwidth.
  • the user equipment after selecting the target partial bandwidth, the user equipment will first request permission from the base station. After obtaining the permission of the base station, the user equipment switches to the target partial bandwidth.
  • the user equipment may first determine if the at least one current channel state condition is poor, and then decide to switch part of the bandwidth.
  • the at least one criterion for determining that the current channel state and condition are poor are the same as those described in the first solution.
  • the user equipment may receive the current channel state acquired by the base station through broadcast and/or dedicated RRC channels.
  • the user equipment may also actively measure the inactive channel state before deciding whether to switch part of the bandwidth.
  • the switching of the upstream and downstream partial bandwidths may be determined separately.
  • the user equipment may decide to switch the partial bandwidth after judging that at least the downstream inactive partial bandwidth is bound with the SSB resource.
  • a random access procedure may be performed between the user equipment and the base station, and the base station may carry an SSB indication in the random access procedure step to indicate whether the downlink dedicated bandwidth is bound There are SSB resources, and the user equipment can decide whether to switch the downlink partial bandwidth according to the SSB instruction.
  • the base station may carry a PRACH indication in the random access procedure step, indicating whether an uplink inactive part of the bandwidth is bound with PRACH resources. The user equipment may decide whether to perform the switching of the uplink partial bandwidth according to the PRACH indication.
  • the user equipment may first determine whether the inactive channel state is better, and then select the target partial bandwidth.
  • the inactive channel state and the criteria for determining that the condition is better are the same as those described in the first solution, and will not be repeated.
  • the selection of the uplink and downlink target partial bandwidths may be performed separately.
  • the base station may carry an SSB indication in the random access procedure step to indicate whether the downlink dedicated part of the bandwidth is bound with SSB resources.
  • the user equipment can select the downlink target partial bandwidth according to the SSB indication.
  • the user equipment can determine whether at least one uplink inactive partial bandwidth is bound with PRACH resources, so as to select an uplink target partial bandwidth.
  • the user equipment may initiate an RRC message to the base station, and report a partial bandwidth identifier of the target partial bandwidth to the base station.
  • the RRC message can be an RRC connection re-establishment request, which is reported to the base station through MSG3, or a self-defined control signaling, which reports the partial bandwidth identifier to the base station at any time.
  • the inactive channel state discussed in this solution may be the previous measurement result buffered by the user equipment, or may be obtained by the user equipment performing measurement under the notification of the base station.
  • the base station may first determine whether at least the downlink inactive partial bandwidth is bound with PRACH resources, so as to decide how to select the target partial bandwidth.
  • the methods described in the above embodiments can be further integrated into a communication network system, a base station and a user equipment. Therefore, the present invention also provides relative embodiments.
  • the embodiment of the communication network system includes a base station and at least one user, and the devices communicate through at least a part of the bandwidth.
  • the communication network system can implement the partial bandwidth switching methods of the first and second solutions of the present invention.
  • the base station and the user equipment perform a random access procedure. Then, the base station initiates handover, and selects a target partial bandwidth according to an inactive channel state of at least one inactive partial bandwidth. Finally, the base station transmits a handover instruction to the user equipment, so that the user equipment is handed over to the target partial bandwidth.
  • the feature is mainly initiated by the user equipment, and selects a target partial bandwidth according to an inactive channel state of at least one inactive partial bandwidth. Then the user equipment switches to the target partial bandwidth.
  • This application also discloses an embodiment of a base station, which is mainly based on the first solution.
  • the base station may perform a random access procedure with the user equipment.
  • a target partial bandwidth is selected by the base station according to an inactive channel state of at least one inactive partial bandwidth. Then the base station transmits a handover instruction to the user equipment, so that the user equipment is handed over to the target partial bandwidth.
  • This application also discloses an embodiment of the user equipment, which is mainly based on the second solution, wherein the user equipment selects a target partial bandwidth according to an inactive channel state of at least one inactive partial bandwidth. Then the user equipment switches to the target partial bandwidth.
  • the present application discloses a partial bandwidth switching method, and a communication network system, base station and user equipment using the partial bandwidth switching method.
  • the partial bandwidth switching method enables at least one base station in the network system to communicate with at least one user equipment through at least a partial bandwidth.
  • First introduced in the embodiment of solution 1 is a partial bandwidth switching method initiated by the base station.
  • the base station and the user equipment perform a random access procedure.
  • the base station selects a target partial bandwidth according to an inactive channel state of at least one inactive partial bandwidth.
  • the base station transmits a handover instruction to the user equipment, so that the user equipment is handed over to the target partial bandwidth.
  • the present application addresses the beneficial effects of initial partial bandwidth loads.
  • FIG. 1 is a schematic structural diagram of a communication network system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of Scheme 1 of a partial bandwidth switching method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a contention-based random access process in a partial bandwidth switching method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a non-contention-based random access process in a partial bandwidth switching method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of solution 2 of a partial bandwidth switching method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of judging whether to switch according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of selecting a target partial bandwidth according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication network system 100 .
  • the communication network system 100 includes a base station (Base Station; BS) 110 and a user equipment (User Equipment; UE) 120 .
  • the base station 110 may include various forms of macro base station, micro base station, relay station, access point, and the like.
  • the user equipment 120 may be various IoT devices with wireless communication functions, such as handheld devices, vehicle-mounted devices, wearable devices, etc., which may include a Subscriber Identity Module (SIM) card 130 for connecting to the base station 110 .
  • SIM Subscriber Identity Module
  • the base station 110 and the user equipment 120 may also be connected through an air interface technology (eg, NR UU).
  • NR UU air interface technology
  • the bandwidth of the user equipment 120 can be dynamically changed.
  • the system configures a large part of the bandwidth for the user equipment 120, and when the traffic volume is small, the system configures the user equipment 120 with a small part of the bandwidth.
  • Partial bandwidth is mainly divided into two categories: initial partial bandwidth and exclusive partial bandwidth.
  • the initial part of the bandwidth is mainly used to receive system information (RMSI), initiate random access, etc.
  • the initial part of the bandwidth should carry paging, physical random access channel (Physical Random Access Channel; PRACH), radio resource control (Radio Resource Control; RRC) ) and other signaling, the initial downlink partial bandwidth load will increase as the number of user equipments 120 increases.
  • the dedicated part of the bandwidth is mainly used for data service transmission, and the bandwidth of the dedicated part of the bandwidth is generally larger than the initial part of the bandwidth.
  • Uplink and downlink each have their own initial partial bandwidth and dedicated partial bandwidth.
  • the Physical Broadcast Channel (PBCH) in NR carries system information (MIB), which is used to enable the user equipment 120 to obtain the most basic information of the network, and to notify the user equipment 120 of the time-frequency location information of the SIB1 (RMSI) message.
  • SIB1 (RMSI) is used to broadcast other necessary information for the user equipment 120 to access the network, such as information about the initial partial bandwidth. That is to say, the initial partial bandwidth is notified to the user equipment 120 through a broadcast message, which is the partial bandwidth common to all the user equipments 120 in the cell.
  • the user equipment 120 After the user equipment 120 obtains uplink time synchronization with the base station through the random access process, it adopts to start uplink and downlink data transmission.
  • the random access procedure can be triggered by a series of events, such as initial access in RRC idle mode, RRC connection reconnection procedure, cell handover, etc.
  • necessary system information and user equipment-specific configuration such as uplink and downlink exclusive partial bandwidth configuration, can also be obtained.
  • R15/R16NR user equipment supports 4 downlink dedicated partial bandwidths and 4 uplink dedicated partial bandwidths.
  • FIG. 2 is a schematic flowchart 200 of a scheme 1 of a partial bandwidth switching method provided by an embodiment of the present application, which can be performed with reference to FIG. 1 .
  • the main feature of the first solution is that the switching of part of the bandwidth is controlled by the base station.
  • a random access procedure Random Access Procedure
  • the base station selects a target partial bandwidth according to an inactive channel state of at least one inactive partial bandwidth.
  • the base station transmits a handover instruction to the user equipment, so that the user equipment is handed over to the target partial bandwidth.
  • the user equipment switches to the target partial bandwidth according to the switching instruction.
  • the random access procedure uses a common partial bandwidth, that is, the initial partial bandwidth.
  • the target partial bandwidth is one of the exclusive partial bandwidths selected from all the inactive exclusive partial bandwidths.
  • the user equipment can only have one active partial bandwidth at the same time, and the user equipment can only send and receive data on the active partial bandwidth.
  • the active partial bandwidth can be the initial partial bandwidth or the dedicated partial bandwidth. Except for the active part of the bandwidth, the other part of the bandwidth configured by the user equipment is the inactive part of the bandwidth.
  • the inactive part of the bandwidth is the exclusive part of the bandwidth; if the active part of the bandwidth is the exclusive part of the bandwidth, the inactive part of the bandwidth can be the initial part of the bandwidth, or it can be the exclusive part of the bandwidth .
  • This embodiment achieves the purpose of reducing the bandwidth burden of the initial part through innovative switching steps.
  • the target partial bandwidth may also be the initial partial bandwidth.
  • the handover method of the present application does not limit the type of the target partial bandwidth.
  • FIG 3 shows an embodiment of a contention-based random access procedure.
  • the user equipment (UE) 310 sends a random access preamble MSG1 to the base station (BS) 320, that is, the user equipment 310 initiates a random access attempt.
  • the base station 320 feeds back a random access response MSG2 to the user equipment 310.
  • the base station 320 estimates the transmission delay with the user equipment, calibrates the uplink time based on this, and then feeds back the random access to the user equipment. Respond to MSG2.
  • steps 306 and 308 perform a conflict resolution mechanism.
  • the user equipment 310 sends a third message MSG3 to the base station 320 through the PUSCH, including the unique identification code of the user equipment.
  • the base station 320 sends a fourth message MSG4 to the user equipment as a conflict resolution message.
  • the base station 320 carries the unique identification code of the winning user equipment in the fourth information MSG4 to designate the successful user equipment in the competition.
  • the base station 320 may further carry the configuration information of the uplink and downlink dedicated partial bandwidth of the user equipment 310 in the fourth message MSG4, which may include the configuration information of the RACH (Random Access Channel, random access channel).
  • RACH Random Access Channel, random access channel
  • the reason why the industry generally refers to the third message and the fourth message as MSG3 and MSG4 instead of a specific message is that the two messages may be different according to different user equipment states and application scenarios.
  • a corresponding handover indication can be added for the uplink partial bandwidth or the downlink partial bandwidth respectively.
  • the embodiment of the handover indication may be expressed in the form of an information element (IE) as follows, in which two new options, swtichDownLinkBWP-ID and swtichUpLinkBWP-ID, are added.
  • IE information element
  • this embodiment can acquire the conflict resolution message sent by the base station 320 during the contention-based random access process, carrying the handover instruction, so that the user equipment 310 can perform partial bandwidth handover after receiving it.
  • FIG. 4 is an embodiment of the non-contention-based random access procedure of the present invention.
  • the base station 320 can assign a designated random access preamble to the user equipment 310 as required. The random access initiated in this way does not have any conflict between the user equipments. After the random access response, the end of the random access process is determined.
  • the base station 320 assigns a random access preamble to the user equipment 310.
  • the user equipment 310 sends a random access preamble to the base station 320.
  • the base station 320 feeds back a random access response to the user equipment 310.
  • the random access response may be used to carry a handover indication. That is, in step 406 in the non-contention-based random access procedure, the base station 320 may send the handover indication to the user equipment 310 with a random access response carried.
  • the base station performs partial bandwidth handover unconditionally.
  • the channel state of the currently used part of the bandwidth (generally speaking, the initial part of the bandwidth) can also be judged on the base station side in advance, and then decide whether to switch the part of the bandwidth. For example, before step 304 in FIG. 3 , or before step 402 in FIG. 4 , a judgment is made to decide whether to proceed. If so, proceed to the next steps. If not, stop the next steps.
  • the detailed flow is detailed in FIG. 6 .
  • the user equipment can immediately start the partial bandwidth handover, that is, the user equipment according to the identification code of the target partial bandwidth in a handover instruction,
  • the initial partial bandwidth is switched to the target partial bandwidth, in other words, the user equipment sets the target partial bandwidth to an active state and starts to use it for communication.
  • the user equipment may also delay partial bandwidth switching after a preset time period, such as starting a timer, and start partial bandwidth switching when the timer times out.
  • the timeout duration of the timer is set to a preset duration, and the preset duration can be specified by the base station.
  • the base station carries information of the preset duration in MSG4 or broadcast messages, or the preset duration can be set by the user equipment.
  • the handover instruction may be a non-service scheduling DCI, which belongs to simplified information that does not involve transmission resource allocation, thereby informing the user equipment to switch from the activated partial bandwidth through a simple DCI instruction with minimal communication cost. to other parts of the bandwidth.
  • the DCI may be a DCI in a new format, or a field may be added to the existing DCI to indicate partial bandwidth switching.
  • FIG. 5 is a flowchart of a partial bandwidth switching method according to the second embodiment of the present invention.
  • the main feature of the second solution is that the switching of part of the bandwidth is controlled by the user equipment.
  • a random access procedure is performed between the user equipment and the base station.
  • the current partial bandwidth used by the random access procedure is the standard initial partial bandwidth, or the shared partial bandwidth.
  • the initial partial bandwidth can be switched to one of the inactive dedicated partial bandwidths.
  • step 510 is not a necessary step.
  • step 520 can be directly performed.
  • the current partial bandwidth in this case refers to the activated dedicated partial bandwidth.
  • step 520 the user equipment selects a target partial bandwidth according to an inactive channel state of at least one inactive partial bandwidth.
  • the target partial bandwidth is subdivided into uplink and downlink, which can be determined separately or simultaneously. Details will be described later.
  • the determined target partial bandwidth as described above, is the exclusive partial bandwidth in most cases, but may also be the initial partial bandwidth in a few cases.
  • step 530 the user equipment switches to the target partial bandwidth.
  • FIG. 6 is an embodiment of judging the current channel state.
  • Part of the bandwidth switching steps in FIG. 2 and FIG. 5 are originally performed unconditionally, but can be further matched with FIG. 6, and whether or not to perform the steps in FIG. 2 or FIG. 5 is determined after judging the current channel state.
  • the steps of FIGS. 2 and 5 will only occur after the embodiment of FIG. 6 decides that part of the bandwidth is to be switched.
  • the so-called current partial bandwidth usually refers to the common partial bandwidth used in the random access procedure, that is, the initial partial bandwidth.
  • the target partial bandwidth is a partial bandwidth selected from the inactive dedicated partial bandwidth for subsequent communication purposes.
  • the uplink and downlink communications use different partial bandwidths, and the decision and selection steps may be performed simultaneously or separately, and this embodiment is applicable and not limited.
  • the so-called current partial bandwidth may also be the dedicated partial bandwidth being used by the user equipment, and the target partial bandwidth is the initial partial bandwidth in the inactive state or other dedicated partial bandwidth. All switching methods provided by the solution of the present invention are applicable, and the types of the current partial bandwidth and the target partial bandwidth are not limited.
  • the base station or the user equipment acquires the current channel state.
  • the acquisition method of the current channel state taking FIG. 2 as an example, it may be obtained by the base station itself measuring the current partial bandwidth.
  • the current channel state measured by the base station may be received by the user equipment through a broadcast and/or a dedicated RRC channel.
  • step 620 the current channel state is compared to a poor condition. If the condition of the current channel state is worse than the poor condition, in step 630, the step of switching the partial bandwidth described in FIG. 2 or FIG. 5 is performed. Conversely, if the current channel state conditions are good, there is no need to switch. As described in step 640, part of the bandwidth is not switched.
  • the timing for judging the current channel state in FIG. 6 does not limit whether the execution sequence is before or after the random access procedure in FIG. 2 or FIG. 5 , and may also be performed during the random access procedure.
  • the above-mentioned current channel state can be a combination of the following various factors: the number of access users, the number of users in the RRC connection state, the noise floor, the signal-to-noise ratio (SINR), the reference signal received quality (RSRQ), the reference signal received energy (RSRP), Channel Quality Indicator (CQI), or any factor related to channel quality. Any consideration of one of the above factors is within the scope of the present invention.
  • the above poor conditions can be a combination of the following factors: the number of access users in the current part of the bandwidth is greater than a number of users, the number of users in a connected state is greater than a value, the signal-to-noise ratio is lower than a threshold, and the reference signal reception quality is low. At a quality, the reference signal received energy is below an energy and the channel quality indicator is below an index. Any consideration of one of the above factors is within the scope of the present invention.
  • the above-mentioned threshold, quality, energy and index generally refer to reference values that can be used to judge the pros and cons. Examples of actual values can refer to the standard default values in the current operation, or any operable custom values. The book does not particularly limit its scope.
  • the user equipment may unconditionally switch to the target partial bandwidth.
  • the user equipment will first request permission from the base station. The user equipment will wait until the permission of the base station is obtained, and then proceed to step 530 to switch to the target partial bandwidth.
  • Figure 7 is an example of a selected target partial bandwidth.
  • the manner in which the target partial bandwidth is selected in FIG. 2 and FIG. 5 can be further described in FIG. 7 .
  • step 710 all selectable inactive channel states are acquired.
  • the inactive channel state can be obtained by sending the measurement configuration to the user equipment through broadcast signaling before the random access procedure, and the user equipment reports it to the base station after the measurement, or the base station retains information through history , or the information reported by other user equipments in the cell, etc.
  • the acquisition method of the inactive channel state may be obtained by the user equipment actively measuring before deciding whether to switch part of the bandwidth.
  • the target partial bandwidth is selected from all the optional inactive partial bandwidths that satisfy the specific state conditions. Therefore, in step 720, it is determined whether the inactive channel states satisfy at least one better condition. If an inactive channel state meets the requirements of the preferred condition, in step 730, it is selected as the target partial bandwidth. If there are multiple inactive channel states that satisfy the better condition at the same time, one of them can be randomly selected, or the one with the best condition can be selected as the target partial bandwidth. Conversely, if none of the inactive channel states satisfies the preferred condition, the subsequent steps are not performed.
  • the inactive channel state specifically includes a combination of the following factors: the number of accessed users, the number of users in the RRC connected state, the noise floor, the signal-to-noise ratio, the received reference signal quality, the received reference signal energy, the channel quality indicator, and any Factors related to channel quality.
  • the above preferable conditions may be the combination of the following factors: the number of access users of at least one inactive part of the bandwidth is less than the number of users, the number of users in the connected state is less than a value, the signal-to-noise ratio is higher than a threshold, the reference signal receiving The quality is higher than a quality, the received energy of the reference signal is lower than the energy, or the channel quality indicator is higher than an index, etc. Any consideration of one of the above factors is within the scope of the present invention.
  • Step 710 is applied in the embodiment of FIG. 2 , and the above-mentioned inactive channel state may be the previous measurement result buffered by the user equipment.
  • the inactive channel state may also be measured by the user equipment under the notification of the base station. If step 710 is applied in FIG. 5 , the inactive channel state may also be measured actively by the user equipment.
  • the step of selecting the target partial bandwidth in the above embodiment can be further subdivided into uplink and downlink, because each of the uplink and downlink has different partial bandwidths.
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • the upstream and downstream bandwidths need to be paired.
  • the base station may use a first active uplink partial bandwidth identifier (firstActiveUplinkBWP-Id), a default uplink partial bandwidth identifier (defaultUplinkBWP-Id), or a custom field to carry an uplink partial bandwidth switching indication.
  • the upstream partial bandwidth switching instruction defines a target upstream partial bandwidth.
  • the base station can use a first active downlink part bandwidth identifier (firstActiveDownlinkBWP-Id), a default downlink part bandwidth identifier (defaultDownlinkBWP-Id), or a custom field to carry the downlink part bandwidth Toggle indication.
  • the downlink part bandwidth switching instruction defines a target downlink part bandwidth. Similar to the foregoing embodiment of determining whether to perform handover, when selecting the target partial bandwidth of the uplink and the downlink, different factors of the uplink channel and the downlink channel may be further considered respectively.
  • deciding whether to switch the partial bandwidth, or the selection of the target partial bandwidth different factors of the uplink channel and the downlink channel can be further considered respectively. For example, if there is no SSB in the downlink part of the bandwidth after switching in step 530, the user equipment needs to trigger radio frequency re-coordination (RF Returning) when necessary, and switch back to the initial downlink part of the bandwidth for synchronization, radio resource management (RRM) measurement and other operations, This process is also a burden on the system. Therefore, whether the downlink part of the bandwidth is bound with SSB resources depends on the configuration on the base station side, and can be considered as a factor for handover or selection. Similarly, for the uplink channel state, whether or not PRACH resources are bound can also be considered as a consideration for handover or selection.
  • RF Returning radio frequency re-coordination
  • RRM radio resource management
  • the embodiments of FIG. 2 and FIG. 5 may be further combined with the step of judging SSB resources to determine whether to switch the downlink partial bandwidth. For example, the step of determining whether SSB resources are bound in the downlink inactive part of the bandwidth is determined by the base station in FIG. 2 or the user equipment in FIG. 5 . If it is found that the downlink inactive part of the bandwidth is bound with SSB resources, the downlink part of the bandwidth is switched. Otherwise, it will not proceed. In some situations, the conditions for judging whether to proceed can also be reversed. The embodiment of the present invention does not limit the correlation between the judgment result and whether it is carried out or not.
  • the base station can carry an SSB indication in the random access procedure to indicate whether the downlink dedicated part of the bandwidth is bound with SSB resources. For example, the base station may add information indicating whether each downlink dedicated part of the bandwidth has SSB in the MSG4 message of the random access process (for example, the value is 0: no SSB; 1: there is SSB). The user equipment can directly decide whether to switch part of the bandwidth according to the SSB instruction after the random access procedure.
  • the downlink target partial bandwidth when selecting the downlink target partial bandwidth, it can also be further considered according to the binding state of the SSB.
  • the SSB indication is carried by the base station in the random access procedure step, and the user equipment can directly select the downlink target partial bandwidth according to the SSB indication.
  • the downlink inactive part of the bandwidth without SSB is sometimes selected as the downlink target part of the bandwidth, and sometimes the inactive part of the bandwidth with bound SSB is selected as the target part of the bandwidth.
  • the specific embodiment is not limited to this.
  • the base station carries a PRACH indication in the random access procedure step, and the user equipment can decide whether to switch the uplink partial bandwidth or select an uplink target partial bandwidth according to the PRACH indication.
  • the uplink inactive partial bandwidth without PRACH resources is sometimes selected as the target partial bandwidth, and sometimes the uplink inactive partial bandwidth with PRACH resources is selected as the target partial bandwidth.
  • the specific embodiment is not limited to this.
  • the user equipment may initiate an RRC message to the base station, and report the partial bandwidth identifier of the target partial bandwidth to the base station. So that the base station can correctly maintain communication with the user equipment.
  • the RRC message can be an RRC connection re-establishment request, which is reported to the base station through MSG3, or a self-defined control signaling, which reports the partial bandwidth identifier to the base station at any time.
  • the embodiment of the communication network system includes a base station and at least one user, and the devices communicate through at least a part of the bandwidth.
  • the communication network system can implement the partial bandwidth switching methods of the first and second solutions of the present invention.
  • the base station and the user equipment perform a random access procedure. Then, the base station initiates handover, and selects a target partial bandwidth according to an inactive channel state of at least one inactive partial bandwidth. Finally, the base station transmits a handover instruction to the user equipment, so that the user equipment is handed over to the target partial bandwidth.
  • a random access procedure is performed between the base station and the user equipment. Then, initiated by the user equipment, a target partial bandwidth is selected according to an inactive channel state of at least one inactive partial bandwidth. Finally, the user equipment switches to the target partial bandwidth.
  • the base station may perform a random access procedure with the user equipment. Initiated by the base station, a target partial bandwidth is selected according to an inactive channel state of at least one inactive partial bandwidth. Then the base station transmits a handover instruction to the user equipment, so that the user equipment is handed over to the target partial bandwidth.
  • a random access procedure is performed between the user equipment and the base station. Then, the user equipment selects a target partial bandwidth according to an inactive channel state of at least one inactive partial bandwidth. Finally, the user equipment switches to the target partial bandwidth.
  • the embodiments of the present invention provide a storage medium in which a plurality of instructions are stored, and the instructions can be loaded by a processor to execute steps in any of the partial bandwidth switching methods provided by the embodiments of the present invention.
  • the present invention discloses a partial bandwidth switching method, and a communication network system, base station and user equipment using the partial bandwidth switching method. Since the present invention can be applied to communication network systems, base stations and user equipments, it has industrial applicability.

Abstract

本申请揭露一种部分带宽切换方法,以及使用此部分带宽切换方法的通信网络系统,基站和用户设备。该网络系统中的至少一基站可和至少一用户设备透过至少一部分带宽进行通信。在方案一中,首先由基站发起的部分带宽切换方法。该基站和该用户设备进行一随机接入程序。接着该基站根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽。最后该基站传送一切换指示至该用户设备,使该用户设备切换至该目标部分带宽。在方案二中,在该用户设备与该基站之间处于无线资源控制连接态的前提下,该用户设备根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽,接着切换至该目标部分带宽。

Description

部分带宽切换方法、通信网络系统,基站和用户设备 技术领域
本申请涉及通信技术领域,尤其涉及一种部分带宽切换方法,应用于包括至少一基站和至少一用户设备的一通信网络系统。
背景技术
第五代移动通信网路系统(5G NR)包括三大应用场景,即增强移动宽带(Enhanced Mobile Broadband,eMBB)、大规模机器类型通信(Massive Machine Type Communication,mMTC)以及低时延高可靠通信(Ultra-reliable low-latency communication,URLLC)。mMTC和URLLC之间还有一类对时间较为敏感的、设备复杂度相对较低的应用场景,比如工业物联网传感器、智慧城市中的智能监控、可穿戴设备等新型物联网应用场景。其中,工业物联网传感器(例如压力传感器,湿度传感器,温度计,运动传感器,加速计,执行器等)从可靠性、性能、设备尺寸、成本、电池寿命等方面来看,要求比URLLC/eMBB低、但比LPWA(即LTE-M/NB-IOT)高;智慧城市中的智能监控使智能城市垂直涵盖数据收集和处理,以更有效地监视和控制城市资源,并为城居民提供服务;可穿戴设备用例包括智能手表、手环,与eHealth相关的设备以及医疗监控设备等。
技术问题
新型物联网设备(Reduced Capability UE,简称为RedCap UE)与传统NR UE相比带宽会减少较多,但Redcap UE作为物联网设备,在一个小区内数量比较庞大,对部分带宽(Bandwidth Part,BWP)所在的有限无线资源来说,负载量大。而Redcap UE复杂度降低,比如天线数减少,会影响覆盖率,为了提升覆盖率,网络以低码率或重传技术传输在广播信道,这种应用加上RedCap UE的庞大数量,更加剧了初始部分带宽的负载,而现有技术并未解决初始部分带宽的负载问题。
技术解决方案
本申请揭露一种部分带宽切换方法,以及使用此部分带宽切换方法的通信网络系统,基站和用户设备。该部分带宽切换方法使该网络系统中的至少一基站可和至少一用户设备透过至少一部分带宽进行通信。首先在方案一的实施例中介绍的是由基站发起的部分带宽切换方法。该基站和该用户设备进行一随机接入程序。接着该基站根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽。最后该基站传送一切换指示至该用户设备,使该用户设备切换至该目标部分带宽。
一般而言,随机接入程序使用的是一种公共部分带宽,亦即初始部分带宽。该目标部分带宽就是从所有未激活的专有部分带宽中选择出来的其中之一专有部分带宽。本实施例透过创新的切换步骤,达到减轻初始部分带宽负担的目的。
该基站可根据至少一当前部分带宽的一当前信道状态决定是否要切换部分带宽。该 基站在决定要切换部分带宽后,才选定该目标部分带宽。首先,该基站获取该当前信道状态。具体地说,该基站可主动触发一测量程序,除了统计用户数相关信息,并收集用户设备测量后上报给基站的信道相关信息而得到该当前信道状态。
该基站判断该当前信道状态若是条件较差,就会决定要切换部分带宽。
该当前信道状态可以是下列一或多者之组合:接入的用户数,处于RRC连接态的用户数,底噪,信噪比,参考信号接收质量,参考信号接收能量,信道质量指示,或是任何与信道质量相关之因素。而条件较差的判断标准可以是下列一或多者之组合:当前部分带宽的接入用户数大于一用户数,处于连接态的用户数大于一值,信噪比低于一阈值,参考信号接收质量低于一质量,参考信号接收能量低于一能量,以及信道质量指示低于一指数。
在一实施例中,该非激活信道状态可以是由该基站在决定是否切换部分带宽之前进行触发一测量程序而得,或由该基站缓存前一次的测量结果。该基站可先判断至少一下行非激活部分带宽中是否绑定有同步信号块(Synchronization Signal Block;SSB)资源,才决定是否切换部分带宽。同样地,该基站也可以判断至少一上行非激活部分带宽中是否绑定有物理随机接入信道(PRACH)资源,而决定是否进行上行部分带宽的切换。
在另一实施例中,该随机接入程序可以是一基于竞争的随机接入。该基站在竞争冲突成功后,才向用户设备发送该切换指示。该基站向用户设备发送该切换指示时,可使用一第一激活上行部分带宽标识符,一默认上行部分带宽标识符,或者一自定义字段携带一上行部分带宽切换指示,其中定义一目标上行部分带宽。相对地,该基站可使用一第一激活下行部分带宽标识符,一默认下行部分带宽标识符,或者一自定义字段携带一下行部分带宽切换指示,其中定义一目标下行部分带宽。该切换指示可以是由该随机接入程序中的一冲突解决信息MSG4携带。
在另一实施例中,该随机接入程序可以是一基于非竞争的随机接入。该基站在一随机接入回应中,携带该切换指示,并传送该随机接入回应至该用户设备。该用户设备可在该随机接入程序完成后,立即切换至该目标部分带宽,也可启动一定时器,待该定时器超时后,再切换至该目标部分带宽。该基站可指定该定时器时长,并由该切换指示携带后传送给该用户设备。该定时器时长也可由该用户设备自定义。
该非激活信道状态可包括下列一或多者之组合:接入的用户数,处于RRC连接态的用户数,底噪,信噪比,参考信号接收质量,参考信号接收能量,信道质量指示,以及与信道质量相关之因素。
该基站可在判断该非激活信道状态满足至少一较佳条件时,才选定该目标部分带宽时。该非激活信道状态包含下列一或多者之组合:接入的用户数,处于RRC连接态的用户数,底噪,信噪比,参考信号接收质量,参考信号接收能量,信道质量指示,或任何与信道质量相关之因素。而较佳条件可以是下列情况其中之一:至少一非激活部分带宽的接入用户数小于一用户数,处于连接态的用户数小于一值,信噪比高于一阈值,参考信号接收质量高于一质量,参考信号接收能量低高一能量,或信道质量指示高于一指数。
在一实施例中,该基站进行在该随机接入程序之前,可发送一测量命令,使该用户设备上报该非激活信道状态。该非激活信道状态也可以是该基站通过历史保留的信息,或所在小区其他用户设备上报的信息。
在另一实施例中,该基站可在判断至少一下行非激活部分带宽中绑定有SSB资源时,才决定一下行目标部分带宽。相对地,该基站在判断至少一上行非激活部分带宽中绑定有是否有PRACH资源,才决定一上行目标部分带宽。
作为一特别实施例,该切换指示可以是一种非业务调度的下行控制信息(Downlink Control Information;DCI),属于不涉及传输资源分配的简化信息。
本应用尚揭露一第二方案,一种由用户设备发起的部分带宽切换方法,以及牵涉此 方案的通信网络系统及用户装置。该用户设备可与至少一基站形成一通信网络系统,并透过至少一部分带宽进行通信。在该用户设备与该基站之间已经处于RRC连接态的前提下,该用户设备根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽。选定之后该用户设备切换至该目标部分带宽。该RRC连接态的建立可以是通过一随机接入程序来达成,详情如后再述。
一般而言,每个用户设备只会激活一个部分带宽来与基站进行通信。除了用来进行随机接入程序的初始/共享部分带宽之外,一般还有三或四个专有部分带宽是可被激活使用的。本应用所述之非激活部分带宽,泛指所有被未激活使用的部分带宽,不限定是初始、共享或专有部分带宽。更具体地说,上述各类部分带宽还进一步分为上行和下行,其切换机制视通信系统而定,可以是分开进行或成对进行。
该用户设备可根据至少一当前部分带宽的一当前信道状态,决定是否切换部分带宽。在决定要切换部分带宽后,才决定并切换至该目标部分带宽。
在一实施例中,该用户设备选定该目标部分带宽后,会先请求该基站之准许。待获得该基站之准许后,该用户设备才切换至该目标部分带宽。
该用户设备可先判断若是该至少一当前信道状态条件较差,才决定要切换部分带宽。该至少一当前信道状态及条件较差的判断标准,同方案一中之描述。
该用户设备可通过广播和/或专有RRC信道接收由该基站获取的该当前信道状态。该用户设备也可在决定是否切换部分带宽之前主动测量该非激活信道状态。
作为另一实施例,上行和下行部分带宽的切换可以是分开决定的。例如该用户设备可在判断至少一下行非激活部分带宽中绑定有SSB资源之后才决定要切换部分带宽。具体地说,该用户设备与该基站之间可先进行一随机接入程序,该基站可在该随机接入程序步骤中携带一SSB指示,用以指示一下行专有部分带宽是否有绑定有SSB资源,而该用户设备可根据该SSB指示决定是否进行下行部分带宽的切换。同样地在上行部分,该基站可在该随机接入程序步骤中携带一PRACH指示,指示一上行非激活部分带宽是否有绑定有PRACH资源。该用户设备可根据该PRACH指示决定是否进行上行部分带宽的切换步骤。
该用户设备可先判断该非激活信道状态是否条件较佳,才选定该目标部分带宽时。该非激活信道状态以及条件较佳的判断标准,与方案一所述相同,不再重复。
作为另一实施例,上行和下行目标部分带宽的选定可以是分开进行的。举例来说,该基站可在该随机接入程序步骤中携带一SSB指示,用以指示一下行专有部分带宽是否有绑定有SSB资源。而该用户设备可根据该SSB指示选定一下行目标部分带宽。相对地,该用户设备可判断至少一上行非激活部分带宽中是否绑定有是否有PRACH资源,以选定一上行目标部分带宽。
该用户设备切换至该目标部分带宽后,可发起一个RRC消息给该基站,将该目标部分带宽的一部分带宽标识符上报给该基站。该RRC消息可以是一个RRC连结重建请求,透过MSG3上报给基站;也可以是一自定义控制信令,随时将该部分带宽标识符上报给基站。
本方案中所谈之非激活信道状态可以是由该用户设备缓存的前一次测量结果,也可以是由该用户设备在该基站的通知之下,进行测量而得。
进一步地,该基站在选定该目标部分带宽时,也可先判断至少一下行非激活部分带宽中是否绑定有是否有PRACH资源,以决定如何选择该目标部分带宽。
最后,上述实施例所描述的方法可以进一步集成在一通信网络系统,一基站和一用户设备中。所以本发明亦提出相对的实施例。
所述种通信网络系统的实施例包括一基站和至少一用户,设备透过至少一部分带宽 进行通信。该通信网络系统可实施本发明方案一和方案二之部分带宽切换方法。
在方案一的通信网络系统中,该基站和该用户设备进行一随机接入程序。接着由该基站发起切换,根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽。最后该基站传送一切换指示至该用户设备,使该用户设备切换至该目标部分带宽。
在方案二的通信网络系统中,不一定要基于一随机接入程序。其特征主要是由该用户设备发起,根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽。接着该用户设备切换至该目标部分带宽。
本应用尚揭露一基站的实施例,主要基于方案一。该基站可和该用户设备进行一随机接入程序。由该基站根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽。接着该基站传送一切换指示至该用户设备,使该用户设备切换至该目标部分带宽。
本应用尚揭露一用户设备的实施例,主要基于方案二,其中,该用户设备根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽。接着该用户设备切换至该目标部分带宽。
由于上述通信网络系统,基站和用户设备的后续相关步骤已在部分带宽切换方法中充分说明,故不再此重复。
有益效果
相较于现有技术,本申请揭露一种部分带宽切换方法,以及使用此部分带宽切换方法的通信网络系统,基站和用户设备。该部分带宽切换方法使该网络系统中的至少一基站可和至少一用户设备透过至少一部分带宽进行通信。首先在方案一的实施例中介绍的是由基站发起的部分带宽切换方法。该基站和该用户设备进行一随机接入程序。接着该基站根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽。最后该基站传送一切换指示至该用户设备,使该用户设备切换至该目标部分带宽。本申请解决初始部分带宽负载的有益效果。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请实施例的通信网路系统的结构示意图。
图2为本申请实施例的部分带宽切换方法方案一的流程示意图。
图3为本申请实施例的部分带宽切换方法中基于竞争的随机接入过程的示意图。
图4为本申请实施例提供的部分带宽切换方法中基于非竞争的随机接入过程的示意图。
图5为本申请实施例提供的部分带宽切换方法方案二的流程示意图。
图6为本申请实施例的判断是否切换的流程示意图。
图7为本申请实施例的选定目标部分带宽的流程示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整 地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是通信网路系统100的结构示意图。通信网路系统100包括基站(Base Station;BS)110和用户设备(User Equipment;UE)120。该基站110可以包括各种形式的宏基站、微基站、中继站、接入点等。该用户设备120可以为各种具有无限通信功能的手持设备、车载设备、可穿戴设备等物联网设备,其中可包含一用户身份模块(SIM)卡130,用以连接至该基站110。基站110与用户设备120之间也可以通过空口技术(如NR UU)连接。
在5G NR中,用户设备120的带宽可以动态变化,当业务量较大时,系统给用户设备120配置一个大部分带宽,当业务量较小时,系统给用户设备120配置一个小部分带宽。
部分带宽主要分为两类:初始部分带宽和专有部分带宽。初始部分带宽主要用于接收系统信息(RMSI)、发起随机接入等,初始部分带宽要承载寻呼、物理随机接入信道(Physical Random Access Channel;PRACH)、无线资源控制(Radio Resource Control;RRC)等信令,初始下行部分带宽的负载会随着用户设备120数量的增加而增加。而专有部分带宽主要用于数据业务传输,专有部分带宽的带宽一般比初始部分带宽大。上行和下行各有自己的初始部分带宽和专有部分带宽。
NR中物理广播信道(Physical Broadcast Channel,PBCH)携带了系统信息(MIB),用于使用户设备120获取网络最基本的消息,以及通知用户设备120接收SIB1(RMSI)消息的时频位置信息。SIB1(RMSI)用于广播初始部分带宽的信息等用户设备120接入网络的其他必要信息。也就是说,初始部分带宽通过广播消息通知用户设备120,是小区内所有用户设备120公共的部分带宽。
用户设备120通过随机接入过程与基站取得上行时间同步后,采用启动上下行数据传输。随机接入过程可以由一系列事件触发,比如RRC空闲模式下的初始接入,RRC连接重接过程,小区切换等。在获取上行同步的过程中,也可以获得必要的系统信息和用户设备专有的配置,比如上下行专有部分带宽配置等。R15/R16NR用户设备支持4个下行专有部分带宽和4个上行专有部分带宽。
图2是本申请实施例提供的部分带宽切换方法的方案一流程示意图200,可对照图1进行。方案一的主要特征是部分带宽的切换是由基站所主控。首先在步骤210中,由一基站和一用户设备发起一随机接入程序(Random Access Procedure)。随机接入程序的细节将于后段详述。在步骤220中,该基站根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽。接着在步骤230中,该基站传送一切换指示至该用户设备,使该用户设备切换至该目标部分带宽。最后在步骤240中,该用户设备根据该切换指示,切换至该目标部分带宽。
一般而言,随机接入程序使用的是一种公共部分带宽,亦即初始部分带宽。该目标部分带宽就是从所有未激活的专有部分带宽中选择出来的其中之一专有部分带宽。用户设备在同一时间只能有一个激活态部分带宽,且用户设备只能在激活态部分带宽上收发数据,激活态部分带宽可以为初始部分带宽,也可以为专有部分带宽。除了激活态部分带宽,用户设备配置的其他部分带宽为非激活部分带宽。若激活态部分带宽为初始部分带宽,则非激活部分带宽为专有部分带宽;若激活态部分带宽为专有部分带宽,则非激活部分带宽可以为初始部分带宽,也可以为专有部分带宽。本实施例透过创新的切换步骤,达到减轻初始部分带宽负担的目的。在其他使用情境中,该目标部分带宽也有可能是初始部分带宽。本申请的切换方法不限定目标部分带宽的种类。
图3所示为一个基于竞争的随机接入过程的实施例。在步骤302中,用户设备(UE)310向基站(BS)320发送一随机接入前导MSG1,亦即由该用户设备310发起一个随机接入的 尝试。在步骤304中,基站320向用户设备310反馈一随机接入响应MSG2。该基站320在检测到用户设备的随机接入前导MSG1并准许用户设备接入后,会估计与用户设备之间的传输时延,并以此校准上行时间,进而向用户设备反馈该随机接入响应MSG2。
当发生竞争情形时,会由步骤306和308来进行一冲突解决机制。在步骤306中,为了解决竞争冲突,用户设备310向基站320通过PUSCH发送一第三消息MSG3,包括用户设备的唯一识别码。在步骤308中,基站320向用户设备发送一第四消息MSG4作为冲突解决消息。在冲突解决机制中,基站320在第四信息MSG4中携带胜出的用户设备的唯一识别码,以指定竞争成功的用户设备。基站320还可以在第四消息MSG4中各别携带用户设备310上下行专有部分带宽的配置信息,其中可包括RACH(Random Access Channel,随机接入信道)的配置信息。
一般业界将第三消息和第四消息分别统称为MSG3和MSG4,而不是某一条具体消息的原因在于,根据用户设备状态和应用场景的不同,这两条消息也可能不同。本实施例中的第四消息MSG4中除了现有机制中可携带的上下行专有部分带宽的配置信息外,还可各别为上行部分带宽或下行部分带宽新增对应的切换指示。举例来说,切换指示的实施例可以是信息元素(IE)的型式表示如下,其中新增了swtichDownLinkBWP-ID和swtichUpLinkBWP-ID两个可选项。
ServingCellConfig::=SEQUENCE{
firstActiveDownlinkBWP-Id BWP-Id OPTIONAL,
defaultDownlinkBWP-Id BWP-Id OPTIONAL,--Need S
swtichDownLinkBWP-ID BWP-Id OPTIONAL,
swtichUpLinkBWP-ID BWP-Id OPTIONAL,
}
换言之,本实施例可在基于竞争的随机接入过程中,获取基站320发送的冲突解决消息,携带了切换指示,使用户设备310收到之后进行部分带宽之切换。
图4是本发明基于非竞争的随机接入过程的实施例。在某些随机接入场景,基站320可以根据需要给用户设备310分配指定的随机接入前导码,以这种方式发起的随机接入不存在用户设备之间的相互冲突,在用户设备收到随机接入响应后就确定了随机接入过程的结束。在步骤402中,基站320向用户设备310指定随机接入前导码。在步骤404中,用户设备310向基站320发送随机接入前导。在步骤406中,基站320向用户设备310反馈一随机接入响应。在本实施例中,随机接入响应可以用来携带一切换指示。也就是说,在基于非竞争的随机接入过程中的步骤406中,基站320可将切换指示携带在一随机接入响应中发送给用户设备310。
图2,3及4所述的流程中,基站是无条件地进行部分带宽的切换。但本发明方案也可以事先在基站侧先判断当前使用中的部分带宽(一般而言即初始部分带宽)的信道状态,再决定要不要进行部分带宽的切换。例如在图3的步骤304之前,或图4的步骤402之前,先做判断决定是否进行。若是,才进行后续步骤。若否,则停步后续步骤。详细的流程于图6中详述。
在图3的步骤308或图4的步骤406中的实施例中,在随机接入完成时,用户设备可以立即启动部分带宽切换,即用户设备根据一切换指示中的目标部分带宽的识别码,将初始部分带宽切换为目标部分带宽,换言之,该用户设备将该目标部分带宽设定为激活态,并开始使用它来进行通信。在另一种实施例中,用户设备还可以延时预设时长后再启动部 分带宽切换,如启动定时器,并在定时器超时时启动部分带宽切换。其中,定时器的超时时长设置为预设时长,该预设时长可以由基站指定,如基站在MSG4或广播消息等中携带预设时长的信息,或者预设时长可以由用户设备自行定义设置。
作为一特别实施例,该切换指示可以是一种非业务调度DCI,属于不涉及传输资源分配的简化信息,藉此以最小的通信成本通过一个简单的DCI指令通知用户设备从激活的部分带宽切换到其他部分带宽。该DCI可以是新格式的DCI,也可以是现有DCI中增加一个字段来指示部分带宽切换。
图5是本发明方案二实施例的部分带宽切换方法流程图。方案二的主要特征是部分带宽的切换是由用户设备所主控。首先在步骤510中,该用户设备与该基站之间进行一随机接入程序。一般而言随机接入程序使用的当前部分带宽就是标准的初始部分带宽,或共享部分带宽。搭配本实施例可使该初始部分带宽切换至未激活的专有部分带宽其中之一。
在某些情况的实施例中,步骤510并非必要步骤。例如在已接入系统的状态中,有需要从一个已激活的专有部分带宽切换至一个未激活的专有部分带宽时,可以直接从步骤520开始进行。这种情况下的当前部分带宽指的就是该已激活的专有部分带宽。
在步骤520中,该用户设备根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽。一般而言目标部分带宽又细分为上行和下行,可各别决定或同时决定。细节于后再述。而被决定的目标部分带宽,如上所述,在大部分情况下即是专有部分带宽,但在少部分情境下,也可以是初始部分带宽。最后在步骤530中,该用户设备切换至该目标部分带宽。
图6是判断当前信道状态的实施例。图2和图5的部分带宽切换步骤,原本是无条件进行,但可进一步搭配图6,在判断当前信道状态之后再决定要不要进行图2或图5的步骤。简而言之,在本实施例中,只有在图6的实施例决定要切换部分带宽后,图2和图5的步骤才会发生。所谓当前部分带宽,通常指的是在随机接入程序中使用的公共部分带宽,亦即初始部分带宽。相对的,目标部分带宽就是从未激活的专有部分带宽中选出来作为后续通信用途的一部分带宽。更具体地说,上行和下行通信使用的是不同的部分带宽,而其决定和选择步骤可以同时进行或分开进行,本实施例皆可应用而不限定。在某些使用情境中,所谓的当前部分带宽也可以是该用户设备正在使用中的专有部分带宽,而目标部分带宽则是未激活状态的初始部分带宽或其他专有部分带宽。本发明方案提供的切换方法皆可应用,并不限定当前部分带宽与目标部分带宽之种类。
首先在步骤610中,先由基站或用户设备获取当前信道状态。关于当前信道状态的获取方式,以图2为例,可以是基站自己测量该当前部分带宽而得。以图5为例,可以是由该用户设备通过广播和/或专有RRC信道,接收由该基站测得的该当前信道状态。
在步骤620中,将该当前信道状态和一较差条件进行比较。如果当前信道状态的条件比该较差条件还差,就在步骤630中,进行图2或图5所述的切换部分带宽之步骤。相对的,如果当前信道状态的条件还不错,那就没必要进行切换。如步骤640所述,不切换部分带宽。图6之当前信道状态的判断时机,并不限定执行顺序是否在图2或图5之随机接入程序之前或后,也可以是在随机接入程序当中进行。
上述当前信道状态可以是下列各种因素排列组合:接入的用户数,处于RRC连接态的用户数,底噪,信噪比(SINR),参考信号接收质量(RSRQ),参考信号接收能量(RSRP),信道质量指示(CQI),或是任何与信道质量相关之因素。任何考虑到上述因素其中之一者皆在本发明范围内。
上述较差条件可以是下列各种因素之排列组合:当前部分带宽的接入用户数大于一用户数,处于连接态的用户数大于一值,信噪比低于一阈值,参考信号接收质量低于一质量,参考信号接收能量低于一能量,以及信道质量指示低于一指数。任何考虑到上述因素 其中之一者皆在本发明范围内。而上述阈值,质量,能量及指数,泛指可用于判断优劣条件的参考值,其实际值的实施例,可以参考现行运作中的标准默认值,或任何可运作的自定义值,本揭露书不特别限定其范围。
在步骤530中,该用户设备可以无条件切换至该目标部分带宽。另一种做法是,该用户设备在步骤520选定该目标部分带宽后,会先请求该基站之准许。该用户设备会等到获得该基站之准许后,才进行步骤530,切换至该目标部分带宽。
图7是选定目标部分带宽的实施例。关于图2和图5中选定该目标部分带宽的方式,可以进一步在图7中说明。首先在步骤710中,获取所有可选择的非激活信道状态。在图2的实施例中,非激活信道状态的获取方式,可以是在随机接入程序之前通过广播信令将测量配置发给用户设备,用户设备测量后上报给基站,或者基站通过历史保留信息,或本小区其他用户设备上报的信息等。以图5为例,非激活信道状态的获取方式,可以是由该用户设备在决定是否切换部分带宽之前主动测量而得。
目标部分带宽,是从所有可选择的非激活状态部分带宽中,满足特定状态条件者之中所选定出来的。所以在步骤720中,判断该些非激活信道状态是否满足至少一较佳条件。如果一非激活信道状态满足较佳条件的要求,就在步骤730中,就选定它为目标部分带宽。如果有多个非激活信道状态同时满足较佳条件,可随机选择其中一个,或选择条件最佳者,作为目标部分带宽。相对的,如果没有任何一个非激活信道状态满足该较佳条件,则不进行后续步骤。
该非激活信道状态具体包含下列因素之排列组合:接入的用户数,处于RRC连接态的用户数,底噪,信噪比,参考信号接收质量,参考信号接收能量,信道质量指示,以及任何与信道质量相关之因素。而上述较佳条件可以是下列因素的排列组合:至少一非激活部分带宽的接入用户数小于一用户数,处于连接态的用户数小于一值,信噪比高于一阈值,参考信号接收质量高于一质量,参考信号接收能量低高一能量,或信道质量指示高于一指数等。任何考虑到上述因素其中之一者皆在本发明范围内。
步骤710应用在图2的实施例中,上述非激活信道状态可是由该用户设备缓存的前一次测量结果。该非激活信道状态也可以是由该用户设备在该基站的通知之下,进行测量而得。若步骤710应用在图5中,该非激活信道状态也可以是由用户设备主动测量而得。
上述实施例中的选定目标部分带宽的步骤,更具体地说尚可以细分为上行和下行,因为上下行各有不同的部分带宽。对于频分双工(Frequency Division Duplexing;FDD)系统而言,一般除了少数例外,上下行部分带宽是可以分开切换的。对于时分双工(Time Division Duplexing;TDD)系统而言,上下行部分带宽则是需要配对的。举例来说,该基站可使用一第一激活上行部分带宽标识符(firstActiveUplinkBWP-Id),一默认上行部分带宽标识符(defaultUplinkBWP-Id),或者一自定义字段携带一上行部分带宽切换指示。该上行部分带宽切换指示定义一目标上行部分带宽。相对地,在下行的部分,该基站可使用一第一激活下行部分带宽标识符(firstActiveDownlinkBWP-Id),一默认下行部分带宽标识符(defaultDownlinkBWP-Id),或者一自定义字段携带一下行部分带宽切换指示。其中该下行部分带宽切换指示定义一目标下行部分带宽。与前述决定是否进行切换的实施例相似,选定上行和下行目标部分带宽的时候,可进一步各别考虑上行信道和下行信道的不同因素。
决定是否切换部分带宽,或者目标部分带宽的选定,皆可进一步各别考虑上行信道和下行信道的不同因素。举例来说,若步骤530切换后的下行部分带宽无SSB,用户设备有需要时需要触发射频重协调(RF Returning),切换回初始下行部分带宽进行同步、无线资源管理(RRM)测量等操作,此过程对系统也是一种负担。所以下行部分带宽是否绑定有SSB资源取决于基站侧的配置,可以列为进行切换或选择的考虑因素。相同地,对于上行信道状态而言,是否绑定有PRACH资源也可以列为进行切换或选择的考虑因素。
图2和图5的实施例可进一步地结合判断SSB资源的步骤,来决定是否进行下行部分带宽的切换。例如,由图2的基站或图5的用户设备判断一下行非激活部分带宽中是否绑定有SSB资源的步骤。如果发现一下行非激活部分带宽绑定有SSB资源,就进行下行部分带宽之切换。反之,则不进行。在某些情境下,是否进行的判断条件也可以反过来,有就不进行,没有才进行。本发明实施例不限定其判断结果与进行与否的关联性。
至于判定该下行非激活部分带宽是否有绑定SSB资源的方式,可由基站在随机接入程序中携带一SSB指示,用以指示一下行专有部分带宽是否有绑定有SSB资源。例如基站可以在随机接入过程的MSG4消息中增加各下行专有部分带宽是否有SSB的指示信息(比如值为0:无SSB;1:有SSB)。用户设备便可直接地在随机接入程序之后,根据该SSB指示决定是否切换部分带宽。
另一方面,在选定下行目标部分带宽的时候,也可进一步的根据SSB的绑定状态来考虑。该SSB指示由该基站在该随机接入程序步骤中携带,而用户设备则可根据该SSB指示直接选定一下行目标部分带宽。根据情境需求的不同,有时会选择没有SSB的下行非激活部分带宽作为下行目标部分带宽,有时则会选择有绑定SSB的非激活态部分带宽作为目标部分带宽。具体实施方式不限定于此。
与前述实施例相似,图2或图5的实施例,可进一步判断至少一上行非激活部分带宽中是否绑定有是否有PRACH资源,来决定是否要进行上行部分带宽的切换,或选定一上行目标部分带宽。该基站在该随机接入程序步骤中携带一PRACH指示,而用户设备则可根据该PRACH指示,决定是否要进行上行部分带宽的切换,或选定一上行目标部分带宽。根据情境需求的不同,有时会选择没有PRACH资源的上行非激活部分带宽作为目标部分带宽,有时则会选择有PRACH资源的上行非激活态部分带宽作为目标部分带宽。具体实施方式不限定于此。
在用户设备切换至该目标部分带宽后,可发起一个RRC消息给该基站,将该目标部分带宽的一部分带宽标识符上报给该基站。使基站能正确与用户设备保持通信。该RRC消息可以是一个RRC连结重建请求,透过MSG3上报给基站;也可以是一自定义控制信令,随时将该部分带宽标识符上报给基站。
最后,上述实施例所描述的方法可以进一步集成在一通信网络系统,一基站和一用户设备中,对应于下列实施例。
所述种通信网络系统的实施例包括一基站和至少一用户,设备透过至少一部分带宽进行通信。该通信网络系统可实施本发明方案一和方案二之部分带宽切换方法。
在方案一的通信网络系统中,参考图1、2、3、4、6和7,该基站和该用户设备进行一随机接入程序。接着由该基站发起切换,根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽。最后该基站传送一切换指示至该用户设备,使该用户设备切换至该目标部分带宽。
在方案二的通信网络系统中,参考图1、5、6和7,首先该基站和该用户设备之间进行一随机接入程序。接着由该用户设备发起,根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽。最后该用户设备切换至该目标部分带宽。
在上述基站的实施例中,参考图1、2、3、4、6和7,该基站可和该用户设备进行一随机接入程序。由该基站发起,根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽。接着该基站传送一切换指示至该用户设备,使该用户设备切换至该目标部分带宽。
在上述用户设备的实施例中,参考图1、5、6和7,首先该用户设备与该基站之间进行一随机接入程序。接着该用户设备根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽。最后该用户设备切换至该目标部分带宽。
由于上述通信网络系统,基站和用户设备的后续相关步骤已于图1至图7之实施例详述并已获得充分支持,故不再此重复说明。
本领域普通技术人员可以理解,上述实施例的各种方法中的全部或部分步骤可以通过指令来完成,或通过指令控制相关的硬件来完成,该指令可以存储于一计算机可读存储介质中,并由处理器进行加载和执行。为此,本发明实施例提供一种存储介质,其中存储有多条指令,该指令能够被处理器进行加载,以执行本发明实施例所提供的任一种部分带宽切换方法中的步骤。
由于该存储介质中所存储的指令,可以执行本发明实施例所提供的任一种部分带宽切换方法中的步骤,因此,可以实现本发明实施例所提供的任一种部分带宽切换方法所能实现的有益效果,详见前面的实施例,在此不再赘述。
工业实用性
本发明揭露一种部分带宽切换方法,以及使用此部分带宽切换方法的通信网络系统,基站和用户设备。由于本发明可应用于通信网络系统,基站和用户设备,因此具有工业实用性。
综上所述,虽然本发明已以较佳实施例揭露如上,但该较佳实施例并非用以限制本发明,该领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (114)

  1. 一种部分带宽切换方法,使至少一用户设备透过至少一部分带宽进行通信,其包含:
    发起一随机接入程序;
    根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽;以及
    传送一切换指示至该用户设备,使该用户设备切换至该目标部分带宽。
  2. 如权利要求1所述的部分带宽切换方法,其进一步包括:
    根据至少一当前部分带宽的一当前信道状态决定是否要切换部分带宽;以及
    在决定要切换部分带宽后,才选定该目标部分带宽。
  3. 如权利要求2所述的部分带宽切换方法,其进一步包括:该基站参考本身用户相关信息以及用户设备上报给基站的信道相关信息而得到该当前信道状态。
  4. 如权利要求2所述的部分带宽切换方法,其中,决定是否切换部分带宽的步骤包含:该基站判断该当前信道状态是否满足一较差条件;其中:
    该当前信道状态包含下列一或多者之组合:接入的用户数,处于无线资源控制RRC连接态的用户数,底噪,信噪比,参考信号接收质量,参考信号接收能量,信道质量指示,以及与信道质量相关之因素;以及
    该一较差条件包括下列一或多者之组合:当前部分带宽的接入用户数大于一用户数,处于连接态的用户数大于一值,信噪比低于一阈值,参考信号接收质量低于一质量,参考信号接收能量低于一能量,以及信道质量指示低于一指数。
  5. 如权利要求2所述的部分带宽切换方法,其中,该非激活信道状态是由在决定是否切换部分带宽之前,由该基站触发一测量程序而得,或由该基站缓存前一次的测量结果。
  6. 如权利要求2所述的部分带宽切换方法,其中,决定是否切换部分带宽的步骤包括:该基站判断至少一下行非激活部分带宽中是否绑定有同步信号块SSB资源,以决定是否进行下行部分带宽的切换。
  7. 如权利要求2所述的部分带宽切换方法,其中,决定是否切换部分带宽的步骤包括:该基站判断至少一上行非激活部分带宽中是否绑定有物理随机接入信道PRACH资源,以决定是否进行上行部分带宽的切换。
  8. 如权利要求1所述的部分带宽切换方法,其中,该随机接入程序是一基于竞争的随机接入,包括:该基站竞争冲突成功后,向用户设备发送该切换指示。
  9. 如权利要求8所述的部分带宽切换方法,其中,向该用户设备传送该切换指示的步骤包 括,该基站使用一第一激活上行部分带宽标识符,一默认上行部分带宽标识符,或者一自定义字段携带一上行部分带宽切换指示,其中该上行部分带宽切换指示定义一目标上行部分带宽。
  10. 如权利要求8所述的部分带宽切换方法,其中,向该用户设备发送该切换指示的步骤包括,该基站使用一第一激活下行部分带宽标识符,一默认下行部分带宽标识符,或者一自定义字段携带一下行部分带宽切换指示,其中该下行部分带宽切换指示定义一目标下行部分带宽。
  11. 如权利要求8所述的部分带宽切换方法,其中该切换指示是由该随机接入程序中的一冲突解决信息MSG4携带。
  12. 如权利要求1所述的部分带宽切换方法,其中该随机接入程序是一基于非竞争的随机接入,包括:该基站在一随机接入回应中,携带该切换指示,并传送该随机接入回应至该用户设备。
  13. 如权利要求1所述的部分带宽切换方法,其进一步包括:该用户设备在该随机接入程序完成后,启动一定时器,待该定时器超时后,切换至该目标部分带宽。
  14. 如权利要求13所述的部分带宽切换方法,其包括:该基站指定该定时器时长,并由该切换指示携带后传送给该用户设备。
  15. 如权利要求13所述的部分带宽切换方法,其包括:该用户设备自定义该定时器时长。
  16. 如权利要求1所述的部分带宽切换方法,其中,该非激活信道状态包括下列一或多者之组合:接入的用户数,处于RRC连接态的用户数,底噪,信噪比,参考信号接收质量,参考信号接收能量,信道质量指示,以及与信道质量相关之因素。
  17. 如权利要求16所述的部分带宽切换方法,其中选定该目标部分带宽的步骤包含:该基站判断该非激活信道状态是否满足至少一较佳条件;其中:
    该非激活信道状态包含下列一或多者之组合:接入的用户数,处于RRC连接态的用户数,底噪,信噪比,参考信号接收质量,参考信号接收能量,信道质量指示,以及与信道质量相关之因素;以及
    该至少一较佳条件包括下列情况其中之一:至少一非激活部分带宽的接入用户数小于一用户数,处于连接态的用户数小于一值,信噪比高于一阈值,参考信号接收质量高于一质量,参考信号接收能量低高一能量,或信道质量指示高于一指数。
  18. 如权利要求1所述的部分带宽切换方法,其中,该基站进行在该随机接入程序之前, 发送一测量命令,使该用户设备上报该非激活信道状态。
  19. 如权利要求1所述的部分带宽切换方法,其中该非激活信道状态是该基站通过历史保留信息,或所在小区其他用户设备上报的信息。
  20. 如权利要求1所述的部分带宽切换方法,其中选定该目标部分带宽的步骤包含:该基站判断至少一下行非激活部分带宽中是否绑定有SSB资源,以选择一下行目标部分带宽。
  21. 如权利要求1所述的部分带宽切换方法,其中选定该目标部分带宽的步骤包含:该基站判断至少一上行非激活部分带宽中是否绑定有是否有PRACH资源,以决定一上行目标部分带宽。
  22. 如权利要求1所述的部分带宽切换方法,其中该切换指示是一非业务调度控制信息(DCI),其中不涉及传输资源分配。
  23. 一种部分带宽切换方法,用于使一基站和一用户设备透过至少一部分带宽进行通信,其包括:
    该用户设备根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽;以及
    该用户设备切换至该目标部分带宽。
  24. 如权利要求23所述的部分带宽切换方法,其中,
    该用户设备根据至少一当前部分带宽的一当前信道状态,决定是否切换部分带宽;以及
    在决定要切换部分带宽后,该用户才选定该目标部分带宽。
  25. 如权利要求24所述的部分带宽切换方法,其中,
    该用户设备选定该目标部分带宽后,请求该基站之准许;以及
    该用户设备获得该基站之准许后,切换至该目标部分带宽。
  26. 如权利要求24所述的部分带宽切换方法,其中
    该用户设备决定是否切换部分带宽的步骤包含:判断该至少一当前信道状态是否满足至少一较差条件;其中:
    该至少一当前信道状态包含至少下列一或多者之组合:接入的用户数,处于RRC连接态的用户数,处于RRC连接态的用户数,底噪,信噪比,参考信号接收质量,参考信号接收能量,信道质量指示,以及与信道质量相关之因素;以及
    该一较差条件包括下列一或多者之组合:当前部分带宽的接入用户数大于一用户数, 处于连接态的用户数大于一值,信噪比低于一阈值,参考信号接收质量低于一质量,参考信号接收能量低于一能量,以及信道质量指示低于一指数。
  27. 如权利要求24所述的部分带宽切换方法,其另包含:
    该用户设备通过广播和/或专有RRC信道,接收由该基站测得的该当前信道状态。
  28. 如权利要求24所述的部分带宽切换方法,其另包含:该用户设备在决定是否切换部分带宽之前主动测量该非激活信道状态。
  29. 如权利要求24所述的部分带宽切换方法,其中,该用户设备决定是否切换部分带宽的步骤包含:判断至少一下行非激活部分带宽中是否绑定有SSB资源,以决定是否进行下行部分带宽的切换。
  30. 如权利要求29所述的部分带宽切换方法,其中,
    该用户设备与该基站之间进行一随机接入程序;
    该基站在该随机接入程序步骤中携带一SSB指示,用以指示一下行非激活部分带宽是否有绑定有SSB资源;以及
    该用户设备决定是否切换部分带宽的步骤包含:该用户设备根据该SSB指示决定是否进行下行部分带宽的切换。
  31. 如权利要求24所述的部分带宽切换方法,其中,该用户设备决定是否切换部分带宽的步骤包含:判断至少一上行非激活部分带宽中是否绑定有PRACH资源,以决定是否进行上行部分带宽的切换。
  32. 如权利要求31所述的部分带宽切换方法,其中,
    该用户设备与该基站之间进行一随机接入程序;
    该基站在该随机接入程序步骤中携带一PRACH指示,用以指示一上行非激活部分带宽是否有绑定有PRACH资源;以及
    该用户设备决定是否切换部分带宽的步骤包含:该用户设备根据该PRACH指示决定是否进行上行部分带宽的切换。
  33. 如权利要求23所述的部分带宽切换方法,其中,该用户设备在选定该目标部分带宽的步骤包括:判断该非激活信道状态是否满足至少一较佳条件;其中:
    该非激活信道状态包含下列一或多者之组合:接入的用户数,处于RRC连接态的用户数,底噪,信噪比,参考信号接收质量,参考信号接收能量,信道质量指示,以及与信道质量相关之因素;以及
    该至少一较佳条件包括下列情况其中之一:至少一非激活部分带宽的接入用户数小于一用户数,处于连接态的用户数小于一值,信噪比高于一阈值,参考信号接收质量高于一质量,参考信号接收能量低高一能量,或信道质量指示高于一指数。
  34. 如权利要求23所述的部分带宽切换方法,其中,
    该用户设备与该基站之间进行一随机接入程序;
    该基站在该随机接入程序步骤中携带一SSB指示,用以指示一或多个下行非激活部分带宽是否有绑定有SSB资源;以及
    该用户设备选定该目标部分带宽的步骤包括:根据该SSB指示从该些下行非激活部分带宽中选择其一做为一下行目标部分带宽。
  35. 如权利要求23所述的部分带宽切换方法,其中,
    该用户设备与该基站之间进行一随机接入程序;
    该基站在该随机接入程序步骤中携带一PRACH指示,用以指示一或多个上行非激活部分带宽是否有绑定有PRACH资源;以及
    该用户设备选定该目标部分带宽的步骤包括:根据该PRACH指示,从该些上行非激活部分带宽中选择其一做为一上行目标部分带宽。
  36. 如权利要求23所述的部分带宽切换方法,其中,该用户设备发起一个RRC消息给该基站,将当前激活的部分带宽的一部分带宽标识符上报给该基站。
  37. 如权利要求23所述的部分带宽切换方法,其中该非激活信道状态是由该用户设备缓存的前一次测量结果。
  38. 如权利要求23所述的部分带宽切换方法,其进一步包括:该用户设备在该基站的通知之下,测量该非激活信道状态。
  39. 一种通信网络系统,其包括至少基站和至少一用户设备透过至少一部分带宽进行通信;其中:
    该基站和该用户设备进行一随机接入程序;
    该基站根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽;以及
    该基站传送一切换指示至该用户设备,使该用户设备切换至该目标部分带宽。
  40. 如权利要求39所述的通信网络系统,进一步包括:
    该基站根据至少一当前部分带宽的一当前信道状态决定是否要切换部分带宽;以及
    该基站在决定要切换部分带宽后,才选定该目标部分带宽。
  41. 如权利要求40所述的通信网络系统,其中,该基站参考本身用户相关信息以及用户设备上报给基站的信道相关信息而得到该当前信道状态。
  42. 如权利要求40所述的通信网络系统,其中,
    在该基站决定是否切换部分带宽时,判断该当前信道状态是否满足一较差条件;其中:
    该当前信道状态包含下列一或多者之组合:接入的用户数,处于RRC连接态的用户数,底噪,信噪比,参考信号接收质量,参考信号接收能量,信道质量指示,以及与信道质量相关之因素;以及
    该一较差条件包括下列一或多者之组合:当前部分带宽的接入用户数大于一用户数,处于连接态的用户数大于一值,信噪比低于一阈值,参考信号接收质量低于一质量,参考信号接收能量低于一能量,以及信道质量指示低于一指数。
  43. 如权利要求40所述的通信网络系统,其中,该非激活信道状态是由该基站在决定是否切换部分带宽之前触发一测量程序而得,或由该基站缓存前一次的测量结果。
  44. 如权利要求40所述的通信网络系统,其中,在该基站决定是否切换部分带宽时,判断至少一下行非激活部分带宽中是否绑定有SSB资源,以决定是否进行下行部分带宽的切换。
  45. 如权利要求40所述的通信网络系统,其中,在该基站决定是否切换部分带宽时,判断至少一上行非激活部分带宽中是否绑定有PRACH资源,以决定是否进行上行部分带宽的切换。
  46. 如权利要求39所述的通信网络系统,其中,
    该随机接入程序是一基于竞争的随机接入;以及
    该基站竞争冲突成功后,向用户设备发送该切换指示。
  47. 如权利要求46所述的通信网络系统,其中,
    该基站向用户设备发送该切换指示时,使用一第一激活上行部分带宽标识符,一默认上行部分带宽标识符,或者一自定义字段携带一上行部分带宽切换指示,其中该上行部分带宽切换指示定义一目标上行部分带宽。
  48. 如权利要求46所述的通信网络系统,其中,
    该基站向用户设备发送该切换指示时,使用一第一激活下行部分带宽标识符,一默认下行部分带宽标识符,或者一自定义字段携带一下行部分带宽切换指示,其中该下行部分带宽切换指示定义一目标下行部分带宽。
  49. 如权利要求46所述的通信网络系统,其中该切换指示是由该随机接入程序中的一冲突解决信息MSG4携带。
  50. 如权利要求39所述的通信网络系统,其中,
    该随机接入程序是一基于非竞争的随机接入;以及
    该基站在一随机接入回应中,携带该切换指示,并传送该随机接入回应至该用户设备。
  51. 如权利要求39所述的通信网络系统,其中,该用户设备在该随机接入程序完成后,启动一定时器,待该定时器超时后,切换至该目标部分带宽。
  52. 如权利要求51所述的通信网络系统,其中,该基站指定该定时器时长,并由该切换指示携带后传送给该用户设备。
  53. 如权利要求51所述的通信网络系统,其中,该用户设备自定义该定时器时长。
  54. 如权利要求39所述的通信网络系统,其中,该非激活信道状态包括下列一或多者之组合:接入的用户数,处于RRC连接态的用户数,底噪,信噪比,参考信号接收质量,参考信号接收能量,信道质量指示,以及与信道质量相关之因素。
  55. 如权利要求54所述的通信网络系统,其中,该基站在选定该目标部分带宽时,判断该非激活信道状态是否满足至少一较佳条件;其中:
    该非激活信道状态包含下列一或多者之组合:接入的用户数,处于RRC连接态的用户数,底噪,信噪比,参考信号接收质量,参考信号接收能量,信道质量指示,以及与信道质量相关之因素;以及
    该至少一较佳条件包括下列情况其中之一:至少一非激活部分带宽的接入用户数小于一用户数,处于连接态的用户数小于一值,信噪比高于一阈值,参考信号接收质量高于一质量,参考信号接收能量低高一能量,或信道质量指示高于一指数。
  56. 如权利要求39所述的通信网络系统,其进一步包括:该基站进行在该随机接入程序之前,发送一测量命令,使该用户设备上报该非激活信道状态。
  57. 如权利要求39所述的通信网络系统,其中,该非激活信道状态是该基站通过历史保留信息,或所在小区其他用户设备上报的信息。
  58. 如权利要求39所述的通信网络系统,其中,该基站选定该目标部分带宽时,判断至少一下行非激活部分带宽中是否绑定有SSB资源,以选定一下行目标部分带宽。
  59. 如权利要求39所述的通信网络系统,其中,该基站选定该目标部分带宽时:判断至少一上行非激活部分带宽中是否绑定有是否有PRACH资源,以选定一上行目标部分带宽。
  60. 如权利要求39所述的通信网络系统,其中,该切换指示是一非业务调度DCI,其中不涉及传输资源分配。
  61. 一种通信网络系统,用于使基站和用户设备透过至少一部分带宽进行通信,其包括:
    该用户设备根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽;以及
    该用户设备切换至该目标部分带宽。
  62. 如权利要求61所述的通信网络系统,其中,
    该用户设备根据至少一当前部分带宽的一当前信道状态,决定是否切换部分带宽;以及
    在决定要切换部分带宽后,才选定该目标部分带宽。
  63. 如权利要求62所述的通信网络系统,其中,
    该用户设备选定该目标部分带宽后,请求该基站之准许;以及
    该用户设备获得该基站之准许后,才切换至该目标部分带宽。
  64. 如权利要求62所述的通信网络系统,其中,
    该用户设备决定是否切换部分带宽时,判断该至少一当前信道状态是否满足至少一较差条件;其中:
    该至少一当前信道状态包含至少下列一或多者之组合:接入的用户数,处于RRC连接态的用户数,处于RRC连接态的用户数,底噪,信噪比,参考信号接收质量,参考信号接收能量,信道质量指示,以及与信道质量相关之因素;以及
    该一较差条件包括下列一或多者之组合:当前部分带宽的接入用户数大于一用户数,处于连接态的用户数大于一值,信噪比低于一阈值,参考信号接收质量低于一质量,参考信号接收能量低于一能量,以及信道质量指示低于一指数。
  65. 如权利要求62所述的通信网络系统,其中,该用户设备通过广播和/或专有RRC信道接收由该基站获取的该当前信道状态。
  66. 如权利要求62所述的通信网络系统,其中,该用户设备在决定是否切换部分带宽之前主动测量该非激活信道状态。
  67. 如权利要求62所述的通信网络系统,其中,该用户设备决定是否切换部分带宽时,判断至少一下行非激活部分带宽中是否绑定有SSB资源,以决定是否进行下行部分带宽的切换。
  68. 如权利要求67所述的通信网络系统,其中,
    该用户设备与该基站之间进行一随机接入程序;
    该用户设备决定是否切换部分带宽时,该基站在该随机接入程序步骤中携带一SSB指示,用以指示一下行非激活部分带宽是否有绑定有SSB资源;以及
    该用户设备根据该SSB指示决定是否进行下行部分带宽的切换。
  69. 如权利要求62所述的通信网络系统,其中,该用户设备决定是否切换部分带宽的步骤包含:判断至少一上行非激活部分带宽中是否绑定有PRACH资源,以决定是否进行上行部分带宽的切换。
  70. 如权利要求69所述的通信网络系统,其中,
    该用户设备与该基站之间进行一随机接入程序;
    该用户设备决定是否切换部分带宽时,该基站在该随机接入程序步骤中携带一PRACH指示,用以指示一上行非激活部分带宽是否有绑定有PRACH资源;以及
    该用户设备根据该PRACH指示决定是否进行上行部分带宽的切换。
  71. 如权利要求61所述的通信网络系统,其中,该用户设备在选定该目标部分带宽时,判断该非激活信道状态是否满足至少一较佳条件;其中:
    该非激活信道状态包含下列一或多者之组合:接入的用户数,处于RRC连接态的用户数,底噪,信噪比,参考信号接收质量,参考信号接收能量,信道质量指示,以及与信道质量相关之因素;以及
    该至少一较佳条件包括下列情况其中之一:至少一非激活部分带宽的接入用户数小于一用户数,处于连接态的用户数小于一值,信噪比高于一阈值,参考信号接收质量高于一质量,参考信号接收能量低高一能量,或信道质量指示高于一指数。
  72. 如权利要求61所述的通信网络系统,其中,
    该用户设备与该基站之间进行一随机接入程序;
    该基站在该随机接入程序步骤中携带一SSB指示,用以指示一或多个下行非激活部分带宽是否有绑定有SSB资源;以及
    该用户设备选定该目标部分带宽时,根据该SSB指示从该些下行非激活部分带宽中选择其一做为一下行目标部分带宽。
  73. 如权利要求61所述的通信网络系统,其中,
    该用户设备与该基站之间进行一随机接入程序;
    该基站在该随机接入程序步骤中携带一PRACH指示,用以指示一或多个上行非激活部分带宽是否有绑定有PRACH资源;以及
    该用户设备选定该目标部分带宽的步骤包括:根据该PRACH指示,从该些上行非激活部分带宽中选择其一做为一上行目标部分带宽。
  74. 如权利要求61所述的通信网络系统,其中,该用户设备切换至该目标部分带宽后,发起一个RRC消息给该基站,将该目标部分带宽的一部分带宽标识符上报给该基站。
  75. 如权利要求61所述的通信网络系统,其中,该非激活信道状态是由该用户设备缓存的前一次测量结果。
  76. 如权利要求61所述的通信网络系统,其中,该用户设备是在该基站的通知之下,测量该非激活信道状态。
  77. 一种基站,可和至少一用户设备透过至少一部分带宽进行通信,其包含:
    该基站和该用户设备进行一随机接入程序;
    该基站根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽;以及
    该基站传送一切换指示至该用户设备,使该用户设备切换至该目标部分带宽。
  78. 如权利要求77所述的基站,进一步包括:
    该基站根据至少一当前部分带宽的一当前信道状态决定是否要切换部分带宽;以及
    该基站在决定要切换部分带宽后,才选定该目标部分带宽。
  79. 如权利要求78所述的基站,其中,该基站参考本身用户相关信息以及用户设备上报给基站的信道相关信息而得到该当前信道状态。
  80. 如权利要求78所述的基站,其中,
    在该基站决定是否切换部分带宽时,判断该当前信道状态是否满足一较差条件;其中:
    该当前信道状态包含下列一或多者之组合:接入的用户数,处于RRC连接态的用户数,底噪,信噪比,参考信号接收质量,参考信号接收能量,信道质量指示,以及与信道质量相关之因素;以及
    该一较差条件包括下列一或多者之组合:当前部分带宽的接入用户数大于一用户数,处于连接态的用户数大于一值,信噪比低于一阈值,参考信号接收质量低于一质量,参考信号接收能量低于一能量,以及信道质量指示低于一指数。
  81. 如权利要求78所述的基站,其中,该非激活信道状态是由该基站在决定是否切换部分带宽之前触发一测量程序而得,或由该基站缓存前一次的测量结果。
  82. 如权利要求78所述的基站,其中,在该基站决定是否切换部分带宽时,该基站判断至少一下行非激活部分带宽中是否绑定有SSB资源,以决定是否进行下行部分带宽的切换。
  83. 如权利要求78所述的基站,其中,在该基站决定是否切换部分带宽时,该基站判断至少一上行非激活部分带宽中是否绑定有PRACH资源,以决定是否进行上行部分带宽的切换。
  84. 如权利要求77所述的基站,其中,
    该基站与用户设备之间进行一基于竞争的随机接入;以及
    该基站竞争冲突成功后,向用户设备发送该切换指示。
  85. 如权利要求84所述的基站,其中,
    该基站向用户设备发送该切换指示时,使用一第一激活上行部分带宽标识符,一默认上行部分带宽标识符,或者一自定义字段携带一上行部分带宽切换指示,其中该上行部分带宽切换指示定义一目标上行部分带宽。
  86. 如权利要求84所述的基站,其中,
    该基站向用户设备发送该切换指示时,使用一第一激活下行部分带宽标识符,一默认下行部分带宽标识符,或者一自定义字段携带一下行部分带宽切换指示,其中该下行部分带宽切换指示定义一目标下行部分带宽。
  87. 如权利要求84所述的基站,其中该切换指示是由该随机接入程序中的一冲突解决信息MSG4携带。
  88. 如权利要求77所述的基站,其中,
    该随机接入程序是一基于非竞争的随机接入;以及
    该基站在一随机接入回应中,携带该切换指示,并传送该随机接入回应至该用户设备。
  89. 如权利要求77所述的基站,其中,该用户设备在该随机接入程序完成后,启动一定时器,待该定时器超时后,切换至该目标部分带宽。
  90. 如权利要求89所述的基站,其中,该基站指定该定时器时长,并由该切换指示携带后传送给该用户设备。
  91. 如权利要求89所述的基站,其中,该用户设备自定义该定时器时长。
  92. 如权利要求77所述的基站,其中,该非激活信道状态包括下列一或多者之组合:接入的用户数,处于RRC连接态的用户数,底噪,信噪比,参考信号接收质量,参考信号接收能量,信道质量指示,以及与信道质量相关之因素。
  93. 如权利要求92所述的基站,其中,该基站在选定该目标部分带宽时,判断该非激活信道状态是否满足至少一较佳条件;其中:
    该非激活信道状态包含下列一或多者之组合:接入的用户数,处于RRC连接态的用户数,底噪,信噪比,参考信号接收质量,参考信号接收能量,信道质量指示,以及与信道质量相关之因素;以及
    该至少一较佳条件包括下列情况其中之一:至少一非激活部分带宽的接入用户数小于一用户数,处于连接态的用户数小于一值,信噪比高于一阈值,参考信号接收质量高于一质量,参考信号接收能量低高一能量,或信道质量指示高于一指数。
  94. 如权利要求77所述的基站,其进一步包括:该基站在该随机接入程序之前,发送一测量命令,使该用户设备上报该非激活信道状态。
  95. 如权利要求77所述的基站,其中,该非激活信道状态是该基站通过历史保留信息,或所在小区其他用户设备上报的信息。
  96. 如权利要求77所述的基站,其中,该基站选定该目标部分带宽时,判断至少一下行非激活部分带宽中是否绑定有SSB资源,以选定一下行目标部分带宽。
  97. 如权利要求77所述的基站,其中,该基站选定该目标部分带宽时:判断至少一上行非激活部分带宽中是否绑定有是否有PRACH资源,以选定一上行目标部分带宽。
  98. 如权利要求77所述的基站,其中,该切换指示是一非业务调度DCI,其中不涉及传输资源分配。
  99. 一种用户设备,用于使一基站和一用户设备透过至少一部分带宽进行通信,其包括:
    该用户设备根据至少一非激活部分带宽的一非激活信道状态,选定一目标部分带宽;
    以及
    该用户设备切换至该目标部分带宽。
  100. 如权利要求99所述的用户设备,其中,
    该用户设备根据至少一当前部分带宽的一当前信道状态,决定是否切换部分带宽;以及
    在决定要切换部分带宽后,才选定该目标部分带宽。
  101. 如权利要求100所述的用户设备,其中,
    该用户设备选定该目标部分带宽后,请求该基站之准许;以及
    该用户设备获得该基站之准许后,才切换至该目标部分带宽。
  102. 如权利要求100所述的用户设备,其中,
    该用户设备决定是否切换部分带宽时,判断该至少一当前信道状态是否满足至少一较差条件;其中:
    该至少一当前信道状态包含至少下列一或多者之组合:接入的用户数,处于RRC连接态的用户数,处于RRC连接态的用户数,底噪,信噪比,参考信号接收质量,参考信号接收能量,信道质量指示,以及与信道质量相关之因素;以及
    该一较差条件包括下列一或多者之组合:当前部分带宽的接入用户数大于一用户数,处于连接态的用户数大于一值,信噪比低于一阈值,参考信号接收质量低于一质量,参考信号接收能量低于一能量,以及信道质量指示低于一指数。
  103. 如权利要求100所述的用户设备,其中,
    该用户设备通过广播和/或专有RRC信道,接收由该基站获取的该当前信道状态。
  104. 如权利要求100所述的用户设备,其中,该用户设备在决定是否切换部分带宽之前主动测量该非激活信道状态。
  105. 如权利要求100所述的用户设备,其中,该用户设备决定是否切换部分带宽时,判断至少一下行非激活部分带宽中是否绑定有SSB资源,以决定是否进行下行部分带宽的切换。
  106. 如权利要求105所述的用户设备,其中,
    该用户设备与该基站之间进行一随机接入程序;
    该基站在该随机接入程序步骤中携带一SSB指示,用以指示一下行非激活部分带宽是否有绑定有SSB资源;以及
    该用户设备根据该SSB指示决定是否进行下行部分带宽的切换。
  107. 如权利要求100所述的用户设备,其中,该用户设备决定是否切换部分带宽时,判断至少一上行非激活部分带宽中是否绑定有PRACH资源,以决定是否进行上行部分带宽的切换。
  108. 如权利要求107所述的用户设备,其中,
    该用户设备与该基站之间进行一随机接入程序;
    该基站在该随机接入程序步骤中携带一PRACH指示,用以指示一下行非激活部分带宽是否有绑定有PRACH资源;以及
    该用户设备根据该PRACH指示决定是否进行下行部分带宽的切换。
  109. 如权利要求99所述的用户设备,其中,该用户设备在选定该目标部分带宽时,判断该非激活信道状态是否满足至少一较佳条件;其中:
    该非激活信道状态包含下列一或多者之组合:接入的用户数,处于RRC连接态的用户数,底噪,信噪比,参考信号接收质量,参考信号接收能量,信道质量指示,以及与信道质量相关之因素;以及
    该至少一较佳条件包括下列情况其中之一:至少一非激活部分带宽的接入用户数小于一用户数,处于连接态的用户数小于一值,信噪比高于一阈值,参考信号接收质量高于一质量,参考信号接收能量低高一能量,或信道质量指示高于一指数。
  110. 如权利要求99所述的用户设备,其中,
    该用户设备与该基站之间进行一随机接入程序;
    该基站在该随机接入程序步骤中携带一SSB指示,用以指示一下行非激活部分带宽是否有绑定有SSB资源;以及
    该用户设备根据该SSB指示从该些下行非激活部分带宽中选择其一做为一下行目标部分带宽。
  111. 如权利要求99所述的用户设备,其中,
    该用户设备与该基站之间进行一随机接入程序;
    该基站在该随机接入程序步骤中携带一PRACH指示,用以指示一或多个上行非激活部分带宽是否有绑定有PRACH资源;以及
    该用户设备根据该PRACH指示,从该些上行非激活部分带宽中选择其一做为一上行目标部分带宽。
  112. 如权利要求99所述的用户设备,其中,
    该用户设备发起一个RRC消息给该基站,将当前已激活的部分带宽的一部分带宽标识符上报给该基站。
  113. 如权利要求99所述的用户设备,其中,该非激活信道状态是由该用户设备缓存的前一次测量结果。
  114. 如权利要求99所述的用户设备,其中,该用户设备是在该基站的通知之下,测量该非激活信道状态。
PCT/CN2021/104151 2020-07-03 2021-07-02 部分带宽切换方法、通信网络系统,基站和用户设备 WO2022002228A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010636393.0A CN113891464A (zh) 2020-07-03 2020-07-03 部分带宽切换方法、通信网络系统,基站和用户设备
CN202010636393.0 2020-07-03

Publications (1)

Publication Number Publication Date
WO2022002228A1 true WO2022002228A1 (zh) 2022-01-06

Family

ID=79011906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104151 WO2022002228A1 (zh) 2020-07-03 2021-07-02 部分带宽切换方法、通信网络系统,基站和用户设备

Country Status (2)

Country Link
CN (1) CN113891464A (zh)
WO (1) WO2022002228A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115102678B (zh) * 2022-08-24 2023-03-24 深圳国人无线通信有限公司 共建共享基站满足用户业务需求的bwp切换方法和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109413691A (zh) * 2017-08-18 2019-03-01 北京三星通信技术研究有限公司 一种报告信道状态信息的方法和装置
US20190141695A1 (en) * 2017-11-09 2019-05-09 Alireza Babaei Communications Based on Wireless Device Capabilities
CN110545562A (zh) * 2018-05-29 2019-12-06 展讯通信(上海)有限公司 Bwp切换方法及装置、存储介质、用户设备、基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109413691A (zh) * 2017-08-18 2019-03-01 北京三星通信技术研究有限公司 一种报告信道状态信息的方法和装置
US20190141695A1 (en) * 2017-11-09 2019-05-09 Alireza Babaei Communications Based on Wireless Device Capabilities
CN110545562A (zh) * 2018-05-29 2019-12-06 展讯通信(上海)有限公司 Bwp切换方法及装置、存储介质、用户设备、基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL, INC.: "Discussion on Triggering of Power Mode Adaptation", 3GPP DRAFT; R1-1813244 UE ADAPTATION BASED ON TRAFFIC_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 11 November 2018 (2018-11-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051555247 *
QUALCOMM INCORPORATED: "BWP configuration during handover", 3GPP DRAFT; R2-1801270-BWP CONFIGURATION DURING HANDOVER, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Vancouver, Canada; 20180122 - 20180126, 12 January 2018 (2018-01-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051386697 *

Also Published As

Publication number Publication date
CN113891464A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
US10869272B2 (en) Communication method and apparatus applied to hyper cell
US10742300B2 (en) Communication method, network device, and terminal device
EP3624492B1 (en) Communication method and apparatus
KR102349611B1 (ko) 무선 통신 시스템에서 셀 설정 방법 및 장치
CA2257208C (en) Method and apparatus for performing idle handoff in a multiple access communication system
KR101299277B1 (ko) 롱 텀 이볼루션에서 데이터 전송의 종료를 표시함으로써 배터리에 대해 효과적인 상태 또는 구성으로 전환하는 방법 및 장치
TWI646858B (zh) 用於支持使用者設備(ue)之方法及存取節點、一ue、及在無線通訊系統中由該ue執行之對應方法
WO2000021325A1 (en) Method and apparatus for performing idle handoff in a multiple access communication system
EP3231242B1 (en) Access management of a communication device in a cellular network
KR20220130763A (ko) 측정 방법, 장치, 노드 및 저장 매체
WO2021063344A1 (zh) 一种随机接入方法及装置
US20190132794A1 (en) Transmission Mode Switching Method and Apparatus
KR20220006635A (ko) 업링크 전송을 위한 방법, 단말 장치 및 네트워크 노드
US20210385859A1 (en) Method and apparatus for lbt option selection for wideband operation
WO2022002228A1 (zh) 部分带宽切换方法、通信网络系统,基站和用户设备
CN111294802A (zh) 小区切换方法及装置、存储介质、终端、基站
US20230164746A1 (en) Random access resource selection method and related apparatus
CN116058059A (zh) 针对多链路设备的信道接入
WO2021156796A1 (en) Methods for controlling channel access mode in unlicensed spectrum
US20210368544A1 (en) Methods, Terminal Device and Base Station for Channel Sensing in Unlicensed Spectrum
WO2021062783A1 (zh) 随机接入信道类型选择方法和装置
CN111356195B (zh) 网络选择的方法、装置、存储介质及网络设备
US20240064584A1 (en) Resource processing method and apparatus
WO2023245338A1 (en) Methods and apparatuses for son enhancements
US11973561B2 (en) Antenna panel application method, apparatus and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832463

Country of ref document: EP

Kind code of ref document: A1