WO2022002159A1 - 主从运动的控制方法、机器人系统、设备及存储介质 - Google Patents

主从运动的控制方法、机器人系统、设备及存储介质 Download PDF

Info

Publication number
WO2022002159A1
WO2022002159A1 PCT/CN2021/103748 CN2021103748W WO2022002159A1 WO 2022002159 A1 WO2022002159 A1 WO 2022002159A1 CN 2021103748 W CN2021103748 W CN 2021103748W WO 2022002159 A1 WO2022002159 A1 WO 2022002159A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
handle
manipulator
master
posture
Prior art date
Application number
PCT/CN2021/103748
Other languages
English (en)
French (fr)
Inventor
徐凯
吴百波
杨皓哲
王翔
Original Assignee
北京术锐技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京术锐技术有限公司 filed Critical 北京术锐技术有限公司
Publication of WO2022002159A1 publication Critical patent/WO2022002159A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/76Manipulators having means for providing feel, e.g. force or tactile feedback
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1612Programme controls characterised by the hand, wrist, grip control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/163Programme controls characterised by the control loop learning, adaptive, model based, rule based expert control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations

Definitions

  • the present disclosure relates to the field of robots, and in particular, to a master-slave motion control method, a robot system, a device, and a storage medium.
  • Medical robots can not only help medical staff to carry out a series of medical diagnosis and auxiliary treatment, but also effectively relieve the shortage of medical resources.
  • a medical robot typically includes a driven tool for performing operations and a master manipulator for controlling the motion of the driven tool.
  • the driven tool is set to be able to enter the operation area, and the medical staff then controls the movement of the driven tool in the operation area by teleoperating the master manipulator, so as to realize the medical operation.
  • the number of the slave tools to be teleoperated is greater than the number of the master manipulator, so there may be cases in which the slave tools controlled by the master manipulator are changed during the operation.
  • the master operator needs to establish a mapping with the slave tool first, and then perform master-slave control. Since there is no posture matching between the master manipulator and the correspondingly controlled slave tool in advance, there will be a mismatch in the attitude (eg, orientation or angle) between the master manipulator and the slave tool. If the two are directly matched for master-slave mapping, the control accuracy of the slave tool will be reduced, and the human-computer interaction experience of medical staff (such as surgeons) will be deteriorated. Therefore, after the master manipulator and the slave tool are matched and connected and before teleoperation, it is necessary to match the attitude of the master manipulator with the attitude of the slave tool, so as to improve the attitude control accuracy of the master manipulator to the slave tool.
  • the present disclosure provides a control method for master-slave motion, including: determining a current attitude of a driven tool; determining a target attitude of a handle of a master manipulator based on the current attitude of the slave tool; and The target attitude of the handle of the manipulator generates the control signal of the main manipulator.
  • the present disclosure provides a robotic system comprising: a main manipulator including a robotic arm, a handle provided on the robotic arm, and at least one motor and at least one motor provided at at least one joint on the robotic arm
  • a main operator sensor at least one main operator sensor is used to obtain joint information of at least one joint
  • a driven tool includes a flexible arm body and an end instrument arranged at the end of the flexible arm body
  • a driving device is used for driving the driven tool a flexible arm body, the drive device includes at least one drive device sensor for obtaining drive information
  • a control device in communication with the main operator and the drive device, the control device is configured to: determine the current attitude of the driven tool; based on The current attitude of the driven tool determines the target attitude of the handle of the master manipulator; and based on the target attitude of the handle of the master manipulator, a control signal of the master manipulator is generated.
  • the present disclosure provides a computer-readable storage medium for storing at least one instruction, and a control method for causing a robot system to perform a master-slave motion when the at least one instruction is executed by a computer, the method comprising: determining a slave based on the current attitude of the slave tool, determining the target attitude of the handle of the master manipulator; and generating a control signal of the master manipulator based on the target attitude of the handle of the master manipulator.
  • FIG. 1 shows a flowchart of a control method for master-slave motion according to some embodiments of the present disclosure
  • FIG. 2 shows a schematic structural diagram of a robot system according to some embodiments of the present disclosure
  • FIG. 3 shows a schematic diagram of a master operator according to some embodiments of the present disclosure
  • FIG. 4 shows a schematic diagram of a robotic system according to some embodiments of the present disclosure.
  • the terms “installed”, “connected”, “connected” and “coupled” should be understood in a broad sense, for example, it may be a fixed connection, or It can be a detachable connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • installed e.g., it may be a fixed connection, or It can be a detachable connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • the end close to the operator e.g.
  • proximal, proximal or posterior, posterior, and the end close to the surgical patient is defined as distal, distal or anterior, anterior.
  • position refers to the location of an object or a portion of an object in three-dimensional space (eg, the three translational degrees of freedom can be described using changes in Cartesian X, Y, and Z coordinates, such as along the Cartesian X, respectively axis, three translational degrees of freedom in Y-axis and Z-axis).
  • position refers to a rotational setting of an object or a portion of an object (eg, three rotational degrees of freedom, which may be described using roll, pitch, and yaw).
  • the term "pose” refers to a combination of position and pose of an object or a part of an object, which can be described, for example, using the six parameters of the six degrees of freedom mentioned above.
  • the pose of the handle of the main manipulator can be represented by a set of joint information of the joints of the main manipulator (eg, a one-dimensional matrix composed of these joint information).
  • the pose of the driven tool may be determined by driving information of the driven tool (eg, driving information of the flexible arm body of the driven tool).
  • the joint information of the joints may include the rotation angle of the corresponding joint relative to the corresponding joint axis or the distance moved relative to the initial position.
  • FIG. 1 shows a flowchart 100 of a master-slave motion control method according to some embodiments of the present disclosure
  • FIG. 2 shows a schematic structural diagram 200 of a robot system according to some embodiments of the present disclosure.
  • the method 100 may be implemented or performed by hardware, software or firmware.
  • method 100 may be performed by a robotic system (eg, robotic system 200 shown in FIG. 2 ).
  • method 100 may be implemented as computer-readable instructions. These instructions may be read and executed by a general purpose processor or a special purpose processor (eg, control device 220 shown in FIG. 2 ).
  • a control device for robotic system 200 may include a processor configured to perform method 100 .
  • these instructions may be stored on a computer-readable medium.
  • the robotic system 200 may include a main console cart 210 , a surgical cart 230 , and a control device 220 .
  • the control device 220 may be communicatively connected with the main control cart 210 and the operating cart 230 , for example, by cable connection or wireless connection, to implement communication between the main control cart 210 and the operating cart 230 .
  • the master cart 210 includes a master manipulator that is teleoperated by the operator, and the surgical cart 230 includes the slave tools for performing the procedure.
  • the master-slave mapping between the master manipulator in the master control trolley and the driven tools in the operating trolley is realized by the control device 220, and the motion control of the slave tools by the master manipulator is realized.
  • the surgical cart includes at least one driven tool (eg, a surgical tool or a vision tool) disposed on the surgical cart.
  • the driven tool is configured to be able to enter the operation area through the sheath, wherein the sheath may be fixed at the patient's surgical port (eg incision or natural opening), and the operation area may be the area where the operation is performed.
  • the driven tool may include an arm body and an end implement.
  • the arm body of the driven tool may be a flexible arm body, and the end instrument may be disposed at the distal end of the flexible arm body.
  • the end instruments of the surgical tool may include, but are not limited to, surgical forceps, electric knives, electric hooks, and the like.
  • the end instrument of the vision tool may include, but is not limited to, an imaging device or an illumination device, and the like.
  • the main console cart includes a main operator, a display, and a foot pedal.
  • the main console trolley 210 and the operating trolley 230 may take other structures or forms, such as a base, a bracket or a building.
  • the current pose of the driven tool can be determined.
  • current driving information eg, angle
  • the current attitude of the driven tool is determined based on the current driving information.
  • the current pose of the driven tool can be calculated through a forward kinematics algorithm.
  • the driving device sensor can be arranged on the driving device, the driving device is used for driving the flexible arm body of the driven tool, the driving device sensor is used for obtaining driving information, and the current posture of the driven tool is determined according to the driving information.
  • the drive may include at least one drive motor to which the drive sensor is coupled to record and output motor data.
  • the motor data may include binary or hexadecimal numbers that can be converted to obtain the current attitude of the driven tool.
  • the drive sensor may comprise a potentiometer or an encoder. Obtain the angle and other information through the potentiometer or encoder, and then determine the current attitude of the driven tool.
  • an attitude sensor may be employed to obtain the attitude of the driven tool.
  • the attitude sensor may also be an optical fiber sensor, which is disposed on the arm of the driven tool and used to sense the position and attitude of the driven tool.
  • the current pose of the driven tool is the current pose of the driven tool relative to the base coordinate system of the driven tool.
  • the driven tool includes a flexible arm body and an end device disposed at the end of the flexible arm body, and the current posture of the driven tool includes the posture of the end device of the driven tool relative to the base coordinate system of the driven tool.
  • the base coordinate system of the driven tool may be the coordinate system of the base on which the driven tool is mounted (eg, the end of the moving arm of the surgical robot), the coordinate system of the sheath through which the driven tool passes (eg, the sheath outlet Coordinate system), the coordinate system of the remote center of Motion (RCM) of the driven tool, etc.
  • the base coordinate system of the driven tool can be set at the position of the sheath outlet, and during the teleoperation process, the base coordinate system of the driven tool is fixed.
  • the coordinate system transformation can be performed on the current posture of the end device to obtain the posture relative to other coordinate systems.
  • the current pose of the driven tool is the current pose of the image of the driven tool in the display relative to the world coordinate system.
  • the world coordinate system can be the coordinate system of the space where the operator or the main operator is located. Therefore, the attitude of the image of the driven tool in the display relative to the world coordinate system is the attitude perceived by the operator.
  • Driven tools include surgical tools and vision tools. During surgery, the surgical tool performs the operation inside the patient, and the vision tool uses a camera to capture images of the patient's body and transmit the captured images to the operating trolley. After the image is processed by the video processing module in the operating trolley, it is displayed on the monitor of the main control trolley. The operator obtains the current pose of the driven tool through the image on the display.
  • the current pose of the driven tool's image in the display relative to the world coordinate system may be obtained by a sensor.
  • the attitude of the end tool of the driven tool relative to the base coordinate system of the driven tool can be obtained by means of the drive device sensor or the attitude sensor of the driven tool.
  • the current pose of the image of the driven tool in the display relative to the world coordinate system can be obtained by coordinate transformation. For example, based on the base coordinate system of the driven tool, the coordinate system of the camera of the vision tool, the base coordinate system of the vision tool, the coordinate system of the display, and the world coordinate system, the image of the driven tool in the display relative to the world coordinate system can be obtained. current posture.
  • the target pose of the handle of the master manipulator may be determined based on the current pose of the driven tool.
  • the current pose of the slave tool is the current pose relative to the base coordinate system of the slave tool, or the current pose of the slave tool is the current pose of the image of the slave tool in the display relative to the world coordinate system .
  • the target pose of the handle of the master manipulator is the pose relative to the base coordinate system of the master manipulator.
  • the base coordinate system of the master manipulator may be the coordinate system of the base (eg, the master trolley 210 ) to which the master manipulator is connected.
  • the base coordinate system of the master manipulator and the base coordinate system of the slave tool have a fixed transformation relationship.
  • the current pose of the driven tool coincides with the target pose of the handle, eg, the same or a fixed difference. For example, before teleoperation, keep the current attitude of the driven tool unchanged and use the current attitude of the driven tool as the target attitude of the handle, and adjust the current attitude of the handle to the target attitude to match the attitude of the handle and the driven tool.
  • a control signal of the handle of the main manipulator may be generated based on the target posture.
  • a current attitude of the handle of the master manipulator is determined; and based on the target attitude and the current attitude of the handle of the master manipulator, the control signal of the master manipulator is generated.
  • the current attitude of the handle of the main manipulator is the attitude of the handle of the master manipulator relative to the base coordinate system of the master manipulator.
  • the control signal corresponding to the handle from the current posture to the target posture is determined based on the current posture of the handle and the target posture.
  • the main manipulator includes at least one posture joint for controlling the posture of the handle, and determining the current posture of the handle of the main manipulator includes: obtaining joint information of the at least one posture joint; and a joint based on the at least one posture joint information to determine the current pose of the main manipulator.
  • the main manipulator includes a manipulator, and the manipulator includes a position joint and a posture joint.
  • the posture joint serves as an orientation module of the main manipulator, and controls the main manipulator to achieve a target posture through one or more posture joints.
  • the position joint controls the main manipulator to reach the target position through one or more position joints.
  • the main manipulator sensor is set at the posture joint of the manipulator, and is used to obtain the joint information (such as angle) corresponding to the posture joint. attitude.
  • the main manipulator includes 7 joints, of which joint 1, joint 2, joint 5, joint 6 and joint 7 are gesture joints used to control the gesture of the handle of the main manipulator, and the joint information is obtained through the main manipulator sensor of the gesture joint , calculates the current pose of the main manipulator based on the forward kinematics algorithm.
  • the master manipulator includes at least one gesture joint for controlling the attitude of the handle of the master manipulator, and the control signal includes a control signal for controlling one or more of the at least one gesture joint.
  • the attitude adjustment of the handle of the master manipulator is realized by adjusting one or more attitude joints, and the attitude matching of the handle of the master manipulator and the driven tool is realized.
  • the control signal includes a control signal for controlling one or more of the at least one gesture joint, wherein the one or more of the at least one gesture joint includes an uncoupled gesture joint.
  • Coupling joints may refer to joints used to adjust the position and attitude of the main manipulator.
  • An uncoupled joint may refer to a joint that can only be used to adjust the position of the main manipulator (referred to as an uncoupled position joint in the present disclosure) or attitude (referred to as an uncoupled pose joint in the present disclosure).
  • the master manipulator may include at least one coupling joint.
  • the main manipulator may include 7 joints, as shown in FIG.
  • the attitude adjustment of the handle of the master manipulator can be realized by calculating the control signals of the uncoupled attitude joints (for example, the joint 5, the joint 6 and the joint 7), so as to realize the connection between the handle of the master manipulator and the driven tool. Attitude matching provides conditions for subsequent teleoperation.
  • FIG. 3 shows a schematic diagram 300 of a master operator according to some embodiments of the present disclosure.
  • the base coordinate system b is a coordinate system established with the base as a virtual point, and its direction can be determined based on its physical structure.
  • the coordinate system d of the handle is a coordinate system established by the handle as a virtual point, and its direction can be determined based on its physical structure.
  • the origin of the coordinate system d of the handle can be coincident with the origin of the coordinate system of joint 5, joint 6 and joint 7.
  • the position and posture of the coordinate system d of the handle relative to the base coordinate system of the main manipulator can be passed through the joints of joints 1-7.
  • Information OK is a schematic diagram 300 of a master operator according to some embodiments of the present disclosure.
  • Information OK is a schematic diagram 300 of a master operator according to some
  • the master manipulator sensor acquires joint information q i (i is the number of the joint) of the master manipulator.
  • each joint may include information q i joint angle value ⁇ i.
  • Joint 4 is a driven joint of joint 3, and the joint angle of joint 4 and the absolute value of the joint angle of joint 3 have the same direction and opposite direction.
  • each joint information q i can be expressed as ⁇ i , and the structure of the main manipulator has six degrees of freedom, such as formula (1):
  • Joint 1, joint 2 and joint 3 are position joints, and q 1 , q 2 , and q 3 determine the position of the handle of the main manipulator.
  • Joint 1, joint 2, joint 5, joint 6, and joint 7 are posture joints, and q 1 , q 2 , q 5 , q 6 , and q 7 determine the posture of the handle.
  • the position controlled by joint 1, joint 2 and joint 3 may not be concerned, but the positions determined by joint 1, joint 2, joint 5, joint 6 and joint 7 may be concerned.
  • Attitude eg, orientation
  • the joint 1 when the motor is driven, the joint 1, the joint 2 and the joint 3 are kept stationary, and the corresponding q 5 , q 6 , and q 7 of the joint 5, the joint 6 and the joint 7 are determined, according to q 5 , q 6 , q 7 Calculate the control signal to realize the attitude adjustment of the handle.
  • one or more of the at least one posture joint may be adjusted to adjust the posture of the main manipulator handle.
  • the coupled posture joint 1 , the coupled posture joint 2 and the uncoupled position joint 3 can be kept unchanged, and the posture of the main operator handle can be adjusted by adjusting the uncoupled posture joints 5 , 6 , and 7 .
  • joint information for other pose joints other than the one or more pose joints in the at least one pose joint is obtained.
  • the transformation matrices of the other pose joints can be determined.
  • the joint information of other posture joints is obtained based on the main manipulator sensor, and the transformation matrix of other posture joints is determined based on the joint information of other posture joints.
  • the joint information of the coupled pose joints 1 and 2 can be obtained, and the transformation matrix can be calculated.
  • uncoupled pose joints (eg, joint 5 , joint 6 , and joint 7 ) of one or more pose joints may be adjusted without adjusting other pose joints, such as coupled joints (eg, joint 1 and joint 1 and joint 7 ) 2).
  • the transformation matrices of the other posture joints eg, the transformation matrix 0 R 4 of the other posture joints relative to the joint starting point 0
  • the control signals of the master manipulator are generated, such as formula (2) to formula (4).
  • joint 3 and joint 4 are uncoupled position joints, and the transformation matrix 0 R 4 of other posture joints determined based on q 1 , q 2 , q 3 and the other posture joints determined based on q 1 , q 2
  • the transformation matrix 0 R 4 is consistent.
  • the transformation matrix 0 R 4 is determined by the input q 1 , q 2 or q 1 , q 2 , q 3 , b is the base coordinate system of the main operator, and d is the coordinate system of the handle of the main operator , b R d is the attitude of the main manipulator handle relative to the base coordinate system of the main manipulator, b R 0 is the existing angular relationship between the base and the starting point of the joint, and is a structural constant, 7 R d is the existing angle between the joint 7 and the handle There is an angular relationship, which is a structural constant.
  • R t is the current attitude of the driven tool and is the same as b R d , and 4 R 5 , 5 R 6 and 6 R 7 correspond to the to-be-solved quantities q 5 , q 6 , and q 7 , respectively .
  • the control signal is determined, and the attitude of the master manipulator is adjusted based on the control signal, so as to realize the matching of master and slave attitude.
  • R t may be the current posture of the end device of the driven tool relative to the base coordinate system of the driven tool, or the current posture of the image of the end device of the driven tool on the display relative to the world coordinate system .
  • R t can be identical to b R d , eg, the same or in a particular ratio or difference.
  • the joint target value of one or more posture joints in the handle is determined according to the control signal, and the joint target value is converted into a driving amount and sent to the driving device.
  • the driving device drives the motor of one or more posture joints of the main operator to move the one or more posture joints of the main operator, so that the posture of the handle of the main operator matches the posture of the end device of the driven tool.
  • the mathematical structure model of the master operator may be constructed based on the DH parameter method or the exponential product notation. For example, the DH matrix corresponding to the joint of the main operator is determined, and the mathematical structure model of the main operator is determined based on the DH matrix of the joint.
  • the DH matrix of each joint of the main operator is expressed as Equation (5).
  • j is the joint number
  • Rot(x, ⁇ j ) is the angle of rotation ⁇ j around the x-axis
  • Rot(z, ⁇ j ) is the angle of rotation ⁇ around the z-axis
  • Trans(x, ⁇ j ) Move ⁇ j in the x direction
  • Trans(z, d j ) move d j in the z direction
  • Rot(x, ⁇ j ), Trans(x, ⁇ j ), etc. are all 4*4 matrices.
  • the multi-joint main manipulator structure As shown in Figure 3, the multi-joint main manipulator structure, the z-axis is the rotation axis of the joint, the x-axis points to the next joint, and the y-axis direction can be determined according to the left/right-hand law of the Cartesian coordinate system.
  • Rot(x, ⁇ j ), Trans(x, ⁇ j ) fourth-order matrices represent a rotation around a direction by a certain angle or a translation in a direction by a certain distance.
  • T can be understood as a matrix with q as the main variable, which represents the mathematical model of different parts according to the signs of superscripts and subscripts, and the 3*3 part in the upper left corner of the matrix T is the rotation matrix R.
  • the main operator includes an arm body and a handle, and the arm body includes a joint and a connecting rod.
  • the operator controls the position and attitude of the driven tool by teleoperating the handle of the master manipulator. It can be understood that when the teleoperation is started, if the posture of the handle (such as the orientation or angle) is inconsistent with the posture (such as the orientation or angle) of the correspondingly controlled driven tool, the operator (such as the surgeon) will be disturbed during the operation. The human-computer interaction experience is poor, which affects the operation accuracy of the driven tool.
  • the master operator and the slave tool are matched and connected and before the master operator remotely operates the slave tool (for example, the operator holds the handle of the master operator to obtain the control right of the corresponding slave tool but has not yet started the master-slave remote control) During operation), adjust the attitude of the handle to match the attitude of the driven tool.
  • the remote operation of the slave tool by the master manipulator can be performed, which can improve the accuracy and experience of subsequent teleoperation.
  • a degree of gesture matching between the master manipulator and the slave tool may be determined.
  • the predetermined conditions include the triggering of teleoperation control rights.
  • the triggering of the teleoperation control rights may be achieved by a triggering device.
  • the triggering device may be a switch arranged on the main operator or the display, which is convenient for the operator to touch, press or toggle.
  • Trigger methods include, but are not limited to, keep close, touch, swipe, tap or long press, etc.
  • the triggering method of the trigger device can be to toggle the switch on the main operator, touch the sensing position on the main operator, long press or click the button on the main operator, step on the foot pedal of the main console, operate the main control screen, etc.
  • Matching refers to that the attitude of the handle and the attitude of the driven tool satisfy a preset relationship (eg, coincidence), and the degree of attitude matching refers to the degree of matching between the current attitude of the handle and the current attitude of the driven tool.
  • the joint information of the master manipulator and the slave tool is acquired through sensors, and the current postures of the handle and the slave tool are determined through a forward kinematics algorithm, based on the handle of the master manipulator.
  • the current attitude and the current attitude of the slave tool determine the attitude matching degree between the master manipulator and the slave tool.
  • a control signal for adjusting the current attitude of the handle of the main manipulator is generated so that the attitude matching degree is higher than or equal to the preset threshold.
  • the posture adjustment can be automatically performed to achieve the consistency of the two postures.
  • the current postures of the two are consistent or substantially consistent (the posture matching degree is higher than or equal to the preset threshold)
  • a master-slave relationship between the master operator and the slave tool is established mapping, so that the next step of the teleoperation process can be performed.
  • the manner of adjusting the attitude of the handle of the master manipulator to be consistent with the attitude of the slave tool includes: maintaining the current attitude of the slave tool unchanged, and adjusting the attitude of the handle of the master manipulator to make the master manipulator remain unchanged.
  • the attitude of the handle is the same as the attitude of the driven tool.
  • the target attitude of the handle of the master-slave master manipulator is consistent with the current attitude of the slave tool, and a master-slave mapping is established between the master manipulator and the slave tool, so that the master manipulator can perform the remote operation of the slave tool and improve the remote operation.
  • the consistent posture means that the posture is basically the same, and there may be a certain error between the target posture of the handle of the master manipulator and the current posture of the driven tool, but the range of the error is within an acceptable range.
  • the posture of the handle is matched with the posture of the driven tool before the teleoperation.
  • the operator starts to operate (for example, pressing the clamp button of the handle of the master operator)
  • the teleoperation can be quickly established.
  • only the current attitude of the driven tool is maintained, and the operator can still move the handle of the master manipulator in the non-operating state to move it to a suitable position and then perform teleoperation matching, which greatly increases the master operation. space for movement of the handle of the device.
  • the above-mentioned master-slave motion control method can be applied to a variety of slave terminals with different principles and forms, and the calculation process is highly targeted and the calculation amount is small, and it also reduces the time when the handle of the master operator is adjusted to the target attitude. amount of drive.
  • the degree of posture matching between the handle of the master operator and the slave tool is determined in the state of connection and transfer of control rights. If the posture matching degree satisfies the preset threshold condition, the master-slave mapping between the master manipulator and the slave tool is established, and the teleoperation steps are performed. If the attitude matching degree does not meet the preset threshold condition, at this time, the attitude of the handle of the master manipulator needs to be adjusted to be consistent with the current attitude of the slave tool, and then the master-slave mapping between the master manipulator and the slave tool is established. Perform teleoperation of the handle of the main manipulator.
  • FIG. 4 shows a schematic diagram 400 of a robotic system according to some embodiments of the present disclosure.
  • the robot system 400 includes: a main manipulator 410 , a control device, a driving device and a driven tool.
  • the master manipulator 410 includes a robotic arm, a handle provided on the robotic arm, and at least one master manipulator sensor provided at at least one joint on the robotic arm. At least one main manipulator sensor is used to obtain joint information of at least one joint.
  • the driven tool 420 includes a flexible arm and a tip instrument.
  • the drive 430 is used to drive the flexible arm of the driven tool, and includes at least one drive sensor for obtaining drive information.
  • the control device 440 is connected in communication with the main operator 410 and the drive device 430 .
  • the control device 440 is configured to perform the control method of the master-slave motion according to some embodiments of the present disclosure.
  • the main manipulator 410 includes a six-degree-of-freedom manipulator arm, and each joint on the six-degree-of-freedom manipulator is provided with a main manipulator sensor, and joint information (eg, joints) is generated by the main manipulator sensor of each joint. angle data).
  • the master operator sensor employs potentiometers and/or encoders.
  • the driven tool 420 includes a multi-joint six degrees of freedom flexible arm.
  • the driving device 430 is used to drive the flexible arm body of the driven tool 420, and obtains driving information corresponding to the driven tool through the driving device sensor.
  • control device 440 is in communication with the main operator 410 and the drive device 430 .
  • the main operator 410, the driving device 430 and the control device 440 may be connected through a data transmission bus, including but not limited to wireless data transmission, wired data connection, or a combination of various data communication methods.
  • the data transmission bus can use a controller area network bus (CAN, Controller Area Network).
  • the control device 440 is configured to perform the control method of the master-slave motion in some embodiments of the present disclosure.
  • the control unit is used to receive network data packets (eg joint information) sent by the main operator sensor and the drive unit sensor.
  • the control device calculates, according to the joint information of the driven tool and the joint information of the master manipulator, the joint target value of the handle of the master manipulator reaching the target attitude consistent with the current attitude of the slave tool, and converts it into a drive signal and sends it to the drive device 430 .
  • the drive device 430 receives the drive signal through the network data packet, for example, sends it to each Epos control tool through the CAN bus, drives each motor of the main operator to move so that the main operator moves in place, and realizes the attitude of the handle of the main operator and the driven tool. match.
  • the main manipulator may be provided with a controller, and the controller may calculate the attitude data of the master manipulator according to the joint information obtained by each main manipulator sensor, and send the calculated attitude data to the control device.
  • the control device may also calculate and obtain the attitude data of the main manipulator according to the joint data sent by the sensor of the main manipulator.
  • the orientation of the leading end of the driven tool into the abdomen is likely to be different from the current orientation of the handle of the master manipulator.
  • the method provided by the present disclosure can adjust the attitude of the handle of the master manipulator to be consistent with the current attitude of the slave tool before the master manipulator and the slave tool establish the master-slave mapping relationship, so as to realize the good operation of the operator
  • the experience and motion expectations are matched with the actual high precision, while avoiding the operational limitations of the master manipulator and the slave tool due to inconsistent motion control boundaries with each other.
  • the present disclosure also discloses the following:
  • a control method for master-slave motion comprising:
  • a control signal for the main manipulator is generated based on the target pose of the handle of the main manipulator.
  • a control signal for the master manipulator is generated.
  • the current pose of the main manipulator is determined based on the joint information of the at least one pose joint.
  • the current pose of the image in the display of the end instrument of the driven tool relative to the world coordinate system is determined.
  • control method according to any one of items 1 to 5, wherein the main manipulator includes at least one gesture joint for controlling the attitude of a handle of the main manipulator, and the control signal includes a Control signals for one or more of the at least one posture joint.
  • the transformation matrices of the other posture joints are determined.
  • control method according to item 8 further comprising:
  • the control signal of the master manipulator is generated based on the target pose of the handle of the master manipulator and the transformation matrices of the other pose joints.
  • the degree of gesture matching between the handle of the master manipulator and the driven tool is determined, the predetermined condition including the triggering of the teleoperation control right.
  • control method according to item 10 further comprising:
  • the degree of attitude matching between the handle of the master manipulator and the driven tool is determined.
  • the control signal of the handle of the main manipulator is generated such that the gesture matching degree is higher than or equal to a preset threshold.
  • a master-slave mapping between the master manipulator and the slave tool is established.
  • a robotic system comprising:
  • a master manipulator comprising a robotic arm, a handle provided on the robotic arm, at least one motor and at least one master manipulator sensor provided at at least one joint on the robotic arm, the at least one master manipulator sensor for obtaining joint information of the at least one joint;
  • a driven tool including a flexible arm body and an end device disposed at the end of the flexible arm body;
  • a drive device for driving the flexible arm of the driven tool, the drive device including at least one drive device sensor for obtaining drive information;
  • a control device connected in communication with the master operator and the drive device, the control device being configured to carry out the control method of a master-slave movement as claimed in any one of claims 1-14.
  • a computer device comprising:
  • a processor coupled to the memory and configured to execute the at least one instruction to execute the master-slave motion control method described in any one of 1-14.
  • a computer-readable storage medium for storing at least one instruction that, when executed by a computer, causes a robot system to implement the master-slave motion control method of any one of 1-14.

Abstract

一种主从运动的控制方法、机器人系统(200)、设备及存储介质,其中主从运动的控制方法,包括:确定从动工具的当前姿态(101);基于从动工具的当前姿态,确定主操作器的手柄的目标姿态(102);基于主操作器的手柄的目标姿态,生成主操作器的控制信号(103);可以实现从动工具与主操作器的手柄之间的姿态匹配,提高主从运动控制的精度。

Description

主从运动的控制方法、机器人系统、设备及存储介质
相关申请的交叉引用
本申请要求于2020年7月1日提交的、申请号为2020106255601、发明名称为“主操作手的姿态保持控制方法及系统”的中国专利申请的优先权,该申请的全文以引用方式整体结合于此。
技术领域
本公开涉及机器人领域,尤其涉及一种主从运动的控制方法、机器人系统、设备及存储介质。
背景技术
随着科技的发展,通过医疗机器人辅助医疗工作人员进行手术得到了快速的发展,医疗机器人不仅可以帮助医疗工作人员进行一系列的医疗诊断和辅助治疗,还能有效缓解医疗资源的紧张问题。
通常,医疗机器人包括用于执行操作的从动工具及用于控制从动工具运动的主操作器。在实际场景中,从动工具被设置成能够进入操作区域,医疗工作人员通过遥操作主操作器进而控制从动工具在操作区域中的运动,以实现医疗操作。
然而,一般被遥操作的从动工具的数量会大于主操作器的数量,因此在手术中会存在改变主操作器所控制的从动工具的情况。而且,在操作开始时或者操作过程中,主操作器都需要先与从动工具建立映射,然后进行主从控制。由于没有预先将主操作器与对应控制的从动工具进行姿态匹配,会存在主操作器与从动工具之间的姿态(如朝向或者角度)不匹配。如果直接将两者对应匹配进行主从映射,将会降低对从动工 具的控制精度,劣化医疗工作人员(例如手术医生)的人机互动体验。因此,在主操作器与从动工具匹配连接后和遥操作前,需要将主操作器的姿态与从动工具的姿态进行对应匹配,以改进主操作器对从动工具的姿态操控精准度。
发明内容
在一些实施例中,本公开提供了一种主从运动的控制方法,包括:确定从动工具的当前姿态;基于从动工具的当前姿态,确定主操作器的手柄的目标姿态;以及基于主操作器的手柄的目标姿态,生成主操作器的控制信号。
在一些实施例中,本公开提供了一种机器人系统,包括:主操作器,包括机械臂、设置在机械臂上的手柄以及设置在机械臂上的至少一个关节处的至少一个电机和至少一个主操作器传感器,至少一个主操作器传感器用于获得至少一个关节的关节信息;从动工具,包括柔性臂体和设置在柔性臂体末端的末端器械;驱动装置,用于驱动从动工具的柔性臂体,驱动装置包括用于获得驱动信息的至少一个驱动装置传感器;以及控制装置,与主操作器和驱动装置通信连接,控制装置被配置成用于:确定从动工具的当前姿态;基于从动工具的当前姿态,确定主操作器的手柄的目标姿态;以及基于主操作器的手柄的目标姿态,生成主操作器的控制信号。
在一些实施例中,本公开提供了一种计算机可读存储介质,用于存储至少一条指令,至少一条指令由计算机执行时致使机器人系统执行主从运动的控制方法,所述方法包括:确定从动工具的当前姿态;基于从动工具的当前姿态,确定主操作器的手柄的目标姿态;以及基于主操作器的手柄的目标姿态,生成主操作器的控制信号。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对本公开实施例描述中所 需要使用的附图作简单的介绍。下面描述中的附图仅仅示出本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据本公开实施例的内容和这些附图获得其他的实施例。
图1示出根据本公开一些实施例的主从运动的控制方法流程图;
图2示出根据本公开一些实施例的机器人系统的结构示意图;
图3示出根据本公开一些实施例的主操作器的示意图;
图4示出根据本公开一些实施例的机器人系统的示意图。
具体实施方式
为使本公开解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本公开实施例的技术方案作进一步的详细描述,显然,所描述的实施例仅仅是本公开示例性实施例,而不是全部的实施例。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“耦合”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连;可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。在本公开中,定义靠近操作者(例如医生)的一端为近端、近部或后端、后部,靠近手术患者的一端为 远端、远部或前端、前部。本领域技术人员可以理解,本公开的实施例可以用于医疗器械或手术机器人,也可以用于其他非医疗装置。
在本公开中,术语“位置”指对象或对象的一部分在三维空间中的定位(例如,可使用笛卡尔X、Y和Z坐标方面的变化描述三个平移自由度,例如分别沿笛卡尔X轴、Y轴和Z轴的三个平移自由度)。在本公开中,术语“姿态”指对象或对象的一部分的旋转设置(例如,三个旋转自由度,可使用滚转、俯仰和偏转来描述这三个旋转自由度)。在本公开中,术语“位姿”指对象或对象的一部分的位置和姿态的组合,例如可使用以上提到的六个自由度中的六个参数来描述。在本公开中,主操作器的手柄的位姿可由主操作器关节的关节信息的集合(例如由这些关节信息组成的一维矩阵)来表示。从动工具的位姿可由从动工具的驱动信息(例如,从动工具的柔性臂体的驱动信息)来确定。在本公开中,关节的关节信息可以包括相应关节相对于相应的关节轴所旋转的角度或者相对于初始位置移动的距离。
图1示出根据本公开一些实施例的主从运动的控制方法流程图100,图2示出根据本公开一些实施例的机器人系统的结构示意图200。方法100可以由硬件、软件或者固件实现或执行。在一些实施例中,方法100可以由机器人系统(例如,图2所示的机器人系统200)执行。在一些实施例中,方法100可以实现为计算机可读的指令。这些指令可以由通用处理器或专用处理器(例如,图2所示的控制装置220)读取并执行。例如,用于机器人系统200的控制装置可以包括处理器,被配置为执行方法100。在一些实施例中,这些指令可以存储在计算机可读介质上。
在一些实施例中,如图2所示,机器人系统200可以包括主控台车210、手术台车230及控制装置220。控制装置220可以与主控台车210和手术台车230通信连接,例如可通过线缆连接、也可以通过无线连接,以实现主控台车210和手术台车230之间的通信。主控台车210包括供操作者遥操作的主操作器,手术台车230包括用于执 行手术的从动工具。通过控制装置220实现主控台车中的主操作器与手术台车中的从动工具之间的主从映射,实现主操作器对从动工具的运动控制。在一些实施例中,手术台车包括设置在手术台车上的至少一个从动工具(如手术工具或视觉工具)。并且从动工具被设置成能够通过鞘套进入操作区域,其中,鞘套可以固定在患者的手术口(例如切口或自然开口)处,操作区域可以是进行手术的区域。从动工具可以包括臂体和末端器械。从动工具的臂体可以是柔性臂体,末端器械可以设置在柔性臂体远端。手术工具的末端器械可以包括但不限于手术钳、电刀、电勾等。视觉工具的末端器械可以包括但不限于成像装置或照明装置等。在一些实施例中,主控台车包括主操作器、显示器及脚踏板。本领域技术人员可以理解,主控台车210和手术台车230可以采用其他结构或者形式,例如基座、支架或建筑物等。
在步骤101,可以确定从动工具的当前姿态。在一些实施例中,通过驱动装置传感器获得从动工具的当前驱动信息(如角度),基于当前驱动信息确定从动工具的当前姿态。例如,可以通过正向运动学算法,计算从动工具的当前姿态。
驱动装置传感器可以设置在驱动装置上,驱动装置用于驱动从动工具的柔性臂体,驱动装置传感器用于获得驱动信息,根据驱动信息确定从动工具的当前姿态。例如,驱动装置可以包括至少一个驱动电机,驱动装置传感器与驱动电机耦合以记录和输出电机数据。例如,电机数据可以包括二进制或者十六进制数字,经换算可以获得从动工具的当前姿态。驱动装置传感器可以包括电位计或者编码器。通过电位计或者编码器获取角度等信息,进而确定从动工具的当前姿态。
在一些实施例中,可以采用姿态传感器获得从动工具的姿态。例如,姿态传感器也可以是光纤传感器,贯穿设置在从动工具的臂体上,用于感测从动工具的位置和姿态。
在一些实施例中,从动工具的当前姿态是从动工具相对于从动工具的基坐标系的 当前姿态。从动工具包括柔性臂体和设置在柔性臂体末端的末端器械,从动工具的当前姿态包括从动工具的末端器械相对于从动工具的基坐标系的姿态。从动工具的基坐标系可以是从动工具所安装的基座(例如,手术机器人的运动臂末端)的坐标系、从动工具所穿过的鞘管的坐标系(例如,鞘管出口的坐标系)、从动工具的远端运动中心点(Remote Center of Motion,RCM)的坐标系等。例如,从动工具的基坐标系可以设置在鞘管出口位置处,且在遥操作过程中,从动工具的基坐标系固定不变。可以对末端器械的当前姿态进行坐标系变换,得到相对于其他坐标系的姿态。
在另一些实施例中,从动工具的当前姿态是从动工具在显示器中的图像相对于世界坐标系的当前姿态。世界坐标系可以是操作者或主操作器所在空间的坐标系。因此,从动工具在显示器中的图像相对于世界坐标系的姿态是操作者所感知的姿态。从动工具包括手术工具和视觉工具。在手术过程中,手术工具在患者体内执行手术,视觉工具使用相机采集患者体内图像,并将采集到的图像传输至手术台车。图像经手术台车中的视频处理模块处理后,显示在主控台车的显示器上。操作者通过显示器中的图像获得从动工具的当前位姿。
在一些实施例中,从动工具在显示器中的图像相对于世界坐标系的当前姿态可以通过传感器得到。例如,通过从动工具的驱动装置传感器或姿态传感器,可以获得从动工具的末端器械相对于从动工具的基坐标系的姿态。在另一些实施例中,从动工具在显示器中的图像相对于世界坐标系的当前姿态可以通过坐标变换得到。例如,基于从动工具的基坐标系、视觉工具的相机的坐标系、视觉工具的基坐标系、显示器的坐标系及世界坐标系,可以获得从动工具在显示器中的图像相对于世界坐标系的当前姿态。
在步骤103,可以基于从动工具的当前姿态,确定主操作器的手柄的目标姿态。在一些实施例中,从动工具的当前姿态是相对于从动工具的基坐标系的当前姿态,或 者从动工具的当前姿态是从动工具在显示器中的图像相对于世界坐标系的当前姿态。主操作器的手柄的目标姿态是相对于主操作器的基坐标系的姿态。主操作器的基坐标系可以是主操作器所连接的基座(例如主控台车210)的坐标系。在一些实施例中,主操作器的基坐标系与从动工具的基坐标系具有固定变换关系。
在一些实施例中,从动工具的当前姿态与手柄的目标姿态一致,例如相同或具有固定差值。例如,在遥操作之前,保持从动工具的当前姿态不变并将从动工具的当前姿态作为手柄的目标姿态,将手柄的当前姿态调整至目标姿态,实现手柄与从动工具的姿态匹配。
在步骤105,可以基于目标姿态,生成主操作器的手柄的控制信号。在一些实施例中,确定主操作器的手柄的当前姿态;以及基于主操作器的手柄的目标姿态和当前姿态,生成主操作器的控制信号。主操作器的手柄的当前姿态是主操作器的手柄相对于主操作器的基坐标系的姿态。在一些实施例中,基于手柄的当前姿态以及目标姿态确定手柄从当前姿态达到目标姿态所对应的控制信号。
在一些实施例中,主操作器包括用于控制手柄的姿态的至少一个姿态关节,确定主操作器的手柄的当前姿态包括:获得至少一个姿态关节的关节信息;以及基于至少一个姿态关节的关节信息,确定主操作器的当前姿态。主操作器包括机械臂,机械臂包括位置关节以及姿态关节,姿态关节作为主操作器的定向模块,通过一个或者多个姿态关节控制主操作器达到目标姿态。位置关节作为主操作器的定位模块,通过一个或者多个的位置关节控制主操作器达到目标位置。主操作器传感器设置在机械臂的姿态关节处,用于获取姿态关节对应的关节信息(如角度),根据获取到的关节信息确定主操作器的手柄相对于主操作器的基坐标系的当前姿态。例如,主操作器包括7个关节,其中关节1、关节2、关节5、关节6和关节7为姿态关节用于控制主操作器的手柄的姿态,通过姿态关节的主操作器传感器获取关节信息,基于正向运动学算法计 算主操作器的当前姿态。在一些实施例中,主操作器包括用于控制主操作器的手柄的姿态的至少一个姿态关节,并且控制信号包括用于控制至少一个姿态关节中的一个或多个姿态关节的控制信号。通过调整一个或者多个姿态关节实现对主操作器的手柄的姿态调整,实现主操作器的手柄与从动工具的姿态匹配。
在一些实施例中,控制信号包括用于控制至少一个姿态关节中的一个或多个姿态关节的控制信号,其中至少一个姿态关节中的一个或多个姿态关节包括非耦合姿态关节。耦合关节可以是指用于调整主操作器的位置和姿态的关节。非耦合关节可以是指只能够用于调整主操作器的位置(在本公开中,称为非耦合位置关节)或者姿态的关节(在本公开中,称为非耦合姿态关节)。在一些实施例中,主操作器可以包括至少一个耦合关节。例如,主操作器可以包括7个关节,如图3所示,其中,关节1、关节2以及关节3为位置关节,关节1、关节2、关节5、关节6以及关节7为姿态关节,关节1以及关节2是既可以调整主操作器的位置又可以调整主操作器的姿态的耦合关节,关节5以及关节6以及关节7是只能调整主操作器的姿态的非耦合姿态关节。在一些实施例中,可以通过计算非耦合姿态关节(例如,关节5、关节6以及关节7)的控制信号实现对主操作器的手柄的姿态调整,实现主操作器的手柄与从动工具的姿态匹配,为后续的遥操作提供条件。
如图3所示,图3示出根据本公开一些实施例的主操作器的示意图300。在图3中,主操作器包括7个关节(编号分别为i=1…7),主操作器的基坐标系为b,手柄的坐标系为d。在图3中,基坐标系b是以基座虚拟为一点而建立的坐标系,其方向可以基于其物理构造而确定。类似地,手柄的坐标系d是以手柄虚拟为一点而建立的坐标系,其方向可以基于其物理构造而确定。手柄的坐标系d的原点可以与关节5、关节6、关节7的坐标系的原点重合,手柄的坐标系d相对于主操作器的基坐标系的位置和姿态可以通过关节1-7的关节信息确定。
在一些实施例中,主操作器传感器获取主操作器的关节信息q i(i是关节的编号)。在一些实施例中,每一个关节信息q i可以包括关节的角度值θ i。例如,获取关节1的关节信息q 1、关节2的关节信息q 2、关节3的关节信息q 3、关节4的关节信息q 4、关节5的关节信息q 5、关节6的关节信息q 6、关节7的关节信息q 7。关节4是关节3的从动关节,关节4的关节角度与关节3的关节角度绝对值相同方向相反。因此,主操作器的六个关节的角度表示为6*1的矩阵q,关节4的关节角度可以不在矩阵q中体现。每一个关节信息q i可以表示为θ i,主操作器的结构为六个自由度,如公式(1):
q=(q 1 q 2 q 3 q 5 q 6 q 7) T         (1)
关节1、关节2以及关节3为位置关节,q 1、q 2、q 3决定了主操作器的手柄的位置。关节1、关节2、关节5、关节6、关节7为姿态关节,q 1、q 2、q 5、q 6、q 7决定了手柄的姿态。在一些实施例中,确定主操作器的手柄的姿态,可以不关心由关节1、关节2以及关节3控制的位置,而关心由关节1、关节2、关节5、关节6以及关节7确定的姿态(如方向)。在一些实施例中,在电机驱动时,保持关节1、关节2以及关节3不动,确定关节5、关节6以及关节7对应的q 5、q 6、q 7,根据q 5、q 6、q 7计算控制信号,以实现对手柄的姿态调整。
本领域技术人员可以理解,多关节的主操作器达到目标姿态可以有很多解。在一些实施例中,可以调整至少一个姿态关节中的一个或多个姿态关节,来调整主操作器手柄的姿态。例如,在一个实施例中,可以保持耦合姿态关节1、耦合姿态关节2以及非耦合位置关节3不变,通过调整非耦合姿态关节5、6、7,来调整主操作器手柄的姿态。
在一些实施例中,获得至少一个姿态关节中除一个或多个姿态关节之外的其他姿态关节的关节信息。基于其他姿态关节的关节信息,可以确定其他姿态关节的转换矩阵。例如,基于主操作器传感器获取其他姿态关节的关节信息,基于其他姿态关节的 关节信息确定其他姿态关节的转换矩阵。如图3所示,可以获得耦合姿态关节1和2的关节信息,并计算转换矩阵。
在一些实施例中,可以调整一个或者多个姿态关节中的非耦合姿态关节(例如,关节5、关节6以及关节7),而不调整其他姿态关节,例如耦合关节(例如,关节1以及关节2)。基于其他姿态关节(例如,关节1以及关节2)对应的q 1以及q 2确定其他姿态关节的转换矩阵(例如,其他姿态关节相对于关节起始点0的转换矩阵 0R 4)。基于主操作器的手柄的目标姿态和其他姿态关节的转换矩阵 0R 4,生成主操作器的控制信号,如公式(2)至公式(4)。
本领域技术人员可以理解,关节3、关节4是非耦合位置关节,基于q 1、q 2、q 3确定的其他姿态关节的转换矩阵 0R 4与基于q 1、q 2确定的其他姿态关节的转换矩阵 0R 4一致。
4R 70R 4 T· bR 0 T· bR d· 7R d T          (2)
在公式(2)中,转换矩阵 0R 4由输入q 1、q 2或者q 1、q 2、q 3确定,b为主操作器的基坐标系,d为主操作器的手柄的坐标系, bR d为主操作器手柄相对于主操作器基坐标系的姿态, bR 0为基座与关节起始点的既有角度关系,是结构常数, 7R d为关节7与手柄的既有角度关系,是结构常数。
4R 74R 5· 5R 6· 6R 7          (3)
R(q 5,q 6,q 7)= 0R 4 T· bR 0 T·R t· 7R d T          (4)
在公式(4)中,R t为从动工具的当前姿态并且与 bR d相同, 4R 55R 66R 7分别对应待求解量q 5、q 6、q 7。基于得到的q 5、q 6、q 7确定控制信号,基于控制信号对主操作器的姿态调整,实现主从姿态的匹配。本领域技术人员可以理解,R t可以是从动工具的末端器械相对于从动工具的基坐标系的当前姿态,或者从动工具的末端器械在显示器中的图像相对于世界坐标系的当前姿态。R t可以与 bR d一致,例如相同或 者具有特定比例或差值。在一些实施例中,根据控制信号确定手柄中的一个或者多个姿态关节的关节目标值,将关节目标值转化为驱动量发送至驱动装置。驱动装置驱动主操作器的一个或者多个姿态关节的电机运动使得主操作器的一个或者多个姿态关节运动,实现主操作器的手柄的姿态与从动工具的末端器械的姿态匹配。
在一些实施例中,可以基于DH参数法或者指数积表示法构建主操作器的数学结构模型。例如,确定主操作器的关节对应的DH矩阵,基于关节的DH矩阵确定主操作器的数学结构模型。主操作器的每一个关节的DH矩阵表示为公式(5)。
Figure PCTCN2021103748-appb-000001
DH矩阵与q的对应关系如表1。
表1DH矩阵与q的对应关系
0T 1 1T 2 2T 3 3T 4 4T 5 5T 6 6T 7
q 1 q 2 q 3 q 4(q 4=-q 3) q 5 q 6 q 7
关节1 关节2 关节3 关节4(关节3的从动关节) 关节5 关节6 关节7
在公式(5)中,j为关节编号,Rot(x,α j)为绕x轴旋转α j角度,Rot(z,θ j)为绕z轴旋转θ角度,Trans(x,α j)在x方向上移动α j,Trans(z,d j)在z方向上移动d j,Rot(x,α j)、Trans(x,α j)等均为4*4矩阵。如图3所示的多关节主操作器结构,z轴为该关节的旋转轴,x轴指向下一个关节,可以依据笛卡尔坐标系的左/右手定律确定y轴方向。Rot(x,α j)、Trans(x,α j)四阶矩阵表示绕一个方向旋转一定角度或延一个方向平移一定距离。
主操作器的数学结构模型由所有关节的DH矩阵相乘描述,如公式(6):
0T 70T 1· 1T 2· 2T 3· 3T 4· 4T 5· 5T 6· 6T 7          (6)
在公式(6)中,T可以理解为以q为主要变量的矩阵,其根据上下标的标识来表示不同部分的数学模型,矩阵T中左上角3*3部分为旋转矩阵R。
主操作器包括臂体和手柄,臂体包括关节和连杆。操作者通过遥操作主操作器的手柄控制从动工具的位置和姿态。可以理解,在启动遥操作时,若手柄的姿态(如朝向或角度)与对应控制的从动工具的姿态(如朝向或角度)不一致,会使得操作者(如手术医生)在操作过程中的人机互动体验较差,影响对从动工具的操作精度。因此,在主操作器与从动工具匹配连接后及主操作器对从动工具遥操作之前(如操作者持握主操作器的手柄获得对应从动工具的控制权但还未开始主从遥操作时),将手柄的姿态与从动工具的姿态进行匹配调整。当两者的姿态一致时,可以执行主操作器对从动工具的遥操作,可以改进后续遥操作的精度及体验。
在一些实施例中,响应于预定条件得到满足,可以确定主操作器与从动工具之间的姿态匹配度。预定条件包括遥操作控制权的触发。在一些实施例中,可以通过触发装置实现遥操作控制权的触发。触发装置可以是设置于主操作器或显示器上方便操作者触碰、按动或划拨的开关。触发方式包括但不限于,保持靠近、触碰、划拨、点按或长按等。触发装置的触发方式可以是拨动主操作器上的开关、触碰主操作器上的感应位置、长按或点按主操作器上的按键、踩主控台的脚踏板、操作主控台的显示屏等。
匹配是指手柄的姿态与从动工具的姿态满足预设关系(例如,一致),姿态匹配度是指手柄的当前姿态与从动工具的当前姿态之间匹配的程度。在一些实施例中,响应于预定条件得到满足,通过传感器获取主操作器及从动工具的关节信息,通过正向运动学算法确定手柄及从动工具的当前姿态,基于主操作器的手柄的当前姿态及从动工具的当前姿态,确定主操作器与从动工具之间的姿态匹配度。当姿态匹配度低于预设阈值时,响应于姿态匹配度低于预设阈值,生成对主操作器的手柄的当前姿态进行调整的控制信号以使得姿态匹配度高于或等于预设阈值。这样,当两者的姿态不匹配 时可以自动进行姿态调整以实现两者姿态的一致性。当两者的当前姿态一致或者基本一致(姿态匹配度高于或者等于预设阈值)时,响应于姿态匹配度高于或等于预设阈值,建立主操作器与从动工具之间的主从映射,这样可以执行下一步的遥操作流程。
在一些实施例中,将主操作器的手柄的姿态与从动工具的姿态调整一致的方式包括:保持从动工具的当前姿态不改变,通过调整主操作器的手柄的姿态以使得主操作器的手柄的姿态与从动工具的姿态一致。
主从主操作器的手柄的目标姿态与从动工具的当前姿态一致,在主操作器与从动工具之间建立主从映射,可以执行主操作器对从动工具的遥操作,提高遥操作的操作精度以及遥操作的体验感。本领域技术人员可以理解,姿态一致是指姿态基本一致,主操作器的手柄的目标姿态与从动工具的当前姿态之间可以存在一定的误差,但是误差的范围在可接受的范围内。
上述实施例中,在遥操作之前对手柄的姿态与从动工具的姿态进行匹配,当操作者开始操作(例如按下主操作器的手柄的夹钳按钮),遥操作能够快速建立。此外,只对从动工具的当前姿态进行保持,操作者在非操作状态下仍可移动主操作器的手柄的位置,使其移动到合适的位置再进行遥操作匹配,极大增加了主操作器的手柄的运动空间。并且,上述提供的主从运动的控制方法,可以适用于多种不同原理和形式的从动端,且计算过程针对性强、计算量小,也降低将主操作器的手柄调整至目标姿态时的驱动量。
上述实施例中,通过将主操作器与从动工具之间建立连接并实现控制权转移,在连接以及控制权转移的状态下确定主操作器的手柄与从动工具之间的姿态匹配度。若姿态匹配度满足预设阈值条件,则建立主操作器与从动工具之间的主从映射,执行遥操作步骤。若姿态匹配度不满足预设阈值条件,此时需要将主操作器的手柄的姿态调整至与从动工具的当前姿态一致,然后再建立主操作器与从动工具之间的主从映射, 执行对主操作器的手柄的遥操作。在主操作器和从动工具建立遥操作关系之前及时调整主操作器的手柄的姿态与从动工具的姿态一致,实现了主操作器的手柄与从动工具之间的主从映射的准确性,提高操作者在遥操作时的操作体验,实现操作动作与实际动作的高精度匹配,同时避免了由于主操作器和从动工具彼此运动控制边界不一致导致的操作限制。
图4示出根据本公开一些实施例的机器人系统的示意图400。如图4所示,机器人系统400,包括:主操作器410、控制装置、驱动装置和从动工具。主操作器410包括机械臂、设置在机械臂上的手柄以及设置在机械臂上的至少一个关节处的至少一个主操作器传感器。至少一个主操作器传感器用于获得至少一个关节的关节信息。从动工具420包括柔性臂体和末端器械。驱动装置430用于驱动从动工具的柔性臂体,包括用于获得驱动信息的至少一个驱动装置传感器。控制装置440与主操作器410和驱动装置430通信连接。控制装置440被配置成用于执行根据本公开一些实施例的主从运动的控制方法。
在一些实施例中,主操作器410包括六自由度机械臂,六自由度机械臂上的每一个关节处设置一个主操作器传感器,通过每个关节的主操作器传感器生成关节信息(如关节角度数据)。在一些实施例中,主操作器传感器采用电位计和/或编码器。
在一些实施例中,从动工具420包括多构节六自由度柔性臂体。
在一些实施例中,驱动装置430用于驱动从动工具420的柔性臂体,并通过驱动装置传感器获得从动工具对应的驱动信息。
在一些实施例中,控制装置440与主操作器410和驱动装置430通信连接。例如,主操作器410、驱动装置430及控制装置440可以是通过数据传输总线连接,包括但不限于无线数据传输,有线数据连接,或多种数据通讯方式混合使用。数据传输总线可以采用控制器局域网总线(CAN,Controller Area Network)。
控制装置440被配置成用于执行本公开一些实施例中的主从运动的控制方法。例如,控制装置用于接收主操作器传感器和驱动装置传感器发送的网络数据包(如关节信息)。控制装置根据从动工具的关节信息和主操作器的关节信息计算出主操作器的手柄到达与从动工具的当前姿态一致的目标姿态的关节目标值,并转化为驱动信号发送至驱动装置430。驱动装置430通过网络数据包接收到驱动信号,例如通过CAN总线发送至各Epos控制工具,驱动主操作器的各个电机运动使得主操作器运动到位,实现主操作器的手柄与从动工具的姿态匹配。
在一些实施例中,主操作器中可以设置有控制器,控制器可以根据各个主操作器传感器获得到的关节信息计算主操作器的姿态数据,并将计算得到的姿态数据发送到控制装置。在另外一些实施例中,控制装置也可以根据主操作器传感器发送的关节数据计算得到主操作器的姿态数据。
上述实施例中,当变换主操作器的控制对象(例如,从动工具)时,从动工具入腹的前端朝向与主操作器的手柄的当下的朝向很有可能是不同的。本公开提供的方法可以在主操作器和从动工具建立主从映射关系之前,操作者实际操作之前调整主操作器的手柄的姿态与从动工具的当前姿态一致,以实现操作者良好的操作体验以及动作预期与实际的高精度匹配,同时避免了主操作器和从动工具因为彼此运动控制边界不一致导致的操作限制。
本公开还公开了以下:
1.一种主从运动的控制方法,包括:
确定从动工具的当前姿态;
基于所述从动工具的当前姿态,确定主操作器的手柄的目标姿态;以及
基于所述主操作器的手柄的所述目标姿态,生成所述主操作器的控制信号。
2.根据第1项所述的控制方法,还包括:
确定所述主操作器的手柄的当前姿态;以及
基于所述主操作器的手柄的目标姿态和当前姿态,生成所述主操作器的控制信号。
3.根据第2项所述的控制方法,所述主操作器包括用于控制所述手柄的姿态的至少一个姿态关节,确定所述主操作器的手柄的当前姿态包括:
获得所述至少一个姿态关节的关节信息;以及
基于所述至少一个姿态关节的关节信息,确定所述主操作器的所述当前姿态。
4.根据第1-3中任一项所述的控制方法,所述从动工具包括柔性臂体和设置在所述柔性臂体末端的末端器械,确定所述从动工具的当前姿态包括:
确定所述从动工具的末端器械相对于所述从动工具的基坐标系的当前姿态;或者
确定所述从动工具的末端器械在显示器中的图像相对于世界坐标系的当前姿态。
5.根据第1-4中任一项所述的控制方法,所述主操作器的手柄的目标姿态是相对于所述主操作器的基坐标系的姿态。
6.根据第1-5中任一项所述的控制方法,所述主操作器包括用于控制所述主操作器的手柄的姿态的至少一个姿态关节,并且所述控制信号包括用于控制所述至少一个姿态关节中的一个或多个姿态关节的控制信号。
7.根据第6项所述的控制方法,所述至少一个姿态关节中的所述一个或多个姿态关节包括非耦合姿态关节。
8.根据第6-7中任一项所述的控制方法,还包括:
获得所述至少一个姿态关节中除所述一个或多个姿态关节之外的其他姿态关节的关节信息;以及
基于所述其他姿态关节的关节信息,确定所述其他姿态关节的转换矩阵。
9.根据第8项所述的控制方法,还包括:
基于所述主操作器的手柄的所述目标姿态和所述其他姿态关节的转换矩阵,生成 所述主操作器的所述控制信号。
10.根据第1-9中任一项所述的控制方法,还包括:
响应于预定条件得到满足,确定所述主操作器的手柄与所述从动工具之间的姿态匹配度,所述预定条件包括遥操作控制权的触发。
11.根据第10项所述的控制方法,还包括:
基于所述主操作器的手柄的当前姿态及所述从动工具的当前姿态,确定所述主操作器的手柄与所述从动工具之间的姿态匹配度。
12.根据第10-11中任一项所述的控制方法,还包括:
响应于所述姿态匹配度低于预设阈值,生成所述主操作器的手柄的所述控制信号以使得所述姿态匹配度高于或等于预设阈值。
13.根据第10-12中任一项所述的控制方法,还包括:
响应于所述姿态匹配度高于或等于预设阈值,建立所述主操作器与所述从动工具之间的主从映射。
14.根据第1-13中任一项所述的控制方法,所述主操作器的手柄的目标姿态与所述从动工具的当前姿态一致。
15.一种机器人系统,包括:
主操作器,包括机械臂、设置在所述机械臂上的手柄以及设置在所述机械臂上的至少一个关节处的至少一个电机和至少一个主操作器传感器,所述至少一个主操作器传感器用于获得所述至少一个关节的关节信息;
从动工具,包括柔性臂体和设置在所述柔性臂体末端的末端器械;
驱动装置,用于驱动所述从动工具的柔性臂体,所述驱动装置包括用于获得驱动信息的至少一个驱动装置传感器;以及
控制装置,与所述主操作器和所述驱动装置通信连接,所述控制装置被配置成用 于执行如权利要求1-14中任一项所述的主从运动的控制方法。
16.一种计算机设备,所述计算机设备包括:
存储器,用于存储至少一条指令;以及
处理器,与所述存储器耦合并且用于执行所述至少一条指令以执行1-14任一项所述的主从运动的控制方法。
17.一种计算机可读存储介质,用于存储至少一条指令,所述至少一条指令由计算机执行时致使机器人系统实现1-14任一项所述的主从运动的控制方法。
注意,上述仅为本公开的示例性实施例及所运用技术原理。本领域技术人员会理解,本公开不限于这里的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本公开的保护范围。因此,虽然通过以上实施例对本公开进行了较为详细的说明,但是本公开不仅仅限于以上实施例,在不脱离本公开构思的情况下,还可以包括更多其他等效实施例,而本公开的范围由所附的权利要求范围决定。

Claims (20)

  1. 一种主从运动的控制方法,包括:
    确定从动工具的当前姿态;
    基于所述从动工具的当前姿态,确定主操作器的手柄的目标姿态;以及
    基于所述主操作器的手柄的所述目标姿态,生成所述主操作器的控制信号。
  2. 根据权利要求1所述的控制方法,其特征在于,还包括:
    确定所述主操作器的手柄的当前姿态;以及
    基于所述主操作器的手柄的目标姿态和当前姿态,生成所述主操作器的控制信号。
  3. 根据权利要求2所述的控制方法,其特征在于,所述主操作器包括用于控制所述手柄的姿态的至少一个姿态关节,确定所述主操作器的手柄的当前姿态包括:
    获得所述至少一个姿态关节的关节信息;以及
    基于所述至少一个姿态关节的关节信息,确定所述主操作器的所述当前姿态。
  4. 根据权利要求1所述的控制方法,其特征在于,所述从动工具包括柔性臂体和设置在所述柔性臂体末端的末端器械,确定所述从动工具的当前姿态包括:
    确定所述从动工具的末端器械相对于所述从动工具的基坐标系的当前姿态;或者
    确定所述从动工具的末端器械在显示器中的图像相对于世界坐标系的当前姿态。
  5. 根据权利要求1所述的控制方法,其特征在于,所述主操作器的手柄的目标姿态是相对于所述主操作器的基坐标系的姿态。
  6. 根据权利要求1所述的控制方法,其特征在于,所述主操作器包括用于控制所述主操作器的手柄的姿态的至少一个姿态关节,并且所述控制信号包括用于控制所述至少一个姿态关节中的一个或多个姿态关节的控制信号。
  7. 根据权利要求6所述的控制方法,其特征在于,所述至少一个姿态关节中的所 述一个或多个姿态关节包括非耦合姿态关节。
  8. 根据权利要求6所述的控制方法,其特征在于,还包括:
    获得所述至少一个姿态关节中除所述一个或多个姿态关节之外的其他姿态关节的关节信息;以及
    基于所述其他姿态关节的关节信息,确定所述其他姿态关节的转换矩阵。
  9. 根据权利要求8所述的控制方法,其特征在于,还包括:
    基于所述主操作器的手柄的所述目标姿态和所述其他姿态关节的转换矩阵,生成所述主操作器的所述控制信号。
  10. 根据权利要求1所述的控制方法,其特征在于,还包括:
    响应于预定条件得到满足,确定所述主操作器的手柄与所述从动工具之间的姿态匹配度,所述预定条件包括遥操作控制权的触发。
  11. 根据权利要求10所述的控制方法,其特征在于,还包括:
    基于所述主操作器的手柄的当前姿态及所述从动工具的当前姿态,确定所述主操作器的手柄与所述从动工具之间的姿态匹配度。
  12. 根据权利要求10所述的控制方法,其特征在于,还包括:
    响应于所述姿态匹配度低于预设阈值,生成所述主操作器的手柄的所述控制信号以使得所述姿态匹配度高于或等于预设阈值。
  13. 根据权利要求10所述的控制方法,其特征在于,还包括:
    响应于所述姿态匹配度高于或等于预设阈值,建立所述主操作器与所述从动工具之间的主从映射。
  14. 根据权利要求1所述的控制方法,其特征在于,所述主操作器的手柄的目标姿态与所述从动工具的当前姿态一致。
  15. 一种机器人系统,包括:
    主操作器,包括机械臂、设置在所述机械臂上的手柄以及设置在所述机械臂上的至少一个关节处的至少一个电机和至少一个主操作器传感器,所述至少一个主操作器传感器用于获得所述至少一个关节的关节信息;
    从动工具,包括柔性臂体和设置在所述柔性臂体末端的末端器械;
    驱动装置,用于驱动所述从动工具的柔性臂体,所述驱动装置包括用于获得驱动信息的至少一个驱动装置传感器;以及
    控制装置,与所述主操作器和所述驱动装置通信连接,所述控制装置被配置成用于:
    确定从动工具的当前姿态;
    基于所述从动工具的当前姿态,确定主操作器的手柄的目标姿态;以及
    基于所述主操作器的手柄的所述目标姿态,生成所述主操作器的控制信号。
  16. 根据权利要求15所述的机器人系统,其特征在于,还包括:
    确定所述主操作器的手柄的当前姿态;以及
    基于所述主操作器的手柄的目标姿态和当前姿态,生成所述主操作器的控制信号。
  17. 根据权利要求15所述的机器人系统,其特征在于,所述主操作器包括用于控制所述主操作器的手柄的姿态的至少一个姿态关节,并且所述控制信号包括用于控制所述至少一个姿态关节中的一个或多个姿态关节的控制信号。
  18. 根据权利要求17所述的机器人系统,其特征在于,还包括:
    获得所述至少一个姿态关节中除所述一个或多个姿态关节之外的其他姿态关节的关节信息;以及
    基于所述其他姿态关节的关节信息,确定所述其他姿态关节的转换矩阵。
  19. 根据权利要求15所述的机器人系统,其特征在于,还包括:
    响应于预定条件得到满足,确定所述主操作器的手柄与所述从动工具之间的姿态匹配度,所述预定条件包括遥操作控制权的触发。
  20. 一种计算机可读存储介质,用于存储至少一条指令,所述至少一条指令由计算机执行时致使机器人系统执行主从运动的控制方法,所述方法包括:
    确定从动工具的当前姿态;
    基于所述从动工具的当前姿态,确定主操作器的手柄的目标姿态;以及
    基于所述主操作器的手柄的所述目标姿态,生成所述主操作器的控制信号。
PCT/CN2021/103748 2020-07-01 2021-06-30 主从运动的控制方法、机器人系统、设备及存储介质 WO2022002159A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010625560.1 2020-07-01
CN202010625560 2020-07-01

Publications (1)

Publication Number Publication Date
WO2022002159A1 true WO2022002159A1 (zh) 2022-01-06

Family

ID=79010698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103748 WO2022002159A1 (zh) 2020-07-01 2021-06-30 主从运动的控制方法、机器人系统、设备及存储介质

Country Status (2)

Country Link
CN (1) CN113876434A (zh)
WO (1) WO2022002159A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114098990A (zh) * 2022-01-28 2022-03-01 极限人工智能(北京)有限公司 器械驱动方法、装置、电子设备及存储介质
CN116019564A (zh) * 2023-03-28 2023-04-28 北京壹点灵动科技有限公司 膝关节手术机器人和控制方法
CN116147503A (zh) * 2023-04-18 2023-05-23 合肥合滨智能机器人有限公司 激光位移传感器测试机器人主从距离准确度方法及系统
CN117017507A (zh) * 2023-10-09 2023-11-10 华中科技大学同济医学院附属协和医院 一种穿刺手术机器人的精密主从控制系统及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023185699A1 (zh) * 2022-03-26 2023-10-05 深圳市精锋医疗科技股份有限公司 一种手术机器人和控制方法
CN115476338B (zh) * 2022-07-08 2024-01-26 深圳市越疆科技股份有限公司 姿态调整方法及装置、机器人机构、电子设备及存储介质
CN117695016A (zh) * 2022-08-24 2024-03-15 上海微创医疗机器人(集团)股份有限公司 机械臂的匹配方法、医生控制台和计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9439733B2 (en) * 2013-04-08 2016-09-13 Samsung Electronics Co., Ltd. Surgical robot system
CN106361440A (zh) * 2016-08-31 2017-02-01 北京术锐技术有限公司 一种柔性手术工具系统及其在运动约束下的控制方法
CN109806002A (zh) * 2019-01-14 2019-05-28 微创(上海)医疗机器人有限公司 一种用于手术机器人的成像系统及手术机器人
CN110355750A (zh) * 2018-10-29 2019-10-22 西北工业大学 面向遥操作手眼协调的交互控制方法
CN110785601A (zh) * 2018-11-15 2020-02-11 深圳市大疆创新科技有限公司 手持云台的控制方法和手持云台
CN110893118A (zh) * 2018-09-12 2020-03-20 微创(上海)医疗机器人有限公司 手术机器人系统以及机械臂的运动控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9439733B2 (en) * 2013-04-08 2016-09-13 Samsung Electronics Co., Ltd. Surgical robot system
CN106361440A (zh) * 2016-08-31 2017-02-01 北京术锐技术有限公司 一种柔性手术工具系统及其在运动约束下的控制方法
CN110893118A (zh) * 2018-09-12 2020-03-20 微创(上海)医疗机器人有限公司 手术机器人系统以及机械臂的运动控制方法
CN110355750A (zh) * 2018-10-29 2019-10-22 西北工业大学 面向遥操作手眼协调的交互控制方法
CN110785601A (zh) * 2018-11-15 2020-02-11 深圳市大疆创新科技有限公司 手持云台的控制方法和手持云台
CN109806002A (zh) * 2019-01-14 2019-05-28 微创(上海)医疗机器人有限公司 一种用于手术机器人的成像系统及手术机器人

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114098990A (zh) * 2022-01-28 2022-03-01 极限人工智能(北京)有限公司 器械驱动方法、装置、电子设备及存储介质
CN116019564A (zh) * 2023-03-28 2023-04-28 北京壹点灵动科技有限公司 膝关节手术机器人和控制方法
CN116019564B (zh) * 2023-03-28 2023-07-28 北京壹点灵动科技有限公司 膝关节手术机器人和控制方法
CN116147503A (zh) * 2023-04-18 2023-05-23 合肥合滨智能机器人有限公司 激光位移传感器测试机器人主从距离准确度方法及系统
CN116147503B (zh) * 2023-04-18 2023-06-27 合肥合滨智能机器人有限公司 激光位移传感器测试机器人主从距离准确度方法及系统
CN117017507A (zh) * 2023-10-09 2023-11-10 华中科技大学同济医学院附属协和医院 一种穿刺手术机器人的精密主从控制系统及方法
CN117017507B (zh) * 2023-10-09 2023-12-19 华中科技大学同济医学院附属协和医院 一种穿刺手术机器人的精密主从控制系统

Also Published As

Publication number Publication date
CN113876434A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
WO2022002159A1 (zh) 主从运动的控制方法、机器人系统、设备及存储介质
WO2022002155A1 (zh) 主从运动的控制方法、机器人系统、设备及存储介质
WO2018214840A1 (zh) 手术机器人系统及手术器械位置的显示方法
US8002694B2 (en) Master-slave manipulator system
US20220296324A1 (en) Systems and methods for haptic feedback in selection of menu items in a teleoperational system
US20200367984A1 (en) Robotic surgical systems including torque sensors
JP2021502173A (ja) ロボットマニピュレータ又は関連ツールを制御するためのシステム及び方法
WO2023083078A1 (zh) 机械臂、从操作设备和手术机器人
CN111278350A (zh) 定位外科手术机器人系统的摄像头以捕获患者体腔内的图像
WO2023083078A9 (zh) 机械臂、从操作设备和手术机器人
US20220061936A1 (en) Control of an endoscope by a surgical robot
CN114469355A (zh) 机械臂、从操作设备、手术机器人及保持rc点不变的方法
CN113271883B (zh) 用于机器人手术系统的手眼协调系统
WO2023083077A1 (zh) 保持rc点不变的方法、机械臂、设备、机器人和介质
CN113876433A (zh) 机器人系统以及控制方法
RU2721461C1 (ru) Способ управления камерой в роботохирургическом комплексе
US11648075B2 (en) Robotic surgical system control arm including dual encoders
CN114129266B (zh) 保持rc点不变的方法、机械臂、设备、机器人和介质
CN219629776U (zh) 手术机器人的显示系统及手术机器人系统
US20220323157A1 (en) System and method related to registration for a medical procedure
CN114052917A (zh) 操作臂、从操作设备和手术机器人
CN114010326A (zh) 操作臂、从操作设备和手术机器人
US20210068799A1 (en) Method and apparatus for manipulating tissue
CN115781690A (zh) 多关节机械臂的控制方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21834264

Country of ref document: EP

Kind code of ref document: A1