WO2022002083A1 - Parking discharge system, vehicle and parking discharge method - Google Patents

Parking discharge system, vehicle and parking discharge method Download PDF

Info

Publication number
WO2022002083A1
WO2022002083A1 PCT/CN2021/103304 CN2021103304W WO2022002083A1 WO 2022002083 A1 WO2022002083 A1 WO 2022002083A1 CN 2021103304 W CN2021103304 W CN 2021103304W WO 2022002083 A1 WO2022002083 A1 WO 2022002083A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
controller
electronic load
manager
parking
Prior art date
Application number
PCT/CN2021/103304
Other languages
French (fr)
Inventor
Jinli PEI
Original Assignee
Ceres Intellectual Property Company Limited
Weichai Power Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceres Intellectual Property Company Limited, Weichai Power Co., Ltd. filed Critical Ceres Intellectual Property Company Limited
Publication of WO2022002083A1 publication Critical patent/WO2022002083A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/75Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention pertains to the technical field of electric vehicles and specifically relates to a parking discharge system, a vehicle and a parking discharge method.
  • Electric vehicles have recently become popular due to their environmental friendliness and energy saving characteristics. After an electric vehicle is stopped and powered off, the electric energy generated by the on-board engine or the fuel cell system is not completely consumed, and film capacitors inside the motor controller have a high voltage, which poses an electric shock safety hazard. Therefore, parking discharge is required for the electric vehicle to use up the electrical energy and ensure that drivers and passengers have no risk of high-voltage electric shock after the vehicle is powered off.
  • the high-voltage busbar of the power battery normally needs to be disconnected during parking discharge and an electronic load needs to be connected for discharge.
  • the operation is cumbersome and there is a risk of electric shock due to the removal of the high-voltage busbar, and the discharge power of the electronic load needs to be adjusted manually rather than automatically, according to the state of the power battery in the electric vehicle resulting in the risk of over-discharge of the power battery.
  • An object of the present invention is to address at least some of the problems identified above.
  • a parking discharge system which comprises:
  • a power battery which is connected to a high-voltage bus network and comprises a charge-discharge interface and a charge-discharge relay;
  • a battery manager which is in communicative connection with the controller and the power battery, respectively, and is used for controlling the charge-discharge relay to be closed after receiving a discharge signal from the controller, so that the electronic load is connected to the high-voltage bus network;
  • an electronic load manager which is in communicative connection with the controller and the electronic load, respectively to regulate the power of the electronic load.
  • the controller is in communicative connection with the battery manager and the electronic load manager respectively, and uses the charge-discharge interface of the power battery to connect the electronic load, and the battery manager to control the closure of the charge-discharge relay in the power battery, thereby controlling the electrical connection between the electronic load and the power battery to perform discharge.
  • the electronic load manager is used to control and regulate the power of the electronic load, ensuring SOC stability of the power battery, thereby preventing the problem of over-discharge and addressing the problems of cumbersome operation and the risk of over-discharge during parking discharge.
  • the controller can be in communicative connection with the discharge switch, the battery manager, and the electronic load manager by means of a controller area network.
  • the parking discharge system can further comprise a fuel cell and a fuel cell manager, and the fuel cell is connected to the high-voltage bus network.
  • the fuel cell manager can be in communicative connection with the controller by means of a controller area network.
  • the parking discharge system can further comprise a detection device, and the detection device is in communicative connection with the controller and is used for detecting the voltage and/or electric quantity (capacity) of the power battery and the fuel cell.
  • a vehicle comprising a parking discharge system according to the first aspect.
  • the vehicle in the embodiment of the present invention has the same advantages as the parking discharge system
  • a parking discharge method is proposed.
  • the parking discharge method is implemented by means of the parking discharge system according to the first aspect and comprises the following steps:
  • the discharge switch is closed and sends a discharge enable signal to the controller.
  • the controller sends a charge-discharge relay closing signal to the battery manager.
  • the battery manager controls the charge-discharge relay to be closed, connects an electronic load to a high-voltage bus network, and electrically connects the electronic load and the power battery to discharge the power battery.
  • the controller sends a power control signal to the electronic load manager, and the electronic load manager regulates the power of the electronic load in real time.
  • the parking discharge method has the same advantages as the parking discharge system.
  • the parking discharge method can further comprise one or more of the following steps:
  • a detection device detects the electrical quantity of the power battery in real time and transfers an electrical quantity data signal to the controller.
  • the controller sends a discharge stop signal to the electronic load manager and the battery manager after the detection device detects that the electrical quantity of the power battery is reduced to a preset value.
  • the electronic load manager controls the reduction of the power of the electronic load to zero according to the discharge stop signal.
  • the controller sends a charge-discharge relay opening signal to the battery manager.
  • the battery manager controls the charge-discharge relay to be opened and disconnects the electronic load from the high-voltage bus network.
  • Fig. 1 is a structural schematic view of a parking discharge system.
  • Fig. 2 is a flow diagram of a parking discharge method.
  • first, second and third can be used in the text to describe a plurality of elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections are not restricted by these terms. These terms are used to distinguish one element, component, region, layer or section from another region, layer or section. Unless otherwise clearly indicated in the context, “first” and “second” and other digital terms do not imply an order or sequence when used in the text. Therefore, a first element, component, region, layer or section discussed below may be referred to as a second element, component, region, layer or section without departing from the teaching of the embodiments.
  • relative spatial relations are used in the text to describe the relationship of one element or feature relative to another element or feature as shown in the figure. These relative terms are, for example, “internal, ” “external, ” “inside, ” “outside, ” “below, ” “under, ” “above, ” and “over. ” These terms for relative spatial relations include different orientations of the device in use or operation other than the orientation depicted in the figure. For example, if the device in the figure is turned over, then elements described as “below other elements or features” or “under other elements or features” will then be oriented as “above other elements or features” or “over other elements or features. ” Therefore, an exemplary term “under” can include both orientations of “over” and “under. ” The device can be otherwise oriented (rotated by 90 degrees or in other directions) and explained with the descriptors for relative spatial relations used in the text accordingly.
  • the parking discharge system comprises a controller 10, a discharge switch, a power battery 20, an electronic load 40, a battery manager 30, and an electronic load manager 50.
  • the discharge switch is in communicative connection with the controller 10.
  • the power battery 20 is connected to a high-voltage bus network 70, and comprises a charge-discharge interface 22 and a charge-discharge relay 21.
  • the electronic load 40 is connected to the charge-discharge interface 22.
  • the battery manager 30 is in communicative connection with the controller 10 and the power battery 20 respectively, and is used for controlling the charge-discharge relay 21 to be closed after receiving a discharge signal from the controller 10, so that the electronic load 40 is connected to the high-voltage bus network 70.
  • the electronic load manager 50 is in communicative connection with the controller 10 and the electronic load 40 respectively, to regulate the power of the electronic load 40.
  • the controller 10, the battery manager 30 and the electronic load manager 50 are in communicative connection, and the power battery 20 is connected to the high-voltage bus network 70.
  • a drive motor 90, used for providing power for the vehicle, is also connected to the high-voltage bus network 70, and the drive motor 90 is electrically connected to the power battery 20 by means of the high-voltage bus network 70.
  • a charge-discharge interface 22 is arranged on the power battery 20, and the charge-discharge interface 22 is used for connecting an external power supply to supply power. In this embodiment, the charge-discharge interface 22 is further used for connecting the electronic load 40 to perform discharge.
  • the electronic load 40 can be manually connected to the charge-discharge interface 22 of the power battery 20 when the vehicle is in a power-off state.
  • the inside of the power battery 20 is further provided with a charge-discharge relay 21, which controls the connection and disconnection of the circuit.
  • the charge-discharge relay 21 When the charge-discharge relay 21 is closed, the electronic load 40 connected to the charge-discharge interface 22 is connected to the high-voltage bus network 70, i.e., is electrically connected to the power battery 20 and then performs discharge.
  • the controller 10 is in communicative connection with the discharge switch. After the user closes the discharge switch, or the discharge switch is automatically closed, the discharge switch will send a discharge signal to the controller 10. On this basis, the controller 10 is in communicative connection with the battery manager 30, and will send a signal to the battery manager 30. The battery manager 30 is also in communicative connection with the power battery 20. After receiving a discharge signal sent by the controller 10, the battery manager 30 can control the charge-discharge relay 21 inside the power battery 20 to be closed and connect the electronic load 40 to the high-voltage bus network 70. Therefore, the parking discharge system proposed in this embodiment is easy to operate. By means of the connection between the charge-discharge interface 22 of the power battery 20 and the electronic load 40, discharge is performed to make the operation less cumbersome and improve safety.
  • the parking discharge system proposed by this embodiment further comprises an electronic load manager 50.
  • the electronic load manager 50 is in communicative connection with the controller 10. After the controller 10 receives a discharge signal, or after the electronic load 40 is connected to the high-voltage bus network 70, the controller 10 transfers the signal to the electronic load manager 50, and the electronic load manager 50 regulates the power of the electronic load 40.
  • the controller 10 can judge the working power of the electronic load 40 according to the state of charge (SOC) of the power battery 20, thereby ensuring SOC balance of the power battery 20.
  • SOC state of charge
  • the electronic load manager 50 can control the electronic load 40 to perform high-power discharge, medium-power discharge, or low-power discharge, or can regulate power in real time among the foregoing plurality of modes. Therefore, through the power regulation of the electronic load 40, the stability of the power battery 20 is ensured and the problem of over-discharge can be prevented.
  • the controller 10 is in communicative connection with the battery manager 30 and the electronic load manager 50.
  • the controller 10 uses the charge-discharge interface 22 of the power battery 20 to connect to the electronic load 40 and the battery manager 30 to control the closure of the charge-discharge relay 21 inside the power battery 20, thereby controlling the electrical connection between the electronic load 40 and the power battery 20 to perform discharge, not only making the operation less cumbersome but also improving safety.
  • the electronic load manager 50 is used to control and regulate the power of the electronic load 40, ensuring the SOC stability of the power battery 20, thereby preventing the problem of over-discharge of the power battery 20 and solving the problems of cumbersome operation and the risk of over-discharge during parking discharge in the prior art.
  • the controller 10 is in communicative connection with the discharge switch, the battery manager 30 and the electronic load manager 50 by means of a controller 60 area network.
  • the parking discharge system comprises a controller 60 area network (CAN) .
  • CAN controller 60 area network
  • the controller 10, the discharge switch, the battery manager 30 and the electronic load manager 50 are all in communicative connection by means of a CAN bus.
  • the parking discharge system further comprises a fuel cell 81 and a fuel cell manager 82, and the fuel cell 81 is connected to the high-voltage bus network 70.
  • the parking discharge system further comprises a fuel cell 81 and a fuel cell manager 82, wherein the fuel cell manager 82 is communicative connection with the controller 10.
  • the fuel cell manager 82 is also in communicative connection with the controller 10 by means of a CAN bus and controls the fuel cell 81 by receiving signals transferred by the controller 10.
  • the fuel cell 81 is connected to the high-voltage bus network 70 and used for supplying power to the vehicle. It should be noted that after the electronic load 40 is connected to the high-voltage bus network 70, the fuel cell 81 can perform discharge.
  • the parking discharge system further comprises a detection device.
  • the detection device is in communicative connection with the controller 10 and is used for detecting the voltage and/or electric quantity (capacity) of the power battery 20 and the fuel cell 81.
  • the detection device may comprise a voltage sensor which is used for measuring voltage.
  • the controller 10 sets discharge time, discharge power, etc., thereby further ensuring discharge stability and safety.
  • Embodiments of the second aspect of the present invention propose a vehicle.
  • the vehicle comprises a parking discharge system proposed in any of the foregoing embodiments.
  • the vehicle in this embodiment can be an electric vehicle or a hybrid electric vehicle with an electric function.
  • Embodiments of the third aspect of the present invention propose a parking discharge method.
  • the parking discharge method is implemented by means of the parking discharge system in any of the foregoing embodiments and comprises the steps described below.
  • the discharge switch is closed and sends a discharge enable signal to the controller 10.
  • the discharge switch can be manually closed by the user or a communication protocol can be defined between the controller 10 and the battery manager 30, and when the set requirements are met, the discharge switch can be closed automatically or closed manually by the user upon being prompted.
  • the controller 10 sends a charge-discharge relay closing signal to the battery manager 30.
  • the charge-discharge relay 21 is arranged in the power battery 20, and when the charge-discharge relay 21 is in a disconnected state, the electronic load 40 is not connected to the high-voltage bus network 70.
  • the controller 10 can detect the electric energy or electric quantity (capacity) of the power battery 20 first by means of the provided detection device and send a signal to the battery manager 30 when the set conditions are met.
  • the battery manager 30 controls the charge-discharge relay 21 to be closed, connects an electronic load 40 to a high-voltage bus network 70, and electrically connects the electronic load 40 and the power battery 20 to discharge the power battery 20.
  • the high-voltage bus network 70 is connected, and the electronic load 40 connected to the charge-discharge interface 22 of the power battery 20 is electrically connected to the power battery 20 to perform discharge operation.
  • the controller 10 sends a power control signal to the electronic load manager 50, and the electronic load manager 50 regulates the power of the electronic load 40 in real time.
  • the power of the electronic load 40 can be regulated according to the actual requirements or the set range, thereby ensuring discharge stability.
  • the parking discharge method proposed by an embodiment of the present invention is implemented by means of the parking discharge system in the foregoing embodiment.
  • the operation is simple and very safe.
  • the electronic load manager 50 can be used to control and regulate the power of the electronic load 40, ensuring SOC stability of the power battery 20 during discharge, thereby preventing the problem of over-discharge of the power battery 20.
  • the parking discharge method further comprises a step in which a detection device detects the electrical quantity of the power battery 20 in real time and transfers an electrical quantity data signal to the controller 10.
  • the provision of the detection device ensures that the controller 10 can monitor electric quantity (capacity) , voltage and other data in real time, thereby transferring signals to the battery manager 30 and the electronic load manager 50 to control the discharge parameters.
  • the parking discharge method further comprises a step in which the controller 10 sends a discharge stop signal to the electronic load manager 50 and the battery manager 30 after the detection device detects that the electrical quantity of the power battery 20 is reduced to a preset value.
  • the controller 10 can judge based on the real-time data detected by the detection device whether the discharge ending conditions are met. After the electric quantity (capacity) of the power battery 20 is reduced to the preset value, the controller 10 will send a discharge stop signal.
  • the parking discharge method further comprises the steps described below.
  • the electronic load manager 50 controls the reduction of the power of the electronic load 40 to zero according to the discharge stop signal.
  • the controller 10 sends a charge-discharge relay 21 opening signal to the battery manager 30.
  • the battery manager 30 controls the charge-discharge relay 21 to be opened and disconnects the electronic load 40 from the high-voltage bus network 70.
  • the controller 10 of the electronic load 40 gradually reduces the power of the electronic load 40 to zero, and then the battery manager 30 opens the charge-discharge relay 21 in the power battery 20, thereby causing the electronic load 40 to be disconnected from the high-voltage bus network 70, end the discharge and ensure safety.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The invention relates to a parking discharge system, a vehicle and a parking discharge method. The parking discharge system comprises a controller, a discharge switch, a power battery, an electronic load, a battery manager and an electronic load manager, and the discharge switch is in communicative connection with the controller; the power battery is connected to a high-voltage bus network, and comprises a charge-discharge interface and a charge-discharge relay; the electronic load is connected to the charge-discharge interface; the battery manager is in communicative connection with the controller and the power battery, respectively, and is used for controlling the charge-discharge relay to be closed after receiving a discharge signal from the controller, so that the electronic load is connected to the high-voltage bus network; and the electronic load manager is in communicative connection with the controller and the electronic load, respectively to regulate the power of the electronic load and solve the problems of cumbersome operation and the risk of over-discharge during parking discharge in the prior art.

Description

PARKING DISCHARGE SYSTEM, VEHICLE AND PARKING DISCHARGE METHOD TECHNICAL FIELD
The present invention pertains to the technical field of electric vehicles and specifically relates to a parking discharge system, a vehicle and a parking discharge method.
BACKGROUND ART
Electric vehicles have recently become popular due to their environmental friendliness and energy saving characteristics. After an electric vehicle is stopped and powered off, the electric energy generated by the on-board engine or the fuel cell system is not completely consumed, and film capacitors inside the motor controller have a high voltage, which poses an electric shock safety hazard. Therefore, parking discharge is required for the electric vehicle to use up the electrical energy and ensure that drivers and passengers have no risk of high-voltage electric shock after the vehicle is powered off.
For the motor system of an existing electric vehicle, the high-voltage busbar of the power battery normally needs to be disconnected during parking discharge and an electronic load needs to be connected for discharge. The operation is cumbersome and there is a risk of electric shock due to the removal of the high-voltage busbar, and the discharge power of the electronic load needs to be adjusted manually rather than automatically, according to the state of the power battery in the electric vehicle resulting in the risk of over-discharge of the power battery.
SUMMARY OF THE INVENTION
An object of the present invention is to address at least some of the problems identified above.
According to a first aspect of the present invention, a parking discharge system is proposed, which comprises:
a controller;
a discharge switch, which is in communicative connection with the controller;
a power battery, which is connected to a high-voltage bus network and comprises a charge-discharge interface and a charge-discharge relay;
an electronic load, which is connected to the charge-discharge interface;
a battery manager, which is in communicative connection with the controller and the power battery, respectively, and is used for controlling the charge-discharge relay to be closed after receiving a discharge signal from the controller, so that the electronic load is connected to the high-voltage bus network; and
an electronic load manager, which is in communicative connection with the controller and the electronic load, respectively to regulate the power of the electronic load.
According to an embodiment of the present invention, the controller is in communicative connection with the battery manager and the electronic load manager respectively, and uses the charge-discharge interface of the power battery to connect the electronic load, and the battery manager to control the closure of the charge-discharge relay in the power battery, thereby controlling the electrical connection between the electronic load and the power battery to perform discharge. This not only makes the operation less cumbersome but also improves safety. The electronic load manager is used to control and regulate the power of the electronic load, ensuring SOC stability of the power battery, thereby preventing the problem of over-discharge and addressing the problems of cumbersome operation and the risk of over-discharge during parking discharge.
Other embodiments of the present invention have further technical features.
The controller can be in communicative connection with the discharge switch, the battery manager, and the electronic load manager by means of a controller area network.
The parking discharge system can further comprise a fuel cell and a fuel cell manager, and the fuel cell is connected to the high-voltage bus network.
The fuel cell manager can be in communicative connection with the controller by means of a controller area network.
The parking discharge system can further comprise a detection device, and the detection device is in communicative connection with the controller and is used for detecting the  voltage and/or electric quantity (capacity) of the power battery and the fuel cell.
According to a second aspect of the present invention, a vehicle is proposed, comprising a parking discharge system according to the first aspect.
The vehicle in the embodiment of the present invention has the same advantages as the parking discharge system
According to the third aspect of the present invention, a parking discharge method is proposed. The parking discharge method is implemented by means of the parking discharge system according to the first aspect and comprises the following steps:
The discharge switch is closed and sends a discharge enable signal to the controller.
The controller sends a charge-discharge relay closing signal to the battery manager.
The battery manager controls the charge-discharge relay to be closed, connects an electronic load to a high-voltage bus network, and electrically connects the electronic load and the power battery to discharge the power battery.
The controller sends a power control signal to the electronic load manager, and the electronic load manager regulates the power of the electronic load in real time.
The parking discharge method has the same advantages as the parking discharge system.
The parking discharge method can further comprise one or more of the following steps:
A detection device detects the electrical quantity of the power battery in real time and transfers an electrical quantity data signal to the controller.
The controller sends a discharge stop signal to the electronic load manager and the battery manager after the detection device detects that the electrical quantity of the power battery is reduced to a preset value.
The electronic load manager controls the reduction of the power of the electronic load to zero according to the discharge stop signal. The controller sends a charge-discharge relay opening signal to the battery manager. The battery manager controls the charge-discharge relay to be opened and disconnects the electronic load from the high-voltage bus network.
BRIEF DESCRIPTION OF THE DRAWINGS
The drawings illustrate certain embodiments and not to limit the present invention. And throughout the drawings, the same reference numerals are used to denote the same parts.
Fig. 1 is a structural schematic view of a parking discharge system.
Fig. 2 is a flow diagram of a parking discharge method.
In the figures, the following reference numerals are used:
10, controller;
20, power battery; 21, charge-discharge relay; 22, charge-discharge interface;
30, battery manager;
40, electronic load;
50, electronic load manager;
60, controller area network;
70, high-voltage bus network;
81, fuel cell; 82, fuel cell manager;
90, drive motor.
DETAILED DESCRIPTION
Embodiments of the invention are described below with reference to the accompanying drawings. Although the exemplary embodiments of the present disclosure are shown in the accompanying drawings, the present disclosure can be implemented in various forms and should not be limited by the embodiments described.
The terms used in the text are only for the purpose of describing exemplary embodiments and do not set any limitation. Unless the context clearly indicates otherwise, the singular forms “a, ” “one” and “the” as used in the text can also mean that the plural forms are included. The terms “comprise, ” “include, ” “contain” and “have” are inclusive, and therefore indicate the existence of the stated features, steps, operations, elements and/or components, but do not exclude the existence or addition of one or multiple other features, steps, operations, elements, parts, and/or combinations thereof.
Although the terms such as first, second and third can be used in the text to describe a plurality of elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections are not restricted by these terms. These terms are used to distinguish one element, component, region, layer or section from another region, layer or section. Unless otherwise clearly indicated in the context, “first” and “second” and other digital terms do not imply an order or sequence when used in the text. Therefore, a first element, component, region, layer or section discussed below may be referred to as a second element, component, region, layer or section without departing from the teaching of the embodiments.
For ease of understanding, terms for relative spatial relations are used in the text to describe the relationship of one element or feature relative to another element or feature as shown in the figure. These relative terms are, for example, “internal, ” “external, ” “inside, ” “outside, ” “below, ” “under, ” “above, ” and “over. ” These terms for relative spatial relations include different orientations of the device in use or operation other than the orientation depicted in the figure. For example, if the device in the figure is turned over, then elements described as “below other elements or features” or “under other elements or features” will then be oriented as “above other elements or features” or “over other elements or features. ” Therefore, an exemplary term “under” can include both orientations of “over” and “under. ” The device can be otherwise oriented (rotated by 90 degrees or in other directions) and explained with the descriptors for relative spatial relations used in the text accordingly.
As shown in Fig. 1, the embodiment in a first aspect of the present invention proposes a parking discharge system. The parking discharge system comprises a controller 10, a discharge switch, a power battery 20, an electronic load 40, a battery manager 30, and an electronic load manager 50. The discharge switch is in communicative connection with the controller 10. The power battery 20 is connected to a high-voltage bus network 70, and comprises a charge-discharge interface 22 and a charge-discharge relay 21. The electronic load 40 is connected to the charge-discharge interface 22. The battery manager 30 is in communicative connection with the controller 10 and the power battery 20 respectively, and is used for controlling the charge-discharge relay 21 to be closed after receiving a discharge signal from the controller 10, so that the electronic load 40 is connected to the high-voltage bus network 70. The electronic load manager 50 is in communicative connection with the controller 10 and the electronic load 40 respectively, to regulate the power of the electronic load 40.
As shown in Fig. 1, the controller 10, the battery manager 30 and the electronic load manager 50 are in communicative connection, and the power battery 20 is connected to the high-voltage bus network 70. A drive motor 90, used for providing power for the vehicle, is also connected to the high-voltage bus network 70, and the drive motor 90 is electrically connected to the power battery 20 by means of the high-voltage bus network 70. A charge-discharge interface 22 is arranged on the power battery 20, and the charge-discharge interface 22 is used for connecting an external power supply to supply power. In this embodiment, the charge-discharge interface 22 is further used for connecting the electronic load 40 to perform discharge.
The electronic load 40 can be manually connected to the charge-discharge interface 22 of the power battery 20 when the vehicle is in a power-off state. The inside of the power battery 20 is further provided with a charge-discharge relay 21, which controls the connection and disconnection of the circuit. When the charge-discharge relay 21 is closed, the electronic load 40 connected to the charge-discharge interface 22 is connected to the high-voltage bus network 70, i.e., is electrically connected to the power battery 20 and then performs discharge.
In this embodiment, the controller 10 is in communicative connection with the discharge switch. After the user closes the discharge switch, or the discharge switch is automatically closed, the discharge switch will send a discharge signal to the controller 10. On this basis, the controller 10 is in communicative connection with the battery manager 30, and will send a signal to the battery manager 30. The battery manager 30 is also in communicative connection with the power battery 20. After receiving a discharge signal sent by the controller 10, the battery manager 30 can control the charge-discharge relay 21 inside the power battery 20 to be closed and connect the electronic load 40 to the high-voltage bus network 70. Therefore, the parking discharge system proposed in this embodiment is easy to operate. By means of the connection between the charge-discharge interface 22 of the power battery 20 and the electronic load 40, discharge is performed to make the operation less cumbersome and improve safety.
The parking discharge system proposed by this embodiment further comprises an electronic load manager 50. The electronic load manager 50 is in communicative connection with the controller 10. After the controller 10 receives a discharge signal, or after the electronic load 40 is connected to the high-voltage bus network 70, the controller 10 transfers the signal to the electronic load manager 50, and the electronic load manager 50 regulates the power of  the electronic load 40.
The controller 10 can judge the working power of the electronic load 40 according to the state of charge (SOC) of the power battery 20, thereby ensuring SOC balance of the power battery 20. After the controller 10 transfers a power signal to the electronic load manager 50, the electronic load manager 50 can control the electronic load 40 to perform high-power discharge, medium-power discharge, or low-power discharge, or can regulate power in real time among the foregoing plurality of modes. Therefore, through the power regulation of the electronic load 40, the stability of the power battery 20 is ensured and the problem of over-discharge can be prevented.
In summary, in the parking discharge system proposed by this embodiment, the controller 10 is in communicative connection with the battery manager 30 and the electronic load manager 50. The controller 10 uses the charge-discharge interface 22 of the power battery 20 to connect to the electronic load 40 and the battery manager 30 to control the closure of the charge-discharge relay 21 inside the power battery 20, thereby controlling the electrical connection between the electronic load 40 and the power battery 20 to perform discharge, not only making the operation less cumbersome but also improving safety. The electronic load manager 50 is used to control and regulate the power of the electronic load 40, ensuring the SOC stability of the power battery 20, thereby preventing the problem of over-discharge of the power battery 20 and solving the problems of cumbersome operation and the risk of over-discharge during parking discharge in the prior art.
In some embodiments of the present invention, the controller 10 is in communicative connection with the discharge switch, the battery manager 30 and the electronic load manager 50 by means of a controller 60 area network. In this embodiment, the parking discharge system comprises a controller 60 area network (CAN) . As shown in Fig. 1, the controller 10, the discharge switch, the battery manager 30 and the electronic load manager 50 are all in communicative connection by means of a CAN bus.
In some embodiments of the present invention, the parking discharge system further comprises a fuel cell 81 and a fuel cell manager 82, and the fuel cell 81 is connected to the high-voltage bus network 70. As shown in Fig. 1, the parking discharge system further comprises a fuel cell 81 and a fuel cell manager 82, wherein the fuel cell manager 82 is communicative connection with the controller 10. The fuel cell manager 82 is also in communicative connection with the controller 10 by means of a CAN bus and controls the  fuel cell 81 by receiving signals transferred by the controller 10. The fuel cell 81 is connected to the high-voltage bus network 70 and used for supplying power to the vehicle. It should be noted that after the electronic load 40 is connected to the high-voltage bus network 70, the fuel cell 81 can perform discharge.
In some embodiments of the present invention, the parking discharge system further comprises a detection device. The detection device is in communicative connection with the controller 10 and is used for detecting the voltage and/or electric quantity (capacity) of the power battery 20 and the fuel cell 81. The detection device may comprise a voltage sensor which is used for measuring voltage. In this embodiment, by providing the detection device, detecting voltage and other parameters of the power battery 20 and the fuel cell 81 and transferring signals to the controller 10, the controller 10 sets discharge time, discharge power, etc., thereby further ensuring discharge stability and safety.
Embodiments of the second aspect of the present invention propose a vehicle. The vehicle comprises a parking discharge system proposed in any of the foregoing embodiments. The vehicle in this embodiment can be an electric vehicle or a hybrid electric vehicle with an electric function.
Embodiments of the third aspect of the present invention propose a parking discharge method. The parking discharge method is implemented by means of the parking discharge system in any of the foregoing embodiments and comprises the steps described below.
The discharge switch is closed and sends a discharge enable signal to the controller 10. In this step, the discharge switch can be manually closed by the user or a communication protocol can be defined between the controller 10 and the battery manager 30, and when the set requirements are met, the discharge switch can be closed automatically or closed manually by the user upon being prompted.
The controller 10 sends a charge-discharge relay closing signal to the battery manager 30. The charge-discharge relay 21 is arranged in the power battery 20, and when the charge-discharge relay 21 is in a disconnected state, the electronic load 40 is not connected to the high-voltage bus network 70. In this step, the controller 10 can detect the electric energy or electric quantity (capacity) of the power battery 20 first by means of the provided detection device and send a signal to the battery manager 30 when the set conditions are met.
The battery manager 30 controls the charge-discharge relay 21 to be closed, connects an  electronic load 40 to a high-voltage bus network 70, and electrically connects the electronic load 40 and the power battery 20 to discharge the power battery 20. In this step, after the charge-discharge relay 21 is closed, the high-voltage bus network 70 is connected, and the electronic load 40 connected to the charge-discharge interface 22 of the power battery 20 is electrically connected to the power battery 20 to perform discharge operation.
The controller 10 sends a power control signal to the electronic load manager 50, and the electronic load manager 50 regulates the power of the electronic load 40 in real time. After the electronic load 40 is connected to the high-voltage bus network 70, and the electronic load manager 50 receives a power control signal, the power of the electronic load 40 can be regulated according to the actual requirements or the set range, thereby ensuring discharge stability.
The parking discharge method proposed by an embodiment of the present invention is implemented by means of the parking discharge system in the foregoing embodiment. The operation is simple and very safe. Furthermore, the electronic load manager 50 can be used to control and regulate the power of the electronic load 40, ensuring SOC stability of the power battery 20 during discharge, thereby preventing the problem of over-discharge of the power battery 20.
In some embodiments of the present invention, the parking discharge method further comprises a step in which a detection device detects the electrical quantity of the power battery 20 in real time and transfers an electrical quantity data signal to the controller 10. The provision of the detection device ensures that the controller 10 can monitor electric quantity (capacity) , voltage and other data in real time, thereby transferring signals to the battery manager 30 and the electronic load manager 50 to control the discharge parameters.
Further, the parking discharge method further comprises a step in which the controller 10 sends a discharge stop signal to the electronic load manager 50 and the battery manager 30 after the detection device detects that the electrical quantity of the power battery 20 is reduced to a preset value. In the process of parking discharge, the controller 10 can judge based on the real-time data detected by the detection device whether the discharge ending conditions are met. After the electric quantity (capacity) of the power battery 20 is reduced to the preset value, the controller 10 will send a discharge stop signal.
The parking discharge method further comprises the steps described below.
The electronic load manager 50 controls the reduction of the power of the electronic load 40 to zero according to the discharge stop signal.
The controller 10 sends a charge-discharge relay 21 opening signal to the battery manager 30.
The battery manager 30 controls the charge-discharge relay 21 to be opened and disconnects the electronic load 40 from the high-voltage bus network 70. In the process of ending discharge, first the controller 10 of the electronic load 40 gradually reduces the power of the electronic load 40 to zero, and then the battery manager 30 opens the charge-discharge relay 21 in the power battery 20, thereby causing the electronic load 40 to be disconnected from the high-voltage bus network 70, end the discharge and ensure safety.
The above are only embodiments of the present invention, and the protection scope of the present invention is not limited thereto. Changes or substitutions within the technical scope disclosed by the present invention are possible.

Claims (10)

  1. A parking discharge system, comprising:
    a controller;
    a discharge switch connected to the controller;
    a power battery connected to a high-voltage bus network and comprising a charge-discharge interface and a charge-discharge relay;
    an electronic load connected to the charge-discharge interface;
    a battery manager connected to the controller and the power battery respectively, for controlling the charge-discharge relay to be closed after receiving a discharge signal from the controller so that the electronic load is connected to the high-voltage bus network; and
    an electronic load manager connected to the controller and the electronic load respectively to regulate the power of the electronic load.
  2. The parking discharge system according to claim 1, wherein the controller is connected to the discharge switch, the battery manager, and the electronic load manager by means of a controller area network.
  3. The parking discharge system according to claim 1 or 2, further comprising a fuel cell and a fuel cell manager, wherein the fuel cell is connected to the high-voltage bus network.
  4. The parking discharge system according to claim 3, wherein the fuel cell manager is connected to the controller by means of the controller area network.
  5. The parking discharge system according to claim 4, further comprising a detection device connected to the controller for detecting the voltage and/or capacity of the power battery and the fuel cell.
  6. A vehicle comprising the parking discharge system in any of claims 1 to 5.
  7. A parking discharge method, implemented by means of the parking discharge system in any of claims 1 to 5, and comprising:
    closing the discharge switch and sending a discharge enable signal to the controller;
    sending a charge-discharge relay closing signal from the controller to the battery manager;
    controlling the charge-discharge relay to be closed by the battery manager, connecting an electronic load to a high-voltage bus network, and electrically connecting the electronic load and the power battery to discharge the power battery; and
    sending a power control signal from the controller to the electronic load manager, and regulating the power of the electronic load in real time with the electronic load manager.
  8. The parking discharge method according to claim 7, further comprising:
    detecting the capacity of the power battery in real time with a detection device and transferring a capacity data signal to the controller.
  9. The parking discharge method according to claim 8, further comprising:
    sending a discharge stop signal from the controller to the electronic load manager and the battery manager after the detection device detects that the capacity of the power battery is reduced to a preset value.
  10. The parking discharge method according to claim 9, further comprising:
    controlling the reduction of the power of the electronic load to zero with the electronic load manager according to the discharge stop signal;
    sending a charge-discharge relay opening signal from the controller to the battery manager; and
    controlling the charge-discharge relay to be opened with the battery manager and disconnecting the electronic load from the high-voltage bus network.
PCT/CN2021/103304 2020-06-30 2021-06-29 Parking discharge system, vehicle and parking discharge method WO2022002083A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010611788.5 2020-06-30
CN202010611788 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022002083A1 true WO2022002083A1 (en) 2022-01-06

Family

ID=76920462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103304 WO2022002083A1 (en) 2020-06-30 2021-06-29 Parking discharge system, vehicle and parking discharge method

Country Status (1)

Country Link
WO (1) WO2022002083A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114851878A (en) * 2022-06-07 2022-08-05 中国第一汽车股份有限公司 Hybrid electric vehicle, and discharge control method, control device and storage medium thereof
CN115742876A (en) * 2022-12-16 2023-03-07 海卓动力(北京)能源科技有限公司 Load balancing system and method for fuel cell power protection vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130200855A1 (en) * 2012-02-02 2013-08-08 Robert Bosch Gmbh System and Method for Discharging a Battery in a Vehicle after a Crash
US20150162761A1 (en) * 2013-12-05 2015-06-11 Ford Global Technologies, Llc Battery discharge device with self-adjusting resistance
US20150340899A1 (en) * 2014-05-20 2015-11-26 Ford Global Technologies, Llc Automatic battery discharge tool
US20180131206A1 (en) * 2016-11-04 2018-05-10 International Business Machines Corporation Automatically discharging a rechargeable battery
US20190379070A1 (en) * 2018-06-08 2019-12-12 Hyundai Motor Company Fuel cell system for exhausting residual power in emergency situation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130200855A1 (en) * 2012-02-02 2013-08-08 Robert Bosch Gmbh System and Method for Discharging a Battery in a Vehicle after a Crash
US20150162761A1 (en) * 2013-12-05 2015-06-11 Ford Global Technologies, Llc Battery discharge device with self-adjusting resistance
US20150340899A1 (en) * 2014-05-20 2015-11-26 Ford Global Technologies, Llc Automatic battery discharge tool
US20180131206A1 (en) * 2016-11-04 2018-05-10 International Business Machines Corporation Automatically discharging a rechargeable battery
US20190379070A1 (en) * 2018-06-08 2019-12-12 Hyundai Motor Company Fuel cell system for exhausting residual power in emergency situation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114851878A (en) * 2022-06-07 2022-08-05 中国第一汽车股份有限公司 Hybrid electric vehicle, and discharge control method, control device and storage medium thereof
CN115742876A (en) * 2022-12-16 2023-03-07 海卓动力(北京)能源科技有限公司 Load balancing system and method for fuel cell power protection vehicle
CN115742876B (en) * 2022-12-16 2024-04-23 海卓动力(北京)能源科技有限公司 Load balancing system and method for fuel cell electricity protection vehicle

Similar Documents

Publication Publication Date Title
WO2022002083A1 (en) Parking discharge system, vehicle and parking discharge method
KR101673822B1 (en) Apparatus and method for detecting relay welding in green car
US11077760B2 (en) Precharging for direct current fast charging
CN102751748B (en) Charging system for electric vehicle
CN110341543B (en) High-voltage power-off control method, alternating-current charging system and electric automobile
CN108773281B (en) Charging management control method for electric automobile
CN105691223B (en) A kind of charging device of charger automatic identification charging electric vehicle voltage
CN204452095U (en) Electric automobile high-voltage electric power system
CN107611522A (en) A kind of battery method for heating and controlling for cell management system of electric automobile
CN102299533A (en) Plug-in Hybrid Electric Vehicle (PHEV) battery management system and control identification method thereof
CN104859466B (en) A kind of control method of DC/DC converters output voltage and device
CN204376500U (en) Charging system for electric automobile
CN103213514A (en) Charging interface detection device of plug-in electric vehicle
CN103879301A (en) Charging control method of extended range electric vehicle
CN106114425B (en) A kind of mild hybrid electric vehicle method for controlling power supply
CN108275026A (en) Charging unit and method for vehicle-to-vehicle charging
WO2022242624A1 (en) Power distribution box for vehicle
WO2022160830A1 (en) Control system and control method for multi-mode plug-in operation of crane
CN106936183A (en) Power-supplying circuit, electric motor car charging guidance circuit and charging pile
CN205429836U (en) Intelligence low pressure auxiliary power unit and on -vehicle machine that charges of non -
CN108110855A (en) A kind of compatible auxiliary source charging system and its charging method
KR20190100261A (en) Methods and systems for the management of rechargeable electric or hybrid vehicles
CN105197013B (en) Startup control method, device and the vehicle of vehicle
CN112104037A (en) Power supply system, control method thereof, automatic driving vehicle and power supply management device
CN114987235B (en) European and national standard dual-purpose charging device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21733706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21733706

Country of ref document: EP

Kind code of ref document: A1