WO2022001979A1 - 时域资源分配方法及相关产品 - Google Patents

时域资源分配方法及相关产品 Download PDF

Info

Publication number
WO2022001979A1
WO2022001979A1 PCT/CN2021/102832 CN2021102832W WO2022001979A1 WO 2022001979 A1 WO2022001979 A1 WO 2022001979A1 CN 2021102832 W CN2021102832 W CN 2021102832W WO 2022001979 A1 WO2022001979 A1 WO 2022001979A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset
time
allocation
sub
domain resource
Prior art date
Application number
PCT/CN2021/102832
Other languages
English (en)
French (fr)
Inventor
陈宝军
吴晓芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21832076.0A priority Critical patent/EP4164314A4/en
Publication of WO2022001979A1 publication Critical patent/WO2022001979A1/zh
Priority to US18/146,814 priority patent/US20230156675A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present invention relates to the field of communication technologies, in particular to a time domain resource allocation method and related products.
  • the fifth-generation mobile communication system adopts the New Radio (NR) standard developed by 3GPP.
  • 5G NR defines two frequency ranges, FR1 and FR2.
  • FR1 includes frequency bands below 6 GHz
  • FR2 includes millimeter waves within 20 to 60 GHz. frequency band.
  • 5G NR defines two transmission formats, Time Division Duplex (TDD) and Frequency Division Duplexing (FDD).
  • TDD Time Division Duplex
  • FDD Frequency Division Duplexing
  • the minimum unit of scheduling is a slot, and each slot consists of several Orthogonal Frequency Division Multiplexin (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexin
  • the slot types are mainly divided into downlink (DownLink, DL) time slots, uplink (UpLink, UL) time slots and mixed (mixing) time slots, and mixed time slots are also called special (Special) time slots, namely S slot, wherein the DL slot includes only DL symbols, the UL slot includes only UL symbols, and the S slot consists of DL symbols, gap symbols, and UL symbols.
  • DownLink Downlink
  • UpLink uplink
  • UL uplink
  • mixed time slots are also called special (Special) time slots, namely S slot, wherein the DL slot includes only DL symbols, the UL slot includes only UL symbols, and the S slot consists of DL symbols, gap symbols, and UL symbols.
  • a Physical Downlink Share Channel (PDSCH) symbol ie each DL time slot.
  • S slot For the versatility of the system, subject to the constraints of protocols and resources, try to use the UL time slot or S time slot for each time slot containing a Physical Downlink Share Channel (PDSCH) symbol (ie each DL time slot). and S slot) to allocate UL symbols for information feedback, so as to feed back the downlink transmission process of each DL slot and S slot.
  • PDSCH Physical Downlink Share Channel
  • S slot Physical Uplink Control Channel
  • HARQ Hybrid Automatic Repeat Request
  • HARQ Sounding Reference Signal
  • SRS Sounding Reference Signal
  • this way of allocating UL symbols is generally related to DL time slots or S time slots, and the allocation way is relatively fixed, which may lead to excess or insufficient allocated UL symbols, reducing the efficiency of uplink and downlink transmission.
  • the present application provides a time domain resource allocation method and related products. By switching the time-domain resource allocation mode, targeted allocation of time-domain resources to terminal equipment is realized, thereby improving uplink and downlink transmission efficiency.
  • an embodiment of the present application provides a time domain resource allocation method, and the execution body of the method may be a network device, or a chip applied in the network device.
  • the following description takes the execution subject being a network device as an example.
  • the method includes:
  • the terminal device is allocated time domain resources through the second time domain resource allocation manner.
  • the number of time domain resources (PUCCH resources) allocated to the terminal device by the second time domain resource allocation method and the first time domain resource allocation method are different, and the second time domain resource allocation method is different from the first time domain resource allocation method.
  • One of the time-domain resource allocation methods can allocate relatively more time-domain resources to the terminal device, and the other time-domain resource allocation method can allocate relatively few time-domain resources to the terminal device.
  • the network device can use different time-domain resource allocation methods to allocate PUCCH resources to the terminal device; that is, when the terminal device has relatively more PUCCH resource requirements, one time-domain resource allocation is used. resources are allocated in a manner to meet the needs of the terminal equipment; when the terminal equipment has less demand for PUCCH resources, another time-domain resource allocation method may be used to allocate time-domain resources to the terminal equipment. Therefore, the network equipment can allocate time-domain resources in a targeted manner according to the different needs of the terminal equipment, so that the allocation of time-domain resources is more flexible, there will be no excess or shortage of PUCCH resources, and the uplink throughput rate and downlink throughput rate are improved. , and improve the efficiency of uplink and downlink data transmission.
  • the time domain resources include physical uplink control channel resources and/or sounding reference signal resources.
  • the allocation of time domain resources is more flexible, and the terminal equipment can be allocated uplink control channel resources and/or sounding reference signals corresponding to requirements Therefore, there will be no excess or shortage of uplink control channel resources and/or sounding reference signal resources, and more uplink and downlink resources are reserved for terminal equipment as much as possible to improve uplink and downlink traffic efficiency.
  • the first time domain resource allocation manner is a first allocation manner or a second allocation manner
  • the second time domain resource allocation mode is the first allocation mode or the second allocation mode
  • the first time-domain resource allocation method and the second time-domain resource allocation method are different time-domain resource allocation methods
  • the uplink control channel resources allocated by the second allocation mode are more than those allocated by the first allocation mode.
  • the first allocating manner includes allocating one or more first symbols and one or more second symbols in mixed time slots, wherein each first symbol is used for mixed automatic repeating transmission request feedback, each second symbol is used for scheduling request, beam management feedback, sounding reference signal or hybrid automatic repeat request feedback;
  • the second allocation manner includes allocating a plurality of third symbols in uplink time slots, and allocating fourth symbols and fifth symbols in mixed time slots, wherein each third symbol is used for mixed automatic repeat request feedback, And the number of the third symbols is greater than the number of the first symbols, the fourth symbols are used for scheduling request and/or beam management feedback, and the fifth symbols are used for sounding reference signals.
  • the first allocation mode and the second allocation mode are set, and the uplink control channel resources allocated by the second allocation mode are more than those allocated by the first allocation mode, then the terminal equipment can request the uplink control channel resources in the terminal equipment.
  • the second allocation method is used to allocate time domain resources to terminal devices to ensure that each terminal device can be allocated the corresponding uplink control channel resources, so that the problem of downlink transmission failure will not occur, and the downlink throughput rate is improved.
  • the first allocation method is used to allocate time domain resources to the terminal equipment, that is, less uplink control channel resources are allocated, so that in the UL time slot Reserve more uplink resources, thereby improving uplink throughput and uplink transmission efficiency.
  • the preset switching condition includes at least one of the following:
  • the number of terminal devices accessing the network device is less than the preset number of terminals N 1 ;
  • the number of beams used by the terminal device accessing the network device is less than the preset number of beams M 1 ;
  • the downlink physical resource block utilization rate is less than the preset utilization rate R 1 ;
  • the downlink data buffer amount is less than the preset buffer amount L 1 ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is greater than a preset ratio K 1 ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is less than the preset number N 2 of terminals;
  • the preset switching condition includes at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N 3 ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M 2 ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R 2 ;
  • the downlink data buffer amount is greater than the preset buffer amount L 3 ;
  • the ratio of the utilization rate of uplink physical resource blocks to the utilization rate of downlink physical resource blocks is less than a preset ratio K 2 ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is greater than the preset number of terminals N 4 ;
  • multiple switching conditions for time-domain resource allocation are set, so that as long as there is one condition that satisfies the adaptive time-domain resource allocation to which the network equipment is switched, the terminal equipment is allocated, thereby realizing
  • matching time domain resources can be allocated to terminal devices, which improves the application scenarios of the time domain resource allocation method in the present application.
  • the second allocation manner includes a plurality of second sub-allocation manners
  • the first time-domain resource allocation mode is the first allocation mode or any second sub-allocation mode in the plurality of second sub-allocation modes;
  • the second time-domain resource allocation mode is the first allocation mode or any second sub-allocation mode in the multiple second sub-allocation modes;
  • the number of uplink control channel resources allocated by any two of the plurality of second sub-allocation methods is different, and the number of uplink control channel resources allocated by any one of the second sub-allocation methods is more than the number of uplink control channel resources allocated by the second sub-allocation method.
  • allocating time-domain resources to the terminal device by using the second time-domain resource allocation method includes:
  • Time domain resources are allocated to the terminal device through the second sub-allocation manner.
  • the second allocation mode is divided into multiple second sub-allocation modes, so that when the terminal device has a large demand for uplink control channel resources, a more accurate The allocation method allocates more precise time domain resources to the terminal equipment. For example, if the network device determines that three HARQ resources need to be allocated in one UL time slot, the second sub-allocation method corresponding to this allocation method can be used to allocate time-domain resources to the terminal device, so that the allocated time-domain resources are It is more compatible with the needs of terminal equipment, and can improve the uplink and downlink communication efficiency as much as possible while meeting the terminal equipment's demand for time domain resources.
  • any one of the second sub-allocation manners of the plurality of second sub-allocation manners includes:
  • each sixth symbol is used for hybrid automatic repeat request feedback, and the number of the sixth symbols is more than the number of the first symbols, but less than or equal to the number of the third symbols;
  • the seventh symbol is used for scheduling request and/or beam management feedback
  • the eighth symbol is used for sounding reference signals.
  • the plurality of second sub-allocation manners include a second sub-allocation manner A, a second sub-allocation manner B, and a second sub-allocation manner C, wherein the second sub-allocation manners A,
  • the number of uplink control channel resources allocated by the second sub-allocation mode B and the second sub-allocation mode C increases sequentially.
  • the The preset switching conditions include at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N 1A , but less than the preset number of terminals N 2A ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M 1A , but smaller than the preset number of beams M 2A ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R 1A , but smaller than the preset utilization rate R 2A ;
  • the downlink data buffer amount is greater than the preset buffer amount L 1A , but smaller than the preset buffer amount L 2A ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is less than the preset ratio K 1A , but greater than the preset ratio K 2A ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is greater than the preset number of terminals N 3A , but smaller than the preset number of terminals N 4A .
  • the The preset switching conditions include at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N 1B , but smaller than the preset number of terminals N 2B ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M 1B , but smaller than the preset number of beams M 2B ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R 1B , but smaller than the preset utilization rate R 2B ;
  • the downlink data buffer amount is greater than the preset buffer amount L 1B , but smaller than the preset buffer amount L 2B ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is less than the preset ratio K 1B , but greater than the preset ratio K 2B ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is greater than the preset number of terminals N 3B , but smaller than the preset number of terminals N 4B .
  • the The preset switching conditions include at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N 1C ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M 1C ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R 1C ;
  • the downlink data buffer amount is greater than the preset buffer amount L 1C ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is less than a preset ratio K 1C ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is greater than the preset number of terminals N 2C ;
  • the first time-domain resource allocation manner is any one of the second sub-allocation manner A, the second sub-allocation manner B, and the second sub-allocation manner C.
  • the preset switching condition includes at least one of the following:
  • the number of terminal devices accessing the network device is less than the preset number of terminals N 5 ;
  • the number of beams used by the terminal device accessing the network device is less than the preset number of beams M 3 ;
  • the downlink physical resource block utilization rate is less than the preset utilization rate R 3 ;
  • the downlink data buffer amount is less than the preset buffer amount L 4 ;
  • the ratio of the utilization rate of uplink physical resource blocks to the utilization rate of downlink physical resource blocks is greater than a preset ratio K 3 ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is smaller than the preset number of terminals N 6 .
  • the resources used for scheduling requests, beam management resources and hybrid automatic repeat request resources are respectively reconfigured to the time domain positions where the corresponding symbols are located;
  • the resources used for the sounding reference signals are re-allocated to the time domain positions where the corresponding symbols are located, or the time domain positions corresponding to the sounding reference signal resources are restricted.
  • the process of reallocating the sounding reference signal resources can be completed in a restricted manner, thereby reducing the complexity of handover and reducing the load of network equipment.
  • an embodiment of the present application provides a network device, and the beneficial effects can be referred to the description of the first aspect and will not be repeated here.
  • the network device has the function of implementing the behavior in the method example of the first aspect above.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the network device includes:
  • a processing unit configured to obtain the first time-domain resource allocation mode at the current moment
  • the processing unit is further configured to switch from the first time-domain resource allocation method under the condition that a preset switching condition corresponding to switching from the first time-domain resource allocation method to the second time-domain resource allocation method is satisfied to the second time domain resource allocation mode;
  • the processing unit is further configured to allocate time domain resources to the terminal device through the second time domain resource allocation manner.
  • the time domain resources include physical uplink control channel resources and/or sounding reference signal resources.
  • the first time domain resource allocation manner is a first allocation manner or a second allocation manner
  • the second time domain resource allocation mode is the first allocation mode or the second allocation mode
  • the first time-domain resource allocation method and the second time-domain resource allocation method are different time-domain resource allocation methods
  • the uplink control channel resources allocated by the second allocation mode are more than those allocated by the first allocation mode.
  • the first allocating manner includes allocating one or more first symbols and one or more second symbols in mixed time slots, wherein each first symbol is used for mixed automatic repeating transmission request feedback, each second symbol is used for scheduling request, beam management feedback, sounding reference signal or hybrid automatic repeat request feedback;
  • the second allocation manner includes allocating a plurality of third symbols in uplink time slots, and allocating fourth symbols and fifth symbols in mixed time slots, wherein each third symbol is used for mixed automatic repeat request feedback, And the number of the third symbols is greater than the number of the first symbols, the fourth symbols are used for scheduling request and/or beam management feedback, and the fifth symbols are used for sounding reference signals.
  • the preset switching condition includes at least one of the following:
  • the number of terminal devices accessing the network device is less than the preset number of terminals N 1 ;
  • the number of beams used by the terminal device accessing the network device is less than the preset number of beams M 1 ;
  • the downlink physical resource block utilization rate is less than the preset utilization rate R 1 ;
  • the downlink data buffer amount is less than the preset buffer amount L 1 ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is greater than a preset ratio K 1 ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is less than the preset number N 2 of terminals;
  • the preset switching condition includes at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N 3 ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M 2 ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R 2 ;
  • the downlink data buffer amount is greater than the preset buffer amount L 3 ;
  • the ratio of the utilization rate of uplink physical resource blocks to the utilization rate of downlink physical resource blocks is less than a preset ratio K 2 ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is greater than the preset number of terminals N 4 ;
  • the second allocation manner includes a plurality of second sub-allocation manners
  • the first time-domain resource allocation mode is the first allocation mode or any second sub-allocation mode in the plurality of second sub-allocation modes;
  • the second time-domain resource allocation mode is the first allocation mode or any second sub-allocation mode in the multiple second sub-allocation modes;
  • the number of uplink control channel resources allocated by any two of the plurality of second sub-allocation methods is different, and the number of uplink control channel resources allocated by any one of the second sub-allocation methods is more than the number of uplink control channel resources allocated by the second sub-allocation method.
  • the processing unit specifically uses At:
  • Time domain resources are allocated to the terminal device through the second sub-allocation manner.
  • any one of the second sub-allocation manners of the plurality of second sub-allocation manners includes:
  • each sixth symbol is used for hybrid automatic repeat request feedback, and the number of the sixth symbols is more than the number of the first symbols, but less than or equal to the number of the third symbols;
  • the seventh symbol is used for scheduling request and/or beam management feedback
  • the eighth symbol is used for sounding reference signals.
  • the plurality of second sub-allocation manners include a second sub-allocation manner A, a second sub-allocation manner B, and a second sub-allocation manner C, wherein the second sub-allocation manners A,
  • the number of uplink control channel resources allocated by the second sub-allocation mode B and the second sub-allocation mode C increases sequentially.
  • the The preset switching conditions include at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N 1A , but less than the preset number of terminals N 2A ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M 1A , but smaller than the preset number of beams M 2A ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R 1A , but smaller than the preset utilization rate R 2A ;
  • the downlink data buffer amount is greater than the preset buffer amount L 1A , but smaller than the preset buffer amount L 2A ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is less than the preset ratio K 1A , but greater than the preset ratio K 2A ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is greater than the preset number of terminals N 3A , but smaller than the preset number of terminals N 4A .
  • the The preset switching conditions include at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N 1B , but smaller than the preset number of terminals N 2B ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M 1B , but smaller than the preset number of beams M 2B ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R 1B , but smaller than the preset utilization rate R 2B ;
  • the downlink data buffer amount is greater than the preset buffer amount L 1B , but smaller than the preset buffer amount L 2B ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is less than the preset ratio K 1B , but greater than the preset ratio K 2B ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is greater than the preset number of terminals N 3B , but smaller than the preset number of terminals N 4B .
  • the The preset switching conditions include at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N 1C ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M 1C ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R 1C ;
  • the downlink data buffer amount is greater than the preset buffer amount L 1C ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is less than a preset ratio K 1C ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is greater than the preset number of terminals N 2C ;
  • the first time-domain resource allocation manner is any one of the second sub-allocation manner A, the second sub-allocation manner B, and the second sub-allocation manner C.
  • the preset switching condition includes at least one of the following:
  • the number of terminal devices accessing the network device is less than the preset number of terminals N 5 ;
  • the number of beams used by the terminal device accessing the network device is less than the preset number of beams M 3 ;
  • the downlink physical resource block utilization rate is less than the preset utilization rate R 3 ;
  • the downlink data buffer amount is less than the preset buffer amount L 4 ;
  • the ratio of the utilization rate of uplink physical resource blocks to the utilization rate of downlink physical resource blocks is greater than a preset ratio K 3 ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is smaller than the preset number of terminals N 6 .
  • the processing unit is specifically configured to:
  • the resources used for scheduling requests, beam management resources and hybrid automatic repeat request resources are respectively reconfigured to the time-domain positions where the corresponding symbols are located;
  • the resources used for the sounding reference signals are re-allocated to the time domain positions where the corresponding symbols are located, or the time domain positions corresponding to the sounding reference signal resources are restricted.
  • an embodiment of the present application provides a network device, including a processor, where the processor is connected to a memory, where the memory is configured to store a computer program, and the processor is configured to execute the computer program stored in the memory , so that the apparatus performs the method of any one of the first aspects.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, any one of the first aspect is implemented Methods.
  • an embodiment of the present application provides a computer program product, the computer program product includes: computer program code, when the computer program code is executed, the method executed by the network device in the above aspects is executed .
  • an embodiment of the present application provides a chip system, where the chip system includes a processor for implementing the functions of the network device in the methods of the above aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of dividing a time slot in a radio frame according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a correspondence between a PUCCH symbol and a downlink time slot according to an embodiment of the present application
  • FIG. 3 is an architectural diagram of a time-domain resource allocation system provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a time domain resource allocation method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a time domain resource allocation mode switching according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a first allocation manner provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of allocating other resources according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a second allocation manner provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a second sub-allocation mode A provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a second sub-allocation mode B provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another time domain resource allocation mode switching provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another network device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the technical solutions of the embodiments of the present application may be applied to the 5th generation (the 5th generation, 5G) new radio (New radio, NR) architecture, or the architecture after 5G.
  • 5G the 5th generation
  • NR new radio
  • the terminal equipment involved in the embodiments of the present application may be user equipment (User Equipment, UE).
  • the UE may be a device that provides voice and/or data connectivity to a user, and may include, for example, a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the UE may communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the UE may include wireless user equipment, mobile user equipment, device-to-device (D2D) user equipment, vehicle-to-everything (V2X) user equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications, M2M/MTC) user equipment, Internet of things (IoT) user equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) , remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device), etc.
  • IoT Internet of things
  • it may include mobile telephones (or "cellular" telephones), computers with mobile user equipment, portable, pocket-sized, hand-held, computer-embedded mobile devices, and the like.
  • mobile telephones or "cellular" telephones
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • constrained devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing power, etc.
  • it includes information sensing devices such as barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning system
  • the UE may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes. Wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various UEs described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as on-board user equipment, and the on-board user equipment is also called an on-board unit (OBU). , which is not limited in the embodiments of the present application.
  • OBU on-board unit
  • the embodiments of the present application also relate to network devices, which may be, for example, access network (Access network, AN) devices.
  • the AN device may refer to a device in the access network that communicates with the wireless user equipment through one or more cells over the air interface, such as a base station NodeB (eg, an access point), where the NodeB can be used to compare received air frames with Internet Protocol (IP) packets are interconverted as routers between the UE and the rest of the access network, which may include IP networks and.
  • IP Internet Protocol
  • the NodeB may be a new air interface network device gNB in the 5th generation (the 5th generation, 5G) NR system.
  • the AN device may also be a vehicle-to-everything (Vehicle to Everything, V2X) technology.
  • the access network device is a road side unit (RSU).
  • the RSU may be a fixed infrastructure entity supporting V2X applications, and may exchange messages with other entities supporting V2X applications.
  • the AN device may further include a centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU) in a cloud radio access network (CloudRAN) system.
  • the AN device coordinates the Attribute management of air interface. This embodiment of the present application does not limit the AN device.
  • the fifth-generation mobile communication system adopts the New Radio (NR) standard developed by 3GPP.
  • 5G NR defines two frequency ranges, FR1 and FR2.
  • FR1 includes frequency bands below 6 GHz
  • FR2 includes millimeter waves within 20 to 60 GHz. frequency band.
  • 5G NR defines two transmission formats, namely TDD and FDD.
  • TDD Time Division scheduling
  • FDD Frequency Division Multiplexin
  • the slot type is mainly divided into a downlink (DownLink, DL) time slot, an uplink (UpLink, UL) time slot and a mixed (Mixing) time slot
  • the mixed time slot is also called a special (Special) time slot, that is S slot.
  • the DL slot only includes DL symbols
  • the UL slot includes only UL symbols
  • the mixed slot is composed of three types of symbols: DL symbols, gap symbols and UL symbols.
  • the network device divides a radio frame into multiple DL slots, multiple S slots, and multiple UL slots according to the preset slot ratio.
  • a radio frame can be divided into 16 time slot ratios, wherein, A time slot configuration includes 4 DL time slots, 1 mixed time slot and 1 UL time slot.
  • Figure 1 only shows part of the time slot configuration, and D, S, and U in Figure 1 represent DL time slots, respectively , mixed time slot and UL time slot, D, S, U involved in the subsequent drawings all represent DL time slot, mixed time slot and UL time slot, and will not be described again.
  • each time slot containing PDSCH symbols in the UL time slot in each time slot allocation (ie, the DL time slot in the time slot allocation)
  • a UL symbol used for information feedback to feed back the downlink transmission process of each DL slot As shown in FIG. 2 (FIG. 2 shows the case of a time slot configuration), in the UL time slot, each DL time slot and each mixed time slot are allocated a corresponding PUCCH symbol, that is, a PUCCH resource (such as PUCCH symbol 1, PUCCH symbol 2, PUCCH symbol 3, and PUCCH symbol 4 shown in FIG. 2).
  • Each PUCCH resource is used for the terminal equipment to perform HARQ feedback on the downlink transmission process through the PUCCH; for another example, a Sounding Reference Signal (Sounding Reference Signal, SRS) symbol, that is, an SRS resource, can also be allocated in the UL time slot, and the SRS resource is used for
  • SRS Sounding Reference Signal
  • the number of PUCCH resources allocated in a UL time slot with a time slot configuration is related to the number of DL time slots, so it is generally necessary to reserve 4 PUCCH resources (4 UL symbols) in the UL time slot in order to For information feedback, this way of allocating time domain resources (PUCCH resources) is relatively fixed.
  • uplink and downlink data can only be transmitted on the Physical Uplink Share Channel (PUSCH), that is to say, the reserved 4 PUCCH resources cannot be used for data transmission.
  • PUSCH Physical Uplink Share Channel
  • the uplink throughput rate is limited, which reduces the Uplink data transmission efficiency; when the number of terminal devices currently connected to the network device is large, more PUCCH resources are required, which may cause the network device to be unable to allocate corresponding PUCCH resources for a terminal device, and also Therefore, it is impossible to perform downlink data transmission with the terminal device, resulting in the downlink transmission failure of the terminal device, affecting the downlink throughput rate, and reducing the downlink data transmission efficiency.
  • the existing time domain resource allocation method will affect the uplink and downlink throughput rates and reduce the uplink and downlink data transmission efficiency.
  • the subcarrier interval is 120KHz, that is, a radio frame is 10ms as an example
  • the uplink and downlink time slot ratio D:U 4:1
  • the time domain resource allocation methods corresponding to other subcarrier intervals or other time slot allocations are similar to the time domain resource allocation methods illustrated in this application. No more narration.
  • the allocation of a time slot in a radio frame is used as an example for specific description. .
  • FIG. 3 is a network architecture diagram of a time-domain resource allocation system provided by an embodiment of the present application.
  • the time domain resource allocation system includes a network device 100 and a terminal device 200;
  • the network device 100 obtains the first time-domain resource allocation method at the current moment; when the preset switching condition corresponding to switching from the first time-domain resource allocation method to the second time-domain resource allocation method is satisfied, the network device 100 switches from The first time domain resource allocation method is switched to the second resource allocation method, and time domain resources are allocated to the terminal device 200 through the second time domain resource allocation method; the network device 100 performs uplink communication with the terminal device 200 through the allocated time domain resources or downlink communication.
  • the number of time domain resources (PUCCH resources) allocated to the terminal device by the second time domain resource allocation method and the first time domain resource allocation method are different, and the second time domain resource allocation method is different from the first time domain resource allocation method.
  • One of the time-domain resource allocation methods can allocate relatively more time-domain resources to the terminal device, and the other time-domain resource allocation method can allocate relatively few time-domain resources to the terminal device.
  • the network device can use different time-domain resource allocation methods to allocate PUCCH resources to the terminal device; that is, when the terminal device has relatively more PUCCH resource requirements, one time-domain resource allocation is used. resources are allocated in a manner to meet the needs of the terminal equipment; when the terminal equipment has less demand for PUCCH resources, another time-domain resource allocation method may be used to allocate time-domain resources to the terminal equipment. Therefore, the network equipment can allocate time-domain resources in a targeted manner according to the different needs of the terminal equipment, so that the allocation of time-domain resources is more flexible, there will be no excess or shortage of PUCCH resources, and the uplink throughput rate and downlink throughput rate are improved. , and improve the efficiency of uplink and downlink data transmission.
  • FIG. 4 is a schematic flowchart of a time domain resource allocation method provided by an embodiment of the present application. The method is applied to network equipment. The method of the embodiment of the present application comprises the following steps:
  • the network device acquires the first time domain resource allocation mode at the current moment.
  • the current time is the time when the timer expires, and the timer is used to trigger whether to switch the time domain resource allocation mode. That is, when the timer expires, the network device acquires the first time domain resource allocation method at the current moment, and judges whether the time domain resource allocation method needs to be switched according to the first time domain resource allocation method.
  • the timing period of the timer may be the duration of one radio frame, or other values, which are not limited in this application.
  • the network device switches from the first time-domain resource allocation method to the second time-domain resource allocation method , and allocate time domain resources to the terminal device through the second time domain resource allocation method.
  • the time domain resources include PUCCH resources and/or SRS resources.
  • the PUCCH resource includes at least one of the following: a scheduling request (Scheduling Request, SR) resource, a beam management (Beam Management, BM) resource, and a HARQ resource.
  • SR scheduling request
  • BM Beam Management
  • HARQ resource a resource used by the terminal device to send SRS to the network device, so that the network device can estimate the quality of the uplink channel
  • the SR resource is used by the terminal device to actively initiate SR to the network device
  • the BM resource is used by the terminal device to perform BM feedback to the network device.
  • the HARQ resources are used for the terminal equipment to perform HARQ feedback to the network equipment.
  • the first time-domain resource allocation method is a first allocation method or a second allocation method
  • the second time-domain resource allocation method is the first allocation method or the second allocation method, wherein the network device uses the first allocation method or the second allocation method.
  • the second allocation mode is that the terminal equipment allocates more PUCCH resources than the first allocation mode. That is to say, the first allocation manner is used in a scenario with less demand for PUCCH resources, and the second allocation manner is used in a scenario with more demands on PUCCH resources. In this application, that is, the network device allocates more HARQ resources to the terminal device through the second allocation method than the first allocation method.
  • the first time-domain resource allocation manner and the second time-domain resource allocation manner are different time-domain resource allocation manners. That is, when the first time-domain resource allocation method is the first allocation method, the second time-domain resource allocation method is the second allocation method; in the first time-domain resource allocation method, the first time-domain resource allocation method is the first In the case of two allocation modes, the second time-domain resource allocation mode is the first allocation mode. As shown in FIG. 5 , the switching of the time domain resource allocation mode may be switching from the first allocation mode to the second allocation mode, or may be switching from the second allocation mode to the first allocation mode.
  • the first allocation manner includes allocating one or more first symbols and one or more second symbols in mixed time slots, wherein each first symbol is used for HARQ feedback, that is, each first symbol is used for HARQ feedback. is a HARQ resource; each second symbol is used for scheduling request, beam management feedback, sounding reference signal or hybrid automatic repeat request feedback, that is, each second symbol is SR resource, BM resource, SRS resource or HARQ resource.
  • each first symbol is used for HARQ feedback
  • each first symbol is used for HARQ feedback.
  • each second symbol is used for scheduling request, beam management feedback, sounding reference signal or hybrid automatic repeat request feedback, that is, each second symbol is SR resource, BM resource, SRS resource or HARQ resource.
  • a sort of Since the number of terminal devices accessing the network device is small, the PUCCH resources originally reserved in the UL time slot can be transferred to the mixed time slot for reservation, and all UL symbols in the UL time slot can be uplinked data transmission, thereby improving uplink transmission efficiency and uplink throughput
  • one UL symbol ie, 12 symbols
  • the other UL symbol ie, the 13th symbol
  • the other resource is allocated as the other resource, and the other resource is one of the SR resource, the BM resource, the SRS resource or the HARQ resource.
  • the present application does not limit the specific form of the time domain resource corresponding to each UL symbol in each mixed time slot.
  • the 12th symbol may be allocated as the others resource, and the 13th symbol may be allocated as the HRAQ resource.
  • the number of UL symbols in each mixed time slot is large, more UL symbols can be used to allocate more HRAQ resources to the terminal equipment and more UL symbols can be used to allocate more other resources to the terminal equipment.
  • the present application does not limit the quantity and form of HRAQ resources and other resources in mixed time slots.
  • the following example illustrates how the network device allocates the others resource to the terminal device.
  • SR resources, BM resources, SRS resources or HARQ resources may be relatively staggered and configured.
  • the others resource configured in the third time slot, that is, the first mixed time slot, is the SR resource
  • the other resource configured in the eighth time slot, that is, the second mixed time slot is the BM resource, and so on. .
  • the other resources corresponding to each mixed time slot can be configured in various allocation manners, and the types of the others resources in each mixed time slot are not limited.
  • the others resource that can be configured in the first mixed timeslot is the BM resource; in addition, the same others resource can also be configured in adjacent mixed timeslots, for example, all mixed timeslots in a radio frame can be configured for HARQ resources, and so on. This application does not limit the manner of configuring the others resource.
  • the second allocation manner includes allocating a plurality of third symbols in uplink time slots, and allocating fourth symbols and fifth symbols in mixed time slot allocation, wherein each third symbol is used for HARQ feedback, and each third symbol is used for HARQ feedback.
  • the number of third symbols is one HARQ resource, then the number of the third symbols is more than the number of the first symbols, that is, the second allocation method is used to allocate more HARQ resources to terminal devices, so that more terminal devices can obtain to HARQ resources, so the second allocation method is suitable for scenarios with many terminal devices; wherein, the third symbol is used for scheduling request and/or beam management feedback, that is, the fourth symbol is SR resources or BM resources, and the third symbol is used for SR resources or BM resources.
  • the five symbols are used for the terminal equipment to send the SRS, that is, the fifth symbol is the SRS resource,
  • four third symbols may be allocated in the UL time slot, and one fourth symbol and the first fifth symbol may be allocated in the mixed time slot.
  • the last four UL symbols in the UL time slot may be used as the four third symbols, so that the terminal device uses the four DL symbols to perform HARQ feedback.
  • the UL symbols at other positions in the UL time slot can be used as the third symbol, and the present application does not limit the position of the third symbol in the UL time slot.
  • the 12th symbol in the mixed time slot that is, the first UL symbol in the mixed time slot
  • the 13th symbol that is, the second UL symbol
  • the terminal devices can be allocated in the UL time slot.
  • More HARQ resources (third symbol) to meet the needs of the terminal equipment.
  • the present application does not limit the specific form of the time domain resource corresponding to each UL symbol in each mixed time slot.
  • the 12th symbol may be used as the fifth symbol, that is, the 12th symbol may be allocated as the SRS resource
  • the 13th symbol may be used as the fourth symbol, that is, the 13th symbol may be allocated as the SR resource or the BM resource.
  • the terminal equipment when it has a large demand for PUCCH resources, it can switch to the second allocation method, and allocate more PUCCH resources to the terminal equipment through the second allocation method, so that each terminal equipment can be allocated to the corresponding Therefore, the downlink transmission failure will not occur, and the downlink throughput rate and the downlink data transmission efficiency are improved.
  • the SRS resources, BM, and SR resources are configured in the mixed time slots as much as possible, and the UL symbols in the UL time slots are not occupied, so as to improve the downlink throughput rate and ensure that the terminal equipment can have more Uplink resources, thereby improving uplink transmission efficiency.
  • the preset switching condition is also referred to as switching condition 2 . That is to say, when the first time-domain resource allocation at the current moment is the second allocation method and the switching condition 2 is satisfied, the network device will switch the time-domain resource allocation method from the second allocation method to the first allocation method .
  • the switching condition 2 includes at least one of the following:
  • the number of terminal devices accessing the network device is less than the preset number of terminals N 1 ;
  • the number of beams used by the terminal equipment accessing the network device is less than the preset number of beams M 1 ;
  • the downlink physical resource block utilization rate is less than the preset utilization rate R 1 ;
  • the downlink data buffer amount is less than the preset buffer amount L 1 ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is greater than a preset ratio K 1 ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is smaller than the preset number of terminals N 2 .
  • the preset switching condition is also referred to as switching condition 1 . That is to say, when the first time domain resource allocation at the current moment is the first allocation method and the switching condition 1 is satisfied, the network device will switch the time domain resource allocation method from the first allocation method to the second allocation method .
  • the switching condition 1 includes at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N 3 ;
  • the number of beams used by the terminal device accessing the network device is greater than the preset number of beams M 2 ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R 2 ;
  • the downlink data buffer amount is greater than the preset buffer amount L 3 ;
  • the ratio of the utilization rate of uplink physical resource blocks to the utilization rate of downlink physical resource blocks is less than a preset ratio K 2 ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is greater than the preset number of terminals N 4 .
  • N 1 , N 2 , N 3 , N 4 M1, M 2 , R 1 , R 2 , L 1 , L 3 , K 1 , K 2 , and N 1 ⁇ N 3 , M1 ⁇ M 2 , R 1 ⁇ R 2 , L 1 ⁇ L 3 , K 1 ⁇ K 2 , N 2 ⁇ N 4 .
  • the network device will use the second allocation method to allocate time domain resources to the terminal device.
  • the second allocation mode can be divided into finer granularity, that is, the second allocation mode is divided into a plurality of second sub-allocation modes, and the number of PUCCH resources allocated between any two second sub-allocation modes is different, and The number of PUCCH resources allocated among the plurality of second sub-allocations increases sequentially, and the number of PUCCH resources allocated by any one of the second sub-allocations is greater than that of the first allocation.
  • the number of PUCCH resources allocated by any second sub-allocation mode is more than the first allocation mode means, in this application, it refers to the HARQ resources allocated by any second sub-allocation mode in a time slot allocation is more than the first allocation method.
  • the first time-domain resource allocation method may be the first allocation method or any second sub-allocation method among the plurality of second sub-allocation methods
  • the second time-domain resource allocation method may be the first allocation method. mode or any second sub-allocation mode of the plurality of second sub-allocation modes.
  • the first time domain resource allocation manner and the second time domain resource allocation manner are different time domain resource allocation manners.
  • the mode of allocating time domain resources includes: allocating a plurality of sixth symbols corresponding to the second sub-allocation mode in an uplink time slot, and allocating a plurality of sixth symbols corresponding to the second sub-allocation mode in a mixed time slot
  • the seventh symbol and the eighth symbol corresponding to the sub-allocation mode wherein, each sixth symbol is used for hybrid automatic repeat request feedback, and the number of the sixth symbol is more than the number of the first symbol, but less than or equal to the The number of third symbols, the seventh symbol used for scheduling request and/or beam management feedback, and the eighth symbol used for sounding reference signals.
  • the plurality of second sub-allocation methods are taken as an example for the second sub-allocation method A, the second sub-allocation method B, and the second sub-allocation method C for detailed description, but the number and type of the second sub-allocation methods are not be limited.
  • the time domain resource allocation manners corresponding to the second sub-allocation manners with a greater number are similar to the three second sub-allocation manners, and will not be described again.
  • the number of PUCCH resources (that is, HARQ resources) allocated by the second sub-allocation mode A, the second sub-allocation mode B, and the second sub-allocation mode C increase in sequence, and the second sub-allocation mode C is the above-mentioned
  • the second sub-allocation method of the two are essentially the same, no substantial distinction is made.
  • the second sub-allocation method A allocates time domain resources including: allocating two HARQ resources in the UL time slot, that is, the last two DL symbols in the UL time slot are the terminal
  • the device allocates two HARQ resources; one SR resource and/or BM resource in the mixed timeslot and one SRS resource in the mixed timeslot, i.e. one SR resource is allocated to the terminal device in the last two symbols in the mixed timeslot and/or BM resources and SRS resources.
  • FIG. 9 is only an example for allocating time domain resources by the second sub-allocation mode A, and the present application does not limit the specific mode of allocating time-domain resources by the second sub-allocation mode A.
  • the second sub-allocation mode B allocates time domain resources including: allocating three HARQ resources in the UL time slot, that is, the last three DL symbols in the UL time slot are the terminal
  • the device allocates three HARQ resources; one SR resource and/or BM resource in the mixed time slot and one SRS resource in the mixed time slot, i.e. one SR resource is allocated to the terminal device in the last two symbols in the mixed time slot and/or BM resources and SRS resources.
  • FIG. 10 is only an example for allocating time domain resources by the second sub-allocation mode B, and the present application does not limit the specific mode of allocating time-domain resources by the second sub-allocation mode B.
  • the manner in which the second sub-allocation manner C allocates time domain resources is similar to the second allocation manner shown in FIG. 8 and will not be described again.
  • the specific switching form of switching from the first time-domain resource allocation method to the second time-domain resource allocation method and the preset switching conditions corresponding to the switching form are as follows:
  • the network device may switch from the first allocation mode to the second sub-allocation mode A or the second sub-allocation mode B or the second sub-allocation mode C, and
  • the preset switching condition corresponding to switching from the first allocation method to the second sub-allocation method A is called switching condition 1A
  • the preset switching condition corresponding to switching from the first allocation method to the second sub-allocation method B is called switching condition 1B
  • the preset switching condition corresponding to switching from the first allocation mode to the second sub-allocation mode C is called switching condition 1C;
  • the network device may switch from the second sub-allocation mode A to the first allocation mode or the second sub-allocation mode B or the second sub-allocation mode C , and the preset switching condition corresponding to switching from the second sub-allocation mode A to the first sub-allocation mode is called switching condition A1, and the preset switching condition corresponding to switching from the second sub-allocation mode A to the second sub-allocation mode B Called the switching condition AB, the preset switching condition corresponding to switching from the second sub-allocation method A to the second sub-allocation method C is called the switching condition AC;
  • the network device may switch from the second sub-allocation mode B to the first allocation mode or the second sub-allocation mode A or the second sub-allocation mode C , and call the preset switching condition corresponding to switching from the second sub-allocation mode B to the first sub-allocation mode as switching condition B1, and the preset switching condition corresponding to switching from the second sub-allocation mode B to the second sub-allocation mode A Called the switching condition BA, the preset switching condition corresponding to switching from the second sub-allocation mode B to the second sub-allocation mode C is called the switching condition BC;
  • the network device may switch from the second sub-allocation mode C to the first allocation mode or the second sub-allocation mode A or the second sub-allocation mode B , and call the preset switching condition corresponding to switching from the second sub-allocation mode C to the first sub-allocation mode as switching condition C1, and switch from the second sub-allocation mode C to the preset switching condition corresponding to the second sub-allocation mode A It is called a switching condition CA, and a preset switching condition corresponding to switching from the second sub-allocation mode C to the second sub-allocation mode B is called a switching condition CB.
  • switching condition A1, switching condition B1 and switching condition C1 may be the same or different.
  • the switching condition A1 , the switching condition B1 and the switching condition C are the same as an example for illustration, and the switching condition A1 , the switching condition B1 and the switching condition C are collectively referred to as the switching condition 3 .
  • the switching condition 1A includes at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N 1A , but less than the preset number of terminals N 2A ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M 1A , but smaller than the preset number of beams M 2A ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R 1A , but smaller than the preset utilization rate R 2A ;
  • the downlink data buffer amount is greater than the preset buffer amount L 1A , but smaller than the preset buffer amount L 2A ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is less than the preset ratio K 1A , but greater than the preset ratio K 2A ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L2 is greater than the preset number of terminals N 3A , but smaller than the preset number of terminals N 4A .
  • the switching condition 1B includes at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N 1B , but less than the preset number of terminals N 2B ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M 1B , but smaller than the preset number of beams M 2B ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R 1B , but smaller than the preset utilization rate R 2B ;
  • the downlink data buffer amount is greater than the preset buffer amount L 1B , but smaller than the preset buffer amount L 2B ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is less than the preset ratio K 1B , but greater than the preset ratio K 2B ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L2 is greater than the preset number of terminals N 3B , but smaller than the preset number of terminals N 4B .
  • the switching condition 1C includes at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N 1C ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M 1C ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R 1C ;
  • the downlink data buffer amount is greater than the preset buffer amount L 1C ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is less than a preset ratio K 1C ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L2 is greater than the preset number of terminals N 2C ;
  • the switching condition AB includes at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N AB1 , but smaller than the preset number of terminals N AB2 ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M AB1 , but smaller than the preset number of beams M AB2 ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R AB1 , but smaller than the preset utilization rate R AB2 ;
  • the downlink data buffer amount is greater than the preset buffer amount L AB1 , but smaller than the preset buffer amount L AB2 ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is smaller than the preset ratio K AB1 , but greater than the preset ratio K AB2 ;
  • the number of terminal devices whose downlink data buffer size is greater than the preset buffer size L2 is greater than the preset number of terminals N AB3 , but smaller than the preset number of terminals N AB4 .
  • the switching condition AC includes at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N AC1 ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams MAC ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R AC ;
  • the downlink data buffer amount is greater than the preset buffer amount L AC ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is less than a preset ratio K AC ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L2 is greater than the preset number of terminals N AC2 .
  • the switching condition BC includes at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N BC1 ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M BC ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R BC ;
  • the downlink data buffer amount is greater than the preset buffer amount L BC ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is less than a preset ratio K BC ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L2 is greater than the preset number of terminals N BC2 .
  • the switching condition BA includes at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N BA1 , but smaller than the preset number of terminals N BA2 ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M BA1 , but smaller than the preset number of beams M BA2 ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R BA1 , but smaller than the preset utilization rate R BA2 ;
  • the downlink data buffer amount is greater than the preset buffer amount L BA1 , but smaller than the preset buffer amount L BA2 ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is greater than the preset ratio K BA1 , but smaller than the preset ratio K BA2 ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L2 is greater than the preset number of terminals N BA3 , but smaller than the preset number of terminals N BA4 .
  • the switching condition CA includes at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N CA1 , but smaller than the preset number of terminals N CA2 ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M CA1 , but smaller than the preset number of beams M CA2 ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R CA1 , but smaller than the preset utilization rate R CA2 ;
  • the downlink data buffer amount is greater than the preset buffer amount L CA1 , but smaller than the preset buffer amount L CA2 ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is greater than the preset ratio K CA1 , but smaller than the preset ratio K CA2 ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L2 is greater than the preset number of terminals N CA3 , but smaller than the preset number of terminals N CA4 .
  • the switching condition CB includes at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N CB1 , but less than the preset number of terminals N CB2 ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M CB1 , but smaller than the preset number of beams M CB2 ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R CB1 , but smaller than the preset utilization rate R CB2 ;
  • the downlink data buffer amount is greater than the preset buffer amount L CB1 , but smaller than the preset buffer amount L CB2 ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is greater than the preset ratio K CB1 , but smaller than the preset ratio K CB2 ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is greater than the preset number of terminals N CB3 , but smaller than the preset number of terminals N CB4 .
  • the switching condition 3 includes at least one of the following:
  • the number of terminal devices accessing the network device is less than the preset number of terminals N 5 ;
  • the number of beams used by the terminal device accessing the network device is less than the preset number of beams M 3 ;
  • the downlink physical resource block utilization rate is less than the preset utilization rate R 3 ;
  • the downlink data buffer amount is less than the preset buffer amount L 4 ;
  • the ratio of the utilization rate of uplink physical resource blocks to the utilization rate of downlink physical resource blocks is greater than a preset ratio K 3 ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is smaller than the preset number of terminals N 6 .
  • the corresponding switching conditions may be different or the same, which is not limited in this application.
  • the switching conditions corresponding to switching from the first sub-allocation mode and from the second sub-allocation mode B to the second sub-allocation mode may be the same or different, which are not limited in this application. .
  • N 1A , N BA1 , and N CA1 may be the same or different, which is not limited in this application.
  • N 2A , N BA2 , and N CA2 may be the same or different; M 1A , M BA1 , and M CA1 may be the same or different; M 2A , M BA2 , and M CA2 may be the same or different; R 1A , R BA1 , R CA1 can be the same or different; R 2A , R BA2 , R CA2 can be the same or different; L 1A , L BA1 , L CA1 can be the same or different; L 2A , L BA2 , L CA2 Can be the same or different; K 1A , K BA1 , K CA1 can be the same or different; K 2A , K BA2 , K CA2 can be the same or different; N 3A , N BA3 , N CA3 can be the same or different different; N 4A , N BA4 , and N CA4 may be the same or different.
  • N 1B , N AB1 , and N CB1 may be the same or different, which are not limited in this application.
  • N 2B , N AB2 , and N CV2 may be the same or different; M 1B , M AB1 , and M CB1 may be the same or different; M 2B , M AB2 , and M CB2 may be the same or different; R 1B , R AB1 , R CB1 can be the same or different; R 2B , R AB2 , R CB2 can be the same or different; L 1B , L AB1 , L CB1 can be the same or different; L 2B , L AB2 , L CB2 Can be the same or different; K 1B , K AB1 , K CB1 can be the same or different; K 2B , K AB2 , K CB2 can be the same or different; N 3B , N AB3 , N CB3 can be the same or different different; N 4B , N AB4 , and N CB4 may be the same or different.
  • N 1C , N AC1 , N BC1 can be the same or different; M 1C , MAC , M BC can be the same or different; R 1C , R AC , R BC can be the same or different; L 1C , L AC , L BC can be the same or different; K 1C , K AC , K BC can be the same or different; N 2C , N AC2 , and N BC2 can be the same or different.
  • the network device will use the second sub-allocation mode C to allocate time domain resources to the terminal device.
  • the specific location of the time domain resource can be notified through an indication message, that is, the notification In which time slot and in which symbol the time domain resource of the terminal device is located.
  • the network device may notify the terminal device of the specific locations of the SR resources and the BM resources through RRC signaling during the process of performing a Radio Resource Control (RRC) connection; for the SRS resources , the network device can notify the terminal device of the specific location of the SRS resource through downlink control information (Downlink Control Information, DCI); for HARQ resources, the network device can notify the terminal device of the specific location of the HARQ resource through downlink DCI.
  • RRC Radio Resource Control
  • the network device can use different time-domain resource allocation methods to allocate PUCCH resources to the terminal device; that is, when the terminal device has relatively more PUCCH resource requirements, one time-domain resource allocation is used. resources are allocated in a manner to meet the needs of the terminal equipment; when the terminal equipment has less demand for PUCCH resources, another time-domain resource allocation method may be used to allocate time-domain resources to the terminal equipment. Therefore, the network equipment can allocate time-domain resources in a targeted manner according to the different needs of the terminal equipment, so that the allocation of time-domain resources is more flexible, there will be no excess or shortage of PUCCH resources, and the uplink throughput rate and downlink throughput rate are improved. , and improve the efficiency of uplink and downlink data transmission.
  • the network device determines that switching of the time domain resource allocation mode is not required at the current moment, it will continue to use the first time domain resource allocation mode corresponding to the current moment to allocate time domain resources to the terminal device.
  • switching from the first time-domain resource allocation method to the second time-domain resource allocation method includes switching between the first allocation method and the second allocation method, and switching between the first allocation method and each sub-allocation method.
  • Switching, as well as switching between each second sub-allocation mode is essentially to reassign each resource to the time domain position where the symbol corresponding to each resource is located, and each resource includes SR resources, BM resources, SRS resources and HARQ resources. .
  • the first allocation method of time domain resources is the first allocation method and the second time domain resource allocation method is the second allocation method
  • the first allocation method is to allocate HARQ resources in the mixed time domain.
  • the SRS resources are allocated in the mixed time slot. Therefore, the time domain position corresponding to the SRS resource may be limited without reconfiguring the SRS resource, that is, the SRS resource may be limited to the time domain position corresponding to the second time domain resource allocation manner. Then, after the completion of the switching of the time domain resource allocation mode is indicated by the indication message, the time domain position where the SRS resource is located can meet the network requirement.
  • the network device After the network device has allocated the corresponding time domain resources to the terminal device, it can use the allocated time domain resources to perform uplink data transmission and downlink data transmission with the terminal device.
  • FIG. 12 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device 1200 includes a processing unit 1200 and a transceiver unit 1201;
  • a processing unit 1200 configured to obtain a first time domain resource allocation mode at the current moment
  • the processing unit 1200 is further configured to switch from the first time domain resource allocation method to the second time domain resource allocation method;
  • the processing unit 1200 is further configured to allocate time domain resources to the terminal device through the second time domain resource allocation manner.
  • the processing unit 1200 is further configured to control the transceiver unit 1201 to perform uplink communication and downlink communication with the terminal device through the allocated time domain resources.
  • the time domain resources include physical uplink control channel resources and/or sounding reference signal resources.
  • the first time domain resource allocation manner is a first allocation manner or a second allocation manner
  • the second time domain resource allocation mode is the first allocation mode or the second allocation mode
  • the first time-domain resource allocation method and the second time-domain resource allocation method are different time-domain resource allocation methods
  • the uplink control channel resources allocated by the second allocation mode are more than those allocated by the first allocation mode.
  • the first allocating manner includes allocating one or more first symbols and one or more second symbols in mixed time slots, wherein each first symbol is used for mixed automatic repeating transmission request feedback, each second symbol is used for scheduling request, beam management feedback, sounding reference signal or hybrid automatic repeat request feedback;
  • the second allocation manner includes allocating a plurality of third symbols in uplink time slots, and allocating fourth symbols and fifth symbols in mixed time slots, wherein each third symbol is used for mixed automatic repeat request feedback, And the number of the third symbols is greater than the number of the first symbols, the fourth symbols are used for scheduling request and/or beam management feedback, and the fifth symbols are used for sounding reference signals.
  • the preset switching condition includes at least one of the following:
  • the number of terminal devices accessing the network device is less than the preset number of terminals N 1 ;
  • the number of beams used by the terminal device accessing the network device is less than the preset number of beams M 1 ;
  • the downlink physical resource block utilization rate is less than the preset utilization rate R 1 ;
  • the downlink data buffer amount is less than the preset buffer amount L 1 ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is greater than a preset ratio K 1 ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is less than the preset number N 2 of terminals;
  • the preset switching condition includes at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N 3 ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M 2 ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R 2 ;
  • the downlink data buffer amount is greater than the preset buffer amount L 3 ;
  • the ratio of the utilization rate of uplink physical resource blocks to the utilization rate of downlink physical resource blocks is less than a preset ratio K 2 ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is greater than the preset number of terminals N 4 ;
  • the second allocation manner includes a plurality of second sub-allocation manners
  • the first time-domain resource allocation mode is the first allocation mode or any second sub-allocation mode in the plurality of second sub-allocation modes;
  • the second time-domain resource allocation mode is the first allocation mode or any second sub-allocation mode in the multiple second sub-allocation modes;
  • the number of uplink control channel resources allocated by any two of the plurality of second sub-allocation methods is different, and the number of uplink control channel resources allocated by any one of the second sub-allocation methods is more than the number of uplink control channel resources allocated by the second sub-allocation method.
  • the processing unit 1200 is specifically configured to: :
  • Time domain resources are allocated to the terminal device through the second sub-allocation manner.
  • any one of the second sub-allocation manners of the plurality of second sub-allocation manners includes:
  • each sixth symbol is used for hybrid automatic repeat request feedback, and the number of the sixth symbols is more than the number of the first symbols, but less than or equal to the number of the third symbols;
  • the seventh symbol is used for scheduling request and/or beam management feedback
  • the eighth symbol is used for sounding reference signals.
  • the plurality of second sub-allocation manners include a second sub-allocation manner A, a second sub-allocation manner B, and a second sub-allocation manner C, wherein the second sub-allocation manners A,
  • the number of uplink control channel resources allocated by the second sub-allocation mode B and the second sub-allocation mode C increases sequentially.
  • the The preset switching conditions include at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N 1A , but less than the preset number of terminals N 2A ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M 1A , but smaller than the preset number of beams M 2A ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R 1A , but smaller than the preset utilization rate R 2A ;
  • the downlink data buffer amount is greater than the preset buffer amount L 1A , but smaller than the preset buffer amount L 2A ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is less than the preset ratio K 1A , but greater than the preset ratio K 2A ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is greater than the preset number of terminals N 3A , but smaller than the preset number of terminals N 4A .
  • the The preset switching conditions include at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N 1B , but smaller than the preset number of terminals N 2B ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M 1B , but smaller than the preset number of beams M 2B ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R 1B , but smaller than the preset utilization rate R 2B ;
  • the downlink data buffer amount is greater than the preset buffer amount L 1B , but smaller than the preset buffer amount L 2B ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is less than the preset ratio K 1B , but greater than the preset ratio K 2B ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is greater than the preset number of terminals N 3B , but smaller than the preset number of terminals N 4B .
  • the The preset switching conditions include at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N 1C ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M 1C ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R 1C ;
  • the downlink data buffer amount is greater than the preset buffer amount L 1C ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is less than a preset ratio K 1C ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is greater than the preset number of terminals N 2C ;
  • the first time-domain resource allocation manner is any one of the second sub-allocation manner A, the second sub-allocation manner B, and the second sub-allocation manner C.
  • the preset switching condition includes at least one of the following:
  • the number of terminal devices accessing the network device is less than the preset number of terminals N 5 ;
  • the number of beams used by the terminal device accessing the network device is less than the preset number of beams M 3 ;
  • the downlink physical resource block utilization rate is less than the preset utilization rate R 3 ;
  • the downlink data buffer amount is less than the preset buffer amount L 4 ;
  • the ratio of the utilization rate of uplink physical resource blocks to the utilization rate of downlink physical resource blocks is greater than a preset ratio K 3 ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is smaller than the preset number of terminals N 6 .
  • the processing unit 1200 is specifically configured to:
  • the resources used for scheduling requests, beam management resources and hybrid automatic repeat request resources are respectively reconfigured to the time-domain positions where the corresponding symbols are located;
  • the resources used for the sounding reference signals are re-allocated to the time domain positions where the corresponding symbols are located, or the time domain positions corresponding to the sounding reference signal resources are restricted.
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device 1300 includes a memory 1301 , a processor 1302 and a transceiver 1303 . They are connected by bus 1304.
  • the memory 1301 is used to store related instructions and data, and can transmit the stored data to the processor 1302 .
  • the processor 1302 is used to read the relevant instructions in the memory 1301 to perform the following operations:
  • the terminal device is allocated time domain resources through the second time domain resource allocation manner.
  • the processor 1302 is further configured to perform the following operations:
  • the control transceiver 1303 performs uplink communication and downlink communication with the terminal device through the allocated time domain resources.
  • the time domain resources include physical uplink control channel resources and/or sounding reference signal resources.
  • the first time domain resource allocation manner is a first allocation manner or a second allocation manner
  • the second time domain resource allocation mode is the first allocation mode or the second allocation mode
  • the first time-domain resource allocation method and the second time-domain resource allocation method are different time-domain resource allocation methods
  • the uplink control channel resources allocated by the second allocation mode are more than those allocated by the first allocation mode.
  • the first allocating manner includes allocating one or more first symbols and one or more second symbols in mixed time slots, wherein each first symbol is used for mixed automatic repeating transmission request feedback, each second symbol is used for scheduling request, beam management feedback, sounding reference signal or hybrid automatic repeat request feedback;
  • the second allocation manner includes allocating a plurality of third symbols in uplink time slots, and allocating fourth symbols and fifth symbols in mixed time slots, wherein each third symbol is used for mixed automatic repeat request feedback, And the number of the third symbols is greater than the number of the first symbols, the fourth symbols are used for scheduling request and/or beam management feedback, and the fifth symbols are used for sounding reference signals.
  • the preset switching condition includes at least one of the following:
  • the number of terminal devices accessing the network device is less than the preset number of terminals N 1 ;
  • the number of beams used by the terminal device accessing the network device is less than the preset number of beams M 1 ;
  • the downlink physical resource block utilization rate is less than the preset utilization rate R 1 ;
  • the downlink data buffer amount is less than the preset buffer amount L 1 ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is greater than a preset ratio K 1 ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is less than the preset number N 2 of terminals;
  • the preset switching condition includes at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N 3 ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M 2 ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R 2 ;
  • the downlink data buffer amount is greater than the preset buffer amount L 3 ;
  • the ratio of the utilization rate of uplink physical resource blocks to the utilization rate of downlink physical resource blocks is less than a preset ratio K 2 ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is greater than the preset number of terminals N 4 ;
  • the second allocation manner includes a plurality of second sub-allocation manners
  • the first time-domain resource allocation mode is the first allocation mode or any second sub-allocation mode in the plurality of second sub-allocation modes;
  • the second time-domain resource allocation mode is the first allocation mode or any second sub-allocation mode in the multiple second sub-allocation modes;
  • the number of uplink control channel resources allocated by any two of the plurality of second sub-allocation methods is different, and the number of uplink control channel resources allocated by any one of the second sub-allocation methods is more than the number of uplink control channel resources allocated by the second sub-allocation method.
  • the processor 1302 is specifically configured to: Do the following:
  • Time domain resources are allocated to the terminal device through the second sub-allocation manner.
  • any one of the second sub-allocation manners of the plurality of second sub-allocation manners includes:
  • each sixth symbol is used for hybrid automatic repeat request feedback, and the number of the sixth symbols is more than the number of the first symbols, but less than or equal to the number of the third symbols;
  • the seventh symbol is used for scheduling request and/or beam management feedback
  • the eighth symbol is used for sounding reference signals.
  • the plurality of second sub-allocation manners include a second sub-allocation manner A, a second sub-allocation manner B, and a second sub-allocation manner C, wherein the second sub-allocation manners A,
  • the number of uplink control channel resources allocated by the second sub-allocation mode B and the second sub-allocation mode C increases sequentially.
  • the The preset switching conditions include at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N 1A , but less than the preset number of terminals N 2A ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M 1A , but smaller than the preset number of beams M 2A ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R 1A , but smaller than the preset utilization rate R 2A ;
  • the downlink data buffer amount is greater than the preset buffer amount L 1A , but smaller than the preset buffer amount L 2A ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is less than the preset ratio K 1A , but greater than the preset ratio K 2A ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is greater than the preset number of terminals N 3A , but smaller than the preset number of terminals N 4A .
  • the The preset switching conditions include at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N 1B , but smaller than the preset number of terminals N 2B ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M 1B , but smaller than the preset number of beams M 2B ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R 1B , but smaller than the preset utilization rate R 2B ;
  • the downlink data buffer amount is greater than the preset buffer amount L 1B , but smaller than the preset buffer amount L 2B ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is less than the preset ratio K 1B , but greater than the preset ratio K 2B ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is greater than the preset number of terminals N 3B , but smaller than the preset number of terminals N 4B .
  • the The preset switching conditions include at least one of the following:
  • the number of terminal devices accessing the network device is greater than the preset number of terminals N 1C ;
  • the number of beams used by the terminal equipment accessing the network device is greater than the preset number of beams M 1C ;
  • the downlink physical resource block utilization rate is greater than the preset utilization rate R 1C ;
  • the downlink data buffer amount is greater than the preset buffer amount L 1C ;
  • the ratio of uplink physical resource block utilization to downlink physical resource block utilization is less than a preset ratio K 1C ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is greater than the preset number of terminals N 2C ;
  • the first time-domain resource allocation manner is any one of the second sub-allocation manner A, the second sub-allocation manner B, and the second sub-allocation manner C.
  • the preset switching condition includes at least one of the following:
  • the number of terminal devices accessing the network device is less than the preset number of terminals N 5 ;
  • the number of beams used by the terminal device accessing the network device is less than the preset number of beams M 3 ;
  • the downlink physical resource block utilization rate is less than the preset utilization rate R 3 ;
  • the downlink data buffer amount is less than the preset buffer amount L 4 ;
  • the ratio of the utilization rate of uplink physical resource blocks to the utilization rate of downlink physical resource blocks is greater than a preset ratio K 3 ;
  • the number of terminal devices whose downlink data buffer amount is greater than the preset buffer amount L 2 is smaller than the preset number of terminals N 6 .
  • the processor 1302 is specifically configured to perform the following operations:
  • the resources used for scheduling requests, beam management resources and hybrid automatic repeat request resources are respectively reconfigured to the time-domain positions where the corresponding symbols are located;
  • the resources used for the sounding reference signals are re-allocated to the time domain positions where the corresponding symbols are located, or the time domain positions corresponding to the sounding reference signal resources are restricted.
  • the processor 1302 may be the processing unit 1201 of the network device 1200 in the embodiment shown in FIG. 12
  • the transceiver 1303 may be the transceiver unit 1202 of the network device 1200 in the embodiment shown in FIG. 12 .
  • the transceiver unit 1202 may be an input and/or output interface, a pin, a circuit, or the like.
  • the processing unit 1201 can execute the computer-executed instructions stored in the storage unit, so that the chip in the network device executes the method involved in the embodiment of FIG. 4 .
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit in the terminal located outside the chip, such as a read-only memory (Read Only Memory). Only Memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (Random Access Memory, RAM), etc.
  • FIG. 14 provides a schematic structural diagram of a chip provided by the present application for an embodiment of the present application.
  • the chip 1400 includes a processor 1401 , and one or more interfaces 1402 coupled to the processor 1401 .
  • processor 1401 may be used to read and execute computer readable instructions.
  • the processor 1401 may mainly include a controller, an arithmetic unit, and a register.
  • the controller is mainly responsible for instruction decoding, and sends control signals for operations corresponding to the instructions.
  • the arithmetic unit is mainly responsible for performing fixed-point or floating-point arithmetic operations, shift operations, and logical operations, and can also perform address operations and conversions.
  • Registers are mainly responsible for saving register operands and intermediate operation results temporarily stored during instruction execution.
  • the hardware architecture of the processor 1401 may be an application specific integrated circuits (ASIC) architecture, a microprocessor without interlocked piped stages architecture (MIPS) architecture, an advanced simplification Instruction set machine (advanced RISC machines, ARM) architecture or NP architecture and so on.
  • ASIC application specific integrated circuits
  • MIPS microprocessor without interlocked piped stages architecture
  • ARM advanced simplification Instruction set machine
  • NP neuronal neural network
  • the interface 1402 can be used to input data to be processed to the processor 1401, and can output the processing result of the processor 1401 to the outside.
  • the interface 1402 can be a general purpose input output (GPIO) interface, which can be connected to multiple peripheral devices (such as a display (LCD), a camera (camara), a radio frequency (RF) module, etc.) connect.
  • GPIO general purpose input output
  • the interface 1402 is connected to the processor 1401 through the bus 1403 .
  • the processor 1401 can be configured to call the signal sending and receiving methods provided by one or more embodiments of the present application from the memory, so that the chip can implement the aforementioned time domain resource allocation method in FIG. 4 .
  • the memory may be integrated with the processor 1401 or coupled with the chip 1400 through the interface 1402 , that is to say, the memory may be a part of the chip 1400 or may be independent of the chip 1400 .
  • the interface 1402 can be used to output the execution result of the processor 1401 .
  • the interface 1402 may be specifically used to output the modulation order determined by the processor 1401 .
  • the signal sending and receiving methods provided by one or more embodiments of the present application reference may be made to the foregoing embodiments, which will not be repeated here.
  • processor 1401 and the interface 1402 can be implemented by hardware design, software design, or a combination of software and hardware, which is not limited here.
  • Embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, can implement a process related to a terminal device in the communication method provided by the above method embodiments.
  • Embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, can implement the processes related to the network device in the communication method provided by the above method embodiments.
  • Embodiments of the present application also provide a computer program product, which, when run on a computer or a processor, causes the computer or processor to execute one or more steps in any one of the above communication methods. If each component module of the above-mentioned device is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in the computer-readable storage medium.
  • processors mentioned in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits ( Application Specific Integrated Circuit, ASIC), off-the-shelf Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • memory described herein is intended to include, but not be limited to, these and any other suitable types of memory.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • the modules in the apparatus of the embodiment of the present application may be combined, divided and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种时域资源分配方法及相关产品。该方法应用于网络设备,该方法包括:获取当前时刻的第一时域资源分配方式;在满足从第一时域资源分配方式切换到第二时域资源分配方式对应的预设切换条件的情况下,从第一时域资源分配方式切换到所述第二时域资源分配方式;通过第二时域资源分配方式为终端设备分配时域资源。本申请实施例有利于提高上下行通信效率。

Description

时域资源分配方法及相关产品
本申请要求于2020年06月28日提交中国专利局、申请号为202010602225.X、申请名称为“时域资源分配方法及相关产品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体涉及一种时域资源分配方法及相关产品。
背景技术
第五代移动通信系统采用由3GPP开发的新无线(New Radio,NR)标准,5G NR定义了两个频率范围,FR1和FR2,FR1包括6GHz以下的频段,FR2包括20~60GHz内的毫米波频段。5G NR定义了两种传输制式,即时分双工(Time Division Duplex,TDD)和频分双工(Frequency Division Duplexing,FDD)。在NR TDD系统进行时分调度的过程中,调度的最小单位为一个时隙(slot),每个时隙由若干个正交频分复用(Orthogonal Frequency Division Multiplexin,OFDM)符号组成。其中,slot类型主要分为下行链路(DownLink,DL)时隙、上行链路(UpLink,UL)时隙和混合(mixing)时隙,混合时隙又称为特殊(Special)时隙,即S时隙,其中,DL时隙仅包括DL符号,UL时隙仅包括UL符号,而S时隙由DL符号、gap符号和UL符号组成。
为了系统的通用性,受协议和资源等约束,尽量在UL时隙或S时隙中为每个含有物理下行共享信道(Physical Downlink Share Channel,PDSCH)符号的时隙(即每个DL时隙和S时隙)分配用于信息反馈的UL符号,以便对每个DL时隙和S时隙的下行传输过程进行反馈。比如,在UL时隙中为每个DL时隙和S时隙分配一个物理上行控制信道(Physical Uplink Control Channel,PUCCH)符号,从而对该DL时隙和S时隙的下行传输进行混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)反馈;再如,还可以在UL时隙中分配探测参考信号(Sounding Reference Signal,SRS)符号,从而便于终端设备发送SRS。
然而,这种分配UL符号的方式,一般与DL时隙或S时隙相关,分配方式相对比较固定,可能导致分配的UL符号过剩或者不足,降低了上下行传输效率。
发明内容
本申请提供了一种时域资源分配方法及相关产品。通过切换时域资源分配方式,实现针对性的为终端设备分配时域资源,进而提高上下行传输效率。
第一方面,本申请实施例提供一种时域资源分配方法,该方法的执行主体可以是网络设备,也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。该方法包括:
获取当前时刻的第一时域资源分配方式;
在满足从所述第一时域资源分配方式切换到第二时域资源分配方式对应的预设切换条件的情况下,从所述第一时域资源分配方式切换到所述第二时域资源分配方式;
通过所述第二时域资源分配方式为终端设备分配时域资源。
其中,通过第二时域资源分配方式与第一时域资源分配方式为终端设备分配的时域资源(PUCCH资源)的数量不同,且第二时域资源分配方式与第一时域资源分配方式中的一个时域资源分配方式可以为终端设备分配相对较多的时域资源,而另外一个时域资源分配方式可以为终端设备分配相对较少的时域资源。
可以看出,在本申请实施例中,网络设备可以采用不同的时域资源分配方式为终端设备分配PUCCH资源;即在终端设备对PUCCH资源需求相对较多的情况下,采用一个时域资源分配方式分配资源,以满足终端设备的需求;在终端设备对PUCCH资源需求较少的情况下,可以采用另外一个时域资源分配方式为终端设备分配时域资源。因此,网络设备可以根据终端设备的不同需求,针对性的进行时域资源分配,使时域资源的分配比较灵活,不会出现PUCCH资源过剩或者不足的情况,提高了上行吞吐率和下行吞吐率,以及提高了上下行数据传输效率。
在一些可能的实施方式中,所述时域资源包括物理上行控制信道资源和/或探测参考信号资源。
可以看出,在本实施方式中,通过动态的切换时域资源分配方式,使时域资源的分配比较灵活,并且可以为终端设备分配与需求相对应的上行控制信道资源和/或探测参考信号资源,从而不会产生上行控制信道资源和/或探测参考信号资源过剩或者不足的情况,尽可能的为终端设备保留更多的上下行资源,提高上下行通行效率。
在一些可能的实施方式中,所述第一时域资源分配方式为第一分配方式或第二分配方式;
所述第二时域资源分配方式为所述第一分配方式或所述第二分配方式;
所述第一时域资源分配方式与所述第二时域资源分配方式为不同的时域资源分配方式;
其中,所述第二分配方式分配的上行控制信道资源多于所述第一分配方式。
在一些可能的实施方式中,所述第一分配方式包括在混合时隙中分配一个或多个第一符号、以及一个或多个第二符号,其中,每个第一符号用于混合自动重传请求反馈,每个第二符号用于调度请求、波束管理反馈、探测参考信号或混合自动重传请求反馈;
所述第二分配方式包括在上行时隙中分配多个第三符号,以及在混合时隙中分配第四符号和第五符号,其中,每个第三符号用于混合自动重传请求反馈,且所述第三符号的数量多于所述第一符号的数量,所述第四符号用于调度请求和/或波束管理反馈,所述第五符号用于探测参考信号。
可以看出,在本实施方式中,设置第一分配方式和第二分配方式,且第二分配方式分配的上行控制信道资源多于第一分配方式,则可以在终端设备对上行控制信道资源需求较多的情况下,通过第二分配方式为终端设备分配时域资源,保证每个终端设备都可以分配到相应的上行控制信道资源,从而不会出现下行传输失败的问题,提高了下行吞吐率和下行传输效率;在终端设备对上行控制信道资源需求较少的情况下,通过第一分配方式为终端设备分配时域资源,即分配较少的上行控制信道资源,从而可以在UL时隙中保留更多的上行资源,进而提高上行吞吐率和上行传输效率。
在一些可能的实施方式中,在所述第二时域资源分配方式为所述第一分配方式的情况 下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量小于预设终端数量N 1
接入所述网络设备的终端设备所使用的波束数量小于预设波束数量M 1
下行物理资源块利用率小于预设利用率R 1
下行数据缓存量小于预设缓存量L 1
上行物理资源块利用率与下行物理资源块利用率的比值大于预设比例K 1
下行数据缓存量大于预设缓存量L 2的终端设备的数量小于预设终端数量N 2
在所述第二时域资源分配方式为所述第二分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量大于预设终端数量N 3
接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 2
下行物理资源块利用率大于预设利用率R 2
下行数据缓存量大于预设缓存量L 3
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 2
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 4
其中,N 1≤N 3,M1≤M 2,R 1≤R 2,L 1≤L 3,K 1≤K 2,N 2≤N 4
可以看出,在本实施方式,设置了多种进行时域资源分配方式的切换条件,这样只要有一个条件满足网络设备都切换到的适配的时域资源分配方式为终端设备分配,从而实现在各种工作场景下,都可以为终端设备分配出匹配的时域资源,也就提高了本申请中时域资源分配方式的应用场景。
在一些可能的实施方式中,所述第二分配方式包括多个第二子分配方式;
所述第一时域资源分配方式为所述第一分配方式或所述多个第二子分配方式中的任意一个第二子分配方式;
所述第二时域资源分配方式为所述第一分配方式或所述多个第二子分配方式中的任意一个第二子分配方式;
其中,所述多个第二子分配方式中任意两个第二子分配方式分配的上行控制信道资源的数量不同,任意一个第二子分配方式分配的上行控制信道资源的数量多于所述第一分配方式;
在所述第二时域资源分配方式中的任意一个第二子分配方式的情况下,所述通过所述第二时域资源分配方式为终端设备分配时域资源,包括:
通过所述第二子分配方式为终端设备分配时域资源。
可以看出,本实施方式中,对第二分配方式进行细粒度的划分,划分成多个第二子分配方式,这样当终端设备对上行控制信道资源需求较多的情况下,可以采用更精准的分配方式为终端设备分配更精精确的时域资源。比如,网络设备确定需要在一个UL时隙中分配三个HARQ资源,则可以采用与该种分配方式对应的第二子分配方式为终端设备分配时域资源,这样就使分配出的时域资源与终端设备的需求更加匹配,可以在满足终端设备对时域资源需求的情况下,尽可能的提高上下行通信效率。
在一些可能的实施方式中,所述多个第二子分配方式中的任意一个第二子分配方式, 包括:
在上行时隙中分配与所述第二子分配方式对应的多个第六符号,以及在混合时隙中分配与所述第二子分配方式对应的第七符号和第八符号;
其中,每个第六符号用于混合自动重传请求反馈,且所述第六符号的数量多于所述第一符号的数量,但小于或等于所述第三符号的数量;
所述第七符号用于调度请求和/或波束管理反馈;
所述第八符号用于探测参考信号。
在一些可能的实施方式中,所述多个第二子分配方式包括第二子分配方式A、第二子分配方式B以及第二子分配方式C,其中,所述第二子分配方式A、所述第二子分配方式B以及所述第二子分配方式C分配的上行控制信道资源的数量依次增多。
在一些可能的实施方式中,在所述第一时域资源分配方式为所述第二子分配方式A,且所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量大于预设终端数量N 1A,但小于预设终端数量N 2A
接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 1A,但小于预设波束数量M 2A
下行物理资源块利用率大于预设利用率R 1A,但小于预设利用率R 2A
下行数据缓存量大于预设缓存量L 1A,但小于预设缓存量L 2A
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1A,但大于预设比例K 2A
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 3A,但小于预设终端数量N 4A
在一些可能的实施方式中,在所述第一时域资源分配方式为所述第二子分配方式B,且所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量大于预设终端数量N 1B,但小于预设终端数量N 2B
接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 1B,但小于预设波束数量M 2B
下行物理资源块利用率大于预设利用率R 1B,但小于预设利用率R 2B
下行数据缓存量大于预设缓存量L 1B,但小于预设缓存量L 2B
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1B,但大于预设比例K 2B
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 3B,但小于预设终端数量N 4B
在一些可能的实施方式中,在所述第一时域资源分配方式为所述第二子分配方式C,且所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下 至少一项:
接入所述网络设备的终端设备的数量大于预设终端数量N 1C
接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 1C
下行物理资源块利用率大于预设利用率R 1C
下行数据缓存量大于预设缓存量L 1C
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1C
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 2C
其中,N 1C≥N 2B,N 1B≥N 2A,M 1C≥M 2B,M 1B≥M 2A,R 1C≥R 2B,R 1B≥R 2A,L 1C≥L 2B,L 1B≥L 2A,K 1C≤K 2B,K 1B≤K 2A,N 2C≥N 4B,N 3B≥N 4A
在一些可能的实施方式中,在所述第一时域资源分配方式为所述第二子分配方式A、第二子分配方式B以及第二子分配方式C中的任意一个第二子分配方式,且所述第一时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量小于预设终端数量N 5
接入所述网络设备的终端设备所使用的波束数量小于预设波束数量M 3
下行物理资源块利用率小于预设利用率R 3
下行数据缓存量小于预设缓存量L 4
上行物理资源块利用率与下行物理资源块利用率的比值大于预设比例K 3
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量小于预设终端数量N 6
在一些可能的实施方式中,根据所述第二时域资源分配方式,分别重配用于调度请求资源、波束管理资源以及混合自动重传请求资源到对应的符号所在的时域位置;
根据所述第二时域资源分配方式,重配用于探测参考信号的资源到对应的符号所在的时域位置或者限制探测参考信号资源对应的时域位置。
可以看出,在本实施方式中,可以采用限制的方式完成对探测参考信号资源进行重新分配的过程,进而可以降低切换的复杂度,降低网络设备的负载。
第二方面,本申请实施例提供一种网络设备,有益效果可以参见第一方面的描述此处不再赘述。所述网络设备具有实现上述第一方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一些可能的实施方式中,该网络设备包括:
处理单元,用于获取当前时刻的第一时域资源分配方式;
所述处理单元,还用于在满足从所述第一时域资源分配方式切换到第二时域资源分配方式对应的预设切换条件的情况下,从所述第一时域资源分配方式切换到所述第二时域资源分配方式;
所述处理单元,还用于通过所述第二时域资源分配方式为终端设备分配时域资源。
在一些可能的实施方式中,所述时域资源包括物理上行控制信道资源和/或探测参考信号资源。
在一些可能的实施方式中,所述第一时域资源分配方式为第一分配方式或第二分配方式;
所述第二时域资源分配方式为所述第一分配方式或所述第二分配方式;
所述第一时域资源分配方式与所述第二时域资源分配方式为不同的时域资源分配方式;
其中,所述第二分配方式分配的上行控制信道资源多于所述第一分配方式。
在一些可能的实施方式中,所述第一分配方式包括在混合时隙中分配一个或多个第一符号、以及一个或多个第二符号,其中,每个第一符号用于混合自动重传请求反馈,每个第二符号用于调度请求、波束管理反馈、探测参考信号或混合自动重传请求反馈;
所述第二分配方式包括在上行时隙中分配多个第三符号,以及在混合时隙中分配第四符号和第五符号,其中,每个第三符号用于混合自动重传请求反馈,且所述第三符号的数量多于所述第一符号的数量,所述第四符号用于调度请求和/或波束管理反馈,所述第五符号用于探测参考信号。
在一些可能的实施方式中,在所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量小于预设终端数量N 1
接入所述网络设备的终端设备所使用的波束数量小于预设波束数量M 1
下行物理资源块利用率小于预设利用率R 1
下行数据缓存量小于预设缓存量L 1
上行物理资源块利用率与下行物理资源块利用率的比值大于预设比例K 1
下行数据缓存量大于预设缓存量L 2的终端设备的数量小于预设终端数量N 2
在所述第二时域资源分配方式为所述第二分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量大于预设终端数量N 3
接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 2
下行物理资源块利用率大于预设利用率R 2
下行数据缓存量大于预设缓存量L 3
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 2
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 4
其中,N 1≤N 3,M1≤M 2,R 1≤R 2,L 1≤L 3,K 1≤K 2,N 2≤N 4
在一些可能的实施方式中,所述第二分配方式包括多个第二子分配方式;
所述第一时域资源分配方式为所述第一分配方式或所述多个第二子分配方式中的任意一个第二子分配方式;
所述第二时域资源分配方式为所述第一分配方式或所述多个第二子分配方式中的任意一个第二子分配方式;
其中,所述多个第二子分配方式中任意两个第二子分配方式分配的上行控制信道资源的数量不同,任意一个第二子分配方式分配的上行控制信道资源的数量多于所述第一分配方式;
在所述第二时域资源分配方式中的任意一个第二子分配方式的情况下,在通过所述第二时域资源分配方式为终端设备分配时域资源方面,所述处理单元,具体用于:
通过所述第二子分配方式为终端设备分配时域资源。
在一些可能的实施方式中,所述多个第二子分配方式中的任意一个第二子分配方式,包括:
在上行时隙中分配与所述第二子分配方式对应的多个第六符号,以及在混合时隙中分配与所述第二子分配方式对应的第七符号和第八符号;
其中,每个第六符号用于混合自动重传请求反馈,且所述第六符号的数量多于所述第一符号的数量,但小于或等于所述第三符号的数量;
所述第七符号用于调度请求和/或波束管理反馈;
所述第八符号用于探测参考信号。
在一些可能的实施方式中,所述多个第二子分配方式包括第二子分配方式A、第二子分配方式B以及第二子分配方式C,其中,所述第二子分配方式A、所述第二子分配方式B以及所述第二子分配方式C分配的上行控制信道资源的数量依次增多。
在一些可能的实施方式中,在所述第一时域资源分配方式为所述第二子分配方式A,且所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量大于预设终端数量N 1A,但小于预设终端数量N 2A
接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 1A,但小于预设波束数量M 2A
下行物理资源块利用率大于预设利用率R 1A,但小于预设利用率R 2A
下行数据缓存量大于预设缓存量L 1A,但小于预设缓存量L 2A
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1A,但大于预设比例K 2A
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 3A,但小于预设终端数量N 4A
在一些可能的实施方式中,在所述第一时域资源分配方式为所述第二子分配方式B,且所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量大于预设终端数量N 1B,但小于预设终端数量N 2B
接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 1B,但小于预设波束数量M 2B
下行物理资源块利用率大于预设利用率R 1B,但小于预设利用率R 2B
下行数据缓存量大于预设缓存量L 1B,但小于预设缓存量L 2B
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1B,但大于预设比例K 2B
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 3B,但小于预设终端数量N 4B
在一些可能的实施方式中,在所述第一时域资源分配方式为所述第二子分配方式C, 且所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量大于预设终端数量N 1C
接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 1C
下行物理资源块利用率大于预设利用率R 1C
下行数据缓存量大于预设缓存量L 1C
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1C
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 2C
其中,N 1C≥N 2B,N 1B≥N 2A,M 1C≥M 2B,M 1B≥M 2A,R 1C≥R 2B,R 1B≥R 2A,L 1C≥L 2B,L 1B≥L 2A,K 1C≤K 2B,K 1B≤K 2A,N 2C≥N 4B,N 3B≥N 4A
在一些可能的实施方式中,在所述第一时域资源分配方式为所述第二子分配方式A、第二子分配方式B以及第二子分配方式C中的任意一个第二子分配方式,且所述第一时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量小于预设终端数量N 5
接入所述网络设备的终端设备所使用的波束数量小于预设波束数量M 3
下行物理资源块利用率小于预设利用率R 3
下行数据缓存量小于预设缓存量L 4
上行物理资源块利用率与下行物理资源块利用率的比值大于预设比例K 3
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量小于预设终端数量N 6
在一些可能的实施方式中,在从所述第一时域资源分配方式切换到所述第二时域资源分配方式方面,所述处理单元,具体用于:
根据所述第二时域资源分配方式,分别重配用于调度请求资源、波束管理资源以及混合自动重传请求资源到对应的符号所在的时域位置;
根据所述第二时域资源分配方式,重配用于探测参考信号的资源到对应的符号所在的时域位置或者限制探测参考信号资源对应的时域位置。
第三方面,本申请实施例提供了一种网络设备,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述装置执行如第一方面中任一项所述的方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如第一方面中任一项所述的方法。
第五方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由网络设备执行的方法被执行。
第六方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中网络设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1为本申请实施例提供的一种在无线帧中划分时隙的示意图;
图2为本申请实施例提供的一种PUCCH符号与下行时隙的对应关系的示意图;
图3为本申请实施例提供的一种时域资源分配系统的架构图;
图4为本申请实施例提供的一种时域资源分配方法的流程示意图;
图5为本申请实施例提供的一种时域资源分配方式切换的示意图;
图6为本申请实施例提供的一种第一分配方式的示意图;
图7为本申请实施例提供的一种分配other资源的示意图;
图8为本申请实施例提供的一种第二分配方式的示意图;
图9为本申请实施例提供的一种第二子分配方式A的示意图;
图10为本申请实施例提供的一种第二子分配方式B的示意图;
图11为本申请实施例提供的另一种时域资源分配方式切换的示意图;
图12为本申请实施例提供的一种网络设备的结构图示意图;
图13为本申请实施例提供的另一种网络设备的结构图示意图;
图14为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
本申请实施例的技术方案可以应用于第五代移动通信技术(the 5th generation,5G)新空口(New radio,NR)架构,或者5G之后的架构。
本申请实施例涉及的终端设备,例如,可以为用户设备(User Equipment,UE)。该UE可以为向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该UE可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。UE可以包括无线用户设备、移动用户设备、设备到设备通信(device-to-device,D2D)用户设备、车到一切(vehicle-to-everything,V2X)用户设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)用户设备、物联网(internet of things,IoT)用户设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动用户设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该UE还可以是可穿戴设备。可穿戴设备也 可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种UE,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载用户设备,车载用户设备例如也称为车载单元(on-board unit,OBU),本申请实施例对此不作限定。
本申请实施例还涉及网络设备,例如可以为接入网(Access network,AN)设备。该AN设备可以是指接入网中在空口通过一个或多个小区与无线用户设备通信的设备,例如基站NodeB(例如,接入点),该NodeB可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为UE与接入网的其余部分之间的路由器,其中,该接入网的其余部分可包括IP网络且。例如,该NodeB可以是第五代移动通信技术(the 5th generation,5G)NR系统中的新空口网络设备gNB。该AN设备还可以是一种车到一切(Vehicle to Everything,V2X)技术中的接入网设备为路侧单元(road side unit,RSU)。该RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。另外,AN设备还可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),此时,该AN设备协调对空口的属性管理。本申请实施例对AN设备不作限定。
为了便于理解本申请,首先在此介绍本申请实施例涉及的相关技术知识。
第五代移动通信系统采用由3GPP开发的新无线(New Radio,NR)标准,5G NR定义了两个频率范围,FR1和FR2,FR1包括6GHz以下的频段,FR2包括20~60GHz内的毫米波频段。5G NR定义了两种传输制式,即TDD和FDD。在TDD传输制式下,网络设备进行时分调度的过程中,调度的最小单位为一个时隙(slot),每个时隙由若干个正交频分复用(Orthogonal Frequency Division Multiplexin,OFDM)符号组成。其中,slot类型主要分为下行链路(DownLink,DL)时隙、上行链路(UpLink,UL)时隙和混合(Mixing)时隙,混合时隙又称为特殊(Special)时隙,即S slot。其中,DL时隙仅包括DL符号,UL时隙仅包括UL符号,而混合时隙由DL符号、gap符号和UL符号三种符号组成。
网络设备在对终端设备进行时域资源分配的过程中,会将一个无线帧按照预设的时隙配比划分为多个DL时隙、多个S slot以及多个UL时隙。示例性的,在子载波间隔为120KHz的情况下,可以按照上下行时隙配比D:U=4:1,S slot中的符号配比D:gap:U=10:2:2,对无线帧进行划分,其中,S slot中的符号配比D:gap:U=10:2:2是指每个S slot中包括10个DL符号、2个gap符号和2个UL符号。如图1所示,按照时隙配比D:U=4:1以及D:gap:U=10:2:2的划分方式,可以将一个无线帧划分为16个时隙配比,其中,一个时隙配比包括4个DL时隙、1个混合时隙和1个UL时隙,图1仅示出了部分时隙配比,图1中的D、S、U分别代表DL时隙、混合时隙以及UL时隙,后续附图中所涉及到的D、S、U均代表DL时隙、混合时隙以及UL时 隙,不再叙述。
为了系统的通用性,受协议和资源等约束,尽量在每个时隙配比中的UL时隙中为每个含有PDSCH符号的时隙(即该时隙配比中的DL时隙)分配一个用于信息反馈的UL符号,以便对每个DL时隙的下行传输过程进行反馈。如图2所示(图2示出了一个时隙配比的情况),在UL时隙中分别为每个DL时隙以及每个混合时隙分配一个对应的PUCCH符号,即PUCCH资源(如图2所示的PUCCH符号1、PUCCH符号2、PUCCH符号3和PUCCH符号4)。每个PUCCH资源用于终端设备通过PUCCH对下行传输过程进行HARQ反馈;再如,还可以在UL时隙中分配探测参考信号(Sounding Reference Signal,SRS)符号,即SRS资源,该SRS资源用于终端设备向网络设备发送SRS,以便网络设备估计上行信道质量。
可以看出,在一个时隙配比的UL时隙中分配的PUCCH资源的数量与DL时隙的数量相关,则一般需要在UL时隙中预留4个PUCCH资源(4个UL符号)以便进行信息反馈,这种分配时域资源(PUCCH资源)的方式相对比较固定。此外,上下行数据只能在物理上行共享信道(Physical Uplink Share Channel,PUSCH),也就是说,预留的4个PUCCH资源无法进行数据传输,在实际应用中,在当前接入到网络设备的终端设备的数量较少的情况下,会存在PUCCH资源剩余,由于这部分剩余的PUCCH资源占用了UL时隙中的上行资源,且不能用于上行数据传输,导致上行吞吐率受限,降低了上行数据传输效率;在当前接入到网络设备的终端设备的数量较多的情况下,需要的PUCCH资源比较多,也就可能导致网络设备无法为某个终端设备分配出相应的PUCCH资源,也就无法和该终端设备进行下行数据传输,导致该终端设备的下行传输失败,影响下行吞吐率,降低了下行数据传输效率。
因此,现有的时域资源分配方式,会影响上下行吞吐率,降低了上下行数据传输效率。
首先需要说明的是,本申请中以子载波间隔为120KHz,即一个无线帧为10ms为例,并且以上下行时隙配比D:U=4:1,S slot中的符号配比D:gap:U=10:2:2为例说明时域资源分配过程,其他的子载波间隔或者其他的时隙配比对应的时域资源分配方式,与本申请举例说明的时域资源分配方式类似,不再叙述。此外,在说明时域资源分配的过程中,以一个无线帧中的一个时隙配比为例进行具体说明,该无线帧中的其他时隙配比可参照该时隙配比,不再叙述。
参阅图3,图3为本申请实施例提供的一种时域资源分配系统的网络架构图。时域资源分配系统包括网络设备100和终端设备200;
其中,网络设备100获取当前时刻的第一时域资源分配方式;在满足从第一时域资源分配方式切换到第二时域资源分配方式对应的预设切换条件的情况下,网络设备100从第一时域资源分配方式切换到第二资源分配方式,并通过第二时域资源分配方式为终端设备200分配时域资源;网络设备100通过分配好的时域资源与终端设备200进行上行通信或下行通信。
其中,通过第二时域资源分配方式与第一时域资源分配方式为终端设备分配的时域资源(PUCCH资源)的数量不同,且第二时域资源分配方式与第一时域资源分配方式中的一个时域资源分配方式可以为终端设备分配相对较多的时域资源,而另外一个时域资源分配方式可以为终端设备分配相对较少的时域资源。
可以看出,在本申请实施例中,网络设备可以采用不同的时域资源分配方式为终端设 备分配PUCCH资源;即在终端设备对PUCCH资源需求相对较多的情况下,采用一个时域资源分配方式分配资源,以满足终端设备的需求;在终端设备对PUCCH资源需求较少的情况下,可以采用另外一个时域资源分配方式为终端设备分配时域资源。因此,网络设备可以根据终端设备的不同需求,针对性的进行时域资源分配,使时域资源的分配比较灵活,不会出现PUCCH资源过剩或者不足的情况,提高了上行吞吐率和下行吞吐率,以及提高了上下行数据传输效率。
参阅图4,图4为本申请实施例提供的一种时域资源分配方法的流程示意图。该方法应用于网络设备。本申请实施例的方法包括以下步骤:
401:网络设备获取当前时刻的第一时域资源分配方式。
其中,该当前时刻为定时器定时结束的时刻,该定时器用于触发是否进行时域资源分配方式的切换。即在到该定时器定时结束的时刻,网络设备会获取当前时刻的第一时域资源分配方式,并根据该第一时域资源分配方式判断是否需要进行时域资源分配方式的切换。该定时器的定时周期可以为一个无线帧的时长,或者其他值,本申请对此不做限定。
402:在满足从第一时域资源分配方式切换到第二时域资源分配方式对应的预设切换条件的情况下,网络设备从第一时域资源分配方式切换到第二时域资源分配方式,并通过第二时域资源分配方式为终端设备分配时域资源。
其中,该时域资源包括PUCCH资源和/或SRS资源。该PUCCH资源包括以下至少一种:调度请求(Scheduling Request,SR)资源、波束管理(Beam Management,BM)资源和HARQ资源。其中,SRS资源用于终端设备向网络设备发送SRS,以便网络设备进行上行信道质量的估计,SR资源用于终端设备主动向网络设备发起SR,BM资源用于终端设备向网络设备进行BM反馈,HARQ资源用于终端设备向网络设备进行HARQ反馈。
示例性的,该第一时域资源分配方式为第一分配方式或第二分配方式,该第二时域资源分配方式为该第一分配方式或第二分配方式,其中,网络设备通过该第二分配方式为终端设备分配的PUCCH资源多于该第一分配方式。也就是说,该第一分配方式用于对PUCCH资源需求较少的场景,该第二分配方式用于对PUCCH资源需求较多的场景。在本申请中,也就是网络设备通过第二分配方式为终端设备分配的HARQ资源多于该第一分配方式。
此外,该第一时域资源分配方式和第二时域资源分配方式为不同的时域资源分配方式。也就是说,在该第一时域资源分配方式为该第一分配方式的情况下,该第二时域资源分配方式为该第二分配方式;在该第一时域资源分配方式为该第二分配方式的情况下,则该第二时域资源分配方式为该第一分配方式。如图5所示,对时域资源分配方式进行切换,可以是从第一分配方式切换到第二分配方式,也可以是从第二分配方式切换到第一分配方式。
示例性的,该第一分配方式包括在混合时隙中分配一个或多个第一符号以及一个或多个第二符号,其中,每个第一符号用于HARQ反馈,即每个第一符号为一个HARQ资源;每个第二符号用于调度请求、波束管理反馈、探测参考信号或混合自动重传请求反馈,即每个第二符号为SR资源、BM资源、SRS资源或者HARQ资源中的一种。由于,接入网络设备的终端设备的数量较少,则可将原本在UL时隙中预留的PUCCH资源转移到混合时隙中进行预留,则UL时隙中的所有UL符号可以进行上行数据传输,进而提高了上行传输效率和上行吞吐率。如图6所示,由于图6所示的混合时隙中仅有两个UL符号,因此, 可以将一个UL符号,即12个符号分配为HRAQ资源,另一个UL符号,即第13个符号分配为others资源,该others资源为该SR资源、BM资源、SRS资源或者HARQ资源中的一种。
需要说明,本申请并不限定每个混合时隙中的每个UL符号对应的时域资源的具体形式。比如,在实际应用中,可以将第12个符号分配为others资源,将第13个符号分配为HRAQ资源。此外,如果每个混合时隙中UL符号的数量较多,则可采用更多的UL符号为终端设备分配更多的HRAQ资源以及采用更多的UL符号为终端设备分配更多的others资源。本申请并不对混合时隙中HRAQ资源以及others资源的数量和形式进行限定。
下面举例说明网络设备为终端设备分配others资源的方式。
对于一个无线帧来说,会存在16个时隙配比。因此,一个无线帧中可以有16个混合时隙,则可以在不同的混合时隙为终端设备配置不同的others资源。比如,可以错开配置others资源。如图7所示,在一个无线帧中,可以将SR资源、BM资源、SRS资源或者HARQ资源相对错开配置。比如,在第3个时隙,即第一个混合时隙中配置的others资源为SR资源,在第8个时隙,即第二个混合时隙中配置的others资源为BM资源,等等。当然,在实际应用中,可以以各种分配方式配置每个混合时隙对应的others资源,并不对每个混合时隙中的others资源的类型进行限定。比如,可以在第1个混合时隙中配置的others资源为BM资源;此外,也可以在相邻的混合时隙中配置相同的others资源,比如可以将一个无线帧中的混合时隙全部配置为HARQ资源,等等。本申请并不对配置others资源的方式进行限定。
示例性的,第二分配方式包括在上行时隙中分配多个第三符号,以及在混合时隙分配中分配第四符号和第五符号,其中,每个第三符号用于HARQ反馈,每个第三符号为一个HARQ资源,则该第三符号的数量多于第一符号的数量,即该第二分配方式用于为终端设备分配更多的HARQ资源,以便更多的终端设备可以获取到HARQ资源,从而该第二分配方式适用于终端设备较多的场景;其中,该第三符号用于调度请求和/或波束管理反馈,即该第四符号为SR资源或BM资源,该第五符号用于终端设备发送SRS,即该第五符号为SRS资源,
示例性的,如图8所示,可以在UL时隙中分配四个第三符号(即四个HARQ资源),在混合时隙中分配一个第四符号和第一个第五符号。示例性的,可以将UL时隙中的最后四个UL符号作为该四个第三符号,以便终端设备使用该四个DL符号进行HARQ反馈。当然,在实际应用中可以将UL时隙中其他位置的UL符号作为第三符号,本申请不对第三符号在UL时隙中的位置进行限定。如图8所示,可以将混合时隙中的第12个符号,即混合时隙中的第一个UL符号作为该第四符号,将第13个符号,即第二个UL符号作为该第五符号。
一般来说,在UL时隙中分配四个HARQ资源即可以满足较多终端设备的需求,但是,在实际应用中,如果需要分配更多的HARQ资源,可以在UL时隙中为终端设备分配更多的HARQ资源(第三符号),以满足终端设备的需求。此外,本申请并不限定每个混合时隙中每个UL符号对应的时域资源的具体形式。比如,在实际应用中,可以将第12个符号作为第五符号,即将12个符号分配为SRS资源,将第13个符号作为第四符号,即将第13 个符号分配为SR资源或BM资源。此外,如果混合时隙中UL符号的数量较多,则可采用更多UL符号为终端设备分配更多的SRS资源、BM资源以及SR资源。本申请不对在混合时隙中分配的SRS资源、BM资源以及SR资源的数量进行限定。
可以看出,当终端设备对PUCCH资源需求较多的情况下,可以切换到第二分配方式,通过第二分配方式为终端设备分配更多的PUCCH资源,以便每个终端设备都可以分配到相应的PUCCH资源,进而不会出现下行传输失败的情况,提高了下行吞吐率以及下行数据传输效率。并且,将SRS资源和BM,SR资源尽可能的配置在混合时隙中,不去占用UL时隙中的UL符号,从而在实现在提高下行吞吐率的同时,保证终端设备可以有较多的上行资源,进而提高上行传输效率。
示例性的,在该第二时域资源分配方式为第一分配方式的情况下,如图5所示,该预设切换条件也称作切换条件2。也就是说,在当前时刻的第一时域资源分配为第二分配方式,且满足该切换条件2的情况下,网络设备会将时域资源分配方式从第二分配方式切换到第一分配方式。其中,该切换条件2包括以下至少一项:
接入该网络设备的终端设备的数量小于预设终端数量N 1
接入该网络设备的终端设备所使用的波束数量小于预设波束数量M 1
下行物理资源块利用率小于预设利用率R 1
下行数据缓存量小于预设缓存量L 1
上行物理资源块利用率与下行物理资源块利用率的比值大于预设比例K 1
下行数据缓存量大于预设缓存量L 2的终端设备的数量小于预设终端数量N 2
示例性的,1在该第二时域资源分配方式为第二分配方式的情况下,如图5所示,则该预设切换条件也称作切换条件1。也就是说,在当前时刻的第一时域资源分配为第一分配方式,且满足该切换条件1的情况下,网络设备会将时域资源分配方式从第一分配方式切换到第二分配方式。其中,该切换条件1包括以下至少一项:
接入该网络设备的终端设备的数量大于预设终端数量N 3
接入该网络设备的终端设备所使用的波束数量大于预设波束数量M 2
下行物理资源块利用率大于预设利用率R 2
下行数据缓存量大于预设缓存量L 3
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 2
下行数据缓存量大于该预设缓存量L 2的终端设备的数量大于预设终端数量N 4
其中,N 1,N 2,N 3,N 4,M1,M 2,R 1,R 2,L 1,L 3,K 1,K 2,且N 1≤N 3,M1≤M 2,R 1≤R 2,L 1≤L 3,K 1≤K 2,N 2≤N 4
需要说明的是,在小区初始建立情况下,即初始化的时候,为了保证每个终端设备都有PUCCH资源,网络设备会采用第二分配方式为终端设备分配时域资源。
在一些可能的实施方式中,虽然在终端设备的数量较多的情况下,需要分配更多的PUCCH资源,但是,在实际应用中,也可以不用直接分配太多的PUCCH资源。因此,可以将第二分配方式进行更细粒度的划分,即将该第二分配方式划分为多个第二子分配方式,任意两个第二子分配方式之间分配的PUCCH资源的数量不同,并且该多个第二子分配方式之间分配的PUCCH资源的数量依次增多,且任意一个第二子分配方式分配的PUCCH资 源的数量多于该第一分配方式。其中,任意一个第二子分配方式分配的PUCCH资源的数量多于该第一分配方式是指,在本申请中是指在一个时隙配比中,任意一个第二子分配方式分配的HARQ资源的数量多于该第一分配方式。
因此,该第一时域资源分配方式可以为该第一分配方式或该多个第二子分配方式中的任意一个第二子分配方式,该第二时域资源分配方式为可以该第一分配方式或该多个第二子分配方式中的任意一个第二子分配方式。同样,该第一时域资源分配方式和第二时域资源分配方式为不同的时域资源分配方式。
对于任意一个第二子分配方式,其分配时域资源的方式包括:在上行时隙中分配与该第二子分配方式对应的多个第六符号,以及在混合时隙中分配与该第二子分配方式对应的第七符号和第八符号;其中,每个第六符号用于混合自动重传请求反馈,且该第六符号的数量多于该第一符号的数量,但小于或等于该第三符号的数量,该第七符号用于调度请求和/或波束管理反馈,该第八符号用于探测参考信号。
本申请中以该多个第二子分配方式为第二子分配方式A、第二子分配方式B以及第二子分配方式C为例进行详细说明,但不对第二子分配方式的数量和类型进行限定。数量更多的第二子分配方式对应的时域资源分配方式与该三种第二子分配方式类似,不再叙述。其中,第二子分配方式A、第二子分配方式B以及第二子分配方式C分配的PUCCH资源(也就是HARQ资源)的数量依次增多,该第二子分配方式C也就是上述所提到的第二子分配方式,两者在本质上是一致的,不做实质区分。
示例性的,如图9所示,第二子分配方式A对时域资源的分配方式包括:在UL时隙中分配两个HARQ资源,即在UL时隙中的最后两个DL符号为终端设备分配两个HARQ资源;在混合时隙中分配一个SR资源和/或BM资源以及在混合时隙中分配一个SRS资源,即在混合时隙中的最后两个符号为终端设备分配一个SR资源和/或BM资源和SRS资源。同样,图9仅是对第二子分配方式A分配时域资源的一种举例说明,本申请并不对第二子分配方式A分配时域资源的具体方式进行限定。
示例性的,如图10所示,第二子分配方式B对时域资源的分配方式包括:在UL时隙中分配三个HARQ资源,即在UL时隙中的最后三个DL符号为终端设备分配三个HARQ资源;在混合时隙中分配一个SR资源和/或BM资源以及在混合时隙中分配一个SRS资源,即在混合时隙中的最后两个符号为终端设备分配一个SR资源和/或BM资源和SRS资源。同样,图10仅是对第二子分配方式B分配时域资源的一种举例说明,本申请并不对第二子分配方式B分配时域资源的具体方式进行限定。
其中,第二子分配方式C分配时域资源的方式与图8所示的第二分配方式类似,不再叙述。
因此,如图11所示,从第一时域资源分配方式切换到第二时域资源分配方式的具体切换形式以及与该切形式对应的预设切换条件如下所示:
在该第一时域资源分配方式为第一分配方式的情况下,网络设备可以从第一分配方式切换到第二子分配方式A或者第二子分配方式B或者第二子分配方式C,并将从第一分配方式切换到第二子分配方式A对应的预设切换条件称作切换条件1A,将从第一分配方式切换到第二子分配方式B对应的预设切换条件称作切换条件1B,将从第一分配方式切换到第 二子分配方式C对应的预设切换条件称作切换条件1C;
在该第一时域资源分配方式为第二子分配方式A的情况下,网络设备可以从第二子分配方式A切换到第一分配方式或者第二子分配方式B或者第二子分配方式C,并将从第二子分配方式A切换到第一分配方式对应的预设切换条件称作切换条件A1,将从第二子分配方式A切换到第二子分配方式B对应的预设切换条件称作切换条件AB,将从第二子分配方式A切换到第二子分配方式C对应的预设切换条件称作切换条件AC;
在该第一时域资源分配方式为第二子分配方式B的情况下,网络设备可以从第二子分配方式B切换到第一分配方式或者第二子分配方式A或者第二子分配方式C,并将从第二子分配方式B切换到第一分配方式对应的预设切换条件称作切换条件B1,将从第二子分配方式B切换到第二子分配方式A对应的预设切换条件称作切换条件BA,将从第二子分配方式B切换到第二子分配方式C对应的预设切换条件称作切换条件BC;
在该第一时域资源分配方式为第二子分配方式C的情况下,网络设备可以从第二子分配方式C切换到第一分配方式或者第二子分配方式A或者第二子分配方式B,并将从第二子分配方式C切换到第一分配方式对应的预设切换条件称作切换条件C1,将从第二子分配方式C切换到第二子分配方式A对应的预设切换条件称作切换条件CA,将从第二子分配方式C切换到第二子分配方式B对应的预设切换条件称作切换条件CB。
在实际应用中,上述切换条件A1、切换条件B1和切换条件C1可以相同,也可以不同。本申请中以切换条件A1、切换条件B1和切换条件C相同为例进行举例说明,并将切换条件A1、切换条件B1和切换条件C统称为切换条件3。
示例性的,该切换条件1A包括以下至少一项:
接入该网络设备的终端设备的数量大于预设终端数量N 1A,但小于预设终端数量N 2A
接入该网络设备的终端设备所使用的波束数量大于预设波束数量M 1A,但小于预设波束数量M 2A
下行物理资源块利用率大于预设利用率R 1A,但小于预设利用率R 2A
下行数据缓存量大于预设缓存量L 1A,但小于预设缓存量L 2A
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1A,但大于预设比例K 2A
下行数据缓存量大于所述预设缓存量L2的终端设备的数量大于预设终端数量N 3A,但小于预设终端数量N 4A
示例性的,该切换条件1B包括以下至少一项:
接入该网络设备的终端设备的数量大于预设终端数量N 1B,但小于预设终端数量N 2B
接入该网络设备的终端设备所使用的波束数量大于预设波束数量M 1B,但小于预设波束数量M 2B
下行物理资源块利用率大于预设利用率R 1B,但小于预设利用率R 2B
下行数据缓存量大于预设缓存量L 1B,但小于预设缓存量L 2B
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1B,但大于预设比例K 2B
下行数据缓存量大于所述预设缓存量L2的终端设备的数量大于预设终端数量N 3B,但 小于预设终端数量N 4B
示例性的,该切换条件1C包括以下至少一项:
接入该网络设备的终端设备的数量大于预设终端数量N 1C
接入该网络设备的终端设备所使用的波束数量大于预设波束数量M 1C
下行物理资源块利用率大于预设利用率R 1C
下行数据缓存量大于预设缓存量L 1C
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1C
下行数据缓存量大于所述预设缓存量L2的终端设备的数量大于预设终端数量N 2C
其中,N 1C≥N 2B,N 1B≥N 2A,M 1C≥M 2B,M 1B≥M 2A,R 1C≥R 2B,R 1B≥R 2A,L 1C≥L 2B,L 1B≥L 2A,K 1C≤K 2B,K 1B≤K 2A,N 2C≥N 4B,N 3B≥N 4A
示例性的,该切换条件AB包括以下至少一项:
接入该网络设备的终端设备的数量大于预设终端数量N AB1,但小于预设终端数量N AB2
接入该网络设备的终端设备所使用的波束数量大于预设波束数量M AB1,但小于预设波束数量M AB2
下行物理资源块利用率大于预设利用率R AB1,但小于预设利用率R AB2
下行数据缓存量大于预设缓存量L AB1,但小于预设缓存量L AB2
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K AB1,但大于预设比例K AB2
下行数据缓存量大于所述预设缓存量L2的终端设备的数量大于预设终端数量N AB3,但小于预设终端数量N AB4
示例性的,该切换条件AC包括以下至少一项:
接入该网络设备的终端设备的数量大于预设终端数量N AC1
接入该网络设备的终端设备所使用的波束数量大于预设波束数量M AC
下行物理资源块利用率大于预设利用率R AC
下行数据缓存量大于预设缓存量L AC
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K AC
下行数据缓存量大于所述预设缓存量L2的终端设备的数量大于预设终端数量N AC2
示例性的,该切换条件BC包括以下至少一项:
接入该网络设备的终端设备的数量大于预设终端数量N BC1
接入该网络设备的终端设备所使用的波束数量大于预设波束数量M BC
下行物理资源块利用率大于预设利用率R BC
下行数据缓存量大于预设缓存量L BC
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K BC
下行数据缓存量大于所述预设缓存量L2的终端设备的数量大于预设终端数量N BC2
其中,N AC1≥N AB2,M AC≥M AB2,R AC≥R AB2,L AC≥L AB2,K AC≤K AB2,N AC2≥N AB4
示例性的,该切换条件BA包括以下至少一项:
接入该网络设备的终端设备的数量大于预设终端数量N BA1,但小于预设终端数量N BA2
接入该网络设备的终端设备所使用的波束数量大于预设波束数量M BA1,但小于预设波 束数量M BA2
下行物理资源块利用率大于预设利用率R BA1,但小于预设利用率R BA2
下行数据缓存量大于预设缓存量L BA1,但小于预设缓存量L BA2
上行物理资源块利用率与下行物理资源块利用率的比值大于预设比例K BA1,但小于预设比例K BA2
下行数据缓存量大于所述预设缓存量L2的终端设备的数量大于预设终端数量N BA3,但小于预设终端数量N BA4
示例性的,该切换条件CA包括以下至少一项:
接入该网络设备的终端设备的数量大于预设终端数量N CA1,但小于预设终端数量N CA2
接入该网络设备的终端设备所使用的波束数量大于预设波束数量M CA1,但小于预设波束数量M CA2
下行物理资源块利用率大于预设利用率R CA1,但小于预设利用率R CA2
下行数据缓存量大于预设缓存量L CA1,但小于预设缓存量L CA2
上行物理资源块利用率与下行物理资源块利用率的比值大于预设比例K CA1,但小于预设比例K CA2
下行数据缓存量大于所述预设缓存量L2的终端设备的数量大于预设终端数量N CA3,但小于预设终端数量N CA4
示例性的,该切换条件CB包括以下至少一项:
接入该网络设备的终端设备的数量大于预设终端数量N CB1,但小于预设终端数量N CB2
接入该网络设备的终端设备所使用的波束数量大于预设波束数量M CB1,但小于预设波束数量M CB2
下行物理资源块利用率大于预设利用率R CB1,但小于预设利用率R CB2
下行数据缓存量大于预设缓存量L CB1,但小于预设缓存量L CB2
上行物理资源块利用率与下行物理资源块利用率的比值大于预设比例K CB1,但小于预设比例K CB2
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N CB3,但小于预设终端数量N CB4
其中,N CB1≥N CA2,M CB1≥M CA2,R CA1≥R CB2,L CB1≥L CA2,K CB1≥K CA2,N CB3≥N CA4
示例性的,该切换条件3包括以下至少一项:
接入该网络设备的终端设备的数量小于预设终端数量N 5
接入该网络设备的终端设备所使用的波束数量小于预设波束数量M 3
下行物理资源块利用率小于预设利用率R 3
下行数据缓存量小于预设缓存量L 4
上行物理资源块利用率与下行物理资源块利用率的比值大于预设比例K 3
下行数据缓存量大于预设缓存量L 2的终端设备的数量小于预设终端数量N 6
需要说明的是,切换到同一个分配方式,从不同的分配方式切换过来,对应的切换条件可以不同,也可以相同,本申请对此不做限定。比如,切换到第二子分配方式A,从第一分配方式和从第二子分配方式B切换到第二子分配方式所对应的切换条件可以相同,也 可以不同,本申请对此不做限定。
因此,上述N 1A、N BA1、N CA1可以相同,也可以不同,本申请对此不做限定。
同样,N 2A、N BA2、N CA2可以相同,也可以不同;M 1A、M BA1、M CA1可以相同,也可以不同;M 2A、M BA2、M CA2可以相同,也可以不同;R 1A、R BA1、R CA1可以相同,也可以不同;R 2A、R BA2、R CA2可以相同,也可以不同;L 1A、L BA1、L CA1可以相同,也可以不同;L 2A、L BA2、L CA2可以相同,也可以不同;K 1A、K BA1、K CA1可以相同,也可以不同;K 2A、K BA2、K CA2可以相同,也可以不同;N 3A、N BA3、N CA3可以相同,也可以不同;N 4A、N BA4、N CA4可以相同,也可以不同。
上述N 1B、N AB1、N CB1可以相同,也可以不同,本申请对此不做限定。
同样,N 2B、N AB2、N CV2可以相同,也可以不同;M 1B、M AB1、M CB1可以相同,也可以不同;M 2B、M AB2、M CB2可以相同,也可以不同;R 1B、R AB1、R CB1可以相同,也可以不同;R 2B、R AB2、R CB2可以相同,也可以不同;L 1B、L AB1、L CB1可以相同,也可以不同;L 2B、L AB2、L CB2可以相同,也可以不同;K 1B、K AB1、K CB1可以相同,也可以不同;K 2B、K AB2、K CB2可以相同,也可以不同;N 3B、N AB3、N CB3可以相同,也可以不同;N 4B、N AB4、N CB4可以相同,也可以不同。
N 1C,N AC1,N BC1可以相同也可以不同;M 1C,M AC,M BC可以相同,也可以不同;R 1C,R AC,R BC可以相同,也可以不同;L 1C,L AC,L BC可以相同,也可以不同;K 1C,K AC,K BC可以相同,也可以不同;N 2C,N AC2,N BC2可以相同也可以不同。
需要说明的是,在小区初始建立情况下,即初始化的时候,为了保证每个终端设备都有PUCCH资源,网络设备会采用第二子分配方式C为终端设备分配时域资源。
需要说明的是,无论网络设备使用哪种分配方式为终端设备进行时域资源分配,但是在为终端设备分配完时域资源后,可通过指示消息通知该时域资源所在的具体位置,即通知终端设备该时域资源在哪个时隙以及哪个符号。示例性的,对于SR资源和BM资源,网络设备可以在进行无线资源控制(Radio Resource Control,RRC)连接的过程中,通过RRC信令通知终端设备SR资源和BM资源的具体位置;对于SRS资源,网络设备可以通过下行控制信息(Downlink Control Information,DCI)通知终端设备SRS资源的具体位置;对于HARQ资源,网络设备可以通过下行DCI通知终端设备HARQ资源的具体位置。
可以看出,在本申请实施例中,网络设备可以采用不同的时域资源分配方式为终端设备分配PUCCH资源;即在终端设备对PUCCH资源需求相对较多的情况下,采用一个时域资源分配方式分配资源,以满足终端设备的需求;在终端设备对PUCCH资源需求较少的情况下,可以采用另外一个时域资源分配方式为终端设备分配时域资源。因此,网络设备可以根据终端设备的不同需求,针对性的进行时域资源分配,使时域资源的分配比较灵活,不会出现PUCCH资源过剩或者不足的情况,提高了上行吞吐率和下行吞吐率,以及提高了上下行数据传输效率。
可以理解,若网络设备判断当前时刻无需进行时域资源分配方式的切换,则还继续采用当前时刻对应的第一时域资源分配方式为终端设备分配时域资源。
示例性的,从第一时域资源分配方式切换到第二时域资源分配方式,包括从第一分配方式和第二分配方式之间的切换,第一分配方式和各个子分配方式之间的切换,以及各个 第二子分配方式之间的切换,实质上就是将各个资源重配到各个资源对应的符号所在时域位置,该各个资源包括用于SR资源、BM资源、SRS资源以及HARQ资源。以重配HARQ资源为例进行说明,若第一时域资源分配方式为第一分配方式,第二时域资源分配方式为第二分配方式,则第一分配方式是将HARQ资源分配在混合时隙中,比如,分配在第12个符号;然而,第二分配方式将HARQ资源分配在UL时隙中的最后四个UL符号。因此,从第一分配方式切换到第二分配方式,就是将HARQ资源重新配置到最后四个UL符号所对应的时域位置。另外,由于无论是第一分配方式,还是第二分配方式或者任意一个第二子分配方式,都是将SRS资源分配在混合时隙中。因此,可以不用重配置SRS资源,限制SRS资源对应的时域位置,即将SRS资源限制在第二时域资源分配方式对应的时域位置即可。然后,通过指示消息指示完成时域资源分配方式切换后,该SRS资源所在的时域位置,即可满足网络需求。
网络设备为终端设备分配好相应的时域资源后,可使用分配后的时域资源与终端设备进行上行数据传输和下行数据传输。
参阅图12,图12为本申请实施例提供的一种网络设备的结构示意图。网络设备1200包括处理单元1200和收发单元1201;
处理单元1200,用于获取当前时刻的第一时域资源分配方式;
处理单元1200,还用于在满足从所述第一时域资源分配方式切换到第二时域资源分配方式对应的预设切换条件的情况下,从所述第一时域资源分配方式切换到所述第二时域资源分配方式;
处理单元1200,还用于通过所述第二时域资源分配方式为终端设备分配时域资源。
在一些可能的实施方式中,处理单元1200还用于控制收发单元1201通过分配好的时域资源与终端设备进行上行通信和下行通信。
在一些可能的实施方式中,所述时域资源包括物理上行控制信道资源和/或探测参考信号资源。
在一些可能的实施方式中,所述第一时域资源分配方式为第一分配方式或第二分配方式;
所述第二时域资源分配方式为所述第一分配方式或所述第二分配方式;
所述第一时域资源分配方式与所述第二时域资源分配方式为不同的时域资源分配方式;
其中,所述第二分配方式分配的上行控制信道资源多于所述第一分配方式。
在一些可能的实施方式中,所述第一分配方式包括在混合时隙中分配一个或多个第一符号、以及一个或多个第二符号,其中,每个第一符号用于混合自动重传请求反馈,每个第二符号用于调度请求、波束管理反馈、探测参考信号或混合自动重传请求反馈;
所述第二分配方式包括在上行时隙中分配多个第三符号,以及在混合时隙中分配第四符号和第五符号,其中,每个第三符号用于混合自动重传请求反馈,且所述第三符号的数量多于所述第一符号的数量,所述第四符号用于调度请求和/或波束管理反馈,所述第五符号用于探测参考信号。
在一些可能的实施方式中,在所述第二时域资源分配方式为所述第一分配方式的情况 下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量小于预设终端数量N 1
接入所述网络设备的终端设备所使用的波束数量小于预设波束数量M 1
下行物理资源块利用率小于预设利用率R 1
下行数据缓存量小于预设缓存量L 1
上行物理资源块利用率与下行物理资源块利用率的比值大于预设比例K 1
下行数据缓存量大于预设缓存量L 2的终端设备的数量小于预设终端数量N 2
在所述第二时域资源分配方式为所述第二分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量大于预设终端数量N 3
接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 2
下行物理资源块利用率大于预设利用率R 2
下行数据缓存量大于预设缓存量L 3
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 2
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 4
其中,N 1≤N 3,M1≤M 2,R 1≤R 2,L 1≤L 3,K 1≤K 2,N 2≤N 4
在一些可能的实施方式中,所述第二分配方式包括多个第二子分配方式;
所述第一时域资源分配方式为所述第一分配方式或所述多个第二子分配方式中的任意一个第二子分配方式;
所述第二时域资源分配方式为所述第一分配方式或所述多个第二子分配方式中的任意一个第二子分配方式;
其中,所述多个第二子分配方式中任意两个第二子分配方式分配的上行控制信道资源的数量不同,任意一个第二子分配方式分配的上行控制信道资源的数量多于所述第一分配方式;
在所述第二时域资源分配方式中的任意一个第二子分配方式的情况下,在通过所述第二时域资源分配方式为终端设备分配时域资源方面,处理单元1200,具体用于:
通过所述第二子分配方式为终端设备分配时域资源。
在一些可能的实施方式中,所述多个第二子分配方式中的任意一个第二子分配方式,包括:
在上行时隙中分配与所述第二子分配方式对应的多个第六符号,以及在混合时隙中分配与所述第二子分配方式对应的第七符号和第八符号;
其中,每个第六符号用于混合自动重传请求反馈,且所述第六符号的数量多于所述第一符号的数量,但小于或等于所述第三符号的数量;
所述第七符号用于调度请求和/或波束管理反馈;
所述第八符号用于探测参考信号。
在一些可能的实施方式中,所述多个第二子分配方式包括第二子分配方式A、第二子分配方式B以及第二子分配方式C,其中,所述第二子分配方式A、所述第二子分配方式B以及所述第二子分配方式C分配的上行控制信道资源的数量依次增多。
在一些可能的实施方式中,在所述第一时域资源分配方式为所述第二子分配方式A,且所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量大于预设终端数量N 1A,但小于预设终端数量N 2A
接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 1A,但小于预设波束数量M 2A
下行物理资源块利用率大于预设利用率R 1A,但小于预设利用率R 2A
下行数据缓存量大于预设缓存量L 1A,但小于预设缓存量L 2A
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1A,但大于预设比例K 2A
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 3A,但小于预设终端数量N 4A
在一些可能的实施方式中,在所述第一时域资源分配方式为所述第二子分配方式B,且所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量大于预设终端数量N 1B,但小于预设终端数量N 2B
接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 1B,但小于预设波束数量M 2B
下行物理资源块利用率大于预设利用率R 1B,但小于预设利用率R 2B
下行数据缓存量大于预设缓存量L 1B,但小于预设缓存量L 2B
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1B,但大于预设比例K 2B
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 3B,但小于预设终端数量N 4B
在一些可能的实施方式中,在所述第一时域资源分配方式为所述第二子分配方式C,且所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量大于预设终端数量N 1C
接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 1C
下行物理资源块利用率大于预设利用率R 1C
下行数据缓存量大于预设缓存量L 1C
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1C
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 2C
其中,N 1C≥N 2B,N 1B≥N 2A,M 1C≥M 2B,M 1B≥M 2A,R 1C≥R 2B,R 1B≥R 2A,L 1C≥L 2B,L 1B≥L 2A,K 1C≤K 2B,K 1B≤K 2A,N 2C≥N 4B,N 3B≥N 4A
在一些可能的实施方式中,在所述第一时域资源分配方式为所述第二子分配方式A、 第二子分配方式B以及第二子分配方式C中的任意一个第二子分配方式,且所述第一时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量小于预设终端数量N 5
接入所述网络设备的终端设备所使用的波束数量小于预设波束数量M 3
下行物理资源块利用率小于预设利用率R 3
下行数据缓存量小于预设缓存量L 4
上行物理资源块利用率与下行物理资源块利用率的比值大于预设比例K 3
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量小于预设终端数量N 6
在一些可能的实施方式中,在从所述第一时域资源分配方式切换到所述第二时域资源分配方式方面,处理单元1200,具体用于:
根据所述第二时域资源分配方式,分别重配用于调度请求资源、波束管理资源以及混合自动重传请求资源到对应的符号所在的时域位置;
根据所述第二时域资源分配方式,重配用于探测参考信号的资源到对应的符号所在的时域位置或者限制探测参考信号资源对应的时域位置。
参阅图13,图13为本申请实施例提供的一种网络设备的结构示意图。网络设备1300包括存储器1301、处理器1302和收发器1303。它们之间通过总线1304连接。存储器1301用于存储相关指令和数据,并可与将存储的数据传输给处理器1302。
处理器1302用于读取存储器1301中的相关指令执行以下操作:
获取当前时刻的第一时域资源分配方式;
在满足从所述第一时域资源分配方式切换到第二时域资源分配方式对应的预设切换条件的情况下,从所述第一时域资源分配方式切换到所述第二时域资源分配方式;
通过所述第二时域资源分配方式为终端设备分配时域资源。
在一些可能的实施方式中,处理器1302还用于执行以下操作:
控制收发器1303通过分配好的时域资源与终端设备进行上行通信和下行通信。
在一些可能的实施方式中,所述时域资源包括物理上行控制信道资源和/或探测参考信号资源。
在一些可能的实施方式中,所述第一时域资源分配方式为第一分配方式或第二分配方式;
所述第二时域资源分配方式为所述第一分配方式或所述第二分配方式;
所述第一时域资源分配方式与所述第二时域资源分配方式为不同的时域资源分配方式;
其中,所述第二分配方式分配的上行控制信道资源多于所述第一分配方式。
在一些可能的实施方式中,所述第一分配方式包括在混合时隙中分配一个或多个第一符号、以及一个或多个第二符号,其中,每个第一符号用于混合自动重传请求反馈,每个第二符号用于调度请求、波束管理反馈、探测参考信号或混合自动重传请求反馈;
所述第二分配方式包括在上行时隙中分配多个第三符号,以及在混合时隙中分配第四符号和第五符号,其中,每个第三符号用于混合自动重传请求反馈,且所述第三符号的数量多于所述第一符号的数量,所述第四符号用于调度请求和/或波束管理反馈,所述第五符 号用于探测参考信号。
在一些可能的实施方式中,在所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量小于预设终端数量N 1
接入所述网络设备的终端设备所使用的波束数量小于预设波束数量M 1
下行物理资源块利用率小于预设利用率R 1
下行数据缓存量小于预设缓存量L 1
上行物理资源块利用率与下行物理资源块利用率的比值大于预设比例K 1
下行数据缓存量大于预设缓存量L 2的终端设备的数量小于预设终端数量N 2
在所述第二时域资源分配方式为所述第二分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量大于预设终端数量N 3
接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 2
下行物理资源块利用率大于预设利用率R 2
下行数据缓存量大于预设缓存量L 3
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 2
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 4
其中,N 1≤N 3,M1≤M 2,R 1≤R 2,L 1≤L 3,K 1≤K 2,N 2≤N 4
在一些可能的实施方式中,所述第二分配方式包括多个第二子分配方式;
所述第一时域资源分配方式为所述第一分配方式或所述多个第二子分配方式中的任意一个第二子分配方式;
所述第二时域资源分配方式为所述第一分配方式或所述多个第二子分配方式中的任意一个第二子分配方式;
其中,所述多个第二子分配方式中任意两个第二子分配方式分配的上行控制信道资源的数量不同,任意一个第二子分配方式分配的上行控制信道资源的数量多于所述第一分配方式;
在所述第二时域资源分配方式中的任意一个第二子分配方式的情况下,在通过所述第二时域资源分配方式为终端设备分配时域资源方面,处理器1302,具体用于执行以下操作:
通过所述第二子分配方式为终端设备分配时域资源。
在一些可能的实施方式中,所述多个第二子分配方式中的任意一个第二子分配方式,包括:
在上行时隙中分配与所述第二子分配方式对应的多个第六符号,以及在混合时隙中分配与所述第二子分配方式对应的第七符号和第八符号;
其中,每个第六符号用于混合自动重传请求反馈,且所述第六符号的数量多于所述第一符号的数量,但小于或等于所述第三符号的数量;
所述第七符号用于调度请求和/或波束管理反馈;
所述第八符号用于探测参考信号。
在一些可能的实施方式中,所述多个第二子分配方式包括第二子分配方式A、第二子 分配方式B以及第二子分配方式C,其中,所述第二子分配方式A、所述第二子分配方式B以及所述第二子分配方式C分配的上行控制信道资源的数量依次增多。
在一些可能的实施方式中,在所述第一时域资源分配方式为所述第二子分配方式A,且所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量大于预设终端数量N 1A,但小于预设终端数量N 2A
接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 1A,但小于预设波束数量M 2A
下行物理资源块利用率大于预设利用率R 1A,但小于预设利用率R 2A
下行数据缓存量大于预设缓存量L 1A,但小于预设缓存量L 2A
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1A,但大于预设比例K 2A
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 3A,但小于预设终端数量N 4A
在一些可能的实施方式中,在所述第一时域资源分配方式为所述第二子分配方式B,且所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量大于预设终端数量N 1B,但小于预设终端数量N 2B
接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 1B,但小于预设波束数量M 2B
下行物理资源块利用率大于预设利用率R 1B,但小于预设利用率R 2B
下行数据缓存量大于预设缓存量L 1B,但小于预设缓存量L 2B
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1B,但大于预设比例K 2B
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 3B,但小于预设终端数量N 4B
在一些可能的实施方式中,在所述第一时域资源分配方式为所述第二子分配方式C,且所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量大于预设终端数量N 1C
接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 1C
下行物理资源块利用率大于预设利用率R 1C
下行数据缓存量大于预设缓存量L 1C
上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1C
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 2C
其中,N 1C≥N 2B,N 1B≥N 2A,M 1C≥M 2B,M 1B≥M 2A,R 1C≥R 2B,R 1B≥R 2A,L 1C≥L 2B, L 1B≥L 2A,K 1C≤K 2B,K 1B≤K 2A,N 2C≥N 4B,N 3B≥N 4A
在一些可能的实施方式中,在所述第一时域资源分配方式为所述第二子分配方式A、第二子分配方式B以及第二子分配方式C中的任意一个第二子分配方式,且所述第一时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
接入所述网络设备的终端设备的数量小于预设终端数量N 5
接入所述网络设备的终端设备所使用的波束数量小于预设波束数量M 3
下行物理资源块利用率小于预设利用率R 3
下行数据缓存量小于预设缓存量L 4
上行物理资源块利用率与下行物理资源块利用率的比值大于预设比例K 3
下行数据缓存量大于所述预设缓存量L 2的终端设备的数量小于预设终端数量N 6
在一些可能的实施方式中,在从所述第一时域资源分配方式切换到所述第二时域资源分配方式方面,处理器1302,具体用于执行以下操作:
根据所述第二时域资源分配方式,分别重配用于调度请求资源、波束管理资源以及混合自动重传请求资源到对应的符号所在的时域位置;
根据所述第二时域资源分配方式,重配用于探测参考信号的资源到对应的符号所在的时域位置或者限制探测参考信号资源对应的时域位置。
也就是说,处理器1302可以为图12所示的实施例的网络设备1200的处理单元1201,上述收发器1303可为图12所述的实施例的网络设备1200的收发单元1202。
在一些可能的实施方式,当网络设备为芯片时,收发单元1202可以是输入和/或输出接口、管脚或电路等。处理单元1201可执行存储单元存储的计算机执行指令,以使该网络设备内的芯片执行图4实施例涉及的方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(Read Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)等。
参见图14,图14为本申请实施例提供了本申请提供的一种芯片的结构示意图。芯片1400包括:处理器1401,以及耦合于处理器1401的一个或多个接口1402。
示例性的,处理器1401可用于读取和执行计算机可读指令。具体实现中,处理器1401可主要包括控制器、运算器和寄存器。示例性的,控制器主要负责指令译码,并为指令对应的操作发出控制信号。运算器主要负责执行定点或浮点算数运算操作、移位操作以及逻辑操作等,也可以执行地址运算和转换。寄存器主要负责保存指令执行过程中临时存放的寄存器操作数和中间操作结果等。具体实现中,处理器1401的硬件架构可以是专用集成电路(application specific integrated circuits,ASIC)架构、无互锁管道阶段架构的微处理器(microprocessor without interlocked piped stages architecture,MIPS)架构、进阶精简指令集机器(advanced RISC machines,ARM)架构或者NP架构等等。处理器1401可以是单核的,也可以是多核的。
示例性的,接口1402可用于输入待处理的数据至处理器1401,并且可以向外输出处理器1401的处理结果。具体实现中,接口1402可以是通用输入输出(general purpose input output,GPIO)接口,可以和多个外围设备(如显示器(LCD)、摄像头(camara)、射 频(radio frequency,RF)模块等等)连接。接口1402通过总线1403与处理器1401相连。
在一些可能的实施方式中,处理器1401可用于从存储器中调用本申请的一个或多个实施例提供的信号发送、接收方法,使得该芯片可以实现前述图4的时域资源分配方法。存储器可以和处理器1401集成在一起,也可以通过接口1402与芯片1400相耦合,也就是说存储器可以是芯片1400的一部分,也可以独立于该芯片1400。接口1402可用于输出处理器1401的执行结果。示例信息的,本申请中,接口1402可具体用于输出处理器1401确定出的调制阶数。关于本申请的一个或多个实施例提供的信号发送、接收方法可参考前述各个实施例,这里不再赘述。
需要说明的,处理器1401、接口1402各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的通信方法中与终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的通信方法中与网络设备相关的流程。
本申请实施例还提供了一种计算机程序产品,当其在计算机或处理器上运行时,使得计算机或处理器执行上述任一个通信方法中的一个或多个步骤。上述所涉及的设备的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在所述计算机可读取存储介质中。
应理解,本申请实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进 行的区分,并不用来限制本申请的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块可以根据实际需要进行合并、划分和删减。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修 改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (30)

  1. 一种时域资源分配方法,其特征在于,应用于网络设备,包括:
    获取当前时刻的第一时域资源分配方式;
    在满足从所述第一时域资源分配方式切换到第二时域资源分配方式对应的预设切换条件的情况下,从所述第一时域资源分配方式切换到所述第二时域资源分配方式;
    通过所述第二时域资源分配方式为终端设备分配时域资源。
  2. 根据权利要求1所述的方法,其特征在于,
    所述时域资源包括物理上行控制信道资源和/或探测参考信号资源。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一时域资源分配方式为第一分配方式或第二分配方式;
    所述第二时域资源分配方式为所述第一分配方式或所述第二分配方式;
    所述第一时域资源分配方式与所述第二时域资源分配方式为不同的时域资源分配方式;
    其中,所述第二分配方式分配的上行控制信道资源多于所述第一分配方式。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第一分配方式包括在混合时隙中分配一个或多个第一符号、以及一个或多个第二符号,其中,每个第一符号用于混合自动重传请求反馈,每个第二符号用于调度请求、波束管理反馈、探测参考信号或混合自动重传请求反馈;
    所述第二分配方式包括在上行时隙中分配多个第三符号,以及在混合时隙中分配第四符号和第五符号,其中,每个第三符号用于混合自动重传请求反馈,且所述第三符号的数量多于所述第一符号的数量,所述第四符号用于调度请求和/或波束管理反馈,所述第五符号用于探测参考信号。
  5. 根据权利要求3或4所述的方法,其特征在于,
    在所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
    接入所述网络设备的终端设备的数量小于预设终端数量N 1
    接入所述网络设备的终端设备所使用的波束数量小于预设波束数量M 1
    下行物理资源块利用率小于预设利用率R 1
    下行数据缓存量小于预设缓存量L 1
    上行物理资源块利用率与下行物理资源块利用率的比值大于预设比例K 1
    下行数据缓存量大于预设缓存量L 2的终端设备的数量小于预设终端数量N 2
    在所述第二时域资源分配方式为所述第二分配方式的情况下,所述预设切换条件包括以下至少一项:
    接入所述网络设备的终端设备的数量大于预设终端数量N 3
    接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 2
    下行物理资源块利用率大于预设利用率R 2
    下行数据缓存量大于预设缓存量L 3
    上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 2
    下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 4
    其中,N 1≤N 3,M1≤M 2,R 1≤R 2,L 1≤L 3,K 1≤K 2,N 2≤N 4
  6. 根据权利要求2-5中任一项所述的方法,其特征在于,
    所述第二分配方式包括多个第二子分配方式;
    所述第一时域资源分配方式为所述第一分配方式或所述多个第二子分配方式中的任意一个第二子分配方式;
    所述第二时域资源分配方式为所述第一分配方式或所述多个第二子分配方式中的任意一个第二子分配方式;
    其中,所述多个第二子分配方式中任意两个第二子分配方式分配的上行控制信道资源的数量不同,任意一个第二子分配方式分配的上行控制信道资源的数量多于所述第一分配方式;
    在所述第二时域资源分配方式中的任意一个第二子分配方式的情况下,所述通过所述第二时域资源分配方式为终端设备分配时域资源,包括:
    通过所述第二子分配方式为终端设备分配时域资源。
  7. 根据权利要求6所述的方法,其特征在于,
    所述多个第二子分配方式中的任意一个第二子分配方式,包括:
    在上行时隙中分配与所述第二子分配方式对应的多个第六符号,以及在混合时隙中分配与所述第二子分配方式对应的第七符号和第八符号;
    其中,每个第六符号用于混合自动重传请求反馈,且所述第六符号的数量多于所述第一符号的数量,但小于或等于所述第三符号的数量;
    所述第七符号用于调度请求和/或波束管理反馈;
    所述第八符号用于探测参考信号。
  8. 根据权利要求6或7所述的方法,其特征在于,
    所述多个第二子分配方式包括第二子分配方式A、第二子分配方式B以及第二子分配方式C,其中,所述第二子分配方式A、所述第二子分配方式B以及所述第二子分配方式C分配的上行控制信道资源的数量依次增多。
  9. 根据权利要求8所述的方法,其特征在于,
    在所述第一时域资源分配方式为所述第二子分配方式A,且所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
    接入所述网络设备的终端设备的数量大于预设终端数量N 1A,但小于预设终端数量N 2A
    接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 1A,但小于预设波束数量M 2A
    下行物理资源块利用率大于预设利用率R 1A,但小于预设利用率R 2A
    下行数据缓存量大于预设缓存量L 1A,但小于预设缓存量L 2A
    上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1A,但大于预设比例K 2A
    下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 3A,但 小于预设终端数量N 4A
  10. 根据权利要求9所述的方法,其特征在于,
    在所述第一时域资源分配方式为所述第二子分配方式B,且所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
    接入所述网络设备的终端设备的数量大于预设终端数量N 1B,但小于预设终端数量N 2B
    接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 1B,但小于预设波束数量M 2B
    下行物理资源块利用率大于预设利用率R 1B,但小于预设利用率R 2B
    下行数据缓存量大于预设缓存量L 1B,但小于预设缓存量L 2B
    上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1B,但大于预设比例K 2B
    下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 3B,但小于预设终端数量N 4B
  11. 根据权利要求10所述的方法,其特征在于,
    在所述第一时域资源分配方式为所述第二子分配方式C,且所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
    接入所述网络设备的终端设备的数量大于预设终端数量N 1C
    接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 1C
    下行物理资源块利用率大于预设利用率R 1C
    下行数据缓存量大于预设缓存量L 1C
    上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1C
    下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 2C
    其中,N 1C≥N 2B,N 1B≥N 2A,M 1C≥M 2B,M 1B≥M 2A,R 1C≥R 2B,R 1B≥R 2A,L 1C≥L 2B,L 1B≥L 2A,K 1C≤K 2B,K 1B≤K 2A,N 2C≥N 4B,N 3B≥N 4A
  12. 根据权利要求8-11中任一项所述的方法,其特征在于,
    在所述第一时域资源分配方式为所述第二子分配方式A、第二子分配方式B以及第二子分配方式C中的任意一个第二子分配方式,且所述第一时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
    接入所述网络设备的终端设备的数量小于预设终端数量N 5
    接入所述网络设备的终端设备所使用的波束数量小于预设波束数量M 3
    下行物理资源块利用率小于预设利用率R 3
    下行数据缓存量小于预设缓存量L 4
    上行物理资源块利用率与下行物理资源块利用率的比值大于预设比例K 3
    下行数据缓存量大于所述预设缓存量L 2的终端设备的数量小于预设终端数量N 6
  13. 根据权利要求1-12中任一项所述的方法,其特征在于,所述从所述第一时域资源分配方式切换到所述第二时域资源分配方式,包括:
    根据所述第二时域资源分配方式,分别重配用于调度请求资源、波束管理资源以及混 合自动重传请求资源到对应的符号所在的时域位置;
    根据所述第二时域资源分配方式,重配用于探测参考信号的资源到对应的符号所在的时域位置或者限制探测参考信号资源对应的时域位置。
  14. 一种网络设备,其特征在于,包括:
    处理单元,用于获取当前时刻的第一时域资源分配方式;
    所述处理单元,还用于在满足从所述第一时域资源分配方式切换到第二时域资源分配方式对应的预设切换条件的情况下,从所述第一时域资源分配方式切换到所述第二时域资源分配方式;
    所述处理单元,还用于通过所述第二时域资源分配方式为终端设备分配时域资源。
  15. 根据权利要求14所述的设备,其特征在于,
    所述时域资源包括物理上行控制信道资源和/或探测参考信号资源。
  16. 根据权利要求14或15所述的设备,其特征在于,
    所述第一时域资源分配方式为第一分配方式或第二分配方式;
    所述第二时域资源分配方式为所述第一分配方式或所述第二分配方式;
    所述第一时域资源分配方式与所述第二时域资源分配方式为不同的时域资源分配方式;
    其中,所述第二分配方式分配的上行控制信道资源多于所述第一分配方式。
  17. 根据权利要求16所述的设备,其特征在于,
    所述第一分配方式包括在混合时隙中分配一个或多个第一符号、以及一个或多个第二符号,其中,每个第一符号用于混合自动重传请求反馈,每个第二符号用于调度请求、波束管理反馈、探测参考信号或混合自动重传请求反馈;
    所述第二分配方式包括在上行时隙中分配多个第三符号,以及在混合时隙中分配第四符号和第五符号,其中,每个第三符号用于混合自动重传请求反馈,且所述第三符号的数量多于所述第一符号的数量,所述第四符号用于调度请求和/或波束管理反馈,所述第五符号用于探测参考信号。
  18. 根据权利要求16或17所述的设备,其特征在于,
    在所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
    接入所述网络设备的终端设备的数量小于预设终端数量N 1
    接入所述网络设备的终端设备所使用的波束数量小于预设波束数量M 1
    下行物理资源块利用率小于预设利用率R 1
    下行数据缓存量小于预设缓存量L 1
    上行物理资源块利用率与下行物理资源块利用率的比值大于预设比例K 1
    下行数据缓存量大于预设缓存量L 2的终端设备的数量小于预设终端数量N 2
    在所述第二时域资源分配方式为所述第二分配方式的情况下,所述预设切换条件包括以下至少一项:
    接入所述网络设备的终端设备的数量大于预设终端数量N 3
    接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 2
    下行物理资源块利用率大于预设利用率R 2
    下行数据缓存量大于预设缓存量L 3
    上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 2
    下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 4
    其中,N 1≤N 3,M1≤M 2,R 1≤R 2,L 1≤L 3,K 1≤K 2,N 2≤N 4
  19. 根据权利要求15-18中任一项所述的设备,其特征在于,
    所述第二分配方式包括多个第二子分配方式;
    所述第一时域资源分配方式为所述第一分配方式或所述多个第二子分配方式中的任意一个第二子分配方式;
    所述第二时域资源分配方式为所述第一分配方式或所述多个第二子分配方式中的任意一个第二子分配方式;
    其中,所述多个第二子分配方式中任意两个第二子分配方式分配的上行控制信道资源的数量不同,任意一个第二子分配方式分配的上行控制信道资源的数量多于所述第一分配方式;
    在所述第二时域资源分配方式中的任意一个第二子分配方式的情况下,在通过所述第二时域资源分配方式为终端设备分配时域资源方面,所述处理单元,具体用于:
    通过所述第二子分配方式为终端设备分配时域资源。
  20. 根据权利要求19所述的设备,其特征在于,
    所述多个第二子分配方式中的任意一个第二子分配方式,包括:
    在上行时隙中分配与所述第二子分配方式对应的多个第六符号,以及在混合时隙中分配与所述第二子分配方式对应的第七符号和第八符号;
    其中,每个第六符号用于混合自动重传请求反馈,且所述第六符号的数量多于所述第一符号的数量,但小于或等于所述第三符号的数量;
    所述第七符号用于调度请求和/或波束管理反馈;
    所述第八符号用于探测参考信号。
  21. 根据权利要求19或20所述的设备,其特征在于,
    所述多个第二子分配方式包括第二子分配方式A、第二子分配方式B以及第二子分配方式C,其中,所述第二子分配方式A、所述第二子分配方式B以及所述第二子分配方式C分配的上行控制信道资源的数量依次增多。
  22. 根据权利要求21所述的设备,其特征在于,
    在所述第一时域资源分配方式为所述第二子分配方式A,且所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
    接入所述网络设备的终端设备的数量大于预设终端数量N 1A,但小于预设终端数量N 2A
    接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 1A,但小于预设波束数量M 2A
    下行物理资源块利用率大于预设利用率R 1A,但小于预设利用率R 2A
    下行数据缓存量大于预设缓存量L 1A,但小于预设缓存量L 2A
    上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1A,但大于预设比例K 2A
    下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 3A,但小于预设终端数量N 4A
  23. 根据权利要求22所述的设备,其特征在于,
    在所述第一时域资源分配方式为所述第二子分配方式B,且所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
    接入所述网络设备的终端设备的数量大于预设终端数量N 1B,但小于预设终端数量N 2B
    接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 1B,但小于预设波束数量M 2B
    下行物理资源块利用率大于预设利用率R 1B,但小于预设利用率R 2B
    下行数据缓存量大于预设缓存量L 1B,但小于预设缓存量L 2B
    上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1B,但大于预设比例K 2B
    下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 3B,但小于预设终端数量N 4B
  24. 根据权利要求23所述的设备,其特征在于,
    在所述第一时域资源分配方式为所述第二子分配方式C,且所述第二时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
    接入所述网络设备的终端设备的数量大于预设终端数量N 1C
    接入所述网络设备的终端设备所使用的波束数量大于预设波束数量M 1C
    下行物理资源块利用率大于预设利用率R 1C
    下行数据缓存量大于预设缓存量L 1C
    上行物理资源块利用率与下行物理资源块利用率的比值小于预设比例K 1C
    下行数据缓存量大于所述预设缓存量L 2的终端设备的数量大于预设终端数量N 2C
    其中,N 1C≥N 2B,N 1B≥N 2A,M 1C≥M 2B,M 1B≥M 2A,R 1C≥R 2B,R 1B≥R 2A,L 1C≥L 2B,L 1B≥L 2A,K 1C≤K 2B,K 1B≤K 2A,N 2C≥N 4B,N 3B≥N 4A
  25. 根据权利要求21-24中任一项所述的设备,其特征在于,
    在所述第一时域资源分配方式为所述第二子分配方式A、第二子分配方式B以及第二子分配方式C中的任意一个第二子分配方式,且所述第一时域资源分配方式为所述第一分配方式的情况下,所述预设切换条件包括以下至少一项:
    接入所述网络设备的终端设备的数量小于预设终端数量N 5
    接入所述网络设备的终端设备所使用的波束数量小于预设波束数量M 3
    下行物理资源块利用率小于预设利用率R 3
    下行数据缓存量小于预设缓存量L 4
    上行物理资源块利用率与下行物理资源块利用率的比值大于预设比例K 3
    下行数据缓存量大于所述预设缓存量L 2的终端设备的数量小于预设终端数量N 6
  26. 根据权利要求14-25中任一项所述的设备,其特征在于,
    在从所述第一时域资源分配方式切换到所述第二时域资源分配方式方面,所述处理单元,具体用于:
    根据所述第二时域资源分配方式,分别重配用于调度请求资源、波束管理资源以及混合自动重传请求资源到对应的符号所在的时域位置;
    根据所述第二时域资源分配方式,重配用于探测参考信号的资源到对应的符号所在的时域位置或者限制探测参考信号资源对应的时域位置。
  27. 一种网络设备,其特征在于,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至13中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如权利要求1至13中任一项所述的方法。
  29. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,实现如权利要求1至13中任一项所述的方法。
  30. 一种芯片系统,其特征在于,所述芯片系统包括处理器,所述处理器用于实现如权利要求1至13中任一项所述的方法。
PCT/CN2021/102832 2020-06-28 2021-06-28 时域资源分配方法及相关产品 WO2022001979A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21832076.0A EP4164314A4 (en) 2020-06-28 2021-06-28 METHOD FOR ALLOCATING TIME AREA RESOURCES AND RELATED PRODUCT
US18/146,814 US20230156675A1 (en) 2020-06-28 2022-12-27 Time Domain Resource Allocation Method and Related Product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010602225.X 2020-06-28
CN202010602225.XA CN113853015A (zh) 2020-06-28 2020-06-28 时域资源分配方法及相关产品

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/146,814 Continuation US20230156675A1 (en) 2020-06-28 2022-12-27 Time Domain Resource Allocation Method and Related Product

Publications (1)

Publication Number Publication Date
WO2022001979A1 true WO2022001979A1 (zh) 2022-01-06

Family

ID=78972690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102832 WO2022001979A1 (zh) 2020-06-28 2021-06-28 时域资源分配方法及相关产品

Country Status (4)

Country Link
US (1) US20230156675A1 (zh)
EP (1) EP4164314A4 (zh)
CN (1) CN113853015A (zh)
WO (1) WO2022001979A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792358A (zh) * 2016-09-30 2019-05-21 瑞典爱立信有限公司 用于配置测量间隙和探测参考信号切换的系统和方法
CN109845305A (zh) * 2017-09-28 2019-06-04 瑞典爱立信有限公司 在无线通信网络中调整物理上行链路控制信道(pucch)格式
US20190174466A1 (en) * 2018-01-22 2019-06-06 Intel Corporation Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration
CN110351847A (zh) * 2018-04-04 2019-10-18 中兴通讯股份有限公司 时域资源的确定、检测方法及装置、存储介质、电子装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116600389A (zh) * 2017-09-11 2023-08-15 韦勒斯标准与技术协会公司 无线通信系统中的上行链路传输和下行链路接收的方法、设备和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792358A (zh) * 2016-09-30 2019-05-21 瑞典爱立信有限公司 用于配置测量间隙和探测参考信号切换的系统和方法
CN109845305A (zh) * 2017-09-28 2019-06-04 瑞典爱立信有限公司 在无线通信网络中调整物理上行链路控制信道(pucch)格式
US20190174466A1 (en) * 2018-01-22 2019-06-06 Intel Corporation Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration
CN110351847A (zh) * 2018-04-04 2019-10-18 中兴通讯股份有限公司 时域资源的确定、检测方法及装置、存储介质、电子装置

Also Published As

Publication number Publication date
US20230156675A1 (en) 2023-05-18
EP4164314A1 (en) 2023-04-12
EP4164314A4 (en) 2023-11-08
CN113853015A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
US11109289B2 (en) Scheduling method and base station
EP3606276B1 (en) Radio bearer determination in dual connectivity
US20140254565A1 (en) Systems and methods for multiple concurrent wlan operational modes
WO2018176422A1 (zh) 资源调度的方法和装置以及基站
CN113271178B (zh) 用户设备能力传输方法、信息传输方法及相关产品
US20230007684A1 (en) Method and apparatus for coordinated communication
JP2022531268A (ja) 保留中srキャンセル方法および装置
JP2020534713A (ja) 信号伝送方法及び端末デバイス
WO2020221326A1 (zh) 一种资源调度的方法及通信装置
JP7189207B2 (ja) 信号送信方法、関連する装置及びシステム
CN117896796A (zh) 通信方法、设备及系统
CN110740022B (zh) 一种数据发送的方法和装置
WO2021036569A1 (zh) 一种通信方法及装置
WO2021012997A1 (zh) 一种信息传输方法、装置及通信设备
WO2020192319A1 (zh) 一种资源配置方法及通信装置
CN112291035B (zh) 一种信息传输方法、装置及通信设备
CN112740826B (zh) 一种能力上报方法及终端设备
WO2020215796A1 (zh) 一种通信方法及设备
WO2022001979A1 (zh) 时域资源分配方法及相关产品
CN111866795A (zh) 通信方法及装置
WO2018094618A1 (zh) 一种资源分配和传输数据包的方法及设备
WO2022077396A1 (zh) 一种上行控制信息的发送方法、接收方法及通信装置
CN110740513B (zh) 一种通信方法及装置
CN110461039B (zh) 一种通信方法及装置
WO2021228053A1 (zh) 一种通信方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832076

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021832076

Country of ref document: EP

Effective date: 20230104

NENP Non-entry into the national phase

Ref country code: DE