WO2022001641A1 - 用于切换的数据传输的方法和装置 - Google Patents

用于切换的数据传输的方法和装置 Download PDF

Info

Publication number
WO2022001641A1
WO2022001641A1 PCT/CN2021/099906 CN2021099906W WO2022001641A1 WO 2022001641 A1 WO2022001641 A1 WO 2022001641A1 CN 2021099906 W CN2021099906 W CN 2021099906W WO 2022001641 A1 WO2022001641 A1 WO 2022001641A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
terminal device
rlc entity
pdcp
handover
Prior art date
Application number
PCT/CN2021/099906
Other languages
English (en)
French (fr)
Inventor
娄崇
黄曲芳
范强
张宏平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022001641A1 publication Critical patent/WO2022001641A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0079Transmission or use of information for re-establishing the radio link in case of hand-off failure or rejection

Definitions

  • the embodiments of the present application relate to the field of wireless communications, and in particular, to methods and apparatuses for data transmission.
  • a significant feature of the fifth generation (5th generation, 5G) mobile communication system compared with the fourth generation (4th generation, 4G) mobile communication system is the increase of ultra-reliable and low-latency communication (ultra-reliable and low-latency communication).
  • communications, URLLC URLLC
  • URLLC's business types include many, typical use cases include industrial control, autonomous driving, telesurgery, and smart grids.
  • a typical requirement is that the reliability of sending 32 bytes of data within 1 millisecond (millisecond, ms) should reach 99.999%. It should be pointed out that the above performance indicators are only examples. Different URLLC services may have different requirements for reliability. For example, in some extremely demanding industrial control application scenarios, the success probability of URLLC service data transmission needs to be within 0.25ms. to 99.9999999%.
  • the present application provides a method and apparatus for data transmission, which are used to improve the reliability of data transmission.
  • the present application provides a method for data transmission, and the method is applied to handover of a terminal device from a source network device to a target network device.
  • the execution body of the method is a terminal device or a module in the terminal device, and the description is made by taking the terminal device as the execution body as an example.
  • the terminal device receives the first configuration information from the source network device, where the first configuration information is used to configure the packet data convergence protocol PDCP replication function of the first radio bearer RB of the terminal device in the source network device; the terminal device receives the data from the source network device.
  • the first indication information indicates whether to maintain the PDCP replication function of the first RB in the source network device when the terminal device switches from the source network device to the target network device; the terminal device communicates with the source network device according to the first indication information. Data of the first RB is transmitted.
  • the terminal device performs dual-connection-based PDCP replication (also called DC duplication) transmission with the source network device and the target network device, that is, before the handover is initiated, the terminal device uses the source network device.
  • the corresponding RLC entity and the RLC entity corresponding to the target network device use the DC duplication function for data transmission with the source network device.
  • the terminal device when the terminal device switches from the source network device to the target network device, the terminal device can determine whether to keep the first RB in the source network device according to the first indication information of the source network device during the handover The PDCP replication function.
  • the source network device can instruct to keep the PDCP replication function of the first RB on the source network device during handover, so as to ensure that the terminal device can During the handover, at least two RLC entities and the source network device can transmit the same data packets copied through the PDCP layer, so as to realize the 0 millisecond interruption of the PDCP replication function of the URLLC service during the handover process, and improve the reliability of the URLLC service during the handover process. sex.
  • the source network device may instruct not to maintain the PDCP replication function of the first RB in the source network device during handover, that is, during handover, the An RB is released in the PDCP replication function of the source network device.
  • the terminal device can flexibly determine the data transmission mode when switching services with different reliability requirements according to the instruction of the source network device, which improves the flexibility of data transmission.
  • maintaining the PDCP replication function of the first RB in the source network device specifically includes: maintaining the first radio link control RLC entity, where the first RLC entity initiates handover The RLC entity corresponding to the former target network device.
  • maintaining the first RLC entity can also be understood as: the first RLC entity is not released, or can also be understood as: the first RLC entity is in an available state, and the terminal device can transmit data with the source network device through the first RLC entity.
  • the terminal device determines, according to the first indication information of the source network device, whether to continue to use the first RLC entity corresponding to the target network device before handover initiation to transmit the data of the first RB with the source network device.
  • the terminal device can continue to use the first RLC entity and the source network device to transmit the data of the first RB during handover, thereby ensuring that the terminal device At least two RLC entities (one is the first RLC entity, the other is the RLC entity corresponding to the source network device) and the source network device can transmit the same data packets copied through the PDCP layer, which improves the URLLC service in the switching process. reliability.
  • the above-mentioned data of the first RB is transmitted with the source network device according to the first indication information, Specifically, it includes: after the above handover is initiated, delivering to the first RLC entity a data packet encrypted by using the secret key of the source network device.
  • the terminal device receives second configuration information from the source network device, where the second configuration information is used to configure the PDCP replication function of the first RB on the target network device, wherein the first
  • the PDCP duplication function of the RB on the target network device may be a carrier aggregation-based PDCP duplication (also called: CA duplication) function of the first RB on the target network device.
  • CA duplication carrier aggregation-based PDCP duplication
  • the terminal device when the terminal device considers that the handover is completed, the terminal device can immediately activate the PDCP replication function of the first RB in the target network device, so that the terminal device can perform data transmission based on PDCP replication with the source network device before the handover is completed. After the handover is completed, the terminal device can immediately perform data transmission based on PDCP replication with the target network device, so that the data transmission based on PDCP replication between the terminal device and the network device is not interrupted due to handover, and the reliability of data transmission is improved.
  • the terminal device receives second configuration information from the source network device, where the second configuration information is used to configure the PDCP replication function of the first RB on the target network device;
  • the second indication information of the target network device where the second indication information is used to activate the PDCP replication function of the first RB on the target network device.
  • the PDCP duplication function of the first RB in the target network device may be the CA duplication function of the first RB in the target network device.
  • the terminal device can activate the target network device to perform data transmission based on PDCP replication according to the second indication information of the target network device, thereby improving the flexibility of data transmission.
  • the terminal device and the target network device have the same understanding of the activation time, thereby improving the reliability of data transmission.
  • the foregoing activating the PDCP replication function of the first RB on the target network device specifically includes: activating an RLC entity associated with the first RB and corresponding to the target network device.
  • the above-mentioned first indication information further indicates that after the above-mentioned handover is completed, the above-mentioned first RLC entity is an RLC entity corresponding to the target network device.
  • the first RLC entity is an RLC entity used for the terminal device and the source network device to perform PDCP copy transmission
  • the source network device indicates through the first indication information: after the above handover is completed, the first RLC entity
  • the RLC entity is an RLC entity used for PDCP replication transmission between the terminal device and the target network device.
  • the terminal device delivers a data packet encrypted with the secret key of the target network device to a second RLC entity, where the second RLC entity is one of the RLC entities associated with the first RB entity, the second RLC entity is the RLC entity corresponding to the target network device after the handover is completed. Wherein, the second RLC entity is different from the first RLC entity.
  • the terminal device delivers the data packet encrypted with the secret key of the target network device to the first RLC entity.
  • the RLC entity (the first RLC entity) corresponding to the target network device before the handover is initiated is converted into the RLC entity corresponding to the target network device after the handover is completed, so that the terminal device can pass the first RLC entity and the target network after the handover is completed.
  • the RLC entities (second RLC entities) other than the first RLC entity perform CA duplication-based data transmission with the target network device, which improves the reliability of data transmission.
  • the target network device only needs to configure the second RLC entity, and the terminal device can perform CA duplication-based data transmission with the target network device after the handover is completed, thereby reducing the overhead of resource configuration.
  • the terminal device delivers the data packet encrypted with the key of the source network device to the first RLC entity.
  • the terminal device delivers a data packet encrypted with the secret key of the target network device to a second RLC entity, where the second RLC entity is one of the RLC entities associated with the first RB entity, the second RLC entity is the RLC entity corresponding to the target network device after the handover is completed. Wherein, the second RLC entity is different from the first RLC entity.
  • the terminal device when the terminal device receives a handover command from the source network device, it indicates that handover is initiated; or, when the source network device receives a handover request confirmation message from the target network device, it indicates that handover is initiated Initiate; or, when the source network device sends a handover request command to the target network device, it indicates that the handover is initiated.
  • the terminal device after the terminal device initiates a random access process to the target network device, when it successfully accesses the target network device, it indicates that the handover is completed; or, the terminal device sends a message to the target network device for When the RRC reconfiguration message for ending the handover process, it indicates that the handover is completed; or, when the target network device receives the RRC reconfiguration message for ending the handover process from the terminal device, it indicates that the handover is complete.
  • the present application provides a method for data transmission, and the method is applied to handover of a terminal device from a source network device to a target network device.
  • the execution body of the method is the source network device or a module in the source network device, and the description is made by taking the source network device as the execution body as an example.
  • the source network device sends first configuration information to the terminal device, where the first configuration information is used to configure the packet data convergence protocol PDCP replication function of the first radio bearer RB of the terminal device in the source network device; the source network device sends the first configuration information to the terminal device.
  • the first indication information indicates whether to maintain the PDCP replication function of the first RB in the source network device when the terminal device switches from the source network device to the target network device; the source network device transmits the data with the terminal device according to the first indication information. the data of the first RB.
  • the source network device when the terminal device switches from the source network device to the target network device, the source network device indicates through the first indication information whether the terminal device continues to keep the first RB in the PDCP of the source network device during the switchover Copy function.
  • the source network device can instruct to keep the PDCP replication function of the first RB on the source network device during handover, thereby ensuring that the terminal device can communicate with the source network through at least two RLC entities.
  • the device transmits the same data packets copied by the PDCP layer, thereby realizing 0 millisecond interruption of the PDCP copy function during the switching process of the URLLC service, and improving the reliability of the URLLC service during the switching process.
  • the source network device may instruct not to maintain the PDCP replication function of the first RB in the source network device during handover, that is, during handover, the An RB is released in the PDCP replication function of the source network device.
  • the source network device can flexibly indicate the data transmission mode when switching services with different reliability requirements, which improves the flexibility of data transmission.
  • maintaining the PDCP replication function of the first RB in the source network device specifically includes: maintaining the first radio link control RLC entity, where the first RLC entity initiates handover The RLC entity corresponding to the former target network device.
  • the above-mentioned data of the first RB is transmitted with the source network device according to the first indication information, Specifically, it includes: after the above-mentioned handover is initiated, receiving a data packet encrypted with the secret key of the source network device from the first RLC entity.
  • second configuration information is sent to the terminal device, where the second configuration information is used to configure the PDCP replication function of the first RB on the target network device.
  • the first indication information further indicates that after the above-mentioned handover is completed, the above-mentioned first RLC entity is an RLC entity corresponding to the target network device.
  • the first RLC entity is an RLC entity used for the terminal device and the source network device to perform PDCP copy transmission
  • the source network device indicates through the first indication information: after the above handover is completed, the first RLC entity
  • the RLC entity is an RLC entity used for PDCP replication transmission between the terminal device and the target network device.
  • the source network device sends third indication information to the terminal device, where the third indication information indicates that after the above-mentioned handover is completed, the above-mentioned first RLC entity is the RLC entity corresponding to the target network device .
  • the first RLC entity is an RLC entity used for the terminal device and the source network device to perform PDCP copy transmission
  • the source network device indicates through the third indication information: after the above handover is completed, the first RLC entity is The RLC entity is an RLC entity used for PDCP replication transmission between the terminal device and the target network device.
  • the source network device receives the data packet encrypted with the key of the source network device from the first RLC entity; the source network device forwards the data packet to the target network device A packet encrypted with the source network device's secret key.
  • the target network device receives the data packet that is forwarded by the source network device and encrypted with the secret key of the source network.
  • the target network device receives a data packet encrypted with the secret key of the target network device from a second RLC entity, where the second RLC entity is one of the RLC entities associated with the first RB, The second RLC entity is the RLC entity corresponding to the target network device after the handover is completed. Wherein, the second RLC entity is different from the first RLC entity.
  • the terminal device can transmit the same data as the target network device through the first RLC entity and the second RLC entity.
  • the terminal device sends a piece of data to the target network device through the second RLC entity, the terminal device sends another copy of the same data to the source network device through the first RLC entity, and the source network device receives through the first RLC entity.
  • the data is forwarded to the target network device, so that after the handover is completed, the terminal device can perform data transmission with the target network device through at least two RLC entities (commonly known as: two legs), which improves the data transmission efficiency. Transmission reliability.
  • the terminal device when the terminal device receives the handover command from the source network device, it indicates that the handover is initiated; or, when the source network device receives the handover request confirmation message from the target network device, it indicates that the handover is initiated. Initiate; or, when the source network device sends a handover request command to the target network device, it indicates that the handover is initiated.
  • the terminal device after the terminal device initiates a random access procedure to the target network device, and successfully accesses the target network device, it indicates that the handover is completed; or, the terminal device sends a message to the target network device for When the RRC reconfiguration message for ending the handover process, it indicates that the handover is completed; or, when the target network device receives the RRC reconfiguration message for ending the handover process from the terminal device, it indicates that the handover is complete.
  • a communication apparatus including functional modules for implementing the method in the foregoing first aspect and any possible implementation manner of the first aspect.
  • a communication apparatus including functional modules for implementing the method in the foregoing second aspect and any possible implementation manner of the second aspect.
  • a communication device comprising a processor and an interface circuit, the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit to the processor or send signals from the processor
  • the processor is used to implement the method in the foregoing first aspect and any possible implementation manner of the first aspect through logic circuits or executing code instructions.
  • a communication device comprising a processor and an interface circuit, the interface circuit being configured to receive signals from other communication devices other than the communication device and transmit to the processor or transfer signals from the processor Sent to other communication devices other than the communication device, the processor is used to implement the method in the foregoing second aspect and any possible implementation manner of the second aspect through a logic circuit or executing code instructions.
  • a computer-readable storage medium is provided, and a computer program or instruction is stored in the computer-readable storage medium.
  • the computer program or instruction is executed, any possibility of the aforementioned first aspect and the first aspect is realized. method in the implementation.
  • a computer-readable storage medium is provided, and a computer program or instruction is stored in the computer-readable storage medium.
  • the computer program or instruction is executed, any possibility of the aforementioned second aspect and the second aspect is realized. method in the implementation.
  • a computer program product containing instructions, when the instructions are executed, the methods in the aforementioned first aspect and any possible implementation manner of the first aspect are implemented.
  • a tenth aspect provides a computer program product comprising instructions that, when executed, implement the second aspect and the method in any possible implementation manner of the second aspect.
  • a computer program includes codes or instructions that, when the codes or instructions are executed, implement the method in the foregoing first aspect and any possible implementation manner of the first aspect.
  • a twelfth aspect provides a computer program, the computer program includes codes or instructions, when the codes or instructions are executed, the second aspect and the method in any possible implementation manner of the second aspect are implemented.
  • a thirteenth aspect provides a chip system, the chip system includes a processor, and may further include a memory, for implementing at least one of the methods described in the first aspect and the second aspect.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a fourteenth aspect provides a communication system, where the system includes the apparatus (eg, a terminal device) according to the third aspect or the fifth aspect, and the apparatus (eg, a source network device) according to the fourth aspect or the sixth aspect. .
  • FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of the application is applied;
  • FIG. 2 is a schematic diagram of an architecture of separation of a CU and a DU applied by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of the architecture of implementing the PDCP duplication function in a DC scenario provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of the architecture of implementing the PDCP duplication function in a CA scenario provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a handover process according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of implementing a PDCP duplication function provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a first message according to an embodiment of the present application.
  • FIG. 9 and FIG. 10 are schematic diagrams of implementing the PDCP duplication function provided by the embodiments of the present application.
  • FIG. 11 and FIG. 12 are schematic structural diagrams of possible communication apparatuses provided by the embodiments of the present application.
  • LTE long term evolution
  • 5th generation 5th generation
  • WiFi Wireless Fidelity
  • future communication system a system that integrates multiple communication systems, etc.
  • NR new radio
  • eMBB enhanced mobile broadband
  • ultra-reliable and low-latency communication ultra-reliable and low-latency communication
  • URLLC ultra-reliable low-latency communication
  • MTC machine type communication
  • mMTC massive machine type communication
  • D2D device-to-device
  • V2X vehicle to vehicle
  • IoT Internet of things
  • Communication between communication devices may include: communication between a network device and a terminal device, communication between a network device and a network device, and/or communication between a terminal device and a terminal device.
  • the term “communication” may also be described as "transmission”, “information transmission”, or “signal transmission”, or the like. Transmission can include sending and/or receiving.
  • the technical solution is described by taking the communication between the network device and the terminal device as an example. Those skilled in the art can also use the technical solution for communication between other scheduling entities and subordinate entities, such as a macro base station and a micro base station.
  • Air interface resources include one or more of the following resources: time domain resources, frequency domain resources, code resources and space resources.
  • the multiple types may be two, three, four or more types, which are not limited in the embodiments of the present application.
  • the communication between the network device and the terminal device includes: the network device sends downlink signals/information to the terminal device, and/or the terminal device sends uplink signals/information to the network device.
  • "/" may indicate that the objects associated before and after are an "or” relationship, for example, A/B may indicate A or B; “and/or” may be used to describe that there are three types of associated objects A relationship, eg, A and/or B, can mean that A exists alone, A and B exist simultaneously, and B exists alone. where A and B can be singular or plural.
  • words such as “first” and “second” may be used to distinguish technical features with the same or similar functions. The words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like do not limit the difference.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations, and the embodiments or designs described as “exemplary” or “for example” should not be construed as More preferred or advantageous over other embodiments or designs.
  • the use of words such as “exemplary” or “such as” is intended to present the relevant concepts in a specific manner to facilitate understanding.
  • FIG. 1 is a schematic structural diagram of a communication system to which embodiments of the present application may be applied.
  • the communication system includes one terminal device 110 and two network devices (such as the network device 120 and the network device 130 in FIG. 1 ).
  • FIG. 1 is only a schematic diagram, and the embodiments of the present application do not limit the number of network devices and terminal devices included in the communication system.
  • the terminal equipment involved in the embodiments of the present application may also be referred to as a terminal, a user equipment (user equipment, UE), a mobile station, a mobile terminal, and the like.
  • the terminal equipment can be mobile phone, tablet computer, computer with wireless transceiver function, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminal in industrial control, wireless terminal in unmanned driving, wireless terminal in remote surgery, smart grid wireless terminals in transportation security, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the device for implementing the function of the terminal device may be the terminal device; it may also be a device capable of supporting the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal device or integrated with the terminal device. equipment matching.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the network device involved in the embodiments of the present application is an access network (radio access network, RAN) device that the terminal device wirelessly accesses to the mobile communication system, and may include but is not limited to: a base station, an evolved NodeB (evolved NodeB). , eNodeB), transmission reception point (TRP), next generation NodeB (gNB) in 5G mobile communication system, base station in future mobile communication system or access node in WiFi system, etc.
  • An interface between network devices is called an Xn interface, and an interface between a network device and a terminal device may be a Uu interface (or called an air interface).
  • the names of these interfaces may remain unchanged, or may be replaced with other names, which are not limited in this application.
  • control plane protocol layer structure may include the RRC layer, the packet data convergence protocol (PDCP) layer, the radio link control (radio link control) layer. , RLC) layer, media access control (media access control, MAC) layer and physical layer and other protocol layer functions;
  • user plane protocol layer structure can include PDCP layer, RLC layer, MAC layer and physical layer and other protocol layer functions,
  • the PDCP layer may further include a service data adaptation protocol (service data adaptation protocol, SDAP) layer.
  • service data adaptation protocol service data adaptation protocol, SDAP
  • a network device may include a central unit (CU) and a distributed unit (DU).
  • the interface between CU and DU can be called as F1 interface, as shown in Figure 2.
  • the control plane (control panel, CP) interface may be F1-C
  • the user plane (user panel, UP) interface may be F1-U.
  • the CU and DU can be divided according to the protocol layers of the wireless network. For example, the functions of the PDCP layer and above are set in the CU, and the functions of the protocol layers below the PDCP layer (such as the RLC layer and the MAC layer, etc.) are set in the DU.
  • the signaling generated by the CU may be sent to the terminal device through the DU, or the signaling generated by the terminal device may be sent to the CU through the DU.
  • the DU may not parse the signaling, but directly encapsulate it through the protocol layer and transparently transmit it to the terminal device or CU.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
  • the device for implementing the function of the network device may be a network device; it may also be a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device or connected to the network device. equipment matching.
  • the technical solutions provided by the embodiments of the present application are described by taking the apparatus for implementing the functions of the network equipment as the network equipment as an example.
  • Network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can be deployed on water; or, can be deployed in the air on aircraft, balloons or satellites.
  • the embodiments of the present application do not limit the application scenarios of the network device and the terminal device.
  • Communication between the network device and the terminal device may be performed through the licensed spectrum, the communication may be performed through the unlicensed spectrum, or the communication may be performed through the licensed spectrum and the unlicensed spectrum.
  • Communication between the network device and the terminal device may be performed over a spectrum below 6 GHz (gigahertz, GHz), over a spectrum above 6 GHz, or over a spectrum below 6 GHz and a spectrum above 6 GHz.
  • the embodiments of the present application do not limit the spectrum resources used between the network device and the terminal device.
  • Radio bearers can be divided into signaling radio bearer (SRB) for transmitting signaling data and data radio bearer (DRB) for transmitting service data.
  • SRB signaling radio bearer
  • DRB data radio bearer
  • a set of functional entities of the same radio bearer It includes one PDCP entity, at least one radio link control RLC entity corresponding to the PDCP entity, and at least one MAC entity corresponding to the at least one RLC entity.
  • the PDCP entity is located in the PDCP layer
  • the RLC entity is located in the RLC layer
  • the MAC entity is located in the MAC layer.
  • the SDAP layer entity of the network device can map the data to the PDCP layer entity of the corresponding RB according to the QoS flow indicator (QFI) of the data.
  • the PDCP layer entity can The data is transmitted to at least one RLC layer entity corresponding to the PDCP layer entity, and then transmitted by the at least one RLC layer entity to the corresponding MAC layer entity, and then the MAC layer entity generates a transmission block, and then performs wireless transmission through the corresponding physical layer entity.
  • the data is encapsulated correspondingly in each layer.
  • the data received by a certain layer from the upper layer of the layer is regarded as the service data unit (SDU) of the layer, and becomes the protocol data unit (protocol data unit) after layer encapsulation. unit, PDU), and then passed to the next layer.
  • SDU service data unit
  • PDU protocol data unit
  • the data received by the PDCP layer entity from the upper layer is called PDCP SDU
  • the data sent by the PDCP layer entity to the lower layer is called PDCP PDU
  • the data received by the RLC layer entity from the upper layer is called RLC SDU
  • the data sent by the RLC layer entity to the lower layer Called RLC PDU can be transmitted between different layers through corresponding channels.
  • data can be transmitted between the RLC layer entity and the MAC layer entity through a logical channel (LCH), and the MAC layer entity and the physical layer entity can be transmitted through the A transport channel to transmit data.
  • LCH logical channel
  • the two network devices connected by the terminal device can be base stations under the same wireless access technology, for example, both are base stations in the LTE communication system or both are base stations in the 5G mobile communication system, or the two base stations connected by the terminal device can also be Base stations under different wireless access technologies, for example, one is a base station in an LTE communication system, and the other is a base station in a 5G mobile communication system.
  • CA Carrier aggregation
  • CA refers to aggregating multiple component carriers (CC) together to provide services for a terminal device to achieve a larger transmission bandwidth, thereby increasing the uplink and downlink transmission rates.
  • CC component carriers
  • PDCP duplication refers to: duplicating the data packets carried by the radio into multiple identical packets (that is, duplication packets) at the PDCP layer, and then submitting the duplicated data packets to multiple different RLC entities for transmission.
  • each RLC entity transmits the data packet to the MAC layer through the logical channel corresponding to the RLC entity.
  • PDCP duplication is different from the so-called retransmission. Retransmission refers to the transmission of the same data packet again after the transmission fails, while PDCP duplication is to copy a data packet into multiple data packets, which are passed through multiple RLC entities for transmission.
  • the PDCP duplication includes the PDCP duplication of the DC scenario (also referred to as: DC duplication) and the PDCP duplication of the CA scenario (also referred to as: CA duplication).
  • DC duplication also referred to as: DC duplication
  • CA duplication the PDCP duplication of the CA scenario
  • Figure 3 shows a network architecture for implementing the DC duplication function in a DC scenario.
  • the DC scenario involves primary network devices and secondary network devices.
  • the primary network device corresponds to one PDCP entity, one RLC entity and one MAC entity
  • the secondary network device corresponds to one RLC entity and one MAC entity.
  • the main network device may also have an SDAP entity above the PDCP entity
  • the terminal device may also have an SDAP entity above the PDCP entity.
  • a terminal device is connected to two network devices at the same time, that is, the primary network device and the secondary network device.
  • the DC duplication function is configured for a RB
  • the two identical data belonging to the RB are copied through the PDCP layer.
  • the packet will be transmitted to two different RLC entities, and transmitted to two different MAC entities through different logical channels, and finally form two MAC PDUs to be transmitted on the cell resources scheduled by the two different MAC entities respectively.
  • the PDCP layer in the primary network device will transmit the two replicated data packets to two different RLC entities, which are located in the primary network device and the secondary network device respectively.
  • the RLC entity in the network device transmits the received data packet to the MAC entity in the primary network device, and the RLC entity in the secondary network device transmits the received data packet to the MAC entity in the secondary network device.
  • the respective cell resources transmit data packets, and for the terminal equipment, both RLC entities and two MAC entities are located in the terminal equipment.
  • there may be two cell groups that provide services for terminal equipment namely a master cell group (MCG) and a secondary cell group (SCG), where the master cell group It is managed and configured by the primary network device, and the secondary cell group is managed and configured by the primary network device or the secondary network device.
  • MCG master cell group
  • SCG secondary cell group
  • the network device may also configure the terminal device with one RLC entity in the above two RLC entities as the primary RLC entity (also commonly known as the primary leg), and the other RLC entity as the secondary RLC entity (also commonly known as, A secondary leg), for example, RLC1 in the network device configuration in Figure 3 is the primary RLC entity, and RLC2 is the secondary RLC entity.
  • the main leg may refer to the main RLC entity, or may refer to the logical channel associated with the main RLC entity, also referred to as the main logical channel; the auxiliary leg may refer to the main RLC entity.
  • the secondary RLC entity and may also refer to the logical channel associated with the secondary RLC entity, also referred to as the secondary logical channel.
  • the network device When the network device configures the DC duplication function for a radio bearer through radio resource control (radio resource control, RRC) signaling, it can indicate whether the initial state of the DC duplication function of the radio bearer is activated or deactivated.
  • RRC radio resource control
  • the network device may also configure activation/deactivation of the DC duplication function of the radio bearer through a MAC control element (MAC control element, MAC CE).
  • MAC control element MAC control element
  • the terminal device can receive the same data packets from the primary network device through the primary RLC entity and the secondary RLC entity that are copied through the PDCP layer of the primary network device, or the terminal device can be in the PDCP layer of the terminal device.
  • the data packet is copied into two copies and sent to the primary network device and the secondary network device through the primary RLC entity and the secondary RLC entity respectively.
  • the terminal device and the network device transmit the PDCP control PDU
  • the terminal device can only transmit the PDCP control PDU through the main RLC entity and the network device.
  • the terminal device can transmit different data from the primary network device and the secondary network device through the primary RLC entity and secondary RLC entity on the terminal device side, respectively. data pack.
  • the terminal device transmits different data packets from the main network device and the auxiliary network device through the main RLC entity and the auxiliary RLC entity;
  • the terminal device only transmits data packets with the main network device through the main RLC entity, where the above-mentioned threshold value is configured by the network device through the RRC message.
  • Figure 4 shows a network architecture for implementing the PDCP duplication function in a CA scenario.
  • a terminal device is connected to a network device, and at least two carriers (or cells) serve the terminal device under the same network device.
  • One RB corresponds to one PDCP entity, two RLC entities and one MAC entity in the network device.
  • the terminal equipment corresponds to one PDCP entity, two RLC entities and one MAC entity.
  • parameter A a parameter for the logical channel, such as parameter A.
  • the value of parameter A is used to indicate different cells, so as to ensure that the two identical data packets can eventually form two MAC PDUs for transmission in different cells. Thereby improving reliability.
  • CA duplication can support a radio bearer data packet to be copied into two copies at the PDCP layer, which are respectively transmitted through two RLC entities.
  • the network device may also configure one of the RLC entities as the primary RLC entity and the other RLC entity as the secondary RLC entity. For example, the network device configures RLC1 in FIG. 4 as the primary RLC entity and RLC2 as the secondary RLC entity.
  • the network device configures the PDCP duplication function for a radio bearer through RRC signaling, it can indicate whether the initial state of the PDCP duplication function of the radio bearer is activated or deactivated.
  • the network device may also configure activation/deactivation of the PDCP duplication function of the radio bearer through the MAC CE.
  • the CA duplication function is activated, the terminal equipment can transmit data with the network equipment through the primary RLC entity and the secondary RLC entity; when the CA duplication function is deactivated, the terminal equipment can only transmit data with the network equipment through the primary RLC entity.
  • the network device serving at least one RB of the terminal device Before the terminal device switches from one network device to another network device, the network device serving at least one RB of the terminal device may be referred to as the source network device; after the handover, the network device serving at least one RB of the terminal device may be called the target network device.
  • 5 is a schematic diagram of a switching process, including:
  • the source network device sends a radio resource control RRC reconfiguration message to the terminal device in the RRC connected state, where the RRC reconfiguration message includes parameters such as a measurement object, a measurement configuration, and a measurement identifier.
  • the terminal device after the terminal device measures the measurement object according to the RRC reconfiguration message, reports the measurement result to the source network device, for example, the terminal device reports that the signal strength of the current serving cell is lower than the threshold and the signal strength of the target cell is higher than the threshold value.
  • the source network device decides whether to switch after receiving the measurement report in S502. If handover is required, the source network device sends a handover request (handover request) message to the target network device.
  • handover request handover request
  • the target network device sends a handover request acknowledgement (handover request acknowledge) message to the source network device.
  • the handover request confirmation message may include an RRC reconfiguration message generated by the target network device for the terminal device, and the RRC reconfiguration message includes the configuration required by the terminal device to access the target network device.
  • the source network device sends a handover command to the terminal device, where the handover command includes an RRC reconfiguration message.
  • the terminal device performs handover according to the handover command in S505: the terminal device disconnects the connection with the source network device, and accesses the target network device through a random access process.
  • the terminal device when the terminal device successfully accesses the target network device, it indicates that the handover is completed.
  • the terminal device ends the handover process by sending an RRC reconfiguration complete message to the target network device.
  • a possible implementation manner is that after the terminal device receives the handover command from the source network device (ie, S505 in FIG. 5 ), and before successfully accessing the target network device (ie, S507 in FIG. 5 ) ), the connection with the source network device can not be disconnected, that is, the terminal device can continue to communicate with the source network device through the RLC entity (referred to as RLC A) associated with the source network device.
  • RLC A the RLC entity associated with the source network device.
  • this switching method is called For dual active protocol stack (dual active protocol stack, DAPS) switching.
  • the terminal device after the terminal device receives the handover command from the source network device, the terminal device will establish an RLC entity (referred to as RLC B) corresponding to the target network device. After the terminal device receives the handover command and before successfully accessing the target network device, it transmits data with the source network device through RLC A. At this time, RLC B is in a deactivated state, that is, the terminal device will not communicate with the target network device through RLC B. network equipment for data transmission. After the terminal device successfully accesses the target network device, the terminal device no longer performs data transmission with the source network device through RLC A, but instead performs data transmission with the source network device through RLC B. Through the DAPS switching method, the terminal device can be switched from one network device to another network device to ensure that the data transmission between the terminal device and the network device is not interrupted, thereby reducing the data transmission delay.
  • RLC B RLC entity
  • the existing DAPS switching process can ensure that the data transmission between the terminal device and the network device is not interrupted, the terminal device can only perform data transmission with the source network device or the target network device through one RLC entity, which cannot satisfy the URLLC service. Requirements for high reliability. Based on the above problems, the embodiments of the present application will mainly study how to improve the reliability of data transmission in a scenario where a terminal device is handed over.
  • FIG. 6 is a schematic flowchart of a data transmission method provided by an embodiment of the present application. This embodiment relates to the process of switching a terminal device from a source network The specific process of data transmission between devices.
  • the terminal device before the handover is initiated by the terminal device, the terminal device performs DC duplication-based transmission with the source network device and the target network device, wherein the source network device is the main network device of the terminal device before the handover is initiated.
  • the target network device is the secondary network device of the terminal device before the handover is initiated.
  • the method may include: S601 to S607, wherein S607 is an optional operation. This embodiment of the present application does not limit the execution order of S601 to S607.
  • the source network device sends first configuration information to the terminal device, and correspondingly, the terminal device receives the first configuration information from the source network device.
  • the above-mentioned first configuration information may be carried in an RRC reconfiguration message, an RRC setup message, or an RRC recovery message.
  • the first configuration information is used to configure the PDCP duplication function of the first RB of the terminal device in the source network device.
  • the first configuration information is that the first RB of the terminal device is configured with the PDCP duplication function on the source network device, which can be understood as: the terminal device is connected to the source network device and the target network device at the same time, and the terminal device can be connected to the source network device and the target network device at the same time.
  • the source network device and the target network device use the DC duplication function to transmit the data of the first RB, wherein the source network device is the primary network device connected to the terminal device, and the target network device is the secondary network device connected to the terminal device.
  • the first configuration information includes one or more of the following parameters:
  • the terminal device may transmit the PDCP control PDU with the network device through the main RLC entity.
  • the first RB may be associated with one or more secondary RLC entities, and the secondary RLC entities may be dynamically deactivated.
  • the terminal device cannot transmit the PDCP control PDU through the secondary RLC entity, but can transmit the PDCP data PDU copied through the PDCP layer through the secondary RLC entity.
  • DAPS configuration information used to indicate whether the first RB supports a DAPS handover operation.
  • the terminal device After receiving the first configuration information, the terminal device establishes a PDCP entity associated with the first RB (hereinafter referred to as the first PDCP entity) on the terminal device side.
  • the first PDCP entity may establish a ciphering function (ciphering function) suitable for the source network device, that is, the first PDCP entity uses a secret key (hereinafter referred to as the first secret key) applicable to the source station to compose the first PDCP.
  • ciphering function suitable for the source network device
  • the first secret key hereinafter referred to as the first secret key
  • the first PDCP entity may establish an integrity protection function (integrity protection function) suitable for the source network device, that is, the first PDCP entity uses the integrity protection algorithm and the integrity protection key applicable to the source station to pair the first PDCP.
  • integrity protection function integrated protection function
  • Data packets received by a PDCP entity are integrity protected and integrity checked.
  • integrity protection refers to: the sender uses an integrity protection algorithm to calculate the message integrity authentication code (message authentication code for integrity, MAC-I) of the data to be sent, and the sender uses the MAC -I is sent to the receiver together with the above-mentioned data to be sent, the receiver calculates the expected MAC-I according to the same integrity protection algorithm, and compares the expected MAC-I with the received MAC-I, if If the two are the same, the receiving end considers that the content of the data has not been tampered with, and if they are not the same, it is considered that the data has been tampered with.
  • message integrity authentication code messages authentication code for integrity, MAC-I
  • the first PDCP entity may further establish a header compression function suitable for the source network device.
  • the header compression function refers to: the transmitting end may use the robust header compression (ROHC) architecture and/or the Ethernet header compression (ethernet header compression, EHC) architecture to transmit the data to be sent.
  • Subheaders such as the network layer are compressed.
  • the sending end establishes a compression context (context), and the content of the uncompressed subheader is indicated by the context, thereby reducing the overhead of the subheader.
  • the receiving end can recover the content of the uncompressed subheader through the context.
  • the terminal device may further establish an RLC entity associated with the first RB (also referred to as the RLC entity associated with the first PDCP).
  • the first RB is associated with two RLC entities in total, namely RLC1 and RLC2.
  • the RLC1 is the RLC entity corresponding to the source network device
  • the RLC2 is the RLC entity corresponding to the target network device.
  • the terminal device can transmit data with the source network device through RLC1 and/or RLC2.
  • the PDCP entity of the terminal device uses the first key to encrypt the PDCP data PDU, and submits the encrypted PDCP data PDU to RLC1 and/or RLC2, and then RLC1 and/or RLC2 transmit the data to the corresponding RLC1 and/or RLC2.
  • the MAC entity, and then the MAC layer entity generates the transport block, and then the corresponding physical layer entity transmits it to the source network device through the air interface.
  • the terminal device transmits data to the network device through RLC1; if RLC1 is the main RLC entity and the initial state of RLC2 is active, the terminal device communicates with the network device through RLC1 and RLC2 Data transmission; if RLC2 is the main RLC entity and the initial state of RLC1 is deactivated, the terminal device transmits data with the network device through RLC2; if RLC2 is the main RLC entity and the initial state of RLC1 is active, the terminal device passes RLC1 and RLC2 Transfer data with network devices.
  • the source network device further sends the first message to the terminal device, and correspondingly, the terminal device receives the first message from the network device.
  • the first message is used to activate or deactivate the secondary RLC entity associated with the first RB.
  • the first message is a MAC CE.
  • the source network device may also send third configuration information to the terminal device, and correspondingly, the terminal device receives the third configuration information from the source network device.
  • the third configuration information is used to configure the primary cell group associated with the source network device and/or the secondary cell group associated with the target network device.
  • the primary cell group includes a primary cell and at least one secondary cell, the primary cell group is associated with one MAC entity, and the MAC entity is associated with at least one RLC entity;
  • the secondary cell group includes a primary cell and at least one secondary cell, and the secondary cell group is associated with one MAC entity, the MAC entity is associated with at least one RLC entity.
  • the third configuration information may be carried in an RRC reconfiguration message, an RRC setup message, or an RRC recovery message.
  • the third configuration information and the foregoing first configuration information may be carried in the same or different messages.
  • the third configuration information and the first configuration information may be sent at the same time, or may be sent separately, and the embodiment of the present application does not limit the order in which the third configuration information and the first configuration information are sent sequentially.
  • the source network device sends the first indication information to the terminal device, and correspondingly, the terminal device receives the first indication information from the source network device.
  • the first indication information may be carried in an RRC reconfiguration message, an RRC setup message, or an RRC recovery message.
  • the first indication information and the foregoing first configuration information may be carried in the same or different messages.
  • the first indication information indicates whether to maintain the PDCP replication function of the first RB in the source network device when the terminal device switches from the source network device to the target network device.
  • the first indication information indicates whether the terminal device maintains the PDCP replication function of the first RB in the source network device during the period after the above-mentioned handover is turned on and before the above-mentioned handover is completed.
  • the manner in which the first indication information indicates whether to maintain the PDCP replication function of the first RB in the source network device includes but is not limited to the following manners:
  • the terminal device maintains the PDCP replication function of the first RB in the source network device; if the value of the first indication information is the second value, the terminal device does not keep the first RB in the source network device.
  • PDCP replication function of network equipment Exemplarily, the first value may be "true” or “enabled”; the second value may be "false", "disabled", or the second value is empty.
  • the source network device sends the first indication information to the terminal device, that is, when the terminal device receives the first indication information from the source network device, the first indication information instructs the terminal device to maintain the PDCP replication function of the first RB in the source network device;
  • the source network device does not send the first indication information to the terminal device, that is, when the terminal device does not receive the first indication information from the source network device, the first indication information indicates that the terminal device does not keep the first RB in the PDCP of the source network device Copy function; or, when the source network device sends the first indication information to the terminal device, that is, when the terminal device receives the first indication information from the source network device, the first indication information indicates that the terminal device does not keep the first RB in the source network.
  • the PDCP replication function of the device when the source network device does not send the first indication information to the terminal device, that is, when the terminal device does not receive the first indication information from the source network device, the first indication information instructs the terminal device to keep the first RB in the PDCP replication function of the source network device.
  • the value of the first indication information may be "true” or "false”.
  • the terminal device maintains the PDCP duplication function of the first RB in the source network device, which can be understood as: the terminal device maintains and transmits the data of the first RB with the source network device and the target network device using the DC duplication function.
  • the terminal device does not maintain the PDCP replication function of the first RB in the source network device, which can be understood as: the terminal device releases the PDCP replication function of the first RB in the source network device, that is, the terminal device no longer uses the source network device and the target network device.
  • the DC duplication function transmits the data of the first RB.
  • the handover initiation flag may include: the terminal device receives a handover command from the source network device; or the handover initiation flag may include: the source network device receives a handover request confirmation message from the target network device; Alternatively, the handover initiation flag may include: the source network device sends a handover request command to the target network device, which is not limited in this embodiment of the present application.
  • the handover completion flag may include: after the terminal device initiates a random access procedure to the target network device, the terminal device successfully accesses the target network device, or the handover completion flag may include: the terminal device sends the target network device to the target network device. Sending an RRC reconfiguration message for ending the handover process; or, the handover completion flag may include: the target network device receives an RRC reconfiguration message for ending the handover process from the terminal device, which is not limited in this embodiment of the present application.
  • the source network device sends a handover request message to the target network device, and correspondingly, the target network device receives the handover request message from the source network device.
  • the target network device If the target network device allows the terminal device to access, the target network device sends a handover request confirmation message to the source network device.
  • the source network device sends a handover command to the terminal device, where the handover command includes an RRC reconfiguration message. After the terminal device receives the handover command from the source network device, it starts the handover process.
  • the terminal device transmits the data of the first RB with the source network device according to the first indication information.
  • maintaining the PDCP replication function of the first RB in the source network device includes: maintaining the first radio link control RLC entity, where the first RLC entity is the RLC entity corresponding to the target network device before the handover is initiated.
  • the above-mentioned PDCP duplication function of not maintaining the first RB in the source network device and the target network device includes: the first radio link control RLC entity is released, wherein the first RLC entity is the RLC entity corresponding to the target network device .
  • maintaining the first RLC entity can also be understood as: the first RLC entity is not released, or can also be understood as: the first RLC entity is in an available state, and the terminal device can pass the first RLC entity through the first RLC entity. Transfer data to and from the source network device.
  • the terminal device may transmit data with the source network device through the first RLC entity after the above-mentioned handover is initiated. Exemplarily, after the above handover is initiated, the terminal device may submit a data packet encrypted with the first key to the first RLC entity.
  • the release of the first RLC entity can also be understood as: the first RLC entity is suspended, or it can also be understood as: the first RLC entity is in an unavailable state, and the terminal device cannot pass the first RLC entity.
  • the RLC entity transmits data with the source network device.
  • the terminal device cannot transmit data with the source network device through the first RLC entity after the above handover is initiated.
  • FIG. 7(a) shows that before the handover is initiated, the first PDCP entity associated with the first RB and the RLC entity associated with the first PDCP entity (that is, the first PDCP entity configured in the first configuration information) an RLC entity associated with an RB).
  • RLC1 is the RLC entity corresponding to the source network device
  • RLC2 is the RLC entity (ie, the first RLC entity) corresponding to the target network device.
  • the PDCP entity of the terminal device uses the first key pair
  • the PDCP data PDU is encrypted, and the encrypted PDCP data PDU is submitted to RLC1 and RLC2; if the value of the first indication information is the second value, during the period from the initiation of the handover to the completion of the handover, the terminal equipment Data can only be transmitted with the source network device through RLC1.
  • the PDCP entity of the terminal device encrypts the PDCP data PDU using the first secret key, and delivers the encrypted PDCP data PDU to the RLC1.
  • the source network device sends the second configuration information to the terminal device.
  • the terminal device receives the second configuration information from the target network device, and the second configuration information is used to configure the first RB in the target network device.
  • PDCP replication function Exemplarily, the PDCP duplication function of the first RB on the target network device can be understood as: the CA duplication function of the first RB on the target network device.
  • the second configuration information may be carried in an RRC reconfiguration message, an RRC setup message, or an RRC recovery message.
  • the second configuration information and the foregoing first configuration information are carried on the same or different messages.
  • the second configuration information and the foregoing third configuration information are carried on the same or different messages.
  • the first configuration information, the second configuration information, and the third configuration information may be sent at the same time, or may be sent separately. There is no restriction on the order of sending one after another.
  • the source network device before sending the second configuration information to the terminal device, receives a handover request confirmation message (as shown in S604 ) from the target network device, where the handover request confirmation message includes the second configuration information. That is, the source network device forwards the second configuration information from the target network device to the terminal device.
  • the second configuration information may be carried on the RRC reconfiguration message in S605.
  • the second configuration information includes one or more of the following parameters:
  • the terminal device may transmit the PDCP control PDU with the network device through the main RLC entity.
  • the first RB may be associated with one or more secondary RLC entities, and the secondary RLC entities may be dynamically deactivated.
  • the terminal device cannot transmit the PDCP control PDU through the secondary RLC entity, but can transmit the PDCP data PDU copied through the PDCP layer through the secondary RLC entity.
  • the terminal device After receiving the above-mentioned second configuration information, the terminal device focuses on configuring the PDCP entity associated with the first RB.
  • reconfiguring the PDCP entity associated with the first RB can also be understood as: re-establishing the PDCP entity associated with the first RB, where the new PDCP entity is the second PDCP entity.
  • the PDCP entity ie, the second PDCP entity
  • the PDCP entity that re-establishes the association of the first RB is used for description.
  • the second PDCP entity before the above-mentioned handover is completed, the second PDCP entity is in a suspended state, and only after the above-mentioned handover is completed, the second PDCP entity will replace the first PDCP entity to perform the function of the PDCP entity.
  • the second PDCP entity may also be a PDCP entity that is reconfigured by the first PDCP entity through the second configuration information, and there is no substantial difference between the two methods.
  • the second PDCP entity may establish an encryption function suitable for the target network device, that is, the second PDCP entity uses the key (hereinafter referred to as the second key) applicable to the target station to encrypt the data received by the second PDCP entity. Packets are encrypted and decrypted.
  • the first key and the second key may be the same or different.
  • the second PDCP entity may establish an integrity protection function suitable for the target network device.
  • the second PDCP entity may further establish a header compression function suitable for the target network device.
  • the terminal device also establishes a new RLC entity associated with the first RB (ie, the RLC entity associated with the second PDCP).
  • a new RLC entity associated with the first RB ie, the RLC entity associated with the second PDCP.
  • the RLC entity associated with the second PDCP is in a suspended state, and only after the above-mentioned handover is completed, the RLC entity associated with the second PDCP entity will replace the RLC entity associated with the first PDCP entity Performs the functions of the RLC entity.
  • Figure 7(b) shows the second PDCP entity associated with the first RB and the RLC entity associated with the second PDCP entity after the handover is completed.
  • RLC3 and RLC4 are both RLC entities corresponding to the target network device.
  • the initial state of the CA duplication function of RLC3 and RLC4 is deactivated, that is, before the above CA duplication function is activated, the terminal device cannot perform CA duplication-based data transmission through RLC3 and RLC4.
  • the states of RLC3 and RLC4 are deactivated, that is, before the above handover is completed, the terminal device cannot perform data transmission with the target network device through RLC3 and RLC4.
  • the terminal device activates the PDCP duplication function (that is, the CA duplication function) of the first RB in the target network device.
  • the terminal device activating the PDCP replication function of the first RB on the target network device specifically includes: the terminal device activates an RLC entity associated with the first RB and corresponding to the target network device.
  • the terminal device to activate the PDCP replication function of the first RB on the target network device:
  • the target network device sends the second indication information to the terminal device, correspondingly, the terminal device receives information from the target The second indication information of the network device.
  • the second indication information is used to activate the PDCP replication function of the first RB on the target network device can.
  • the terminal device activates RLC3 and RLC4, that is, the terminal device can perform data transmission with the target network device through RLC3 and RLC4.
  • the second indication information is a MAC CE.
  • the terminal device activates the PDCP replication function of the first RB in the target network device, which can also be understood as: when the terminal device considers that the above-mentioned handover is completed, the terminal device activates the first RB in the target network device. PDCP replication function.
  • the terminal device After the terminal device considers that the random access process between the terminal device and the target network device is successful, it activates the PDCP replication function of the first RB in the target network device.
  • the terminal device performs random access with the target network device using the two-step random access method
  • the terminal device receives a message B from the target network device (message B includes one or more of an RRC setup message and an RRC recovery message)
  • the RRC layer of the terminal device instructs the PDCP layer to activate the PDCP replication function of the first RB in the target network device
  • the terminal device adopts the four-step random access method
  • the terminal device When performing random access with the target network device, when the terminal device receives the message 4 of the target network device (the message 4 includes one or more of the RRC setup message and the RRC recovery message), the RRC layer of the terminal device parses the message 4 by When it is considered that the random access procedure is successful
  • the terminal device After the terminal device sends a handover complete message (that is, the RRC reconfiguration complete message in S507 ) to the target network device on the time-frequency resources of the target network device, it considers that the above-mentioned handover has been completed, and at this time, the terminal device Activate the PDCP replication function of the first RB on the target network device.
  • this method can be applied to handover with random access, that is, after the random access process with the target network device is successful (S506 in FIG. 5 ), the terminal device sends a handover complete message (S506 in FIG. 5 ).
  • this method can also be applied to handover without random access (Random Access-less, RACH-less), that is, after the target network device allows the terminal device to access (S504 in Figure 5),
  • the terminal device does not initiate a random access process with the target network device, but the target network device directly allocates time-frequency resources to the terminal device, and the terminal device sends a handover complete message to the target network device on the time-frequency resource.
  • the terminal device can determine whether the handover is completed.
  • the terminal device can immediately activate the PDCP replication function of the first RB in the target network device, so that the terminal device can Perform data transmission based on PDCP replication with the source network device.
  • the data transmission based on PDCP replication can be performed with the target network device immediately, so that the data transmission based on PDCP replication is not interrupted due to the handover, which improves the data transmission efficiency. reliability.
  • the terminal device no longer transmits the data of the first RB with the source network device through the RLC entity corresponding to the source network device.
  • the terminal device activates the RLC entity corresponding to the target network device associated with the first RB by using, but not limited to, the methods in the above methods 1 and 2, the terminal device communicates with the target through the RLC entity associated with the first RB and corresponding to the target network device.
  • the network device transmits the data of the first RB.
  • the terminal device delivers to the RLC entity corresponding to the target network device (that is, the RLC entity associated with the second PDCP entity) the data packet of the first RB (corresponding to RLC3 and RLC4 in FIG. ).
  • the data packet may be a PDCP control PDU and/or a PDCP data PDU, and the data packet may be a newly transmitted data packet or a retransmitted data packet.
  • the above embodiment provides a method for data transmission.
  • the source network device instructs the terminal device whether to continue to use the terminal device during the period after the above-mentioned handover is initiated and before the above-mentioned handover is completed.
  • the RLC entity corresponding to the target network device transmits the data of the first RB with the source network device.
  • the source network device may instruct the source network device to continue to use the service corresponding to the target network device before the handover is initiated during the period after the above-mentioned handover is initiated and before the above-mentioned handover is completed.
  • the RLC entity and the source network device transmit the data of the first RB, so as to ensure that during the handover process, the terminal device can transmit the same data packets copied through the PDCP layer through at least two RLC entities and the network device.
  • the 0-millisecond interruption of the PDCP replication function during the handover process improves the reliability of the URLLC service during the handover process.
  • the source network device may indicate that after the above handover is initiated, the RLC entity corresponding to the target network device before the handover is initiated and the source network device will not be used to transmit the first RB data.
  • the source network device can flexibly indicate the data transmission mode when switching services with different reliability requirements, which improves the flexibility of data transmission.
  • the terminal device can use the PDCP replication function to transmit the data of the first RB immediately with the target network device, so that the terminal device can still use the PDCP replication function after switching to the target network device.
  • the device transmits the data of the first RB, which improves the reliability of data transmission.
  • S607 may be replaced by S607a.
  • the source network device sends second configuration information to the terminal device.
  • the terminal device receives second configuration information from the target network device, where the second configuration information is used to configure the first RB in the target network device.
  • PDCP replication function wherein, the PDCP duplication function of the first RB in the target network device can be understood as: the CA duplication function of the first RB in the target network device.
  • the second configuration information may be carried in an RRC reconfiguration message, an RRC setup message, or an RRC recovery message.
  • the second configuration information and the foregoing first configuration information may be carried in the same or different messages.
  • the source network device before sending the second configuration information to the terminal device, receives a handover request confirmation message (as shown in S604 ) from the target network device, where the handover request confirmation message includes the second configuration information. That is, the source network device forwards the second configuration information from the target network device to the terminal device.
  • the second configuration information may be carried on the RRC reconfiguration message in S605.
  • the second configuration information includes an identifier of the first RB.
  • the second configuration information also includes any one of the following parameters:
  • the identifier of the primary RLC entity associated with the first RB is associated with an RLC entity, and the main RLC entity cannot be dynamically deactivated.
  • the terminal device can transmit the PDCP control PDU with the network device through the main RLC entity.
  • the first RB can be associated with one or more secondary RLC entities, and the secondary RLC entities can be dynamically deactivated.
  • the terminal device cannot transmit PDCP control PDUs through the secondary RLC entity, but can transmit PDCP control PDUs through the secondary RLC entity.
  • the terminal device After receiving the above-mentioned second configuration information, the terminal device focuses on configuring the PDCP entity associated with the first RB.
  • reconfiguring the PDCP entity associated with the first RB can also be understood as: re-establishing the PDCP entity associated with the first RB, and the new PDCP entity is the second PDCP entity.
  • the PDCP entity ie, the second PDCP entity
  • the PDCP entity that re-establishes the association of the first RB is used for description.
  • the second PDCP entity may establish an encryption function suitable for the target network device, that is, the second PDCP entity uses the key (hereinafter referred to as the second key) applicable to the target station to encrypt the data received by the second PDCP entity. Packets are encrypted and decrypted.
  • the first key and the second key may be the same or different.
  • the second PDCP entity may establish an integrity protection function suitable for the target network device.
  • the second PDCP entity may further establish a header compression function suitable for the target network device.
  • the source network device further sends third indication information to the terminal device, and correspondingly, the terminal device receives the third indication information from the source network device.
  • the third indication information indicates whether the first RLC entity is the RLC entity corresponding to the target network device after the handover is completed, wherein the first RLC entity is the RLC entity corresponding to the target network device before the handover is initiated.
  • the third indication information is used to indicate whether the terminal device associates the first RLC entity with the second PDCP.
  • the third indication information may be carried in an RRC reconfiguration message, an RRC setup message, or an RRC recovery message.
  • the terminal device associates the first RLC entity with the second PDCP; if the value of the third indication information is the fourth value, the terminal device associates the first RLC entity with the second PDCP.
  • the first RLC entity is not associated to the second PDCP.
  • the third value may be "true” or “enabled”
  • the fourth value may be "false” or "disabled”.
  • the third indication information and the first indication information are the same message.
  • the value of the first indication information is the first value, it means that the terminal device associates the first RLC entity with the second PDCP; when the value of the first indication information is the second value, it means that the terminal device does not associate the first RLC entity with the second PDCP.
  • An RLC entity is associated to the second PDCP.
  • the terminal device establishes a new RLC entity associated with the first RB (ie, the RLC entity associated with the second PDCP) according to the second configuration information and the third indication information.
  • the RLC entity associated with the second PDCP before the above-mentioned handover is completed, the RLC entity associated with the second PDCP is in a suspended state, and only after the above-mentioned handover is completed, the RLC entity associated with the second PDCP entity will replace the RLC entity associated with the first PDCP entity Performs the functions of the RLC entity.
  • FIG. 9(a) shows that before the handover is initiated, the first PDCP entity associated with the first RB and the RLC entity associated with the first PDCP entity (that is, the first configuration information is the terminal device) The configured first PDCP entity and the RLC entity associated with the first PDCP entity).
  • RLC1 is the RLC entity corresponding to the source network device
  • RLC2 is the RLC entity (ie, the first RLC entity) corresponding to the target network device.
  • the new RLC entities for which the terminal device establishes the first RB association are RLC2 and RLC3 (as shown in (b) in FIG. 9 ).
  • the terminal device can use RLC2 and RLC3 to perform CA duplication-based data transmission with the target network device after the above handover is completed.
  • the initial state of the CA duplication function of RLC2 and RLC3 in the target network device is deactivated, that is, before the CA duplication function is activated, the terminal device cannot perform CA duplication-based data transmission with the target network device through RLC2 and RLC3.
  • the state of the RLC3 is deactivated, that is, the terminal device cannot perform data transmission with the target network device through the RLC3.
  • the terminal device activates the PDCP duplication function (that is, the CA duplication function) of the first RB in the target network device.
  • the terminal device activates the RLC entity associated with the first RB and corresponding to the target network device.
  • the terminal device activates the PDCP replication function of the first RB on the target network device:
  • the target network device sends the second indication information to the terminal device, correspondingly, the terminal device receives information from the target The second indication information of the network device.
  • the second indication information is used to activate the PDCP replication function of the first RB on the target network device can.
  • the terminal device after receiving the second indication information, the terminal device activates RLC2 and RLC3, that is, the terminal device can perform data transmission with the target network device through RLC2 and RLC3.
  • the second indication information is a MAC CE.
  • the terminal device activates the PDCP replication function of the first RB in the target network device, which can also be understood as: when the terminal device considers that the above-mentioned handover is completed, the terminal device activates the first RB in the target network device. PDCP replication function.
  • the terminal device can determine whether the handover is completed.
  • the terminal device can immediately activate the PDCP replication function of the first RB in the target network device, so that the terminal device can communicate with the target network device before the handover is completed.
  • the source network device performs data transmission based on PDCP replication. After the switching is completed, it can immediately perform data transmission based on PDCP replication with the target network device, so that the data transmission based on PDCP replication is not interrupted due to switching, which improves the reliability of data transmission. sex.
  • the terminal device no longer transmits the data of the first RB with the source network device through the RLC entity (for example, RLC1 in FIG. 9 ) associated with the source network device.
  • the terminal device activates the RLC entity corresponding to the target network device associated with the first RB by using, but not limited to, the methods in the above-mentioned methods 1 and 2, the terminal device communicates with the target network through the RLC entity associated with the first RB and corresponding to the target network device.
  • the device transmits the data of the first RB.
  • the terminal device delivers the data packet encrypted with the secret key of the target network device to the RLC entity associated with the first RB and corresponding to the target network device.
  • the RLC entity associated with the first RB and corresponding to the target network device includes the first RLC entity (exemplarily, the first RLC entity corresponds to RLC2 in FIG. 9 ).
  • the RLC entity corresponding to the target network device further includes a second RLC entity, wherein the second RLC entity is another RLC entity (exemplarily, In Figure 9 the second RLC entity corresponds to RLC3).
  • the above-mentioned data packet may be a PDCP control PDU and/or a PDCP data PDU, and the data packet may be a newly transmitted data packet or a retransmitted data packet.
  • the data transmitted by the source network device to the terminal device through the first RLC entity is encrypted with the first key.
  • the data transmitted by the target network device to the terminal device through the first RLC entity is encrypted using the second secret key.
  • the terminal device and the network device have deviations in the judgment of the moment when the handover is completed, the terminal device cannot know whether the data received by the first RLC entity uses the first secret key or the second secret key. key encryption.
  • the embodiment of the present application provides two optional ways:
  • the source network device sends fourth indication information to the terminal device, and correspondingly, the terminal device receives the fourth indication information from the source network device.
  • the fourth indication information indicates that the data received by the terminal device after receiving the fourth indication information is encrypted with the second key.
  • the fourth indication information may be an RRC message or a MAC CE.
  • Manner 2 The terminal device maintains a timer, and starts the timer when the terminal device considers that the above handover is completed. When the timer expires, the terminal device considers that the data received after the timer expires is encrypted with the second key. Optionally, the duration of the timer is preset.
  • the terminal device can pass the first RLC entity and after the handover is completed.
  • the RLC entities (the second RLC entity) other than the first RLC entity in the RLC entities corresponding to the target network device perform data transmission based on PDCP replication with the target network device, so that the data transmission based on PDCP replication of the first RB is not affected by the data transmission. It is interrupted by switching, which improves the reliability of data transmission. Meanwhile, in this way, the target network device only needs to configure the second RLC entity, and the terminal device can perform data transmission based on PDCP replication with the target network device, thereby reducing the overhead of resource configuration.
  • S607 may also be replaced by S607b.
  • the source network device sends second configuration information to the terminal device.
  • the terminal device receives second configuration information from the target network device, where the second configuration information is used to configure the target network associated with the first RB
  • the RLC entity corresponding to the device may be carried in an RRC reconfiguration message, an RRC setup message, or an RRC recovery message.
  • the second configuration information and the foregoing first configuration information may be carried in the same or different messages.
  • the terminal device After receiving the above-mentioned second configuration information, the terminal device focuses on configuring the PDCP entity associated with the first RB.
  • reconfiguring the PDCP entity associated with the first RB can also be understood as: re-establishing the PDCP entity associated with the first RB, and the new PDCP entity is the second PDCP entity.
  • the PDCP entity ie, the second PDCP entity
  • the PDCP entity that re-establishes the association of the first RB is used for description.
  • the second PDCP entity may establish an encryption function suitable for the target network device, that is, the second PDCP entity uses the key (hereinafter referred to as the second key) applicable to the target station to encrypt the data received by the second PDCP entity. Packets are encrypted and decrypted.
  • the first key and the second key may be the same or different.
  • the second PDCP entity may establish an integrity protection function suitable for the target network device.
  • the second PDCP entity may further establish a header compression function suitable for the target network device.
  • the terminal device also establishes a new RLC entity associated with the first RB (ie, the RLC entity associated with the second PDCP).
  • a new RLC entity associated with the first RB ie, the RLC entity associated with the second PDCP.
  • the RLC entity associated with the second PDCP is in a suspended state, and only after the above-mentioned handover is completed, the RLC entity associated with the second PDCP entity will replace the RLC entity associated with the first PDCP entity Performs the functions of the RLC entity.
  • FIG. 10( a ) shows the first PDCP entity associated with the first RB and the RLC entity associated with the first PDCP entity before handover is initiated.
  • RLC1 is the RLC entity corresponding to the source network device
  • RLC2 is the RLC entity (ie, the first RLC entity) corresponding to the target network device.
  • Figure 10(b) shows the second PDCP entity associated with the first RB and the RLC entity (ie RLC3) associated with the second PDCP entity after the handover is completed.
  • the state of the RLC3 is deactivated, that is, the terminal device cannot perform data transmission with the target network device through the RLC3.
  • the terminal device activates the RLC entity corresponding to the target network device.
  • the terminal device activates the RLC entity corresponding to the target network device.
  • the terminal device activates the RLC entity corresponding to the target network device:
  • the target network device sends the second indication information to the terminal device, correspondingly, the terminal device receives information from the target The second indication information of the network device.
  • the second indication information is used to activate the RLC entity corresponding to the target network device.
  • the terminal device after receiving the second indication information, the terminal device activates RLC3, that is, the terminal device can perform data transmission with the target network device through RLC3.
  • the second indication information is a MAC CE.
  • the terminal device activates the RLC entity corresponding to the target network device, which can also be understood as: when the terminal device considers that the above handover is completed, the terminal device activates the RLC entity corresponding to the target network device.
  • the terminal device After the terminal device considers that the random access process between the terminal device and the target network device is successful, it activates the RLC entity corresponding to the target network device.
  • the MAC layer of the terminal device indicates to the RRC layer that the above-mentioned uplink data switching has been completed.
  • the terminal device sends a handover complete message (that is, an RRC reconfiguration complete message) to the target network device on the time-frequency resources of the target network device, it considers that the above-mentioned uplink data handover has been completed. At this time, the terminal device Activate the RLC entity corresponding to the target network device.
  • this method can be applied to handover with random access or handover without random access, wherein, for handover with random access and handover without random access, refer to the description of S607.
  • the terminal device can determine whether the handover is completed, and when the terminal device considers that the handover is completed, the terminal device immediately activates the RLC entity corresponding to the target network device, so that the terminal device can communicate with the source network device before the handover is completed.
  • Data transmission based on PDCP replication can immediately perform data transmission with the target network device after the handover is completed, which improves the reliability of data transmission.
  • the terminal device After the terminal device activates the RLC entity corresponding to the target network device associated with the first RB by using, but not limited to, the methods in the above-mentioned modes 1 and 2, the terminal device submits to the second RLC entity a data packet encrypted with the secret key of the target network device,
  • the second RLC entity is another RLC entity except the first RLC entity among the RLC entities corresponding to the target network device (exemplarily, in FIG. 10 , the second RLC entity corresponds to RLC3).
  • the above-mentioned data packets may be PDCP control PDUs and/or PDCP data PDUs, and the data packets may be newly transmitted data packets or retransmitted data packets.
  • the terminal device delivers the data packet encrypted by using the key of the source network device to the first RLC entity.
  • the PDCP entity of the source network device converts the PDCP PDU into PDCP SDU and forwards it to the target network device.
  • the PDCP entity of the terminal device copies the data into two copies, and one copy can be sent to the source network through the RLC entity (first RLC entity) corresponding to the target network device before the handover is initiated.
  • the device sends data, and then forwards it to the target network device through the Xn interface through the source network device, and the other can be directly sent to the target network device through the RLC entity (second RLC entity) corresponding to the target network device after the handover is completed, improving data transmission. reliability.
  • the source network device and the target network device can send the same data to the terminal: the PDCP entity of the source network device converts a PDCP SDU into a PDCP PDU and sends it to the terminal device through the first RLC entity.
  • the source network device can also Forward another identical PDCP SDU to the target network device through the Xn interface, and the PDCP entity of the target network device converts the PDCP SDU into PDCP PDU and sends it to the terminal device through the second RLC entity; or, the PDCP entity of the target network device sends a After the PDCP SDU is converted into PDCP PDU, it is sent to the terminal device through the second RLC entity.
  • the target network device can also forward another identical PDCP SDU to the source target network device through the Xn interface.
  • the PDCP entity of the source network device converts the PDCP SDU. After the PDCP PDU is sent to the terminal device through the first RLC entity, the reliability of data transmission is improved.
  • the network device and the terminal device include corresponding hardware structures and/or software modules for performing each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in the present application can be implemented in the form of hardware, software, or a combination of hardware and software. Whether a function is performed by hardware, software, or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • FIG. 11 and FIG. 12 are schematic structural diagrams of possible communication apparatuses provided by the embodiments of the present application. These communication apparatuses can be used to implement the functions of the terminal device or the source network device in the above method embodiments, and thus can also achieve the beneficial effects possessed by the above method embodiments.
  • the communication device may be the terminal device 110 shown in FIG. 1 , the network device 120 or the network device 130 shown in FIG. 1 , or the terminal device or the network device. modules (such as chips).
  • the communication device 1100 includes a processing unit 1110 and a transceiver unit 1120 .
  • the communication apparatus 1100 is configured to implement the function of the terminal device or the source network device in the method embodiment shown in FIG. 6 above.
  • the communication apparatus 1100 may include a module for implementing any function or operation of the terminal device or the source network device in the method embodiment shown in FIG. 6, and the module may be implemented in whole or in part through software, hardware, firmware or any combination thereof.
  • the transceiver unit 1120 is configured to receive first configuration information from the source network device, where the first configuration information is used to configure the first configuration information of the terminal device.
  • the packet data convergence protocol PDCP replication function of a radio bearer RB in the source network device is further configured to receive first indication information from the source network device, the first indication information indicates that when the terminal device transfers from the source network device to the target network Whether to maintain the PDCP replication function of the first RB in the source network device during device switching; the transceiver unit 1120 is further configured to transmit the data of the first RB with the source network device according to the above-mentioned first indication information.
  • the transceiver unit 1120 is configured to send first configuration information to the terminal device, where the first configuration information is used to configure the first configuration of the terminal device.
  • the transceiver unit 1120 is further configured to send first indication information to the terminal device, where the first indication information indicates when the terminal device switches from the source network device to the target network device. , whether to maintain the PDCP duplication function of the first RB in the source network device; the transceiver unit 1120 is further configured to transmit the data of the first RB with the source network terminal device according to the above-mentioned first indication information.
  • the communication device 1200 includes a processor 1210 and an interface circuit 1220 .
  • the processor 1210 and the interface circuit 1220 are coupled to each other.
  • the interface circuit 1220 can be a transceiver or an input-output interface.
  • the communication apparatus 1200 may further include a memory 1230 for storing instructions executed by the processor 1210 or input data required by the processor 1210 to execute the instructions or data generated after the processor 1210 executes the instructions.
  • the processor 1210 is used to implement the function of the above-mentioned processing unit 1110
  • the interface circuit 1220 is used to implement the function of the above-mentioned transceiver unit 1120 .
  • the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiments.
  • the terminal device chip receives information from other modules (such as a radio frequency module or an antenna) in the terminal device, and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules (such as a radio frequency module or an antenna) in the terminal device antenna) to send information, the information is sent by the terminal equipment to the network equipment.
  • modules such as a radio frequency module or an antenna
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules (such as a radio frequency module or an antenna) in the network device, and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna). antenna) to send information, the information is sent by the network equipment to the terminal equipment.
  • modules such as a radio frequency module or an antenna
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the processor may be a random access memory (Random Access Memory, RAM), a flash memory, a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable memory
  • RAM Random Access Memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • EEPROM Electrically erasable programmable read only memory
  • registers hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art middle.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in a network device or in an end device.
  • the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, a network device, a terminal device, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted over a computer-readable storage medium.
  • the computer-readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server that integrates one or more available media.
  • the usable media can be magnetic media, such as floppy disks, hard disks, magnetic tapes; optical media, such as DVD; and semiconductor media, such as solid state disks (SSD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了用于切换的数据传输的方法和装置。终端设备接收来自源网络设备的第一指示信息,该第一指示信息指示当终端设备从源网络设备向目标网络设备切换时,是否保持终端设备的第一无线承载RB在源网络设备的分组数据汇聚协议PDCP复制功能,终端设备根据该第一指示信息与源网络设备传输第一RB的数据。通过实施该方法,可以提高切换过程中数据传输的可靠性。同时,终端设备可以根据源网络设备的指示灵活确定可靠性要求不同的业务在切换时的数据传输方式,提高了数据传输的灵活性。

Description

用于切换的数据传输的方法和装置
本申请要求在2020年06月30日提交中国专利局、申请号为202010620215.9、申请名称为“用于切换的数据传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信领域,尤其涉及数据传输的方法和装置。
背景技术
第五代(5th generation,5G)移动通信系统与第四代(4th generation,4G)移动通信系统相比的一大显著特征就是增加了对超可靠低时延通信(ultra-reliable and low-latency communications,URLLC)业务的支持。URLLC的业务种类包括很多种,典型的用例包括工业控制、无人驾驶、远程手术和智能电网等。对于URLLC业务,一个典型需求是在1毫秒(millisecond,ms)内发送32字节的数据的可靠性要达到99.999%。需要指出的是,上述性能指标仅是个示例,不同的URLLC业务可能对可靠性有不同的需求,比如在某些极端苛刻的工业控制应用场景中,URLLC业务数据的传输成功概率需要在0.25ms内达到99.9999999%。
发明内容
本申请提供了一种数据传输的方法和装置,用于提升数据传输的可靠性。
第一方面,本申请提供了一种数据传输的方法,该方法应用于终端设备从源网络设备向目标网络设备切换。该方法的执行主体为终端设备或终端设备中的一个模块,这里以终端设备为执行主体为例进行描述。终端设备接收来自源网络设备的第一配置信息,该第一配置信息用于配置终端设备的第一无线承载RB在源网络设备的分组数据汇聚协议PDCP复制功能;终端设备接收来自源网络设备的第一指示信息,该第一指示信息指示当终端设备从源网络设备向目标网络设备切换时,是否保持第一RB在源网络设备的PDCP复制功能;终端设备根据第一指示信息与源网络设备传输第一RB的数据。其中,终端设备在切换发起前,终端设备与源网络设备和目标网络设备进行基于双连接的PDCP复制(也称:DC duplication)传输,即,终端设备在切换发起前,终端设备使用源网络设备对应的RLC实体与目标网络设备对应的RLC实体,与源网络设备使用DC duplication功能进行数据传输。
通过实施第一方面所描述的方法,当终端设备从源网络设备向目标网络设备切换时,终端设备可以根据源网络设备的第一指示信息确定在切换时是否继续保持第一RB在源网络设备的PDCP复制功能。对于可靠性要求较高的业务,例如当第一RB承载的业务为URLLC业务时,源网络设备可以指示在切换时继续保持第一RB在源网络设备的PDCP复制功能,从而可以保证终端设备在切换时至少可以通过两个RLC实体与源网络设备传输经过PDCP层复制的相同的数据包,从而实现URLLC业务在切换过程中PDCP复制功能的0毫秒中断,提高了URLLC业务在切换过程中的可靠性。针对可靠性要求不高的业务,例如当第一RB承载的业务为eMBB业务时,源网络设备可以指示在切换时不保持第一RB在源网络设备的PDCP复制功能,即,在切换时第一RB在源网络设备的PDCP复制功能被释放。通过实施上述方法,终端设备可以根据源网络设备的指示灵活确定可靠性要求不同的业务在切换时的数据传输方式,提高了数据传输的灵活性。
在第一方面的一种可能的实现方式中,上述保持第一RB在源网络设备的PDCP复制功能,具体包括:保持第一无线链路控制RLC实体,其中,该第一RLC实体为切换发起前目标网络设备对应的RLC实体。保持第一RLC实体,也可以理解为:第一RLC实体不被释放,或者也可以理解为:该第一RLC实体处于可用的状态,终端设备可以通过第一RLC实体与源网络设备传输数据。
通过实施这种方式,终端设备根据源网络设备的第一指示信息确定是否继续使用切换发起前目标网络设备对应的第一RLC实体与源网络设备传输第一RB的数据。针对可靠性要求较高的业务,例如当第一RB承载的业务为URLLC业务时,终端设备可以在切换时继续使用第一RLC实体与源网络设备传输第一RB的数据,从而可以保证终端设备至少可以通过两个RLC实体(一个是第一RLC实体,另一个是源网络设备对应的RLC实体)与源网络设备传输经过PDCP层复制的相同的数据包,提高了URLLC业务在切换过程中的可靠性。
在第一方面的一种可能的实现方式中,当第一指示信息指示保持第一RB在源网络设备的PDCP复制功能时,上述根据第一指示信息与源网络设备传输第一RB的数据,具体包括:当上述切换发起后,向第一RLC实体递交使用源网络设备的秘钥加密的数据包。
在第一方面的一种可能的实现方式中,终端设备接收来自源网络设备的第二配置信息,该第二配置信息用于配置第一RB在目标网络设备的PDCP复制功能,其中,第一RB在目标网络设备的PDCP复制功能可以是第一RB在目标网络设备的基于载波聚合的PDCP复制(也称:CA duplication)功能。当上述切换完成后,终端设备激活第一RB在目标网络设备的PDCP复制功能。
通过实施该方式,当终端设备认为切换完成时,终端设备可以立即激活第一RB在目标网络设备的PDCP复制功能,从而使得终端设备在切换完成前可以和源网络设备进行基于PDCP复制的数据传输,在切换完成后,终端设备可以立即和目标网络设备进行基于PDCP复制的数据传输,从而使得终端设备与网络设备基于PDCP复制的数据传输不因切换而中断,提高了数据传输的可靠性。
在第一方面的一种可能的实现方式中,终端设备接收来自源网络设备的第二配置信息,该第二配置信息用于配置第一RB在目标网络设备的PDCP复制功能;终端设备接收来自目标网络设备的第二指示信息,该第二指示信息用于激活第一RB在目标网络设备的PDCP复制功能。其中,第一RB在目标网络设备的PDCP复制功能可以是第一RB在目标网络设备的CA duplication功能。
通过实施该方式,终端设备可以根据目标网络设备的第二指示信息激活目标网络设备进行基于PDCP复制的数据传输,从而提高了数据传输的灵活性,同时,通过第二指示信息指示激活的方式,使得终端设备与目标网络设备对于激活时刻的理解一致,从而提高了数据传输的可靠性。
在第一方面的一种可能的实现方式中,上述激活第一RB在目标网络设备的PDCP复制功能,具体包括:激活第一RB关联的与目标网络设备对应的RLC实体。
在第一方面的一种可能的实现方式中,上述第一指示信息还指示当上述切换完成后,上述第一RLC实体为目标网络设备对应的RLC实体。具体地,在上述切换完成前,该第一RLC实体是用于终端设备与源网络设备进行PDCP复制传输的RLC实体,源网络设备通过第一指示信息指示:在上述切换完成后,该第一RLC实体是用于终端设备与目标网络设备进行PDCP复制传输的RLC实体。
在第一方面的一种可能的实现方式中,终端设备接收来自源网络设备的第三指示信息, 该第三指示信息指示当上述切换完成后,上述第一RLC实体为目标网络设备对应的RLC实体。具体地,在上述切换完成前,该第一RLC实体是用于终端设备与源网络设备进行PDCP复制传输的RLC实体,源网络设备通过第三指示信息指示:在上述切换完成后,该第一RLC实体是用于终端设备与目标网络设备进行PDCP复制传输的RLC实体。
在第一方面的一种可能的实现方式中,终端设备向第二RLC实体递交使用目标网络设备的秘钥加密的数据包,该第二RLC实体为第一RB关联的RLC实体中的一个RLC实体,该第二RLC实体为所述切换完成后所述目标网络设备对应的RLC实体。其中,第二RLC实体与第一RLC实体不同。
在第一方面的一种可能的实现方式中,当上述切换完成后,终端设备向第一RLC实体递交使用目标网络设备的秘钥加密的数据包。
通过实施该方式,将切换发起前目标网络设备对应的RLC实体(第一RLC实体)转变为切换完成后目标网络设备对应的RLC实体,使得终端设备可以通过第一RLC实体和切换完成后目标网络设备对应的RLC实体中除第一RLC实体之外的RLC实体(第二RLC实体)与目标网络设备进行基于CA duplication的数据传输,提高了数据传输的可靠性。同时,通过这种方式,目标网络设备只需要配置第二RLC实体,终端设备就可以在切换完成后与目标网络设备进行基于CA duplication的数据传输,从而降低了资源配置的开销。
在第一方面的一种可能的实现方式中,当上述切换完成后,终端设备向第一RLC实体递交使用源网络设备的秘钥加密的数据包。
在第一方面的一种可能的实现方式中,终端设备向第二RLC实体递交使用目标网络设备的秘钥加密的数据包,该第二RLC实体为第一RB关联的RLC实体中的一个RLC实体,该第二RLC实体为所述切换完成后所述目标网络设备对应的RLC实体。其中,第二RLC实体与第一RLC实体不同。
在第一方面的一种可能的实现方式中,终端设备接收到来自源网络设备的切换命令时,表示切换发起;或者,源网络设备接收到来自目标网络设备的切换请求确认消息时,表示切换发起;或者,源网络设备向目标网络设备发送切换请求命令时,表示切换发起。
在第一方面的一种可能的实现方式中,终端设备向目标网络设备发起随机接入过程后,成功接入到目标网络设备时,表示切换完成;或者,终端设备向目标网络设备发送用于结束切换过程的RRC重配置消息时,表示切换完成;或者,目标网络设备接收到来自终端设备的用于结束切换过程的RRC重配置消息时,表示切换完成。
第二方面,本申请提供了一种数据传输的方法,该方法应用于终端设备从源网络设备向目标网络设备切换。该方法的执行主体为源网络设备或源网络设备中的一个模块,这里以源网络设备为执行主体为例进行描述。源网络设备向终端设备发送第一配置信息,该第一配置信息用于配置终端设备的第一无线承载RB在源网络设备的分组数据汇聚协议PDCP复制功能;源网络设备向终端设备发送第一指示信息,该第一指示信息指示当终端设备从源网络设备向目标网络设备切换时,是否保持第一RB在源网络设备的PDCP复制功能;源网络设备根据第一指示信息与终端设备传输所述第一RB的数据。
通过实施第二方面所描述的方法,当终端设备从源网络设备向目标网络设备切换时,源网络设备通过第一指示信息指示终端设备在切换时是否继续保持第一RB在源网络设备的PDCP复制功能。针对可靠性要求较高的业务,例如URLLC业务,源网络设备可以指示在切换时继续保持第一RB在源网络设备的PDCP复制功能,从而可以保证终端设备至少可以通过两个RLC实体与源网络设备传输经过PDCP层复制的相同的数据包,从而实现URLLC业务在切换 过程中PDCP复制功能的0毫秒中断,提高了URLLC业务在切换过程中的可靠性。针对可靠性要求不高的业务,例如当第一RB承载的业务为eMBB业务时,源网络设备可以指示在切换时不保持第一RB在源网络设备的PDCP复制功能,即,在切换时第一RB在源网络设备的PDCP复制功能被释放。通过实施上述方法,源网络设备可以灵活指示可靠性要求不同的业务在切换时的数据传输方式,提高了数据传输的灵活性。
在第二方面的一种可能的实现方式中,上述保持第一RB在源网络设备的PDCP复制功能,具体包括:保持第一无线链路控制RLC实体,其中,该第一RLC实体为切换发起前目标网络设备对应的RLC实体。
在第二方面的一种可能的实现方式中,当第一指示信息指示保持第一RB在源网络设备的PDCP复制功能时,上述根据第一指示信息与源网络设备传输第一RB的数据,具体包括:当上述切换发起后,接收来自第一RLC实体的使用源网络设备的秘钥加密的数据包。
在第二方面的一种可能的实现方式中,向终端设备发送第二配置信息,该第二配置信息用于配置第一RB在目标网络设备的PDCP复制功能。
在第二方面的一种可能的实现方式中,第一指示信息还指示当上述切换完成后,上述第一RLC实体为目标网络设备对应的RLC实体。具体地,在上述切换完成前,该第一RLC实体是用于终端设备与源网络设备进行PDCP复制传输的RLC实体,源网络设备通过第一指示信息指示:在上述切换完成后,该第一RLC实体是用于终端设备与目标网络设备进行PDCP复制传输的RLC实体。
在第二方面的一种可能的实现方式中,源网络设备向终端设备发送第三指示信息,该第三指示信息指示当上述切换完成后,上述第一RLC实体为目标网络设备对应的RLC实体。具体地,在上述切换完成前,该第一RLC实体是用于终端设备与源网络设备进行PDCP复制传输的RLC实体,源网络设备通过第三指示信息指示:在上述切换完成后,该第一RLC实体是用于终端设备与目标网络设备进行PDCP复制传输的RLC实体。
在第二方面的一种可能的实现方式中,当上述切换完成后,源网络设备接收来自第一RLC实体的使用源网络设备的秘钥加密的数据包;源网络设备向目标网络设备转发该使用源网络设备的秘钥加密的数据包。对应的,当上述切换完成后,目标网络设备接收源网络设备转发的使用源网络的秘钥加密的数据包。在一种可能的设计中,目标网络设备接收来自第二RLC实体的使用目标网络设备的秘钥加密的数据包,该第二RLC实体为述第一RB关联的RLC实体中的一个RLC实体,该第二RLC实体为所述切换完成后所述目标网络设备对应的RLC实体。其中,第二RLC实体与第一RLC实体不同。
通过实施该方式,当上述切换完成后,终端设备可以通过第一RLC实体和第二RLC实体与目标网络设备传输相同的数据。示例性地,终端设备将一份数据通过第二RLC实体发送给目标网络设备,终端设备将另一份相同的数据通过第一RLC实体发送给源网络设备,源网络设备通过第一RLC实体接收到来自终端设备的数据时,向目标网络设备转发该数据,从而使得在切换完成后,终端设备可以通过至少两个RLC实体(俗称:两条腿)与目标网络设备进行数据传输,提高了数据传输的可靠性。
在第二方面的一种可能的实现方式中,终端设备接收到来自源网络设备的切换命令时,表示切换发起;或者,源网络设备接收到来自目标网络设备的切换请求确认消息时,表示切换发起;或者,源网络设备向目标网络设备发送切换请求命令时,表示切换发起。
在第二方面的一种可能的实现方式中,终端设备向目标网络设备发起随机接入过程后,成功接入到目标网络设备时,表示切换完成;或者,终端设备向目标网络设备发送用于结束 切换过程的RRC重配置消息时,表示切换完成;或者,目标网络设备接收到来自终端设备的用于结束切换过程的RRC重配置消息时,表示切换完成。
第三方面,提供了一种通信装置,包括用于实现前述第一方面、第一方面的任意可能的实现方式中的方法的功能模块。
第四方面,提供了一种通信装置,包括用于实现前述第二方面、第二方面的任意可能的实现方式中的方法的功能模块。
第五方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面、第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种通信装置,包括处理器和接口电路,该接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第二方面、第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现前述第一方面、第一方面的任意可能的实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现前述第二方面、第二方面的任意可能的实现方式中的方法。
第九方面,提供了一种包含指令的计算机程序产品,当该指令被运行时,实现前述第一方面、第一方面的任意可能的实现方式中的方法。
第十方面,提供了一种包含指令的计算机程序产品,当该指令被运行时,实现前述第二方面、第二方面的任意可能的实现方式中的方法。
第十一方面,提供了一种计算机程序,该计算机程序包括代码或指令,当该代码或指令被运行时,实现前述第一方面、第一方面的任意可能的实现方式中的方法。
第十二方面,提供了一种计算机程序,该计算机程序包括代码或指令,当该代码或指令被运行时,实现前述第二方面、第二方面的任意可能的实现方式中的方法。
第十三方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述第一方面和第二方面描述的至少一种方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十四方面,提供一种通信系统,所述系统包括第三方面或者第五方面所述的装置(如终端设备)、和第四方面或者第六方面所述的装置(如源网络设备)。
附图说明
图1为本申请实施例应用的一种通信系统的架构示意图;
图2为本申请实施例应用的一种CU和DU分离的架构示意图;
图3为本申请实施例提供的一种DC场景下实现PDCP duplication功能的架构示意图;
图4为本申请实施例提供的一种CA场景下实现PDCP duplication功能的架构示意图;
图5为为本申请实施例提供的一种切换流程的示意图;
图6为本申请实施例提供的一种数据传输方法的流程示意图;
图7为本申请实施例提供的实现PDCP duplication功能的示意图;
图8为本申请实施例提供的一种第一消息的结构示意图;
图9和图10为本申请实施例提供的实现PDCP duplication功能的示意图;
图11和图12为本申请实施例提供的可能的通信装置的结构示意图。
具体实施方式
本申请实施例提供的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、WiFi系统、未来的通信系统、或者多种通信系统融合的系统等,本申请实施例不做限定。其中,5G还可以称为新无线(new radio,NR)。
本申请实施例提供的技术方案可以应用于各种通信场景,例如可以应用于以下通信场景中的一种或多种:增强移动宽带(enhanced mobile broadband,eMBB)、超可靠低时延通信(ultra-reliable low-latency communication,URLLC)、机器类型通信(machine type communication,MTC)、大规模机器类型通信(massive machine type communications,mMTC)、设备到设备(device-to-device,D2D)、车辆外联(vehicle to everything,V2X)、车辆到车辆(vehicle to vehicle,V2V)、和物联网(internet of things,IoT)等。
本申请实施例提供的技术方案可以应用于通信设备间的通信。通信设备间的通信可以包括:网络设备和终端设备间的通信、网络设备和网络设备间的通信、和/或终端设备和终端设备间的通信。在本申请实施例中,术语“通信”还可以描述为“传输”、“信息传输”、或“信号传输”等。传输可以包括发送和/或接收。本申请实施例中,以网络设备和终端设备间的通信为例描述技术方案,本领域技术人员也可以将该技术方案用于进行其它调度实体和从属实体间的通信,例如宏基站和微基站之间的通信,例如第一终端设备和第二终端设备间的通信。其中,调度实体可以为从属实体分配空口资源。空口资源包括以下资源中的一种或多种:时域资源、频域资源、码资源和空间资源。在本申请实施例中,多种可以是两种、三种、四种或者更多种,本申请实施例不做限制。
在本申请实施例中,网络设备和终端设备间的通信包括:网络设备向终端设备发送下行信号/信息,和/或终端设备向网络设备发送上行信号/信息。
在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中A,B可以是单数或者复数。在本申请实施例中,可以采用“第一”、“第二”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
图1是本申请的实施例可以应用的通信系统的架构示意图。如图1所示,该通信系统中包括一个终端设备110和两个网络设备(如图1中的网络设备120和网络设备130)。图1只是示意图,本申请的实施例对该通信系统中包括的网络设备和终端设备的数量不做限定。
本申请实施例涉及到的终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终 端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。在本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中或者和终端设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
本申请实施例涉及到的网络设备是终端设备通过无线方式接入到该移动通信系统中的接入网(radio access network,RAN)设备,可以包括但不限于:基站、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等。网络设备之间的接口称为Xn接口,网络设备与终端设备之间的接口可以为Uu接口(或称为空口)。当然,在未来通信中,这些接口的名称可以不变,或者也可以用其它名称代替,本申请对此不限定。
网络设备和终端设备之间的通信遵循一定的协议层结构,例如控制面协议层结构可以包括RRC层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层等协议层的功能;用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层等协议层的功能,在一种可能的实现中,PDCP层之上还可以包括业务数据适配协议(service data adaptation protocol,SDAP)层。
网络设备可以包括集中式单元(central unit,CU)和分布式单元(distributed unit,DU)。CU和DU之间的接口可以称为F1接口,如图2所示。其中,控制面(control panel,CP)接口可以为F1-C,用户面(user panel,UP)接口可以为F1-U。CU和DU可以根据无线网络的协议层划分,比如PDCP层及以上协议层的功能设置在CU,PDCP层以下协议层(例如RLC层和MAC层等)的功能设置在DU。CU产生的信令可以通过DU发送给终端设备,或者终端设备产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装后透传给终端设备或CU。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。在本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中或者和网络设备匹配使用。在本申请实施例中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;可以部署在水面上;或者,可以部署在空中的飞机、气球或人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。网络设备和终端设备之间可以通过授权频谱进行通信,可以通过非授权频谱进行通信,或者可以通过授权频谱和非授权频谱进行通信。网络设备和终端设备之间可以通过6千兆赫兹(gigahertz,GHz)以下的频谱进行通信,可以通过6GHz以上的频谱进行通信,或者可以使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
下面对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(一)无线承载(radio bearer,RB)
终端设备和网络设备之间通过建立至少一个无线承载(radio bearer,RB)来传输数据。无线承载可以分为用于传输信令数据的信令无线承载(signalling radio bearer,SRB)和用于传输业务数据的数据无线承载(data radio bearer,DRB),同一无线承载的一组功能实体集合包括一个PDCP实体、该PDCP实体对应的至少一个无线链路控制RLC实体、至少一个RLC实体对应的至少一个MAC实体。其中,PDCP实体位于PDCP层,RLC实体位于RLC层,MAC实体位于MAC层。
以下行数据传输为例,网络设备的SDAP层实体自上层取得数据后,可以根据数据的服务质量流标识(QoS flow indicator,QFI)将数据映射到相应RB的PDCP层实体,该PDCP层实体可以将数据传送到该PDCP层实体对应的至少一个RLC层实体,进而由至少一个RLC层实体传输到对应的MAC层实体,再由MAC层实体生成传输块,然后通过对应的物理层实体进行无线传输。数据在各个层中进行相对应的封装,某一层从该层的上层收到的数据视为该层的服务数据单元(service data unit,SDU),经过层封装后成为协议数据单元(protocol data unit,PDU),再传递给下一个层。例如PDCP层实体从上层接收到的数据称为PDCP SDU,PDCP层实体发送到下层的数据称为PDCP PDU;RLC层实体从上层接收到的数据称为RLC SDU,RLC层实体发送到下层的数据称为RLC PDU。其中,不同层之间可以通过相应的通道来传输数据,比如RLC层实体与MAC层实体之间可以通过逻辑信道(logical channel,LCH)来传输数据,MAC层实体与物理层实体之间可以通过传输通道(transport channel)来传输数据。
(二)双连接(dual connectivity,DC)
DC是指终端设备同时连接两个网络设备。终端设备连接的两个网络设备可以是同一无线接入技术下的基站,例如都是LTE通信系统中的基站或都是5G移动通信系统中的基站,或者终端设备连接的两个基站也可以是不同的无线接入技术下的基站,例如一个是LTE通信系统中的基站,另一个是5G移动通信系统中的基站。
(三)载波聚合(carrier aggregation,CA)
CA是指将多个成员载波(component carrier,CC)聚合在一起为一个终端设备提供服务,以实现更大的传输带宽,从而提高上下行传输速率。
(四)PDCP复制(PDCP duplication)
PDCP duplication是指:将无线承载的数据包在PDCP层复制成多个相同的包(也就是复制包),然后这复制的多个数据包分别递交给多个不同的RLC实体进行传输。示例性地,每个RLC实体通过该RLC实体对应的逻辑信道将数据包传输到MAC层。一般地,PDCP duplication与通常所说的重传(retransmission)不同,重传是指同一个数据包传输失败后再一次传输,而PDCP duplication是将一个数据包复制成多个数据包,分别通过多个RLC实体进行传输。
在本申请实施例中,PDCP duplication包括DC场景的PDCP duplication(也可以称为:DC duplication)和CA场景的PDCP duplication(也可以称为:CA duplication)。下面针对DC场景和CA场景,分别介绍的PDCP duplication的功能如何实现。
(1)DC duplication
图3示出了一种DC场景下实现DC duplication功能的网络架构。对于网络设备来说,DC场景涉及到主网络设备和辅网络设备。对于一个RB,在主网络设备中对应一个PDCP实体、一个RLC实体和一个MAC实体,在辅网络设备中对应一个RLC实体和一个MAC实体。对于该RB,在终端设备中对应一个PDCP实体、两个RLC实体和两个MAC实体。对于一个RB,主网络设备在PDCP实体之上还可以有SDAP实体,终端设备在PDCP实体之上也还可以有SDAP实体。
在DC场景下,一个终端设备同时连接两个网络设备,即主网络设备和辅网络设备,如果为某个RB配置了DC duplication功能,那么经过PDCP层复制的属于该RB的两个相同的数据包将被传输给不同的两个RLC实体,并通过不同的逻辑信道分别传输给不同的两个MAC实体,最终形成两个MAC PDU分别在两个不同的MAC实体各自调度的小区资源上进行传输。对于网络设备来说,主网络设备中的PDCP层会将经过复制的两个数据包传输给不同的两个RLC实体,这两个RLC实体分别位于主网络设备和辅网络设备中,之后,主网络设备中的RLC实体将接收的数据包传输给主网络设备中的MAC实体,辅网络设备中的RLC实体将接收的数据包传输给辅网络设备中的MAC实体,这两个MAC实体会通过各自的小区资源传输数据包,而对于终端设备来说,两个RLC实体和两个MAC实体都位于该终端设备中。示例性地,在DC场景下,可以有两个小区组为终端设备提供服务,分别为主小区组(master cell group,MCG)和辅小区组(secondary cell group,SCG),其中,主小区组由主网络设备管理和配置,辅小区组由主网络设备或者辅网络设备管理和配置。
可选的,网络设备还可以为终端设备配置上述两个RLC实体中的一个RLC实体为主RLC实体(也俗称,主腿(primary leg)),另一个RLC实体为辅RLC实体(也俗称,辅腿(secondary leg)),比如网络设备配置图3中的RLC1为主RLC实体,RLC2为辅RLC实体。在本申请实施例中,由于RLC实体和逻辑信道是一一对应的,所以,主腿可以指主RLC实体,也可以指主RLC实体关联的逻辑信道,也称作主逻辑信道;辅腿可以指辅RLC实体,也可以指辅RLC实体关联的逻辑信道,也称作辅逻辑信道。
当网络设备通过无线资源控制(radio resource control,RRC)信令为一个无线承载配置DC duplication功能时,可以指示该无线承载的DC duplication功能的初始状态是激活还是去激活。可选的,网络设备还可以通过MAC控制元素(MAC control element,MAC CE)配置该无线承载的DC duplication功能的激活/去激活。
当DC duplication功能被激活时,终端设备可以通过主RLC实体和辅RLC实体接收来自主网络设备的经过主网络设备的PDCP层复制的相同的数据包,或者,终端设备可以在终端设备的PDCP层将数据包复制成两份,分别通过主RLC实体和辅RLC实体发送给主网络设备和辅网络设备。当终端设备与网络设备传输PDCP控制PDU时,终端设备只能通过主RLC实体与网络设备传输PDCP控制PDU。
当DC duplication功能被去激活时,则回退到分离承载(split bearer),即,终端设备可以通过终端设备侧的主RLC实体和辅RLC实体,分别与主网络设备和辅网络设备传输不同的数据包。示例性地,当终端设备与网络设备待传输的数据量超过门限值时,终端设备通过主RLC实体和辅RLC实体,与主网络设备和辅网络设备分别传输不同的数据包;当上述数据量未超过该门限值时,终端设备只通过主RLC实体与主网络设备传输数据包,其中,上述门限值是网络设备通过RRC消息配置的。
(2)CA duplication
图4示出了一种CA场景下实现PDCP duplication功能的网络架构。在CA场景下,一个终端设备连接到一个网络设备,在同一个网络设备下至少有两个载波(或小区)为该终端设备服务。对于一个RB,在网络设备中对应一个PDCP实体、两个RLC实体和一个MAC实体。在终端设备中对应一个PDCP实体、两个RLC实体和一个MAC实体。当网络设备为一个无线承载配置了PDCP duplication功能时,在PDCP层经过复制的两个相同数据包将被传输给不同的两个RLC实体,并由这两个RLC实体通过不同的逻辑信道传输给同一个MAC实体。此时,由于两个相同的数据包传输到了同一个MAC实体中,MAC实体会将这两个数据包放到一个MAC  PDU中传输,因此,为了使得这两个数据包通过两个小区分别传输,可以为逻辑信道配置一个参数,例如称为参数A,通过参数A的取值来指示不同的小区,从而保证这两个相同的数据包最终能形成两个MAC PDU在不同的小区上传输,从而提高可靠性。
目前,CA duplication可以支持一个无线承载的数据包在PDCP层被复制成两份,分别通过两个RLC实体来传输。可选的,网络设备还可以配置其中一个RLC实体为主RLC实体,另一个RLC实体为辅RLC实体,比如网络设备配置图4中的RLC1为主RLC实体,RLC2为辅RLC实体。当网络设备通过RRC信令为一个无线承载配置PDCP duplication功能时,可以指示该无线承载的PDCP duplication功能的初始状态是激活还是去激活。可选的,网络设备还可以通MAC CE配置该无线承载的PDCP duplication功能的激活/去激活。当CA duplication功能被激活时,终端设备可以通过主RLC实体和辅RLC实体与网络设备传输数据;当CA duplication功能被去激活时,终端设备只能通过主RLC实体与网络设备传输数据。
(五)切换过程
终端设备从一个网络设备向另一个网络设备切换之前,为终端设备的至少一个RB提供服务的网络设备可以称为源网络设备;在切换之后,为终端设备的至少一个RB提供服务的网络设备可以称为目标网络设备。图5为一种切换流程的示意图,包括:
S501,源网络设备发送无线资源控制RRC重配置消息给处于RRC连接态的终端设备,该RRC重配置消息中包含测量对象、测量配置、测量标识等参数。
S502,终端设备根据RRC重配置消息对测量对象进行测量后,将测量结果上报给源网络设备,例如,终端设备上报当前服务小区的信号强度低于门限值且目标小区信号强度高于门限值。
S503,源网络设备接收到S502中的测量报告后决定是否切换。若需要进行切换,源网络设备向目标网络设备发送切换请求(handover request)消息。
S504,若目标网络设备允许该终端设备接入,目标网络设备向源网络设备发送切换请求确认(handover request acknowledge)消息。其中,该切换请求确认消息可以包括目标网络设备为该终端设备生成的RRC重配置消息,该RRC重配置消息中包括该终端设备接入目标网络设备所需的配置。
S505,源网络设备向终端设备发送切换命令,该切换命令包括RRC重配置消息。
S506,终端设备根据S505中的切换命令执行切换:该终端设备断开与源网络设备之间的连接,通过随机接入过程接入到目标网络设备。
S507,当终端设备成功接入到目标网络设备时,表示切换完成。该终端设备通过向目标网络设备发送RRC重配置完成消息结束切换过程。
在上述切换过程中,一种可能的实现方式,终端设备在接收到源网络设备的切换命令之后(即图5中的S505)、以及成功接入到目标网络设备之前(即图5中的S507),可以不断开与源网络设备的连接,即终端设备可以继续通过源网络设备关联的RLC实体(记为RLC A)与源网络设备进行通信,在本申请实施例中,这种切换方式称作双活跃协议栈(dual active protocol stack,DAPS)切换。
示例性地,在DAPS切换流程中,当终端设备在接收到源网络设备的切换命令后,终端设备会建立目标网络设备对应的RLC实体(记为RLC B)。终端设备在接收到切换命令之后、以及成功接入目标网络设备之前,通过RLC A与源网络设备进行数据传输,此时,RLC B处于去激活状态,即,终端设备不会通过RLC B与目标网络设备进行数据传输。终端设备成功接入目标网络设备之后,终端设备不再通过RLC A与源网络设备进行数据传输,而是通过RLC B 与源网络设备进行数据传输。通过DAPS切换的方式,可以使得终端设备在从一个网络设备切换到另一个网络设备的过程中,保证终端设备与网络设备之间的数据传输不被中断,从而可以降低数据传输的时延。
然而,现有的DAPS切换流程虽然能保证终端设备与网络设备之间的数据传输不被中断,但是终端设备只能通过一个RLC实体与源网络设备或目标网络设备进行数据传输,无法满足URLLC业务对高可靠性的要求。基于上述问题,本申请实施例将主要研究在终端设备发生切换的场景下,如何提高数据传输的可靠性。
图6为本申请实施例提供的一种数据传输方法的流程示意图,本实施例涉及的是在终端设备从源网络网络设备向目标网络设备切换的过程中,终端设备和源网络设备以及目标网络设备之间进行数据传输的具体过程。在图6所示的实施例中,终端设备在切换发起前,终端设备与源网络设备和目标网络设备进行基于DC duplication的传输,其中,源网络设备为终端设备在切换发起前的主网络设备,目标网络设备为终端设备在切换发起前的辅网络设备。如图6所示,该方法可以包括:S601至S607,其中,S607为可选操作。本申请实施例对S601至S607的执行顺序不作限制。
S601、源网络设备向终端设备发送第一配置信息,对应的,终端设备接收来自源网络设备的第一配置信息。可选的,上述第一配置信息可以承载在RRC重配置消息、RRC建立消息、或RRC恢复消息上。
第一配置信息用于配置终端设备的第一RB在源网络设备的PDCP duplication功能。在本申请实施例中,第一配置信息为终端设备的第一RB配置了在源网络设备的PDCP duplication功能,可以理解为:终端设备同时连接到源网络设备和目标网络设备,终端设备可以和源网络设备、目标网络设备使用DC duplication功能传输第一RB的数据,其中,源网络设备为终端设备连接的主网络设备,目标网络设备为终端设备连接的辅网络设备。
示例性地,该第一配置信息包括以下参数中的一项或多项:
1、第一RB的标识。
2、第一RB关联的主RLC实体的标识。其中,第一RB关联一个主RLC实体,该主RLC实体不能被动态地去激活。可选的,终端设备可以通过主RLC实体与网络设备传输PDCP控制PDU。
3、第一RB关联的辅RLC实体的标识。其中,第一RB可以关联一个或多个辅RLC实体,辅RLC实体可以被动态地去激活。可选的,终端设备不能通过辅RLC实体传输PDCP控制PDU,但可以通过辅RLC实体传输经过PDCP层复制的PDCP数据PDU。
4、DAPS配置信息,用于指示第一RB是否支持DAPS切换操作。
终端设备接收到第一配置信息后,在终端设备侧建立第一RB关联的PDCP实体(以下称为第一PDCP实体)。可选的,第一PDCP实体可以建立一个适用于源网络设备的加密功能(ciphering function),即,第一PDCP实体使用源站适用的秘钥(以下称为第一秘钥)对第一PDCP实体接收到的数据包进行加密和解密。
可选的,第一PDCP实体可以建立一个适用于源网络设备的完整性保护功能(integrity protection function),即,第一PDCP实体使用源站适用的完整性保护算法以及完整性保护秘钥对第一PDCP实体接收到的数据包进行完整性保护和完整性校验。在本申请实施例中,完整性保护是指:发送端使用完整性保护算法,计算出待发送数据的消息完整性鉴权码(message authentication code for integrity,MAC-I),发送端将该MAC-I和上述待发送的数据一起发送给接收端,接收端根据相同的完整性保护算法计算出期望的MAC-I,并将该期望的MAC-I 与接收到的MAC-I做比较,如果两者相同,则接收端认为该数据的内容没有被篡改,如果不相同,则认为数据被篡改。
可选的,第一PDCP实体还可以建立一个适用于源网络设备的头压缩功能。在本申请实施例中,头压缩功能是指:发送端可以基于鲁棒头压缩(robust header compression,ROHC)架构和/或以太头压缩(ethernet header compression,EHC)架构对待发送数据的传输层、网络层等的子头进行压缩。示例性地,发送端建立压缩上下文(context),通过context指示未压缩的子头的内容,从而减少子头的开销。对应的,接收端通过context可以恢复出未压缩的子头的内容。
终端设备接收到第一配置信息后,终端设备还可以建立第一RB关联的RLC实体(也可以称为第一PDCP关联的RLC实体)。示例性地,第一RB共关联2个RLC实体,分别为RLC1和RLC2。其中,RLC1为源网络设备对应的RLC实体,RLC2为目标网络设备对应的RLC实体。终端设备可以通过RLC1和/或RLC2与源网络设备传输数据。示例性地,终端设备的PDCP实体使用第一秘钥对PDCP数据PDU进行加密,并将加密后的PDCP数据PDU递交给RLC1和/或RLC2,进而由RLC1和/或RLC2将数据传输到对应的MAC实体,再由MAC层实体生成传输块,然后由对应的物理层实体通过空口传输至源网络设备。
若RLC1为主RLC实体,RLC2的初始状态为去激活,则终端设备通过RLC1与网络设备传输数据;若RLC1为主RLC实体,RLC2的初始状态为激活,则终端设备通过RLC1和RLC2与网络设备传输数据;若RLC2为主RLC实体,RLC1的初始状态为去激活,则终端设备通过RLC2与网络设备传输数据;若RLC2为主RLC实体,RLC1的初始状态为激活,则终端设备通过RLC1和RLC2与网络设备传输数据。
可选的,源网络设备还向终端设备发送第一消息,对应的,终端设备接收来自网络设备的第一消息。该第一消息用于激活或去激活第一RB关联的辅RLC实体。可选的,第一消息是MAC CE。示例性地,第一消息的一种可能的形式如图8所示,其中,DRB ID为DRB的标识,RLCi为该DRB关联的RLC实体(i为非负整数),若RLCi=1表示激活RLCi的PDCP duplication功能;若RLCi=0表示去激活RLCi的PDCP duplication功能。
源网络设备还可以向终端设备发送第三配置信息,对应的,终端设备接收来自源网络设备的第三配置信息。第三配置信息用于配置源网络设备关联的主小区组,和/或,目标网络设备关联的辅小区组。其中,主小区组包含一个主小区和至少一个辅小区,主小区组关联一个MAC实体,该MAC实体关联至少一个RLC实体;辅小区组包含一个主小区和至少一个辅小区,辅小区组关联一个MAC实体,该MAC实体关联至少一个RLC实体。可选的,第三配置信息可以承载在RRC重配置消息、RRC建立消息、或RRC恢复消息上。可选的,第三配置信息和上述第一配置信息可以承载在相同或不同的消息上。可选的,第三配置信息和第一配置信息可以同时发送,也可以分别发送,本申请实施例对第三配置信息和第一配置信息的先后发送顺序不作限制。
S602、源网络设备向终端设备发送第一指示信息,对应的,终端设备接收来自源网络设备的第一指示信息。该第一指示信息可以承载在RRC重配置消息、RRC建立消息、或RRC恢复消息上。可选的,第一指示信息与上述第一配置信息可以承载在相同或不同的消息上。
第一指示信息指示当终端设备从源网络设备向目标网络设备切换时,是否保持第一RB在源网络设备的PDCP复制功能。
具体的,第一指示信息指示终端设备在上述切换开启之后至上述切换完成前的这段时间里是否保持第一RB在源网络设备的PDCP复制功能。其中,第一指示信息指示是否保持第一 RB在源网络设备的PDCP复制功能的方式包括但不限于以下方式:
方式1
若第一指示信息的取值为第一取值,终端设备保持第一RB在源网络设备的PDCP复制功能;若第一指示信息的取值为第二取值,不保持第一RB在源网络设备的PDCP复制功能。示例性地,第一取值可以是“true”或者“enabled”;第二取值可以是“false”、“disabled”,或者,第二取值为空。
方式2
当源网络设备向终端设备发送第一指示信息,即,终端设备接收到来自源网络设备的第一指示信息时,第一指示信息指示终端设备保持第一RB在源网络设备的PDCP复制功能;当源网络设备没有向终端设备发送第一指示信息,即,终端设备未接收到来自源网络设备的第一指示信息时,第一指示信息指示终端设备不保持第一RB在源网络设备的PDCP复制功能;或者,当源网络设备向终端设备发送第一指示信息,即,终端设备接收到来自源网络设备的第一指示信息时,第一指示信息指示终端设备不保持第一RB在源网络设备的PDCP复制功能;当源网络设备没有向终端设备发送第一指示信息,即,终端设备未接收到来自源网络设备的第一指示信息时,第一指示信息指示终端设备保持第一RB在源网络设备的PDCP复制功能。可选的,在方式2中,第一指示信息的取值可以是“true”或者false”。
在上述方式1和方式2中,终端设备保持第一RB在源网络设备的PDCP复制功能,可以理解为:终端设备保持和源网络设备、目标网络设备使用DC duplication功能传输第一RB的数据。终端设备不保持第一RB在源网络设备的PDCP复制功能,可以理解为:终端设备释放第一RB在源网络设备的PDCP复制功能,即,终端设备不再和源网络设备、目标网络设备使用DC duplication功能传输第一RB的数据。
在本申请实施例中,切换发起的标志可以包括:终端设备接收到来自源网络设备的切换命令;或者,切换发起的标志可以包括:源网络设备接收到来自目标网络设备的切换请求确认消息;或者,切换发起的标志可以包括:源网络设备向目标网络设备发送切换请求命令,本申请实施例对此不作限制。
在本申请实施例中,切换完成的标志可以包括:终端设备向目标网络设备发起随机接入过程后,成功接入到目标网络设备,或者,切换完成的标志可以包括:终端设备向目标网络设备发送用于结束切换过程的RRC重配置消息;或者,切换完成的标志可以包括:目标网络设备接收到来自终端设备的用于结束切换过程的RRC重配置消息,本申请实施例对此不作限制。
S603、源网络设备向目标网络设备发送切换请求消息,对应的,目标网络设备接收来自源网络设备的切换请求消息。
S604、若目标网络设备允许该终端设备接入,目标网络设备向源网络设备发送切换请求确认消息。
S605、源网络设备向终端设备发送切换命令,该切换命令包括RRC重配置消息。当终端设备接收到源网络设备的切换命令后,开启切换流程。
S606、终端设备根据第一指示信息与源网络设备传输第一RB的数据。
具体的,上述保持第一RB在所述源网络设备的PDCP复制功能,包括:保持第一无线链路控制RLC实体,其中,第一RLC实体为上述切换发起前目标网络设备对应的RLC实体。上述不保持第一RB在所述源网络设备与所述目标网络设备的PDCP复制功能,包括:第一无线链路控制RLC实体被释放,其中,第一RLC实体为目标网络设备对应的RLC实体。
在本申请实施例中,保持第一RLC实体,也可以理解为:第一RLC实体不被释放,或者也可以理解为:该第一RLC实体处于可用的状态,终端设备可以通过第一RLC实体与源网络设备传输数据。当第一指示信息指示保持第一RB在源网络设备的PDCP复制功能时,终端设备在上述切换发起后,可以通过第一RLC实体与源网络设备传输数据。示例性地,在上述切换发起后,终端设备可以向该第一RLC实体递交使用第一秘钥加密的数据包。
在本申请实施例中,第一RLC实体被释放,也可以理解为:第一RLC实体被挂起,或者也可以理解为:该第一RLC实体处于不可用的状态,终端设备不能通过第一RLC实体与源网络设备传输数据。当第一指示信息指示不保持第一RB在源网络设备的PDCP复制功能时,终端设备在上述切换发起后,不能通过第一RLC实体与源网络设备传输数据。
示例性地,如图7所示,图7(a)示出的是切换发起前,第一RB关联的第一PDCP实体和第一PDCP实体关联的RLC实体(即第一配置信息配置的第一RB关联的RLC实体)。其中,RLC1为源网络设备对应的RLC实体,RLC2为目标网络设备对应的RLC实体(即,第一RLC实体)。若第一指示信息的取值为第一取值,则在上述切换发起后,终端设备可以通过RLC1和RLC2与源网络设备传输数据,示例性地,终端设备的PDCP实体使用第一秘钥对PDCP数据PDU进行加密,并将加密后的PDCP数据PDU递交给RLC1和RLC2;若第一指示信息的取值为第二取值,则在切换发起后至切换完成的这段时间内,终端设备只能通过RLC1与源网络设备传输数据,具体的,终端设备的PDCP实体使用第一秘钥对PDCP数据PDU进行加密,并将加密后的PDCP数据PDU递交给RLC1。
S607、可选的,源网络设备向终端设备发送第二配置信息,对应的,终端设备接收来自目标网络设备的第二配置信息,上述第二配置信息用于配置第一RB在目标网络设备的PDCP复制功能。示例性地,第一RB在目标网络设备的PDCP复制功能可以理解为:第一RB在目标网络设备的CA duplication功能。可选的,第二配置信息可以承载在RRC重配置消息、RRC建立消息、或RRC恢复消息上。可选的,第二配置信息与上述第一配置信息承载在相同或不同的消息上。可选的,第二配置信息与上述第三配置信息承载在相同或不同的消息上。在本申请实施例中,第一配置信息、第二配置信息和第三配置信息可以同时发送,也可以分别发送,本申请实施例对第一配置信息、第二配置信息和第三配置信息的先后发送顺序不作限制。
可选的,源网络设备在向终端设备发送第二配置信息之前,接收来自目标网络设备的切换请求确认消息(如S604所示),该切换请求确认消息包括第二配置信息。也就是说,源网络设备向终端设备转发来自目标网络设备的第二配置信息。可选的,第二配置信息可以承载在S605中的RRC重配置消息上。
示例性地,该第二配置信息包括以下参数中的一项或多项:
1、第一RB的标识。
2、第一RB关联的主RLC实体的标识。其中,第一RB关联一个RLC实体,该主RLC实体不能被动态地去激活。可选的,终端设备可以通过主RLC实体与网络设备传输PDCP控制PDU。
3、第一RB关联的辅RLC实体的标识。其中,第一RB可以关联一个或多个辅RLC实体,辅RLC实体可以被动态地去激活。可选的,终端设备不能通过辅RLC实体传输PDCP控制PDU,但可以通过辅RLC实体传输经过PDCP层复制的PDCP数据PDU。
终端设备接收到上述第二配置信息后,在终端设备侧重配置第一RB关联的PDCP实体。在本申请实施例中,重配置第一RB关联的PDCP实体也可以理解为:重新建立第一RB关联的PDCP实体,该新的PDCP实体为第二PDCP实体。在本申请实施例中,为了便于描述,以重新建立第一RB关联的PDCP实体(即,第二PDCP实体)说明。
在本申请实施例中,当上述切换完成前,第二PDCP实体处于挂起状态,只有当上述切换完成后,第二PDCP实体才会替代第一PDCP实体执行PDCP实体的功能。应理解,第二PDCP实体还可以是第一PDCP实体经过第二配置信息重配后的PDCP实体,两种方式没有实质区别。
可选的,第二PDCP实体可以建立一个适用于目标网络设备的加密功能,即,第二PDCP实体使用目标站适用的秘钥(以下称为第二秘钥)对第二PDCP实体接收到的数据包进行加密和解密。可选的,第一秘钥和第二秘钥可以相同或不同。可选的,第二PDCP实体可以建立一个适用于目标网络设备的完整性保护功能。可选的,第二PDCP实体还可以建立一个适用于目标网络设备的头压缩功能。
终端设备还会建立第一RB关联的新的RLC实体(即第二PDCP关联的RLC实体)。在本申请实施例中,当上述切换完成前,第二PDCP关联的RLC实体处于挂起状态,只有当上述切换完成后,第二PDCP实体关联的RLC实体才会替代第一PDCP关联的RLC实体执行RLC实体的功能。
图7(b)示出的是切换完成后,第一RB关联的第二PDCP实体和第二PDCP实体关联的RLC实体。其中,RLC3和RLC4都是目标网络设备对应的RLC实体。可选的,RLC3和RLC4的CA duplication功能的初始状态为去激活,即,在上述CA duplication功能被激活前,终端设备不能通过RLC3和RLC4进行基于CA duplication的数据传输。可选的,在上述切换完成前,RLC3和RLC4的状态为去激活,即,在上述切换完成前,终端设备不可以通过RLC3和RLC4与目标网络设备进行数据传输。
当上述切换完成后,终端设备激活第一RB在目标网络设备的PDCP复制功能(即,CA duplication功能)。示例性地,终端设备激活第一RB在目标网络设备的PDCP复制功能,具体包括:终端设备激活第一RB关联的与目标网络设备对应的RLC实体。具体的,终端设备激活第一RB在目标网络设备的PDCP复制功能的方式有以下两种:
方式1,目标网络设备向终端设备发送第二指示信息,对应的,终端设备接收来自目标 网络设备的第二指示信息。该第二指示信息用于激活第一RB在目标网络设备的PDCP复制功 能。
以图7(b)为例,终端设备接收到第二指示信息后,激活RLC3和RLC4,即,终端设备可以通过RLC3和RLC4与目标网络设备进行数据传输。可选的,该第二指示信息是MAC CE。
方式2、当上述切换完成后,终端设备激活第一RB在目标网络设备的PDCP复制功能。
示例性地,当上述切换完成后,终端设备激活第一RB在目标网络设备的PDCP复制功能,也可以理解为:当终端设备认为上述切换完成后,终端设备激活第一RB在目标网络设备的PDCP复制功能。
一种可能的方式,终端设备认为终端设备与目标网络设备的随机接入过程成功后,激活第一RB在目标网络设备的PDCP复制功能。例如,终端设备采用两步随机接入法与目标网络设备进行随机接入时,当终端设备接收到目标网络设备的消息B(消息B包括RRC建立消息、RRC恢复消息中的一种或多种),终端设备的RRC层通过解析消息B认为该随机接入过程成功时,终端设备的RRC层指示PDCP层激活第一RB在目标网络设备的PDCP复制功能;终端设备采用四步随机接入法与目标网络设备进行随机接入时,当终端设备接收到目标网络设备的消息4(消息4包括RRC建立消息、RRC恢复消息中的一种或多种),终端设备的RRC层通过解析消息4认为该随机接入过程成功时,终端设备的RRC层指示PDCP层激活第一RB在目标网络设备的PDCP复制功能。
另一种可能的方式,终端设备在目标网设备的时频资源上向目标网络设备发送切换完成 消息(即S507中的RRC重配置完成消息)后,认为上述切换已经完成,此时,终端设备激活第一RB在目标网络设备的PDCP复制功能。可选的,这种方式可以适用于有随机接入的切换,即,终端设备在与目标网络设备的随机接入过程成功后(图5中的S506),向目标网络设备发送切换完成消息(图5中的S507);这种方式也可以适用于无随机接入的切换(Random Access-less,RACH-less),即,目标网络设备允许终端设备接入后(图5中的S504),终端设备不用发起与目标网络设备的随机接入过程,而是由目标网络设备直接向终端设备分配时频资源,终端设备在该时频资源上向目标网络设备发送切换完成消息。
通过实施方式2中的方法,终端设备可以判断是否完成切换,当终端设备认为切换完成时,终端设备可以立即激活第一RB在目标网络设备的PDCP复制功能,从而使得终端设备在切换完成前可以和源网络设备进行基于PDCP复制的数据传输,在切换完成后,可以立即和目标网络设备进行基于PDCP复制的数据传输,从而使得基于PDCP复制的数据传输不因切换而中断,提高了数据传输的可靠性。
可以理解的是,当上述切换完成后,终端设备不再通过源网络设备对应的RLC实体与源网络设备传输第一RB的数据。终端设备使用但不限于上述方式1和方式2中的方法激活第一RB关联的与目标网络设备对应的RLC实体后,终端设备通过该第一RB关联的与目标网络设备对应的RLC实体与目标网络设备传输第一RB的数据。示例性地,终端设备向目标网络设备对应的RLC实体(即第二PDCP实体关联的RLC实体)递交使用目标网络设备的秘钥加密的第一RB的数据包(对应图7中的RLC3和RLC4)。其中,该数据包可以是PDCP控制PDU和/或PDCP数据PDU,该数据包可以是新传的数据包,也可以是重传的数据包。
上述实施例提供了一种数据传输的方法,当终端设备从源网络设备向目标网络设备切换时,源网络设备指示终端设备在上述切换发起之后到上述切换完成之前的这段时间里是否继续使用目标网络设备对应的RLC实体与源网络设备传输第一RB的数据。针对可靠性要求较高的业务,例如第一RB承载的业务是URLLC业务,源网络设备可以指示在上述切换发起之后到上述切换完成之前的这段时间里继续使用切换发起前目标网络设备对应的RLC实体与源网络设备传输第一RB的数据,从而可以保证在切换的过程中,终端设备至少可以通过两个RLC实体与网络设备传输经过PDCP层复制的相同的数据包,从而实现URLLC业务在切换过程中PDCP复制功能的0毫秒中断,提高了URLLC业务在切换过程中的可靠性。针对可靠性要求不高的业务,例如第一RB承载的业务是eMBB业务,源网络设备可以指示在上述切换发起之后不再使用切换发起前目标网络设备对应的RLC实体与源网络设备传输第一RB的数据。通过实施上述方法,源网络设备可以灵活指示可靠性要求不同的业务在切换时的数据传输方式,提高了数据传输的灵活性。另外,通过实施上述方法,在切换完成后,终端设备可以立即和目标网络设备使用PDCP复制功能传输第一RB的数据,从而使得终端设备在切换至目标网络设备后仍然可以使用PDCP复制功能与网络设备传输第一RB的数据,提高了数据传输的可靠性。
可选的,在图6所示的实施例中,S607可以被替换为S607a。
S607a、可选的,源网络设备向终端设备发送第二配置信息,对应的,终端设备接收来自目标网络设备的第二配置信息,上述第二配置信息用于配置第一RB在目标网络设备的PDCP复制功能。其中,第一RB在目标网络设备的PDCP复制功能可以理解为:第一RB在目标网络设备的CA duplication功能。可选的,第二配置信息可以承载在RRC重配置消息、RRC建立消息、或RRC恢复消息上。可选的,第二配置信息与上述第一配置信息可以承载在相同或不同的消息上。
可选的,源网络设备在向终端设备发送第二配置信息之前,接收来自目标网络设备的切换请求确认消息(如S604所示),该切换请求确认消息包括第二配置信息。也就是说,源网络设备向终端设备转发来自目标网络设备的第二配置信息。可选的,第二配置信息可以承载S605中的RRC重配置消息上。
示例性地,该第二配置信息包括第一RB的标识。第二配置信息还包括以下参数中的任一项:
1、第一RB关联的主RLC实体的标识。示例性地,第一RB关联一个RLC实体,该主RLC实体不能被动态地去激活,可选的,终端设备可以通过主RLC实体与网络设备传输PDCP控制PDU。
2、第一RB关联的辅RLC实体的标识。其中,第一RB可以关联一个或多个辅RLC实体,辅RLC实体可以被动态地去激活,可选的,终端设备不能通过辅RLC实体传输PDCP控制PDU,但可以通过辅RLC实体传输经过PDCP层复制的PDCP数据PDU。
终端设备接收到上述第二配置信息后,在终端设备侧重配置第一RB关联的PDCP实体。其中,重配置第一RB关联的PDCP实体也可以理解为:重新建立第一RB关联的PDCP实体,该新的PDCP实体为第二PDCP实体。在本申请实施例中,为了便于描述,以重新建立第一RB关联的PDCP实体(即,第二PDCP实体)说明。
可选的,第二PDCP实体可以建立一个适用于目标网络设备的加密功能,即,第二PDCP实体使用目标站适用的秘钥(以下称为第二秘钥)对第二PDCP实体接收到的数据包进行加密和解密。可选的,第一秘钥和第二秘钥可以相同或不同。可选的,第二PDCP实体可以建立一个适用于目标网络设备的完整性保护功能。可选的,第二PDCP实体还可以建立一个适用于目标网络设备的头压缩功能。
源网络设备还向终端设备发送第三指示信息,对应的,终端设备接收来自源网络设备的第三指示信息。示例性地,第三指示信息指示当上述切换完成后,第一RLC实体是否为目标网络设备对应的RLC实体,其中,第一RLC实体为上述切换发起前目标网络设备对应的RLC实体。换句话来说,第三指示信息用于指示终端设备是否将第一RLC实体关联至第二PDCP。可选的,第三指示信息可以承载在RRC重配置消息、RRC建立消息、或RRC恢复消息上。
一种可选的方式,若第三指示信息的取值为第三取值,终端设备将第一RLC实体关联至第二PDCP;若第三指示信息的取值为第四取值,终端设备不将第一RLC实体关联至第二PDCP。示例性地,第三取值可以是“true”或者“enabled”,第四取值可以是“false”或者“disabled”。
另一种可选的方式,第三指示信息与第一指示信息是相同的消息。当第一指示信息的取值为第一取值时,表示终端设备将第一RLC实体关联至第二PDCP;当第一指示信息的取值为第二取值时,表示终端设备不将第一RLC实体关联至第二PDCP。
终端设备根据第二配置信息和第三指示信息建立第一RB关联的新的RLC实体(即第二PDCP关联的RLC实体)。在本申请实施例中,当上述切换完成前,第二PDCP关联的RLC实体处于挂起状态,只有当上述切换完成后,第二PDCP实体关联的RLC实体才会替代第一PDCP关联的RLC实体执行RLC实体的功能。
示例性地,如图9所示,图9(a)示出的是切换发起前,第一RB关联的第一PDCP实体和第一PDCP实体关联的RLC实体(即第一配置信息为终端设备配置的第一PDCP实体和第一PDCP实体关联的RLC实体)。其中,RLC1为源网络设备对应的RLC实体,RLC2为目标网络设备对应的RLC实体(即,第一RLC实体)。
当第三指示信息指示终端设备将第一RLC实体关联至第二PDCP时,终端设备建立第一 RB关联的新的RLC实体为RLC2和RLC3(如图9中的(b)所示)。终端设备可以在上述切换完成后使用RLC2和RLC3与目标网络设备进行基于CA duplication的数据传输。其中,RLC2和RLC3在目标网络设备的CA duplication功能的初始状态为去激活,即在CA duplication功能被激活前,终端设备不能通过RLC2和RLC3与目标网络设备进行基于CA duplication的数据传输。可选的,在上述切换完成前,RLC3的状态为去激活,即,终端设备不可以通过RLC3与目标网络设备进行数据传输。
当上述切换完成后,终端设备激活第一RB在目标网络设备的PDCP复制功能(即,CA duplication功能)。示例性地,当上述切换完成后,终端设备激活第一RB关联的与目标网络设备对应的RLC实体。终端设备激活第一RB在目标网络设备的PDCP复制功能的方式有以下两种:
方式1,目标网络设备向终端设备发送第二指示信息,对应的,终端设备接收来自目标 网络设备的第二指示信息。该第二指示信息用于激活第一RB在目标网络设备的PDCP复制功 能。
以图9(b)为例,终端设备接收到第二指示信息后,激活RLC2和RLC3,即,终端设备可以通过RLC2和RLC3与目标网络设备进行数据传输。可选的,该第二指示信息是MAC CE。
方式2、当上述切换完成后,终端设备激活第一RB在目标网络设备的PDCP复制功能。
示例性地,当上述切换完成后,终端设备激活第一RB在目标网络设备的PDCP复制功能,也可以理解为:当终端设备认为上述切换完成后,终端设备激活第一RB在目标网络设备的PDCP复制功能。
示例性地,方式2的具体描述参见S607中方式2的描述。通过实施方式2中的方法,终端设备可以判断是否完成切换,当终端设备认为切换完成时,终端设备可以立即激活第一RB在目标网络设备的PDCP复制功能,使得终端设备在切换完成前可以和源网络设备进行基于PDCP复制的数据传输,在切换完成后,可以立即和目标网络设备进行基于PDCP复制的数据传输,从而使得基于PDCP复制的数据传输不因切换而中断,提高了数据传输的可靠性。
可以理解的是,当上述切换完成后,终端设备不再通过源网络设备关联的RLC实体(示例性地,如图9中的RLC1)与源网络设备传输第一RB的数据。终端设备使用但不限于上述方式1和方式2中的方法激活第一RB关联的与目标网络设备对应的RLC实体后,终端设备通过第一RB关联的与目标网络设备对应的RLC实体与目标网络设备传输第一RB的数据。示例性地,终端设备向第一RB关联的与目标网络设备对应的RLC实体递交使用目标网络设备的秘钥加密的数据包。其中,第一RB关联的与目标网络设备对应的RLC实体包括第一RLC实体(示例性地,在图9中第一RLC实体对应RLC2)。目标网络设备对应的RLC实体还包括第二RLC实体,其中,第二RLC实体为第一RB关联的目标网络设备对应的RLC实体中除第一RLC实体之外的其它RLC实体(示例性地,在图9中第二RLC实体对应RLC3)。可选的,上述数据包可以是PDCP控制PDU和/或PDCP数据PDU,该数据包可以是新传的数据包,也可以是重传的数据包。
对于下行传输,在切换完成前,源网络设备通过第一RLC实体传输给终端设备的数据是使用第一秘钥加密的,在切换完成后,目标网络设备通过第一RLC实体传输给终端设备的数据是使用第二秘钥加密的,当终端设备和网络设备对切换完成的时刻的判断存在偏差时,终端设备无法知道第一RLC实体接收到的数据使用的是第一秘钥还是第二秘钥加密。为了解决这个问题,本申请实施例提供了两种可选的方式:
方式一、源网络设备向终端设备发送第四指示信息,对应的,终端设备接收来自源网络 设备的第四指示信息。该第四指示信息指示终端设备在接收到第四指示信息之后接收到的数据都使用第二秘钥加密。可选的,该第四指示信息可以是RRC消息或MAC CE。
方式二、终端设备维护一个定时器,当终端设备认为上述切换完成后启动该定时器。当定时器超时后,终端设备认为在定时器超时后接收到数据都使用第二秘钥加密。可选的,该定时器的时长是预设的。
通过实施S607a的方法,通过将切换发起前目标网络设备对应的RLC实体(第一RLC实体)转变为切换完成后目标网络设备对应的RLC实体,使得终端设备可以通过第一RLC实体和切换完成后目标网络设备对应的RLC实体中除第一RLC实体之外的RLC实体(第二RLC实体)与目标网络设备进行基于PDCP复制的数据传输,从而使得第一RB的基于PDCP复制的数据传输不因切换而中断,提高了数据传输的可靠性。同时,通过这种方式,目标网络设备只需要配置第二RLC实体,终端设备就可以与目标网络设备进行基于PDCP复制的数据传输,从而降低了资源配置的开销。
可选的,在图6所示的实施例中,S607还可以被替换为S607b。
S607b、可选的,源网络设备向终端设备发送第二配置信息,对应的,终端设备接收来自目标网络设备的第二配置信息,上述第二配置信息用于配置第一RB关联的与目标网络设备对应的RLC实体。可选的,第二配置信息可以承载在RRC重配置消息、RRC建立消息、或RRC恢复消息上。可选的,第二配置信息与上述第一配置信息可以承载在相同或不同的消息上。
终端设备接收到上述第二配置信息后,在终端设备侧重配置第一RB关联的PDCP实体。其中,重配置第一RB关联的PDCP实体也可以理解为:重新建立第一RB关联的PDCP实体,该新的PDCP实体为第二PDCP实体。在本申请实施例中,为了便于描述,以重新建立第一RB关联的PDCP实体(即,第二PDCP实体)说明。
可选的,第二PDCP实体可以建立一个适用于目标网络设备的加密功能,即,第二PDCP实体使用目标站适用的秘钥(以下称为第二秘钥)对第二PDCP实体接收到的数据包进行加密和解密。可选的,第一秘钥和第二秘钥可以相同或不同。可选的,第二PDCP实体可以建立一个适用于目标网络设备的完整性保护功能。可选的,第二PDCP实体还可以建立一个适用于目标网络设备的头压缩功能。
终端设备还会建立第一RB关联的新的RLC实体(即第二PDCP关联的RLC实体)。在本申请实施例中,当上述切换完成前,第二PDCP关联的RLC实体处于挂起状态,只有当上述切换完成后,第二PDCP实体关联的RLC实体才会替代第一PDCP关联的RLC实体执行RLC实体的功能。
示例性地,如图10所示,图10(a)示出的是切换发起前,第一RB关联的第一PDCP实体和第一PDCP实体关联的RLC实体。其中,RLC1为源网络设备对应的RLC实体,RLC2为目标网络设备对应的RLC实体(即,第一RLC实体)。图10(b)示出的是切换完成后,第一RB关联的第二PDCP实体和第二PDCP实体关联的RLC实体(即RLC3)。在上述切换完成前,RLC3的状态为去激活,即,终端设备不可以通过RLC3与目标网络设备进行数据传输。
当上述切换完成后,终端设备激活目标网络设备对应的RLC实体。示例性地,终端设备激活目标网络设备对应的RLC实体的方式有以下两种:
方式1,目标网络设备向终端设备发送第二指示信息,对应的,终端设备接收来自目标 网络设备的第二指示信息。该第二指示信息用于激活目标网络设备对应的RLC实体。
以图10为例,终端设备接收到第二指示信息后,激活RLC3,即,终端设备可以通过RLC3 与目标网络设备进行数据传输。可选的,该第二指示信息是MAC CE。
方式2、当上述切换完成后,终端设备激活目标网络设备对应的RLC实体。
示例性地,当上述切换完成后,终端设备激活目标网络设备对应的RLC实体,也可以理解为:当终端设备认为上述切换完成后,终端设备激活目标网络设备对应的RLC实体。
一种可能的方式,终端设备认为终端设备与目标网络设备的随机接入过程成功后,激活目标网络设备对应的RLC实体。示例性地,终端设备的MAC层在随机接入成功后,指示RRC层上述上行数据切换已经完成。
另一种可能的方式为,终端设备在目标网设备的时频资源上向目标网络设备发送切换完成消息(即RRC重配置完成消息)后,认为上述上行数据切换已经完成,此时,终端设备激活目标网络设备对应的RLC实体。可选的,这种方式可以适用于有随机接入的切换,也可以适用于无随机接入的切换,其中,有随机接入的切换和无随机接入的切换参见S607的描述。
通过实施方式2中的方法,终端设备可以判断是否完成切换,当终端设备认为切换完成时,终端设备立即激活目标网络设备对应的RLC实体,从而使得终端设备在切换完成前可以和源网络设备进行基于PDCP复制的数据传输,在切换完成后,可以立即和目标网络设备进行数据传输,提高了数据传输的可靠性。
终端设备使用但不限于上述方式1和方式2中的方法激活第一RB关联的目标网络设备对应的RLC实体后,终端设备向第二RLC实体递交使用目标网络设备的秘钥加密的数据包,其中,第二RLC实体为目标网络设备对应的RLC实体中除第一RLC实体之外的其它RLC实体(示例性地,在图10中第二RLC实体对应RLC3)。上述数据包可以是PDCP控制PDU和/或PDCP数据PDU,该数据包可以是新传的数据包,也可以是重传的数据包。
可选的,终端设备向第一RLC实体递交使用源网络设备的秘钥加密的数据包。源网络设备的PDCP实体接收到来自第一RLC实体的PDCP PDU后,将PDCP PDU转换为PDCP SDU,并转发给目标网络设备。
通过实施S607b的方法,在切换完成后,对于上行传输,终端设备的PDCP实体将数据复制成两份,一份可以通过切换发起前目标网络设备对应的RLC实体(第一RLC实体)向源网络设备发送数据,再通过源网络设备经过Xn接口转发给目标网络设备,另一份可以通过切换完成后目标网络设备对应的RLC实体(第二RLC实体)直接发送给目标网络设备,提高了数据传输的可靠性。对于下行传输,源网络设备与目标网络设备可以向终端发送相同的数据:源网络设备的PDCP实体将一份PDCP SDU转换为PDCP PDU后通过第一RLC实体发送给终端设备,源网络设备还可以经过Xn接口转发另一份相同的PDCP SDU给目标网络设备,目标网络设备的PDCP实体将PDCP SDU转换为PDCP PDU后通过第二RLC实体发送给终端设备;或者,目标网络设备的PDCP实体将一份PDCP SDU转换为PDCP PDU后通过第二RLC实体发送给终端设备,目标网络设备还可以经过Xn接口转发另一份相同的PDCP SDU给源标网络设备,源网络设备的PDCP实体将PDCP SDU转换为PDCP PDU后通过第一RLC实体发送给终端设备,从而提高了数据传输的可靠性。
可以理解的是,为了实现上述实施例中功能,网络设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件、软件、或硬件和软件相结合的形式来实现。某个功能究竟以硬件、软件、或是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图11和图12为本申请实施例提供的可能的通信装置的结构示意图。这些通信装置可以 用于实现上述方法实施例中终端设备或源网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端设备110,也可以是如图1所示的网络设备120或网络设备130,还可以是应用于终端设备或网络设备的模块(如芯片)。
如图11所示,通信装置1100包括处理单元1110和收发单元1120。通信装置1100用于实现上述图6中所示的方法实施例中终端设备或源网络设备的功能。或者,通信装置1100可以包括用于实现上述图6中所示的方法实施例中终端设备或源网络设备的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
当通信装置1100用于实现图6所示的方法实施例中终端设备的功能时,收发单元1120用于接收来自源网络设备的第一配置信息,该第一配置信息用于配置终端设备的第一无线承载RB在源网络设备的分组数据汇聚协议PDCP复制功能;收发单元1120还用于接收来自源网络设备的第一指示信息,该第一指示信息指示当终端设备从源网络设备向目标网络设备切换时,是否保持第一RB在所述源网络设备的PDCP复制功能;收发单元1120还用于根据上述第一指示信息与源网络设备传输第一RB的数据。
当通信装置1100用于实现图6所示的方法实施例中源网络设备的功能时,收发单元1120用于向终端设备发送第一配置信息,该第一配置信息用于配置终端设备的第一无线承载RB在源网络设备的分组数据汇聚协议PDCP复制功能;收发单元1120还用于向终端设备发送第一指示信息,该第一指示信息指示当终端设备从源网络设备向目标网络设备切换时,是否保持第一RB在所述源网络设备的PDCP复制功能;收发单元1120还用于根据上述第一指示信息与源网络终端设备传输第一RB的数据。
有关上述处理单元1110和收发单元1120更详细的描述可以直接参考图6所示的方法实施例中相关描述直接得到,这里不加赘述。
如图12所示,通信装置1200包括处理器1210和接口电路1220。处理器1210和接口电路1220之间相互耦合。可以理解的是,接口电路1220可以为收发器或输入输出接口。可选的,通信装置1200还可以包括存储器1230,用于存储处理器1210执行的指令或存储处理器1210运行指令所需要的输入数据或存储处理器1210运行指令后产生的数据。
当通信装置1200用于实现图6所示的方法时,处理器1210用于实现上述处理单元1110的功能,接口电路1220用于实现上述收发单元1120的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中处理器可以是随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备、或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (25)

  1. 一种数据传输的方法,其特征在于,所述方法应用于终端设备从源网络设备向目标网络设备切换,所述方法包括:
    接收来自所述源网络设备的第一配置信息,所述第一配置信息用于配置所述终端设备的第一无线承载RB在所述源网络设备的分组数据汇聚协议PDCP复制功能;
    接收来自所述源网络设备的第一指示信息,所述第一指示信息指示当所述终端设备从所述源网络设备向所述目标网络设备切换时,是否保持所述第一RB在所述源网络设备的PDCP复制功能;
    根据所述第一指示信息与所述源网络设备传输所述第一RB的数据。
  2. 根据权利要求1所述的方法,其特征在于,所述保持所述第一RB在所述源网络设备的PDCP复制功能,具体包括:
    保持第一无线链路控制RLC实体,所述第一RLC实体为所述切换发起前所述目标网络设备对应的RLC实体。
  3. 根据权利要求1或2所述的方法,其特征在于,当所述第一指示信息指示保持所述第一RB在所述源网络设备的PDCP复制功能时,所述根据所述第一指示信息与所述源网络设备传输所述第一RB的数据,具体包括:
    当所述切换发起后,向所述第一RLC实体递交使用所述源网络设备的秘钥加密的数据包。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述源网络设备的第二配置信息,所述第二配置信息用于配置所述第一RB在所述目标网络设备的PDCP复制功能;
    当所述切换完成后,激活所述第一RB在所述目标网络设备的PDCP复制功能。
  5. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述源网络设备的第二配置信息,所述第二配置信息用于配置所述第一RB在所述目标网络设备的PDCP复制功能;
    接收来自所述目标网络设备的第二指示信息,所述第二指示信息用于激活所述第一RB在所述目标网络设备的PDCP复制功能。
  6. 根据权利要求4或5所述的方法,其特征在于,所述激活所述第一RB在所述目标网络设备的PDCP复制功能,具体包括:激活所述第一RB关联的与所述目标网络设备对应的RLC实体。
  7. 根据权利要求4至6中任一项所述的方法,其特征在于,所述第一指示信息还指示当所述切换完成后,所述第一RLC实体为所述目标网络设备对应的RLC实体。
  8. 根据权利要求7所述的方法,其特征在于,当所述切换完成后,所述方法还包括:
    向所述第一RLC实体递交使用所述目标网络设备的秘钥加密的数据包。
  9. 根据权利要求2或3所述的方法,其特征在于,当所述切换完成后,所述方法还包括:
    向所述第一RLC实体递交使用所述源网络设备的秘钥加密的数据包。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    向第二RLC实体递交使用所述目标网络设备的秘钥加密的数据包,所述第二RLC实体为所述第一RB关联的RLC实体中的一个RLC实体,所述第二RLC实体为所述切换完成后所述目标网络设备对应的RLC实体。
  11. 一种数据传输的方法,其特征在于,所述方法应用于终端设备从源网络设备向目标 网络设备切换,所述方法包括:
    向所述终端设备发送第一配置信息,所述第一配置信息用于配置所述终端设备的第一无线承载RB在所述源网络设备的分组数据汇聚协议PDCP复制功能;
    向所述终端设备发送第一指示信息,所述第一指示信息指示当所述终端设备从所述源网络设备向所述目标网络设备切换时,是否保持所述第一RB在所述源网络设备的PDCP复制功能;
    根据所述第一指示信息与所述终端设备传输所述第一RB的数据。
  12. 根据权利要求11所述的方法,其特征在于,所述保持所述第一RB在所述源网络设备的PDCP复制功能,具体包括:
    保持第一无线链路控制RLC实体,所述第一RLC实体为所述切换发起前所述目标网络设备对应的RLC实体。
  13. 根据权利要求11或12所述的方法,其特征在于,当所述第一指示信息指示保持所述第一RB在所述源网络设备的PDCP复制功能时,所述根据所述第一指示信息与所述终端设备传输所述第一RB的数据,具体包括:
    当所述切换发起后,接收来自所述第一RLC实体的使用所述源网络设备的秘钥加密的数据包。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二配置信息,所述第二配置信息用于配置所述第一RB在所述目标网络设备的PDCP复制功能。
  15. 根据权利要求14所述的方法,其特征在于,所述第一指示信息还指示当所述切换完成后,所述第一RLC实体为所述目标网络设备对应的RLC实体。
  16. 根据权利要求11至13中任一项所述的方法,其特征在于,当所述切换完成后,所述方法还包括:
    接收来自所述第一RLC实体的使用所述源网络设备的秘钥加密的数据包;
    向所述目标网络设备转发所述使用所述源网络设备的秘钥加密的数据包。
  17. 一种通信装置,其特征在于,包括用于执行如权利要求1至10中任一项所述方法的模块。
  18. 一种通信装置,其特征在于,包括用于执行如权利要求11至16中任一项所述方法的模块。
  19. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于实现如权利要求1至10中任一项所述的方法。
  20. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于实现如权利要求11至16中任一项所述的方法。
  21. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至10中任一项所述的方法。
  22. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求11至16中任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至10中任一项所述的方法,或,实现如权利要求11至16中任一项所述的方法。
  24. 一种通信系统,其特征在于,包括如权利要求17、19、21中任一项所述的通信装置,和如权利要求18、20、22中任一项所述的通信装置。
  25. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被计算机运行时,实现如权利要求1至10中任一项所述的方法,或,实现如权利要求11至16中任一项所述的方法。
PCT/CN2021/099906 2020-06-30 2021-06-12 用于切换的数据传输的方法和装置 WO2022001641A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010620215.9 2020-06-30
CN202010620215.9A CN113873585A (zh) 2020-06-30 2020-06-30 用于切换的数据传输的方法和装置

Publications (1)

Publication Number Publication Date
WO2022001641A1 true WO2022001641A1 (zh) 2022-01-06

Family

ID=78981745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099906 WO2022001641A1 (zh) 2020-06-30 2021-06-12 用于切换的数据传输的方法和装置

Country Status (2)

Country Link
CN (1) CN113873585A (zh)
WO (1) WO2022001641A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018171734A1 (en) * 2017-03-24 2018-09-27 Mediatek Inc. User equipment and methods for pdcp duplication in 5g ran
US20190082363A1 (en) * 2017-09-13 2019-03-14 Comcast Cable Communications, Llc Radio Link Failure Information for PDCP Duplication
CN109952725A (zh) * 2016-11-04 2019-06-28 瑞典爱立信有限公司 复制传输的激活和去激活
WO2020029414A1 (zh) * 2018-08-07 2020-02-13 Oppo广东移动通信有限公司 无线通信方法、通信设备、芯片和通信系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109952725A (zh) * 2016-11-04 2019-06-28 瑞典爱立信有限公司 复制传输的激活和去激活
WO2018171734A1 (en) * 2017-03-24 2018-09-27 Mediatek Inc. User equipment and methods for pdcp duplication in 5g ran
US20190082363A1 (en) * 2017-09-13 2019-03-14 Comcast Cable Communications, Llc Radio Link Failure Information for PDCP Duplication
WO2020029414A1 (zh) * 2018-08-07 2020-02-13 Oppo广东移动通信有限公司 无线通信方法、通信设备、芯片和通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "PDCP duplication for improving robustness in handover", 3GPP DRAFT; R2-1818084 PDCP DUPLICATION FOR IMPROVING ROBUSTNESS IN HANDOVER, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Spokane, USA; 20181112 - 20181116, 12 November 2018 (2018-11-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051557591 *

Also Published As

Publication number Publication date
CN113873585A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
US10925106B2 (en) Mobile communication system, control apparatus, base station, and user terminal supporting dual connectivity
US11546811B2 (en) Method for establishing a fronthaul interface, method for performing access for a UE, method and apparatus for performing a handover for a UE, data forwarding method, user equipment and base station
JP7272395B2 (ja) 無線局システム、無線端末、及びこれらの方法
CN109982360B (zh) 通信方法和装置
WO2019219034A1 (zh) 一种通信方法及装置
WO2018165996A1 (zh) 切换方法和装置
CN108616909B (zh) 数据传输方法及装置
US20190075487A1 (en) Communication control method
CN111149419A (zh) 用于rrc恢复/暂停时的nr pdcp保留的方法和设备
WO2020063914A1 (zh) 一种通信方法及装置
WO2021233445A1 (zh) 一种通信方法及装置
WO2019192458A1 (zh) 通信方法和装置
WO2020164178A1 (zh) 一种数据传输方法及装置
JP2018500802A (ja) セカンダリ基地局ベアラの変更
JP2024029143A (ja) 通信制御方法、遠隔ユーザ装置、システム、プロセッサ、プログラム及びネットワークノード
WO2020164556A1 (zh) 一种实体建立的处理方法及装置
WO2021026706A1 (zh) 一种f1接口管理方法及装置
CN104429109B (zh) 一种通信方法及装置
WO2020090442A1 (ja) 無線通信方法及び装置
WO2022001641A1 (zh) 用于切换的数据传输的方法和装置
US20230103455A1 (en) Device and method for transmitting and receiving signal in wireless communication system
KR20200112616A (ko) 차세대 이동 통신 시스템에서 네트워크와 연결 실패를 복구하는 방법 및 장치
WO2022141332A1 (zh) 一种通信方法及装置
WO2015135125A1 (zh) 无线连接建立方法和装置
WO2022120541A1 (zh) 数据传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833748

Country of ref document: EP

Kind code of ref document: A1