WO2022000668A1 - 一种获取小型智能化倾角传感器倾角的方法 - Google Patents

一种获取小型智能化倾角传感器倾角的方法 Download PDF

Info

Publication number
WO2022000668A1
WO2022000668A1 PCT/CN2020/105231 CN2020105231W WO2022000668A1 WO 2022000668 A1 WO2022000668 A1 WO 2022000668A1 CN 2020105231 W CN2020105231 W CN 2020105231W WO 2022000668 A1 WO2022000668 A1 WO 2022000668A1
Authority
WO
WIPO (PCT)
Prior art keywords
inclination
obtaining
chip
inclination angle
acceleration
Prior art date
Application number
PCT/CN2020/105231
Other languages
English (en)
French (fr)
Inventor
吕阳
郑良广
赵呈锐
杨玉钊
周峰
吴明明
李昌书
王刚义
李哲
Original Assignee
宁波中车时代传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波中车时代传感技术有限公司 filed Critical 宁波中车时代传感技术有限公司
Publication of WO2022000668A1 publication Critical patent/WO2022000668A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions

Definitions

  • the invention belongs to the technical field of sensors, and relates to a method, in particular to a method for obtaining the inclination angle of a small intelligent inclination sensor.
  • the tamping car which is widely used by my country's railway departments, adjusts the parameters such as the height and direction of the rail during railway construction and maintenance, thereby improving the smoothness of the line and ensuring the safe operation of the train.
  • the height difference between the two rails also called the superelevation of the rails
  • the superelevation of the rails is an important control quantity during the tamping operation.
  • the existing tamping car uses an electronic pendulum inclination sensor to measure the superelevation of the rail, and this sensor uses a gravity pendulum to detect the change of inclination angle, sense the swing angle of the pendulum through a potentiometer, and use damping oil to overcome vibration interference on the measurement.
  • the sensor has the advantages of simple principle, high measurement accuracy and good vibration resistance, but it has the following shortcomings in the long-term use process:
  • the purpose of the present invention is to solve the above-mentioned problems in the prior art, and to propose a method capable of accurately measuring the inclination angle and capable of self-diagnosing faults.
  • a method for obtaining the inclination of a small intelligent inclination sensor comprising:
  • Step S1 Collect the voltage values corresponding to each chip, including: obtaining the voltage values V x1 , V x2 and V y through the horizontal acceleration sensor chip, obtaining the voltage value V z through the vertical acceleration sensor chip, and obtaining the voltage value through the gyroscope chip V G , and obtain the voltage value V T through the temperature sensor chip;
  • Step S2 According to each voltage value obtained in step S1, the voltage value is converted into acceleration by a preset method, wherein the voltage values V x1 , V x2 and V y obtained by the horizontal acceleration sensor chip are respectively converted into horizontal acceleration A x1 correspondingly , A x2 and A y , convert the voltage value V z obtained by the vertical acceleration sensor chip into the vertical acceleration A z , and convert the voltage value V G obtained by the gyroscope chip and the voltage value V T obtained by the temperature sensor chip into a gyroscope The angular velocity of the instrument ⁇ G ;
  • step S2 includes:
  • Step S21 correcting V x1 , V x2 , V y , V z , V G and V T according to the preset stored zero-point voltage to obtain corresponding V′ x1 , V′ x2 , V′ y , V′ z , V′ G and V′ T ;
  • Step S22 obtaining the corresponding temperature value T according to the preset temperature and the sensor chip voltage calibration curve
  • Step S23 According to the preset temperature, sensor chip voltage calibration curve and sensor temperature drift coefficient, obtain corresponding horizontal lateral accelerations A x1 , A x2 , vertical horizontal acceleration A y , vertical acceleration A z , and gyroscope angular velocity ⁇ G .
  • step S3 includes:
  • Step S31 obtain longitudinal acceleration A' y after filtering A y through an average value filter
  • Step S33 Perform filtering processing on ⁇ x1 and ⁇ x2 through a Butterworth filter to obtain corresponding horizontal inclination angles ⁇ ′ x1 and ⁇ ′ x2 .
  • step S4 the inclination angle values ⁇ ′ x1 and ⁇ ′ x2 obtained according to the step S3, and the gyroscope angular velocity ⁇ G obtained according to the step S2, self-test, to obtain ⁇ 'x and ⁇ ' x;
  • step S5 performing filter processing on ⁇ 'x, ⁇ ' x Kalman filter, to obtain the final angle ⁇ "x, and outputs it.
  • step S4 includes:
  • Step S41 If the difference between ⁇ 'x1 and ⁇ ' x2 is equal to or less than a preset difference, obtaining an average value ⁇ 'x; if ⁇ ' When x1 and ⁇ 'is greater than a preset difference x2 difference, then Obtain the fault signal of the horizontal acceleration sensor chip;
  • Step S42 if the angular velocity ⁇ G of the gyroscope is less than or equal to the preset value, perform integration processing through an integrating filter to obtain the angular velocity change value ⁇ ′ x , and if the angular velocity ⁇ G of the gyroscope is greater than the preset value, obtain the gyroscope Chip failure signal.
  • the fault of the horizontal acceleration chip is obtained according to step S41, and a self-check is performed, including:
  • Step S411 determining a level wherein the acceleration sensor chip is normal, if yes, obtaining the corresponding angle, and the angle of inclination as ⁇ 'x output, if not, continues to judge whether the acceleration sensor chip further normal levels;
  • Step S412 if yes, acquire the inclination angle corresponding to the horizontal acceleration chip, and output the inclination angle as ⁇ ′ x ; if not, acquire a fault signal and upload the fault signal to the CPU.
  • step S42 which includes:
  • Step S421 if the self-check is normal, obtain the corresponding angular velocity change value ⁇ ′ x ; if the self-check is not normal, obtain a fault signal, and upload the fault signal to the CPU.
  • a method of obtaining the inclination angle of a small intelligent inclination sensor of the present invention adopts the double filter of the Butterworth filter and the Kalman filter to ensure the high precision and stability of the inclination angle of the sensor in a strong vibration environment
  • the measurement also avoids the problem that the FIR filter has high hardware requirements.
  • the pitch direction of the sensor can be leveled during the installation process, and by measuring the gravitational acceleration where the sensor works, It is used to compensate the error of the measurement result caused by the change of gravitational acceleration;
  • a small intelligent inclination sensor of the present invention is small in size, light in weight, and easy to install and maintain, wherein, through the built-in gyroscope chip with temperature sensor chip, vertical acceleration sensor chip and horizontal acceleration sensor chip , so as to improve the detection accuracy and ensure the reliability of the use of the sensor.
  • the level in the present invention does not rely on electricity, so it is not necessary to power on and level during the installation process to detect whether the sensor is installed smoothly, and its operation is convenient and reliable.
  • FIG. 1 is a schematic structural diagram of a small intelligent inclination sensor of the present invention.
  • FIG. 2 is a schematic structural diagram of the tilt sensor shown in FIG. 1 from another viewing angle.
  • FIG. 3 is a cross-sectional view taken along line A-A of the inclination sensor shown in FIG. 2 .
  • FIG. 4 is a cross-sectional view taken along line B-B of the inclination sensor shown in FIG. 2 .
  • FIG. 5 is a schematic partial structure diagram of a small intelligent inclination sensor according to the present invention.
  • FIG. 6 is a functional block diagram of a method for obtaining the inclination of a small intelligent inclination sensor according to the present invention.
  • FIG. 7 is a schematic diagram of a method for obtaining the inclination of a small intelligent inclination sensor according to the present invention.
  • 100 housing; 110, partition; 120, first cavity; 130, second cavity; 140, first cover; 141, observation window; 150, second cover; 160, connector ;170, transparent plate; 180, first sleeve; 190, second sleeve; 200, spirit level; 300, auxiliary control board; 310, gyroscope chip; 320, temperature sensor chip; 330, vertical acceleration sensor chip; 400 500, main control board; 510, CPU; 520, horizontal acceleration sensor chip; 530, acquisition module; 540, conversion module; 550, calculation module; 560, diagnosis module.
  • a small intelligent inclination sensor provided by the present invention includes: a housing 100 with a built-in cavity, and the cavity is divided into two independent cavities by a partition 110, respectively are the first cavity 120 and the second cavity 130 , the level 200 is installed in the first cavity 120 , the auxiliary control board 300 , the power board 400 and the main control board 500 are installed in the second cavity 130 , wherein , a gyroscope chip 310, a temperature sensor chip 320, and a vertical acceleration sensor chip 330 are installed on the auxiliary control board 300, and a CPU 510 (ie, a micro-control unit, a processor) is installed on the main control board 500, and the horizontal acceleration sensor chip 520 , wherein a collection module 530 for collecting voltage values corresponding to the horizontal acceleration sensor chip 520, the vertical acceleration sensor chip 330, the gyroscope chip 310 and the temperature sensor chip 320 is installed on the CPU 510, and a conversion module for converting the voltage
  • the first cover plate 140 is located above the first cavity 120 for sealing the first cavity 120 , and the first cover plate 140 is connected with the housing 100 by fasteners, wherein the first cover plate 140 is There is an observation window 141 on it, which corresponds to the position of the level 200;
  • the second cover 150 is located above the second cavity 130 and is used to seal the second cavity 130, and the second cover 150 and the housing 100 are connected by fasteners;
  • At least one connector 160 is installed on the housing 100, wherein the connector 160 is connected to the power board 400 and the main control board 500 through wires.
  • a small intelligent inclination sensor provided by the present invention is small in size, light in weight, and convenient in installation and maintenance. 520, so as to improve the detection accuracy and ensure the reliability of the use of the sensor.
  • the level 200 in the present invention does not rely on electricity, so it is not necessary to power on and level during the installation process to detect whether the sensor is installed smoothly, and its operation is convenient, reliable.
  • the inclination sensor in the present invention also has the functions of power-on self-test, timing diagnosis and trigger diagnosis, wherein the power-on self-test means that after the sensor is powered on, the vertical acceleration sensor chip 330 and the horizontal
  • the acceleration sensor chip 520 and the gyroscope chip 310 send out self-checking control signals to check whether the acquisition of the corresponding chip is normal, and to detect whether the acquisition of the power board 400 is abnormal.
  • Timing diagnosis refers to the timing self-test of the sensor, and at the same time, the validity of the data is also detected during the working process. Whether the difference is too large, whether the angular velocity of the gyroscope chip 310 is too large, and whether the inclination value exceeds the maximum value.
  • Triggered diagnosis means that the host computer sends a self-check command to the sensor when needed, and the sensor interrupts the measurement to perform a self-check.
  • the gyroscope chip 310 and the temperature sensor chip 320 are integrally arranged to form a gyroscope assembly, or the gyroscope chip 310 and the temperature sensor chip 320 are arranged separately.
  • both ends of the level 200 are installed in the first cavity 120 by fasteners.
  • the observation window 141 on the first cover 140 it is possible to quickly know whether the current sensor installation position is in a horizontal state without opening the first cavity 120, and the installation of the level 200 is fastened.
  • the component not only serves as a fixed component of the level 200, but also serves as the leveling of the level 200 in its initial state (at the time of installation) to ensure the reliability of the data detected by the subsequent vertical acceleration sensor chip 330 and horizontal acceleration sensor chip 520.
  • a transparent plate 170 is also installed in the first cavity 120 , wherein the transparent plate 170 is located between the first cover plate 140 and the level 200 .
  • the level 200 is protected to avoid damage to the level 200 , and on the other hand, a “clamping” shape is formed between the level 200 and the bottom wall of the first cavity 120 , so that the level 200 is realized.
  • the limit in the vertical direction ensures that the installation position of the sensor does not shift or turn even in a harsh working environment, thereby improving the reliability of data detection of the vertical acceleration sensor chip 330 and the horizontal acceleration sensor chip 520 .
  • the power supply board 400 and the main control board 500 are arranged one above the other, and there is a gap between the power supply board 400 and the main control board 500 , and the power supply board 400 and the main control board 500 are connected by fasteners.
  • the main control board 500 is installed on the bottom wall of the second cavity 130
  • the auxiliary control board 300 is installed on the side wall of the second cavity 130 , wherein there is a gap between the auxiliary control board 300 and the side wall of the second cavity 130 , There is a gap between the main control board 500 and the bottom wall of the second cavity 130 .
  • a gap is set between the power board 400 and the main control board 500 , a gap is set between the main control board 500 and the bottom wall of the second cavity 130 , and the auxiliary control board 300 and the side wall of the second cavity 130 There is a gap between them, so as to ensure the insulation and withstand voltage performance of the sensor, thereby prolonging the service life of the sensor.
  • the power board 400 and the main control board 500 are separated by the first sleeve 180
  • the auxiliary control board 300 and the side wall of the second cavity 130 are separated by the second sleeve 190 .
  • a gap exists between the power board 400 and the main control board 500 through the first sleeve 180 , and a gap exists between the auxiliary control board 300 and the side wall of the second cavity 130 through the second sleeve 190 ,
  • the sleeve has a certain strength, so as to ensure the insulation and pressure resistance of the sensor, thereby prolonging the service life of the sensor.
  • the connector 160 is installed on the housing 100 through a rubber pad, so as to improve the waterproof performance of the sensor, and further preferably, glue filling is performed in the connector 160 to further improve the sensor waterproof performance.
  • the number of connectors 160 is two, and the two connectors 160 are arranged side by side, wherein, the two connectors 160 are both connected to the power board 400 and the main control board 500, so as to realize a cascaded group of multiple sensors network to expand the use scenarios of sensors.
  • the present invention also provides a method for obtaining the inclination angle of a small intelligent inclination sensor, as shown in FIG. 6 and FIG. 7 , including:
  • Step S1 collecting voltage values corresponding to each chip, including: obtaining the voltage values V x1 , V x2 and V y through the horizontal acceleration sensor chip 520 , obtaining the voltage value V z through the vertical acceleration sensor chip 330 , and obtaining the voltage values V z through the gyroscope chip 310 Obtain the voltage value V G , and obtain the voltage value V T through the temperature sensor chip 320;
  • Step S2 According to each voltage value obtained in step S1, the voltage value is converted into an acceleration by a preset method, wherein the voltage values V x1 , V x2 and V y obtained by the horizontal acceleration sensor chip 520 are respectively converted into horizontal acceleration A correspondingly x1 , A x2 and A y , convert the voltage value V z obtained by the vertical acceleration sensor chip 330 into the vertical acceleration A z , convert the voltage value V G obtained by the gyroscope chip 310 and the voltage value V T obtained by the temperature sensor chip 320 , converted into gyroscope angular velocity ⁇ G ;
  • Step S4 carry out self-check according to the inclination values ⁇ ′ x1 and ⁇ ′ x2 obtained in step S3 and the gyroscope angular velocity ⁇ G obtained in step S2 to obtain ⁇ ′ x and ⁇ ′ x ;
  • Step S5 filter ⁇ ′ x and ⁇ ′ x through the Kalman filter to obtain the final inclination angle ⁇ ′′ x and output it.
  • step S2 includes:
  • Step S21 correcting V x1 , V x2 , V y , V z , V G and V T according to the preset stored zero-point voltage to obtain corresponding V′ x1 , V′ x2 , V′ y , V′ z , V′ G and V′ T ;
  • Step S22 obtaining the corresponding temperature value T according to the preset temperature and the sensor chip voltage calibration curve
  • Step S23 According to the preset temperature, sensor chip voltage calibration curve and sensor temperature drift coefficient, obtain corresponding horizontal lateral accelerations A x1 , A x2 , vertical horizontal acceleration A y , vertical acceleration A z , and gyroscope angular velocity ⁇ G .
  • step S3 includes:
  • Step S31 filter A y through an average value filter to obtain the longitudinal acceleration A' y and the gravitational acceleration G, since these two values do not require fast response, the average value filtering can be performed for a long time;
  • Step S33 Perform filtering processing on ⁇ x1 and ⁇ x2 through a Butterworth filter to obtain corresponding horizontal inclination angles ⁇ ′ x1 and ⁇ ′ x2 , thereby eliminating high-frequency interference.
  • step S4 includes:
  • Step S41 If the difference between ⁇ 'x1 and ⁇ ' x2 is equal to or less than a preset difference, obtaining an average value ⁇ 'x; if ⁇ ' When x1 and ⁇ 'is greater than a preset difference x2 difference, then Obtain the fault signal of the horizontal acceleration sensor chip 520;
  • Step S42 if the angular velocity ⁇ G of the gyroscope is less than or equal to the preset value, perform integration processing through an integrating filter to obtain the angular velocity change value ⁇ ′ x , and if the angular velocity ⁇ G of the gyroscope is greater than the preset value, obtain the gyroscope Chip 310 fault signal.
  • the fault signal of the horizontal acceleration chip is obtained according to step S41, and self-checking is performed, including:
  • Step S411 determining a level where the acceleration sensor chip 520 is normal, if yes, obtaining the corresponding angle, and the angle of inclination as ⁇ 'x output, if not, continues to judge other horizontal acceleration sensor chip 520 is normal;
  • Step S412 if yes, acquire the inclination angle corresponding to the horizontal acceleration chip, and output the inclination angle as ⁇ ′ x ; if not, acquire a fault signal and upload the fault signal to the CPU 510 .
  • the horizontal acceleration chip fault signal is obtained according to step S42, including:
  • Step S421 If the self-check is normal, obtain the corresponding angular velocity change value ⁇ ′ x , if the self-check is abnormal, obtain a fault signal, and upload the fault signal to the CPU510:
  • the invention provides a method for obtaining the inclination angle of a small intelligent inclination angle sensor, which adopts the double filter of the Butterworth filter and the Kalman filter, which ensures the high-precision and stable measurement of the inclination angle of the sensor in the strong vibration environment, and at the same time It also avoids the problem that the FIR filter has high hardware requirements.
  • the pitch direction of the sensor can be leveled during the installation process, and the gravitational acceleration at the location where the sensor works can be measured to compensate. Errors in measurement results caused by changes in gravitational acceleration.

Abstract

一种获取小型智能化倾角传感器倾角的方法,包括:步骤S1:采集各个芯片对应的电压值;步骤S2:根据步骤S1获取的电压值,通过预设方式将电压值转换成加速度;步骤S3:根据步骤S2获取的加速度,通过公式θ=arcsin(A/G),计算得到倾角值θx1、θy以及θx2,并通过巴特沃兹滤波器对θx1和θx2进行滤波处理,得到θ'x1和θ'x2。通过这种方法,实现倾角的精确计算以及实现自行的故障诊断。

Description

一种获取小型智能化倾角传感器倾角的方法 技术领域
本发明属于传感器技术领域,涉及一种方法,特别是一种获取小型智能化倾角传感器倾角的方法。
背景技术
我国铁路部门大量使用的捣固车,在铁路施工、维护过程中对钢轨的高低、方向等参数进行调节,从而提高线路的平顺性,保证列车的安全运行。其中,两根钢轨之间的高度差(也称钢轨的超高量)是捣固作业过程中的重要控制量。
现有的捣固车通过电子摆式倾角传感器来对钢轨的超高量进行测量,而这种传感器采用重力摆锤来检测倾角的变化,通过电位器来感知摆锤摆动的角度,并通过阻尼油来克服振动对测量的干扰。该传感器具有原理简单、测量精度高,耐振动性能好等优点,但是在长期使用过程中存在如下缺点:
其一,无法精确测量倾角角度;
其二,无法实现传感器的故障自诊断。
发明内容
本发明的目的是针对现有的技术存在上述问题,提出了一种能够精确测量倾角角度,并能实现自行故障诊断的方法。
本发明的目的可通过下列技术方案来实现:一种获取小型智能化倾角传感器倾角的方法,包括:
步骤S1:采集各个芯片对应的电压值,其中,包括:通过水平加速度传感器芯片获取电压值V x1、V x2以及V y,通过垂直加速度传感器芯片获取电压值V z,通过陀螺仪芯片获取电压值V G,以及通过温度传感器芯片获取电压值V T
步骤S2:根据步骤S1获取的各个电压值,通过预设方式将电压值转换成加速度,其中,将水平加速度传感器芯片获取的电压值V x1、V x2以及V y 分别对应转换成水平加速度A x1、A x2以及A y,将垂直加速度传感器芯片获取的电压值V z转换成垂直加速度A z,将陀螺仪芯片获取的电压值V G,和温度传感器芯片获取的电压值V T,转换成陀螺仪角速度Ω G
步骤S3:根据步骤S2获取的各个加速度,通过公式θ=arcsin(A/G),计算得到倾角值θ x1、θ y以及θ x2,并通过巴特沃兹滤波器对θ x1和θ x2进行滤波处理,得到θ′ x1和θ′ x2,其中,G表示重力加速度。
在上述所述的一种获取小型智能化倾角传感器倾角的方法中,步骤S2包括:
步骤S21:根据预设存储的零点电压对V x1、V x2、V y、V z、V G以及V T进行修正处理,得到对应的V′ x1、V′ x2、V′ y、V′ z、V′ G以及V′ T
步骤S22:根据预设的温度、传感器芯片电压标定曲线,获取相应的温度值T;
步骤S23:根据预设的温度、传感器芯片电压标定曲线和传感器温漂系数,获取对应的水平横向加速度A x1、A x2,纵向水平加速度A y,垂直加速度A z,以及陀螺仪角速度Ω G
在上述所述的一种获取小型智能化倾角传感器倾角的方法中,步骤S3包括:
步骤S31:通过平均值滤波器将A y进行滤波后获取纵向加速度A' y
步骤S32:按照公式θ=arcsin(A/G),计算得到对应的倾角θ x1、θ y、θ x2,其中,θ x1,θ x2表示水平倾角,θ y表示俯仰角;
步骤S33:通过巴特沃兹滤波器对θ x1、θ x2进行滤波处理,获取对应的水平倾角θ′ x1、θ′ x2
在上述所述的一种获取小型智能化倾角传感器倾角的方法中,还包括步骤S4:根据步骤S3获得的倾角值θ′ x1和θ′ x2,以及根据步骤S2获得的陀螺仪角速度Ω G,进行自检,获得θ′ x和Δθ′ x;步骤S5:通过卡尔曼滤波器对θ′ x、Δθ′ x进行滤波处理,得到最终的倾角θ″ x,并将其输出。
在上述所述的一种获取小型智能化倾角传感器倾角的方法中,步骤S4包括:
步骤S41:若θ′ x1和θ′ x2的差值小于或者等于预设差值时,则获得平均值θ′ x;若θ′ x1和θ′ x2的差值大于预设差值时,则获得水平加速度传感器芯片故障信号;
步骤S42:若陀螺仪角速度Ω G小于或者等于预设数值时,则通过积分滤波器进行积分处理,获取角速度变化值Δθ′ x,若陀螺仪角速度Ω G大于预设数值时,则获得陀螺仪芯片故障信号。
在上述所述的一种获取小型智能化倾角传感器倾角的方法中,根据步骤S41获得水平加速度芯片故障,进行自检,其中,包括:
步骤S411:判断其中一个水平加速度传感器芯片是否正常,若是,则获取对应的倾角,并将该倾角作为θ′ x输出,若否,则继续判断另一个水平加速度传感器芯片是否正常;
步骤S412:若是,则获取该水平加速度芯片所对应的倾角,并将该倾角作为θ′ x输出,若否,则获取故障信号,并将该故障信号上传至CPU。
在上述所述的一种获取小型智能化倾角传感器倾角的方法中,根据步骤S42获得水平加速度芯片故障,其中,包括:
步骤S421:若自检正常,则获取对应角速度变化值Δθ′ x,若自检不正常,则获取故障信号,并将该故障信号上传至CPU。
与现有技术相比,本发明的有益效果:
(1)、本发明的一种获取小型智能化倾角传感器倾角的方法,采用巴特沃兹滤波器和卡尔曼滤波器的双重滤波器,保证了传感器在强振动环境下对倾角的高精度、稳定测量,同时也避免了FIR滤波器对硬件要求较高的问题,另外,通过俯仰角的获取,能够实现传感器在安装过程中俯仰方向的调平,以及通过对传感器工作所在地的重力加速度进行测量,用以补偿重力加速度变化而导致的测量结果的误差;
(2)、本发明的一种小型智能化倾角传感器,其体积小、重量轻,且安装、维护方便,其中,通过内置有温度传感器芯片的陀螺仪芯片,垂直加速度传感器芯片以及水平加速度传感器芯片,从而提高检测精度,保证传感器使用的可靠性,另外,本发明中的水平仪不依靠电气,因此在安装 过程中无需进行上电调平,即可检测传感器是否安装平稳,其操作方便、可靠。
附图说明
图1是本发明一种小型智能化倾角传感器的结构示意图。
图2是图1所示倾角传感器另一视角的结构示意图。
图3是图2所示倾角传感器的A-A的剖视图。
图4是图2所示倾角传感器的B-B的剖视图。
图5是本发明一种小型智能化倾角传感器的局部结构示意图。
图6是本发明一种获取小型智能化倾角传感器倾角的方法的功能框图。
图7是本发明一种获取小型智能化倾角传感器倾角的方法的原理图。
图中,100、壳体;110、隔板;120、第一腔体;130、第二腔体;140、第一盖板;141、观察窗;150、第二盖板;160、连接器;170、透明板;180、第一套筒;190、第二套筒;200、水平仪;300、辅控板;310、陀螺仪芯片;320、温度传感器芯片;330、垂直加速度传感器芯片;400、电源板;500、主控板;510、CPU;520、水平加速度传感器芯片;530、采集模块;540、转换模块;550、计算模块;560、诊断模块。
具体实施方式
以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
如图1至图5所示,本发明提供的一种小型智能化倾角传感器,包括:壳体100,内置凹腔,并通过隔板110将凹腔分割成两个相互独立的腔体,分别为第一腔体120和第二腔体130,且在第一腔体120内安装有水平仪200,在第二腔体130内安装有辅控板300、电源板400以及主控板500,其中,在辅控板300上安装有陀螺仪芯片310和温度传感器芯片320,以及垂直加速度传感器芯片330,在主控板500上安装有CPU510(即微控制单元,处理器),水平加速度传感器芯片520,其中,CPU510上安装有用以采集对应水平加速度传感器芯片520、垂直加速度传感器芯片330、陀螺仪芯片310以及温度传感器芯片320的电压值的采集模块530,用以将电压值 转换成加速度的转换模块540,用以计算倾角值的计算模块550,以及用以判断水平加速度传感器芯片520和陀螺仪芯片310是否存在故障的诊断模块560;
第一盖板140,位于第一腔体120的上方,用以密封第一腔体120,且第一盖板140与壳体100之间通过紧固件相连,其中,在第一盖板140上设置有观察窗141,与水平仪200的位置相对应;
第二盖板150,位于第二腔体130的上方,用以密封第二腔体130,且第二盖板150与壳体100之间通过紧固件相连;
至少一个连接器160,安装于壳体100上,其中,连接器160通过导线与电源板400和主控板500相连。
本发明提供的一种小型智能化倾角传感器,其体积小、重量轻,且安装、维护方便,其中,通过内置有温度传感器芯片320的陀螺仪芯片310,垂直加速度传感器芯片330以及水平加速度传感器芯片520,从而提高检测精度,保证传感器使用的可靠性,另外,本发明中的水平仪200不依靠电气,因此在安装过程中无需进行上电调平,即可检测传感器是否安装平稳,其操作方便、可靠。
在本实施例中,本发明中的倾角传感器还具有上电自检、定时诊断以及触发式诊断功能,其中,上电自检指的是传感器在上电后,给垂直加速度传感器芯片330以及水平加速度传感器芯片520、陀螺仪芯片310发出自检控制信号,检查对应芯片的获取是否正常,检测电源板400的获取是否异常。定时诊断指的是传感器的定时自检,同时在工作过程中,也会对数据的有效性进行检测,例如,水平加速度传感器芯片520中的水平倾角和垂直加速度传感器芯片330中的水平倾角之间的差值是否差异过大,陀螺仪芯片310的角速度是否过大,检测倾角值是否超过最大值。触发式诊断指的是上位机在需要的时候给传感器发送自检命令,传感器中断测量执行自检。
进一步优选地,陀螺仪芯片310和温度传感器芯片320集成设置,形成陀螺仪组件,或者陀螺仪芯片310和温度传感器芯片320分体设置。
优选地,如图1至图5所示,水平仪200的两端通过紧固件安装于第一腔体120内。
在本实施例中,通过第一盖板140上的观察窗141,能够在不打开第一腔体120的情况下,快速知晓当前传感器安装的位置是否处于水平状态,而水平仪200安装的紧固件不仅作为水平仪200的固定部件,而且还能作为水平仪200初始状态(安装时)的调平,保证后续垂直加速度传感器芯片330和水平加速度传感器芯片520检测数据的可靠性。
进一步优选地,在第一腔体120内还安装有一个透明板170,其中,该透明板170位于第一盖板140和水平仪200之间。
在本实施例中,通过增设透明板170,一方面对于水平仪200形成保护,避免水平仪200发生损坏,另一方面与第一腔体120的底壁之间形成“夹持”形态,实现水平仪200在垂直方向上的限位,保证传感器即使在恶劣的工作环境中,其安装位置仍不发生偏移、转向,进而提高垂直加速度传感器芯片330和水平加速度传感器芯片520数据检测的可靠性。
优选地,如图1至图5所示,电源板400与主控板500呈上下层叠设置,且电源板400与主控板500之间存有间隙,并通过紧固件将电源板400和主控板500安装于第二腔体130的底壁,辅控板300安装于第二腔体130的侧壁,其中,辅控板300与第二腔体130侧壁之间存有间隙,主控板500与第二腔体130底壁之间存有间隙。
在本实施例中,电源板400与主控板500之间设置有间隙,主控板500与第二腔体130底壁之间设置间隙,以及辅控板300与第二腔体130侧壁之间存有间隙,从而保证传感器的绝缘、耐压性能,进而延长传感器的使用寿命。
进一步优选地,电源板400与主控板500之间通过第一套筒180相分离,辅控板300与第二腔体130侧壁之间通过第二套筒190相分离。
在本实施例中,通过第一套筒180使得电源板400与主控板500之间存在间隙,通过第二套筒190使得辅控板300与第二腔体130侧壁之间存在间隙,而套筒具有一定的强度,从而保证传感器的绝缘、耐压性能,进 而延长传感器的使用寿命。
优选地,如图1至图5所示,连接器160通过橡胶垫安装于壳体100上,从而提高传感器的防水性能,进一步优选地,在连接器160内进行灌胶处理,从而进一步提高传感器的防水性能。
进一步优选地,连接器160的数量为两个,且两个连接器160并排设置,其中,两个连接器160均与电源板400和主控板500相连,从而实现多个传感器的级联组网,扩大传感器的使用场景。
本发明还提供一种获取小型智能化倾角传感器倾角的方法,如图6和图7所示,包括:
步骤S1:采集各个芯片对应的电压值,其中,包括:通过水平加速度传感器芯片520获取电压值V x1、V x2以及V y,通过垂直加速度传感器芯片330获取电压值V z,通过陀螺仪芯片310获取电压值为V G,以及通过温度传感器芯片320获取电压值V T
步骤S2:根据步骤S1获取的各个电压值,通过预设方式将电压值转换成加速度,其中,将水平加速度传感器芯片520获取的电压值V x1、V x2以及V y分别对应转换成水平加速度A x1、A x2以及A y,将垂直加速度传感器芯片330获取的电压值V z转换成垂直加速度A z,将陀螺仪芯片310获取的电压值V G,和温度传感器芯片320获取的电压值V T,转换成陀螺仪角速度Ω G
步骤S3:根据步骤S2获取的各个加速度,通过公式θ=arcsin(A/G),计算得到倾角值θ x1、θ y以及θ x2,并通过巴特沃兹滤波器对θ x1和θ x2进行滤波处理,得到θ′ x1和θ′ x2
步骤S4:根据步骤S3获得的倾角值θ′ x1和θ′ x2,以及根据步骤S2获得的陀螺仪角速度Ω G,进行自检,获得θ′ x和Δθ′ x
步骤S5:通过卡尔曼滤波器对θ′ x、Δθ′ x进行滤波处理,得到最终的倾角θ″ x,并将其输出。
进一步优选地,步骤S2包括:
步骤S21:根据预设存储的零点电压对V x1、V x2、V y、V z、V G以及V T进行修正处理,得到对应的V′ x1、V′ x2、V′ y、V′ z、V′ G以及V′ T
步骤S22:根据预设的温度、传感器芯片电压标定曲线,获取相应的温度值T;
步骤S23:根据预设的温度、传感器芯片电压标定曲线和传感器温漂系数,获取对应的水平横向加速度A x1、A x2,纵向水平加速度A y,垂直加速度A z,以及陀螺仪角速度Ω G
进一步优选地,步骤S3包括:
步骤S31:通过平均值滤波器将A y进行滤波后获取纵向加速度A' y,和重力加速度G,由于这两个值不需要快速响应,故可进行较长时间的平均值滤波;
步骤S32:按照公式θ=arcsin(A/G),计算得到对应的倾角θ x1、θ y、θ x2,其中,θ x1,θ x2表示水平倾角,θ y表示俯仰角;
步骤S33:通过巴特沃兹滤波器对θ x1、θ x2进行滤波处理,获取对应的水平倾角θ′ x1、θ′ x2,从而消除高频干扰。
进一步优选地,步骤S4包括:
步骤S41:若θ′ x1和θ′ x2的差值小于或者等于预设差值时,则获得平均值θ′ x;若θ′ x1和θ′ x2的差值大于预设差值时,则获得水平加速度传感器芯片520故障信号;
步骤S42:若陀螺仪角速度Ω G小于或者等于预设数值时,则通过积分滤波器进行积分处理,获取角速度变化值Δθ′ x,若陀螺仪角速度Ω G大于预设数值时,则获得陀螺仪芯片310故障信号。
进一步优选地,根据步骤S41获得水平加速度芯片故障信号,进行自检,其中,包括:
步骤S411:判断其中一个水平加速度传感器芯片520是否正常,若是,则获取对应的倾角,并将该倾角作为θ′ x输出,若否,则继续判断另一个水平加速度传感器芯片520是否正常;
步骤S412:若是,则获取该水平加速度芯片所对应的倾角,并将该倾角作为θ′ x输出,若否,则获取故障信号,并将该故障信号上传至CPU510。
进一步优选地,根据步骤S42获得水平加速度芯片故障信号,其中, 包括:
步骤S421:若自检正常,则获取对应角速度变化值Δθ′ x,若自检不正常,则获取故障信号,并将该故障信号上传至CPU510:
本发明提供的一种获取小型智能化倾角传感器倾角的方法,采用巴特沃兹滤波器和卡尔曼滤波器的双重滤波器,保证了传感器在强振动环境下对倾角的高精度、稳定测量,同时也避免了FIR滤波器对硬件要求较高的问题,另外,通过俯仰角的获取,能够实现传感器在安装过程中俯仰方向的调平,以及通过对传感器工作所在地的重力加速度进行测量,用以补偿重力加速度变化而导致的测量结果的误差。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (7)

  1. 一种获取小型智能化倾角传感器倾角的方法,其特征在于,包括:
    步骤S1:采集各个芯片对应的电压值,其中,包括:通过水平加速度传感器芯片获取电压值V x1、V x2以及V y,通过垂直加速度传感器芯片获取电压值V z,通过陀螺仪芯片获取电压值V G,以及通过温度传感器芯片获取电压值V T
    步骤S2:根据步骤S1获取的各个电压值,通过预设方式将电压值转换成加速度,其中,将水平加速度传感器芯片获取的电压值V x1、V x2以及V y分别对应转换成水平加速度A x1、A x2以及A y,将垂直加速度传感器芯片获取的电压值V z转换成垂直加速度A z,将陀螺仪芯片获取的电压值V G,和温度传感器芯片获取的电压值V T,转换成陀螺仪角速度Ω G
    步骤S3:根据步骤S2获取的各个加速度,通过公式θ=arcsin(A/G),计算得到倾角值θ x1、θ y以及θ x2,并通过巴特沃兹滤波器对θ x1和θ x2进行滤波处理,得到θ′ x1和θ′ x2,其中,G表示重力加速度。
  2. 根据权利要求1所述的一种获取小型智能化倾角传感器倾角的方法,其特征在于,步骤S2包括:
    步骤S21:根据预设存储的零点电压对V x1、V x2、V y、V z、V G以及V T进行修正处理,得到对应的V′ x1、V′ x2、V′ y、V′ z、V′ G以及V′ T
    步骤S22:根据预设的温度、传感器芯片电压标定曲线,获取相应的温度值T;
    步骤S23:根据预设的温度、传感器芯片电压标定曲线和传感器温漂系数,获取对应的水平横向加速度A x1、A x2,纵向水平加速度A y,垂直加速度A z,以及陀螺仪角速度Ω G
  3. 根据权利要求1所述的一种获取小型智能化倾角传感器倾角的方法,其特征在于,步骤S3包括:
    步骤S31:通过平均值滤波器将A y进行滤波后获取纵向加速度A' y
    步骤S32:按照公式θ=arcsin(A/G),计算得到对应的倾角θ x1、θ y、θ x2,其中,θ x1,θ x2表示水平倾角,θ y表示俯仰角;
    步骤S33:通过巴特沃兹滤波器对θ x1、θ x2进行滤波处理,获取对应的 水平倾角θ′ x1、θ′ x2
  4. 根据权利要求1所述的一种获取小型智能化倾角传感器倾角的方法,其特征在于,还包括步骤S4:根据步骤S3获得的倾角值θ′ x1和θ′ x2,以及根据步骤S2获得的陀螺仪角速度Ω G,进行自检,获得θ′ x和Δθ′ x;步骤S5:通过卡尔曼滤波器对θ′ x、Δθ′ x进行滤波处理,得到最终的倾角θ″ x,并将其输出。
  5. 根据权利要求4所述的一种获取小型智能化倾角传感器倾角的方法,其特征在于,步骤S4包括:
    步骤S41:若θ′ x1和θ′ x2的差值小于或者等于预设差值时,则获得平均值θ′ x;若θ′ x1和θ′ x2的差值大于预设差值时,则获得水平加速度传感器芯片故障信号;
    步骤S42:若陀螺仪角速度Ω G小于或者等于预设数值时,则通过积分滤波器进行积分处理,获取角速度变化值Δθ′ x,若陀螺仪角速度Ω G大于预设数值时,则获得陀螺仪芯片故障信号。
  6. 根据权利要求5所述的一种获取小型智能化倾角传感器倾角的方法,其特征在于,根据步骤S41获得水平加速度芯片故障信号,进行自检,其中,包括:
    步骤S411:判断其中一个水平加速度传感器芯片是否正常,若是,则获取对应的倾角,并将该倾角作为θ′ x输出,若否,则继续判断另一个水平加速度传感器芯片是否正常;
    步骤S412:若是,则获取该水平加速度芯片所对应的倾角,并将该倾角作为θ′ x输出,若否,则获取故障信号,并将该故障信号上传至CPU。
  7. 根据权利要求5所述的一种获取小型智能化倾角传感器倾角的方法,其特征在于,根据步骤S42获得水平加速度芯片故障信号,其中,包括:
    步骤S421:若自检正常,则获取对应角速度变化值Δθ′ x,若自检不正常,则获取故障信号,并将该故障信号上传至CPU。
PCT/CN2020/105231 2020-06-29 2020-07-28 一种获取小型智能化倾角传感器倾角的方法 WO2022000668A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010601430.4 2020-06-29
CN202010601430.4A CN111521155B (zh) 2020-06-29 2020-06-29 一种获取小型智能化倾角传感器倾角的方法

Publications (1)

Publication Number Publication Date
WO2022000668A1 true WO2022000668A1 (zh) 2022-01-06

Family

ID=71910189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105231 WO2022000668A1 (zh) 2020-06-29 2020-07-28 一种获取小型智能化倾角传感器倾角的方法

Country Status (2)

Country Link
CN (1) CN111521155B (zh)
WO (1) WO2022000668A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114908793A (zh) * 2022-06-28 2022-08-16 江苏道达风电设备科技有限公司 一种复合筒型基础陆上建造法兰水平控制工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115615493B (zh) * 2022-12-16 2023-03-28 深圳市瑞芬科技有限公司 一种用于测量风力发电机组倾斜与摇摆的传感器
CN117470194B (zh) * 2023-12-28 2024-04-09 江西飞尚科技有限公司 一种倾角测量方法、系统、存储介质及计算机
CN117705448B (zh) * 2024-02-05 2024-05-07 南京凯奥思数据技术有限公司 基于滑动平均与3σ准则相融合的轴承故障劣化趋势阈值预警方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620719A (zh) * 2012-04-17 2012-08-01 西安精准测控有限责任公司 具备高精度、温度补偿的倾角传感器及其动态补偿方法
US20130158940A1 (en) * 2011-10-31 2013-06-20 University Of Florida Research Foundation, Inc. Vestibular dynamic inclinometer
CN105043348A (zh) * 2015-07-11 2015-11-11 哈尔滨工业大学 基于卡尔曼滤波的加速度计陀螺仪水平角度测量方法
CN106052643A (zh) * 2016-07-29 2016-10-26 东风商用车有限公司 一种汽车用实时坡度传感器及其使用方法
CN109109866A (zh) * 2018-08-24 2019-01-01 深圳市国脉畅行科技股份有限公司 车辆行驶状态监测方法、装置、计算机设备及存储介质
CN109827545A (zh) * 2019-03-22 2019-05-31 北京壹氢科技有限公司 一种基于双mems加速度计的在线倾角测量方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10921122B2 (en) * 2018-02-06 2021-02-16 Stmicroelectronics S.R.L. Tilt event detection device, system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130158940A1 (en) * 2011-10-31 2013-06-20 University Of Florida Research Foundation, Inc. Vestibular dynamic inclinometer
CN102620719A (zh) * 2012-04-17 2012-08-01 西安精准测控有限责任公司 具备高精度、温度补偿的倾角传感器及其动态补偿方法
CN105043348A (zh) * 2015-07-11 2015-11-11 哈尔滨工业大学 基于卡尔曼滤波的加速度计陀螺仪水平角度测量方法
CN106052643A (zh) * 2016-07-29 2016-10-26 东风商用车有限公司 一种汽车用实时坡度传感器及其使用方法
CN109109866A (zh) * 2018-08-24 2019-01-01 深圳市国脉畅行科技股份有限公司 车辆行驶状态监测方法、装置、计算机设备及存储介质
CN109827545A (zh) * 2019-03-22 2019-05-31 北京壹氢科技有限公司 一种基于双mems加速度计的在线倾角测量方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114908793A (zh) * 2022-06-28 2022-08-16 江苏道达风电设备科技有限公司 一种复合筒型基础陆上建造法兰水平控制工艺

Also Published As

Publication number Publication date
CN111521155B (zh) 2020-11-20
CN111521155A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
WO2022000668A1 (zh) 一种获取小型智能化倾角传感器倾角的方法
CN102288157B (zh) 一种地基深层沉降监测方法
ES2461856T3 (es) Procedimientos y aparatos para la medición y la evaluación de las cargas de fatiga de una turbina eólica
CN103134474B (zh) 一种工作平台的倾斜角测量方法及装置
CN105320596B (zh) 一种基于倾角仪的桥梁挠度测试方法及其系统
CN103292774B (zh) 一种桥梁动态挠度测量方法
CN105136115A (zh) 一种自动测量隧道断面变形的方法与装置
DK2665930T3 (en) Method for determining the slope of a tower
CN200995920Y (zh) 刚性罐道状态检测装置
CN106338272B (zh) 用于构件倾斜角测量的测试方法
CN112693985B (zh) 一种融合传感器数据的非侵入式电梯状态监测方法
CN105000486B (zh) 两维度塔吊垂直度测量装置及其测试方法
CN105000034A (zh) 一种基于轨旁检测的机车测速装置
CN111521156B (zh) 一种小型智能化倾角传感器
CN106705929B (zh) 建筑物倾斜动态测量仪及其使用方法
CN210666065U (zh) 一种地震烈度仪的标定装置
CN205930301U (zh) 高速铁路受电弓测力传感器
CN111750834B (zh) 一种小型智能化数显角位移传感器
CN112014043A (zh) 一种数字式大板梁挠度测量装置及方法
CN105674946A (zh) 一种大跨度桥梁挠度监测系统
CN109084728A (zh) 一种多维监测装置以及其测量方法
CN109084727A (zh) 一种多维监测装置
CN209524909U (zh) 一种用于道路或桥梁的沉降检测系统
CN108917789A (zh) 一种基于俯仰轴和横滚轴相对夹角的倾角仪正交性评估方法
CN204495315U (zh) 一种物体轮廓的测量系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943534

Country of ref document: EP

Kind code of ref document: A1