WO2022000228A1 - Sensing signal configuration and scheduling - Google Patents

Sensing signal configuration and scheduling Download PDF

Info

Publication number
WO2022000228A1
WO2022000228A1 PCT/CN2020/099114 CN2020099114W WO2022000228A1 WO 2022000228 A1 WO2022000228 A1 WO 2022000228A1 CN 2020099114 W CN2020099114 W CN 2020099114W WO 2022000228 A1 WO2022000228 A1 WO 2022000228A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
parameters
sensing
information associated
aspects
Prior art date
Application number
PCT/CN2020/099114
Other languages
French (fr)
Inventor
Qiaoyu Li
Chao Wei
Hao Xu
Jing Dai
Min Huang
Yu Zhang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/099114 priority Critical patent/WO2022000228A1/en
Priority to PCT/CN2021/097827 priority patent/WO2022001560A1/en
Priority to CN202180045351.2A priority patent/CN115868209A/en
Priority to US17/998,213 priority patent/US20230224696A1/en
Priority to EP21832964.7A priority patent/EP4173372A1/en
Publication of WO2022000228A1 publication Critical patent/WO2022000228A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses associated with sensing signal configuration and scheduling.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication performed by a UE includes: determining that capability information associated with the UE is to be transmitted, the capability information indicating one or more sensing signal receiving schemes supported by the UE; and transmitting the capability information based at least in part on determining that the capability information is to be transmitted.
  • a method of wireless communication performed by a UE includes: determining a set of parameters for a signal to be received by the UE, wherein the signal is to be used by the UE for object detection or for identification of communication interference, and wherein the set of parameters includes information associated with a waveform for the signal; and receiving the signal based at least in part on the set of parameters.
  • a method of wireless communication performed by a base station includes: determining a set of parameters for a signal to be transmitted by the base station, wherein the signal is to be used for object detection, and wherein the set of parameters includes information associated with a waveform for the signal; and transmitting the signal based at least in part on the set of parameters.
  • a UE for wireless communication includes: a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: determine that capability information associated with the UE is to be transmitted, the capability information indicating one or more sensing signal receiving schemes supported by the UE; and transmit the capability information based at least in part on determining that the capability information is to be transmitted.
  • a UE for wireless communication includes: a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: determine a set of parameters for a signal to be received by the UE, wherein the signal is to be used by the UE for object detection or for identification of communication interference, and wherein the set of parameters includes information associated with a waveform for the signal; and receive the signal based at least in part on the set of parameters.
  • a base station for wireless communication includes: a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: determine a set of parameters for a signal to be transmitted by the base station, wherein the signal is to be used for object detection, and wherein the set of parameters includes information associated with a waveform for the signal; and transmit the signal based at least in part on the set of parameters.
  • a non-transitory computer-readable medium storing one or more instructions for wireless communication includes: one or more instructions that, when executed by one or more processors of a UE, cause the one or more processors to: determine that capability information associated with the UE is to be transmitted, the capability information indicating one or more sensing signal receiving schemes supported by the UE; and transmit the capability information based at least in part on determining that the capability information is to be transmitted.
  • a non-transitory computer-readable medium storing one or more instructions for wireless communication includes: one or more instructions that, when executed by one or more processors of a UE, cause the one or more processors to: determine a set of parameters for a signal to be received by the UE, wherein the signal is to be used by the UE for object detection or for identification of communication interference, and wherein the set of parameters includes information associated with a waveform for the signal; and receive the signal based at least in part on the set of parameters.
  • a non-transitory computer-readable medium storing one or more instructions for wireless communication includes: one or more instructions that, when executed by one or more processors of a base station, cause the one or more processors to: determine a set of parameters for a signal to be transmitted by the base station, wherein the signal is to be used for object detection, and wherein the set of parameters includes information associated with a waveform for the signal; and transmit the signal based at least in part on the set of parameters.
  • an apparatus for wireless communication includes: means for determining that capability information associated with the apparatus is to be transmitted, the capability information indicating one or more sensing signal receiving schemes supported by the apparatus; and means for transmitting the capability information based at least in part on determining that the capability information is to be transmitted.
  • an apparatus for wireless communication includes: means for determining a set of parameters for a signal to be received by the apparatus, wherein the signal is to be used by the apparatus for object detection or for identification of communication interference, and wherein the set of parameters includes information associated with a waveform for the signal; and means for receiving the signal based at least in part on the set of parameters.
  • an apparatus for wireless communication includes: means for determining a set of parameters for a signal to be transmitted by the apparatus, wherein the signal is to be used for object detection, and wherein the set of parameters includes information associated with a waveform for the signal; and means for transmitting the signal based at least in part on the set of parameters.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
  • Figs. 3-5 are diagrams illustrating example associated with sensing signal configuration and scheduling, in accordance with various aspects of the present disclosure.
  • Figs. 6-8 are diagrams illustrating example processes associated with sensing signal configuration and scheduling, in accordance with various aspects of the present disclosure.
  • aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like.
  • the wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like.
  • devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz.
  • FR1 first frequency range
  • FR2 second frequency range
  • the frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies.
  • FR1 is often referred to as a “sub-6 GHz” band.
  • FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) .
  • millimeter wave may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing 284.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-7.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-7.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with sensing signal configuration and scheduling, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
  • a receiver such as a UE 120 or a base station 110, may include means for determining that capability information associated with the receiver is to be transmitted, the capability information indicating one or more sensing signal receiving schemes supported by the receiver; means for transmitting the capability information based at least in part on determining that the capability information is to be transmitted; and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • a receiver such as a UE 120 or a base station 110, may include means for determining a set of parameters for a signal to be received by the receiver, wherein the signal is to be used by the receiver for object detection or for identification of communication interference, and wherein the set of parameters includes information associated with a waveform for the signal; means for receiving the signal based at least in part on the set of parameters; and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • a transmitter such as a UE 120 or a base station 110, may include means for determining a set of parameters for a signal to be transmitted by the transmitter, wherein the signal is to be used for object detection, and wherein the set of parameters includes information associated with a waveform for the signal; means for transmitting the signal based at least in part on the set of parameters; and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Some wireless networks may use wireless communication devices to jointly perform sensing services and communication services (sometimes referred to as SensComm services) .
  • the sensing services may including object detection that may be used, for example, to improve the communication services or to improve other services.
  • a UE that receives a sensing signal e.g., a radar signal
  • SensComm services provide a number of advantages, such as a lower cost with additional services (e.g., NR infrastructure can be reused) , a reduced device size, reduced power consumption, spectrum sharing, improved performance (e.g., improved coverage and/or improved resolution) , improved safety (e.g., due to enhanced information sharing) , and/or the like.
  • jointly performing sensing services and communication services may support a synergistic design of communications systems and sensing systems (e.g., radio detection and ranging (radar) and/or the like) that may use a common spectrum and/or common components.
  • SDM spatial division multiplexing
  • sensing services and communication services can be spatially selective so as to attempt to reduce interference between sensing signals and communication signals.
  • a sensing service may be focused in a particular spatial direction, while one or more UEs associated with a communication service may be located in a spatial direction far from that of the sensing service.
  • SDM SensComm is advantageous because spectrum utilization efficiency is improved and because SDM technologies already deployed in a wireless communication system (e.g., massive-MIMO, millimeter wave beamforming, multi-TRP/multi-panel techniques, and/or the like) may provide assistance with reducing or avoiding interference between sensing signals and communications signals.
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • An architecture for providing a sensing service may provide passive sensing (e.g., single node or multi-node) or active sensing.
  • a transmitter e.g., a terrestrial broadcast transmitter, a cellular communications transmitter, and/or the like
  • a receiver may be located remote from the transmitter.
  • the receiver may receive both a line-of-sight (LoS) signal (i.e., the receiver may receive the sensing signal directly from the transmitter without reflection) and one or more signals reflected from one or more objects (i.e., the receiver may receive the sensing signal after reflection of the signal from by the one or more objects) .
  • the LoS signal may be used as a reference signal and can be correlated with the one or more reflected signals in association with detecting objects. For example, a delay derived from a correlation maximum associated with a given reflected signal defines an ellipse, and that ellipse describes possible positions of an object relative to the transmitter and the receiver.
  • a multi-node passive sensing scheme multiple transmitters each transmit sensing signals for reception by a remote receiver, and the signals may be correlated in association with detecting objects.
  • the multi-node passive sensing scheme can provide enhanced spatial diversity, improved angular resolution, improved target identifiability (e.g., for low-Doppler targets) , and/or the like, as compared to the single node passive sensing scheme.
  • the receiver is collocated with the transmitter (e.g., configured on the same wireless communication device) .
  • the transmitter and the receiver may be jointly deployed, separately deployed with information exchange, or separately deployed without information exchange.
  • spatial interference management techniques may be implemented to avoid interference toward so-called primary signals.
  • the communication signals or the sensing signals can be selected as the primary signals (i.e., a communication service can be selected as a primary service or a sensing service can be selected as the primary service) .
  • sensing signals and communication signals may have different characteristics.
  • communication signals may use OFDM waveforms
  • sensing signals may use another type of waveform, such as a pulsed waveform, a frequency-modulated continuous wave (FMCW) waveform, a phase-modulated continuous wave (PMCW) waveform, and/or the like.
  • both sensing signals and communication signals can use the same type of waveform (e.g., sensing signals and communication signals may both use OFMD waveforms, pulsed waveforms, FMCW waveforms, PMCWs, and/or the like) .
  • a sensing signal is more sensitive to a time domain adjustment of a precoder than a communication signal.
  • precoding can be adjusted on a slot-by-slot basis.
  • a performance metric for a communication service is a signal-to-interference-plus-noise ratio (SINR)
  • SINR signal-to-interference-plus-noise ratio
  • precoding may need to remain the same across multiple slots in the time domain.
  • a performance metric for a sensing service is resolution (rather than SINR, although a low SINR can degrade resolution)
  • time domain observations with the same precoding can be coherently used for Doppler estimation.
  • a coherent duration for a Doppler estimation for an object such as a vehicle or a bicycle is typically significantly longer than a duration of a slot. Therefore, if a precoder were to be adjusted on a slot-by-slot basis (e.g., similar to a communication signal) , Doppler estimation would be degraded.
  • precoding for a sensing signal may be fixed for multiple slots and a communication signal may be opportunistically transmitted (e.g., based on an interference tolerance of the sensing signal) .
  • precoding for a sensing signal precoding may be adjusted frequently (e.g., to reduce interference towards a communication signal) , while dynamic signaling may be used to indicate sensing signal precoding continuity to allow a receiver of the sensing signal to implement coherent Doppler estimation.
  • the sensitivity of sensing signals to time domain precoder adjustment prevents a legacy multi-user (MU) MIMO scheme from being a suitable option for precoder adjustment.
  • a base station can adjust MU-MIMO precoders to remove MU interference based on reported precoder matrix indicators (PMIs) from different UEs.
  • PMIs reported precoder matrix indicators
  • directly reusing this scheme on SDM SensComm degrades sensing performance. For example, if precoders associated with a sensing signal are adjusted in favor of a communication service, illuminating angles are varied in the time domain, which degrades Doppler estimation as described above.
  • SINRs previously reported by a receiver of a sensing signal may be outdated due to mobility (e.g., when pulses with relatively long time domain intervals are used) , meaning that additional reporting from sensing signal receivers would be needed. Additionally, communication interference during adjustment of the precoder may lower an SINR and resolution of the sensing signal receiver.
  • a node e.g., a base station
  • SDM short term evolution
  • a node using SDM may have difficulty managing interference between sensing signals and communication signals based at least in part on, for example, different characteristics of the sensing signals and the communication signals.
  • the node may transmit communication signals that may be improved by modifying precoding slot-by-slot.
  • modifying the precoding slot-by-slot may degrade resolution of object detection and/or Doppler estimating for a sensing service.
  • Some aspects described herein provide techniques and apparatuses for sensing signal configuration and scheduling.
  • the techniques and apparatuses described herein may be implemented to reduce complexity associated with managing interference between sensing signals and communication signals.
  • a receiver of a sensing signal may determine capability information indicating one or more sensing signal receiving schemes supported by the receiver (e.g., whether communication signals can be used for sensing) , and may transmit the capability information accordingly.
  • a receiver of a sensing signal may determine a set of parameters for a signal to be received, where the signal is to be used for object detection or for identification of communication interference and includes information associated with a waveform for the signal. The receiver may then receive the signal based at least in part on the set of parameters.
  • a transmitter of a sensing signal may determine a set of parameters for a signal to be transmitted, where the signal is to be used for object detection and the set of parameters includes information associated with a waveform for the signal. The transmitter may then transmit the signal based at least in part on the set of parameters.
  • sensing signal may refer to a signal that can be used for target detection, object detection, and/or the like.
  • Fig. 3 is a diagram illustrating an example 300 associated with sensing signal configuration and scheduling, in accordance with various aspects of the present disclosure.
  • example 300 includes a receiver (e.g., a UE 120, a base station 110, and/or the like) and a transmitter (e.g., a UE 120, a base station 110, and/or the like) .
  • a receiver e.g., a UE 120, a base station 110, and/or the like
  • a transmitter e.g., a UE 120, a base station 110, and/or the like
  • the receiver may determine that capability information associated with the receiver is to be transmitted.
  • the capability information may include information indicating one or more sensing signal receiving schemes supported by the receiver.
  • the capability information may include information indicating a sensing signal receiving scheme supported (or preferred) by the receiver in association with receiving a sensing signal.
  • the capability information may indicate that the receiver is capable of using only a sensing-preferred signal for performing sensing. That is, the capability information may indicate that the receiver would only use a sensing-preferred signal, such as a pulsed signal, an FMCW signal, a PMCW signal, or the like, for sensing purposes.
  • a sensing-preferred signal such as a pulsed signal, an FMCW signal, a PMCW signal, or the like
  • the capability information may indicate that the receiver is capable of using a communication signal for performing sensing. That is, the capability information may indicate that the receiver could or would use a communication signal (e.g., an OFDM signal) for sensing purposes.
  • a communication signal e.g., an OFDM signal
  • the capability information may indicate that, at a given time instance, the receiver is capable of using either a sensing-preferred signal or a communication signal for performing sensing. That is, the capability information may indicate that the receiver can only use either a sensing-preferred signal or a communication signal for sensing purposes at a given time domain instance.
  • the capability information may indicate that, at a given time instance, the receiver is capable of using both a sensing-preferred signal and a communication signal for performing sensing. That is, the capability information may indicate that the receiver can jointly use both a sensing-preferred signal and a communication signal for sensing purposes at a given time domain instance.
  • the capability information may further indicate that the sensing-preferred signal and the communication signal can include overlapping resources in a frequency domain or, alternatively, may indicate that the sensing-preferred signal and the communication signal cannot include overlapping resources in a frequency domain.
  • the receiver may determine that the capability information is to be transmitted based at least in part on receiving a request (e.g., from the transmitter) . Additionally, or alternatively, the receiver may determine that the capability information is to be transmitted based at least in part on detecting a trigger (e.g., based at least in part on detecting an event that triggers the receiver to transmit the capability information, such as detecting that a SDM SensComm is to be initiated or resumed) . Additionally, or alternatively, the receiver may determine that the capability information is to be transmitted based at least in part on a configuration of the receiver (e.g., when the receiver is configured to transmit the capability information automatically on, for example, a periodic basis) .
  • a trigger e.g., based at least in part on detecting an event that triggers the receiver to transmit the capability information, such as detecting that a SDM SensComm is to be initiated or resumed
  • the receiver may determine that the capability information is to be transmitted based at least in part on a configuration of the receiver
  • the receiver may transmit the capability information based at least in part on determining that the capability information is to be transmitted.
  • the receiver may transmit the capability information via a communication link (e.g., a wireless communication link) between the receiver and the transmitter.
  • a sensing signal may be configured, indicated, transmitted, and/or received based at least in part on the capability information.
  • the receiver and/or the transmitter may determine a set of parameters for a sensing signal based at least in part on the capability information (e.g., including a waveform for the sensing signal) , and may receive/transmit the sensing signal accordingly. Additional details regarding configuration and scheduling of a sensing signal are provided below.
  • the capability information indicating one or more sensing signal receiving schemes supported by the receiver may be utilized in association with managing interference in SDM SensComm.
  • a sensing signal may be configured or indicated according to the sensing signal receiving scheme supported by the receiver as part of performing interference management in SDM SensComm.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 associated with sensing signal configuration and scheduling, in accordance with various aspects of the present disclosure.
  • example 400 includes a receiver (e.g., a UE 120, a base station 110, and/or the like) and a transmitter (e.g., a UE 120, a base station 110, and/or the like) .
  • a receiver e.g., a UE 120, a base station 110, and/or the like
  • a transmitter e.g., a UE 120, a base station 110, and/or the like
  • the receiver may determine a set of parameters for a signal to be received by the receiver.
  • the signal to be received by the receiver may be a signal that is to be used for object detection (i.e., the signal may be a sensing signal) .
  • the signal to be received by the receiver may be a signal that is to be used for identification of communication interference.
  • the set of parameters includes information associated with a waveform for the signal. That is, the set of parameters may identify a waveform of the signal to be received by the receiver.
  • the information associated with the waveform for the signal may include information associated with, for example, a duty cycle, a periodicity, an offset, a power control parameter, and/or the like.
  • the information associated with the waveform indicates a waveform for the signal, such as pulse wave, FMCW, PMCW, and/or the like.
  • the receiver may determine one or more parameters of the set of parameters based at least in part on a preconfiguration of the receiver. That is, in some aspects, one or more parameters for the signal may be predetermined such that the one or more parameters are stored on the receiver. In some aspects, the receiver may determine one or more parameters of the set of parameters based at least in part on a radio resource control (RRC) configuration (e.g., provided by the transmitter) . In some aspects, the receiver may determine one or more parameters of the set of parameters based at least in part on an indication received via a medium access control (MAC) control element, downlink control information (DCI) , sidelink control information (SCI) , and/or the like. In some aspects, the receiver may determine one or more of the set of parameters (e.g., the waveform) based at least in part on capability information indicating one or more sensing signal receiving schemes supported by the receiver.
  • RRC radio resource control
  • the receiver may determine one or more parameters of the set of parameters based at least in part on an indication received
  • the set of parameters may include information associated with a time domain resource allocation (TDRA) of the signal.
  • the information associated with the TDRA may include, for example, information indicating a starting symbol of the signal, an ending symbol of the signal, a starting slot of the signal, an ending slot of the signal, a starting mini-slot of the signal, an ending mini-slot of the signal, a starting subframe of the signal, an ending subframe of the signal, a starting frame index of the signal, an ending frame index of the signal, and/or the like.
  • the set of parameters may include information associated with a frequency domain resource allocation (FDRA) of the signal.
  • the information associated with the FDRA may include, for example, information associated with a contiguous number of physical resource blocks of the signal, a bandwidth part of the signal, a component carrier of the signal, and/or the like.
  • the set of parameters may include information indicating an origination of the signal.
  • the set of parameters may include information that identifies a type of device that is to transmit the signal (e.g., a base station 110, a UE 120, an integrated access and backhaul (IAB) node configured on a base station 110, and/or the like) .
  • the set of parameters may include information that identifies a type of resource (e.g., downlink, uplink, sidelink, flexible, and/or the like) in which the signal is to be received.
  • the set of parameters may include semi-persistent scheduling (SPS) information associated with the signal.
  • SPS information may include, for example, information that identifies a periodicity and an offset of a repetition pattern associated with the semi-persistently scheduled signal.
  • the set of parameters may include dynamic scheduling information associated with the signal (e.g., scheduling information associated with dynamically scheduling the signal) .
  • the set of parameters may include information indicating a priority of the signal.
  • the information indicating the priority of the signal may include information indicating, for example, that the sensing signal has a lower, higher, or equal priority as compared to another type of signal or channel.
  • the other type of signal or channel may include, for example, a synchronization signal block (SSB) , a channel state information reference signal (CSI-RS) , a sounding reference signal (SRS) , a positioning reference signal (PRS) , a phase tracking reference signal (PTRS) , a demodulation reference signal (DMRS) , a shared channel (PxSCH) , a control channel (PxCCH) , and/or the like.
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • PRS positioning reference signal
  • PTRS phase tracking reference signal
  • DMRS demodulation reference signal
  • PxSCH shared channel
  • PxCCH control channel
  • the receiver may receive the signal based at least in part on the set of parameters.
  • the set of parameters may define the configuration of scheduling of the signal
  • the receiver may receive the signal based at least in part on the set of parameters.
  • a signal to be used for object detection and/or for interference identification may be configured and/or scheduled on a receiver in SDM SensComm.
  • such a signal may be used in association with providing interference management in SDM SensComm.
  • the signal may be transmitted by the transmitter after the transmitter determines the set of parameters (e.g., as described below) .
  • Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
  • Fig. 5 is a diagram illustrating an example 500 associated with sensing signal configuration and scheduling, in accordance with various aspects of the present disclosure.
  • example 500 includes a receiver (e.g., a UE 120, a base station 110, and/or the like) and a transmitter (e.g., a UE 120, a base station 110, and/or the like) .
  • a receiver e.g., a UE 120, a base station 110, and/or the like
  • a transmitter e.g., a UE 120, a base station 110, and/or the like
  • the transmitter may determine a set of parameters for a signal to be transmitted by the transmitter.
  • the signal to be transmitted by the transmitter may be a signal that is to be used for object detection (i.e., the signal may be a sensing signal) .
  • the set of parameters includes information associated with a waveform for the signal. That is, the set of parameters may identify a waveform of the signal to be transmitted by the transmitter.
  • the information associated with the waveform for the signal may include information associated with, for example, a duty cycle, a periodicity, an offset, a power control parameter, and/or the like.
  • the information associated with the waveform indicates a waveform for the signal, such as pulse wave, FMCW, PMCW, and/or the like.
  • the transmitter may determine one or more parameters of the set of parameters based at least in part on a preconfiguration of the transmitter. That is, in some aspects, one or more parameters for the signal may be predetermined such that the one or more parameters are stored on the transmitter. In some aspects, the transmitter may determine one or more parameters of the set of parameters based at least in part on an RRC configuration. In some aspects, the transmitter may determine one or more parameters of the set of parameters based at least in part on an indication received via a MAC control element, DCI, SCI, and/or the like. In some aspects, the transmitter may determine one or more of the set of parameters (e.g., the waveform) based at least in part on capability information (e.g., transmitted by the receiver) indicating one or more sensing signal receiving schemes supported by the receiver.
  • capability information e.g., transmitted by the receiver
  • the set of parameters may include information associated with a TDRA of the signal, information associated with an FDRA of the signal, information associated with an origination of the signal, SPS information associated with the signal, dynamic scheduling information associated with the signal, information indicating a priority of the signal, and/or the like, as described above in association with Fig. 4.
  • the transmitter may transmit the signal based at least in part on the set of parameters.
  • the set of parameters may define the configuration of scheduling of the signal
  • the transmitter may transmit the signal based at least in part on the set of parameters.
  • a signal to be used for object detection may be configured and/or scheduled on a transmitter in SDM SensComm.
  • such a signal may be used in association with providing interference management in SDM SensComm.
  • Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
  • Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a receiver, in accordance with various aspects of the present disclosure.
  • Example process 600 is an example where the receiver (e.g., a UE 120, a base station 110, and/or the like) performs operations associated with sensing signal configuration and scheduling.
  • the receiver e.g., a UE 120, a base station 110, and/or the like.
  • process 600 may include determining that capability information associated with the receiver is to be transmitted, the capability information indicating one or more sensing signal receiving schemes supported by the receiver (block 610) .
  • the receiver e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like when the receiver is a UE 120; using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like when the receiver is a base station 110
  • process 600 may include transmitting the capability information based at least in part on determining that the capability information is to be transmitted (block 620) .
  • the receiver e.g., using transmit processor 264, controller/processor 280, memory 282, and/or the like when the receiver is a UE 120; using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like when the receiver is a base station 110
  • Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the capability information indicates that the receiver is capable of using only a sensing-preferred signal for performing sensing.
  • the capability information indicates that the receiver is capable of using a communication signal for performing sensing.
  • the capability information indicates that, at a given time instance, the receiver is capable of using either a sensing-preferred signal or a communication signal for performing sensing.
  • the capability information indicates that, at a given time instance, the receiver is capable of using both a sensing-preferred signal and a communication signal for performing sensing.
  • the capability information indicates that the sensing-preferred signal and the communication signal can include overlapping resources in a frequency domain.
  • the capability information indicates that the sensing-preferred signal and the communication signal cannot include overlapping resources in a frequency domain.
  • the capability information indicates that the UE is capable of using a communication signal for performing sensing, the communication signal having an orthogonal frequency division multiplexing waveform or a single-carrier waveform.
  • the capability information indicates that the UE is capable of using a sensing-preferred signal, the sensing-preferred signal having an orthogonal frequency division multiplexing waveform, a pulsed waveform, a frequency-modulated continuous wave waveform, or a phase-modulated continuous wave waveform.
  • process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
  • Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a receiver, in accordance with various aspects of the present disclosure.
  • Example process 700 is an example where the receiver (e.g., a UE 120, a base station 110, and/or the like) performs operations associated with sensing signal configuration and scheduling.
  • the receiver e.g., a UE 120, a base station 110, and/or the like.
  • process 700 may include determining a set of parameters for a signal to be received by the receiver, wherein the signal is to be used by the receiver for object detection or for identification of communication interference, and wherein the set of parameters includes information associated with a waveform for the signal (block 710) .
  • the receiver e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like when the receiver is a UE 120; using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like when the receiver is a base station 110
  • the signal is to be used by the receiver for object detection or for identification of communication interference.
  • the set of parameters includes information associated with a waveform for the signal.
  • process 700 may include receiving the signal based at least in part on the set of parameters (block 720) .
  • the receiver e.g., using receive processor 258, controller/processor 280, memory 282, and/or the like when the receiver is a UE 120; using receive processor 238, controller/processor 240, memory 242, and/or the like when the receiver is a base station 110
  • Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the information associated with the waveform includes information associated with at least one of: a duty cycle, a periodicity, an offset, or a power control parameter.
  • the information associated with the waveform indicates a pulse wave, a frequency-modulated continuous wave, or a phase-modulated continuous wave.
  • the set of parameters is determined based at least in part on being preconfigured on the receiver.
  • the set of parameters is determined based at least in part on a radio resource control configuration.
  • the set of parameters is determined based at least in part on an indication received via a medium access control control element, downlink control information, or sidelink control information.
  • the set of parameters includes information associated with a time domain resource allocation (TDRA) of the signal.
  • TDRA time domain resource allocation
  • the information associated with the TDRA includes information indicating at least one of: a starting symbol, an ending symbol, a starting slot, an ending slot, a starting mini-slot, an ending mini-slot, a starting subframe an ending subframe, a starting frame index, or an ending frame index.
  • the set of parameters includes information associated with a frequency domain resource allocation (FDRA) of the signal.
  • FDRA frequency domain resource allocation
  • the information associated with the FDRA includes information associated with at least one of: a contiguous number of physical resource blocks, a bandwidth part, or a component carrier.
  • the set of parameters includes information indicating an origination of the signal.
  • the information indicating the origination identifies a type of device that is to transmit the signal.
  • the information indicating the origination identifies a type of resource in which the signal is to be received.
  • the set of parameters includes semi-persistent scheduling (SPS) information associated with the signal, the SPS information including information that identifies a periodicity and an offset.
  • SPS semi-persistent scheduling
  • the set of parameters includes dynamic scheduling information associated with the signal.
  • the set of parameters includes information indicating a priority of the signal.
  • process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
  • Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a transmitter, in accordance with various aspects of the present disclosure.
  • Example process 800 is an example where the transmitter (e.g., a UE 120, a base station 110, and/or the like) performs operations associated with sensing signal configuration and scheduling.
  • the transmitter e.g., a UE 120, a base station 110, and/or the like.
  • process 800 may include determining a set of parameters for a signal to be transmitted by the transmitter, wherein the signal is to be used for object detection, and wherein the set of parameters includes information associated with a waveform for the signal (block 810) .
  • the transmitter e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like when the receiver is a UE 120; using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like when the receiver is a base station 110
  • the signal is to be used for object detection.
  • the set of parameters includes information associated with a waveform for the signal.
  • process 800 may include transmitting the signal based at least in part on the set of parameters (block 820) .
  • the transmitter e.g., using transmit processor 264, controller/processor 280, memory 282, and/or the like when the receiver is a UE 120; using transmit processor 220, controller/processor 240, memory 242, and/or the like when the receiver is a base station 110
  • Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the information associated with the waveform includes information associated with at least one of: a duty cycle, a periodicity, an offset, or a power control parameter.
  • the information associated with the waveform indicates a pulse wave, a frequency-modulated continuous wave, or a phase-modulated continuous wave.
  • the set of parameters is determined based at least in part on being preconfigured on the transmitter.
  • the set of parameters is determined based at least in part on a radio resource control configuration.
  • the set of parameters is determined based at least in part on an indication received via a medium access control control element, downlink control information, or sidelink control information.
  • the set of parameters includes information associated with a time domain resource allocation (TDRA) of the signal.
  • TDRA time domain resource allocation
  • the information associated with the TDRA includes information indicating at least one of: a starting symbol, an ending symbol, a starting slot, an ending slot, a starting mini-slot, an ending mini-slot, a starting subframe an ending subframe, a starting frame index, or an ending frame index.
  • the set of parameters includes information associated with a frequency domain resource allocation (FDRA) of the signal.
  • FDRA frequency domain resource allocation
  • the information associated with the FDRA includes information associated with at least one of: a contiguous number of physical resource blocks, a bandwidth part, or a component carrier.
  • the set of parameters includes semi-persistent scheduling (SPS) information associated with the signal, the SPS information including information that identifies a periodicity and an offset.
  • SPS semi-persistent scheduling
  • the set of parameters includes dynamic scheduling information associated with the signal.
  • process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the phrase “only one” or similar language is used.
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms.
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine that capability information associated with the UE is to be transmitted. The capability information may indicate one or more sensing signal receiving schemes supported by the UE. The UE may transmit the capability information based at least in part on determining that the capability information is to be transmitted. Numerous other aspects are provided.

Description

SENSING SIGNAL CONFIGURATION AND SCHEDULING
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses associated with sensing signal configuration and scheduling.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the  LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
In some aspects, a method of wireless communication performed by a UE includes: determining that capability information associated with the UE is to be transmitted, the capability information indicating one or more sensing signal receiving schemes supported by the UE; and transmitting the capability information based at least in part on determining that the capability information is to be transmitted.
In some aspects, a method of wireless communication performed by a UE includes: determining a set of parameters for a signal to be received by the UE, wherein the signal is to be used by the UE for object detection or for identification of communication interference, and wherein the set of parameters includes information associated with a waveform for the signal; and receiving the signal based at least in part on the set of parameters.
In some aspects, a method of wireless communication performed by a base station includes: determining a set of parameters for a signal to be transmitted by the base station, wherein the signal is to be used for object detection, and wherein the set of parameters includes information associated with a waveform for the signal; and transmitting the signal based at least in part on the set of parameters.
In some aspects, a UE for wireless communication includes: a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: determine that capability information associated with the UE is to be transmitted, the capability information indicating one or more sensing signal  receiving schemes supported by the UE; and transmit the capability information based at least in part on determining that the capability information is to be transmitted.
In some aspects, a UE for wireless communication includes: a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: determine a set of parameters for a signal to be received by the UE, wherein the signal is to be used by the UE for object detection or for identification of communication interference, and wherein the set of parameters includes information associated with a waveform for the signal; and receive the signal based at least in part on the set of parameters.
In some aspects, a base station for wireless communication includes: a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: determine a set of parameters for a signal to be transmitted by the base station, wherein the signal is to be used for object detection, and wherein the set of parameters includes information associated with a waveform for the signal; and transmit the signal based at least in part on the set of parameters.
In some aspects, a non-transitory computer-readable medium storing one or more instructions for wireless communication includes: one or more instructions that, when executed by one or more processors of a UE, cause the one or more processors to: determine that capability information associated with the UE is to be transmitted, the capability information indicating one or more sensing signal receiving schemes supported by the UE; and transmit the capability information based at least in part on determining that the capability information is to be transmitted.
In some aspects, a non-transitory computer-readable medium storing one or more instructions for wireless communication includes: one or more instructions that, when executed by one or more processors of a UE, cause the one or more processors to: determine a set of parameters for a signal to be received by the UE, wherein the signal is to be used by the UE for object detection or for identification of communication interference, and wherein the set of parameters includes information associated with a waveform for the signal; and receive the signal based at least in part on the set of parameters.
In some aspects, a non-transitory computer-readable medium storing one or more instructions for wireless communication includes: one or more instructions that, when executed by one or more processors of a base station, cause the one or more  processors to: determine a set of parameters for a signal to be transmitted by the base station, wherein the signal is to be used for object detection, and wherein the set of parameters includes information associated with a waveform for the signal; and transmit the signal based at least in part on the set of parameters.
In some aspects, an apparatus for wireless communication includes: means for determining that capability information associated with the apparatus is to be transmitted, the capability information indicating one or more sensing signal receiving schemes supported by the apparatus; and means for transmitting the capability information based at least in part on determining that the capability information is to be transmitted.
In some aspects, an apparatus for wireless communication includes: means for determining a set of parameters for a signal to be received by the apparatus, wherein the signal is to be used by the apparatus for object detection or for identification of communication interference, and wherein the set of parameters includes information associated with a waveform for the signal; and means for receiving the signal based at least in part on the set of parameters.
In some aspects, an apparatus for wireless communication includes: means for determining a set of parameters for a signal to be transmitted by the apparatus, wherein the signal is to be used for object detection, and wherein the set of parameters includes information associated with a waveform for the signal; and means for transmitting the signal based at least in part on the set of parameters.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with  the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
Figs. 3-5 are diagrams illustrating example associated with sensing signal configuration and scheduling, in accordance with various aspects of the present disclosure.
Figs. 6-8 are diagrams illustrating example processes associated with sensing signal configuration and scheduling, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein, one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented  or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure. The wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like. The wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may  cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a  given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like. For example, devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz. The frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to as a “sub-6 GHz” band. Similarly, FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band. Thus, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) . Similarly, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive  processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. The term "controller/processor" may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing 284.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-7.
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications. In some aspects, the base station 110 includes a transceiver. The  transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-7.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with sensing signal configuration and scheduling, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
In some aspects, a receiver, such as a UE 120 or a base station 110, may include means for determining that capability information associated with the receiver is to be transmitted, the capability information indicating one or more sensing signal receiving schemes supported by the receiver; means for transmitting the capability information based at least in part on determining that the capability information is to be transmitted; and/or the like. In some aspects, when the receiver includes a UE 120, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like. In some aspects, when the sensing signal receiver includes a base station 110, such means may include one or more components of base station 110  described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
In some aspects, a receiver, such as a UE 120 or a base station 110, may include means for determining a set of parameters for a signal to be received by the receiver, wherein the signal is to be used by the receiver for object detection or for identification of communication interference, and wherein the set of parameters includes information associated with a waveform for the signal; means for receiving the signal based at least in part on the set of parameters; and/or the like. In some aspects, when the receiver includes a UE 120, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like. In some aspects, when the sensing signal receiver includes a base station 110, such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
In some aspects, a transmitter, such as a UE 120 or a base station 110, may include means for determining a set of parameters for a signal to be transmitted by the transmitter, wherein the signal is to be used for object detection, and wherein the set of parameters includes information associated with a waveform for the signal; means for transmitting the signal based at least in part on the set of parameters; and/or the like. In some aspects, when the transmitter includes a UE 120, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like. In some aspects, when the sensing signal transmitter includes a base station 110, such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware,  software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Some wireless networks may use wireless communication devices to jointly perform sensing services and communication services (sometimes referred to as SensComm services) . The sensing services may including object detection that may be used, for example, to improve the communication services or to improve other services. For example, a UE that receives a sensing signal (e.g., a radar signal) may use the sensing signal to detect objects for a service such as an assisted driving service, an autonomous vehicle service, and/or the like. In practice, SensComm services provide a number of advantages, such as a lower cost with additional services (e.g., NR infrastructure can be reused) , a reduced device size, reduced power consumption, spectrum sharing, improved performance (e.g., improved coverage and/or improved resolution) , improved safety (e.g., due to enhanced information sharing) , and/or the like. In some aspects, jointly performing sensing services and communication services may support a synergistic design of communications systems and sensing systems (e.g., radio detection and ranging (radar) and/or the like) that may use a common spectrum and/or common components.
In some deployments, spatial division multiplexing (SDM) can be implemented for SensComm. According to SDM SensComm, sensing services and communication services can be spatially selective so as to attempt to reduce interference between sensing signals and communication signals. For example, a sensing service may be focused in a particular spatial direction, while one or more UEs associated with a communication service may be located in a spatial direction far from that of the sensing service. In general, SDM SensComm is advantageous because spectrum utilization efficiency is improved and because SDM technologies already deployed in a wireless communication system (e.g., massive-MIMO, millimeter wave beamforming, multi-TRP/multi-panel techniques, and/or the like) may provide assistance with reducing or avoiding interference between sensing signals and communications signals.
Notably, while time division multiplexing (TDM) or frequency division multiplexing (FDM) techniques can be implemented for SensComm to avoid  interference between sensing and communication services, SDM may be preferred. For example, the use of TDM can lower a Doppler resolution of a sensing service and can introduce scheduling restrictions on communications, while the use of FDM can degrade a range resolution of a sensing service and can also introduce scheduling restrictions on communications.
An architecture for providing a sensing service may provide passive sensing (e.g., single node or multi-node) or active sensing. In a single node passive sensing scheme, a transmitter (e.g., a terrestrial broadcast transmitter, a cellular communications transmitter, and/or the like) may be configured to opportunistically transmit sensing signals, and a receiver may be located remote from the transmitter. In the passive sensing scenario, when the transmitter transmits a sensing signal, the receiver may receive both a line-of-sight (LoS) signal (i.e., the receiver may receive the sensing signal directly from the transmitter without reflection) and one or more signals reflected from one or more objects (i.e., the receiver may receive the sensing signal after reflection of the signal from by the one or more objects) . Here, the LoS signal may be used as a reference signal and can be correlated with the one or more reflected signals in association with detecting objects. For example, a delay derived from a correlation maximum associated with a given reflected signal defines an ellipse, and that ellipse describes possible positions of an object relative to the transmitter and the receiver. In a multi-node passive sensing scheme, multiple transmitters each transmit sensing signals for reception by a remote receiver, and the signals may be correlated in association with detecting objects. Notably, the multi-node passive sensing scheme can provide enhanced spatial diversity, improved angular resolution, improved target identifiability (e.g., for low-Doppler targets) , and/or the like, as compared to the single node passive sensing scheme. In an active sensing scheme (also referred to as a mono-static sensing scheme) , the receiver is collocated with the transmitter (e.g., configured on the same wireless communication device) . Here, the transmitter and the receiver may be jointly deployed, separately deployed with information exchange, or separately deployed without information exchange.
In some deployments, spatial interference management techniques may be implemented to avoid interference toward so-called primary signals. Here, the communication signals or the sensing signals can be selected as the primary signals (i.e., a communication service can be selected as a primary service or a sensing service can be selected as the primary service) .
In some deployments, sensing signals and communication signals may have different characteristics. For example, in some deployments, communication signals may use OFDM waveforms, and sensing signals may use another type of waveform, such as a pulsed waveform, a frequency-modulated continuous wave (FMCW) waveform, a phase-modulated continuous wave (PMCW) waveform, and/or the like. Alternatively, in some deployments, both sensing signals and communication signals can use the same type of waveform (e.g., sensing signals and communication signals may both use OFMD waveforms, pulsed waveforms, FMCW waveforms, PMCWs, and/or the like) .
In operation, a sensing signal is more sensitive to a time domain adjustment of a precoder than a communication signal. With respect to a communication signal, precoding can be adjusted on a slot-by-slot basis. Here, a performance metric for a communication service is a signal-to-interference-plus-noise ratio (SINR) , and adjusting a precoder in the time domain can improve an SINR for a communication service. However, with respect to a sensing signal, precoding may need to remain the same across multiple slots in the time domain. Here, a performance metric for a sensing service is resolution (rather than SINR, although a low SINR can degrade resolution) , and time domain observations with the same precoding can be coherently used for Doppler estimation. A coherent duration for a Doppler estimation for an object such as a vehicle or a bicycle is typically significantly longer than a duration of a slot. Therefore, if a precoder were to be adjusted on a slot-by-slot basis (e.g., similar to a communication signal) , Doppler estimation would be degraded. Notably, when a sensing service is designated as primary, precoding for a sensing signal may be fixed for multiple slots and a communication signal may be opportunistically transmitted (e.g., based on an interference tolerance of the sensing signal) . Conversely, when a communication service is designated as primary, precoding for a sensing signal precoding may be adjusted frequently (e.g., to reduce interference towards a communication signal) , while dynamic signaling may be used to indicate sensing signal precoding continuity to allow a receiver of the sensing signal to implement coherent Doppler estimation.
Of note, the sensitivity of sensing signals to time domain precoder adjustment prevents a legacy multi-user (MU) MIMO scheme from being a suitable option for precoder adjustment. According to the legacy MU MIMO scheme, a base station can adjust MU-MIMO precoders to remove MU interference based on reported precoder  matrix indicators (PMIs) from different UEs. However, directly reusing this scheme on SDM SensComm degrades sensing performance. For example, if precoders associated with a sensing signal are adjusted in favor of a communication service, illuminating angles are varied in the time domain, which degrades Doppler estimation as described above. Further, SINRs previously reported by a receiver of a sensing signal may be outdated due to mobility (e.g., when pulses with relatively long time domain intervals are used) , meaning that additional reporting from sensing signal receivers would be needed. Additionally, communication interference during adjustment of the precoder may lower an SINR and resolution of the sensing signal receiver.
As described above, a node (e.g., a base station) that jointly performs sensing services and communication services using SDM may provide advantages over TDM and FDM, such as improved Doppler resolution, range resolution, and scheduling. However, a node using SDM may have difficulty managing interference between sensing signals and communication signals based at least in part on, for example, different characteristics of the sensing signals and the communication signals. For example, the node may transmit communication signals that may be improved by modifying precoding slot-by-slot. However, modifying the precoding slot-by-slot may degrade resolution of object detection and/or Doppler estimating for a sensing service.
Some aspects described herein provide techniques and apparatuses for sensing signal configuration and scheduling. In some aspects, the techniques and apparatuses described herein may be implemented to reduce complexity associated with managing interference between sensing signals and communication signals.
For example, in some aspects, a receiver of a sensing signal (e.g., a UE 120) may determine capability information indicating one or more sensing signal receiving schemes supported by the receiver (e.g., whether communication signals can be used for sensing) , and may transmit the capability information accordingly.
As another example, in some aspects, a receiver of a sensing signal (e.g., a UE 120) may determine a set of parameters for a signal to be received, where the signal is to be used for object detection or for identification of communication interference and includes information associated with a waveform for the signal. The receiver may then receive the signal based at least in part on the set of parameters.
As another example in some aspects, a transmitter of a sensing signal (e.g., a UE 120) may determine a set of parameters for a signal to be transmitted, where the signal is to be used for object detection and the set of parameters includes information  associated with a waveform for the signal. The transmitter may then transmit the signal based at least in part on the set of parameters.
Notably, the term “sensing signal, ” as used herein, may refer to a signal that can be used for target detection, object detection, and/or the like.
Fig. 3 is a diagram illustrating an example 300 associated with sensing signal configuration and scheduling, in accordance with various aspects of the present disclosure. As shown in Fig. 3, example 300 includes a receiver (e.g., a UE 120, a base station 110, and/or the like) and a transmitter (e.g., a UE 120, a base station 110, and/or the like) .
As shown by reference 302 the receiver may determine that capability information associated with the receiver is to be transmitted. In some aspects, the capability information may include information indicating one or more sensing signal receiving schemes supported by the receiver. For example, the capability information may include information indicating a sensing signal receiving scheme supported (or preferred) by the receiver in association with receiving a sensing signal.
For example, in some aspects, the capability information may indicate that the receiver is capable of using only a sensing-preferred signal for performing sensing. That is, the capability information may indicate that the receiver would only use a sensing-preferred signal, such as a pulsed signal, an FMCW signal, a PMCW signal, or the like, for sensing purposes.
As another example, in some aspects, the capability information may indicate that the receiver is capable of using a communication signal for performing sensing. That is, the capability information may indicate that the receiver could or would use a communication signal (e.g., an OFDM signal) for sensing purposes.
As another example, in some aspects, the capability information may indicate that, at a given time instance, the receiver is capable of using either a sensing-preferred signal or a communication signal for performing sensing. That is, the capability information may indicate that the receiver can only use either a sensing-preferred signal or a communication signal for sensing purposes at a given time domain instance.
As another example, in some aspects, the capability information may indicate that, at a given time instance, the receiver is capable of using both a sensing-preferred signal and a communication signal for performing sensing. That is, the capability information may indicate that the receiver can jointly use both a sensing-preferred signal and a communication signal for sensing purposes at a given time domain  instance. Here, the capability information may further indicate that the sensing-preferred signal and the communication signal can include overlapping resources in a frequency domain or, alternatively, may indicate that the sensing-preferred signal and the communication signal cannot include overlapping resources in a frequency domain.
In some aspects, the receiver may determine that the capability information is to be transmitted based at least in part on receiving a request (e.g., from the transmitter) . Additionally, or alternatively, the receiver may determine that the capability information is to be transmitted based at least in part on detecting a trigger (e.g., based at least in part on detecting an event that triggers the receiver to transmit the capability information, such as detecting that a SDM SensComm is to be initiated or resumed) . Additionally, or alternatively, the receiver may determine that the capability information is to be transmitted based at least in part on a configuration of the receiver (e.g., when the receiver is configured to transmit the capability information automatically on, for example, a periodic basis) .
As shown by reference 304, the receiver may transmit the capability information based at least in part on determining that the capability information is to be transmitted. In some aspects, the receiver may transmit the capability information via a communication link (e.g., a wireless communication link) between the receiver and the transmitter.
In some aspects, a sensing signal may be configured, indicated, transmitted, and/or received based at least in part on the capability information. For example, the receiver and/or the transmitter may determine a set of parameters for a sensing signal based at least in part on the capability information (e.g., including a waveform for the sensing signal) , and may receive/transmit the sensing signal accordingly. Additional details regarding configuration and scheduling of a sensing signal are provided below. In some aspects, the capability information indicating one or more sensing signal receiving schemes supported by the receiver may be utilized in association with managing interference in SDM SensComm. For example, a sensing signal may be configured or indicated according to the sensing signal receiving scheme supported by the receiver as part of performing interference management in SDM SensComm.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
Fig. 4 is a diagram illustrating an example 400 associated with sensing signal configuration and scheduling, in accordance with various aspects of the present  disclosure. As shown in Fig. 4, example 400 includes a receiver (e.g., a UE 120, a base station 110, and/or the like) and a transmitter (e.g., a UE 120, a base station 110, and/or the like) .
As shown by reference 402, the receiver may determine a set of parameters for a signal to be received by the receiver. In some aspects, the signal to be received by the receiver may be a signal that is to be used for object detection (i.e., the signal may be a sensing signal) . Additionally, or alternatively, the signal to be received by the receiver may be a signal that is to be used for identification of communication interference.
In some aspects, the set of parameters includes information associated with a waveform for the signal. That is, the set of parameters may identify a waveform of the signal to be received by the receiver. The information associated with the waveform for the signal may include information associated with, for example, a duty cycle, a periodicity, an offset, a power control parameter, and/or the like. In some aspects, the information associated with the waveform indicates a waveform for the signal, such as pulse wave, FMCW, PMCW, and/or the like.
In some aspects, the receiver may determine one or more parameters of the set of parameters based at least in part on a preconfiguration of the receiver. That is, in some aspects, one or more parameters for the signal may be predetermined such that the one or more parameters are stored on the receiver. In some aspects, the receiver may determine one or more parameters of the set of parameters based at least in part on a radio resource control (RRC) configuration (e.g., provided by the transmitter) . In some aspects, the receiver may determine one or more parameters of the set of parameters based at least in part on an indication received via a medium access control (MAC) control element, downlink control information (DCI) , sidelink control information (SCI) , and/or the like. In some aspects, the receiver may determine one or more of the set of parameters (e.g., the waveform) based at least in part on capability information indicating one or more sensing signal receiving schemes supported by the receiver.
In some aspects, the set of parameters may include information associated with a time domain resource allocation (TDRA) of the signal. The information associated with the TDRA may include, for example, information indicating a starting symbol of the signal, an ending symbol of the signal, a starting slot of the signal, an ending slot of the signal, a starting mini-slot of the signal, an ending mini-slot of the signal, a starting subframe of the signal, an ending subframe of the signal, a starting frame index of the signal, an ending frame index of the signal, and/or the like.
In some aspects, the set of parameters may include information associated with a frequency domain resource allocation (FDRA) of the signal. The information associated with the FDRA may include, for example, information associated with a contiguous number of physical resource blocks of the signal, a bandwidth part of the signal, a component carrier of the signal, and/or the like.
In some aspects, the set of parameters may include information indicating an origination of the signal. For example, the set of parameters may include information that identifies a type of device that is to transmit the signal (e.g., a base station 110, a UE 120, an integrated access and backhaul (IAB) node configured on a base station 110, and/or the like) . As another example, the set of parameters may include information that identifies a type of resource (e.g., downlink, uplink, sidelink, flexible, and/or the like) in which the signal is to be received.
In some aspects, the set of parameters may include semi-persistent scheduling (SPS) information associated with the signal. In some aspects, the SPS information may include, for example, information that identifies a periodicity and an offset of a repetition pattern associated with the semi-persistently scheduled signal.
In some aspects, the set of parameters may include dynamic scheduling information associated with the signal (e.g., scheduling information associated with dynamically scheduling the signal) .
In some aspects, the set of parameters may include information indicating a priority of the signal. The information indicating the priority of the signal may include information indicating, for example, that the sensing signal has a lower, higher, or equal priority as compared to another type of signal or channel. The other type of signal or channel may include, for example, a synchronization signal block (SSB) , a channel state information reference signal (CSI-RS) , a sounding reference signal (SRS) , a positioning reference signal (PRS) , a phase tracking reference signal (PTRS) , a demodulation reference signal (DMRS) , a shared channel (PxSCH) , a control channel (PxCCH) , and/or the like.
As shown by reference 404, the receiver may receive the signal based at least in part on the set of parameters. For example, since the set of parameters may define the configuration of scheduling of the signal, the receiver may receive the signal based at least in part on the set of parameters. In this way, a signal to be used for object detection and/or for interference identification may be configured and/or scheduled on a receiver in SDM SensComm. In some aspects, such a signal may be used in association  with providing interference management in SDM SensComm. In some aspects, the signal may be transmitted by the transmitter after the transmitter determines the set of parameters (e.g., as described below) .
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
Fig. 5 is a diagram illustrating an example 500 associated with sensing signal configuration and scheduling, in accordance with various aspects of the present disclosure. As shown in Fig. 5, example 500 includes a receiver (e.g., a UE 120, a base station 110, and/or the like) and a transmitter (e.g., a UE 120, a base station 110, and/or the like) .
As shown by reference 502, the transmitter may determine a set of parameters for a signal to be transmitted by the transmitter. In some aspects, the signal to be transmitted by the transmitter may be a signal that is to be used for object detection (i.e., the signal may be a sensing signal) .
In some aspects, the set of parameters includes information associated with a waveform for the signal. That is, the set of parameters may identify a waveform of the signal to be transmitted by the transmitter. The information associated with the waveform for the signal may include information associated with, for example, a duty cycle, a periodicity, an offset, a power control parameter, and/or the like. In some aspects, the information associated with the waveform indicates a waveform for the signal, such as pulse wave, FMCW, PMCW, and/or the like.
In some aspects, the transmitter may determine one or more parameters of the set of parameters based at least in part on a preconfiguration of the transmitter. That is, in some aspects, one or more parameters for the signal may be predetermined such that the one or more parameters are stored on the transmitter. In some aspects, the transmitter may determine one or more parameters of the set of parameters based at least in part on an RRC configuration. In some aspects, the transmitter may determine one or more parameters of the set of parameters based at least in part on an indication received via a MAC control element, DCI, SCI, and/or the like. In some aspects, the transmitter may determine one or more of the set of parameters (e.g., the waveform) based at least in part on capability information (e.g., transmitted by the receiver) indicating one or more sensing signal receiving schemes supported by the receiver.
In some aspects, the set of parameters may include information associated with a TDRA of the signal, information associated with an FDRA of the signal, information  associated with an origination of the signal, SPS information associated with the signal, dynamic scheduling information associated with the signal, information indicating a priority of the signal, and/or the like, as described above in association with Fig. 4.
As shown by reference 504, the transmitter may transmit the signal based at least in part on the set of parameters. For example, since the set of parameters may define the configuration of scheduling of the signal, the transmitter may transmit the signal based at least in part on the set of parameters. In this way, a signal to be used for object detection may be configured and/or scheduled on a transmitter in SDM SensComm. In some aspects, such a signal may be used in association with providing interference management in SDM SensComm.
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a receiver, in accordance with various aspects of the present disclosure. Example process 600 is an example where the receiver (e.g., a UE 120, a base station 110, and/or the like) performs operations associated with sensing signal configuration and scheduling.
As shown in Fig. 6, in some aspects, process 600 may include determining that capability information associated with the receiver is to be transmitted, the capability information indicating one or more sensing signal receiving schemes supported by the receiver (block 610) . For example, the receiver (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like when the receiver is a UE 120; using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like when the receiver is a base station 110) may determine that capability information associated with the receiver is to be transmitted, the capability information indicating one or more sensing signal receiving schemes supported by the receiver, as described above.
As further shown in Fig. 6, in some aspects, process 600 may include transmitting the capability information based at least in part on determining that the capability information is to be transmitted (block 620) . For example, the receiver (e.g., using transmit processor 264, controller/processor 280, memory 282, and/or the like when the receiver is a UE 120; using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like when the receiver is a base  station 110) may transmit the capability information based at least in part on determining that the capability information is to be transmitted, as described above.
Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the capability information indicates that the receiver is capable of using only a sensing-preferred signal for performing sensing.
In a second aspect, alone or in combination with the first aspect, the capability information indicates that the receiver is capable of using a communication signal for performing sensing.
In a third aspect, alone or in combination with one or more of the first and second aspects, the capability information indicates that, at a given time instance, the receiver is capable of using either a sensing-preferred signal or a communication signal for performing sensing.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the capability information indicates that, at a given time instance, the receiver is capable of using both a sensing-preferred signal and a communication signal for performing sensing.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the capability information indicates that the sensing-preferred signal and the communication signal can include overlapping resources in a frequency domain.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the capability information indicates that the sensing-preferred signal and the communication signal cannot include overlapping resources in a frequency domain.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the capability information indicates that the UE is capable of using a communication signal for performing sensing, the communication signal having an orthogonal frequency division multiplexing waveform or a single-carrier waveform.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the capability information indicates that the UE is capable of using a sensing-preferred signal, the sensing-preferred signal having an orthogonal frequency division multiplexing waveform, a pulsed waveform, a frequency-modulated continuous wave waveform, or a phase-modulated continuous wave waveform.
Although Fig. 6 shows example blocks of process 600, in some aspects, process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a receiver, in accordance with various aspects of the present disclosure. Example process 700 is an example where the receiver (e.g., a UE 120, a base station 110, and/or the like) performs operations associated with sensing signal configuration and scheduling.
As shown in Fig. 7, in some aspects, process 700 may include determining a set of parameters for a signal to be received by the receiver, wherein the signal is to be used by the receiver for object detection or for identification of communication interference, and wherein the set of parameters includes information associated with a waveform for the signal (block 710) . For example, the receiver (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like when the receiver is a UE 120; using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like when the receiver is a base station 110) may determine a set of parameters for a signal to be received by the receiver, as described above. In some aspects, the signal is to be used by the receiver for object detection or for identification of communication interference. In some aspects, the set of parameters includes information associated with a waveform for the signal.
As further shown in Fig. 7, in some aspects, process 700 may include receiving the signal based at least in part on the set of parameters (block 720) . For example, the receiver (e.g., using receive processor 258, controller/processor 280, memory 282, and/or the like when the receiver is a UE 120; using receive processor 238, controller/processor 240, memory 242, and/or the like when the receiver is a base station 110) may receive the signal based at least in part on the set of parameters, as described above.
Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the information associated with the waveform includes information associated with at least one of: a duty cycle, a periodicity, an offset, or a power control parameter.
In a second aspect, alone or in combination with the first aspect, the information associated with the waveform indicates a pulse wave, a frequency-modulated continuous wave, or a phase-modulated continuous wave.
In a third aspect, alone or in combination with one or more of the first and second aspects, the set of parameters is determined based at least in part on being preconfigured on the receiver.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the set of parameters is determined based at least in part on a radio resource control configuration.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the set of parameters is determined based at least in part on an indication received via a medium access control control element, downlink control information, or sidelink control information.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the set of parameters includes information associated with a time domain resource allocation (TDRA) of the signal.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the information associated with the TDRA includes information indicating at least one of: a starting symbol, an ending symbol, a starting slot, an ending slot, a starting mini-slot, an ending mini-slot, a starting subframe an ending subframe, a starting frame index, or an ending frame index.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the set of parameters includes information associated with a frequency domain resource allocation (FDRA) of the signal.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the information associated with the FDRA includes information associated with at least one of: a contiguous number of physical resource blocks, a bandwidth part, or a component carrier.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the set of parameters includes information indicating an origination of the signal.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the information indicating the origination identifies a type of device that is to transmit the signal.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the information indicating the origination identifies a type of resource in which the signal is to be received.
In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, the set of parameters includes semi-persistent scheduling (SPS) information associated with the signal, the SPS information including information that identifies a periodicity and an offset.
In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, the set of parameters includes dynamic scheduling information associated with the signal.
In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, the set of parameters includes information indicating a priority of the signal.
Although Fig. 7 shows example blocks of process 700, in some aspects, process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a transmitter, in accordance with various aspects of the present disclosure. Example process 800 is an example where the transmitter (e.g., a UE 120, a base station 110, and/or the like) performs operations associated with sensing signal configuration and scheduling.
As shown in Fig. 8, in some aspects, process 800 may include determining a set of parameters for a signal to be transmitted by the transmitter, wherein the signal is to be used for object detection, and wherein the set of parameters includes information associated with a waveform for the signal (block 810) . For example, the transmitter (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like when the receiver is a UE 120; using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like when the receiver is a base station 110) may determine a set of parameters for a signal to be transmitted by the transmitter, as described above. In some aspects, the signal is to be  used for object detection. In some aspects, the set of parameters includes information associated with a waveform for the signal.
As further shown in Fig. 8, in some aspects, process 800 may include transmitting the signal based at least in part on the set of parameters (block 820) . For example, the transmitter (e.g., using transmit processor 264, controller/processor 280, memory 282, and/or the like when the receiver is a UE 120; using transmit processor 220, controller/processor 240, memory 242, and/or the like when the receiver is a base station 110) may transmit the signal based at least in part on the set of parameters, as described above.
Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the information associated with the waveform includes information associated with at least one of: a duty cycle, a periodicity, an offset, or a power control parameter.
In a second aspect, alone or in combination with the first aspect, the information associated with the waveform indicates a pulse wave, a frequency-modulated continuous wave, or a phase-modulated continuous wave.
In a third aspect, alone or in combination with one or more of the first and second aspects, the set of parameters is determined based at least in part on being preconfigured on the transmitter.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the set of parameters is determined based at least in part on a radio resource control configuration.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the set of parameters is determined based at least in part on an indication received via a medium access control control element, downlink control information, or sidelink control information.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the set of parameters includes information associated with a time domain resource allocation (TDRA) of the signal.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the information associated with the TDRA includes information indicating at least one of: a starting symbol, an ending symbol, a starting slot, an ending  slot, a starting mini-slot, an ending mini-slot, a starting subframe an ending subframe, a starting frame index, or an ending frame index.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the set of parameters includes information associated with a frequency domain resource allocation (FDRA) of the signal.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the information associated with the FDRA includes information associated with at least one of: a contiguous number of physical resource blocks, a bandwidth part, or a component carrier.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the set of parameters includes semi-persistent scheduling (SPS) information associated with the signal, the SPS information including information that identifies a periodicity and an offset.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the set of parameters includes dynamic scheduling information associated with the signal.
Although Fig. 8 shows example blocks of process 800, in some aspects, process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can  be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (32)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    determining that capability information associated with the UE is to be transmitted, the capability information indicating one or more sensing signal receiving schemes supported by the UE; and
    transmitting the capability information based at least in part on determining that the capability information is to be transmitted.
  2. The method of claim 1, wherein the capability information indicates that the UE is capable of using only a sensing-preferred signal for performing sensing.
  3. The method of claim 1, wherein the capability information indicates that the UE is capable of using a communication signal for performing sensing.
  4. The method of claim 1, wherein the capability information indicates that, at a given time instance, the UE is capable of using either a sensing-preferred signal or a communication signal for performing sensing.
  5. The method of claim 1, wherein the capability information indicates that, at a given time instance, the UE is capable of using both a sensing-preferred signal and a communication signal for performing sensing.
  6. The method of claim 5, wherein the capability information indicates that the sensing-preferred signal and the communication signal can include overlapping resources in a frequency domain.
  7. The method of claim 5, wherein the capability information indicates that the sensing-preferred signal and the communication signal cannot include overlapping resources in a frequency domain.
  8. The method of claim 1, wherein the capability information indicates that the UE is capable of using a communication signal for performing sensing, the communication  signal having an orthogonal frequency division multiplexing waveform or a single-carrier waveform.
  9. The method of claim 1, wherein the capability information indicates that the UE is capable of using a sensing-preferred signal, the sensing-preferred signal having an orthogonal frequency division multiplexing waveform, a pulsed waveform, a frequency-modulated continuous wave waveform, or a phase-modulated continuous wave waveform.
  10. A method of wireless communication performed by a user equipment (UE) , comprising:
    determining a set of parameters for a signal to be received by the UE,
    wherein the signal is to be used by the UE for object detection or for identification of communication interference, and
    wherein the set of parameters includes information associated with a waveform for the signal; and
    receiving the signal based at least in part on the set of parameters.
  11. The method of claim 10, wherein the information associated with the waveform includes information associated with at least one of:
    a duty cycle,
    a periodicity,
    an offset, or
    a power control parameter.
  12. The method of claim 10 wherein the information associated with the waveform indicates a pulse wave, a frequency-modulated continuous wave, or a phase-modulated continuous wave.
  13. The method of claim 10, wherein the set of parameters is determined based at least in part on being preconfigured on the UE.
  14. The method of claim 10, wherein the set of parameters is determined based at least in part on a radio resource control configuration.
  15. The method of claim 10, wherein the set of parameters is determined based at least in part on an indication received via a medium access control control element, downlink control information, or sidelink control information.
  16. The method of claim 10, wherein the set of parameters includes information associated with a time domain resource allocation (TDRA) of the signal.
  17. The method of claim 16, wherein the information associated with the TDRA includes information indicating at least one of:
    a starting symbol,
    an ending symbol,
    a starting slot,
    an ending slot,
    a starting mini-slot,
    an ending mini-slot,
    a starting subframe
    an ending subframe,
    a starting frame index, or
    an ending frame index.
  18. The method of claim 10, wherein the set of parameters includes information associated with a frequency domain resource allocation (FDRA) of the signal.
  19. The method of claim 18, wherein the information associated with the FDRA includes information associated with at least one of:
    a contiguous number of physical resource blocks,
    a bandwidth part, or
    a component carrier.
  20. The method of claim 10, wherein the set of parameters includes information indicating an origination of the signal.
  21. The method of claim 20, wherein the information indicating the origination identifies a type of device that is to transmit the signal.
  22. The method of claim 20, wherein the information indicating the origination identifies a type of resource in which the signal is to be received.
  23. The method of claim 10, wherein the set of parameters includes semi-persistent scheduling (SPS) information associated with the signal, the SPS information including information that identifies a periodicity and an offset.
  24. The method of claim 10, wherein the set of parameters includes dynamic scheduling information associated with the signal.
  25. The method of claim 10, wherein the set of parameters includes information indicating a priority of the signal.
  26. A method of wireless communication performed by a base station, comprising:
    determining a set of parameters for a signal to be transmitted by the base station, wherein the signal is to be used for object detection, and
    wherein the set of parameters includes information associated with a waveform for the signal; and
    transmitting the signal based at least in part on the set of parameters.
  27. The method of claim 26, wherein the information associated with the waveform includes information associated with at least one of:
    a duty cycle,
    a periodicity,
    an offset, or
    a power control parameter.
  28. The method of claim 26, wherein the information associated with the waveform indicates a pulse wave, a frequency-modulated continuous wave, or a phase-modulated continuous wave.
  29. The method of claim 26, wherein the set of parameters is determined based at least in part on being preconfigured on the base station.
  30. The method of claim 26, wherein the set of parameters is determined based at least in part on a radio resource control configuration.
  31. The method of claim 26, wherein the set of parameters is determined based at least in part on an indication received via a medium access control control element, downlink control information, or sidelink control information.
  32. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    determine that capability information associated with the UE is to be transmitted, the capability information indicating one or more sensing signal receiving schemes supported by the UE; and
    transmit the capability information based at least in part on determining that the capability information is to be transmitted.
PCT/CN2020/099114 2020-06-30 2020-06-30 Sensing signal configuration and scheduling WO2022000228A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/099114 WO2022000228A1 (en) 2020-06-30 2020-06-30 Sensing signal configuration and scheduling
PCT/CN2021/097827 WO2022001560A1 (en) 2020-06-30 2021-06-02 Precoding for joint sensing and communication services
CN202180045351.2A CN115868209A (en) 2020-06-30 2021-06-02 Precoding for joint sensing and communication services
US17/998,213 US20230224696A1 (en) 2020-06-30 2021-06-02 Precoding for joint sensing and communication services
EP21832964.7A EP4173372A1 (en) 2020-06-30 2021-06-02 Precoding for joint sensing and communication services

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/099114 WO2022000228A1 (en) 2020-06-30 2020-06-30 Sensing signal configuration and scheduling

Publications (1)

Publication Number Publication Date
WO2022000228A1 true WO2022000228A1 (en) 2022-01-06

Family

ID=79317679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099114 WO2022000228A1 (en) 2020-06-30 2020-06-30 Sensing signal configuration and scheduling

Country Status (1)

Country Link
WO (1) WO2022000228A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023221083A1 (en) * 2022-05-20 2023-11-23 Qualcomm Incorporated Multi-trp base station for radar sensing
WO2024007211A1 (en) * 2022-07-06 2024-01-11 Huawei Technologies Co., Ltd. Methods and apparatus for power domain multiplexing of communication and sensing signals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017207041A1 (en) * 2016-06-01 2017-12-07 Sony Mobile Communications Inc. Radar probing employing pilot signals
US20180070296A1 (en) * 2015-04-29 2018-03-08 Intel Corporation Spectrum sharing architectures and methods
CN108781436A (en) * 2016-03-31 2018-11-09 株式会社Ntt都科摩 User apparatus and sensing control method
US10623882B1 (en) * 2019-04-03 2020-04-14 xMEMS Labs, Inc. Sounding system and sounding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180070296A1 (en) * 2015-04-29 2018-03-08 Intel Corporation Spectrum sharing architectures and methods
CN108781436A (en) * 2016-03-31 2018-11-09 株式会社Ntt都科摩 User apparatus and sensing control method
WO2017207041A1 (en) * 2016-06-01 2017-12-07 Sony Mobile Communications Inc. Radar probing employing pilot signals
US10623882B1 (en) * 2019-04-03 2020-04-14 xMEMS Labs, Inc. Sounding system and sounding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023221083A1 (en) * 2022-05-20 2023-11-23 Qualcomm Incorporated Multi-trp base station for radar sensing
WO2024007211A1 (en) * 2022-07-06 2024-01-11 Huawei Technologies Co., Ltd. Methods and apparatus for power domain multiplexing of communication and sensing signals

Similar Documents

Publication Publication Date Title
WO2022001560A1 (en) Precoding for joint sensing and communication services
US11705952B2 (en) Periodic channel state information reference signal beam management scheduling
WO2022000229A1 (en) Sensing interference reports
US20230156497A1 (en) Techniques for layer 1 cross-link interference measurement reporting
WO2022000228A1 (en) Sensing signal configuration and scheduling
US20220060356A1 (en) Sounding reference signal (srs) configuration modification
US20210352678A1 (en) Resource identification for uplink scheduled transmission after cancellation indication receipt
US11871422B2 (en) Frequency allocation for channel state information reference signals
US20230155663A1 (en) Directional sensing signal request
WO2022027417A1 (en) Channel state information report type configuration
US11824617B2 (en) Uplink beam management using mixed downlink and uplink reference signals
US11943794B2 (en) Differentiated channel state information feedback based on decoding statistics
US20220224474A1 (en) Cross-slot channel estimation of uplink reference signals
US20220141695A1 (en) Resource counting rule for determining maximum measured reference signals
US20230231637A1 (en) Channel state information reports and channel state information interference measurement reports associated with joint sensing and communication services
US20210376977A1 (en) Reference signal grouping for full-duplex operation
WO2022000227A1 (en) Channel state information reports and channel state information interference measurement reports associated with joint sensing and communication services
CN116195226A (en) Secondary cell activation based on reference signals
WO2022000235A1 (en) Precoding for joint sensing and communication services
US11621818B2 (en) Transmission configuration indicator state configuration
US11665773B2 (en) Resource based periodic communication cancellation
US20230029663A1 (en) Full duplex random access channel communication
US20240056150A1 (en) Semi-persistent channel state information reference signal activation in a direct secondary cell activation
WO2022147676A1 (en) Uplink mode switching
US20230163928A1 (en) Doppler shift compensation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943606

Country of ref document: EP

Kind code of ref document: A1