WO2022000219A1 - 一种光转换层及制备方法、led显示面板及制备方法 - Google Patents

一种光转换层及制备方法、led显示面板及制备方法 Download PDF

Info

Publication number
WO2022000219A1
WO2022000219A1 PCT/CN2020/099056 CN2020099056W WO2022000219A1 WO 2022000219 A1 WO2022000219 A1 WO 2022000219A1 CN 2020099056 W CN2020099056 W CN 2020099056W WO 2022000219 A1 WO2022000219 A1 WO 2022000219A1
Authority
WO
WIPO (PCT)
Prior art keywords
light conversion
light
blue led
led chip
layer
Prior art date
Application number
PCT/CN2020/099056
Other languages
English (en)
French (fr)
Inventor
翟峰
唐彪
Original Assignee
重庆康佳光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆康佳光电技术研究院有限公司 filed Critical 重庆康佳光电技术研究院有限公司
Priority to PCT/CN2020/099056 priority Critical patent/WO2022000219A1/zh
Publication of WO2022000219A1 publication Critical patent/WO2022000219A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the invention relates to the field of display, in particular to a light conversion layer and a preparation method, an LED display panel and a preparation method.
  • B-LED+QDs that is, the combination of blue LED chips and quantum dot (Quantum Dot, QD) materials: using the light emitted by two blue LED chips in a set of The red light quantum dot material and the green light quantum dot material are excited to emit red light and green light respectively, and together with the blue light emitted by the remaining blue LED chips, the three primary colors of RGB can be realized.
  • Such a set of structures is the basic structure at one pixel of the display panel. Structural units.
  • the red light quantum dot material and the green light quantum dot material are usually arranged on the light-emitting surface of the blue LED chip in the form of a film layer, as a light conversion layer to convert the light emitted by the blue light LED chip, but the quantum dot film layer converts the blue light
  • the efficiency is not high, and it is easy to cause blue light leakage, which leads to the problems of impure chromaticity, display distortion and poor color gamut of the LED display panel.
  • the purpose of the present application is to provide a light conversion layer and a preparation method, an LED display panel and a preparation method, aiming to solve the problem that blue light easily leaks from the light conversion layer in the related art, resulting in the conversion efficiency of the light conversion layer. Not high, the problem of poor display effect of the LED display panel.
  • a light conversion layer includes a plurality of conversion groups, each conversion group corresponds to a blue light LED chip group at a pixel point, the conversion group includes a light conversion unit, and the light conversion unit includes:
  • red light conversion unit corresponding to the first blue LED chip in the blue LED chip group
  • the red light conversion unit includes multiple layers of colloidal crystals and red light conversion materials dispersed in the gaps of the colloidal crystals
  • the green light conversion unit includes multiple layers of colloidal crystals and the green light conversion materials dispersed in the gaps of the colloidal crystals; The diameter enables the colloidal crystal to reflect the light emitted by the corresponding blue LED chip in the blue LED chip set.
  • the light conversion unit of the above-mentioned light conversion layer includes multilayer colloidal crystals and light conversion materials dispersed in the colloidal crystal gap.
  • the blue light on the crystal will be re-transmitted to the light conversion material after one or more reflections to complete the conversion.
  • the existence of colloidal crystals prevents blue light from directly leaking out of the light conversion layer from the light conversion material gap, reduces the light leakage of blue light, improves the chromaticity purity of the basic structural unit of the pixel, and also improves the chromaticity purity of the LED display panel.
  • the reflection of the blue light by the colloidal crystal makes the blue light that might leak from the gap of the light conversion material continue to be reflected until it reaches the light conversion material to complete the conversion, which improves the conversion efficiency of the light conversion layer to blue light, which is conducive to improving the Color gamut of LED display panels.
  • At least one of the red light conversion material and the green light conversion material is a quantum dot material.
  • the cross section of the light conversion unit gradually increases in a direction away from the blue LED chip set.
  • one side of the light conversion unit close to the blue LED chip set is covered with a transparent adhesive layer.
  • the light conversion unit of the above-mentioned light conversion layer is covered with a transparent adhesive layer on the side close to the blue LED chip set.
  • a transparent adhesive layer on the side close to the blue LED chip set.
  • the light conversion layer further includes a transparent protective layer, and the transparent protective layer is attached and disposed on the side of each conversion group away from the blue LED chip group.
  • a transparent protective layer attached to the side of the conversion group away from the blue LED chip group is attached to the light conversion unit to protect the light conversion unit.
  • the particle size of the colloidal crystal is , where k is the Miller index, ⁇ is the wavelength of light emitted by the corresponding blue LED chip in the blue LED chip set, and n is the refractive index of the corresponding light conversion unit.
  • the particle size of the colloidal crystals in the above-mentioned light conversion layer is calculated according to the above formula, and the wavelength of the blue light emitted by the blue LED chip set is considered in the calculation, and the calculated particle size is more suitable for the blue light emitted by the blue LED chip set, so that the The colloidal crystals with the particle size can better reflect the blue light emitted by the blue LED chip set.
  • an LED display panel comprising:
  • the light conversion layer is disposed on the side where the light-emitting surface of the blue LED chip set is located.
  • the light conversion unit of the above-mentioned LED display panel includes multiple layers of colloidal crystals and light conversion materials dispersed in the gaps of the colloidal crystals.
  • the blue light on the crystal will be re-transmitted to the light conversion material after one or more reflections to complete the conversion.
  • the colloidal crystal reduces the leakage of blue light and improves the chromaticity purity of the LED display panel.
  • the reflection of blue light by the colloidal crystal makes the blue light that may leak from the gap of the light conversion material continue to be reflected until it hits the light conversion material to complete the conversion, which improves the color gamut of the LED display panel.
  • a gap exists between the blue LED chip set and the light conversion layer.
  • the problem that affects the performance of the light conversion material is conducive to maintaining the display performance of the LED display panel, improving the quality of the LED display panel, and prolonging its service life.
  • a transparent protective layer is attached to the side of the conversion group away from the blue LED chip group, a frame glued wall is arranged between the driving substrate and the transparent protective layer, and one end of the frame glued wall is adhered to the side of the transparent protective layer. The other end is adhered to the surface of the driving substrate; the height of the frame glued wall is greater than the sum of the thicknesses of the blue LED chip group and the conversion group.
  • a frame glued wall is set.
  • the frame glued wall is used to realize the fixation of the light conversion layer and the driving substrate, and on the other hand, the height of the frame glued wall is larger than that of the blue LED chip and the light conversion layer. The sum of the thickness of the light conversion layer and the blue LED chip is realized, and the light conversion layer is protected on the basis of no additional structural complexity.
  • the present application also provides a method for preparing a light conversion layer, comprising:
  • the particle size of the colloidal crystal can allow the colloidal crystal to reflect the light emitted by the corresponding blue LED chip on the driving substrate;
  • Colloidal crystal emulsion and light conversion materials are used to prepare light conversion units in multiple conversion groups of the light conversion layer.
  • the light conversion materials include red light conversion materials and green light conversion materials.
  • the light conversion layer is treated to volatilize the inert volatile solvent, so that the light conversion unit is cured to obtain the light conversion layer.
  • the preparation method of the light conversion layer first determine the colloidal particle size, and prepare colloidal crystals according to the particle size, then disperse the colloidal crystals in an inert volatile solvent to obtain a colloidal crystal emulsion, and use the colloidal crystal emulsion and the light conversion material to prepare the light conversion material.
  • the light conversion units in the plurality of conversion groups are layered, and then the light conversion layer is processed to make the inert volatile solvent volatilize, so that the light conversion units are cured to obtain the shape conversion layer.
  • the light conversion unit includes multiple layers of colloidal crystals and light conversion materials dispersed in the gaps of the colloidal crystals, and the particle size of the colloidal crystals can reflect the light emitted by the blue LED chip set on the driving substrate, so that the blue light hitting the colloidal crystals will After one or more reflections, it is re-emitted onto the light conversion material to complete the conversion.
  • the existence of colloidal crystals prevents blue light from directly leaking out of the light conversion layer from the light conversion material gap, reduces the light leakage of blue light, improves the chromaticity purity of the basic structural unit of the pixel, and also improves the chromaticity purity of the LED display panel.
  • the reflection of the blue light by the colloidal crystal makes the blue light that might leak from the gap of the light conversion material continue to be reflected until it reaches the light conversion material to complete the conversion, which improves the conversion efficiency of the light conversion layer to blue light, which is conducive to improving the Color gamut of LED display panels.
  • determining the colloidal crystal particle size includes:
  • D Determine the particle size of the colloidal crystal, where D is the particle size of the colloidal crystal, k is the Miller index, generally a positive integer, ⁇ is the wavelength of the corresponding blue LED chip, and n is the refractive index of the corresponding light conversion unit.
  • the wavelength of the blue light emitted by the blue LED chip set is considered, and the calculated particle size is more in line with the blue light emitted by the blue LED chip set, so that the colloidal crystal of this particle size can be better for the blue LED.
  • the blue light emitted by the chipset is reflected.
  • the method further includes:
  • a layer of transparent glue is spin-coated on the surface of the light conversion unit to form a transparent glue layer.
  • a transparent adhesive layer is arranged on the side of the light conversion unit close to the blue LED chip set.
  • the problem of failure of the light conversion material due to long-term exposure to a high temperature environment has played a good role in protecting the light conversion material.
  • using the colloidal crystal emulsion and the light conversion material to prepare the light conversion units in the plurality of conversion groups of the light conversion layer includes:
  • the colloidal crystal emulsion and the light conversion material are injected into the microfluidic chip from the two input ends of the microfluidic chip respectively;
  • the flow rate of each input end of the microfluidic chip is controlled, so that the colloidal crystals outputted at the output end of the microfluidic chip and the light conversion material form a light conversion unit whose distribution characteristics meet the expectations.
  • the microfluidic technology is used to prepare the light conversion unit, and the colloidal crystal and the light conversion material can be uniformly mixed together to accurately form a three-dimensional ordered structure of the light conversion unit.
  • the method before controlling the flow rate of each input end of the microfluidic chip, so that the colloidal crystals output from the output end of the microfluidic chip and the light conversion material form a light conversion unit whose distribution characteristics meet expectations, the method further includes:
  • a plurality of light-shielding structures are arranged on one surface of the transparent protective layer according to the gaps between the blue LED chips on the driving substrate, and the cross-section of the light-shielding structures gradually increases in the direction away from the transparent protective layer;
  • the output end of the microfluidic chip is placed in an accommodating groove, and the accommodating groove is formed by adjacent light-shielding structures and a transparent protective layer.
  • the transparent protective layer is first set, and then the transparent protective layer is directly used as the substrate for preparing the conversion group.
  • the complex process of preparing the conversion group on one substrate, separating the conversion group and the substrate, and re-preparing the protective layer simplifies the preparation process of the light conversion layer.
  • the present application also provides a method for manufacturing an LED display panel, including:
  • a blue LED chip set electrically connected to the driving substrate is arranged on the driving substrate, and the light conversion layer is prepared according to the above-mentioned preparation method of the light conversion layer;
  • the light conversion layer is fixedly connected to the driving substrate, so that each conversion group in the light conversion layer corresponds to the position of each blue LED chip group on the driving substrate.
  • the light conversion layer is first prepared according to the above-mentioned preparation method of the light conversion layer.
  • the diameter of the colloidal crystal can ensure that the colloidal crystal reflects the light emitted by the blue LED chip, so that the blue light incident on the colloidal crystal will be re-radiated to the light conversion material after one or more reflections to complete the conversion.
  • the colloidal crystal reduces the leakage of blue light and improves the chromaticity purity of the LED display panel.
  • the reflection of blue light by the colloidal crystal makes the blue light that may leak from the gap of the light conversion material continue to be reflected until it hits the light conversion material to complete the conversion, which improves the color gamut of the LED display panel.
  • FIG. 1 is a schematic longitudinal cross-sectional view of a first light conversion layer provided in the present invention
  • FIG. 2 is a schematic structural diagram of the light conversion layer provided in the present invention.
  • FIG. 3 is a schematic longitudinal cross-sectional view of a second light conversion layer provided in the present invention.
  • FIG. 4 is a schematic longitudinal cross-sectional view of a third light conversion layer provided in the present invention.
  • FIG. 5 is a schematic longitudinal cross-sectional view of the fourth light conversion layer provided in the present invention.
  • FIG. 6 is an optional flowchart of a method for preparing a light conversion layer provided in an optional embodiment of the present invention.
  • FIG. 7 is a flow chart of preparing a light conversion unit using microfluidic technology in an optional embodiment of the present invention.
  • FIG. 8 is a schematic longitudinal cross-sectional view of an LED display panel provided in another optional embodiment of the present invention.
  • FIG. 9 is a schematic longitudinal cross-sectional view of another LED display panel provided in another optional embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for manufacturing an LED display panel provided in another optional embodiment of the present invention.
  • the quantum dot material has reached the nanometer level. If there are too many quantum dots in the dispersed material, the average distance between the quantum dots will be very small, and the quantum dots will be due to intermolecular forces (such as hydrogen bonds, Van der Waals forces, etc.), and aggregate into groups of different sizes, which makes the quantum dots not dispersed uniformly in the dispersed material, resulting in light leakage and color mixing, and also leads to a decrease in color reproduction ability. If there are too few quantum dots in the dispersion material, so that the density of quantum dots in the dispersion material cannot reach the degree of clustering, it is necessary to coat a relatively thick dispersion material, which will also cause light leakage and color mixing, and also lead to color Reduced recovery ability.
  • This embodiment provides a light conversion layer, please refer to a longitudinal cross-sectional schematic diagram of the light conversion layer shown in FIG. 1 :
  • the light conversion layer 10 includes a plurality of conversion groups, one conversion group corresponds to one blue LED chip group at one pixel point, and the conversion group is used to convert and transmit the light emitted by each blue LED chip in the blue LED chip group, thereby Get the RGB three primary colors. It can be understood that, in some scenarios, the light of a pixel only includes three colors of red, green, and blue. Therefore, the blue LED chip set at one pixel may only include three blue LED chips.
  • the conversion group The light conversion unit that performs the conversion function can also only include a red light conversion unit and a green light conversion unit, and also includes a blue light transmission unit that can directly transmit blue light.
  • the light in the pixels can also include yellow, and possibly even cyan, in addition to red, green, and blue.
  • yellow and cyan can also be converted by the light emitted by the blue LED chip, but in these examples, there will be more light conversion units in the conversion group, and the blue LED chip group corresponding to one pixel will also be Include more blue LED chips.
  • a conversion group includes a red light conversion unit 11 and a green light conversion unit 12.
  • FIG. 1 only shows the red light conversion unit 11 and the green light conversion unit 12 in the light conversion unit, FIG. 1 It is only an example diagram, and it is not limited that there can only be these two light conversion units in this embodiment.
  • the red light converting unit 11 corresponds to the first blue LED chip in the blue LED chip set
  • the green light converting unit 12 corresponds to the second blue LED chip in the blue LED chip set.
  • the conversion group 10 also includes a blue light transmission unit 13 .
  • the red light conversion unit 11 , the green light conversion unit 12 and the blue light transmission unit 13 in each conversion group in the light conversion layer 10 are arranged in the same order.
  • the green light conversion unit 12 is located between the red light conversion unit 11 and the blue light transmission unit 13, and other corresponding conversion groups are also arranged in this way.
  • a light shielding structure 14 is also arranged between each adjacent unit.
  • the light-shielding structure 14 should be non-transparent, so as to prevent light in one unit from entering another adjacent unit.
  • the light-shielding structure can be made of black light-shielding glue. It can be understood that the conversion groups in the light conversion layer 10 may be arranged next to each other, so the light shielding structure 14 is not only arranged in each conversion group, but also arranged between the conversion groups.
  • the light conversion unit includes multiple layers of colloidal crystals and light conversion materials dispersed in the gaps of the colloidal crystals.
  • the light conversion unit 20 includes four Layers of colloidal crystals 21 and light conversion materials 22 dispersed in the gaps of the colloidal crystals.
  • the light conversion material 22 is a quantum dot material, for example, the red light conversion material may be a red light quantum dot material, and the green light conversion material may be a green light quantum dot material.
  • the light conversion material 22 can also be phosphor materials, such as red phosphors and green phosphors.
  • one of the red light conversion material and the green light conversion material may be a quantum dot material, and the other may be a phosphor material.
  • the material of the colloidal crystal in this embodiment may include, but is not limited to, SiO 2 material, polymer material (such as polystyrene, polyacrylic acid, and nano-scale microspheres obtained by copolymerizing various monomers), and the particle size thereof is such that It can reflect the light emitted by the corresponding blue LED chip.
  • the particle size of the colloidal crystal can be accurately calculated based on the wavelength of the blue light to be reflected. For example, the particle size of the colloidal crystal satisfies the following relationship:
  • D can be obtained as (k ⁇ *radical sign 6)/4n, where D is the particle size of the colloidal crystal, k is the Miller index, generally a positive integer, 1, 2... etc., ⁇ is the blue light that needs to be reflected wavelength, and n is the refractive index of the light conversion unit.
  • the specific value of k only needs to ensure that the value of D is between 1 and 1000 nm, and the size of n is related to the refractive index of the colloidal crystal itself, the refractive index of air, and the ratio of colloidal crystal to air in the light conversion unit.
  • the proportion of colloidal crystals in the light conversion unit is v1
  • the proportion of air is v2.
  • n v1*n1 2 +v2*n2 2 ;
  • the range of the particle size of the corresponding colloidal crystal may be 173 nm-190 nm.
  • an accurate particle size value can even be calculated. For example, if the wavelength of light emitted by a blue LED chip is 457 nm, the particle size of the colloidal crystal can be 189 nm.
  • the particle size of the colloidal crystal that fits the light-emitting wavelength of the blue LED chip can be accurately calculated. Better pertinence can better reflect the light emitted by the blue LED chip.
  • colloidal crystals 21 are provided in the light conversion unit 20 shown in FIG. 2 , in other examples of this embodiment, only three layers of colloidal crystals may be provided in the light conversion unit, or more than four layers of colloidal crystals may be provided in the light conversion unit. layer more colloidal crystals. However, it has been found through experiments that at least three layers of colloidal crystals are required in the light conversion layer to effectively reflect blue light.
  • the blue light transmissive unit 13 may be a blank area that is not filled with any substance (only air).
  • the blue light transmission unit 13 may be made of transparent glue, and the blue light transmission unit is the transparent glue layer.
  • the light conversion layer 10 when the light conversion layer 10 is put into use, it will be arranged on the light-emitting surface of the blue light chip set. Therefore, the light conversion layer 10 will have one side closer to the blue light LED chip.
  • the side of the layer 10 which is used so as to be closer to the blue LED chip is called a "near light source side", and the side opposite to the near light source side is called a "far light source side”.
  • the size of the cross section of the same light conversion unit is the same everywhere, for example, the cross section of the light conversion unit is rectangular, then in this case, the light conversion unit is actually a cuboid structure 3, please refer to the longitudinal cross-sectional schematic diagram of the light conversion layer 30 shown in FIG. 3.
  • the red light conversion unit 31 and the green light conversion unit 32 are all rectangular parallelepipeds, and the cross sections of the light conversion units are all
  • the specifications of the blue light transmission unit 33 are the same as those of the light conversion unit, so the blue light transmission unit also has a rectangular parallelepiped structure.
  • the light-shielding structure between the units may also be a cube or a rectangular parallelepiped.
  • the size of the cross-section of the light conversion unit is different throughout , that is, the cross-sectional area of the light conversion unit gradually decreases from the near light source surface to the far light source surface.
  • the cross-sectional area of the light shielding structure disposed between the units will gradually decrease in the direction of approaching the blue LED chip set.
  • the cross sections of the red light conversion unit 11 and the green light conversion unit 12 both gradually increase in the direction away from the blue LED chip set, that is, the cross-sectional area of the light conversion unit increases from the surface near the light source.
  • the change rule of the cross section of the light shielding structure 14 is opposite to the change rule of the cross section of the light conversion unit: it gradually decreases from the near light source surface to the far light source surface.
  • This arrangement in FIG. 1 can ensure that the light from the light conversion unit or the blue light transmission unit is emitted obliquely, and the area above the light shielding structure 14 is illuminated, thereby visually "hiding" the light shielding structure.
  • each light conversion unit 42 is only covered with a transparent adhesive layer 41 on the side near the light source surface, and the transparent adhesive layer 41 is on one side It can isolate water and oxygen, and on the other hand, it can prevent the heat generated during the operation of the blue LED chip from being directly conducted to the light conversion material.
  • the light conversion layer further includes a transparent protective layer, and the transparent protective layer is disposed on the side of the conversion group away from the blue LED chip.
  • the transparent protective layer 51 in a light conversion layer 50 is a whole, that is, a transparent protective layer 51 is attached to all the conversion groups, and all the conversion groups are Protect.
  • the light conversion layer includes both a transparent protective layer and a transparent adhesive layer.
  • a colloidal crystal capable of reflecting the light emitted by the blue LED chip is arranged in the light conversion unit.
  • the reflection principle is used to reduce or even completely avoid the leakage of blue light from the light conversion unit.
  • the chromaticity purity of the basic structural unit of the pixel and the conversion efficiency of the light conversion layer to blue light are obtained.
  • the particle size of the colloidal crystal used in the light conversion unit can also be specially customized based on the wavelength of light emitted by the blue LED chip, which further improves the reflection efficiency of the colloidal crystal on the light emitted by the blue LED chip.
  • This embodiment provides a method for preparing a light conversion layer. Please refer to FIG. 6 to show an optional flowchart of the method for preparing the light conversion layer:
  • S602 Determine the particle size of the colloidal crystal, and prepare the colloidal crystal according to the particle size.
  • the material of the colloidal crystal includes but is not limited to SiO 2 material and polymer material, and the particle size of the colloidal crystal enables the colloidal crystal to reflect the light emitted by the corresponding blue LED chip on the driving substrate.
  • the particle size D of the colloidal crystal may be D may be (k ⁇ *radical number 6)/4n, where D is the particle size of the colloidal crystal, and k is the Miller index, which is generally a positive integer , 1, 2... etc., ⁇ is the wavelength of the blue light to be reflected, and n is the refractive index of the light conversion unit.
  • the specific value of k only needs to ensure that the value of D is between 1-1000nm, and the band of n is related to the refractive index of the colloidal crystal itself, the refractive index of the air, and the ratio of the colloidal crystal to the air in the light conversion unit. .
  • the particle size of the corresponding colloidal crystal may range from 173nm to 190nm. For blue light with a single wavelength, the exact particle size value can even be calculated. For example, if the wavelength of the light emitted by the blue LED chip on the driving substrate is 457 nm, the particle size of the colloidal crystal in the light conversion unit of the blue LED chip corresponds to that of the blue LED chip. The diameter can be 189nm.
  • the particle size of the colloidal crystal that fits the light-emitting wavelength of the blue LED chip is accurately determined.
  • the colloidal crystal prepared based on the particle size is equivalent to a colloidal crystal specially "customized" for the blue LED chip. It can better reflect the light emitted by the blue LED chip.
  • the corresponding colloidal crystal can be prepared according to the particle size, thereby realizing the preparation of the light conversion layer.
  • S604 Disperse the colloidal crystals in an inert volatile solvent to obtain a colloidal crystal emulsion.
  • the colloidal crystals can be dispersed in an inert volatile solvent to obtain a colloidal crystal emulsion.
  • an inert volatile solvent should be volatile.
  • inert is relatively speaking. In this embodiment, it refers to a solvent that has no effect on the light conversion material. Taking the quantum dot material as an example, the corresponding inert solvent should be an oil phase solvent rather than an aqueous phase solvent. . Solvents that meet these requirements include units but are not limited to isopropyl alcohol (IPA).
  • the light conversion materials mentioned here include red light conversion materials and green light conversion materials
  • the corresponding light conversion units include red light conversion units mainly composed of multilayer colloidal crystals and red light conversion materials dispersed in the gaps of the colloidal crystals
  • the green light conversion unit is mainly composed of multi-layer colloidal crystals and green light conversion materials dispersed in the gaps of the colloidal crystals.
  • the light at the pixel point includes light of other colors such as yellow, cyan and the like in addition to red light and green light
  • the light conversion material also includes light conversion materials of other colors.
  • the light conversion unit when using colloidal crystals and light conversion materials to prepare the light conversion unit, it can be realized by using inkjet printing technology or microfluidic technology.
  • the light conversion unit is prepared by using microfluidic technology.
  • the light conversion unit is prepared by using microfluidic technology.
  • S702 inject the colloidal crystal emulsion and the light conversion material into the microfluidic chip from two input ends of the microfluidic chip respectively.
  • the selected microfluidic chip should have at least two Input terminal, in some examples of this embodiment, the selected microfluidic chip is a "Y" type microfluidic chip, and the angle between the two input terminals in the "Y" type microfluidic chip at the intersection is 90 °, the output is located on the bisector of the angle at this intersection. In other examples of this embodiment, a "T" type microfluidic chip may also be used.
  • the colloidal crystal emulsion and the light conversion material were injected into the microfluidic chip from two input ends respectively. It should be noted that light conversion materials of different colors cannot be mixed into a microfluidic chip, unless a microfluidic chip has two or more independent input and output systems, otherwise, the red light conversion unit and the green light conversion unit Cells can then only be prepared separately at different times or by different microfluidic chips.
  • S704 Control the flow rate of each input end of the microfluidic chip, so that the colloidal crystals outputted at the output end of the microfluidic chip and the light conversion material form a light conversion unit whose distribution characteristics meet expectations.
  • the colloidal crystals exhibit a layered ordered structure, and the light conversion material is distributed in the gaps between the colloidal crystals.
  • the colloidal crystal emulsion and the light conversion material use a Micro-Electro-Mechanical system (Micro-Electro-Mechanical System).
  • the speed of injecting the corresponding microfluidic into the input end of the microfluidic chip can be controlled by controlling the microelectromechanical system.
  • a desired light conversion unit can be prepared at the output end of the microfluidic chip.
  • the light conversion unit has a three-dimensional structure.
  • the "mold" of the light conversion unit should be formed first, and then the output end of the microfluidic chip should be directed to the light conversion unit.
  • a fluid is injected into the mold to form the light conversion unit.
  • a mold for the light conversion unit may be fabricated first, and the mold is only used in the stage of preparing the light conversion unit. After the light conversion unit is fabricated, the molded light conversion unit needs to be taken out from the mold , and then set the light conversion unit to the corresponding position in the light conversion layer.
  • a base can be set first, and then a plurality of light-shielding structures can be set on the base according to the gaps between the blue LED chips on the driving substrate, so that the light-shielding structures and the base are used to form accommodating grooves.
  • the output end of the microfluidic chip is placed in the accommodating groove, and the output end of the microfluidic chip is injected into the accommodating groove with colloidal crystal emulsion and light conversion material, thereby forming a light conversion unit.
  • the substrate and light converting layer can be peeled off.
  • a transparent protective layer may also need to be arranged in the light conversion layer
  • a substrate that is transparent on both sides can be directly used as the base, and then a light-shielding structure is arranged on the transparent substrate, and the light-shielding structure is used.
  • An accommodating groove is formed with the transparent substrate, and the output end of the microfluidic chip can be placed in the accommodating groove to form a light conversion unit.
  • the transparent substrate can be directly used as the transparent protective layer in the light conversion layer.
  • a transparent protective layer is actually set first, and then a plurality of light-shielding structures are set on the basis of the transparent protective layer according to the gaps between the blue LED chips on the driving substrate, and then the microfluidic chip is installed.
  • the output end is placed in the receiving groove to prepare the light conversion unit.
  • the cross-section of the light-shielding structure disposed on the transparent protective layer gradually increases in the direction away from the transparent protective layer, so as to ensure that the cross-section of the prepared light conversion unit is in the direction away from the transparent protective layer. It gradually decreases in the direction away from the transparent protective layer.
  • the part of the light conversion unit that is closer to the blue LED chip has a smaller cross-section.
  • the inert volatile solvent in the light conversion unit needs to be volatilized, so that the colloidal crystals can self-assemble into a three-dimensional ordered structure.
  • the light conversion unit may be subjected to a slight heat treatment, and of course, in some other examples, the inert volatile solvent may also be naturally volatilized.
  • a layer of transparent glue may also be spin-coated on the surface of each light conversion unit, so as to form a transparent glue layer protecting the light conversion units after the transparent glue is cured.
  • the transparent glue can be spin-coated only on the side of the light conversion unit facing the blue LED chip, because the side of the light conversion unit is protected by a light-shielding structure, and the side away from the blue LED chip is already transparent Protective layer of protection.
  • the particle size of the colloid is first determined, and the colloidal crystal is prepared according to the particle size, and then the colloidal crystal is dispersed in an inert volatile solvent to obtain a colloidal crystal emulsion, and the colloidal crystal emulsion and the light conversion material are used.
  • the light conversion units in a plurality of conversion groups of the light conversion layer are prepared, and then the light conversion layer is processed to make the inert volatile solvent volatilize, so that the light conversion units are cured to obtain the shape conversion layer.
  • the colloidal crystals customized according to the specific particle size Through the colloidal crystals customized according to the specific particle size, the possibility of blue light directly leaking out of the light conversion layer from the light conversion material gap is prevented, the light leakage of blue light is reduced, and the chromaticity purity of the basic structural unit of the pixel point is improved, which also improves the LED display.
  • the chromatic purity of the panel At the same time, the reflection of the blue light by the colloidal crystal makes the blue light that might leak from the gap of the light conversion material continue to be reflected until it reaches the light conversion material to complete the conversion, which improves the conversion efficiency of the light conversion layer to blue light, which is conducive to improving the Color gamut of LED display panels.
  • the microfluidic technology can be used to prepare the light conversion unit, and the colloidal crystal and the light conversion material can be uniformly mixed together to accurately form a three-dimensional ordered structure of the light conversion unit.
  • an LED display panel will be provided. Please refer to a schematic cross-sectional view of the display panel shown in FIG. 8 :
  • the display panel 8 includes a driving substrate 81 and a plurality of blue LED chip groups 82 (only one is shown in FIG. 8 ) disposed on the driving substrate 81 and electrically connected to the driving substrate 81 , and each blue LED chip group 82 includes Multiple blue LED chips, for example, in FIG. 8 , a blue LED chip set includes three blue LED chips, a first blue LED chip 821 , a second blue LED chip 822 and a third blue LED chip 823 .
  • the display panel 8 may further include a light conversion layer 83 , and the light conversion layer 83 is disposed on one side of the light-emitting surface of the blue LED chip set 82 .
  • the light conversion layer 83 can be any one of the aforementioned light conversion layers, such as any one of FIG. 1 , FIG. 3 , FIG. 4 , and FIG. 5 , or other light conversion layers that conform to the aforementioned structural features. Floor.
  • FIG. 1 any one of FIG. 1 , FIG. 3 , FIG. 4 , and FIG. 5 , or other light conversion layers that conform to the aforementioned structural features.
  • Floor any one of FIG. 1 , FIG. 3 , FIG. 4 , and FIG. 5 , or other light conversion layers that conform to the aforementioned structural features. Floor.
  • the light conversion layer 83 is disposed on the light-emitting surface of the blue LED chip set 82, wherein the first blue LED chip 821 in the blue LED chip set 82 corresponds to the red light conversion unit 831, and the light emitted by the blue LED chip set 82 passes through the red light
  • the conversion of the conversion unit becomes red light
  • the second blue LED chip 822 corresponds to the green light conversion unit 832, and the emitted light is converted into green light through the conversion of the green light conversion unit
  • the third blue LED chip 823 corresponds to the blue light transmission unit 833 , the blue light emitted by it is directly emitted through the blue light transmission unit 833 without color change.
  • the blue LED chip set 82 and the light conversion layer 83 in order to prevent the heat generated by the blue LED chip set from being directly conducted to the light conversion layer, so that the performance of the light conversion material in the light conversion unit is affected at high temperature, in this embodiment, There is a gap between the blue LED chip set 82 and the light conversion layer 83, and the two are not in direct contact. In some examples, it may be considered to place some transparent insulating material in the gap between the two. In other examples, as shown in FIG. 9 , the two can be directly separated by air.
  • the LED display panel 9 includes a driving substrate 91 , a blue LED chip set 92 disposed on the driving substrate 91 , and a light conversion layer 93 .
  • the conversion layer 93 further includes a transparent protective layer 931, and the transparent protective layer 931 is disposed on the side of the conversion group away from the blue LED chip.
  • the LED display panel 9 also includes a frame glued wall 94 for bonding the driving substrate 91 and the transparent protective layer 931. One end of the frame glued wall 94 is adhered to the surface of the driving substrate 91, and the other end is glued to the transparent protective layer 931. surface of the substrate.
  • the frame glued wall 94 surrounds all the conversion groups in the light conversion layer 93 in the middle. In this embodiment, the height of the frame glued wall 94 is greater than the sum of the thicknesses of the blue LED chip and the conversion group, so that the light conversion unit in the conversion group can hang above the blue LED chip without contacting the blue LED chip .
  • This embodiment also provides a method for manufacturing an LED display panel, please refer to the flowchart shown in FIG. 10 :
  • S1002 Disposing a blue LED chip set electrically connected to the driving substrate on the driving substrate, and preparing a light conversion layer.
  • the light conversion layer is fixedly connected to the driving substrate.
  • each conversion group in the light conversion layer corresponds to the position of each blue LED chip group on the driving substrate: for example, if one conversion group a corresponds to the blue LED chip group A, the conversion The red light conversion unit in the group a should correspond to the first blue LED chip in the blue LED chip group A, and the green light conversion unit in the conversion group a should correspond to the second blue LED chip in the blue LED chip group A.
  • the blue light transmitting unit in the group a corresponds to the third blue light LED chip in the blue light LED chip group A.
  • the light conversion layer further includes a transparent protective layer.
  • a glue dispensing method may be used to set the surrounding area of the blue LED chip on the driving substrate first. Set the frame glued wall in the area, and ensure that the height of the frame glued wall is greater than the sum of the thickness of the blue LED chip and the conversion group, and then set the light conversion layer on the other end of the frame glued wall, and the orientation of the light conversion layer is guaranteed.
  • Each conversion group is enclosed in an accommodating chamber formed by the transparent protective layer and the frame glued wall. After adjusting the relative positions of the light conversion layer and the driving substrate, the frame and the adhesive wall are cured.
  • the light conversion unit includes multiple layers of colloidal crystals and light conversion materials dispersed in the gaps of the colloidal crystals, and the particle size of the colloidal crystals can ensure
  • the colloidal crystal reflects the light emitted by the blue LED chip, so that the blue light incident on the colloidal crystal will be re-radiated to the light conversion material after one or more reflections to complete the conversion.
  • the colloidal crystal reduces the leakage of blue light and improves the chromaticity purity of the LED display panel.
  • the reflection of blue light by the colloidal crystal makes the blue light that may leak from the gap of the light conversion material continue to be reflected until it hits the light conversion material to complete the conversion, which improves the color gamut of the LED display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)

Abstract

一种光转换层(10)及制备方法、LED显示面板及制备方法,光转换层(10)的光转换单元(20)中包括多层胶体晶体(21)以及分散在胶体晶体(21)间隙中的光转换材料(22),胶体晶体(21)的粒径能够保证该胶体晶体(21)对蓝光LED芯片发出的光进行反射,这样射到胶体晶体(21)上的蓝光会在经过一次或多次反射后重新射到光转换材料(22)上完成转换。

Description

一种光转换层及制备方法、LED显示面板及制备方法 技术领域
本发明涉及显示领域,尤其涉及一种光转换层及制备方法、LED显示面板及制备方法。
背景技术
实现彩色显示的一种重要方式是“B-LED+QDs”,即蓝光LED芯片与量子点(Quantum Dot,QD)材料结合的方式:利用一组蓝光LED芯片中的两颗所发出的光分别激发红光量子点材料和绿光量子点材料,从而分别发出红光和绿光,并同剩余的蓝光LED芯片所发出的蓝光一起实现RGB三原色,这样一组结构便是显示面板一个像素点处的基本结构单元。
红光量子点材料和绿光量子点材料通常是以膜层的形式设置在蓝光LED芯片的出光面上,作为光转换层对蓝光LED芯片所发出的光进行转换,但量子点膜层对蓝光的转换效率不高,容易造成蓝光漏出,从而导致LED显示面板色度不纯,显示失真,色域不佳的问题。
因此,如何降低蓝光从光转换层中漏出,提升光转换层对蓝光的转换效率是亟待解决的问题。
技术问题
鉴于上述相关技术的不足,本申请的目的在于提供一种光转换层及制备方法、LED显示面板及制备方法,旨在解决相关技术中蓝光容易从光转换层中漏出,导致光转换层转换效率不高,LED显示面板显示效果的不佳的问题。
 
技术解决方案
一种光转换层,包括多个转换组,每个转换组对应一个像素点处的一个蓝光LED芯片组,转换组中包括光转换单元,光转换单元包括:
对应于蓝光LED芯片组中第一蓝光LED芯片的红光转换单元;
对应于蓝光LED芯片组中第二蓝光LED芯片的绿光转换单元;
红光转换单元中包括多层胶体晶体及分散在胶体晶体间隙中的红光转换材料,绿光转换单元中包括多层胶体晶体及分散在胶体晶体间隙中的绿光转换材料;胶体晶体的粒径能够让胶体晶体对蓝光LED芯片组中对应的蓝光LED芯片发出的光进行反射。
上述光转换层的光转换单元中包括多层胶体晶体以及分散在胶体晶体间隙中的光转换材料,胶体晶体的粒径能够保证该胶体晶体对蓝光LED芯片发出的光进行反射,这样射到胶体晶体上的蓝光会在经过一次或多次反射后重新射到光转换材料上完成转换。胶体晶体的存在阻止了蓝光直接从光转换材料间隙漏出光转换层的可能,降低了蓝光的漏光,提升了像素点基本结构单元的色度纯度,也就提升了LED显示面板的色度纯度。同时,胶体晶体对蓝光的反射使得原本可能会从光转换材料间隙漏出的蓝光会不断经过反射直至射到光转换材料上完成转换为止,这提升了光转换层对蓝光的转换效率,有利于提高LED显示面板的色域。
可选地,红光转换材料与绿光转换材料中的至少一个为量子点材料。
可选地,光转换单元的横截面在朝着远离蓝光LED芯片组的方向上逐渐增大。
可选地,光转换单元靠近蓝光LED芯片组的一面贴合覆盖有透明胶层。
上述光转换层的光转换单元靠近蓝光LED芯片组的一面覆盖有透明胶层,该透明胶层一方面可以隔绝水氧,另一方面也可以避免蓝光LED芯片组的热量直接传递到光转换材料上,导致光转换材料因长期处于高温环境而失效的问题,对光转换材料起到了很好的保护作用。
可选地,光转换层还包括透明保护层,透明保护层贴合设置在各转换组远离蓝光LED芯片组的一面。
上述光转换层中贴合设置在转换组远离蓝光LED芯片组的一侧的透明保护层保护光转换单元。
可选地,胶体晶体的粒径为
Figure 935567dest_path_image001
,其中,k为密勒指数,λ为蓝光LED芯片组中对应的蓝光LED芯片所发光的波长,n为对应光转换单元的折射率。
上述光转换层中胶体晶体的粒径按照上述公式计算得到,在计算时考虑了蓝光LED芯片组所发出蓝光的波长,计算出的粒径与蓝光LED芯片组所发出的蓝光更契合,使得该粒径的胶体晶体能够更好地对蓝光LED芯片组所发出的蓝光进行反射。
基于同样的发明构思,本申请还提供一种LED显示面板,包括:
驱动基板;
设置在驱动基板表面,且与驱动基板电连接的多个蓝光LED芯片组;以及
上述任一项中光转换层,光转换层设置在蓝光LED芯片组出光面所在的一侧。
上述LED显示面板的光转换单元中包括多层胶体晶体以及分散在胶体晶体间隙中的光转换材料,胶体晶体的粒径能够保证该胶体晶体对蓝光LED芯片发出的光进行反射,这样射到胶体晶体上的蓝光会在经过一次或多次反射后重新射到光转换材料上完成转换。胶体晶体降低了蓝光的漏光,提升了LED显示面板的色度纯度。同时,胶体晶体对蓝光的反射使得原本可能会从光转换材料间隙漏出的蓝光会不断经过反射直至射到光转换材料上完成转换为止,这提高了LED显示面板的色域。
可选地,蓝光LED芯片组与光转换层间存在间隙。
上述LED显示面板中,蓝光LED芯片组与光转换层间存在间隙,所以,光转换层与蓝光LED芯片并不直接接触,降低了热传导效率,避免了蓝光LED芯片的热量直接传递到光转换层中,影响光转换材料的性能的问题,有利于维护LED显示面板的显示性能,提升LED显示面板的品质,延长其使用寿命。
可选地,转换组远离蓝光LED芯片组的一面上贴合设置有透明保护层,驱动基板与透明保护层之间设置有框贴胶墙,框贴胶墙的一端粘附在透明保护层的表面,另一端粘附在驱动基板的表面;框贴胶墙的高度大于蓝光LED芯片组与转换组的厚度之和。
上述LED显示面板中,设置了框贴胶墙,一方面利用框贴胶墙实现了光转换层与驱动基板的固定,另一方面也利用框贴胶墙的高度大于蓝光LED芯片与光转换层的厚度之和,实现了光转换层与蓝光LED芯片的隔离设置,在没有额外增加结构复杂度的基础上保护了光转换层。
基于同样的发明构思,本申请还提供一种光转换层制备方法,包括:
确定胶体晶体的粒径,并根据粒径制备胶体晶体,胶体晶体的粒径能够让胶体晶体对驱动基板上对应蓝光LED芯片发出的光进行反射;
将胶体晶体分散到惰性挥发性溶剂中得到胶体晶体乳液;
采用胶体晶体乳液与光转换材料制备光转换层多个转换组中的光转换单元,光转换材料包括红光转换材料与绿光转换材料,光转换单元包括主要由多层胶体晶体及分散在胶体晶体间隙中的红光转换材料构成的红光转换单元,以及主要由多层胶体晶体及分散在胶体晶体间隙中的绿光转换材料构成的绿光转换单元;
对光转换层进行处理致惰性挥发性溶剂挥发,以使光转换单元固化得到光转换层。
上述光转换层制备方法中,先确定胶体粒径,并根据粒径制备胶体晶体,然后将胶体晶体分散到惰性挥发性溶剂中得到胶体晶体乳液,并采用胶体晶体乳液与光转换材料制备出光转换层多个转换组中的光转换单元,随后再对光转换层进行处理使惰性挥发性溶剂会挥发以使光转换单元固化得到状转换层。光转换单元中包括多层胶体晶体以及分散在胶体晶体间隙中的光转换材料,而胶体晶体粒径能够对驱动基板上蓝光LED芯片组发出的光进行反射,这样射到胶体晶体上的蓝光会在经过一次或多次反射后重新射到光转换材料上完成转换。胶体晶体的存在阻止了蓝光直接从光转换材料间隙漏出光转换层的可能,降低了蓝光的漏光,提升了像素点基本结构单元的色度纯度,也就提升了LED显示面板的色度纯度。同时,胶体晶体对蓝光的反射使得原本可能会从光转换材料间隙漏出的蓝光会不断经过反射直至射到光转换材料上完成转换为止,这提升了光转换层对蓝光的转换效率,有利于提高LED显示面板的色域。
可选地,确定胶体晶体粒径包括:
根据公式D=
Figure 596356dest_path_image001
确定胶体晶体的粒径,其中,D为胶体晶体的粒径,k为密勒指数,一般取正整数,λ为对应的蓝光LED芯片所发光的波长,n为对应光转换单元的折射率。
在确定胶体晶体粒径时考虑了蓝光LED芯片组所发出蓝光的波长,计算出的粒径与蓝光LED芯片组所发出的蓝光更契合,使得该粒径的胶体晶体能够更好地对蓝光LED芯片组所发出的蓝光进行反射。
可选地,对光转换层进行处理致惰性挥发性溶剂挥发之后,还包括:
在光转换单元表面旋涂一层透明胶,形成透明胶层。
上述光转换层制备方法,在光转换单元靠近蓝光LED芯片组的一面设置了透明胶层,该透明胶层一方面可以隔绝水氧,另一方面也可以避免蓝光LED芯片组的热量直接传递到光转换材料上,导致光转换材料因长期处于高温环境而失效的问题,对光转换材料起到了很好的保护作用。
可选地,采用胶体晶体乳液与光转换材料制备光转换层多个转换组中的光转换单元包括:
将胶体晶体乳液与光转换材料分别从微流控芯片的两个输入端注入微流控芯片;
控制微流控芯片各输入端的流速,以使微流控芯片的输出端输出的胶体晶体与光转换材料形成分布特征符合期望的光转换单元。
上述光转换层制备方法中采用了微流控技术来制备光转换单元,能够将胶体晶体与光转换材料均匀地混合在一起,精准地形成光转换单元的三维有序结构。
可选地,控制微流控芯片各输入端的流速,以使微流控芯片的输出端输出的胶体晶体与光转换材料形成分布特征符合期望的光转换单元之前,还包括:
设置透明保护层;
在透明保护层的一个表面按照驱动基板上蓝光LED芯片的间隙设置多个遮光结构,遮光结构的横截面在朝着远离透明保护层的方向上逐渐增大;
将微流控芯片的输出端置于容纳凹槽中,容纳凹槽由相邻遮光结构以及透明保护层围合形成。
上述光转换层制备方法,先设置好透明保护层,然后直接将透明保护层作为制备转换组的基底使用,在各转换组制备完成后,又可以采用透明保护层对各转换组进行保护,避免了先在一个基底上制备好转换组后再分离转换组与基底,并重新制备保护层的复杂流程,简化了光转换层的额制备工艺。
基于同样的发明构思,本申请还提供一种LED显示面板制备方法,包括:
在驱动基板上设置与驱动基板电连接的蓝光LED芯片组,并按照上述光转换层制备方法制备光转换层;
将光转换层与驱动基板固定连接,使得光转换层中各转换组与驱动基板上的各蓝光LED芯片组位置对应。
有益效果
上述LED显示面板制备方法中,先按照前述光转换层制备方法制备出光转换层,光转换层的光转换单元中包括多层胶体晶体以及分散在胶体晶体间隙中的光转换材料,胶体晶体的粒径能够保证该胶体晶体对蓝光LED芯片发出的光进行反射,这样射到胶体晶体上的蓝光会在经过一次或多次反射后重新射到光转换材料上完成转换。胶体晶体降低了蓝光的漏光,提升了LED显示面板的色度纯度。同时,胶体晶体对蓝光的反射使得原本可能会从光转换材料间隙漏出的蓝光会不断经过反射直至射到光转换材料上完成转换为止,这提高了LED显示面板的色域。
附图说明
图1为本发明中提供的第一种光转换层的纵向剖面示意图;
图2为本发明中提供的光转换层的一种结构示意图;
图3为本发明中提供的第二种光转换层的纵向剖面示意图;
图4为本发明中提供的第三种光转换层的纵向剖面示意图;
图5为本发明中提供的第四种光转换层的纵向剖面示意图;
图6为本发明一种可选的实施例中提供的光转换层制备方法的一种可选的流程图;
图7为本发明一种可选的实施例中提供采用微流控技术制备光转换单元的一种流程图;
图8为本发明另一种可选的实施例中提供的一种LED显示面板的纵向剖面示意图;
图9为本发明另一种可选的实施例中提供的另一种LED显示面板的纵向剖面示意图;
图10为本发明另一种可选的实施例中提供的LED显示面板制备方法的一种流程图。
附图标记说明:
10-光转换层;11-红光转换单元;12-绿光转换单元;13-蓝光透射单元;14-遮光结构;20-光转换单元;21-胶体晶体;22-光转换材料;30-光转换层;31-红光转换单元;32-绿光转换单元;33-蓝光透射单元;40-光转换层;41-透明胶层;42-光转换单元;50-光转换层;51-透明保护层;8-显示面板;81-驱动基板;82-蓝光LED芯片组;821-第一蓝光LED芯片;822-第二蓝光LED芯片;823-第三蓝光LED芯片;83-光转换层;831-红光转换单元;832-绿光转换单元;833-蓝光透射单元;9- LED显示面板;91-驱动基板;92-蓝光LED芯片组;93-光转换层;931-透明保护层;94-框贴胶墙。
本发明的实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。
量子点材料己经到达纳米等级,如果分散材料内的量子点数量太多,会导致量子点之间的平均距离非常小,量子点与量子点之间会因为分子间作用力(例如氢键,范德华力等)的吸引而聚集成大小不一的群体,使得量子点在分散材料内分散的不够均匀,造成漏光和混色现象,并且还会导致彩色还原能力下降。如果分散材料内的量子点过少,致使分散材料内的量子点密度达不到群聚的程度,则需要涂布相当厚的分散材料,同样会造成漏光和混色等现象,并且还会导致彩色还原能力下降。
基于此,本申请希望提供一种能够解决上述技术问题的方案,其详细内容将在后续实施例中得以阐述。
本实施例提供一种光转换层,请参见图1示出的光转换层的一种纵向剖面示意图:
光转换层10包括多个转换组,一个转换组对应一个像素点处一个蓝光LED芯片组,转换组用于通过对该蓝光LED芯片组中各蓝光LED芯片所发出的光进行转换与透射,从而得到RGB三原色。可以理解的是,在一些情景当中,像素点的光仅包括红、绿、蓝三色,所以,一个像素点处的蓝光LED芯片组中可以仅包括三个蓝光LED芯片,对应地,转换组中起转换作用的光转换单元也可以仅包括红光转换单元与绿光转换单元,另外还包括一个能够直接透射蓝光的蓝光透射单元。
但在其他一些情景当中,像素点中的光除了红、绿、蓝以外,也还可以包括黄色,甚至还可能进一步包括青色。不过黄色和青色也可以通过蓝光LED芯片所发出的光进行转换得到,只不过,在这些示例当中,转换组中会有更多的光转换单元,对应一个像素点的蓝光LED芯片组中也会包括更多的蓝光LED芯片。
本实施例中,一个转换组中包括红光转换单元11、绿光转换单元12,虽然图1中仅示出了光转换单元中的红光转换单元11与绿光转换单元12,但图1仅仅是一个示例图,并不能限定本实施例中只能有这两个光转换单元。红光转换单元11对应于蓝光LED芯片组中的第一蓝光LED芯片,绿光转换单元12对应于蓝光LED芯片组中的第二蓝光LED芯片。转换组10中还包括一个蓝光透射单元13。
通常情况下,光转换层10中各个转换组中红光转换单元11、绿光转换单元12以及蓝光透射单元13都是按照同样的顺序排列设置的,例如,在图1中,绿光转换单元12位于红光转换单元11与蓝光透射单元13之间,对应的其他转换组中也会按照这样的方式进行排列。在其他一些示例当中,转换组内各单元的排序方式可以有其他选择。
为了避免各光转换单元以及光透射单元中的光射入相邻单元中,与其他颜色的光混杂,影响其他单元的出光颜色,通常情况下,还会在各相邻单元间设置遮光结构14,遮光结构14应该是非透明的,这样才能阻止一个单元内的光进入到相邻的另一单元中,在本实施例的一些示例当中,遮光结构可以通过黑色遮光胶制得。可以理解的是,光转换层10中各转换组可以是彼此紧邻设置的,所以遮光结构14不仅是在每一个转换组中设置,也会设置在转换组之间。
在本实施例中,光转换单元中包括多层胶体晶体以及分散在胶体晶体间隙中的光转换材料,请参见图2示出的光转换单元的一种结构示意图:光转换单元20中包括四层胶体晶体21以及分散在胶体晶体间隙间的光转换材料22。一些示例当中,光转换材料22为量子点材料,例如,红光转换材料可以是红光量子点材料,而绿光转换材料可以是绿光量子点材料。可以理解的是,在其他一些示例当中,光转换材料22也可以为荧光粉材料,例如红色荧光粉与绿色荧光粉。在一些示例中,红光转换材料与绿光转换材料中可以有一个为量子点材料,另一个为荧光粉材料。
本实施例中的胶体晶体的材质可以包括但不限于SiO 2材质、聚合物材质(例如聚苯乙烯,聚丙烯酸,以及多种单体共聚而成的纳米级微球),其粒径大小使得其能够对相应蓝光LED芯片发出的光进行反射。在本实施例的一些示例当中,胶体晶体的粒径可以基于其所要反射的蓝光的波长精确计算得到,例如,胶体晶体的粒径满足如下关系:
kλ=(2*D*n*根号(2/3))
 
通过转换可以得到D为(kλ*根号6)/4n,其中,D为胶体晶体的粒径,k为密勒指数,一般取正整数,1,2……等,λ为需要反射的蓝光的波长,n为光转换单元的折射率。k的具体取值大小只要保证D的值在1-1000nm之间即可,而n的大小跟胶体晶体本身材质的折射率空气的折射率以及光转换单元中胶体晶体与空气的占比有关。例如,在本实施例的一种示例当中,光转换单元中胶体晶体的占比为v1,空气的占比为v2,假定胶体晶体的折射率为n1,空气的折射率为n2,则:
n=v1*n1 2+v2*n2 2
例如,对于所发出的光所属波段为420-460nm的蓝光LED芯片,那么对应胶体晶体的粒径取值范围可以为173nm-190nm。对于单一波长的蓝光,甚至还可以计算出一个准确的粒径值,如,一蓝光LED芯片发出的光的波长为457nm,则胶体晶体的粒径可以为189nm。
可见,基于上述公式能够准确计算出契合蓝光LED芯片所发光波长的胶体晶体粒径,基于该粒径制备出的胶体晶体,就相当于是专门为该蓝光LED芯片“定制”的胶体晶体,其具有更好的针对性,能够对该蓝光LED芯片所发出的光进行更好的反射。
虽然图2中示出的光转换单元20中设置了四层胶体晶体21,但在本实施例的其他一些示例当中,光转换单元中也可以仅设置三层胶体晶体,或者也可以设置比四层更多的胶体晶体。不过经过实验发现,光转换层中至少要有三层胶体晶体才能对蓝光形成有效的反射。
至于蓝光透射单元13,其仅需要起供蓝光穿过的作用即可,所以,在本实施例的一些示例当中,蓝光透射单元13可以就是一个没有填充任何物质(仅有空气)的空白区域。不过,在本实施例的一些示例当中,为了保证光转换层10表面的平整性,可以采用透明胶制作蓝光透射单元13,蓝光透射单元就是透明胶层。
可以理解的是,光转换层10在投入使用的时候,会设置在蓝光芯片组的出光面之上,因此,光转换层10会有一面更接近蓝光LED芯片,这里为了便于介绍,将光转换层10在使用使更靠近蓝光LED芯片的一面称为“近光源面”,将与近光源面相对的一面称为“远光源面”。在本实施例的一些示例当中,同一个光转换单元各处的横截面大小是一样的,如光转换单元的横截面呈矩形,那么在这种情况下,光转换单元实际上是一个长方体结构,请结合图3示出的光转换层30的纵向剖面示意图,在光转换层30中,红光转换单元31、绿光转换单元32均为长方体,且光转换单元中各处的横截面均相等,而蓝光透射单元33的规格与光转换单元的规格相同,所以蓝光透射单元也呈长方体结构。在这种情况下,为了保持光转换层30整体的平整性,介于各单元之间的遮光结构也可以是正方体或长方体。
但在本实施例的一些示例当中,光转换单元各处的横截面大小不一样,例如,在一种示例当中,光转换单元的横截面在朝着靠近蓝光LED芯片组的方向上逐渐增大,也即光转换单元的横截面积从近光源面到远光源面逐渐减小。在这种情况下,如果要保证光转换层表面的平整性,则设置于各单元间的遮光结构的横截面积就会在朝着靠近蓝光LED芯片组的方向上逐渐减小。又如,在图1当中,红光转换单元11与绿光转换单元12的横截面均在朝着远离蓝光LED芯片组的方向上逐渐增大,即光转换单元的横截面积从近光源面到远光源面逐渐增大,同样的还有蓝光透射单元13。在图1当中,遮光结构14的横截面的变化规律则与光转换单元横截面的变化规律相反:从近光源面到远光源面逐渐减小。图1中这种设置方式能够保证光转换单元或蓝光透射单元中的光倾斜射出,点亮遮光结构14上方的区域,进而从视觉上将遮光结构“隐藏”起来。
考虑到光转换单元中的光转换材料的性能容易受高温的影响,同时,也容易因为水、氧的作用而失效,所以,在一些示例当中,会在光转换单元靠近蓝光LED芯片的一侧设置透明胶层,例如,请参见图4示出的光转换层40,在图4中,每一个光转换单元42在近光源面一侧仅覆盖有透明胶层41,透明胶层41一方面能够隔绝水氧,另一方面能够避免蓝光LED芯片工作中产生的热量直接传导到光转换材料上。
同样出于保护各转换组的目的,在本实施例的一些示例当中,光转换层中还包括透明保护层,该透明保护层设置在转换组远离蓝光LED芯片的一面上。在本实施例中,如图5所示,一个光转换层50中的透明保护层51是一个整体,也即一个透明保护层51贴合设置在所有的转换组上,对所有的转换组进行保护。
应当明白的是,在一些示例当中,光转换层中仅设置了透明胶层对光转换单元进行保护,没有设置透明保护层,如图4所示;在另一些示例当中,光转换层中仅设置了透明保护层,没有设置透明胶层,如图5。不过,在更多的情况中,光转换层中既包括透明保护层,又包括透明胶层。
本实施例提供的光转换层,在光转换单元中设置了能够对蓝光LED芯片所发的光进行反射的胶体晶体,利用反射原理降低了甚至是完全避免了蓝光从光转换单元的漏出,提升了像素点基本结构单元的色度纯度以及光转换层对蓝光的转换效率。
而且,光转换单元中所用胶体晶体的粒径还可以基于蓝光LED芯片所发光的波长专门定制,进一步提升了胶体晶体对蓝光LED芯片所发光的反射效率。
一种可选的实施例:
本实施例提供一种光转换层的制备方法,请参见图6示出该光转换层的制备方法的一种可选的流程图:
S602:确定胶体晶体的粒径,并根据该粒径制备胶体晶体。
在本实施例中,胶体晶体的材质包括但不限于SiO 2材质、聚合物材质,胶体晶体的粒径大小能够让胶体晶体对驱动基板上对应蓝光LED芯片发出的光进行反射。
在本实施例的一些示例当中,胶体晶体的粒径D可以为D可以为(kλ*根号6)/4n,其中,D为胶体晶体的粒径,k为密勒指数,一般取正整数,1,2……等,λ为需要反射的蓝光的波长,n为光转换单元的折射率。k的具体取值大小只要保证D的值在1-1000nm之间即可,而n的带下跟胶体晶体本身材质的折射率空气的折射率以及光转换单元中胶体晶体与空气的占比有关。
例如,如果驱动基板上对应蓝光LED芯片发出的光的波长属于420nm-460nm波段,那么对应胶体晶体的粒径取值范围可以为173nm-190nm。对于单一波长的蓝光,甚至还可以计算出准确的粒径值,如,驱动基板上一蓝光LED芯片发出的光的波长为457nm,则对应于该蓝光LED芯片的光转换单元中胶体晶体的粒径可以为189nm。
可见,基于上述公式准确确定出契合蓝光LED芯片所发光波长的胶体晶体粒径,基于该粒径制备出的胶体晶体,相当于是专门为该蓝光LED芯片“定制”的胶体晶体,其具有更好的针对性,能够对该蓝光LED芯片所发出的光进行更好的反射。
确定出胶体晶体的粒径后,可以根据该粒径制备出对应的胶体晶体,从而实现光转换层的制备。
S604:将胶体晶体分散到惰性挥发性溶剂中得到胶体晶体乳液。
制备出胶体晶体后,可以将胶体晶体分散到惰性挥发性溶剂中,从而得到胶体晶体乳液。顾名思义,惰性挥发性溶剂应该具有挥发性。而所谓“惰性”是相对而言的,在本实施例中是指对光转换材料没有影响的溶剂,以量子点材料为例,则其对应的惰性溶剂应该是油相溶剂而非水相溶剂。满足这些要求的溶剂包括单元不限于异丙醇(IPA)。
S606:采用胶体晶体乳液与光转换材料制备出光转换层多个转换组中的光转换单元。
这里所说的光转换材料包括红光转换材料与绿光转换材料,对应的光转换单元包括主要由多层胶体晶体及分散在胶体晶体间隙中的红光转换材料构成的红光转换单元,以及主要由多层胶体晶体及分散在胶体晶体间隙中的绿光转换材料构成的绿光转换单元。不过,如果像素点处的光除了红光绿光以外,还包括诸如黄色、青色等其他颜色的光,则光转换材料也还包括其他颜色的光转换材料。
在本实施例的一些示例当中,利用胶体晶体以及光转换材料制备光转换单元时,可以采用喷墨打印技术实现,也可以采用微流控技术实现,下面以采用微流控技术制备光转换单元的过程为例进行说明,请结合图7:
S702:将胶体晶体乳液与光转换材料分别从微流控芯片的两个输入端注入微流控芯片。
在本实施例中,因为制备光转换单元时,需要实现胶体晶体乳液与光转换材料(例如红色量子点材料或绿色量子点材料)的混合,所以,选用的微流控芯片应当至少具有两个输入端,在本实施例的一些示例当中,选用的微流控芯片为“Y”型微流控芯片,该“Y”型微流控芯片中两个输入端在交汇处的夹角为90°,输出端位于该交汇处夹角的角平分线上。在本实施例的另外一些示例当中,也可以选用“T”型微流控芯片。
选用到合适的微流控芯片之后,将胶体晶体乳液与光转换材料分别从两个输入端注入到微流控芯片中。需要说明的是,不同颜色的光转换材料不能混合着注入一个微流控芯片,除非一个微流控芯片有两组甚至两组以上的独立输入输出系统,否则,红光转换单元与绿光转换单元就只能在不同的时间或通过不同的微流控芯片分别制备。
S704:控制微流控芯片各输入端的流速,以使微流控芯片的输出端输出的胶体晶体与光转换材料形成分布特征符合期望的光转换单元。
在本实施例的一些示例中,最终生成的光转换单元中,胶体晶体会呈现出分层的有序结构,而光转换材料则分布在各胶体晶体间的间隙中。为了让制备出的光转换单元中胶体晶体与光转换材料符合上述期望的分布特征,本实施例中需要对两种微流体的流速进行控制。在本实施例的一些示例当中,胶体晶体乳液与光转换材料是使用微机电系统(Micro-Electro-Mechanical System,MEMS)注入到微流控芯片中的,在控制胶体晶体乳液与光转换材料各自流速的时候,就可以通过控制微机电系统从而控制向微流控芯片输入端注入对应微流体的速度。通过对输入端微流体的流速控制,可以使得微流控芯片的输出端制备出符合期望的光转换单元。
可以理解的是,光转换单元是三维结构的,为了让微流控芯片制备出三维结构的光转换单元,应当先形成光转换单元的“模具”,然后让微流控芯片的输出端向该模具中注入流体,从而形成光转换单元。在本实施例的一些示例当中,可以先制作光转换单元的模具,该模具仅在制备光转换单元的阶段使用,在光转换单元制备完成后,需要将已经成型的光转换单元从模具中取出,然后再将光转换单元设置到光转换层中的对应位置。不过,由于光转换单元结构微小,且一个光转换层中光转换单元的数量巨大,这样的制作流程基本难以实现,而且,转移也容易造成光转换单元损坏。所以,在本实施例的一些示例当中,可以先设置基底,然后在该基底上按照驱动基板上蓝光LED芯片的间隙设置多个遮光结构,从而利用遮光结构与基底形成容纳凹槽,随后再将微流控芯片的输出端置于容纳凹槽中,让微流控芯片的输出端向容纳凹槽中注入胶体晶体乳液与光转换材料,从而形成光转换单元。在光转换单元固化以后,可以剥离基底与光转换层。
考虑到光转换层中可能还需要设置透明保护层,所以,在本实施例的一些示例当中,可以直接采用双面均透明的基板作为基底,然后在该透明基板上设置遮光结构,利用遮光结构与该透明基板形成容纳凹槽,微流控芯片的输出端就可以置于该容纳凹槽中形成光转换单元。在这种情况下,在光转换单元固化以后,可以不用剥离透明基板与光转换层,直接利用该透明基板作为光转换层中的透明保护层。这种制备光转换层的方案中,实际上是先设置了透明保护层,然后再在透明保护层的基础上按照驱动基板上蓝光LED芯片的间隙设置多个遮光结构,接着将微流控芯片的输出端置于容纳凹槽中制备光转换单元。在本实施例的一些示例当中,在透明保护层上设置的遮光结构的横截面在朝着远离透明保护层的方向上逐渐增大,这样就能保证制备出的光转换单元的横截面在朝着远离透明保护层的方向上逐渐减小,对应的,光转换单元越靠近蓝光LED芯片的部分横截面越小。
S608:对光转换层进行处理致惰性挥发性溶剂挥发,以使光转换单元固化得到光转换层。
在微流控芯片的输出端制备出三维结构的光转换单元后,需要让光转换单元中的惰性挥发性溶剂挥发,从而让胶体晶体自组装成三维有序结构。为了让惰性挥发性溶剂挥发,本实施例的一些示例当中可以对光转换单元进行轻微热处理,当然,在其他一些示例当中也可以等待惰性挥发性溶剂自然挥发。
一些示例当中,光转换单元固化后,还可以在各光转换单元的表面旋涂一层透明胶,以便在透明胶固化后形成保护光转换单元的透明胶层。在本实施例的一种示例当中,可以仅在光转换单元朝向蓝光LED芯片的一面上旋涂透明胶,因为光转换单元的侧面有遮光结构的保护,而远离蓝光LED芯片的一面已经有透明保护层的保护了。
本实施例提供的光转换层制备方法,先确定胶体粒径,并根据粒径制备胶体晶体,然后将胶体晶体分散到惰性挥发性溶剂中得到胶体晶体乳液,并采用胶体晶体乳液与光转换材料制备出光转换层多个转换组中的光转换单元,随后再对光转换层进行处理使惰性挥发性溶剂会挥发以使光转换单元固化得到状转换层。通过按照专门粒径定制的胶体晶体,阻止了蓝光直接从光转换材料间隙漏出光转换层的可能,降低了蓝光的漏光,提升了像素点基本结构单元的色度纯度,也就提升了LED显示面板的色度纯度。同时,胶体晶体对蓝光的反射使得原本可能会从光转换材料间隙漏出的蓝光会不断经过反射直至射到光转换材料上完成转换为止,这提升了光转换层对蓝光的转换效率,有利于提高LED显示面板的色域。
而且,本实施例中可以采用微流控技术来制备光转换单元,能够将胶体晶体与光转换材料均匀地混合在一起,精准地形成光转换单元的三维有序结构。
另一种可选的实施例:
本实施例中将提供一种LED显示面板,请参见图8示出的该显示面板的一种剖面示意图:
显示面板8包括驱动基板81以及设置在驱动基板81上,并与驱动基板81电连接的多个蓝光LED芯片组82(图8中仅示出了一个),每个蓝光LED芯片组82中包括多颗蓝光LED芯片,例如,在图8中,一个蓝光LED芯片组中同时包括第一蓝光LED芯片821、第二蓝光LED芯片822以及第三蓝光LED芯片823三颗蓝光LED芯片。除此以外,显示面板8中还可以包括光转换层83,光转换层83设置在蓝光LED芯片组82出光面的一侧。
可以理解的是,光转换层83可以为前述任意一种光转换层,例如图1、图3、图4以及图5等几种中任意一种,或者,是符合前述结构特征的其他光转换层。在图8中,光转换层83设置在蓝光LED芯片组82出光面之上,其中,蓝光LED芯片组82中的第一蓝光LED芯片821对应红光转换单元831,其发出的光经由红光转换单元的转换变成红光;第二蓝光LED芯片822对应绿光转换单元832,其发出的光经由绿光转换单元的转换变成绿光;第三蓝光LED芯片823对应于蓝光透射单元833,其发出的蓝光直接经蓝光透射单元833射出,不会发生颜色变化。
在本实施例的一些示例当中,为了避免蓝光LED芯片组工作时产生的热量直接传导到光转换层上,使得光转换单元中的光转换材料的性能在高温下受到影响,本实施例中,蓝光LED芯片组82与光转换层83间存在间隙,二者并不直接接触。在一些示例当中,可以考虑在二者间的间隙中设置一些透明的隔热材料。另外一些示例当中,如图9所示,二者之间可以直接通过空气隔离,LED显示面板9中包括驱动基板91、设置在驱动基板91上的蓝光LED芯片组92以及光转换层93,光转换层93中还包括透明保护层931,透明保护层931设置在转换组远离蓝光LED芯片一侧。在LED显示面板9中,还包括用于粘合驱动基板91与透明保护层931的框贴胶墙94,框贴胶墙94一端粘接设置在驱动基板91的表面,另一端粘合在透明基板的表面。并且,框贴胶墙94将光转换层93中所有的转换组围在中间。在本实施例中,框贴胶墙94的高度大于蓝光LED芯片与转换组的厚度之和,这样,转换组中的光转换单元就能悬在蓝光LED芯片的上方而不与蓝光LED芯片接触。
本实施例还提供一种LED显示面板制备方法,请参见图10示出的流程图:
S1002:在驱动基板上设置与驱动基板电连接的蓝光LED芯片组,并制备光转换层。
在本实施例中,制备光转换层的流程可以参见前面的介绍,这里不再赘述。
S1004:将光转换层与驱动基板固定连接。
在将光转换层与驱动基板固定连接前,应当保证光转换层中各转换组与驱动基板上的各蓝光LED芯片组位置对应:例如,一个转换组a与蓝光LED芯片组A对应,则转换组a中的红光转换单元应当对应于蓝光LED芯片组A中的第一颗蓝光LED芯片,转换组a中的绿光转换单元对应于蓝光LED芯片组A中第二颗蓝光LED芯片,转换组a中的蓝光透射单元对应于蓝光LED芯片组A中第三颗蓝光LED芯片。
在本实施例的一些示例当中,光转换层中还包括透明保护层,在固定连接光转换层与驱动基板时,可以先在驱动基板上蓝光LED芯片的设置区域外采用点胶方式设置环绕该设置区域的框贴胶墙,并保证框贴胶墙的高度大于蓝光LED芯片与转换组的厚度之和,然后将光转换层设置在框贴胶墙的另一端,且光转换层的朝向保证各转换组被围合在透明保护层与框贴胶墙围合形成的容纳腔室中。调整好光转换层与驱动基板的相对位置后,固化框贴胶墙。
本实施例提供的LED显示面板制备方法以及依据该方法制备出的LED显示面板内,光转换单元中包括多层胶体晶体以及分散在胶体晶体间隙中的光转换材料,胶体晶体的粒径能够保证该胶体晶体对蓝光LED芯片发出的光进行反射,这样射到胶体晶体上的蓝光会在经过一次或多次反射后重新射到光转换材料上完成转换。胶体晶体降低了蓝光的漏光,提升了LED显示面板的色度纯度。同时,胶体晶体对蓝光的反射使得原本可能会从光转换材料间隙漏出的蓝光会不断经过反射直至射到光转换材料上完成转换为止,这提高了LED显示面板的色域。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (14)

  1. 一种光转换层,其特征在于,包括多个转换组,每个转换组对应一个像素点处的一个蓝光LED芯片组,所述转换组中包括光转换单元,所述光转换单元包括:
    对应于所述蓝光LED芯片组中第一蓝光LED芯片的红光转换单元;
    对应于所述蓝光LED芯片组中第二蓝光LED芯片的绿光转换单元;
    所述红光转换单元中包括多层胶体晶体及分散在胶体晶体间隙中的红光转换材料,所述绿光转换单元中包括多层胶体晶体及分散在胶体晶体间隙中的绿光转换材料;所述胶体晶体的粒径能够让所述胶体晶体对所述蓝光LED芯片组中对应的蓝光LED芯片发出的光进行反射。
  2. 如权利要求1所述的光转换层,其特征在于,所述红光转换材料与所述绿光转换材料中的至少一个为量子点材料。
  3. 如权利要求1所述的光转换层,其特征在于,所述光转换单元的横截面在朝着远离所述蓝光LED芯片组的方向上逐渐增大。
  4. 如权利要求1所述的光转换层,其特征在于,所述光转换单元靠近所述蓝光LED芯片组的一面贴合覆盖有透明胶层。
  5. 如权利要求1所述的光转换层,其特征在于,所述光转换层还包括透明保护层,所述透明保护层贴合设置在各所述转换组远离所述蓝光LED芯片组的一面。
  6. 如权利要求1-5任一项所述的光转换层,其特征在于,所述胶体晶体的粒径为(kλ*根号6)/4n,其中,k为密勒指数,λ为所述蓝光LED芯片组中对应的蓝光LED芯片所发光的波长,所述n为对应光转换单元的折射率。
      7. 一种LED显示面板,其特征在于,包括:
    驱动基板;
    设置在所述驱动基板表面,且与所述驱动基板电连接的多个蓝光LED芯片组;以及
    如权利要求1-6任一项所述的光转换层,所述光转换层设置在所述蓝光LED芯片组出光面所在的一侧。
  7. 如权利要求7所述LED显示面板,其特征在于,所述蓝光LED芯片组与所述光转换层间存在间隙。
  8. 如权利要求8所述的LED显示面板,其特征在于,所述转换组远离所述蓝光LED芯片组的一面上贴合设置有透明保护层,所述驱动基板与所述透明保护层之间设置有框贴胶墙,所述框贴胶墙的一端粘附在所述透明保护层的表面,另一端粘附在所述驱动基板的表面;所述框贴胶墙的高度大于所述蓝光LED芯片组与所述转换组的厚度之和。
  9. 一种光转换层制备方法,其特征在于,包括:
    确定胶体晶体的粒径,并根据所述粒径制备胶体晶体,所述胶体晶体的粒径能够让所述胶体晶体对驱动基板上对应蓝光LED芯片发出的光进行反射;
    将所述胶体晶体分散到惰性挥发性溶剂中得到胶体晶体乳液;
    采用所述胶体晶体乳液与光转换材料制备光转换层多个转换组中的光转换单元,所述光转换材料包括红光转换材料与绿光转换材料,所述光转换单元包括主要由多层胶体晶体及分散在胶体晶体间隙中的红光转换材料构成的红光转换单元,以及主要由多层胶体晶体及分散在胶体晶体间隙中的绿光转换材料构成的绿光转换单元;
    对所述光转换层进行处理致所述惰性挥发性溶剂挥发,以使所述光转换单元固化得到光转换层。
  10. 如权利要求10所述的光转换层制备方法,其特征在于,所述确定胶体晶体的粒径包括:
    根据公式D=(kλ*根号6)/4n确定所述胶体晶体的粒径,其中,D为胶体晶体的粒径,k为密勒指数,λ为对应的蓝光LED芯片所发光的波长,所述n为对应光转换单元的折射率。
  11. 如权利要求10所述的光转换层制备方法,其特征在于,所述对所述光转换层进行处理致所述惰性挥发性溶剂挥发之后,还包括:
    在所述光转换单元表面旋涂一层透明胶,形成透明胶层。
  12. 如权利要求10-12任一项所述的光转换层制备方法,其特征在于,所述采用所述胶体晶体乳液与光转换材料制备光转换层多个转换组中的光转换单元包括:
    将所述胶体晶体乳液与所述光转换材料分别从微流控芯片的两个输入端注入所述微流控芯片;
    控制所述微流控芯片各所述输入端的流速,以使所述微流控芯片的输出端输出的胶体晶体与光转换材料形成分布特征符合期望的光转换单元。
  13. 如权利要求13所述的光转换层制备方法,其特征在于,所述控制所述微流控芯片各所述输入端的流速,以使所述微流控芯片的输出端输出的胶体晶体与光转换材料形成分布特征符合期望的光转换单元之前,还包括:
    设置透明保护层;
    在所述透明保护层的一个表面按照所述驱动基板上蓝光LED芯片的间隙设置多个遮光结构,所述遮光结构的横截面在朝着远离所述透明保护层的方向上逐渐增大;
    将所述微流控芯片的输出端置于容纳凹槽中,所述容纳凹槽由相邻遮光结构以及所述透明保护层围合形成。
  14. 一种LED显示面板制备方法,其特征在于,包括:
    在驱动基板上设置与所述驱动基板电连接的蓝光LED芯片组,并按照如权利要求10-14任一项所述的光转换层制备方法制备光转换层;
    将所述光转换层与所述驱动基板固定连接,使得所述光转换层中各转换组与所述驱动基板上的各蓝光LED芯片组位置对应。
PCT/CN2020/099056 2020-06-29 2020-06-29 一种光转换层及制备方法、led显示面板及制备方法 WO2022000219A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/099056 WO2022000219A1 (zh) 2020-06-29 2020-06-29 一种光转换层及制备方法、led显示面板及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/099056 WO2022000219A1 (zh) 2020-06-29 2020-06-29 一种光转换层及制备方法、led显示面板及制备方法

Publications (1)

Publication Number Publication Date
WO2022000219A1 true WO2022000219A1 (zh) 2022-01-06

Family

ID=79317851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099056 WO2022000219A1 (zh) 2020-06-29 2020-06-29 一种光转换层及制备方法、led显示面板及制备方法

Country Status (1)

Country Link
WO (1) WO2022000219A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597302A (zh) * 2022-02-23 2022-06-07 厦门大学 一种量子点色转换层及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110089815A1 (en) * 2009-10-15 2011-04-21 Aurotek Corporation Light-emitting device
CN106186720A (zh) * 2016-07-19 2016-12-07 湖北大学 荧光光子晶体薄膜及其制备方法
CN106463552A (zh) * 2014-04-25 2017-02-22 皇家飞利浦有限公司 具有降低的饱和淬火的量子点
CN107134469A (zh) * 2016-02-26 2017-09-05 三星电子株式会社 发光二极管装置和发光设备
CN108573992A (zh) * 2018-05-08 2018-09-25 业成科技(成都)有限公司 显示面板、制备方法及应用该显示面板的电子装置
CN108831317A (zh) * 2018-06-15 2018-11-16 青岛海信电器股份有限公司 显示装置及其制备方法
CN110295045A (zh) * 2018-03-23 2019-10-01 陈学仕 高效率光转换材料
CN110459140A (zh) * 2019-08-16 2019-11-15 云谷(固安)科技有限公司 发光元件和显示面板
CN111261665A (zh) * 2018-12-03 2020-06-09 昆山工研院新型平板显示技术中心有限公司 量子点发光器件及其制备方法、显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110089815A1 (en) * 2009-10-15 2011-04-21 Aurotek Corporation Light-emitting device
CN106463552A (zh) * 2014-04-25 2017-02-22 皇家飞利浦有限公司 具有降低的饱和淬火的量子点
CN107134469A (zh) * 2016-02-26 2017-09-05 三星电子株式会社 发光二极管装置和发光设备
CN106186720A (zh) * 2016-07-19 2016-12-07 湖北大学 荧光光子晶体薄膜及其制备方法
CN110295045A (zh) * 2018-03-23 2019-10-01 陈学仕 高效率光转换材料
CN108573992A (zh) * 2018-05-08 2018-09-25 业成科技(成都)有限公司 显示面板、制备方法及应用该显示面板的电子装置
CN108831317A (zh) * 2018-06-15 2018-11-16 青岛海信电器股份有限公司 显示装置及其制备方法
CN111261665A (zh) * 2018-12-03 2020-06-09 昆山工研院新型平板显示技术中心有限公司 量子点发光器件及其制备方法、显示装置
CN110459140A (zh) * 2019-08-16 2019-11-15 云谷(固安)科技有限公司 发光元件和显示面板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597302A (zh) * 2022-02-23 2022-06-07 厦门大学 一种量子点色转换层及其制备方法和应用

Similar Documents

Publication Publication Date Title
KR101686736B1 (ko) 양자점-고분자 복합체의 제조 방법, 양자점-고분자 복합체, 이를 포함하는 광 변환 필름, 백라이트 유닛 및 표시장치
KR101686713B1 (ko) 양자점-고분자 복합체의 제조 방법, 양자점-고분자 복합체, 이를 포함하는 광 변환 필름, 백라이트 유닛 및 표시장치
JP7484457B2 (ja) マイクロledディスプレイ装置
KR101909541B1 (ko) 양자점 필름의 제조방법, 이로써 제조된 양자점 필름, 및 이를 포함하는 파장변환 시트 및 디스플레이
US10288939B2 (en) Backlight and manufacturing method thereof, light guide plate and manufacturing method thereof, and display device
US11480822B2 (en) Display substrate comprising a light-reflecting wall having a light-transmissive wall and a light-reflecting layer covering a top surface and side surfaces of the light-transmissive wall, method for manufacturing the same, and display device
KR101906445B1 (ko) 양자점 필름의 제조방법, 이로써 제조된 양자점 필름, 및 이를 포함하는 파장변환 시트 및 디스플레이
WO2020258898A1 (zh) 显示面板、显示装置及显示面板的制备方法
WO2013118653A1 (ja) 表示素子、照明装置
KR101745599B1 (ko) 양자점 광학시트 및 이의 제조방법
WO2011142456A1 (ja) 表示素子、表示器及び投射型表示装置
WO2021249075A1 (zh) 彩膜基板、其制作方法及显示装置
JP2004281088A (ja) 有機elディスプレイの製造方法および製造装置
CN217280834U (zh) 一种显示装置
WO2021248375A1 (zh) 一种显示背板及其制备方法
WO2023108695A1 (zh) 显示面板及显示装置
WO2022000219A1 (zh) 一种光转换层及制备方法、led显示面板及制备方法
WO2020087777A1 (zh) 一种显示面板及其显示器件
JP7552039B2 (ja) ブラックマトリクス基板及び表示装置、ブラックマトリクス基板の製造方法
US10338429B2 (en) Method for manufacturing quantum dot color filter
JP2024020361A (ja) バックライトモジュール、および表示装置
JP2023510059A (ja) カラーフィルム基板、表示パネルおよび表示装置
US20240160063A1 (en) Light-emitting plate, method for manufacturing light-emitting plate, and display terminal
US20230163254A1 (en) Color conversion unit, color conversion structure using the same, and light-emitting diode display using the same
US20190391314A1 (en) Optical member and display device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943686

Country of ref document: EP

Kind code of ref document: A1