WO2022000012A1 - Motor vehicle having an internal combustion engine which is operated with carbon-free fuel and which has an exhaust gas system connected thereto - Google Patents

Motor vehicle having an internal combustion engine which is operated with carbon-free fuel and which has an exhaust gas system connected thereto Download PDF

Info

Publication number
WO2022000012A1
WO2022000012A1 PCT/AT2021/060233 AT2021060233W WO2022000012A1 WO 2022000012 A1 WO2022000012 A1 WO 2022000012A1 AT 2021060233 W AT2021060233 W AT 2021060233W WO 2022000012 A1 WO2022000012 A1 WO 2022000012A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen oxide
oxide reduction
exhaust gas
combustion engine
internal combustion
Prior art date
Application number
PCT/AT2021/060233
Other languages
German (de)
French (fr)
Inventor
Bernhard Raser
Josef MACHERHAMMER
Klaus HADL
Original Assignee
Avl List Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avl List Gmbh filed Critical Avl List Gmbh
Priority to CN202180036025.5A priority Critical patent/CN115667683A/en
Priority to DE112021001728.4T priority patent/DE112021001728A5/en
Publication of WO2022000012A1 publication Critical patent/WO2022000012A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2046Periodically cooling catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/02Exhaust treating devices having provisions not otherwise provided for for cooling the device
    • F01N2260/024Exhaust treating devices having provisions not otherwise provided for for cooling the device using a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/02By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of high temperature, e.g. overheating of catalytic reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/04Adding substances to exhaust gases the substance being hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/0205Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • F02B2043/106Hydrogen obtained by electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a motor vehicle with an internal combustion engine operated with carbon-free fuel with the features of the preamble of claim 1 and a method for operating such a motor vehicle with the features of the preamble of claim 12.
  • a motor vehicle of the generic type is known from DE 102007021 827 A1.
  • the corresponding internal combustion engine is operated with hydrogen as a carbon-free fuel.
  • hydrogen extracted from a storage tank is fed to the exhaust system.
  • a catalytic converter located downstream in the exhaust system removes nitrogen oxides contained in the exhaust gas by catalyzed reduction with the supplied hydrogen.
  • the object of the invention is to provide a motor vehicle with an internal combustion engine operated with carbon-free fuel which, in contrast, enables improved energy utilization and exhaust gas purification.
  • the motor vehicle according to the invention has an internal combustion engine which is operated with a carbon-free fuel.
  • An exhaust system connected to the internal combustion engine has a particularly first nitrogen oxide reduction catalyst and also a heat exchanger, with exhaust gas emitted by the internal combustion engine being able to be passed through the heat exchanger with an adjustable proportion before being fed to the nitrogen oxide reduction catalyst.
  • the internal combustion engine is preferably designed as a spark-ignited reciprocating piston engine.
  • exhaust gas from the internal combustion engine can be tempered, in particular cooled, before it reaches the nitrogen oxide reduction catalytic converter. While a first specifiable portion of the total, The exhaust gas given off by the internal combustion engine is passed through the heat exchanger, the remaining second portion reaches the nitrogen oxide reduction catalytic converter, bypassing the heat exchanger.
  • the specifiable and adjustable first portion of the total exhaust gas emitted by the internal combustion engine can assume values between 0% and 100%.
  • the part of the exhaust gas flow passed through the heat exchanger is brought together again with the exhaust gas flow bypassing the heat exchanger and a common, temperature-controlled total exhaust gas flow is fed to the nitrogen oxide reduction catalytic converter.
  • the nitrogen oxide reduction catalyst can be kept at least predominantly in its operating temperature range.
  • heat is withdrawn from the exhaust gas passed through the heat exchanger and the total exhaust gas flow fed to the nitrogen oxide reduction catalytic converter is therefore cooled.
  • an effectiveness of the nitrogen oxide reduction catalyst can be achieved even with high output of the internal combustion engine with emission of exhaust gas with correspondingly high temperatures lying above the operating temperature range of the nitrogen oxide reduction catalyst.
  • This enables an effective nitrogen oxide reduction in an extended engine operating range.
  • the upstream bypassable heat exchanger can also prevent the nitrogen oxide reduction catalyst from reaching or exceeding a degradation temperature limit. This also improves the durability of the nitrogen oxide reduction catalytic converter.
  • the exhaust system has an energy recovery device that can generate useful energy from the exhaust gas passed through the heat exchanger, extracted thermal energy.
  • the energy recovery device can be designed, for example, as a thermoelectric generator that generates useful electrical energy.
  • a device can also be provided which generates useful mechanical energy through a thermodynamic cycle, for example a Rankine process. For this purpose, heat is extracted from the exhaust gas in the heat exchanger and fed to an operating medium. The operating medium is directed to the energy recovery device, where the absorbed heat is partially converted into useful mechanical energy.
  • Electrical or mechanical energy generated in the energy recovery device can be used in auxiliary equipment in the motor vehicle, for example. This improves the overall energy utilization of the motor vehicle.
  • a second nitrogen oxide reduction catalytic converter is provided, which is connected upstream of the first nitrogen oxide reduction catalytic converter in terms of flow.
  • the operating range of the internal combustion engine in which nitrogen oxide can be effectively removed from the exhaust gas is thus greatly expanded. It can be advantageous to provide catalytic converter materials with different operating temperature ranges for the first and second nitrogen oxide reduction catalytic converters.
  • the second nitrogen oxide reduction catalyst can have a lower operating temperature range than the first nitrogen oxide reduction catalyst.
  • the second nitrogen oxide reduction catalyst is quickly available for nitrogen oxide reduction after a cold start of the internal combustion engine. If the second nitrogen oxide reduction catalytic converter warms up to a temperature above its operating temperature range during a warm-up, then the first nitrogen oxide reduction catalytic converter has meanwhile reached operating temperature and can remove nitrogen oxides from the exhaust gas. It can also be provided that the volumes of the two nitrogen oxide reduction catalysts are selected to be different. For example, the second nitrogen oxide reduction catalytic converter can have a smaller volume than the first nitrogen oxide reduction catalytic converter. This enables the second nitrogen oxide reduction catalytic converter to be heated up to operating temperature particularly quickly.
  • the second nitrogen oxide reduction catalyst can, for example, have less than 80%, 60% or 40% of the volume of the first nitrogen oxide reduction catalyst or an even smaller volume. Furthermore, it can be provided that the second nitrogen oxide reduction catalytic converter is arranged close to the engine, for example in an engine compartment of the motor vehicle, while the first nitrogen oxide reduction catalytic converter is arranged remote from the engine in an underbody area of the motor vehicle.
  • the heat exchanger is fluidically connected upstream of the first nitrogen oxide reduction catalyst and downstream of the second nitrogen oxide reduction catalyst. In terms of flow technology, the heat exchanger is thus arranged between the second nitrogen oxide reduction catalytic converter arranged further upstream and the first nitrogen oxide reduction catalytic converter arranged further downstream. This has the advantage that when the second nitrogen oxide reduction catalytic converter is already above its operating temperature, if the first nitrogen oxide reduction catalytic converter is threatened with excessive further heating, its effectiveness can still be maintained by operating the heat exchanger accordingly.
  • the reducing agent for reducing nitrogen oxides contained in the exhaust gas on the first and / or on the second nitrogen oxide reduction catalytic converter is the fuel used to operate the internal combustion engine.
  • a storage container for a separate reducing agent can be omitted or at least made smaller.
  • the internal combustion engine is designed to supply the reducing agent to the exhaust system via a combustion chamber of the internal combustion engine.
  • a fast-working fuel injection valve is preferably provided for at least one cylinder of the internal combustion engine, via which the fuel can be introduced directly into the corresponding combustion chamber. This saves a separate supply device for supplying the reducing agent to the exhaust gas.
  • the fuel used as a reducing agent is preferably introduced into the combustion chamber or combustion chambers by a post-injection or injection of fuel carried out so late in the working cycle that it is expelled chemically at least approximately unchanged with the exhaust cycle. This preferably takes place in a crank angle range of 120 ° to 180 ° after top dead center.
  • the fuel for operating the internal combustion engine is hydrogen. This avoids climate-damaging carbon dioxide emissions. Emissions of soot particles, hydrocarbons and carbon monoxide are also avoided. In one, preferably at least predominantly envisaged lean operation of the internal combustion engine, only nitrogen oxides are produced as pollutants during fuel combustion, but these can be removed from the exhaust gas by a nitrogen oxide reduction catalytic converter.
  • the second nitrogen oxide reduction catalyst is a lean Denox catalyst which can catalyze a reduction of nitrogen oxides with hydrogen as the reducing agent.
  • This embodiment is particularly advantageous in connection with an internal combustion engine designed as a hydrogen engine, since the fuel used to operate the engine can then also be used as a reducing agent for reducing nitrogen oxides on the second nitrogen oxide reduction catalytic converter.
  • the hydrogen can be added to the exhaust gas either via a combustion chamber of the internal combustion engine or via an engine-external metering device.
  • the lean Denox catalyst preferably has a catalytic coating which contains noble metals, in particular of the platinum group, such as platinum and / or rhodium.
  • a catalytic coating which can catalyze a nitrogen oxide reduction with hydrogen as a reducing agent even when there is an excess of oxygen in the exhaust gas.
  • the operating temperature range is relatively low.
  • a lower temperature limit of the operating range can be around 80 ° C.
  • An upper temperature limit of the operating range can be around 250 ° C.
  • the lean Denox catalytic converter is ready for operation very quickly after a cold start of the internal combustion engine.
  • a metering device for introducing an ammonia-containing reducing agent into the exhaust gas is provided on the inlet side of the first nitrogen oxide reduction catalyst.
  • Ammonia can be contained in the reducing agent in free or bound form.
  • a metering device for introducing an aqueous urea solution into the exhaust gas is preferably provided.
  • the urea solution is preferably conveyed from a separate storage container to the metering device by means of a conveying device.
  • the metering device is preferably seen in the flow direction after the merging point of exhaust gas passed through the heat exchanger and bypassing the heat exchanger.
  • the first nitrogen oxide reduction catalyst can be designed as a classic SCR catalyst, for example as a copper or iron-containing zeolitic catalyst.
  • the first nitrogen oxide reduction catalytic converter contains vanadium. Vanadium is preferably present as an oxide, in particular as vanadium pentoxide. Further constituents effective with regard to promoting the selective nitrogen oxide reduction ability, such as oxides of tungsten, molybdenum and / or titanium, can of course also be provided. From an application point of view, the operating temperature range of the intended nitrogen oxide reduction catalytic converter is typically in a medium range from approximately 180 ° C.-200 ° C.
  • the fuel for operating the internal combustion engine is ammonia.
  • ammonia as a nitrogen oxide reducing agent can be supplied to a nitrogen oxide reduction catalyst of the exhaust system by a motor, specifically by being introduced into a combustion chamber of the internal combustion engine late in the work cycle. This preferably takes place in a crank angle range of 120 ° to 180 ° after top dead center.
  • a supply to the exhaust gas from outside the engine can, however, additionally or alternatively take place by means of a separate metering device.
  • the operating method according to the invention for a motor vehicle carried out as described above provides that the proportion of the exhaust gas passed through the heat exchanger in connection with operation of the heat exchanger and / or the energy recovery device is selected such that a temperature of the first nitrogen oxide reduction catalytic converter is at least predominantly below one specifiable upper temperature limit is maintained.
  • the predeterminable temperature limit can be selected as a function of an upper operating temperature limit or a temperature stability limit of the nitrogen oxide reduction catalytic converter.
  • the exhaust gas which reaches a branching point for dividing the exhaust gas flow into a portion flowing through the heat exchanger and a portion bypassing the heat exchanger, has a temperature that exceeds the upper temperature limit
  • a certain portion of the exhaust gas is passed through the heat exchanger by means of an adjusting element.
  • a division of the exhaust gas flow into a portion passed through the heat exchanger and a portion bypassing the heat exchanger preferably takes place as a function of the exhaust gas temperature and the intended upper temperature limit.
  • the cooling effect of the heat exchanger can be adjusted accordingly by influencing the amount of operating medium flowing through the heat exchanger and absorbing heat. In particular, the cooling effect can be increased if necessary by increasing the flow of operating medium. As a result, it can be reliably avoided that exhaust gas entering the second nitrogen oxide reduction catalytic converter exceeds the upper temperature limit. A high effectiveness of the reducing agent catalyst can thus be achieved and its degradation can be avoided.
  • the first and / or the second nitrogen oxide reduction catalytic converter is supplied with reducing agent for reducing nitrogen oxides contained in the exhaust gas from an external storage container.
  • a reducing agent supply from an external storage container can be provided in particular for the first nitrogen oxide reduction catalytic converter. If a second nitrogen oxide reduction catalytic converter is present, a reducing agent supply from an external storage container can additionally or alternatively be provided for this.
  • a particularly suitable reducing agent for reducing nitrogen oxides on the first and / or on the second nitrogen oxide reduction catalytic converter is aqueous urea solution.
  • ammonia, in particular gaseous ammonia, or hydrogen can also be provided as the reducing agent.
  • fuel is supplied to at least one combustion chamber of the internal combustion engine at such a late point in time of a working cycle that the fuel is expelled from the internal combustion engine at least approximately chemically unchanged and supplied to the second nitrogen oxide reduction catalyst as a reducing agent to reduce nitrogen oxides contained in the exhaust gas.
  • the fuel used to operate the internal combustion engine also acts as a reducing agent for reducing nitrogen oxides, at least on the second nitrogen oxide reduction catalytic converter.
  • a late introduction of gaseous ammonia or hydrogen as fuel into a combustion chamber or into several combustion chambers is preferably carried out in a crank angle range of 120 ° to 180 ° after top dead center. This ensures that fuel introduced into the combustion chamber no longer or only insignificantly takes part in the combustion and is pushed out of the combustion chamber into the exhaust system with practically no chemical changes.
  • FIG. 1 shows a schematic representation of a first advantageous embodiment of an exhaust system of the motor vehicle according to the invention
  • FIG. 2 shows a schematic representation of a second advantageous embodiment of an exhaust system of the motor vehicle according to the invention
  • FIG. 3 shows a schematic representation of a third advantageous embodiment of an exhaust system of the motor vehicle according to the invention
  • 4 shows a schematic representation of a first advantageous embodiment of an exhaust system of the motor vehicle according to the invention
  • Fig. 1 shows only schematically and greatly simplified a first example of an advantageous embodiment of an exhaust system 1 connected to an internal combustion engine of a motor vehicle.
  • the motor vehicle is not shown here.
  • the internal combustion engine also not shown, is designed as an internal combustion engine operated with carbon-free fuel.
  • a design as a hydrogen engine is preferred. However, it can also be designed as an ammonia motor. In any case, at least predominantly lean operation, i.e. operation with excess air, is provided for the internal combustion engine.
  • Exhaust gas emitted by the internal combustion engine enters the exhaust system 1 via an exhaust line 13.
  • the exhaust gas initially flows through a catalytic converter, referred to here as a second nitrogen oxide reduction catalytic converter 8.
  • a bypass line 4 Downstream of the second nitrogen oxide reduction catalytic converter 8, a bypass line 4 is provided which bypasses an exhaust line section 13 ′.
  • a first partial exhaust gas flow 5 can be passed through the bypass line 4 via actuating means 9, 9 ', while the remaining portion of the total exhaust gas flow is routed as a second partial exhaust gas flow 10 through the exhaust gas pipe portion 13', which is fluidically parallel to the bypass line 4.
  • the bypass line 4 opens again into the exhaust gas line 13 and the partial exhaust gas flows 5, 10 are brought together again.
  • the total exhaust gas flow formed again by the combined exhaust gas partial flows 5, 10 is then passed through a catalytic converter, referred to here as the first nitrogen oxide reduction catalytic converter 2.
  • a heat exchanger 3 is arranged, which is used to transfer heat from the first exhaust gas substream 5 to a working fluid.
  • the working fluid is conducted in a working fluid circuit 7 on the one hand through the heat exchanger 3 and on the other hand through an energy recovery device 6.
  • the energy recovery device 6 can convert heat supplied with the working fluid into useful energy.
  • the energy recovery system preferably works device 6 as a thermodynamic cycle or as part of a thermodynamic cycle and can generate useful mechanical energy from the heat extracted from the first exhaust gas partial flow 5 by means of the working fluid. As a result, the working fluid is cooled and is fed back to the heat exchanger 3, where it can again absorb heat from the first partial exhaust gas flow 5.
  • Funding means are preferably provided here, which can keep the working fluid circuit 7 running and adjust its strength. As a result, a control of the heat flow taken from the exhaust gas partial flow 5 can be controlled. Furthermore, a control of the heat extracted from the exhaust gas is provided by actuating the adjusting means 9, 9 ', via which the proportion of the first exhaust gas partial flow 5 in the total exhaust gas flow can be adjusted as required.
  • One of the two adjusting means 9, 9 ' can also be omitted.
  • a first reducing agent addition device 11 Upstream of the first nitrogen oxide reduction catalytic converter 2 and downstream of the junction of the first exhaust gas partial flow 5 and second exhaust gas partial flow 10, a first reducing agent addition device 11 is provided, which can supply a reducing agent for reducing nitrogen oxides to the exhaust gas as required.
  • a second reducing agent adding device 12 upstream of the second nitrogen oxide reduction catalytic converter 8, a second reducing agent adding device 12 is provided, with which a reducing agent for reducing nitrogen oxides can also be added to the exhaust gas.
  • the respective reducing agent is taken from a storage container (not shown in greater detail). Hydrogen, ammonia or aqueous urea solution can be used as reducing agents.
  • the same reducing agent can be provided for the first nitrogen oxide reduction catalytic converter 2 and the second nitrogen oxide reduction catalytic converter 8.
  • different reducing agents can also be used.
  • urea solution can be provided as a reducing agent for the first nitrogen oxide reduction catalytic converter 2 and hydrogen or ammonia for the second nitrogen oxide reduction catalytic converter 8 or vice versa.
  • the use of hydrogen as a reducing agent is provided in particular when the internal combustion engine is designed as a hydrogen engine.
  • the use of ammonia as a reducing agent is provided in particular when the internal combustion engine is designed as an ammonia engine. In both cases, the fuel used for the internal combustion engine can be used as a reducing agent in an advantageous manner.
  • the catalyst material used for the first nitrogen oxide reduction catalyst 2 and for the second nitrogen oxide reduction catalyst 8 is advantageously selected depending on the type of reducing agent used in each case.
  • a low-temperature version for the second nitrogen oxide reduction catalytic converter 8 is particularly preferred, since this is preferably installed close to the engine. In this way, it is ready for use particularly quickly after a cold start.
  • a preferred operating temperature range is between about 100.degree. C. and about 250.degree. This can be achieved when using hydrogen as the reducing agent by means of a lean Denox catalyst which, for example, has a catalyst material containing platinum, palladium and / or rhodium.
  • this is preferably designed as a vanadium-containing catalytic converter.
  • the second nitrogen oxide reduction catalyst 8 reducing agent is supplied in a regulated manner via the second reducing agent addition device 12, provided that the second nitrogen oxide reduction catalyst 8 is ready for operation. If no nitrogen oxide reduction or only an incomplete nitrogen oxide reduction can take place through the second nitrogen oxide reduction catalytic converter 8, reducing agent is fed to the first nitrogen oxide reduction catalytic converter 2 via the first reducing agent addition device 11, provided that the first nitrogen oxide reduction catalytic converter 2 is ready for operation.
  • the provided heat exchanger 3 in conjunction with the energy recovery device 6 enables the first nitrogen oxide reduction catalyst 2 to be kept in its operating temperature range even when the exhaust gas flowing out of the second nitrogen oxide reduction catalyst 8 is at a higher temperature.
  • the actuating means 9, 9 ' are actuated in such a way that the exhaust gas flowing into the first nitrogen oxide reduction catalyst 2 is a temperature within the operating temperature range, but preferably below, by dividing the exhaust gas flow into the first exhaust gas partial flow 5 and the second exhaust gas partial flow 10 of 300 ° C.
  • the amount of heat withdrawn from the first exhaust gas partial flow 5 can additionally be adjusted by operating the energy recovery device 6 or by controlling the working fluid circuit.
  • FIGS. 2 to 4 exhaust systems similar to that of FIG. 1 are shown, the corresponding components, insofar as they correspond to the parts of FIG. 1, being identified by the same reference numerals. Due to the similarities with the exhaust system shown in Fig. 1, only differences in this regard will be discussed below.
  • the exhaust gas fed to the second nitrogen oxide reduction catalytic converter 8 can already be cooled if necessary. Accordingly, it is advantageous to use a low-temperature version, for example a lean Denox catalyst, as the second nitrogen oxide reduction catalyst 8.
  • the exhaust system 1 shown in FIG. 2 is operated in a manner analogous to the procedure described above, it being possible in the present case to set or limit the temperature of the second nitrogen oxide reduction catalytic converter 8, which is arranged further upstream in terms of flow. Due to a temperature gradient typically occurring along the exhaust gas flow path, exceeding an undesirably high temperature of the first nitrogen oxide reduction catalytic converter 2 can therefore be avoided with even greater certainty.
  • the exhaust system 1 shown in Fig. 3 differs from the one shown in Fig. 1 Darge presented only by eliminating the external reducing agent supply to the second nitrogen oxide reduction catalyst 8, ie by eliminating the second reducing agent supply device 12.
  • the second nitrogen oxide reduction catalyst receives reducing agent for catalytic reduction of Nitrogen oxides from the combustion engine.
  • the internal combustion engine is operated with hydrogen or ammonia as fuel, in addition to a regular, torque-generating fuel injection or injection, there is a late injection or injection of fuel towards the end of the work cycle. This is preferably not torque effective and preferably takes place in a crank angle range between 120 ° and 180 ° after top dead center.
  • the late fuel introduced into the combustion chamber is expelled as part of the total exhaust gas with the expulsion cycle and then passed on to exhaust system 1.
  • the fuel component contained in the exhaust gas and functioning as a reducing agent causes a catalytic reduction of the nitrogen oxides also contained in the fuel.
  • the exhaust system 1 shown in FIG. 4 differs from the one shown in FIG. 2, likewise only in that the external reducing agent supply to the second nitrogen oxide reduction catalytic converter 8 is omitted.
  • the second nitrogen oxide reduction catalytic converter 8 receives reducing agent for reducing nitrogen oxides the internal combustion engine as above in connection with Fig.
  • the exhaust system 1 according to FIGS. 1 to 4 includes sensors for temperature and exhaust gas components, not shown separately, which are necessary to detect the operating state of the exhaust system 1 or its components and corresponding control signals for controlling the operation of the exhaust gas systems 1 to generate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

The invention relates to a motor vehicle having an internal combustion engine which is operated with carbon-free fuel, such as hydrogen or ammonia, and an exhaust gas system (1) connected thereto, said exhaust gas system having at least one first nitrogen oxide reduction catalytic converter (2), which preferably contains vanadium. According to the invention, the exhaust gas system (1) further has a heat exchanger (3), which can be used to recover energy, wherein an adjustable portion of the exhaust gas emitted from the internal combustion engine can be conveyed through the heat exchanger (3) before being supplied to the nitrogen oxide reduction catalytic converter (2). Two nitrogen oxide reduction catalytic converters can also be arranged one behind the other, wherein the reduction medium can be the fuel. The operating method according to the invention teaches that the portion of the exhaust gas conveyed through the heat exchanger (3) in connection with an operation of the heat exchanger (3) and/or an energy recovery device (6) is chosen such that a temperature of the first nitrogen oxide reduction catalytic converter (2) is kept at least predominantly below a definable upper temperature limit.

Description

Kraftfahrzeug mit einem mit kohlenstofffreiem Kraftstoff betriebenen Verbrennungsmotor mit daran angeschlossenem Abgassystem Motor vehicle with an internal combustion engine operated with carbon-free fuel with an exhaust system connected to it
Die Erfindung betrifft ein Kraftfahrzeug mit einem mit kohlenstofffreiem Kraftstoff betriebenen Verbrennungsmotor mit den Merkmalen des Oberbegriffs des Anspruchs 1 sowie ein Verfahren zum Betreiben eines solchen Kraftfahrzeugs mit den Merkmalen des Oberbegriffs des Anspruchs 12. The invention relates to a motor vehicle with an internal combustion engine operated with carbon-free fuel with the features of the preamble of claim 1 and a method for operating such a motor vehicle with the features of the preamble of claim 12.
Aus der DE 102007021 827 A1 ist ein gattungsgemäßes Kraftfahrzeug bekannt.A motor vehicle of the generic type is known from DE 102007021 827 A1.
Der entsprechende Verbrennungsmotor wird mit Wasserstoff als kohlenstofffreiem Kraftstoff betrieben. Auslasseitig des Verbrennungsmotors wird dem Abgassystem aus einem Speichertank entnommener Wasserstoff zugeführt. Ein stromabwärts im Abgassystem angeordneter Katalysator entfernt im Abgas enthaltene Stickoxide durch katalysierte Reduktion mit dem zugeführten Wasserstoff. The corresponding internal combustion engine is operated with hydrogen as a carbon-free fuel. On the outlet side of the internal combustion engine, hydrogen extracted from a storage tank is fed to the exhaust system. A catalytic converter located downstream in the exhaust system removes nitrogen oxides contained in the exhaust gas by catalyzed reduction with the supplied hydrogen.
Aufgabe der Erfindung ist es, ein Kraftfahrzeug mit einem mit kohlenstofffreiem Kraft stoff betriebenen Verbrennungsmotor anzugeben, welches eine demgegenüber verbesserte Energieausnutzung und Abgasreinigung ermöglicht. The object of the invention is to provide a motor vehicle with an internal combustion engine operated with carbon-free fuel which, in contrast, enables improved energy utilization and exhaust gas purification.
Diese Aufgabe wird durch ein Kraftfahrzeug mit den Merkmalen des Anspruchs 1 und durch ein Verfahren mit den Merkmalen des Anspruchs 12 gelöst. This object is achieved by a motor vehicle with the features of claim 1 and by a method with the features of claim 12.
Das erfindungsgemäße Kraftfahrzeug weist einen Verbrennungsmotor auf, der mit einem kohlenstofffreien Kraftstoff betrieben wird. Ein an den Verbrennungsmotor angeschlossenes Abgassystem weist einen insbesondere ersten Stickoxid reduktionskatalysator und ferner einen Wärmetauscher auf, wobei vom Verbrennungsmotor abgegebenes Abgas vor einer Zufuhr zum Stickoxidreduktions katalysator mit einem einstellbaren Anteil durch den Wärmetauscher geleitet werden kann. Der Verbrennungsmotor ist bevorzugt als funkengezündeter Hubkolbenmotor ausgebildet. The motor vehicle according to the invention has an internal combustion engine which is operated with a carbon-free fuel. An exhaust system connected to the internal combustion engine has a particularly first nitrogen oxide reduction catalyst and also a heat exchanger, with exhaust gas emitted by the internal combustion engine being able to be passed through the heat exchanger with an adjustable proportion before being fed to the nitrogen oxide reduction catalyst. The internal combustion engine is preferably designed as a spark-ignited reciprocating piston engine.
Aufgrund des erfindungsgemäß vorgesehenen Wärmetauschers kann Abgas des Verbrennungsmotors vor Erreichen des Stickoxidreduktionskatalysators temperiert, insbesondere gekühlt werden. Während ein erster vorgebbarer Anteil des gesamten, vom Verbrennungsmotor abgegebenen Abgases durch den Wärmetauscher geleitet wird, gelangt der verbleibende zweite Anteil unter Umgehung des Wärmetauschers zum Stickoxidreduktionskatalysator. Der vorgebbare und einstellbare erste Anteil des gesamten, vom Verbrennungsmotor abgegebenen Abgases kann dabei Werte zwischen 0 % und 100 % annehmen. Der durch den Wärmetauscher geleitete Teil abgasstrom wird wieder mit dem den Wärmetauscher umgehenden Abgasstrom zusammengeführt und ein gemeinsamer, temperierter Gesamtabgasstrom dem Stickoxidreduktionskatalysator zugeführt. Auf diese Weise kann der Stickoxidredukti onskatalysator zumindest überwiegend in seinem Betriebstemperaturbereich gehalten werden. Bevorzugt wird dem durch den Wärmetauscher geleiteten Abgas Wärme entzogen und der dem Stickoxidreduktionskatalysator zugeführte Gesamt abgasstrom ist daher gekühlt. Somit kann eine Wirksamkeit des Stickoxidreduktions katalysators auch bei hoher abgegebener Leistung des Verbrennungsmotors mit Ausstoß von Abgas mit entsprechend hohen, oberhalb des Betriebstemperaturbe reichs des Stickoxidreduktionskatalysators liegenden Temperaturen erreicht werden. Dies ermöglicht in einem erweiterten Motorbetriebsbereich eine effektive Stickoxid reduktion. Weiterhin ist auch der Einsatz von Katalysatormaterialien mit einem relativ niedrigen Betriebstemperaturbereich ermöglicht. Ebenso kann durch den vorge schalteten umgehbaren Wärmetauscher vermieden werden, dass der Stickoxid reduktionskatalysator eine Degradationstemperaturgrenze erreicht oder über schreitet. Somit ist auch eine Dauerhaltbarkeit des Stickoxidreduktionskatalysators verbessert. Due to the heat exchanger provided according to the invention, exhaust gas from the internal combustion engine can be tempered, in particular cooled, before it reaches the nitrogen oxide reduction catalytic converter. While a first specifiable portion of the total, The exhaust gas given off by the internal combustion engine is passed through the heat exchanger, the remaining second portion reaches the nitrogen oxide reduction catalytic converter, bypassing the heat exchanger. The specifiable and adjustable first portion of the total exhaust gas emitted by the internal combustion engine can assume values between 0% and 100%. The part of the exhaust gas flow passed through the heat exchanger is brought together again with the exhaust gas flow bypassing the heat exchanger and a common, temperature-controlled total exhaust gas flow is fed to the nitrogen oxide reduction catalytic converter. In this way, the nitrogen oxide reduction catalyst can be kept at least predominantly in its operating temperature range. Preferably, heat is withdrawn from the exhaust gas passed through the heat exchanger and the total exhaust gas flow fed to the nitrogen oxide reduction catalytic converter is therefore cooled. Thus, an effectiveness of the nitrogen oxide reduction catalyst can be achieved even with high output of the internal combustion engine with emission of exhaust gas with correspondingly high temperatures lying above the operating temperature range of the nitrogen oxide reduction catalyst. This enables an effective nitrogen oxide reduction in an extended engine operating range. Furthermore, the use of catalyst materials with a relatively low operating temperature range is also made possible. The upstream bypassable heat exchanger can also prevent the nitrogen oxide reduction catalyst from reaching or exceeding a degradation temperature limit. This also improves the durability of the nitrogen oxide reduction catalytic converter.
In Ausgestaltung der Erfindung weist das Abgassystem eine Energierück gewinnungseinrichtung auf, die Nutzenergie aus der durch den Wärmetauscher geleitetem Abgas entzogenen Wärmeenergie erzeugen kann. Die Energierück gewinnungseinrichtung kann beispielsweise als thermoelektrischer Generator ausge bildet sein, der elektrische Nutzenergie erzeugt. Es kann auch eine Einrichtung vor gesehen sein, welche durch einen thermodynamischen Kreisprozess, beispielsweise einen Rankine-Prozess, mechanische Nutzenergie erzeugt. Hierfür wird im Wärme tauscher dem Abgas Wärme entzogen und einem Betriebsmittel zugeführt. Das Betriebsmittel wird zur Energierückgewinnungseinrichtung geleitet, wo die aufge nommene Wärme teilweise in mechanische Nutzenergie überführt wird. In der Energierückgewinnungseinrichtung erzeugte elektrische oder mechanische Energie kann im Kraftfahrzeug beispielsweise in Hilfseinrichtungen genutzt werden. Dadurch verbessert sich insgesamt die Energieausnutzung des Kraftfahrzeugs. In an embodiment of the invention, the exhaust system has an energy recovery device that can generate useful energy from the exhaust gas passed through the heat exchanger, extracted thermal energy. The energy recovery device can be designed, for example, as a thermoelectric generator that generates useful electrical energy. A device can also be provided which generates useful mechanical energy through a thermodynamic cycle, for example a Rankine process. For this purpose, heat is extracted from the exhaust gas in the heat exchanger and fed to an operating medium. The operating medium is directed to the energy recovery device, where the absorbed heat is partially converted into useful mechanical energy. Electrical or mechanical energy generated in the energy recovery device can be used in auxiliary equipment in the motor vehicle, for example. This improves the overall energy utilization of the motor vehicle.
In weiterer Ausgestaltung der Erfindung ist ein zweiter Stickoxidreduktionskatalysator vorgesehen, der dem ersten Stickoxidreduktionskatalysator strömungstechnisch vor geschaltet ist. Dadurch kann erreicht werden, dass bei einem typischerweise vorhan denen Temperaturgefälle längs des Abgasweges zumindest einer der beiden Stick oxidreduktionskatalysatoren auf Betriebstemperatur ist. Insbesondere ist es infolge des Wärmetauschers zudem möglich, das Temperaturgefälle in diesem Sinne zu beeinflussen. Somit ist der Betriebsbereich des Verbrennungsmotors in welchem eine wirksame Stickoxidentfernung aus dem Abgas erfolgen kann stark erweitert. Dabei kann es vorteilhaft sein, für den ersten und den zweiten Stickoxidreduktions katalysator Katalysatormaterialien mit unterschiedlichen Betriebstemperatur bereichen vorzusehen. Beispielsweise kann der zweite Stickoxidreduktions katalysator einen niedrigeren Betriebstemperaturbereich als der erste Stickoxid reduktionskatalysator aufweisen. Dadurch steht der zweite Stickoxidreduktionskataly sator nach einem Kaltstart des Verbrennungsmotors rasch zur Stickoxidreduktion zur Verfügung. Erwärmt sich der zweite Stickoxidreduktionskatalysator bei einem Warmlauf auf eine Temperatur oberhalb seines Betriebstemperaturbereichs, so ist inzwischen der erste Stickoxidreduktionskatalysator auf Betriebstemperatur und kann Stickoxide aus dem Abgas entfernen. Ebenso kann es vorgesehen sein, die Volu mina der beiden Stickoxidreduktionskatalysatoren unterschiedlich zu wählen. Beispielsweise kann der zweite Stickoxidreduktionskatalysator ein geringeres Volumen als der erste Stickoxidreduktionskatalysator aufweisen. Dadurch ist eine besonders rasche Aufwärmung des zweiten Stickoxidreduktionskatalysators auf Betriebstemperatur ermöglicht. Der zweite Stickoxidreduktionskatalysator kann beispielsweise weniger als 80 %, 60 % oder 40 % des Volumens des ersten Stick oxidreduktionskatalysators oder ein noch geringeres Volumen aufweisen. Weiterhin kann es vorgesehen sein, den zweiten Stickoxidreduktionskatalysator motornah, beispielsweise in einem Motorraum des Kraftfahrzeugs anzuordnen, während der erste Stickoxidreduktionskatalysator motorfern in einem Unterbodenbereich des Kraftfahrzeugs angeordnet ist. In weiterer Ausgestaltung der Erfindung ist der Wärmetauscher strömungstechnisch dem ersten Stickoxidreduktionskatalysator vorgeschaltet und dem zweiten Stick oxidreduktionskatalysator nachgeschaltet. Strömungstechnisch gesehen ist somit der Wärmetauscher zwischen dem weiter stromauf angeordneten zweiten und dem weiter stromab angeordneten ersten Stickoxidreduktionskatalysator angeordnet. Dies hat den Vorteil, dass dann, wenn der zweite Stickoxidreduktionskatalysator bereits oberhalb seiner Betriebstemperatur ist, bei einer drohenden zu starken weiteren Erwärmung des ersten Stickoxidreduktionskatalysators dessen Wirksamkeit durch entsprechenden Betrieb des Wärmetauschers weiterhin aufrechterhalten werden kann. In a further embodiment of the invention, a second nitrogen oxide reduction catalytic converter is provided, which is connected upstream of the first nitrogen oxide reduction catalytic converter in terms of flow. This makes it possible for at least one of the two nitrogen oxide reduction catalysts to be at operating temperature when there is a temperature gradient typically present along the exhaust gas path. In particular, as a result of the heat exchanger, it is also possible to influence the temperature gradient in this sense. The operating range of the internal combustion engine in which nitrogen oxide can be effectively removed from the exhaust gas is thus greatly expanded. It can be advantageous to provide catalytic converter materials with different operating temperature ranges for the first and second nitrogen oxide reduction catalytic converters. For example, the second nitrogen oxide reduction catalyst can have a lower operating temperature range than the first nitrogen oxide reduction catalyst. As a result, the second nitrogen oxide reduction catalyst is quickly available for nitrogen oxide reduction after a cold start of the internal combustion engine. If the second nitrogen oxide reduction catalytic converter warms up to a temperature above its operating temperature range during a warm-up, then the first nitrogen oxide reduction catalytic converter has meanwhile reached operating temperature and can remove nitrogen oxides from the exhaust gas. It can also be provided that the volumes of the two nitrogen oxide reduction catalysts are selected to be different. For example, the second nitrogen oxide reduction catalytic converter can have a smaller volume than the first nitrogen oxide reduction catalytic converter. This enables the second nitrogen oxide reduction catalytic converter to be heated up to operating temperature particularly quickly. The second nitrogen oxide reduction catalyst can, for example, have less than 80%, 60% or 40% of the volume of the first nitrogen oxide reduction catalyst or an even smaller volume. Furthermore, it can be provided that the second nitrogen oxide reduction catalytic converter is arranged close to the engine, for example in an engine compartment of the motor vehicle, while the first nitrogen oxide reduction catalytic converter is arranged remote from the engine in an underbody area of the motor vehicle. In a further embodiment of the invention, the heat exchanger is fluidically connected upstream of the first nitrogen oxide reduction catalyst and downstream of the second nitrogen oxide reduction catalyst. In terms of flow technology, the heat exchanger is thus arranged between the second nitrogen oxide reduction catalytic converter arranged further upstream and the first nitrogen oxide reduction catalytic converter arranged further downstream. This has the advantage that when the second nitrogen oxide reduction catalytic converter is already above its operating temperature, if the first nitrogen oxide reduction catalytic converter is threatened with excessive further heating, its effectiveness can still be maintained by operating the heat exchanger accordingly.
In einerweiteren vorteilhaften Ausgestaltung der Erfindung ist das Reduktionsmittel zur Reduzierung von im Abgas enthaltenen Stickoxiden am ersten und/oder am zweiten Stickoxidreduktionskatalysator der zum Betrieb des Verbrennungsmotors eingesetzte Kraftstoff. Damit kann ein Vorratsbehälter für ein separates Reduktions mittel entfallen oder zumindest verkleinert ausgeführt werden. Dabei ist es besonders vorteilhaft, wenn in weiterer Ausgestaltung der Erfindung der Verbrennungsmotor ausgebildet ist, das Reduktionsmittel über einen Brennraum des Verbrennungs motors dem Abgassystem zuzuführen. Hierfür ist für wenigstens einen Zylinder des Verbrennungsmotors vorzugsweise ein schnell arbeitendes Kraftstoffeinbringventil vorgesehen, über welches der Kraftstoff direkt in den entsprechenden Brennraum eingebracht werden kann. Dadurch wird eine separate Zuführeinrichtung zur Zufüh rung des Reduktionsmittels zum Abgas eingespart. Zudem ist auf diese Weise eine besonders homogene Verteilung des Reduktionsmittels im Abgas ermöglicht. Bevor zugt wird der als Reduktionsmittel eingesetzte Kraftstoff durch eine derart spät im Arbeitstakt durchgeführte Kraftstoff-Nacheinspritzung bzw. -Einblasung in den Brenn raum oder die Brennräume eingebracht, dass er chemisch zumindest annähernd unverändert mit dem Ausschiebetakt ausgestoßen wird. Bevorzugt erfolgt diese in einem Kurbelwinkelbereich von 120 ° bis 180 ° nach dem oberen Totpunkt. In a further advantageous embodiment of the invention, the reducing agent for reducing nitrogen oxides contained in the exhaust gas on the first and / or on the second nitrogen oxide reduction catalytic converter is the fuel used to operate the internal combustion engine. This means that a storage container for a separate reducing agent can be omitted or at least made smaller. It is particularly advantageous if, in a further embodiment of the invention, the internal combustion engine is designed to supply the reducing agent to the exhaust system via a combustion chamber of the internal combustion engine. For this purpose, a fast-working fuel injection valve is preferably provided for at least one cylinder of the internal combustion engine, via which the fuel can be introduced directly into the corresponding combustion chamber. This saves a separate supply device for supplying the reducing agent to the exhaust gas. In addition, a particularly homogeneous distribution of the reducing agent in the exhaust gas is made possible in this way. The fuel used as a reducing agent is preferably introduced into the combustion chamber or combustion chambers by a post-injection or injection of fuel carried out so late in the working cycle that it is expelled chemically at least approximately unchanged with the exhaust cycle. This preferably takes place in a crank angle range of 120 ° to 180 ° after top dead center.
In weiterer Ausgestaltung der Erfindung ist der Kraftstoff zum Betrieb des Verbren nungsmotors Wasserstoff. Dadurch werden klimaschädliche Kohlendioxidemissionen vermieden. Ebenfalls vermieden werden Emissionen von Rußpartikeln, Kohlenwas serstoffen und Kohlenmonoxid. Bei einer vorzugsweise zumindest überwiegend vorgesehenen mageren Betriebsweise des Verbrennungsmotors entstehen bei der Kraftstoffverbrennung als Schadstoff lediglich Stickoxide, die jedoch durch einen Stickoxidreduktionskatalysator aus dem Abgas entfernt werden können. In a further embodiment of the invention, the fuel for operating the internal combustion engine is hydrogen. This avoids climate-damaging carbon dioxide emissions. Emissions of soot particles, hydrocarbons and carbon monoxide are also avoided. In one, preferably at least predominantly envisaged lean operation of the internal combustion engine, only nitrogen oxides are produced as pollutants during fuel combustion, but these can be removed from the exhaust gas by a nitrogen oxide reduction catalytic converter.
In weiterer Ausgestaltung der Erfindung ist vorgesehen, dass der zweite Stickoxidre duktionskatalysator ein Mager-Denox-Katalysator ist, der eine Reduktion von Stick oxiden mit Wasserstoff als Reduktionsmittel katalysieren kann. Diese Ausführungs form ist insbesondere in Verbindung mit einem als Wasserstoffmotor ausgeführten Verbrennungsmotor vorteilhaft, da dann der zum Betrieb des Motors verwendete Kraftstoff auch als Reduktionsmittel für eine Reduktion von Stickoxiden am zweiten Stickoxidreduktionskatalysator eingesetzt werden kann. Hierfür kann der Wasserstoff entweder über einen Brennraum des Verbrennungsmotors oder über eine motor externe Dosiervorrichtung dem Abgas zugeführt werden. Der Mager-Denox-Kataly- sator weist bevorzugt eine katalytische Beschichtung auf, welche Edelmetalle, insbe sondere der Platingruppe, wie Platin und/oder Rhodium enthält. Generell ist eine katalytische Beschichtung vorgesehen, welche eine Stickoxidreduktion mit Wasser stoff als Reduktionsmittel auch bei Vorliegen eines Sauerstoffüberschusses im Abgas katalysieren kann. Insbesondere bei einem Platin und/oder Rhodium und/oder Palladium enthaltenden Mager-Denox-Katalysator ist der Betriebstemperaturbereich dabei relativ niedrig. Eine untere Temperaturgrenze des Betriebsbereichs kann bei etwa 80 °C liegen. Eine obere Temperaturgrenze des Betriebsbereichs kann bei etwa 250 °C liegen. Der Mager-Denox-Katalysator ist damit sehr rasch nach einem Kaltstart des Verbrennungsmotors betriebsbereit. In a further embodiment of the invention it is provided that the second nitrogen oxide reduction catalyst is a lean Denox catalyst which can catalyze a reduction of nitrogen oxides with hydrogen as the reducing agent. This embodiment is particularly advantageous in connection with an internal combustion engine designed as a hydrogen engine, since the fuel used to operate the engine can then also be used as a reducing agent for reducing nitrogen oxides on the second nitrogen oxide reduction catalytic converter. For this purpose, the hydrogen can be added to the exhaust gas either via a combustion chamber of the internal combustion engine or via an engine-external metering device. The lean Denox catalyst preferably has a catalytic coating which contains noble metals, in particular of the platinum group, such as platinum and / or rhodium. In general, a catalytic coating is provided which can catalyze a nitrogen oxide reduction with hydrogen as a reducing agent even when there is an excess of oxygen in the exhaust gas. In particular in the case of a lean Denox catalyst containing platinum and / or rhodium and / or palladium, the operating temperature range is relatively low. A lower temperature limit of the operating range can be around 80 ° C. An upper temperature limit of the operating range can be around 250 ° C. The lean Denox catalytic converter is ready for operation very quickly after a cold start of the internal combustion engine.
In weiterer Ausgestaltung der Erfindung ist eingangsseitig des ersten Stickoxidreduk tionskatalysators eine Dosiervorrichtung zur Einbringung eines ammoniakhaltigen Reduktionsmittels ins Abgas vorgesehen. Ammoniak kann in freier oder gebundener Form im Reduktionsmittel enthalten sein. Bevorzugt ist eine Dosiervorrichtung zur Einbringung einer wässrigen Harnstofflösung ins Abgas vorgesehen. Die Harnstoff lösung wird dabei bevorzugt mittels einer Fördereinrichtung von einem separaten Vorratsbehälter zur Dosiervorrichtung gefördert. Die Dosiervorrichtung ist bevorzugt in Strömungsrichtung gesehen nach der Zusammenführungsstelle von durch den Wärmetauscher geleitetem und den Wärmetauscher umgehenden Abgas vorge sehen. Bei Einsatz eines Ammoniak enthaltenden Reduktionsmittels kann der erste Stick oxidreduktionskatalysator als klassischer SCR-Katalysator, beispielsweise als Kupfer oder Eisen enthaltender zeolithischer Katalysator ausgeführt sein. Insbesondere ist es in weiterer Ausgestaltung der Erfindung vorgesehen, dass der erste Stickoxid reduktionskatalysator Vanadium enthalt. Vanadium liegt dabei bevorzugt als Oxid, insbesondere als Vanadiumpentoxid vor. Weitere in Bezug auf eine Förderung der selektiven Stickoxidreduktionsfähigkeit wirksame Bestandteile wie Oxide von Wolfram, Molybdän und/oder Titan können natürlich ebenfalls vorgesehen sein. Der Betriebstemperaturbereich des vorgesehenen Stickoxidreduktionskatalysators liegt typischerweise aus anwendungstechnischer Sicht betrachtet in einem mittleren Bereich von etwa 180 °C - 200 °C bis etwa 420 °C - 480 °C. In Betracht kommende vanadiumhaltige Stickoxidreduktionskatalysatoren können jedoch eine vergleichs weise niedrige Temperaturgrenze in Bezug auf Stabilität bzw. Degradation auf weisen. Aus diesem Grund ist es vorzugsweise vorgesehen, dass die Temperatur des in den Stickoxidreduktionskatalysator eintretenden Abgases durch Kühlung mittels des Wärmetauschers zumindest überwiegend unterhalb von 350 °C, insbe sondere unterhalb von 300 °C gehalten wird. In a further embodiment of the invention, a metering device for introducing an ammonia-containing reducing agent into the exhaust gas is provided on the inlet side of the first nitrogen oxide reduction catalyst. Ammonia can be contained in the reducing agent in free or bound form. A metering device for introducing an aqueous urea solution into the exhaust gas is preferably provided. The urea solution is preferably conveyed from a separate storage container to the metering device by means of a conveying device. The metering device is preferably seen in the flow direction after the merging point of exhaust gas passed through the heat exchanger and bypassing the heat exchanger. When using an ammonia-containing reducing agent, the first nitrogen oxide reduction catalyst can be designed as a classic SCR catalyst, for example as a copper or iron-containing zeolitic catalyst. In particular, it is provided in a further embodiment of the invention that the first nitrogen oxide reduction catalytic converter contains vanadium. Vanadium is preferably present as an oxide, in particular as vanadium pentoxide. Further constituents effective with regard to promoting the selective nitrogen oxide reduction ability, such as oxides of tungsten, molybdenum and / or titanium, can of course also be provided. From an application point of view, the operating temperature range of the intended nitrogen oxide reduction catalytic converter is typically in a medium range from approximately 180 ° C.-200 ° C. to approximately 420 ° C.-480 ° C. Considerable vanadium-containing nitrogen oxide reduction catalysts can, however, have a comparatively low temperature limit with regard to stability or degradation. For this reason, it is preferably provided that the temperature of the exhaust gas entering the nitrogen oxide reduction catalytic converter is kept at least predominantly below 350 ° C., in particular below 300 ° C., by cooling by means of the heat exchanger.
In weiterer Ausgestaltung der Erfindung ist der Kraftstoff zum Betrieb des Verbren nungsmotors Ammoniak. Damit werden schädliche kohlenstoffhaltige Emissionen ebenfalls vermieden. Weiterhin kann in vorteilhafter weise der Kraftstoff zum Betrieb des Verbrennungsmotors auch als Reduktionsmittel zur Reduktion von Stickoxiden im Abgassystem eingesetzt werden. Dadurch kann ein separater Reduktionsmittel vorratsbehälter entfallen. Ammoniak als Stickoxidreduktionsmittel kann einem Stick oxidreduktionskatalysator des Abgassystems motorisch, speziell durch eine spät im Arbeitstakt vorgenommen Einbringung in einen Brennraum des Verbrennungsmotors zugeführt werden. Bevorzugt erfolgt diese in einem Kurbelwinkelbereich von 120 ° bis 180 ° nach dem oberen Totpunkt. Eine motorexterne Zufuhr zum Abgas kann jedoch zusätzlich oder alternativ durch eine separate Dosiervorrichtung erfolgen.In a further embodiment of the invention, the fuel for operating the internal combustion engine is ammonia. This also avoids harmful carbon emissions. Furthermore, the fuel for operating the internal combustion engine can advantageously also be used as a reducing agent for reducing nitrogen oxides in the exhaust system. This eliminates the need for a separate reducing agent storage tank. Ammonia as a nitrogen oxide reducing agent can be supplied to a nitrogen oxide reduction catalyst of the exhaust system by a motor, specifically by being introduced into a combustion chamber of the internal combustion engine late in the work cycle. This preferably takes place in a crank angle range of 120 ° to 180 ° after top dead center. A supply to the exhaust gas from outside the engine can, however, additionally or alternatively take place by means of a separate metering device.
Das erfindungsgemäße Betriebsverfahren für ein wie vorstehend beschrieben aus geführtes Kraftfahrzeug sieht vor, dass der Anteil des durch den Wärmetauscher geleiteten Abgases in Verbindung mit einem Betrieb des Wärmetauschers und/oder der Energierückgewinnungseinrichtung so gewählt wird, dass eine Temperatur des ersten Stickoxidreduktionskatalysators zumindest überwiegend unterhalb einer vorgebbaren oberen Temperaturgrenze gehalten wird. Die vorgebbare Tempe raturgrenze kann in Abhängigkeit von einer oberen Betriebstemperaturgrenze oder einer Temperaturstabilitätsgrenze des Stickoxidreduktionskatalysators gewählt werden. Eine obere Temperaturgrenze von 350 °C bis 300 °C, insbesondere von 300 °C ist bevorzugt. Weist das Abgas, das eine Verzeigungsstelle zur Aufteilung des Abgasstroms in einen durch den Wärmetauscher strömenden Anteil und einen den Wärmetauscher umgehenden Anteil erreicht, eine die obere Temperaturgrenze über schreitende Temperatur auf, so wird mittels eines Verstellelements ein bestimmter Anteil des Abgases durch den Wärmetauscher geleitet. Eine Aufteilung des Abgasstroms in einen durch den Wärmetauscher geleiteten Anteil und in einen den Wärmetauscher umgehenden Anteil erfolgt bevorzugt in Abhängigkeit von der Abgastemperatur und der vorgesehenen oberen Temperaturgrenze. Dabei kann zusätzlich die Kühlwirkung des Wärmetauschers durch Beeinflussung der Menge des durch den Wärmetauscher strömenden und Wärme aufnehmenden Betriebsmittels entsprechend angepasst werden. Insbesondere kann die Kühlwirkung durch Erhöhung des Betriebsmittelstroms falls notwendig gesteigert werden. Dadurch kann auf zuverlässige Weise vermieden werden, dass in den zweiten Stickoxidreduktions katalysator eintretendes Abgas die obere Temperaturgrenze überschreitet. Somit kann eine hohe Wirksamkeit des Reduktionsmittelkatalysators erzielt und dessen Degradation vermieden werden. The operating method according to the invention for a motor vehicle carried out as described above provides that the proportion of the exhaust gas passed through the heat exchanger in connection with operation of the heat exchanger and / or the energy recovery device is selected such that a temperature of the first nitrogen oxide reduction catalytic converter is at least predominantly below one specifiable upper temperature limit is maintained. The predeterminable temperature limit can be selected as a function of an upper operating temperature limit or a temperature stability limit of the nitrogen oxide reduction catalytic converter. An upper temperature limit of 350 ° C. to 300 ° C., in particular 300 ° C., is preferred. If the exhaust gas, which reaches a branching point for dividing the exhaust gas flow into a portion flowing through the heat exchanger and a portion bypassing the heat exchanger, has a temperature that exceeds the upper temperature limit, a certain portion of the exhaust gas is passed through the heat exchanger by means of an adjusting element. A division of the exhaust gas flow into a portion passed through the heat exchanger and a portion bypassing the heat exchanger preferably takes place as a function of the exhaust gas temperature and the intended upper temperature limit. In addition, the cooling effect of the heat exchanger can be adjusted accordingly by influencing the amount of operating medium flowing through the heat exchanger and absorbing heat. In particular, the cooling effect can be increased if necessary by increasing the flow of operating medium. As a result, it can be reliably avoided that exhaust gas entering the second nitrogen oxide reduction catalytic converter exceeds the upper temperature limit. A high effectiveness of the reducing agent catalyst can thus be achieved and its degradation can be avoided.
In Ausgestaltung des erfindungsgemäßen Betriebsverfahrens wird dem ersten und/oder dem zweiten Stickoxidreduktionskatalysator Reduktionsmittel zur Redu zierung von im Abgas enthaltenen Stickoxiden aus einem externen Vorratsbehälter zugeführt. Insbesondere für den ersten Stickoxidreduktionskatalysator kann eine Reduktionsmittelversorgung aus einem externen Vorratsbehälter vorgesehen sein. Wenn ein zweiter Stickoxidreduktionskatalysator vorhanden ist, so kann zusätzlich oder alternativ für diesen eine Reduktionsmittelversorgung aus einem externen Vorratsbehälter vorgesehen sein. Als Reduktionsmittel zur Stickoxidreduktion am ersten und/oder am zweiten Stickoxidreduktionskatalysator kommt insbesondere wässrige Harnstofflösung infrage. Als Reduktionsmittel kann aber auch Ammoniak, insbesondere gasförmiges Ammoniak, oder Wasserstoff vorgesehen sein. In weiterer Ausgestaltung des erfindungsgemäßen Betriebsverfahrens wird zumindest einem Brennraum des Verbrennungsmotors Kraftstoff zu einem derart späten Zeitpunkt eines Arbeitstakts zugeführt, dass der Kraftstoff zumindest annähernd chemisch unverändert aus dem Verbrennungsmotor ausgestoßen und dem zweiten Stickoxidreduktionskatalysator als Reduktionsmittel zur Reduzierung von im Abgas enthaltenen Stickoxiden zugeführt wird. In diesem Fall wirkt der zum Betrieb des Verbrennungsmotors eingesetzte Kraftstoff auch als Reduktionsmittel zur Stickoxidreduktion zumindest am zweiten Stickoxidreduktionskatalysator. Eine Späteinbringung von gasförmigem Ammoniak oder Wasserstoff als Kraftstoff in einen Brennraum oder in mehrere Brennräume erfolgt vorzugsweise in einem Kurbel winkelbereich von 120 ° bis 180 ° nach dem oberen Totpunkt. Damit ist gewähr leistet, dass in den Brennraum eingebrachter Kraftstoff nicht mehr oder nur zu einem unwesentlichen Teil an der Verbrennung teilnimmt und praktisch chemisch unverän dert aus dem Brennraum in das Abgassystem ausgeschoben wird. In an embodiment of the operating method according to the invention, the first and / or the second nitrogen oxide reduction catalytic converter is supplied with reducing agent for reducing nitrogen oxides contained in the exhaust gas from an external storage container. A reducing agent supply from an external storage container can be provided in particular for the first nitrogen oxide reduction catalytic converter. If a second nitrogen oxide reduction catalytic converter is present, a reducing agent supply from an external storage container can additionally or alternatively be provided for this. A particularly suitable reducing agent for reducing nitrogen oxides on the first and / or on the second nitrogen oxide reduction catalytic converter is aqueous urea solution. However, ammonia, in particular gaseous ammonia, or hydrogen can also be provided as the reducing agent. In a further embodiment of the operating method according to the invention, fuel is supplied to at least one combustion chamber of the internal combustion engine at such a late point in time of a working cycle that the fuel is expelled from the internal combustion engine at least approximately chemically unchanged and supplied to the second nitrogen oxide reduction catalyst as a reducing agent to reduce nitrogen oxides contained in the exhaust gas. In this case, the fuel used to operate the internal combustion engine also acts as a reducing agent for reducing nitrogen oxides, at least on the second nitrogen oxide reduction catalytic converter. A late introduction of gaseous ammonia or hydrogen as fuel into a combustion chamber or into several combustion chambers is preferably carried out in a crank angle range of 120 ° to 180 ° after top dead center. This ensures that fuel introduced into the combustion chamber no longer or only insignificantly takes part in the combustion and is pushed out of the combustion chamber into the exhaust system with practically no chemical changes.
Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinatio nen sowie die nachfolgend in den Figurenbeschreibungen genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen. Oben genannte sowie weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter, nichteinschränkender Ausführungs beispiele der Erfindung unter Bezugnahme auf die beiliegenden Zeichnungen. Dabei zeigen: The features and feature combinations mentioned above in the description as well as the features and feature combinations mentioned below in the description of the figures and / or shown alone in the figures can be used not only in the specified combination, but also in other combinations or on their own, without the frame to leave the invention. Above and other features and advantages of the invention emerge from the following description of preferred, non-limiting embodiment examples of the invention with reference to the accompanying drawings. Show:
Fig. 1 eine schematische Darstellung einer ersten vorteilhaften Ausführungsform eines Abgassystems des erfindungsgemäßen Kraftfahrzeugs, 1 shows a schematic representation of a first advantageous embodiment of an exhaust system of the motor vehicle according to the invention,
Fig. 2 eine schematische Darstellung einer zweiten vorteilhaften Ausführungsform eines Abgassystems des erfindungsgemäßen Kraftfahrzeugs, 2 shows a schematic representation of a second advantageous embodiment of an exhaust system of the motor vehicle according to the invention,
Fig. 3 eine schematische Darstellung einer dritten vorteilhaften Ausführungsform eines Abgassystems des erfindungsgemäßen Kraftfahrzeugs, und Fig. 4 eine schematische Darstellung einer ersten vorteilhaften Ausführungsform eines Abgassystems des erfindungsgemäßen Kraftfahrzeugs, 3 shows a schematic representation of a third advantageous embodiment of an exhaust system of the motor vehicle according to the invention, and 4 shows a schematic representation of a first advantageous embodiment of an exhaust system of the motor vehicle according to the invention,
Fig. 1 zeigt lediglich schematisch und stark vereinfacht ein erstes Beispiel für eine vorteilhafte Ausführungsform eines an einen Verbrennungsmotor eines Kraftfahr zeugs angeschlossenen Abgassystems 1. Auf eine Darstellung des Kraftfahrzeugs wurde dabei verzichtet. Der ebenfalls nicht dargestellte Verbrennungsmotor ist als ein mit kohlenstofffreiem Kraftstoff betriebener Verbrennungsmotor ausgeführt. Bevorzugt ist eine Ausführung als Wasserstoffmotor. Eine Ausführung als Ammoniakmotor ist jedoch ebenfalls möglich. Jedenfalls ist ein zumindest über wiegend magerer Betrieb, d.h. ein Betrieb mit Luftüberschuss für den Verbren nungsmotor vorgesehen. Fig. 1 shows only schematically and greatly simplified a first example of an advantageous embodiment of an exhaust system 1 connected to an internal combustion engine of a motor vehicle. The motor vehicle is not shown here. The internal combustion engine, also not shown, is designed as an internal combustion engine operated with carbon-free fuel. A design as a hydrogen engine is preferred. However, it can also be designed as an ammonia motor. In any case, at least predominantly lean operation, i.e. operation with excess air, is provided for the internal combustion engine.
Vom Verbrennungsmotor abgegebenes Abgas tritt über eine Abgasleitung 13 in das Abgassystem 1 ein. Entsprechend der mit einem offenen Pfeil gekennzeichneten Abgasströmungsrichtung strömt das Abgas zunächst durch einen hier als zweiten Stickoxidreduktionskatalysator 8 bezeichneten katalytischen Konverter. Stromab des zweiten Stickoxidreduktionskatalysators 8 ist eine Umgehungsleitung 4 vorgesehen, die einen Abgasleitungsteilabschnitt 13' umgeht. Über Stellmittel 9, 9' kann ein erster Abgasteilstrom 5 durch die Umgehungsleitung 4 geleitet werden, während der verbleibende Anteil des gesamten Abgasstroms als zweiter Abgasteilstrom 10 durch den zur Umgehungsleitung 4 strömungstechnisch parallelen Abgasleitungsteil abschnitt 13' geführt wird. Am Stellmittel 9' mündet die Umgehungsleitung 4 wieder in die Abgasleitung 13 und die Abgasteilströme 5, 10 werden wieder zusammengeführt. Der durch die zusammengeführten Abgasteilströme 5, 10 wieder gebildete Gesamt abgasstrom wird sodann durch einen hier als ersten Stickoxidreduktionskatalysator 2 bezeichneten katalytischen Konverter geführt. Exhaust gas emitted by the internal combustion engine enters the exhaust system 1 via an exhaust line 13. Corresponding to the exhaust gas flow direction marked with an open arrow, the exhaust gas initially flows through a catalytic converter, referred to here as a second nitrogen oxide reduction catalytic converter 8. Downstream of the second nitrogen oxide reduction catalytic converter 8, a bypass line 4 is provided which bypasses an exhaust line section 13 ′. A first partial exhaust gas flow 5 can be passed through the bypass line 4 via actuating means 9, 9 ', while the remaining portion of the total exhaust gas flow is routed as a second partial exhaust gas flow 10 through the exhaust gas pipe portion 13', which is fluidically parallel to the bypass line 4. At the adjusting means 9 ', the bypass line 4 opens again into the exhaust gas line 13 and the partial exhaust gas flows 5, 10 are brought together again. The total exhaust gas flow formed again by the combined exhaust gas partial flows 5, 10 is then passed through a catalytic converter, referred to here as the first nitrogen oxide reduction catalytic converter 2.
In der Umgehungsleitung 4 ist ein Wärmetauscher 3 angeordnet, welcher der Über tragung von Wärme vom ersten Abgasteilstrom 5 auf ein Arbeitsfluid dient. Das Arbeitsfluid wird in einem Arbeitsfluidkreislauf 7 einerseits durch den Wärmetauscher 3 und andererseits durch eine Energierückgewinnungseinrichtung 6 geführt. Die Energierückgewinnungseinrichtung 6 kann mit dem Arbeitsfluid zugeführte Wärme in Nutzenergie umwandeln. Vorzugsweise arbeitet die Energierückgewinnungs- einrichtung 6 als thermodynamischer Kreisprozess bzw. als Teil eines thermodyna mischen Kreisprozesses und kann mechanische Nutzenergie aus der mittels des Arbeitsfluids dem ersten Abgasteilstrom 5 entzogenen Wärme erzeugen. Dadurch wird das Arbeitsfluid abgekühlt und wird wieder zurück zum Wärmetauscher 3 geführt, wo es erneut Wärme vom ersten Abgasteilstrom 5 aufnehmen kann. Vorzugsweise sind hier nicht näher dargestellte Fördermittel vorgesehen, welche den Arbeitsfluidkreislauf 7 in Gang halten und dessen Stärke einstellbar steuern können. Dadurch ist eine Steuerung des dem Abgasteilstrom 5 entnommenen Wärmestroms steuerbar. Weiterhin ist eine Steuerung der dem Abgas entzogenen Wärme durch Betätigung der Stellmittel 9, 9‘ vorgesehen, über welche der Anteil des ersten Abgasteilstroms 5 am Gesamtabgasstrom bedarfsgerecht eingestellt werden kann. Eines der beiden Stellmittel 9, 9‘ kann auch entfallen. In the bypass line 4, a heat exchanger 3 is arranged, which is used to transfer heat from the first exhaust gas substream 5 to a working fluid. The working fluid is conducted in a working fluid circuit 7 on the one hand through the heat exchanger 3 and on the other hand through an energy recovery device 6. The energy recovery device 6 can convert heat supplied with the working fluid into useful energy. The energy recovery system preferably works device 6 as a thermodynamic cycle or as part of a thermodynamic cycle and can generate useful mechanical energy from the heat extracted from the first exhaust gas partial flow 5 by means of the working fluid. As a result, the working fluid is cooled and is fed back to the heat exchanger 3, where it can again absorb heat from the first partial exhaust gas flow 5. Funding means, not shown in more detail, are preferably provided here, which can keep the working fluid circuit 7 running and adjust its strength. As a result, a control of the heat flow taken from the exhaust gas partial flow 5 can be controlled. Furthermore, a control of the heat extracted from the exhaust gas is provided by actuating the adjusting means 9, 9 ', via which the proportion of the first exhaust gas partial flow 5 in the total exhaust gas flow can be adjusted as required. One of the two adjusting means 9, 9 'can also be omitted.
Stromauf des ersten Stickoxidreduktionskatalysators 2 und stromab der Vereini gungsstelle von erstem Abgasteilstrom 5 und zweitem Abgasteilstrom 10 ist eine erste Reduktionsmittelzugabevorrichtung 11 vorgesehen, die ein Reduktionsmittel zur Reduktion von Stickoxiden dem Abgas bedarfsgerecht zuführen kann. Analog ist stromauf des zweiten Stickoxidreduktionskatalysators 8 eine zweite Reduktions mittelzugabevorrichtung 12 vorgesehen, mit welcher ebenfalls ein Reduktionsmittel zur Reduktion von Stickoxiden dem Abgas zugeführt werden kann. Das jeweilige Reduktionsmittel wird vorliegend einem nicht näher dargestellten Vorratsbehälter entnommen. Als Reduktionsmittel kommen Wasserstoff, Ammoniak oder wässrige Harnstofflösung in Betracht. Für den ersten Stickoxidreduktionskatalysator 2 und den zweiten Stickoxidreduktionskatalysator 8 kann das gleiche Reduktionsmittel vorgese hen sein. Es können jedoch auch unterschiedliche Reduktionsmittel zum Einsatz kommen. Beispielsweise kann Harnstofflösung als Reduktionsmittel für den ersten Stickoxidreduktionskatalysator 2 und Wasserstoff oder Ammoniak für den zweiten Stickoxidreduktionskatalysator 8 oder umgekehrt vorgesehen sein. Die Verwendung von Wasserstoff als Reduktionsmittel ist insbesondere dann vorgesehen, wenn der Verbrennungsmotor als Wasserstoffmotor ausgeführt ist. Die Verwendung von Ammoniak als Reduktionsmittel ist insbesondere dann vorgesehen, wenn der Verbrennungsmotor als Ammoniakmotor ausgeführt ist. In beiden Fällen kann in vorteilhafter Weise der für den Verbrennungsmotor eingesetzte Kraftstoff als Reduk tionsmittel eingesetzt werden. Das für den ersten Stickoxidreduktionskatalysator 2 und für den zweiten Stickoxid reduktionskatalysator 8 eingesetzte Katalysatormaterial wird vorteilhafterweise abhängig von der Art des jeweils eingesetzten Reduktionsmittels gewählt. Besonders bevorzugt ist eine Niedertemperaturausführung für den zweiten Stickoxidreduktions katalysator 8, da dieser vorzugsweise motornah verbaut ist. Auf diese Weise ist er nach einem Kaltstart besonders rasch einsatzbereit. Ein bevorzugter Betriebstempe raturbereich liegt dabei zwischen etwa 100 °C und etwa 250 °C. Dies lässt sich bei Verwendung von Wasserstoff als Reduktionsmittel durch einen Mager-Denox-Kataly- sator erreichen, der beispielsweise ein Platin, Palladium und/oder Rhodium enthal tendes Katalysatormaterial aufweist. In einer vorteilhaften Ausführungsform mit Einsatz von Ammoniak oder wässriger Harnstofflösung als Reduktionsmittel für den ersten Stickoxidreduktionskatalysator 2 ist dieser bevorzugt als Vanadium enthal tender Katalysator ausgeführt. Upstream of the first nitrogen oxide reduction catalytic converter 2 and downstream of the junction of the first exhaust gas partial flow 5 and second exhaust gas partial flow 10, a first reducing agent addition device 11 is provided, which can supply a reducing agent for reducing nitrogen oxides to the exhaust gas as required. Similarly, upstream of the second nitrogen oxide reduction catalytic converter 8, a second reducing agent adding device 12 is provided, with which a reducing agent for reducing nitrogen oxides can also be added to the exhaust gas. In the present case, the respective reducing agent is taken from a storage container (not shown in greater detail). Hydrogen, ammonia or aqueous urea solution can be used as reducing agents. The same reducing agent can be provided for the first nitrogen oxide reduction catalytic converter 2 and the second nitrogen oxide reduction catalytic converter 8. However, different reducing agents can also be used. For example, urea solution can be provided as a reducing agent for the first nitrogen oxide reduction catalytic converter 2 and hydrogen or ammonia for the second nitrogen oxide reduction catalytic converter 8 or vice versa. The use of hydrogen as a reducing agent is provided in particular when the internal combustion engine is designed as a hydrogen engine. The use of ammonia as a reducing agent is provided in particular when the internal combustion engine is designed as an ammonia engine. In both cases, the fuel used for the internal combustion engine can be used as a reducing agent in an advantageous manner. The catalyst material used for the first nitrogen oxide reduction catalyst 2 and for the second nitrogen oxide reduction catalyst 8 is advantageously selected depending on the type of reducing agent used in each case. A low-temperature version for the second nitrogen oxide reduction catalytic converter 8 is particularly preferred, since this is preferably installed close to the engine. In this way, it is ready for use particularly quickly after a cold start. A preferred operating temperature range is between about 100.degree. C. and about 250.degree. This can be achieved when using hydrogen as the reducing agent by means of a lean Denox catalyst which, for example, has a catalyst material containing platinum, palladium and / or rhodium. In an advantageous embodiment with the use of ammonia or aqueous urea solution as the reducing agent for the first nitrogen oxide reduction catalytic converter 2, this is preferably designed as a vanadium-containing catalytic converter.
Beim Betrieb des Verbrennungsmotors wird dem zweiten Stickoxidreduktionskataly sator 8 Reduktionsmittel über die zweite Reduktionsmittelzugabevorrichtung 12 mengenreguliert zugeführt, sofern der zweite Stickoxidreduktionskatalysator 8 betriebsbereit ist. Kann durch den zweiten Stickoxidreduktionskatalysator 8 keine oder nur eine unvollständige Stickoxidreduktion erfolgen, so wird dem ersten Stick oxidreduktionskatalysator 2 Reduktionsmittel über die erste Reduktionsmittelzugabe vorrichtung 11 zugeführt, sofern der erste Stickoxidreduktionskatalysator 2 betriebs bereit ist. Dabei ermöglicht es der vorgesehene Wärmetauscher 3 in Verbindung mit der Energierückgewinnungseinrichtung 6, dass der erste Stickoxidreduktionskataly sator 2 selbst dann in seinem Betriebstemperaturbereich gehalten werden kann, wenn das aus dem zweite Stickoxidreduktionskatalysator 8 ausströmende Abgas eine höhere Temperatur aufweist. In einem solchen Fall werden die Stellmittel 9, 9‘ derart betätigt, dass sich durch Aufteilung des Abgasstroms auf den ersten Abgasteilstrom 5 und auf den zweiten Abgasteilstrom 10 für das in den ersten Stick oxidreduktionskatalysator 2 einströmende Abgas eine Temperatur innerhalb des Betriebstemperaturbereichs, vorzugsweise jedoch unterhalb von 300 °C, ergibt.During operation of the internal combustion engine, the second nitrogen oxide reduction catalyst 8 reducing agent is supplied in a regulated manner via the second reducing agent addition device 12, provided that the second nitrogen oxide reduction catalyst 8 is ready for operation. If no nitrogen oxide reduction or only an incomplete nitrogen oxide reduction can take place through the second nitrogen oxide reduction catalytic converter 8, reducing agent is fed to the first nitrogen oxide reduction catalytic converter 2 via the first reducing agent addition device 11, provided that the first nitrogen oxide reduction catalytic converter 2 is ready for operation. The provided heat exchanger 3 in conjunction with the energy recovery device 6 enables the first nitrogen oxide reduction catalyst 2 to be kept in its operating temperature range even when the exhaust gas flowing out of the second nitrogen oxide reduction catalyst 8 is at a higher temperature. In such a case, the actuating means 9, 9 'are actuated in such a way that the exhaust gas flowing into the first nitrogen oxide reduction catalyst 2 is a temperature within the operating temperature range, but preferably below, by dividing the exhaust gas flow into the first exhaust gas partial flow 5 and the second exhaust gas partial flow 10 of 300 ° C.
Dabei kann die dem ersten Abgasteilstrom 5 entzogene Wärmemenge durch Betrieb der Energierückgewinnungseinrichtung 6 bzw. durch Steuerung des Arbeitsfluid kreislaufs zusätzlich eingestellt werden. In den Figuren 2 bis 4 sind Abgassysteme ähnlich dem von Fig. 1 dargestellt, wobei die entsprechenden Bauteile, soweit sie mit den Teilen von Fig. 1 übereinstimmen, jeweils durch dieselben Bezugszeichen gekennzeichnet sind. Aufgrund der Ähnlich keiten mit dem in Fig. 1 dargestellten Abgassystem wird nachfolgend lediglich auf diesbezügliche Unterschiede eingegangen. The amount of heat withdrawn from the first exhaust gas partial flow 5 can additionally be adjusted by operating the energy recovery device 6 or by controlling the working fluid circuit. In FIGS. 2 to 4, exhaust systems similar to that of FIG. 1 are shown, the corresponding components, insofar as they correspond to the parts of FIG. 1, being identified by the same reference numerals. Due to the similarities with the exhaust system shown in Fig. 1, only differences in this regard will be discussed below.
In dem in Fig.2 dargestellten Abgassystem 1 ist im Unterschied zum Abgassystem 1 von Fig.1 der zweite Stickoxidreduktionskatalysator 8 strömungstechnisch hinter der Zusammenführung des ersten Abgasteilstroms 5 und des zweiten Abgasteilstroms 10 und stromauf des ersten Stickoxidreduktionskatalysators 2 angeordnet. Damit kann bereits das dem zweiten Stickoxidreduktionskatalysator 8 zugeführte Abgas bei Bedarf gekühlt werden. Dementsprechend ist es vorteilhaft, als zweiten Stickoxidre duktionskatalysator 8 eine Niedertemperaturausführung, beispielsweise einen Mager- Denox-Katalysator einzusetzen. Der Betrieb des in Fig. 2 dargestellten Abgas systems 1 erfolgt analog zur oben beschrieben Vorgehensweise, wobei vorliegend bereits die Temperatur des strömungstechnisch weiter stromauf angeordneten zweiten Stickoxidreduktionskatalysators 8 eingestellt bzw. begrenzt werden kann. Aufgrund eines typischerweise längs des Abgasströmungswegs auftretenden Temperaturgefälles ist daher die Überschreitung einer unerwünscht hohen Tempe ratur des ersten Stickoxidreduktionskatalysators 2 mit noch größerer Sicherheit ver meidbar. In the exhaust system 1 shown in FIG. 2, in contrast to the exhaust system 1 of FIG. In this way, the exhaust gas fed to the second nitrogen oxide reduction catalytic converter 8 can already be cooled if necessary. Accordingly, it is advantageous to use a low-temperature version, for example a lean Denox catalyst, as the second nitrogen oxide reduction catalyst 8. The exhaust system 1 shown in FIG. 2 is operated in a manner analogous to the procedure described above, it being possible in the present case to set or limit the temperature of the second nitrogen oxide reduction catalytic converter 8, which is arranged further upstream in terms of flow. Due to a temperature gradient typically occurring along the exhaust gas flow path, exceeding an undesirably high temperature of the first nitrogen oxide reduction catalytic converter 2 can therefore be avoided with even greater certainty.
Das in Fig. 3 dargestellte Abgassystem 1 unterscheidet sich von dem in Fig. 1 darge stellten lediglich durch Wegfall der externen Reduktionsmittelzufuhr zum zweiten Stickoxidreduktionskatalysator 8, d.h. durch Wegfall der zweiten Reduktionsmittelzu gabevorrichtung 12. In diesem Fall erhält der zweite Stickoxidreduktionskatalysator Reduktionsmittel zur katalytischen Reduktion von Stickoxiden durch den Verbren nungsmotor. Hierfür erfolgt beim Betrieb des Verbrennungsmotors mit Wasserstoff oder Ammoniak als Kraftstoff neben einer regulären, drehmomenterzeugenden Kraftstoffeinspritzung bzw. -Einblasung eine späte Einspritzung bzw. Einblasung von Kraftstoff gegen Ende des Arbeitstaktes. Diese ist vorzugsweise nicht drehmoment wirksam und erfolgt bevorzugt in einem Kurbelwinkelbereich zwischen 120 ° und 180 ° nach dem oberen Totpunkt. Der spät in den Brennraum eingebrachte Kraftstoff wird mit dem Ausschiebetakt als Bestandteil des gesamten Abgases ausgeschoben und dann weiter zum Abgassystem 1 geleitet. Am zweiten Stickoxidreduktionskatalysator 8 bewirkt der als Reduktionsmittel fungierende, im Abgas enthaltende Kraftstoffanteil eine katalytische Reduktion der ebenfalls im Kraftstoff enthaltenen Stickoxide. Der weitere Betrieb des Abgassystems 1 , insbesondere in Bezug auf eine Abgastemperatureinstellung mittels des Wärmetauschers 3 und der Energierückgewinnungseinrichtung 6, erfolgt analog zur in Verbindung mit Fig. 1 erläuterten Betriebsweise. The exhaust system 1 shown in Fig. 3 differs from the one shown in Fig. 1 Darge presented only by eliminating the external reducing agent supply to the second nitrogen oxide reduction catalyst 8, ie by eliminating the second reducing agent supply device 12. In this case, the second nitrogen oxide reduction catalyst receives reducing agent for catalytic reduction of Nitrogen oxides from the combustion engine. For this purpose, when the internal combustion engine is operated with hydrogen or ammonia as fuel, in addition to a regular, torque-generating fuel injection or injection, there is a late injection or injection of fuel towards the end of the work cycle. This is preferably not torque effective and preferably takes place in a crank angle range between 120 ° and 180 ° after top dead center. The late fuel introduced into the combustion chamber is expelled as part of the total exhaust gas with the expulsion cycle and then passed on to exhaust system 1. On the second nitrogen oxide reduction catalytic converter 8, the fuel component contained in the exhaust gas and functioning as a reducing agent causes a catalytic reduction of the nitrogen oxides also contained in the fuel. The further operation of the exhaust system 1, in particular with regard to an exhaust gas temperature setting by means of the heat exchanger 3 and the energy recovery device 6, takes place analogously to the mode of operation explained in connection with FIG. 1.
Analog unterscheidet sich das in Fig. 4 dargestellte Abgassystem 1 von dem in Fig. 2 dargestellten ebenfalls lediglich durch Wegfall der externen Reduktionsmittelzufuhr zum zweiten Stickoxidreduktionskatalysator 8. Auch bei der Ausführungsform nach Fig. 4 erhält der zweite Stickoxidreduktionskatalysator 8 Reduktionsmittel zur Reduk tion von Stickoxiden durch den Verbrennungsmotor wie oben in Verbindung mit Fig. Similarly, the exhaust system 1 shown in FIG. 4 differs from the one shown in FIG. 2, likewise only in that the external reducing agent supply to the second nitrogen oxide reduction catalytic converter 8 is omitted. In the embodiment according to FIG. 4, the second nitrogen oxide reduction catalytic converter 8 receives reducing agent for reducing nitrogen oxides the internal combustion engine as above in connection with Fig.
3 beschrieben. Ansonsten erfolgt der Betrieb des entsprechenden Abgassystems 1 analog zu dem von Fig. 2. 3 described. Otherwise, the corresponding exhaust system 1 is operated analogously to that of FIG. 2.
Es versteht sich, dass das Abgassystem 1 nach den Figuren 1 bis 4 nicht gesondert dargestellte Sensoren für Temperatur und Abgaskomponenten umfasst, die notwen dig sind, um den Betriebszustand des Abgassystems 1 bzw. seiner Komponenten zu erfassen und entsprechende Steuersignale zur Steuerung des Betriebs des Abgas systems 1 zu erzeugen. It goes without saying that the exhaust system 1 according to FIGS. 1 to 4 includes sensors for temperature and exhaust gas components, not shown separately, which are necessary to detect the operating state of the exhaust system 1 or its components and corresponding control signals for controlling the operation of the exhaust gas systems 1 to generate.
Bezugszeichenliste Abgassystem Erster Stickoxidreduktionskatalysator Wärmetauscher Umgehungsleitung Erster Abgasteilstrom Energierückgewinnungseinrichtung Arbeitsfluidkreislauf Zweiter Stickoxidreduktionskatalysator Stellmittel ‘ Stellmittel 0 Zweiter Abgasteilstrom 1 Erste Reduktionsmittelzugabevorrichtung2 Zweite Reduktionsmittelzugabevorrichtung3 Abgasleitung 3' Abgasleitungsteilabschnitt LIST OF REFERENCE NUMERALS Exhaust system First nitrogen oxide reduction catalytic converter Heat exchanger bypass line First exhaust gas partial flow Energy recovery device Working fluid circuit Second nitrogen oxide reduction catalytic converter Actuating means 0 Second exhaust gas partial flow 1 First reducing agent adding device2 Second reducing agent adding device3 Exhaust gas line 3 'Exhaust gas line section

Claims

Patentansprüche Claims
1. Kraftfahrzeug mit einem mit kohlenstofffreiem Kraftstoff betriebenen Verbrennungsmotor mit daran angeschlossenem Abgassystem (1), welches einen insbesondere ersten Stickoxidreduktionskatalysator (2) aufweist, dadurch gekennzeichnet, dass das Abgassystem (1) ferner einen Wärmetauscher (3) aufweist, wobei vom Verbrennungsmotor abgegebenes Abgas vor einer Zufuhr zum Stickoxidreduktionskatalysator (2) mit einem einstellbaren Anteil durch den Wärmetauscher (3) geleitet werden kann. 1. Motor vehicle with an internal combustion engine operated with carbon-free fuel with an exhaust system (1) connected to it, which has an in particular first nitrogen oxide reduction catalyst (2), characterized in that the exhaust system (1) also has a heat exchanger (3), with exhaust gas emitted by the internal combustion engine can be passed through the heat exchanger (3) with an adjustable proportion before being fed to the nitrogen oxide reduction catalytic converter (2).
2. Kraftfahrzeug nach Anspruch 1 , dadurch gekennzeichnet, dass das Abgassystem (1) eine Energierückgewinnungseinrichtung (6) aufweist, die Nutzenergie aus der durch den Wärmetauscher (3) geleitetem Abgas entzogenen Wärmeenergie erzeugen kann. 2. Motor vehicle according to claim 1, characterized in that the exhaust system (1) has an energy recovery device (6) which can generate useful energy from the heat energy extracted from the exhaust gas passed through the heat exchanger (3).
3. Kraftfahrzeug nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein zweiter Stickoxidreduktionskatalysator (8) vorgesehen ist, der dem ersten Stickoxidreduktionskatalysator (2) strömungstechnisch vorgeschaltet ist. 3. Motor vehicle according to claim 1 or 2, characterized in that a second nitrogen oxide reduction catalyst (8) is provided, which is upstream of the first nitrogen oxide reduction catalyst (2) in terms of flow.
4. Kraftfahrzeug nach Anspruch 3, dadurch gekennzeichnet, dass der Wärmetauscher (3) strömungstechnisch dem ersten Stickoxidreduktions katalysator (2) vorgeschaltet und dem zweiten Stickoxidreduktionskatalysator (8) nachgeschaltet ist. 4. Motor vehicle according to claim 3, characterized in that the heat exchanger (3) fluidically connected upstream of the first nitrogen oxide reduction catalyst (2) and downstream of the second nitrogen oxide reduction catalyst (8).
5. Kraftfahrzeug nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Reduktionsmittel zur Reduzierung von im Abgas enthaltenen Stickoxiden am ersten und/oder am zweiten Stickoxidreduktionskatalysator (2, 8) der zum Betrieb des Verbrennungsmotors eingesetzte Kraftstoff ist. 5. Motor vehicle according to one of claims 1 to 4, characterized in that the reducing agent for reducing nitrogen oxides contained in the exhaust gas on the first and / or on the second nitrogen oxide reduction catalyst (2, 8) is the fuel used to operate the internal combustion engine.
6. Kraftfahrzeug nach Anspruch 5, dadurch gekennzeichnet, dass der Verbrennungsmotor ausgebildet ist, das Reduktionsmittel über einen Brennraum des Verbrennungsmotors dem Abgassystem (1) zuzuführen. 6. Motor vehicle according to claim 5, characterized in that the internal combustion engine is designed to supply the reducing agent to the exhaust system (1) via a combustion chamber of the internal combustion engine.
7. Kraftfahrzeug nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Kraftstoff zum Betrieb des Verbrennungsmotors Wasserstoff ist. 7. Motor vehicle according to one of claims 1 to 6, characterized in that the fuel for operating the internal combustion engine is hydrogen.
8. Kraftfahrzeug nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass der zweite Stickoxidreduktionskatalysator (8) ein Mager-Denox-Katalysator ist, der eine Reduktion von Stickoxiden mit Wasserstoff als Reduktionsmittel katalysieren kann. 8. Motor vehicle according to one of claims 3 to 7, characterized in that the second nitrogen oxide reduction catalyst (8) is a lean Denox catalyst which can catalyze a reduction of nitrogen oxides with hydrogen as a reducing agent.
9. Kraftfahrzeug nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass eingangsseitig des ersten Stickoxidreduktionskatalysators (2) eine Dosier vorrichtung (11) zur Einbringung eines ammoniakhaltigen Reduktionsmittels ins Abgas vorgesehen ist. 9. Motor vehicle according to one of claims 1 to 8, characterized in that on the input side of the first nitrogen oxide reduction catalyst (2) a metering device (11) is provided for introducing an ammonia-containing reducing agent into the exhaust gas.
10. Kraftfahrzeug nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der erste Stickoxidreduktionskatalysator (2) Vanadium enthält. 10. Motor vehicle according to one of claims 1 to 9, characterized in that the first nitrogen oxide reduction catalyst (2) contains vanadium.
11. Kraftfahrzeug nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Kraftstoff zum Betrieb des Verbrennungsmotors Ammoniak ist. 11. Motor vehicle according to one of claims 1 to 9, characterized in that the fuel for operating the internal combustion engine is ammonia.
12. Betriebsverfahren für ein Kraftfahrzeug nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass der Anteil des durch den Wärmetauscher (3) geleiteten Abgases in Verbindung mit einem Betrieb des Wärmetauschers (3) und/oder der Energie rückgewinnungseinrichtung (6) so gewählt wird, dass eine Temperatur des ersten Stickoxidreduktionskatalysators (2) zumindest überwiegend unterhalb einer vorgebbaren oberen Temperaturgrenze gehalten wird. 12. Operating method for a motor vehicle according to one of claims 1 to 11, characterized in that the proportion of the exhaust gas passed through the heat exchanger (3) in connection with an operation of the heat exchanger (3) and / or the energy recovery device (6) is selected is that a temperature of the first nitrogen oxide reduction catalytic converter (2) is kept at least predominantly below a predeterminable upper temperature limit.
13. Betriebsverfahren nach Anspruch 12, dadurch gekennzeichnet, dass dem ersten und/oder dem zweiten Stickoxidreduktionskatalysator (2, 8) Reduktionsmittel zur Reduzierung von im Abgas enthaltenen Stickoxiden aus einem externen Vorratsbehälter zugeführt wird. 13. Operating method according to claim 12, characterized in that the first and / or the second nitrogen oxide reduction catalyst (2, 8) reducing agent for reducing nitrogen oxides contained in the exhaust gas is fed from an external storage container.
14. Betriebsverfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass zumindest einem Brennraum des Verbrennungsmotors Kraftstoff zu einem derart späten Zeitpunkt eines Arbeitstakts zugeführt wird, dass der Kraftstoff zumindest annähernd chemisch unverändert aus dem Verbrennungsmotor ausgestoßen und dem zweiten Stickoxidreduktionskatalysator (8) als Reduktionsmittel zur Reduzierung von im Abgas enthaltenen Stickoxiden zugeführt wird. 14. Operating method according to claim 12 or 13, characterized in that fuel is supplied to at least one combustion chamber of the internal combustion engine at such a late point in time of a working cycle that the fuel is expelled from the internal combustion engine at least approximately chemically unchanged and is supplied to the second nitrogen oxide reduction catalyst (8) as a reducing agent Reduction of nitrogen oxides contained in the exhaust gas is supplied.
PCT/AT2021/060233 2020-07-03 2021-07-02 Motor vehicle having an internal combustion engine which is operated with carbon-free fuel and which has an exhaust gas system connected thereto WO2022000012A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180036025.5A CN115667683A (en) 2020-07-03 2021-07-02 Motor vehicle with an internal combustion engine driven by a carbon-free fuel and an exhaust system connected thereto
DE112021001728.4T DE112021001728A5 (en) 2020-07-03 2021-07-02 Motor vehicle with an internal combustion engine powered by carbon-free fuel with an exhaust system connected thereto

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50564/2020 2020-07-03
ATA50564/2020A AT524011B1 (en) 2020-07-03 2020-07-03 Motor vehicle with an internal combustion engine powered by carbon-free fuel with an exhaust system connected thereto

Publications (1)

Publication Number Publication Date
WO2022000012A1 true WO2022000012A1 (en) 2022-01-06

Family

ID=77020992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2021/060233 WO2022000012A1 (en) 2020-07-03 2021-07-02 Motor vehicle having an internal combustion engine which is operated with carbon-free fuel and which has an exhaust gas system connected thereto

Country Status (4)

Country Link
CN (1) CN115667683A (en)
AT (1) AT524011B1 (en)
DE (1) DE112021001728A5 (en)
WO (1) WO2022000012A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4293207A1 (en) * 2022-06-14 2023-12-20 Volvo Truck Corporation An engine system comprising a hydrogen combustion engine and an exhaust aftertreatment system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007021827A1 (en) 2006-05-10 2007-11-15 Suzuki Motor Corp., Hamamatsu Exhaust gas system for hydrogen-fuelled engine has dosed introduction of hydrogen to catalytic converter
US20100019506A1 (en) * 2008-07-22 2010-01-28 Caterpillar Inc. Power system having an ammonia fueled engine
US20120144804A1 (en) * 2010-12-08 2012-06-14 IFP Enerqies Nouvelles Method and device for controlling the temperature of exhaust gas from an internal-combustion engine flowing through a means of treating the pollutants contained in this gas

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4412290B2 (en) * 2006-01-27 2010-02-10 トヨタ自動車株式会社 Gas fuel internal combustion engine
US8578704B2 (en) * 2010-04-28 2013-11-12 Tecogen, Inc. Assembly and method for reducing nitrogen oxides, carbon monoxide and hydrocarbons in exhausts of internal combustion engines
US9476340B2 (en) * 2012-04-16 2016-10-25 GM Global Technology Operations LLC Vehicle with stirling engine integrated into engine exhaust system
CH707885A1 (en) * 2013-04-12 2014-10-15 Liebherr Machines Bulle Sa Antriebssytsem with energy recovery from engine heat and with an exhaust aftertreatment.
KR102542945B1 (en) * 2018-04-24 2023-06-15 현대자동차주식회사 Heat exchanger for vehicles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007021827A1 (en) 2006-05-10 2007-11-15 Suzuki Motor Corp., Hamamatsu Exhaust gas system for hydrogen-fuelled engine has dosed introduction of hydrogen to catalytic converter
US20100019506A1 (en) * 2008-07-22 2010-01-28 Caterpillar Inc. Power system having an ammonia fueled engine
US20120144804A1 (en) * 2010-12-08 2012-06-14 IFP Enerqies Nouvelles Method and device for controlling the temperature of exhaust gas from an internal-combustion engine flowing through a means of treating the pollutants contained in this gas

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DIMITRIOU PAVLOS ET AL: "A review of ammonia as a compression ignition engine fuel", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, ELSEVIER SCIENCE PUBLISHERS B.V., BARKING, GB, vol. 45, no. 11, 22 January 2020 (2020-01-22), pages 7098 - 7118, XP086053636, ISSN: 0360-3199, [retrieved on 20200122], DOI: 10.1016/J.IJHYDENE.2019.12.209 *
KOCH DANIEL THOMAS ET AL: "H2 -DeNOx-Katalysator für H2-Verbrennungsmotoren", MTZ - MOTORTECHNISCHE ZEITSCHRIFT, vol. 81, no. 6/2020, 1 June 2020 (2020-06-01), pages 32 - 29, XP055848610, Retrieved from the Internet <URL:https://www.keyou.de/wp-content/uploads/2020/06/MTZ_KEYOU-06-2020.pdf> [retrieved on 20211008] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4293207A1 (en) * 2022-06-14 2023-12-20 Volvo Truck Corporation An engine system comprising a hydrogen combustion engine and an exhaust aftertreatment system

Also Published As

Publication number Publication date
DE112021001728A5 (en) 2023-01-12
AT524011B1 (en) 2022-04-15
AT524011A1 (en) 2022-01-15
CN115667683A (en) 2023-01-31

Similar Documents

Publication Publication Date Title
DE102016213322B4 (en) Dual catalyst heating system
EP1771644B1 (en) Exhaust gas system, in particular for the internal combustion engine of a motor vehicle
EP1985356B1 (en) Mixing and/or vaporisation device
DE102009000804B4 (en) emission control system
EP3150814B1 (en) Method for operating a waste gas treatment system
EP2568137B1 (en) Heated injection system for exhaust gas systems of Diesel engines
DE102009053950A1 (en) Device for aftertreatment of exhaust gases of internal combustion engines
DE102013200361B4 (en) Exhaust gas aftertreatment system, motor vehicle and method for exhaust aftertreatment
EP1892394A1 (en) Exhaust gas finishing treatment system
EP1892395A1 (en) Exhaust gas treatment system
EP1554474B1 (en) Exhaust gas cleaning system of an internal combustion engine and method for cleaning exhaust gases
WO2017088958A1 (en) Exhaust gas post-treatment device for an internal combustion engine, and method for operating a drive device with an exhaust gas post-treatment device of this type
DE102015016986A1 (en) Exhaust after-treatment device for an internal combustion engine
DE202005008146U1 (en) Motor vehicle exhaust system comprises a regenerable particulate filter upstream of a selective catalytic reduction catalyst with ammonia storage capacity
WO2004111401A1 (en) Device and method for purifying the exhaust gas of an internal combustion engine
WO2022000012A1 (en) Motor vehicle having an internal combustion engine which is operated with carbon-free fuel and which has an exhaust gas system connected thereto
EP1859131B1 (en) Method for exhaust gas treatment for diesel engines or similar and device for carrying out said method
DE102014201077B4 (en) Exhaust gas cleaning system for selective catalytic reduction
EP2313181B1 (en) Method for the controlled feeding of a reducing agent
EP1957767B1 (en) Method for exhaust-gas aftertreatment in internal combustion engines, and apparatus for carrying out this method
DE102004049289B4 (en) Exhaust after-treatment system and exhaust aftertreatment method for an internal combustion engine
DE102007035937A1 (en) Exhaust gas after-treatment system for use with spontaneous combustion for treating exhaust gas of internal combustion engine, has particle filter and nitrogen oxide storage catalyst that is formed in high temperature-stable manner
DE102010064020B4 (en) Exhaust system and heating method
DE102005037959A1 (en) Automotive exhaust gas system has flow divider upstream of catalytic converter with by-pass pipe
DE102015004425B4 (en) Exhaust aftertreatment device and a motor vehicle with such an exhaust aftertreatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21745208

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112021001728

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21745208

Country of ref document: EP

Kind code of ref document: A1