WO2021261538A1 - Compound, method, and pharmaceutical composition for regulating plp1 expression - Google Patents

Compound, method, and pharmaceutical composition for regulating plp1 expression Download PDF

Info

Publication number
WO2021261538A1
WO2021261538A1 PCT/JP2021/023883 JP2021023883W WO2021261538A1 WO 2021261538 A1 WO2021261538 A1 WO 2021261538A1 JP 2021023883 W JP2021023883 W JP 2021023883W WO 2021261538 A1 WO2021261538 A1 WO 2021261538A1
Authority
WO
WIPO (PCT)
Prior art keywords
modified oligonucleotide
plp1
modified
positions
sequence
Prior art date
Application number
PCT/JP2021/023883
Other languages
French (fr)
Japanese (ja)
Inventor
新司 熊谷
峻幸 金川
浩昭 澤本
Original Assignee
田辺三菱製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田辺三菱製薬株式会社 filed Critical 田辺三菱製薬株式会社
Publication of WO2021261538A1 publication Critical patent/WO2021261538A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Definitions

  • the present invention relates to a compound for reducing at least one of the pre-mRNA level, mRNA level and protein level of Proteinipid protein 1 (PLP1) in an animal, a method using the compound, and a pharmaceutical composition containing the compound. Regarding.
  • the method of the present invention is useful for treating, preventing, or delaying progression of PLP1-related diseases such as Pelizaeus-Merzbacher Disease (PMD).
  • PMD Pelizaeus-Merzbacher Disease
  • Pelizaeus-Merzbacher's disease is the most common congenital cerebral white matter imperfecta that occurs in about 1 in 200,000 to 500,000 people. Many patients develop nystagmus and head tremor, which subsequently develop into convulsions and spastic paralysis.
  • Non-Patent Documents 1 to 4 Mutations in the proteolipid protein 1 gene (PLP1 gene) have been reported as the cause of the onset of PMD (Non-Patent Documents 1 to 4). PMDs are classified into congenital PMDs and classical PMDs according to the type of mutation in the PLP1 gene. Congenital PMD is caused by amino acid substitutions and splicing abnormalities due to point mutations in the PLP1 gene, and accounts for about 15-25% of all patients with PLP1 gene mutations. It is severe, develops from birth or newborn, and dies in infancy. Classic PMD is caused by duplication of the PLP1 gene and accounts for 50-75% of the same. It develops from early infancy and dies in early childhood.
  • Non-Patent Document 5 Suppressed the expression of PLP1 by using an antisense nucleic acid complementary to the base sequence of the intron region of the PLP1 gene, thereby congenital PMD. It has been confirmed that it shows a therapeutic effect in disease model mice that develop similar symptoms.
  • the antisense nucleic acid is a method designed based on the base sequence of the mouse PLP1 gene, it is difficult to clinically apply it as a therapeutic method for an actual PMD patient.
  • an object of the present invention is to provide compounds, compositions and methods for treating, preventing, delaying, or ameliorating PLP1-related diseases such as PMD.
  • An object of the present invention is also to provide a compound, a method, and a pharmaceutical composition for suppressing PLP1 expression.
  • the present inventors have conducted diligent studies, found a modified oligonucleotide that strongly suppresses PLP1-expression, and found that the modified oligonucleotide is effective for the treatment and prevention of PLP1-related diseases such as PMD, and completed the present invention. I came to let you.
  • the gist of the present invention is as follows. [1] A modified oligonucleotide consisting of 12 to 30 residues, and 9964 to 10286 positions, 140007 to 14152 positions, 4439 to 4470 positions, 4569 to 4616 positions from the 5'end of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing. Containing at least eight contiguous nucleic acid sequences complementary to any of the equilength moieties of positions 9061-9164, 11926-12015, 12817-12874, 14389-14920 or 15088-15114, said.
  • PGP1 Proteolipid protein 1
  • the full-length nucleobase sequence of the modified oligonucleotide contains at least eight contiguous nucleic acid sequences complementary to the equilength portion and is at least 85% complementary to the equilongate portion of the nucleobase sequence of SEQ ID NO: 1 in the sequence listing.
  • PGP1 Proteolipid protein 1
  • the full-length nucleobase sequence of the modified oligonucleotide contains at least eight contiguous nucleobase sequences complementary to the equilength portion of the position or position 14055 to 14091, and the nucleobase sequence of SEQ ID NO: 1 in the sequence listing.
  • a modified oligonucleotide consisting of 12 to 30 residues, and either at positions 10101 to 10130 or 14055 to 14091 from the 5'end of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing.
  • the full-length nucleobase sequence of the modified oligonucleotide contains at least eight contiguous nucleic acid sequences complementary to the equilength portion and is at least 85% complementary to the equilongate portion of the nucleobase sequence of SEQ ID NO: 1 in the sequence listing.
  • a modified oligonucleotide that suppresses [6] A modified oligonucleotide consisting of 12 to 30 residues, and 4439 to 4470, 4569 to 4616, 961 to 9164, 9964 to 10055 from the 5'end of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing. , 10056 to 10286, 11926 to 12015, 12817 to 12874, 14007 to 14095, 14112 to 14152, 14039 to 14920, or 15088 to 15114, at least eight complementary to any of the equal length portions.
  • PGP1 Proteolipid protein 1
  • PGP1 Proteolipid protein 1
  • SEQ ID NO: 1 Proteolipid protein 1
  • a modified oligonucleotide that suppresses [8] The modified oligonucleotide according to any one of [1] to [7], which is a single strand. [9] The modified oligonucleotide according to any one of [1] to [8], wherein at least one nucleoside constituting the modified oligonucleotide contains a modified sugar. [10] The above-mentioned [9], wherein the modified sugar is selected from the group consisting of a bicyclic sugar, a sugar modified with 2'-O-methoxyethyl, and a sugar modified with 2'-O-methyl. Modified oligonucleotide.
  • Bicyclic sugars are selected from the sugar moieties of LNA, ENA, cEt, GuNA, ALNA [Ms], ALNA [mU], ALNA [ipU], ALNA [Oxz], or ALNA [Trz].
  • the modified oligonucleotide according to [12] wherein the modified nucleobase is 5-methylcytosine.
  • the modified oligonucleotide is 1) Gap segment and 2) 5'wing segment and 3) Including 3'wing segment, The gap segment is positioned between the 5'wing segment and the 3'wing segment.
  • a pharmaceutical composition comprising the modified oligonucleotide according to any one of [1] to [16] or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
  • the pharmaceutical composition according to [18], wherein the PLP1-related disease is Pelizaeus-Merzbacher's disease.
  • PLP1 expression can be efficiently suppressed, the symptoms of PLP1-related diseases such as Pelizaeus-Merzbacher's disease can be improved, and an effective drug for the prevention and treatment of the diseases is provided. ..
  • Nucleobase means a heterocyclic moiety that can be paired with the base of another nucleic acid.
  • Nucleobase sequence means a continuous sequence of nucleobases constituting the oligonucleotide of the present invention.
  • Nucleoside means a molecule in which a sugar and a nucleobase are linked. In certain embodiments, the nucleoside is linked to a phosphate group.
  • Nucleotide means a molecule in which a phosphate group is bonded to the sugar portion of a nucleoside.
  • the naturally occurring nucleotide has a sugar moiety of ribose or deoxyribose, which is covalently bonded by a phosphodiester bond via a phosphate group.
  • Oligomer compound or "oligomer” means a polymer of linked monomer subunits that can hybridize to at least one region of a nucleic acid molecule.
  • Oligonucleotide means a polymer of nucleosides in which each nucleoside and the bonds between each nucleoside are linked independently of each other.
  • Nucleoside bond refers to a chemical bond between nucleosides.
  • Naturally occurring nucleoside bond means a 3'-5'phosphodiester bond.
  • Modified nucleoside bond refers to a substitution or arbitrary change from a naturally occurring nucleoside bond (ie, a phosphodiester nucleoside bond). For example, there are, but are not limited to, phosphorothioate nucleoside linkages.
  • Phosphodiester bond between nucleosides means a bond between nucleosides in which the phosphodiester bond is modified by replacing one of the non-crosslinked oxygen atoms with a sulfur atom.
  • the phosphorothioate bond is an example of the modified nucleoside-linked bond.
  • Modified nucleobase refers to any nucleobase other than adenine, cytosine, guanine, thymidine or uracil. For example, there is, but is not limited to, 5-methylcytosine.
  • Unmodified nucleobase means the purine bases adenine (A) and guanine (G), as well as the pyrimidine bases thymine (T), cytosine (C) and uracil (U).
  • Modified oligonucleotide means an oligonucleotide containing at least one of the modified nucleosides and / or the linkage between the modified nucleosides.
  • Salt is a general term for compounds in which one or more dissociable hydrogen ions contained in an acid are replaced with cations such as metal ions and ammonium ions, and the salt of the modified oligonucleotide is phosphorothioate.
  • a salt eg, sodium salt, magnesium salt
  • an inorganic ion eg, sodium ion, magnesium ion
  • a functional group eg, amino group
  • “Sugar” or “sugar moiety” means a natural sugar moiety or a modified sugar moiety.
  • Modified sugar refers to a substitution or change from a natural sugar.
  • Examples of the modified sugar include a substituted sugar moiety and a bicyclic sugar.
  • Substituted sugar moiety means furanosyl other than natural sugar in RNA or DNA.
  • Bicyclic sugar means a furanosyl ring modified by cross-linking two different carbon atoms present on the same ring.
  • Single-stranded oligonucleotide means an oligonucleotide that does not hybridize with the complementary strand.
  • PLP1 means a nucleic acid or protein called Proteinipid protein 1.
  • PLP1 may include, for example, various splicing variants transcribed from the PLP1 gene, sequence variants such as single nucleotide polymorphisms (SNPs).
  • SNPs single nucleotide polymorphisms
  • “Complementary” means the ability of the first nucleic acid to form a pair between the nucleobases of the second nucleic acid.
  • adenine is complementary to thymidine or uracil.
  • cytosine is complementary to guanine.
  • 5-methylcytosine is complementary to guanine.
  • “Completely complementary (also referred to as complementarity)” or “100% complementary (also referred to as complementarity)” means that the nucleobase sequence of the first nucleic acid is completely complementary to the nucleobase sequence of the second nucleic acid. It means that there is.
  • the first nucleic acid is a modified oligonucleotide and the target nucleic acid is a second nucleic acid.
  • mismatch or “non-complementary nucleobase” refers to the case where the nucleobase of the first nucleic acid cannot be paired with the corresponding nucleobase of the second or target nucleobase.
  • Target nucleic acid refers to nucleic acids that can be targeted by modified oligonucleotides.
  • the target nucleic acid comprises a region of PLP1 mRNA or PLP1 pre-mRNA.
  • Microtif means a combination of chemically heterogeneous regions in a modified oligonucleotide.
  • a “pharmaceutically acceptable salt” is a physiologically and pharmaceutically acceptable salt of a modified oligonucleotide of the invention, i.e., which retains the desired biological activity of the modified oligonucleotide and imparts an undesired toxic effect to it. Means no salt.
  • administering means giving the drug to an animal, and includes, but is not limited to, administration by a medical expert and self-administration.
  • “Improvement” refers to reducing at least one indicator, sign or symptom of a related disease, disorder or condition.
  • the severity of the indicator can be determined by subjective or objective measures known to those of skill in the art.
  • Animal refers to humans, or non-human animals including, but not limited to, mice, rats, rabbits, dogs, cats, pigs, and, but not limited to, non-human primates including monkeys and chimpanzees. Point to.
  • Effective amount means the amount of the modified oligonucleotide of the invention that is sufficient to achieve the desired physiological outcome in an individual in need of the drug. Effective amounts vary among individuals depending on the health and physical condition of the individual being treated, the taxon of the individual being treated, the formulation of the composition, the assessment of the individual's medical condition and other relevant factors. obtain.
  • “Individual” means a human or non-human animal selected for treatment or therapy.
  • Preventing delays or delays the onset or onset of a disease, disorder or unfavorable health condition, or one or more symptoms associated with the disease, disorder or unfavorable health condition over a period of minutes to an indefinite period of time. It means to prevent it. Prevention also means reducing the risk of developing a disease, disorder or unfavorable health condition.
  • Treatment reduces or eliminates or eliminates a disease, disorder or unfavorable health condition, or one or more symptoms associated with the disease, disorder or unfavorable health condition, or the disease, disorder. , Or means to partially eliminate or eradicate one or more causes of the unfavorable health condition itself.
  • Certain specific embodiments shown below are not limited to these, but provide a compound for suppressing the expression of PLP1, a method using the compound, and a pharmaceutical composition containing the compound.
  • the modified oligonucleotide of the present invention (hereinafter, may be referred to as "the compound of the present invention” or “the modified oligonucleotide of the present invention”) is an antisense oligonucleotide of PLP1 having an activity of suppressing PLP1 expression.
  • Suppression of PLP1 expression (level) in the present invention refers to the pre-mRNA level transcribed from the PLP1 gene, the pre-mRNA spliced mRNA level, and the PLP1 protein level translated from the mRNA (collectively, "PLP1". It means suppressing at least one of (sometimes referred to as "expression level").
  • the PLP1 mRNA is not particularly limited and may include sequence variations.
  • the PLP1 mRNA represented by the sequence (SEQ ID NO: 1 in the sequence listing) described in GenBank accession number NG_00863.2: 4996-21109 is used. Can be mentioned.
  • T is replaced with U in SEQ ID NO: 1.
  • the degree of suppression of PLP1 expression possessed by the compound of the present invention is lower than that when at least one of the pre-mRNA level, mRNA level and protein level of PLP1 is not administered with the compound, and as a result, PLP1-related diseases occur. Any degree may be used as long as the prevention and / or improvement of the accompanying symptoms is observed.
  • the PLP1 expression level is at least 70% or less, preferably 50% or less, more preferably 40% or less, still more preferably 30% or less, and particularly preferably 20% or less, as compared with the case of non-contact or contact with a negative control substance. Is used.
  • an IC 50 having an IC 50 of preferably 100 nM or less, more preferably 50 nM or less, and more preferably 20 nM or less is used.
  • the method for verifying the activity of the compound of the present invention may be any method as long as it can be verified that the compound of the present invention suppresses PLP1 expression, and the method described in "Method for evaluating the compound of the present invention" described later is exemplified. Will be done.
  • the compound of the present invention is a modified oligonucleotide consisting of 12 to 30 residues, preferably 16 to 18 residues, having an activity of suppressing PLP1 expression, and the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing. 9964 to 10286, 140007 to 14152, 4439 to 4470, 4569 to 4616, 9061 to 9164, 11926 to 12015, 12817 to 12874, 14039 to 14920 or 15088 to 15114 from the 5'end of the Any one may be used as long as it contains at least eight consecutive nucleobase sequences (hereinafter referred to as "PLP1 complementary nucleobase sequence") complementary to any of the equal length portions.
  • the PLP1 complementary nucleobase sequence is preferably 8 to 25 consecutive nucleobase sequences, more preferably 12 to 20 consecutive nucleobase sequences, and even more preferably 16,17. , 18, 19 or 20 consecutive nucleobase sequences.
  • the compound of the present invention is a modified oligonucleotide consisting of 12 to 30 residues, preferably 16 to 18 residues, having an activity of suppressing PLP1 expression, and the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing. Any one containing at least 8 consecutive nucleobase sequences complementary to any of the equilength portions of positions 10014 to 10152, 10180 to 10252, or 14033 to 14113 from the 5'end of the above. ..
  • the PLP1 complementary nucleobase sequence is preferably 8 to 25 consecutive nucleobase sequences, more preferably 12 to 20 consecutive nucleobase sequences, and even more preferably 16,17. , 18, 19 or 20 consecutive nucleobase sequences.
  • the compound of the present invention is a modified oligonucleotide consisting of 12 to 30 residues, preferably 16 to 18 residues, having an activity of suppressing PLP1 expression, and the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing.
  • At least 8 consecutive nucleobase sequences complementary to any of the equilongate moieties at positions 10036 to 10055, 10064 to 10089, 10101 to 10130, 10202 to 10230, or 14055 to 14091 from the 5'end of Anything containing (hereinafter referred to as "PLP1 complementary nucleic acid base sequence") may be used.
  • the PLP1 complementary nucleobase sequence is preferably 8 to 25 consecutive nucleobase sequences, more preferably 12 to 20 consecutive nucleobase sequences, and even more preferably 16,17. , 18, 19 or 20 consecutive nucleobase sequences.
  • the compound of the present invention is a modified oligonucleotide consisting of 12 to 30 residues, preferably 16 to 18 residues, having an activity of suppressing PLP1 expression, and the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing.
  • At least eight consecutive nucleobase sequences complementary to any of the equal length portions of positions 10101 to 10130 or 14055 to 14091 from the 5'end of the above hereinafter referred to as "PLP1 complementary nucleobase sequence"). Anything may be used as long as it contains (referred to as).
  • the PLP1 complementary nucleobase sequence is preferably 8 to 25 consecutive nucleobase sequences, more preferably 12 to 20 consecutive nucleobase sequences, and even more preferably 16,17. , 18, 19 or 20 consecutive nucleobase sequences.
  • the PLP1 complementary nucleobase sequence from the 5'end of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing, positions 10036 to 10051, positions 10037 to 10025, positions 10028 to 10053, positions 10039 to 10045 to 10040 to 10055, 10064 to 10094, 10065 to 10080, 10066 to 10081, 10067 to 10082, 10068 to 10083, 10069 to 10084, 10070 to 10085, 10071 to 10086, 10072 to 10087, 10073 to 10087.
  • the compound of the present invention is a modified oligonucleotide consisting of 12 to 30 residues, preferably 16 to 18 residues, having an activity of suppressing PLP1 expression, and the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing. From the 5'end, 4439-4470, 4569-4616, 9061-9164, 9964-10055, 10056-10286, 11926-12015, 12817-12874, 14007-14895, 14112-14152, Any one containing at least eight consecutive nucleobase sequences complementary to any of the equilength portions of positions 14839 to 14920 or 15088 to 15114 may be used.
  • the PLP1 complementary nucleobase sequence is preferably 8 to 25 consecutive nucleobase sequences, more preferably 12 to 20 consecutive nucleobase sequences, and even more preferably 16,17. , 18, 19 or 20 consecutive nucleobase sequences.
  • the modified oligonucleotide of the present invention has a total length of 12 to 30 residues in addition to the PLP1 complementary nucleic acid base sequence, and the full length nucleic acid base sequence is the nucleic acid base of SEQ ID NO: 1 in the sequence listing. It may have an additional sequence on its 5'end and / or 3'end, as long as it has at least 85% complementarity to the equal length portion of the sequence. Further, the addition sequence may be any as long as the modified oligonucleotide of the present invention has an activity of suppressing PLP1 expression.
  • the full-length nucleobase sequence of the modified oligonucleotide has at least 85% complementarity to the equilength portion of SEQ ID NO: 1 in the sequence listing, with the complementarity preferably 90%, more preferably 95%. More preferably, it is 100%.
  • the equal-length portion has homology when the nucleic acid base sequence of the modified oligonucleotide of the present invention and the nucleic acid base sequence of PLP1 pre-mRNA or mRNA are aligned using software such as BLAST. It means a part detected as a part.
  • the nucleobase sequence of the oligonucleotide of the present invention is completely complementary to the equal length portion of the PLP1 pre-mRNA or the nucleobase sequence of the mRNA, but it has one or more mismatched nucleobases. It may be used, and those having a complementarity of 85% or more, 90% or more, preferably 95% or more are used.
  • the mismatched nucleobase may be continuous or may be sandwiched between PLP1 complementary nucleobase sequences.
  • the percentage of complementarity of the antisense oligonucleotide of the present invention with PLP1 pre-mRNA or mRNA is described in BLAST programs (basic local alignment sequences) and PowerBLAST programs (Altschul et al., J. Mol. Biol) known in the art. , 1990, 215, 403 410; Zhang and Madden, Genome Res., 1997, 7, 649, 656).
  • Percent of homology, sequence identity or complementarity can be determined, for example, by the Gap Program (WisconsinSequence Analysis Package, Version 8 for Unix, Genetics Computer Group, Universals Computer Group, University ResearchAp. It can be determined using the default settings that use the algorithms of., 1981, 2, 482, 489). For example, when 18 of the 20 nucleobases of a modified oligonucleotide are complementary to and hybridize to the equivalescent portion of PLP1 pre-mRNA, the modified oligonucleotide has 90% complementarity.
  • TACCGTTGCGCTCAGG (Complementary sequence at positions 10104 to 10119 of SEQ ID NO: 1) (SEQ ID NO: 2 in the sequence listing) CCTGTTACCGTTGCGC (Complementary sequence at positions 10109 to 10124 of SEQ ID NO: 1) (SEQ ID NO: 3 in the sequence listing) GGCCCCCTGTTACCGT (Complementary sequence at positions 10114 to 10129 of SEQ ID NO: 1) (SEQ ID NO: 4 in the sequence listing) TCGGGATGTCCTAGCC (Complementary sequence at positions 10202 to 10217 of SEQ ID NO: 1) (SEQ ID NO: 5 in the sequence listing) GTCGGGATGTCCTAGC (Complementary sequence at positions 10203 to 10218 of SEQ ID NO: 1) (SEQ ID NO: 6 in the sequence listing) ATGAGTTTAAGGACGG (complementary sequence at positions 14056 to 14071 of SEQ ID NO: 2).
  • nucleic acid base sequence of the modified oligonucleotide of the present invention As an example of a specific nucleic acid base sequence of the modified oligonucleotide of the present invention, Complementary sequence at positions 4450 to 4467 of SEQ ID NO: 1, Complementary sequence at positions 14020 to 14037 of SEQ ID NO: 1, Complementary sequence at positions 14025 to 14042 of SEQ ID NO: 1, Complementary sequence at positions 14055 to 14072 of SEQ ID NO: 1, or complementary sequence at positions 14060 to 14077 of SEQ ID NO: 1, The nucleic acid base sequence described in is mentioned.
  • the modified oligonucleotide of the present invention may be a double-stranded modified oligonucleotide, but a single-stranded modified oligonucleotide is preferably used.
  • modified sugar As the modified oligonucleotide of the present invention, one in which at least one nucleoside constituting the oligonucleotide contains a modified sugar is preferably used.
  • the modified sugar means a modified sugar moiety, and a modified oligonucleotide containing one or more of the modified sugars has advantageous features such as enhanced nuclease stability and increased binding affinity.
  • At least one of the modified sugars is preferably selected from the group consisting of bicyclic sugars, 2'-MOE modified sugars, and 2'-OMe modified sugars.
  • Bicyclic sugars include, for example, LNA, ENA, cEt, GuNA, ALNA [Ms], ALNA [mU], ALNA [ipU], ALNA [Oxz], or ALNA [Trz] sugars, as shown below.
  • the portion is raised, and the sugar moiety of ALNA [Ms] is preferably used.
  • substituted sugar moieties are, but are not limited to, 5'-vinyl, 5'-methyl (R or S), 4'-S, 2'-F, 2'-OCH 3 (2'-OMe). , 2'-OCH 2 CH 3 , 2'-OCH 2 CH 2 F and 2'-O (CH 2 ) 2 OCH 3 (2'-MOE) nucleosides containing substituents.
  • Substituents at the 2'position are allyl, amino, azide, thio, O-allyl , OC 1 to C 10 alkyl, OCF 3 , OCH 2 F, O (CH 2 ) 2 SCH 3 , O (CH 2 ).
  • each R l , R m and R n are independently H or substituted or unsubstituted C 1 to C 10 alkyl). You can choose from.
  • nucleosides with bicyclic sugars include, but are not limited to, nucleosides that include crosslinks between the 4'and 2'ribosyl ring atoms.
  • the oligonucleotides provided herein comprise a nucleoside having one or more bicyclic sugars whose cross-linking comprises one of the following formulas: 4'-(CH 2). ) -O-2'(LNA);4'-(CH 2 ) -S-2';4'-(CH 2 ) 2- O-2'(ENA);4'-CH (CH 3 ) -O -2'(cEt) and 4'-CH (CH 2 OCH 3 ) -O-2' (and their analogs, see US Pat.
  • Each of the aforementioned bicyclic sugar-bearing nucleosides can be prepared with one or more stereochemical sugar configurations, including, for example, ⁇ -L-ribofuranose and ⁇ -D-ribofuranose.
  • GuNA of nucleosides with bicyclic sugars has been reported as artificial nucleosides with guanidine crosslinks (see WO2014 / 046212, WO2017 / 047816).
  • the bicyclic nucleosides ALNA [Ms], ALNA [mU], ALNA [ipU], ALNA [Trz] and ALNA [Oxz] have been reported as crosslinked artificial nucleic acid amino LNA (ALNA) (WO2020 / 100826). Please refer to).
  • a bridge containing two linking groups is included, in which X is 0, 1 or 2; n is 1, 2, 3 or 4; each Ra and R b are independently H, a protective group.
  • Hydroxyl C 1 to C 12 alkyl, substituted C 1 to C 12 alkyl, C 2 to C 12 alkenyl, substituted C 2 to C 12 alkenyl, C 2 to C 12 alkynyl, substituted C 2 to C 12 alkynyl, aromatic ring.
  • the cross-linking of the bicyclic sugar moiety is-[C (R a ) (R b )] n -,-[C (R a ) (R b )] n- O-, -C. (R a R b ) -N (R) -O- or C (R a R b ) -ON (R)-.
  • the crosslinks are 4'-CH 2 -2', 4'-(CH 2 ) 2 -2', 4'-(CH 2 ) 3 -2', 4'-CH 2- O.
  • the nucleoside having a bicyclic sugar in this case is also referred to as LNA
  • 4'-(CH 2 ) 2- O-2' The nucleoside having a bicyclic sugar in this case is also referred to as ENA
  • 4'-CH (CH 3 ) -O-2' the nucleoside having a bicyclic sugar is also referred to as cEt
  • the cross-linking of the bicyclic sugar moiety is 4'-CH 2- O-2'-(LNA) or CH 2- N (R)-, where each R is independent.
  • -CO-NH-CH 3 ALNA [mU]
  • 1,5-dimethyl-1,2,4-triazole-3-yl ALNA [Trz]
  • -CO-NH-CH CH 3 ) 2
  • ANA [ipU] 5-Methyl-1,2,4-oxadiazole-3-yl
  • nucleosides with bicyclic sugars are further defined by isomer configuration.
  • a nucleoside containing a 4'-(CH 2 ) -O-2'crosslink may be present in an ⁇ -L-configuration or a ⁇ -D-configuration.
  • nucleosides with bicyclic sugars include, but are not limited to, ⁇ -L-4'-(CH 2 ). -O-2', ⁇ -D-4'-CH 2- O-2', 4'-(CH 2 ) 2- O-2', 4'-CH 2 -ON (R) -2' 4, 4'-CH 2- N (R) -O-2', 4'-CH (CH 3 ) -O-2', 4'-CH 2- S-2', 4'-CH 2 -CH ( CH 3) -2 'and 4' - (CH 2) 3 -2 '( wherein, R, H, a protecting group, C 1 ⁇ C 12 alkyl, or C 1 in ⁇ C 12 alkyl which may be substituted Urea or guanidine).
  • nucleosides with bicyclic sugars have the following formula: During the ceremony Bx is the heterocyclic base portion;
  • the T a and T b are each independently a hydrogen atom, a hydroxyl protecting group, optionally phosphate groups be substituted, a covalent bond etc. to phosphorus moiety or support;
  • Z a is C 1 to C 6 alkyl, C 2 to C 6 alkenyl, C 2 to C 6 alkynyl, substituted C 1 to C 6 alkyl, substituted C 2 to C 6 alkenyl, substituted C 2 to C 6 alkynyl, acyl. , Substituted acyl, substituted amide, thiol or substituted thiol.
  • NJ c J d in the formula, each J c , J d and J e are independently H, C 1 to C 6 alkyl or substituted C 1 to C 6 alkyl, and X is O or NJ c ). It is mono- or poly-substituted with independently selected substituents.
  • nucleosides with bicyclic sugars have the following formula: During the ceremony Bx is the heterocyclic base portion;
  • the T a and T b are each independently a hydrogen atom, a hydroxyl protecting group, optionally phosphate groups be substituted, a covalent bond etc. to phosphorus moiety or support;
  • nucleosides with bicyclic sugars have the following formula: During the ceremony Bx is the heterocyclic base portion;
  • the T a and T b are each independently a hydrogen atom, a hydroxyl protecting group, optionally phosphate groups be substituted, a covalent bond etc. to phosphorus moiety or support;
  • R d is C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 2 to C 6 alkenyl, substituted C 2 to C 6 alkynyl, C 2 to C 6 alkynyl or substituted C 2 to C 6 alkynyl.
  • Each q a , q b , q c and q d are independently H, halogen, C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 2 to C 6 alkenyl, substituted C 2 to C 6 alkenyl, C 2 to C 6 alkynyl or substituted C 2 to C 6 alkynyl, C 1 to C 6 alkoxyl, substituted C 1 to C 6 alkoxyl, acyl, substituted acyl, C 1 to C 6 aminoalkyl or substituted C 1 to C 6 amino It is alkyl.
  • nucleosides with bicyclic sugars have the following formula: During the ceremony Bx is the heterocyclic base portion;
  • the T a and T b are each independently a hydrogen atom, a hydroxyl protecting group, optionally phosphate groups be substituted, a covalent bond etc. to phosphorus moiety or support;
  • q a , q b , q e and q f are independently hydrogen, halogen, C 1 to C 12 alkyl, substituted C 1 to C 12 alkyl, C 2 to C 12 alkoxy, substituted C 2 to C 12 alkoxy, respectively.
  • adenine, cytosine, guanine, 5-methyl-cytosine, thymine and uracil bicyclic nucleosides are their oligomerizations and nucleic acids. Described with recognition characteristics (Koshkin etal., Tetrahedron, 1998, 54, 3607-3630).
  • the synthesis of nucleosides with bicyclic sugars is also described in WO98 / 39352 and WO99 / 14226.
  • 2'-amino-LNA bicyclic nucleosides in this case also referred to as ALNA
  • ALNA bicyclic nucleosides in this case also referred to as ALNA
  • oligonucleotide analogs in the art.
  • 2'-amino- and 2'-methylamino-LNA have been prepared and double-stranded thermal stability with complementary RNA and DNA strands has been previously reported.
  • nucleosides with bicyclic sugars have the following formula: During the ceremony Bx is the heterocyclic base portion;
  • the T a and T b are each independently a hydrogen atom, a hydroxyl protecting group, optionally phosphate groups be substituted, a covalent bond etc. to phosphorus moiety or support;
  • Each q i , q j , q k and q l are independently H, halogen, C 1 to C 12 alkyl, substituted C 1 to C 12 alkyl, C 2 to C 12 alkoxy, substituted C 2 to C 12 alkoxy, respectively.
  • nucleosides having bicyclic sugars include, but are not limited to, compounds as shown below.
  • Bx is the base moiety
  • R represents independently a protecting group, C 1 ⁇ C 6 alkyl or C 1 ⁇ C 6 alkoxy.
  • nucleosides having bicyclic sugars have the following general formula: [During the ceremony, B is a nucleobase; Each of X and Y can independently include a nucleoside represented by a hydrogen atom, a protecting group for a hydroxyl group, a phosphate group which may be substituted, a covalent bond to a phosphorus moiety or a support, etc.] (WO98 / See 39352). A typical specific example is the following formula: The nucleotides indicated by can be mentioned.
  • nucleosides including bicyclics, have the following general formula: [In the formula, B is a nucleic acid base, and R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or a C 1-6 alkyl group which may be substituted with one or more substituents. Yes, R 7 and R 8 are independently hydrogen atoms, hydroxyl group protective groups, optionally substituted phosphate groups, covalent bonds to phosphorus moieties or supports, etc., and R 9 , R 10 , R 11 is a C 1-6 alkyl group or amino group protective group, each of which may be independently substituted with a hydrogen atom or one or more substituents. ] It is a nucleoside represented by (see, for example, WO2014 / 046212, WO2017 / 047816).
  • nucleosides comprising bicyclic sugars are represented by the following general formula (I):
  • B is a nucleobase
  • R 1 , R 2 , R 3 and R 4 are C 1-6 alkyl groups, each independently of which may be substituted with a hydrogen atom or one or more substituents
  • R 5 and R 6 are each independently a hydrogen atom, a protecting group for a hydroxyl group, a phosphate group which may be substituted, a covalent bond to a phosphorus moiety or a support, and the like
  • m is 1 or 2
  • X is the following formula (II-1): It is a group indicated by; Symbols described in formula (II-1): Indicates the binding point with the 2'-amino group;
  • One of R 7 and R 8 is a hydrogen atom and the other is a methyl group which may be substituted with one or more substituents.
  • a typical embodiment is a nucleoside in which one of R 7 and R 8 is a hydrogen atom and the other is an unsubstituted methyl group.
  • a nucleoside comprising a bicyclic sugar is a nucleoside having the general formula (I) as defined in ALNA [mU] above, wherein the nucleoside comprises the above formula.
  • X is the following formula (II-1): It is a group indicated by; One of R 7 and R 8 is a hydrogen atom and the other is an isopropyl group which may be substituted with one or more substituents (see, eg, WO2020 / 100826).
  • a typical embodiment is a nucleoside in which one of R 7 and R 8 is a hydrogen atom and the other is an unsubstituted isopropyl group.
  • the nucleoside comprising the bicyclic formula is a nucleoside having the above general formula (I), wherein X is the following formula (II-2) :. It is a group indicated by; A is a triazolyl group which may be substituted with one or more substituents (see, eg, Japanese Patent Application No. 2018-212424).
  • a typical embodiment of ALNA [Trz] is a triazolyl group in which A may have one or more methyl groups, more specifically 1,5-dimethyl-1,2,4-. It is a nucleoside, which is a triazole-3-yl group.
  • X is the following formula (II-2): It is a group indicated by; A is an oxadiazolyl group that may be substituted with one or more substituents (see, eg, Japanese Patent Application No. 2018-212424).
  • a typical embodiment is an oxadiazolyl group in which A may have one or more methyl groups, more specifically a 5-methyl-1,2,4-oxadiazole-3-yl group. Is a nucleoside or nucleotide.
  • the nucleoside comprising the bicyclic formula is a nucleoside having the above general formula (I), wherein X is the following general formula (II-3) :. It is a group indicated by; M is a sulfonyl group substituted with a methyl group optionally substituted with one or more substituents (see, eg, WO2020 / 100826).
  • a typical embodiment of ALNA [Ms] is a nucleoside, which is a sulfonyl group in which M is substituted with an unsubstituted methyl group.
  • the nucleoside is modified by replacing the ribosyl ring with a sugar substitute.
  • modifications include, but are not limited to, substitute ring systems (sometimes referred to as DNA analogs), such as morpholino rings, cyclohexenyl rings, cyclohexyl rings or tetrahydropyranyl rings, such as:
  • substitute ring systems sometimes referred to as DNA analogs
  • morpholino rings such as morpholino rings, cyclohexenyl rings, cyclohexyl rings or tetrahydropyranyl rings
  • morpholino rings such as morpholino rings, cyclohexenyl rings, cyclohexyl rings or tetrahydropyranyl rings, such as:
  • sugar substitutes having the following formula are selected: During the ceremony Bx is the heterocyclic base portion; T 3 and T 4 independently link the tetrahydropyran nucleoside analog to the oligomer compound, or one of T 3 and T 4 links the tetrahydropyran nucleoside analog to the oligomer compound or oligonucleotide.
  • q 1 , q 2 , q 3 , q 4 , q 5 , q 6 and q 7 are independently H, C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 2 to C 6 alkenyl, substituted, respectively.
  • q 1 , q 2 , q 3 , q 4 , q 5 , q 6 and q 7 are H, respectively. In certain embodiments, at least one of q 1 , q 2 , q 3 , q 4 , q 5 , q 6 and q 7 is other than H. In certain embodiments, at least one of q 1 , q 2 , q 3 , q 4 , q 5 , q 6 and q 7 is methyl. In certain embodiments, a THP nucleoside in which one of R 1 and R 2 is F is provided. In certain embodiments, R 1 is fluoro and R 2 is H; R 1 is methoxy and R 2 is H, and R 1 is methoxyethoxy and R 2 is. It is H.
  • Such sugar substitutes include, but are not limited to, those referred to in the art as hexitol nucleic acid (HNA), altritor nucleic acid (ANA) and mannitol nucleic acid (MNA) (Leumann, C.J. , Bioorg. & Med. Chem., 2002, 10, 841-854).
  • HNA hexitol nucleic acid
  • ANA altritor nucleic acid
  • MNA mannitol nucleic acid
  • the sugar substitute comprises a ring having more than 5 atoms and more than 1 heteroatom.
  • a ring having more than 5 atoms and more than 1 heteroatom For example, its use in nucleosides and oligomeric compounds containing morpholino sugar moieties has been reported (eg, Braach et al., Biochemistry, 2002, 41, 4503-4510; and US Pat. No. 5,698,685; 5,166. , 315; 5,185,444; and 5,034,506).
  • morpholino means a sugar substitute having the following structure:
  • the morpholino can be modified, for example, by adding or modifying various substituents from the morpholino structure described above.
  • Such sugar substitutes are referred to herein as "modified morpholino".
  • the oligonucleotide comprises one or more modified cyclohexenyl nucleosides, which are nucleosides having a 6-membered cyclohexenyl in place of the pentoflanosyl residue of the naturally occurring nucleoside.
  • Modified cyclohexenyl nucleosides include, but are not limited to, those described in the art (eg, WO2010 / 036696, published April 10, 2010, Robeyns et al., Concerning sharing. J. Am. Chem.
  • Certain modified cyclohexenyl nucleosides have the following formula: During the ceremony Bx is the heterocyclic base portion; T 3 and T 4 are each independently nucleoside interlinking groups that link the cyclohexenyl nucleoside analog to the oligonucleotide compound, or one of T 3 and T 4 ligates the tetrahydropyran nucleoside analog to the oligonucleotide compound.
  • T 3 and T 4 is an H, hydroxyl protecting group, linking conjugate group or 5'-or 3'-terminal group; q 1 , q 2 , q 3 , q 4 , q 5 , q 6 , q 7 , q 8 and q 9 are independently H, C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 2 respectively. ⁇ C 6 alkenyl, substituted C 2 to C 6 alkynyl, C 2 to C 6 alkynyl, substituted C 2 to C 6 alkynyl or other sugar substituents.
  • nucleobase moiety (natural, modified or a combination thereof) is maintained during hybridization with a suitable nucleic acid target.
  • modified sugars are the sugar moieties of ALNA [Ms], ALNA [mU], ALNA [ipU], ALNA [Oxz], or ALNA [Trz], of which the sugar moiety of ALNA [Ms] is more preferred. That is, in certain embodiments, the modified oligonucleotide of the present invention is a modified oligonucleotide consisting of 12 to 25 residues, preferably 16, 17, 18, 19 or 20 bases, which has an activity of suppressing PLP1 expression.
  • the nucleic acid base sequence of the modified oligonucleotide has at least 85%, at least 90%, or at least 95% complementarity to the equal length portion of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing, and the oligonucleotide is used.
  • At least one of the constituent nucleic acids is a modified oligonucleotide having a modified sugar selected from the sugar moiety of ALNA [Ms], ALNA [mU], ALNA [ipU], ALNA [Oxz], or ALNA [Trz]. ..
  • the modified oligonucleotide of the present invention is a modified oligonucleotide consisting of 12 to 25 residues, preferably 16, 17, 18, 19 or 20 bases, which has an activity of suppressing PLP1 expression.
  • the nucleic acid base sequence of the modified oligonucleotide has at least 85%, at least 90%, or at least 95% complementarity to the equal length portion of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing, and the oligonucleotide is used.
  • At least one of the constituent nucleic acid is a modified oligonucleotide having a sugar modified with 2'-MOE.
  • Modifications or substitutions of nucleobases are structurally distinguishable from naturally occurring or synthetic unmodified nucleobases and are more functionally compatible with such unmodified nucleobases. Both natural and modified nucleobases can be involved in hydrogen bonding. Such nucleobase modifications can impart nuclease stability, binding affinity or some other beneficial biological property to the oligonucleotide compound.
  • the modified oligonucleotide of the present invention one in which at least one nucleoside constituting the oligonucleotide contains a modified nucleobase is preferably used.
  • the modified nucleobase include 5-methylcytosine (5-me-C).
  • 5-Methylcytosine means cytosine modified with a methyl group attached to the 5-position. Certain nucleobase substitutions, including 5-methylcytosine substitutions, are particularly useful for increasing the binding affinity of oligonucleotides. For example, 5-methylcytosine substitution has been shown to increase double-stranded stability of nucleic acids by 0.6-1.2 ° C (Sanghvi, YS, CRC, ST and Lebleu, B., eds., Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278).
  • nucleic acid bases include 5-hydroxymethylcytosine, xanthin, hypoxanthin, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2 -Thiouracil, 2-thiothymine and 2-thiocitosine, 5-halouracil and cytosine, 5-propynyl (-C ⁇ C-CH 3 ) uracil and citocin and other alkynyl derivatives of pyrimidine base, 6-azouracil, cytosine and chimin, 5 -Uracil (Pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halos, especially 5-bromo, 5 -Trifluoromethyl
  • the heterocyclic base moiety can also include those in which the purine or pyrimidine base is replaced with another heterocycle, for example, 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone.
  • Nucleobases particularly useful for increasing the binding affinity of modified oligonucleotides include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines (2-aminopropyladenine, Includes 5-propynyluracil and 5-propynylcytosine).
  • modified nucleoside bond between RNA and DNA is a 3'-5'phosphodiester bond.
  • modified, i.e., non-naturally occurring, oligonucleotides with nucleoside linkages include, for example, enhanced cell uptake, enhanced affinity for target nucleic acids and increased stability in the presence of nucleases. Often preferred over naturally occurring oligonucleotides with internucleoside linkages because of their properties.
  • Oligonucleotides with modified nucleoside bonds include nucleoside bonds that retain a phosphorus atom and nucleoside bonds that do not have a phosphorus atom.
  • Representative phosphorus-containing nucleoside bonds include, but are not limited to, one or more of phosphodiesters, phosphotriesters, methylphosphonates, phosphoramidates and phosphorothioates. Methods for preparing phosphorus-containing and non-phosphorus-containing bonds are well known.
  • the nucleoside linkage of the modified oligonucleotide of the present invention may be any as long as the modified oligonucleotide has an activity of suppressing PLP1 expression, but one in which at least one nucleoside linkage contains a phosphorothioate nucleoside linkage is preferably used.
  • all nucleoside linkages may be phosphorothioate nucleoside linkages.
  • the modified oligonucleotides of the invention obtain increased resistance to degradation by nucleases, increased cell uptake, increased binding affinity for target nucleic acids and / or increased PLP1 expression inhibitory activity. Can have a gapmer motif.
  • Gapmer means a modified oligonucleotide in which an internal region with multiple nucleosides that assists cleavage by RNase H is located between external regions with one or more nucleosides.
  • the inner region can be referred to as a "gap segment” and the outer region can be referred to as a "wing segment”.
  • a wing segment existing on the 5'side of the gap segment can be called a "5'wing segment”
  • a wing segment existing on the 3'side of the gap segment can be called a "3'wing segment”.
  • the sugar portion of each wing's nucleoside approaching the gap is the sugar portion of the adjacent gap nucleoside. It is different from the sugar part.
  • the sugar moiety of the nucleoside on the most 3'side of the 5'-wing and the nucleoside on the most 5'side of the 3'-wing are modified sugars
  • the sugar moiety of the adjacent gap nucleoside is the sugar moiety of natural DNA.
  • the modified oligonucleotide of the invention comprises 1) a gap segment, 2) a 5'wing segment and 3) a 3'wing segment, wherein the gap segment comprises the 5'wing segment and the 3'. It is a modified oligonucleotide that is positioned between the wing segment and contains a nucleoside in which the nucleosides of the 5'wing segment and the 3'wing segment have a modified sugar.
  • the nucleoside in the gap segment may be only one having a sugar of natural DNA, or may be a nucleoside having one or more modified sugars.
  • the modified sugar is preferably selected from the group consisting of bicyclic sugars, sugars modified with 2'-MOE, and sugars modified with 2'-OMe, and the bicyclic sugars include, for example, At least one sugar moiety of LNA, ENA, cEt, GuNA, ALNA [Ms], ALNA [mU], ALNA [ipU], ALNA [Oxz] and ALNA [Trz] can be mentioned.
  • the number of nucleosides contained in the gap segment, the 5'wing segment and the 3'wing segment may be any number as long as it suppresses the inhibition of PLP1 expression.
  • the length is preferably 3-10-3 or 5-8-5 in the order of 5'wing segment-gap segment-3'wing segment, and ALNA [Ms] or 2 for both wing segments. '-Preferably those containing MOE.
  • cap structures are included at the ends of one or both of the modified oligonucleotides to enhance properties such as nuclease stability.
  • Suitable cap structures include 4', 5'-methylene nucleotides, 1- ( ⁇ -D-erythrofuranosyl) nucleotides, 4'-thionucleotides, carbocyclic nucleotides, 1,5-anhydrohexitol.
  • the method for evaluating the compound of the present invention may be any method as long as the compound of the present invention can verify the suppression of the intracellular expression level of PLP1, but specifically, for example, in vitro and in vivo shown below. A method for measuring PLP1 expression is used.
  • the in vitro PLP1 expression measuring method for evaluating the suppression of PLP1 expression in cells of the present invention can be any cell expressing PLP1 (hereinafter, may be referred to as "PLP1-expressing cell”).
  • PLP1-expressing cell can also be used, and examples thereof include A375 cells (human malignant melanoma cells, for example, ATCC CRL-1619).
  • the method of contacting the compound of the present invention with PLP1-expressing cells is also not particularly limited, but a method generally used for introducing nucleic acid into cells can be mentioned. Specifically, for example, a lipofection method, an electroporation method, a Gymnosis method, or the like. In the lipofection method, the compound of the present invention can be treated, for example, at a final concentration of 3, 10, 30 or 100 nM.
  • Intracellular mRNA levels of PLP1 can be assayed by a variety of methods known in the art. Specific examples include Northern blot analysis, competitive polymerase chain reaction (PCR), quantitative real-time PCR, and the like.
  • PCR competitive polymerase chain reaction
  • Intracellular protein levels of PLP1 can be assayed by a variety of methods known in the art. Specifically, for example, immunoprecipitation, Western blotting (immun blot), enzyme-linked immunosorbent assay (ELISA), quantitative protein assay, protein activity assay (eg, caspase activity assay), immunohistochemistry. , Immunocytochemistry or fluorescence activated cell sorting (FACS) and the like.
  • the in vivo PLP1 expression measuring method for evaluating the suppression of PLP1 expression in cells of the present invention is, for example, to administer the compound of the present invention to an animal expressing PLP1 and to express the above-mentioned PLP1 in the cells. There is a method of performing level analysis.
  • the compound of the present invention can be synthesized by the phosphoramidite method using a commercially available amidite for DNA / RNA synthesis (including LNA).
  • the artificial nucleic acids ALNA [Ms], ALNA [mU], ALNA [ipU], ALNA [Oxz] and ALNA [Trz] can synthesize oligomers by the method described in WO2020 / 100826.
  • the compound of the present invention can treat PLP1-related diseases by suppressing PLP1-expression.
  • the PLP1-related disease is not particularly limited as long as it is a disease caused by an abnormality in the PLP1 gene, and examples thereof include congenital cerebral white matter dysplasia.
  • Examples of congenital cerebral white matter dysplasia caused by an abnormality in the PLP1 gene include Pelizaeus-Merzbacher's disease, and Pelizaeus-Merzbacher's disease includes congenital Pelizaeus-Merzbacher's disease and classical Pelizaeus-Merzbacher's disease.
  • the present invention comprises modified oligonucleotides for use in the treatment, prevention or delay of progression of PLP1-related diseases; pharmaceutical compositions for use in the treatment, prevention or delay of progression of PLP1-related diseases; Use of modified oligonucleotides to treat, prevent or delay progression; use of modified oligonucleotides in the manufacture of drugs for the treatment, prevention or delay of progression of PLP1-related diseases; for treatment, prevention or delay of progression of PLP1-related diseases Provided are modified oligonucleotides for use in the manufacture of a pharmaceutical; a method for treating, preventing or delaying progression of a PLP1-related disease, comprising administering an effective amount of the modified oligonucleotide to a subject in need thereof.
  • composition containing a modified oligonucleotide The compound of the present invention, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier thereof can be used as a pharmaceutical composition.
  • modified oligonucleotides can be mixed with one or more pharmaceutically acceptable active or inert substances.
  • the composition and method for formulating the pharmaceutical composition can be selected according to several criteria including the route of administration, the degree of disease or the dose to be administered. For example, as a composition for parenteral administration, for example, an injection is used.
  • Such injections are prepared according to methods known per se, for example, by dissolving, suspending or emulsifying the modified oligonucleotide in a sterile aqueous or oily solution usually used for injections.
  • aqueous solution for injection for example, a phosphate buffered saline solution, a physiological saline solution, an artificial cerebrospinal fluid, an isotonic solution containing glucose and other adjuvants, and the like are used, and suitable solubilizing agents such as, for example, are used.
  • Alcohol eg, ethanol
  • polyalcohol eg, propylene glycol, polyethylene glycol
  • nonionic surfactants eg, polysolvate 80, HCO-50 (polyoxyethylene (50mo1) adduct of hydrogenated castor oil)
  • a buffering agent e.g, a pH adjusting agent, an tonicity agent, a soothing agent, a preservative, a stabilizer and the like can be included.
  • Such compositions are produced by known methods.
  • Parenteral administration includes, but is not limited to, subcutaneous administration, intravenous administration, intramuscular administration, intraarterial administration, intraperitoneal administration, intracranial administration, intrathecal administration, and intracerebroventricular administration. Administration may be continuous or long-term, short-term or intermittent.
  • compositions for oral administration include solid or liquid dosage forms, specifically tablets (including sugar-coated tablets and film-coated tablets), pills, granules, powders, capsules (including soft capsules), and syrups. Agents, emulsions, suspending agents and the like.
  • Such compositions are produced by known methods and contain carriers, diluents or excipients commonly used in the pharmaceutical field.
  • carriers, diluents or excipients commonly used in the pharmaceutical field.
  • the carrier and excipient for tablets for example, lactose, starch, sucrose, magnesium stearate and the like are used, and as the diluent, for example, physiological saline is used.
  • the pharmaceutical composition of the present invention can contain a reagent for introducing nucleic acid.
  • nucleic acid introduction reagent include liposomes, lipofectin, lipofectamine, DOGS (transferase), DOPE, DOTAP, DDAB, DHDEAB, HDEAB, polybrene, and cationic lipids such as poly (ethyleneimine) (PEI).
  • PES poly (ethyleneimine)
  • the modified oligonucleotide contained in the pharmaceutical composition of the present invention is biotin, a protein having affinity for in vivo molecules such as fatty acids, cholesterol, sugars, phospholipids, and antibodies at one or a plurality of places.
  • Phenazine, vitamins, peptides, folates, phenanthridines, anthraquinones, acridines, fluorescein, rhodamine, coumarins and dyes conjugated with conjugate groups are preferably used.
  • the conjugated modified oligonucleotide is produced by a known method, and one that enhances its activity, tissue distribution, cell distribution or cell uptake can be selected.
  • the conjugate group is directly attached to the modified oligonucleotide, or the conjugate group is amino, hydroxyl, carboxylic acid, thiol, unsaturated moiety (eg, double or triple bond), 8-amino-3. , 6-Dioxaoctanoic acid (ADO), succinimidyl 4- (N-maleimidemethyl) cyclohexane-1-carboxylate (SMCC), 6-aminohexanoic acid (AHEX or AHA), azide, substituted C1-C10 alkyl, substituted Alternatively, it is bound to the modified oligonucleotide by a linking moiety selected from the unsubstituted C2-C10 alkenyl and the substituted or unsubstituted C2-C10 alkynyl.
  • ADO 6-Dioxaoctanoic acid
  • SCC succinimidyl 4- (N-maleimidemethyl) cyclohexane-1-carboxy
  • the substituent is selected from amino, alkoxy, carboxy, azide, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl and alkynyl.
  • the administration form of the pharmaceutical composition of the present invention may be systemic administration such as oral administration, intravenous administration or intraarterial administration, or local administration such as intracranial administration, intrathecal administration or intracerebral administration. There may be.
  • the dose of the pharmaceutical composition of the present invention may be appropriately changed depending on the purpose of use, the severity of the disease, the age, weight, sex, etc. of the patient, but usually, the amount of the modified oligonucleotide is 0.1 ng to 100 mg / kg. / Day, preferably in the range of 1 ng to 10 mg / kg / day.
  • Example 1 Synthesis and purification of modified oligonucleotide compounds for in vitro evaluation
  • Modified oligonucleotide compounds having the nucleotide sequences shown in Table 1 (SEQ ID NOs: 11 to 63) are described in a general solid phase synthesis method for oligonucleotide analogs and ALNA [Ms] amidite (WO2020 / 100926). Synthesized and purified by Nippon Gene Co., Ltd. using the above method).
  • Table 1 shows the target positions of the synthesized modified oligonucleotide compound (16-residue modified oligonucleotide).
  • each nucleotide is represented by three letters.
  • the nucleotide at the 3'end is represented by two letters because there is no nucleoside bond.
  • the target position is indicated by the target start position to the target end position, and the target start position is the PLP1 pre-mRNA5'target site of the modified oligonucleotide (the position of SEQ ID NO: 1 in the sequence table corresponding to the 3'end of the modified oligonucleotide).
  • the target termination position shown indicates the PLP1 pre-mRNA3'target site of the modified oligonucleotide (position of SEQ ID NO: 1 in the sequence listing corresponding to the 5'end of the modified oligonucleot
  • Example 2 An In vitro PLP1 knockdown activity test synthesized modified oligonucleotide and transfection reagent on a mixture of Lipofectamine RNAi Reagent, were seeded such that the 4 ⁇ 10 3 cells / well of A375 cells, about 24 hours culture in a CO 2 incubator did. Then, using SuperPrep II Lysis & RT Kit for qPCR (TOYOBO), RNA was prepared and a reverse transcription reaction was performed to synthesize cDNA. The mRNA expression level was measured by quantitative real-time PCR using the synthesized cDNA.
  • Example 3 Synthesis and purification of modified oligonucleotide compounds for in vitro evaluation
  • Modified oligonucleotide compounds (SEQ ID NOs: 64-96) having the nucleotide sequences shown in Table 2 were synthesized and purified by Nippon Gene Co., Ltd. using a general solid-phase synthesis method for oligonucleotide analogs.
  • Table 2 shows the target positions of the synthesized modified oligonucleotide compound (18-residue modified oligonucleotide).
  • each nucleotide is represented by three letters.
  • the nucleotide at the 3'end is represented by two letters because there is no nucleoside bond.
  • the target position is indicated by the target start position to the target end position, and the target start position is the PLP1 pre-mRNA5'target site of the modified oligonucleotide (the position of SEQ ID NO: 1 in the sequence table corresponding to the 3'end of the modified oligonucleotide).
  • the target termination position shown indicates the PLP1 pre-mRNA3'target site of the modified oligonucleotide (position of SEQ ID NO: 1 in the sequence listing corresponding to the 5'end of the modified oligonucleot
  • Example 4 An In vitro PLP1 knockdown activity test synthesized modified oligonucleotide and transfection reagent on a mixture of Lipofectamine RNAi Reagent, were seeded such that the 4 ⁇ 10 3 cells / well of A375 cells, about 24 hours culture in a CO 2 incubator did. Then, using SuperPrep II Lysis & RT Kit for qPCR (TOYOBO), RNA was prepared and a reverse transcription reaction was performed to synthesize cDNA. The mRNA expression level was measured by quantitative real-time PCR using the synthesized cDNA.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Genetics & Genomics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Pain & Pain Management (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention pertains to: a modified oligonucleotide that is formed of 12-30 residues, that has at least eight consecutive nucleic acid base sequences complementary to an equal length portion at, from the 5'-end in the nucleic acid base sequence indicated in SEQ ID NO: 1 of the sequence listing, positions 9964-10286, positions 140007-14152, positions 4439-4470, positions 4569-4616, positions 9061-9164, positions 11926-12015, positions 12817-12874, positions 14839-14920, or positions 15088-15114, that has a total length nucleic acid base sequence being at least 85% complementation to an equal length portion of the nucleic acid base sequence indicated in SEQ ID NO: 1 of the sequence listing, and that inhibits expression of proteolipid protein 1 (PLP1); and a medicinal drug that contains the modified oligonucleotide and that is for treating, preventing, delaying, or improving PLP1-related diseases.

Description

PLP1発現を調節するための化合物、方法及び医薬組成物Compounds, methods and pharmaceutical compositions for regulating PLP1 expression
 本発明は、動物におけるProteolipid protein 1(PLP1)のpre mRNAレベル、mRNAレベル及びタンパク質レベルのうち、少なくとも一つを低減するための化合物、該化合物を用いる方法、及び該化合物を含有する医薬組成物に関する。本発明の方法は、PLP1関連疾患、例えば、ペリツェウス・メルツバッハー病(Pelizaeus-Merzbacher Disease: PMD)を治療し、予防し、又は進行遅延化するために有用である。 The present invention relates to a compound for reducing at least one of the pre-mRNA level, mRNA level and protein level of Proteinipid protein 1 (PLP1) in an animal, a method using the compound, and a pharmaceutical composition containing the compound. Regarding. The method of the present invention is useful for treating, preventing, or delaying progression of PLP1-related diseases such as Pelizaeus-Merzbacher Disease (PMD).
 ペリツェウス・メルツバッハー病(PMD)は、20-50万人に1人の概算頻度で発症する、先天性大脳白質形成不全症で最も頻度が高い疾患である。多くの患者は眼振、頭部の振戦が発現し、その後に痙攣、痙性麻痺などに進展する。 Pelizaeus-Merzbacher's disease (PMD) is the most common congenital cerebral white matter imperfecta that occurs in about 1 in 200,000 to 500,000 people. Many patients develop nystagmus and head tremor, which subsequently develop into convulsions and spastic paralysis.
 PMDの発症の原因として、プロテオリピッドプロテイン1遺伝子(PLP1遺伝子)の変異が報告されている(非特許文献1~4)。PMDは、PLP1遺伝子の変異の種類によって、先天型PMDと古典型PMDに分類される。先天型PMDは、PLP1遺伝子の点変異によるアミノ酸置換やスプライシング異常により引き起こされ、PLP1遺伝子変異を持つ患者全体の約15~25%を占める。重症で、出生もしくは新生児期より発症し、乳幼児期に死亡する。古典型PMDは、PLP1遺伝子の重複により引き起こされ、同50~75%を占める。乳児期早期より発症し幼小児期に死亡する。 Mutations in the proteolipid protein 1 gene (PLP1 gene) have been reported as the cause of the onset of PMD (Non-Patent Documents 1 to 4). PMDs are classified into congenital PMDs and classical PMDs according to the type of mutation in the PLP1 gene. Congenital PMD is caused by amino acid substitutions and splicing abnormalities due to point mutations in the PLP1 gene, and accounts for about 15-25% of all patients with PLP1 gene mutations. It is severe, develops from birth or newborn, and dies in infancy. Classic PMD is caused by duplication of the PLP1 gene and accounts for 50-75% of the same. It develops from early infancy and dies in early childhood.
 これまでに、PMDの治療のために複数の治療方法が試みられてきた。山内らは、MAPK経路活性化を阻害する物質を用いた治療方法を試みた(特許文献1)が、一般的にキナーゼ阻害剤には標的分子特異性の低さに起因する安全性に課題があると考えられる。また、井上らによるPLP1の発現を抑制するmiRNAを含むベクターを用いた遺伝子治療やTESARらによる遺伝子治療によるゲノム編集も試みられた(特許文献2,3)。さらに、アンチセンス核酸を用いた治療方法も試みられており、Elittらは、PLP1遺伝子のイントロン領域の塩基配列に相補的なアンチセンス核酸を用いてPLP1の発現を抑制することで、先天型PMD様症状を発症する疾患モデルマウスで治療効果を示すことを確認している(非特許文献5)。しかしながら、上記のアンチセンス核酸はマウスPLP1遺伝子の塩基配列をもとに設計された方法であるため、実際のPMD患者の治療方法として臨床応用することは困難である。 So far, multiple treatment methods have been tried for the treatment of PMD. Yamauchi et al. Tried a therapeutic method using a substance that inhibits MAPK pathway activation (Patent Document 1), but in general, kinase inhibitors have problems in terms of safety due to low target molecule specificity. It is believed that there is. In addition, gene therapy using a vector containing miRNA that suppresses the expression of PLP1 by Inoue et al. And genome editing by gene therapy by TESAR et al. Have also been attempted (Patent Documents 2 and 3). Furthermore, a therapeutic method using an antisense nucleic acid has also been attempted, and Elitt et al. Suppressed the expression of PLP1 by using an antisense nucleic acid complementary to the base sequence of the intron region of the PLP1 gene, thereby congenital PMD. It has been confirmed that it shows a therapeutic effect in disease model mice that develop similar symptoms (Non-Patent Document 5). However, since the above-mentioned antisense nucleic acid is a method designed based on the base sequence of the mouse PLP1 gene, it is difficult to clinically apply it as a therapeutic method for an actual PMD patient.
JP5391401BJP5391401B WO2019/156115WO2019 / 156115 WO2018/106782WO2018 / 106782
 現在のところ、PMD治療法としては根本的な治療がなく、てんかん、ジストニア、精神発達遅延などへの対症療法としての投薬や療育などであり、効果は不十分で患者の負担は大きい。したがって、本発明の課題はPMDなどのPLP1関連疾患を治療、予防、遅延、又は改善するための化合物、組成物および方法を提供することである。 Currently, there is no fundamental treatment as a PMD treatment method, such as medication and medical treatment as symptomatic treatment for epilepsy, dystonia, mental retardation, etc., and the effect is insufficient and the burden on the patient is heavy. Therefore, an object of the present invention is to provide compounds, compositions and methods for treating, preventing, delaying, or ameliorating PLP1-related diseases such as PMD.
 本発明の課題はまた、PLP1発現を抑制するための化合物、方法、及び医薬組成物を提供することにある。 An object of the present invention is also to provide a compound, a method, and a pharmaceutical composition for suppressing PLP1 expression.
 本発明者らは鋭意検討を行い、PLP1発現を強力に抑制する修飾オリゴヌクレオチドを見出し、当該修飾オリゴヌクレオチドがPMDなどのPLP1関連疾患の治療や予防に有効であることを見出し、本発明を完成させるに至った。 The present inventors have conducted diligent studies, found a modified oligonucleotide that strongly suppresses PLP1-expression, and found that the modified oligonucleotide is effective for the treatment and prevention of PLP1-related diseases such as PMD, and completed the present invention. I came to let you.
 本発明の要旨は以下の通りである。
[1] 12~30残基からなる修飾オリゴヌクレオチドであり、かつ配列表の配列番号1の核酸塩基配列の5’末端から9964~10286位、140007~14152位、4439~4470位、4569~4616位、9061~9164位、11926~12015位、12817~12874位、14839~14920位または15088~15114位のいずれかの等長部分に相補的な少なくとも8個の連続する核酸塩基配列を含み、前記修飾オリゴヌクレオチドの全長の核酸塩基配列が配列表の配列番号1の核酸塩基配列の等長部分に少なくとも85%相補性を有する、Proteolipid protein 1(PLP1)の発現を抑制する修飾オリゴヌクレオチド。
[2]12~30残基からなる修飾オリゴヌクレオチドであり、かつ配列表の配列番号1の核酸塩基配列の5’末端から10014~10152位、10180~10252位または14033~14113位のいずれかの等長部分に相補的な少なくとも8個の連続する核酸塩基配列を含み、前記修飾オリゴヌクレオチドの全長の核酸塩基配列が配列表の配列番号1の核酸塩基配列の等長部分に少なくとも85%相補性を有する、Proteolipid protein 1(PLP1)の発現を抑制する修飾オリゴヌクレオチド。
[3]12~30残基からなる修飾オリゴヌクレオチドであり、かつ配列表の配列番号1の核酸塩基配列の5’末端から10036~10055位、10064~10089位、10101~10130位、10202~10230位または14055~14091位のいずれかの等長部分に相補的な少なくとも8個の連続する核酸塩基配列を含み、前記修飾オリゴヌクレオチドの全長の核酸塩基配列が配列表の配列番号1の核酸塩基配列の等長部分に少なくとも85%相補性を有する、PLP1の発現を抑制する修飾オリゴヌクレオチド。
[4]12~30残基からなる修飾オリゴヌクレオチドであり、かつ配列表の配列番号1の核酸塩基配列の5’末端から10101~10130位、10202~10230位または14055~14091位のいずれかの等長部分に相補的な少なくとも8個の連続する核酸塩基配列を含み、前記修飾オリゴヌクレオチドの全長の核酸塩基配列が配列表の配列番号1の核酸塩基配列の等長部分に少なくとも85%相補性を有する、PLP1の発現を抑制する修飾オリゴヌクレオチド。
[5]配列表の配列番号1の核酸塩基配列の5’末端から10036~10051位、10037~10052位、10038~10053位、10039~10054位、10040~10055位、10064~10079位、10065~10080位、10066~10081位、10067~10082位、10068~10083位、10069~10084位、10070~10085位、10071~10086位、10072~10087位、10073~10088位、10074~10089位、10101~10116位、10102~10117位、10103~10118位、10104~10119位、10105~10120位、10106~10121位、10107~10122位、10108~10123位、10109~10124位、10110~10125位、10111~10126位、10112~10127位、10113~10128位、10114~10129位、10115~10130位、10202~10217位、10203~10218位、10204~10219位、10205~10220位、10206~10221位、10207~10222位、10208~10223位、10209~10224位、10210~10225位、10211~10226位、10212~10227位、10213~10228位、10214~10229位、10215~10230位、14055~14070位、14056~14071位、14057~14072位、14062~14077位、14063~14078位、14074~14089位、14075~14090位、または14076~14091位のいずれかに相補的な核酸塩基配列から成る、PLP1の発現を抑制する修飾オリゴヌクレオチド。
[6]12~30残基からなる修飾オリゴヌクレオチドであり、かつ配列表の配列番号1の核酸塩基配列の5’末端から4439~4470位、4569~4616位、9061~9164位、9964~10055位、10056~10286位、11926~12015位、12817~12874位、14007~14095位、14112~14152位、14839~14920位または15088~15114位のいずれかの等長部分に相補的な少なくとも8個の連続する核酸塩基配列を含み、前記修飾オリゴヌクレオチドの全長の核酸塩基配列が配列表の配列番号1の核酸塩基配列の等長部分に少なくとも85%相補性を有する、Proteolipid protein 1(PLP1)の発現を抑制する修飾オリゴヌクレオチド。
[7]配列表の配列番号1の核酸塩基配列の5’末端から4450~4467位、4572~4589位、9072~9089位、9119~9136位、10035~10052位、10037~10054位、10072~10089位、10088~10105位、10101~10118位、10102~10119位、10103~10120位、10104~10121位、10105~10122位、10108~10125位、10109~10126位、10112~10129位、10113~10130位、11959~11976位、11989~12006位、12830~12847位、14020~14037位、14025~14042位、14055~14072位、14056~14073位、14060~14077位、14065~14082位、14075~14092位、14130~14147位、14847~14864位、14852~14869位、14857~14874位、14866~14883位、または15091~15108位のいずれかに相補的な核酸塩基配列から成る、PLP1の発現を抑制する修飾オリゴヌクレオチド。
[8]一本鎖である、[1]~[7]のいずれかに記載の修飾オリゴヌクレオチド。
[9]修飾オリゴヌクレオチドを構成する少なくとも1つのヌクレオシドが修飾糖を含む、[1]~[8]のいずれかに記載の修飾オリゴヌクレオチド。
[10]修飾糖が二環式糖、2’-O-メトキシエチルで修飾された糖、および2’-O-メチルで修飾された糖からなる群から選択される、[9]に記載の修飾オリゴヌクレオチド。
[11]二環式糖が、LNA、ENA、cEt、GuNA、ALNA[Ms]、ALNA[mU]、ALNA[ipU]、ALNA[Oxz]、またはALNA[Trz]の糖部分から選択される、[10]に記載の修飾オリゴヌクレオチド。
[12]前記修飾オリゴヌクレオチドを構成する少なくとも1つのヌクレオシドが修飾核酸塩基を含む、[1]~[11]のいずれかに記載の修飾オリゴヌクレオチド。
[13]修飾核酸塩基が、5-メチルシトシンである、[12]に記載の修飾オリゴヌクレオチド。
[14]前記修飾オリゴヌクレオチドを構成する少なくとも1つのヌクレオシド間結合が修飾ヌクレオシド間結合である、[1]~[13]のいずれかに記載の修飾オリゴヌクレオチド。
[15]修飾ヌクレオシド間結合がホスホロチオエートヌクレオシド間結合である、[14]に記載の修飾オリゴヌクレオチド。
[16]前記修飾オリゴヌクレオチドが、
1)ギャップセグメントと、
2)5’ウイングセグメントと、
3)3’ウイングセグメント、を含み、
 前記ギャップセグメントが、前記5’ウイングセグメントと前記3’ウイングセグメントとの間に位置付けられ、
 前記5’ウイングセグメントと3’ウイングセグメントを構成するヌクレオシドが修飾糖を含むものである、[1]~[13]のいずれかに記載の修飾オリゴヌクレオチド。
[17][1]~[16]のいずれかに記載の修飾オリゴヌクレオチドまたはその医薬的に許容可能な塩、および薬学的に許容可能な担体を含む医薬組成物。
[18]PLP1関連疾患の治療、予防、またはその進行の遅延化のための、[17]に記載の医薬組成物。
[19]前記PLP1関連疾患がペリツェウス・メルツバッハー病である、[18]に記載の医薬組成物。
[20]前記ペリツェウス・メルツバッハー病が先天型ペリツェウス・メルツバッハー病または古典型ペリツェウス・メルツバッハー病である、[19]に記載の医薬組成物。
[21][1]~[16]のいずれかに記載の修飾オリゴヌクレオチドの治療的有効量をそれを必要とする被験者に投与することを特徴とする、被験者におけるPLP1関連疾患の治療、予防またはその進行の遅延化のための方法。
[22]PLP1関連疾患の治療、予防またはその進行の遅延化のための医薬の製造における、[1]~[16]のいずれかに記載の修飾オリゴヌクレオチドの使用。
[23]PLP1関連疾患の治療、予防またはその進行の遅延化のための、[1]~[16]のいずれかに記載の修飾オリゴヌクレオチド。
The gist of the present invention is as follows.
[1] A modified oligonucleotide consisting of 12 to 30 residues, and 9964 to 10286 positions, 140007 to 14152 positions, 4439 to 4470 positions, 4569 to 4616 positions from the 5'end of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing. Containing at least eight contiguous nucleic acid sequences complementary to any of the equilength moieties of positions 9061-9164, 11926-12015, 12817-12874, 14389-14920 or 15088-15114, said. A modified oligonucleotide that suppresses the expression of Proteolipid protein 1 (PLP1), wherein the full-length nucleobase sequence of the modified oligonucleotide has at least 85% complementarity to the equal length portion of the nucleobase sequence of SEQ ID NO: 1 in the sequence listing.
[2] A modified oligonucleotide consisting of 12 to 30 residues, and either at positions 10014 to 10152 or positions 14033 to 14113 from the 5'end of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing. The full-length nucleobase sequence of the modified oligonucleotide contains at least eight contiguous nucleic acid sequences complementary to the equilength portion and is at least 85% complementary to the equilongate portion of the nucleobase sequence of SEQ ID NO: 1 in the sequence listing. A modified oligonucleotide that suppresses the expression of Proteolipid protein 1 (PLP1).
[3] A modified oligonucleotide consisting of 12 to 30 residues, and from the 5'end of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing, positions 10036 to 10059, positions 10064 to 10089, positions 10101 to 10130, and 10202 to 10230. The full-length nucleobase sequence of the modified oligonucleotide contains at least eight contiguous nucleobase sequences complementary to the equilength portion of the position or position 14055 to 14091, and the nucleobase sequence of SEQ ID NO: 1 in the sequence listing. A modified oligonucleotide that suppresses the expression of PLP1 with at least 85% complementarity to the equal length portion of.
[4] A modified oligonucleotide consisting of 12 to 30 residues, and either at positions 10101 to 10130 or 14055 to 14091 from the 5'end of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing. The full-length nucleobase sequence of the modified oligonucleotide contains at least eight contiguous nucleic acid sequences complementary to the equilength portion and is at least 85% complementary to the equilongate portion of the nucleobase sequence of SEQ ID NO: 1 in the sequence listing. A modified oligonucleotide that suppresses the expression of PLP1.
[5] From the 5'end of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing, 10036 to 10051, 10037 to 10025, 10038 to 10053, 10039 to 10045, 10040 to 10055, 10064 to 10024, 10065 to 10065 to 10065. 10080th, 10066-10081th, 10067-10082th, 10062-10083th, 10069-10084th, 10070-10085th, 10071-10086th, 10072-10087th, 10073-10088th, 10064-10089th, 10101- 10116th, 10102-10117th, 10103-10118th, 10104-10119th, 10105-10120th, 10106-10121th, 10107-10122th, 10108-10123th, 10109-10124th, 10110-10125th, 10111- 10126th, 10112-10127th, 10113-10128th, 10114-10129th, 10115-10130th, 10202-10217th, 10203-10218th, 10204-10219th, 10205-10220th, 10206-10221th, 10207- 10222th, 10208-10223th, 10209-10224th, 10210-10225th, 10211-10226th, 10212-10227th, 10213-10228th, 10214-10229th, 10215-10230th, 14055-14070th, 14056- Expression of PLP1 consisting of a nucleobase sequence complementary to any of positions 14071, 14057 to 14072, 14062 to 14077, 14063 to 14078, 14074 to 14089, 14075 to 14090, or 14076 to 14091. A modified oligonucleotide that suppresses.
[6] A modified oligonucleotide consisting of 12 to 30 residues, and 4439 to 4470, 4569 to 4616, 961 to 9164, 9964 to 10055 from the 5'end of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing. , 10056 to 10286, 11926 to 12015, 12817 to 12874, 14007 to 14095, 14112 to 14152, 14039 to 14920, or 15088 to 15114, at least eight complementary to any of the equal length portions. Of Proteolipid protein 1 (PLP1), which comprises a contiguous sequence of nucleobases, wherein the full length nucleobase sequence of the modified oligonucleotide has at least 85% complementarity to the equal length portion of the nucleobase sequence of SEQ ID NO: 1 in the sequence listing. A modified oligonucleotide that suppresses expression.
[7] From the 5'end of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing, positions 4450 to 4467, 4571 to 4589, 9072 to 9089, 9119 to 9136, 10035 to 10025, 10037 to 10045, 10072 to 10089th, 10088-10105th, 10101-10118th, 10102-10119th, 10103-10120th, 10104-10121th, 10105-10122th, 10108-10125th, 10109-10126th, 10112-10129th, 10113- 10130, 11959 to 11976, 11989 to 12006, 12830 to 12847, 14020 to 14037, 14025 to 14042, 14055 to 14072, 14056 to 14073, 14060 to 14077, 14065 to 14082, 14075 to Expression of PLP1 consisting of a nucleobase sequence complementary to any of positions 14092, 14130-14147, 14847-14864, 14852-14869, 14857-14874, 14866-14883, or 15091-15108. A modified oligonucleotide that suppresses.
[8] The modified oligonucleotide according to any one of [1] to [7], which is a single strand.
[9] The modified oligonucleotide according to any one of [1] to [8], wherein at least one nucleoside constituting the modified oligonucleotide contains a modified sugar.
[10] The above-mentioned [9], wherein the modified sugar is selected from the group consisting of a bicyclic sugar, a sugar modified with 2'-O-methoxyethyl, and a sugar modified with 2'-O-methyl. Modified oligonucleotide.
[11] Bicyclic sugars are selected from the sugar moieties of LNA, ENA, cEt, GuNA, ALNA [Ms], ALNA [mU], ALNA [ipU], ALNA [Oxz], or ALNA [Trz]. [10] The modified oligonucleotide according to [10].
[12] The modified oligonucleotide according to any one of [1] to [11], wherein at least one nucleoside constituting the modified oligonucleotide contains a modified nucleobase.
[13] The modified oligonucleotide according to [12], wherein the modified nucleobase is 5-methylcytosine.
[14] The modified oligonucleotide according to any one of [1] to [13], wherein the at least one nucleoside link constituting the modified oligonucleotide is a modified nucleoside bond.
[15] The modified oligonucleotide according to [14], wherein the modified nucleoside linkage is a phosphorothioate nucleoside linkage.
[16] The modified oligonucleotide is
1) Gap segment and
2) 5'wing segment and
3) Including 3'wing segment,
The gap segment is positioned between the 5'wing segment and the 3'wing segment.
The modified oligonucleotide according to any one of [1] to [13], wherein the nucleoside constituting the 5'wing segment and the 3'wing segment contains a modified sugar.
[17] A pharmaceutical composition comprising the modified oligonucleotide according to any one of [1] to [16] or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
[18] The pharmaceutical composition according to [17] for treating, preventing, or delaying the progression of PLP1-related diseases.
[19] The pharmaceutical composition according to [18], wherein the PLP1-related disease is Pelizaeus-Merzbacher's disease.
[20] The pharmaceutical composition according to [19], wherein the Pelizaeus-Merzbacher disease is congenital Pelizaeus-Merzbacher disease or classical Pelizaeus-Merzbacher disease.
[21] Treatment, prophylaxis or prevention of PLP1-related diseases in subjects, characterized in that a therapeutically effective amount of the modified oligonucleotide according to any one of [1] to [16] is administered to a subject in need thereof. A method for delaying its progress.
[22] Use of the modified oligonucleotide according to any one of [1] to [16] in the manufacture of a pharmaceutical for the treatment, prevention or delay of its progression of PLP1-related diseases.
[23] The modified oligonucleotide according to any one of [1] to [16], for treating, preventing or delaying the progression of PLP1-related diseases.
 本発明によれば、効率よくPLP1発現を抑制することができ、PLP1関連疾患、例えば、ペリツェウス・メルツバッハー病の症状を改善することができ、当該疾患の予防や治療に有効な医薬が提供される。 According to the present invention, PLP1 expression can be efficiently suppressed, the symptoms of PLP1-related diseases such as Pelizaeus-Merzbacher's disease can be improved, and an effective drug for the prevention and treatment of the diseases is provided. ..
 前述の概要及び以下の詳細な説明の両方とも例示的且つ説明的なものに過ぎず、請求される本発明を制限するものではないことを理解されたい。本明細書では、別段の記載がない限り、単数形の使用は複数形を含む。本明細書では、用語「含むこと(including)」並びに他の形態、例えば「含む(includes)」及び「含まれる(included)」の使用は、限定的なものではない。さらに、別段の記載がない限り、「要素」などの用語は、1つのユニットを含む要素と1つを超えるサブユニットを含む要素を包含する。 It should be understood that both the above outline and the following detailed description are merely exemplary and descriptive and do not limit the claimed invention. Unless otherwise stated herein, the use of the singular includes the plural. As used herein, the use of the term "included" and other forms, such as "includes" and "included", is not limiting. Further, unless otherwise stated, terms such as "element" include an element comprising one unit and an element comprising more than one subunit.
 本明細書で使用されるセクションの見出しは、構成上の目的のためだけであり、記載される主題を制限するものとして解釈されるべきでない。これらに限定されないが、特許、特許出願、記事、書籍及び論文を含めた、本出願で引用されるすべての文書又は文書の一部分は、本明細書で論じる文書の一部分に関して、及びその全体が、参照により本明細書に明確に組み込まれる。 The section headings used herein are for structural purposes only and should not be construed as limiting the subject matter described. All documents or parts of documents cited in this application, including but not limited to patents, patent applications, articles, books and articles, may, in part, with respect to, in whole, in part of the documents discussed herein. It is expressly incorporated herein by reference.
(定義)
 具体的な定義が与えられない限り、本明細書に記載の分析化学、有機合成化学、並びに医化学及び薬化学に関連して利用される命名法、及びそれらの手順及び技法は、当技術分野で周知であり、一般に使用されるものである。標準的な技法を、本明細書中で使用する化学合成及び化学分析に使用することができる。許容される場合、本明細書の開示の全体を通して言及される、すべての特許、出願、公開出願及び他の刊行物、国立バイオテクノロジー情報センター(NCBI)などのデータベースを通して入手可能なGenBank受託番号及び関連する配列情報並びに他のデータは、本明細書に論じる文書の一部分に関して、及びその全体が、参照により組み込まれる。
 また、本明細書は、電子フォーマットの配列表と共に出願するが、当該電子フォーマット中に記載する配列表の情報は、参照によりその全体が本明細書中に組み込まれる。
(Definition)
Unless a specific definition is given, the nomenclatures used in connection with analytical chemistry, synthetic organic chemistry, and medicinal and medicinal chemistry described herein, and their procedures and techniques, are in the art. It is well known and commonly used in. Standard techniques can be used for chemical synthesis and analysis as used herein. Where permitted, all patents, applications, published applications and other publications referred to throughout the disclosure of this specification, GenBank accession numbers and GenBank accession numbers available through databases such as the National Center for Biotechnology Information (NCBI). Relevant sequence information and other data are incorporated by reference with respect to and in whole the documents discussed herein.
In addition, although this specification is filed together with an electronic format sequence listing, the information in the sequence listing described in the electronic format is incorporated herein by reference in its entirety.
 別段の指示がない限り、以下の用語は以下の意味を有する。 Unless otherwise instructed, the following terms have the following meanings.
 「核酸塩基」は、別の核酸の塩基と対形成することができる複素環部分を意味する。 "Nucleobase" means a heterocyclic moiety that can be paired with the base of another nucleic acid.
 「核酸塩基配列」は、本発明のオリゴヌクレオチドを構成する、連続的な核酸塩基の順序を意味する。 "Nucleobase sequence" means a continuous sequence of nucleobases constituting the oligonucleotide of the present invention.
 「ヌクレオシド」は、糖と核酸塩基が連結した分子を意味する。ある種の実施態様では、ヌクレオシドはリン酸基に連結している。 "Nucleoside" means a molecule in which a sugar and a nucleobase are linked. In certain embodiments, the nucleoside is linked to a phosphate group.
 「ヌクレオチド」は、ヌクレオシドの糖部分にリン酸基が結合した分子を意味する。天然に存在するヌクレオチドは糖部分がリボース又はデオキシリボースであり、リン酸基を介してホスホジエステル結合により共有結合している。 "Nucleotide" means a molecule in which a phosphate group is bonded to the sugar portion of a nucleoside. The naturally occurring nucleotide has a sugar moiety of ribose or deoxyribose, which is covalently bonded by a phosphodiester bond via a phosphate group.
 「オリゴマー化合物」又は「オリゴマー」は、核酸分子の少なくとも一領域にハイブリダイズすることができる、連結モノマーサブユニットのポリマーを意味する。 "Oligomer compound" or "oligomer" means a polymer of linked monomer subunits that can hybridize to at least one region of a nucleic acid molecule.
 「オリゴヌクレオチド」は、各ヌクレオシド及び各ヌクレオシド間結合が、互いに独立して連結したヌクレオシドのポリマーを意味する。 "Oligonucleotide" means a polymer of nucleosides in which each nucleoside and the bonds between each nucleoside are linked independently of each other.
 「ヌクレオシド間結合」は、ヌクレオシド間の化学結合を指す。 "Nucleoside bond" refers to a chemical bond between nucleosides.
 「天然に存在するヌクレオシド間結合」は、3’-5’ホスホジエステル結合を意味する。 "Naturally occurring nucleoside bond" means a 3'-5'phosphodiester bond.
 「修飾ヌクレオシド間結合」は、天然に存在するヌクレオシド間結合(すなわち、ホスホジエステルヌクレオシド間結合)からの置換又は任意の変化を指す。例えば、ホスホロチオエートヌクレオシド間結合があるが、これに限定されない。 "Modified nucleoside bond" refers to a substitution or arbitrary change from a naturally occurring nucleoside bond (ie, a phosphodiester nucleoside bond). For example, there are, but are not limited to, phosphorothioate nucleoside linkages.
 「ホスホロチオエートヌクレオシド間結合」は、非架橋酸素原子の1つを硫黄原子で置き換えることによってホスホジエステル結合が修飾される、ヌクレオシド間の結合を意味する。ホスホロチオエート結合は、当該修飾ヌクレオシド間結合の1例である。 "Phosphodiester bond between nucleosides" means a bond between nucleosides in which the phosphodiester bond is modified by replacing one of the non-crosslinked oxygen atoms with a sulfur atom. The phosphorothioate bond is an example of the modified nucleoside-linked bond.
 「修飾核酸塩基」は、アデニン、シトシン、グアニン、チミジン又はウラシル以外の任意の核酸塩基を指す。例えば、5-メチルシトシンがあるが、これに限定されない。「非修飾核酸塩基」は、プリン塩基のアデニン(A)及びグアニン(G)、並びにピリミジン塩基のチミン(T)、シトシン(C)及びウラシル(U)を意味する。 "Modified nucleobase" refers to any nucleobase other than adenine, cytosine, guanine, thymidine or uracil. For example, there is, but is not limited to, 5-methylcytosine. "Unmodified nucleobase" means the purine bases adenine (A) and guanine (G), as well as the pyrimidine bases thymine (T), cytosine (C) and uracil (U).
 「修飾オリゴヌクレオチド」は、少なくとも1つの当該修飾ヌクレオシド及び/又は当該修飾ヌクレオシド間結合を含むオリゴヌクレオチドを意味する。 "Modified oligonucleotide" means an oligonucleotide containing at least one of the modified nucleosides and / or the linkage between the modified nucleosides.
 「塩」とは酸に含まれている1つ以上の解離しうる水素イオンを、金属イオンやアンモニウムイオンなどの陽イオンで置換した化合物の総称であり、修飾オリゴヌクレオチドの塩としては、ホスホロチオエート、もしくはホスホジエステル上、又は修飾核酸塩基内の官能基(例えば、アミノ基)上で、無機物イオン(例えば、ナトリウムイオン、マグネシウムイオン)と形成される塩(例えば、ナトリウム塩、マグネシウム塩)を挙げることができるが、これらに限定されない。 "Salt" is a general term for compounds in which one or more dissociable hydrogen ions contained in an acid are replaced with cations such as metal ions and ammonium ions, and the salt of the modified oligonucleotide is phosphorothioate. Alternatively, a salt (eg, sodium salt, magnesium salt) formed with an inorganic ion (eg, sodium ion, magnesium ion) on a phosphodiester or a functional group (eg, amino group) in a modified nucleic acid base can be mentioned. However, it is not limited to these.
 「糖」又は「糖部分」は、天然糖部分又は修飾糖部分を意味する。 "Sugar" or "sugar moiety" means a natural sugar moiety or a modified sugar moiety.
 「修飾糖」は、天然の糖からの置換又は変化を指す。修飾糖としては、例えば、置換糖部分及び二環式糖が挙げられる。 "Modified sugar" refers to a substitution or change from a natural sugar. Examples of the modified sugar include a substituted sugar moiety and a bicyclic sugar.
 「置換糖部分」は、RNA又はDNAの天然糖以外のフラノシルを意味する。 "Substituted sugar moiety" means furanosyl other than natural sugar in RNA or DNA.
 「二環式糖」は、同一環上に存在する2つの異なる炭素原子の架橋によって修飾されるフラノシル環を意味する。 "Bicyclic sugar" means a furanosyl ring modified by cross-linking two different carbon atoms present on the same ring.
 「一本鎖オリゴヌクレオチド」は、相補鎖とハイブリダイズしていないオリゴヌクレオチドを意味する。 "Single-stranded oligonucleotide" means an oligonucleotide that does not hybridize with the complementary strand.
 「PLP1」は、Proteolipid protein 1といわれる核酸又はタンパク質を意味する。PLP1は、例えば、PLP1遺伝子から転写される各種スプライシングバリアント、一塩基置換体(SNP)などの配列バリアントを含むものであってもよい。 "PLP1" means a nucleic acid or protein called Proteinipid protein 1. PLP1 may include, for example, various splicing variants transcribed from the PLP1 gene, sequence variants such as single nucleotide polymorphisms (SNPs).
 「相補的」は、第一の核酸と第二の核酸の核酸塩基間の対形成に対する能力を意味する。ある種の実施態様では、アデニンはチミジン又はウラシルと相補的である。ある種の実施態様では、シトシンはグアニンと相補的である。ある種の実施態様では5-メチルシトシンは、グアニンと相補的である。 "Complementary" means the ability of the first nucleic acid to form a pair between the nucleobases of the second nucleic acid. In certain embodiments, adenine is complementary to thymidine or uracil. In certain embodiments, cytosine is complementary to guanine. In certain embodiments, 5-methylcytosine is complementary to guanine.
 「完全に相補的(相補性ともいう)」又は「100%相補的(相補性ともいう)」は、第一の核酸の核酸塩基配列が完全に第二の核酸の核酸塩基配列と相補的であることを意味する。ある種の実施態様では、第一の核酸は修飾オリゴヌクレオチドであり、標的核酸が第二の核酸である。 "Completely complementary (also referred to as complementarity)" or "100% complementary (also referred to as complementarity)" means that the nucleobase sequence of the first nucleic acid is completely complementary to the nucleobase sequence of the second nucleic acid. It means that there is. In certain embodiments, the first nucleic acid is a modified oligonucleotide and the target nucleic acid is a second nucleic acid.
 「ミスマッチ」又は「非相補的核酸塩基」は、第一の核酸の核酸塩基が、第二の核酸又は標的核酸の対応する核酸塩基と対形成できない場合を指す。 "Mismatch" or "non-complementary nucleobase" refers to the case where the nucleobase of the first nucleic acid cannot be paired with the corresponding nucleobase of the second or target nucleobase.
 「標的核酸」、「標的RNA」及び「標的RNA転写産物」はすべて、修飾オリゴヌクレオチドが標的とすることができる核酸を指す。ある種の実施態様では、標的核酸はPLP1 mRNA又はPLP1 pre-mRNAの領域を含む。 "Target nucleic acid", "target RNA" and "target RNA transcript" all refer to nucleic acids that can be targeted by modified oligonucleotides. In certain embodiments, the target nucleic acid comprises a region of PLP1 mRNA or PLP1 pre-mRNA.
 「モチーフ」は、修飾オリゴヌクレオチド中の化学的に異質な領域の組み合わせを意味する。 "Motif" means a combination of chemically heterogeneous regions in a modified oligonucleotide.
 「医薬的に許容可能な塩」は、本発明の修飾オリゴヌクレオチドの生理学的及び医薬的に許容可能な塩、すなわち、修飾オリゴヌクレオチドの所望の生物活性を保持し、望ましくない毒性効果をそれに与えない塩を意味する。 A "pharmaceutically acceptable salt" is a physiologically and pharmaceutically acceptable salt of a modified oligonucleotide of the invention, i.e., which retains the desired biological activity of the modified oligonucleotide and imparts an undesired toxic effect to it. Means no salt.
 「投与すること」は、薬剤を動物に与えることを意味し、これらに限定されないが、医療専門家による投与及び自己投与が挙げられる。 "Administering" means giving the drug to an animal, and includes, but is not limited to, administration by a medical expert and self-administration.
 「改善」は、関連する疾患、障害又は状態の少なくとも1つの指標、徴候又は症状を減らすことを指す。指標の重度は、当業者に既知の主観的又は客観的尺度によって決定することができる。 "Improvement" refers to reducing at least one indicator, sign or symptom of a related disease, disorder or condition. The severity of the indicator can be determined by subjective or objective measures known to those of skill in the art.
 「動物」は、ヒト、又はこれらに限定されないが、マウス、ラット、ウサギ、イヌ、ネコ、ブタを含めた非ヒト動物、並びにこれらに限定されないが、サル及びチンパンジーを含めた非ヒト霊長類を指す。 "Animal" refers to humans, or non-human animals including, but not limited to, mice, rats, rabbits, dogs, cats, pigs, and, but not limited to, non-human primates including monkeys and chimpanzees. Point to.
 「有効量」は、薬剤を必要としている個体において所望の生理的転帰を実現するのに十分である、本発明の修飾オリゴヌクレオチドの量を意味する。有効量は、処置される個体の健康及び身体状態、処置される個体の分類群、組成物の製剤、個体の医学的状態の評価並びに他の関連する因子に応じて、個体の間で変動し得る。 "Effective amount" means the amount of the modified oligonucleotide of the invention that is sufficient to achieve the desired physiological outcome in an individual in need of the drug. Effective amounts vary among individuals depending on the health and physical condition of the individual being treated, the taxon of the individual being treated, the formulation of the composition, the assessment of the individual's medical condition and other relevant factors. obtain.
 「個体」は、処置又は療法について選択されたヒト又は非ヒト動物を意味する。 "Individual" means a human or non-human animal selected for treatment or therapy.
 「予防する」は、数分から無期限の期間にわたって、疾患、障害もしくは好ましくない健康状態、又は当該疾患、障害もしくは好ましくない健康状態に関連する1つ以上の症状の発症又は発生を遅延させるか又は未然に防ぐことを意味する。予防するは、疾患、障害又は好ましくない健康状態を発生する危険性を低減させることも意味する。 "Preventing" delays or delays the onset or onset of a disease, disorder or unfavorable health condition, or one or more symptoms associated with the disease, disorder or unfavorable health condition over a period of minutes to an indefinite period of time. It means to prevent it. Prevention also means reducing the risk of developing a disease, disorder or unfavorable health condition.
 「治療する」は、疾患、障害もしくは好ましくない健康状態、又は当該疾患、障害もしくは好ましくない健康状態に関連する1つ以上の症状、を軽減するか、もしくは排除するか、又は、当該疾患、障害、もしくは好ましくない健康状態自体の1つもしくはそれ以上の原因を部分的に解消するか又は根絶することを意味する。 "Treatment" reduces or eliminates or eliminates a disease, disorder or unfavorable health condition, or one or more symptoms associated with the disease, disorder or unfavorable health condition, or the disease, disorder. , Or means to partially eliminate or eradicate one or more causes of the unfavorable health condition itself.
(具体的実施態様)
 下記に示すある種の具体的実施態様は、これらに限定するものではないが、PLP1の発現を抑制するための化合物、該化合物を用いる方法、及び該化合物を含有する医薬組成物を提供する。
(Specific embodiment)
Certain specific embodiments shown below are not limited to these, but provide a compound for suppressing the expression of PLP1, a method using the compound, and a pharmaceutical composition containing the compound.
(1)修飾オリゴヌクレオチド
 本発明の修飾オリゴヌクレオチド(以下、「本発明化合物」又は「本発明修飾オリゴヌクレオチド」と称することがある)は、PLP1発現を抑制する活性を有するPLP1のアンチセンスオリゴヌクレオチドである。本発明におけるPLP1発現(レベル)の抑制とは、PLP1遺伝子から転写されたpre-mRNAレベル、pre-mRNAからスプライシングを受けたmRNAレベル及びmRNAから翻訳されたPLP1タンパク質レベル(これらをまとめて「PLP1発現レベル」と称することがある)のうち、少なくとも1つを抑制することを意味する。PLP1 mRNAは、特に制限されず、配列バリエーションを含むものであってもよいが、例えば、GenBank受託番号NG_008863.2:4996-21109に記載の配列(配列表の配列番号1)で示されるものが挙げられる。なお、RNA配列は、配列番号1においてTをUに読み替えるものとする。
(1) Modified oligonucleotide The modified oligonucleotide of the present invention (hereinafter, may be referred to as "the compound of the present invention" or "the modified oligonucleotide of the present invention") is an antisense oligonucleotide of PLP1 having an activity of suppressing PLP1 expression. Is. Suppression of PLP1 expression (level) in the present invention refers to the pre-mRNA level transcribed from the PLP1 gene, the pre-mRNA spliced mRNA level, and the PLP1 protein level translated from the mRNA (collectively, "PLP1". It means suppressing at least one of (sometimes referred to as "expression level"). The PLP1 mRNA is not particularly limited and may include sequence variations. For example, the PLP1 mRNA represented by the sequence (SEQ ID NO: 1 in the sequence listing) described in GenBank accession number NG_00863.2: 4996-21109 is used. Can be mentioned. In the RNA sequence, T is replaced with U in SEQ ID NO: 1.
 本発明化合物が有するPLP1発現の抑制の程度は、PLP1のpre-mRNAレベル、mRNAレベル及びタンパク質レベルのうち、少なくとも1つが当該化合物を投与しない場合に比べて低下し、その結果としてPLP1関連疾患に伴う症状の予防及び/又は改善が認められる程度であればいずれの程度でもよいが、具体的には、例えば、後述するin vitro PLP1発現測定方法において、本発明化合物と細胞を接触させた後、PLP1発現レベルが、非接触時又は陰性コントロール物質接触時と比較して、少なくとも70%以下、好ましくは50%以下、より好ましくは40%以下、さらに好ましくは30%以下、特に好ましくは20%以下であるものが用いられる。また、後述するin vitro PLP1発現測定方法において、IC50が好ましくは100nM以下、より好ましくは50nM以下、より好ましくは20nM以下のものが用いられる。 The degree of suppression of PLP1 expression possessed by the compound of the present invention is lower than that when at least one of the pre-mRNA level, mRNA level and protein level of PLP1 is not administered with the compound, and as a result, PLP1-related diseases occur. Any degree may be used as long as the prevention and / or improvement of the accompanying symptoms is observed. Specifically, for example, in the method for measuring in vitro PLP1 expression described later, after contacting the compound of the present invention with cells, the cells are contacted with each other. The PLP1 expression level is at least 70% or less, preferably 50% or less, more preferably 40% or less, still more preferably 30% or less, and particularly preferably 20% or less, as compared with the case of non-contact or contact with a negative control substance. Is used. Further, in the in vitro PLP1 expression measuring method described later, an IC 50 having an IC 50 of preferably 100 nM or less, more preferably 50 nM or less, and more preferably 20 nM or less is used.
 本発明化合物の活性の検証方法としては、本発明化合物がPLP1発現を抑制することを検証できる方法であればいかなるものでもよく、後述の「本発明化合物の評価方法」に記載された方法が例示される。 The method for verifying the activity of the compound of the present invention may be any method as long as it can be verified that the compound of the present invention suppresses PLP1 expression, and the method described in "Method for evaluating the compound of the present invention" described later is exemplified. Will be done.
 一態様において、本発明化合物は、PLP1発現を抑制する活性を有する、12~30残基、好ましくは16~18残基からなる修飾オリゴヌクレオチドであり、かつ配列表の配列番号1の核酸塩基配列の5’末端から9964~10286位、140007~14152位、4439~4470位、4569~4616位、9061~9164位、11926~12015位、12817~12874位、14839~14920位または15088~15114位のいずれかの等長部分に相補的な少なくとも8個の連続する核酸塩基配列(以下「PLP1相補的核酸塩基配列」と称する)を含むものであればいずれのものでもよい。また、上記PLP1相補的核酸塩基配列は、8~25個の連続する核酸塩基配列であることが好ましく、12~20個の連続する核酸塩基配列であることがより好ましく、さらに好ましくは16、17、18、19又は20個の連続する核酸塩基配列である。 In one embodiment, the compound of the present invention is a modified oligonucleotide consisting of 12 to 30 residues, preferably 16 to 18 residues, having an activity of suppressing PLP1 expression, and the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing. 9964 to 10286, 140007 to 14152, 4439 to 4470, 4569 to 4616, 9061 to 9164, 11926 to 12015, 12817 to 12874, 14039 to 14920 or 15088 to 15114 from the 5'end of the Any one may be used as long as it contains at least eight consecutive nucleobase sequences (hereinafter referred to as "PLP1 complementary nucleobase sequence") complementary to any of the equal length portions. The PLP1 complementary nucleobase sequence is preferably 8 to 25 consecutive nucleobase sequences, more preferably 12 to 20 consecutive nucleobase sequences, and even more preferably 16,17. , 18, 19 or 20 consecutive nucleobase sequences.
 一態様において、本発明化合物は、PLP1発現を抑制する活性を有する、12~30残基、好ましくは16~18残基からなる修飾オリゴヌクレオチドであり、かつ配列表の配列番号1の核酸塩基配列の5’末端から10014~10152位、10180~10252位または14033~14113位のいずれかの等長部分に相補的な少なくとも8個の連続する核酸塩基配列を含むものであればいずれのものでもよい。また、上記PLP1相補的核酸塩基配列は、8~25個の連続する核酸塩基配列であることが好ましく、12~20個の連続する核酸塩基配列であることがより好ましく、さらに好ましくは16、17、18、19又は20個の連続する核酸塩基配列である。 In one embodiment, the compound of the present invention is a modified oligonucleotide consisting of 12 to 30 residues, preferably 16 to 18 residues, having an activity of suppressing PLP1 expression, and the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing. Any one containing at least 8 consecutive nucleobase sequences complementary to any of the equilength portions of positions 10014 to 10152, 10180 to 10252, or 14033 to 14113 from the 5'end of the above. .. The PLP1 complementary nucleobase sequence is preferably 8 to 25 consecutive nucleobase sequences, more preferably 12 to 20 consecutive nucleobase sequences, and even more preferably 16,17. , 18, 19 or 20 consecutive nucleobase sequences.
 一態様において、本発明化合物は、PLP1発現を抑制する活性を有する、12~30残基、好ましくは16~18残基からなる修飾オリゴヌクレオチドであり、かつ配列表の配列番号1の核酸塩基配列の5’末端から10036~10055位、10064~10089位、10101~10130位、10202~10230位または14055~14091位のいずれかの等長部分に相補的な少なくとも8個の連続する核酸塩基配列(以下「PLP1相補的核酸塩基配列」と称する)を含むものであればいずれのものでもよい。また、上記PLP1相補的核酸塩基配列は、8~25個の連続する核酸塩基配列であることが好ましく、12~20個の連続する核酸塩基配列であることがより好ましく、さらに好ましくは16、17、18、19又は20個の連続する核酸塩基配列である。 In one embodiment, the compound of the present invention is a modified oligonucleotide consisting of 12 to 30 residues, preferably 16 to 18 residues, having an activity of suppressing PLP1 expression, and the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing. At least 8 consecutive nucleobase sequences complementary to any of the equilongate moieties at positions 10036 to 10055, 10064 to 10089, 10101 to 10130, 10202 to 10230, or 14055 to 14091 from the 5'end of Anything containing (hereinafter referred to as "PLP1 complementary nucleic acid base sequence") may be used. The PLP1 complementary nucleobase sequence is preferably 8 to 25 consecutive nucleobase sequences, more preferably 12 to 20 consecutive nucleobase sequences, and even more preferably 16,17. , 18, 19 or 20 consecutive nucleobase sequences.
 一態様において、本発明化合物は、PLP1発現を抑制する活性を有する、12~30残基、好ましくは16~18残基からなる修飾オリゴヌクレオチドであり、かつ配列表の配列番号1の核酸塩基配列の5’末端から10101~10130位、10202~10230位または14055~14091位のいずれかの等長部分に相補的な少なくとも8個の連続する核酸塩基配列(以下「PLP1相補的核酸塩基配列」と称する)を含むものであればいずれのものでもよい。また、上記PLP1相補的核酸塩基配列は、8~25個の連続する核酸塩基配列であることが好ましく、12~20個の連続する核酸塩基配列であることがより好ましく、さらに好ましくは16、17、18、19又は20個の連続する核酸塩基配列である。 In one embodiment, the compound of the present invention is a modified oligonucleotide consisting of 12 to 30 residues, preferably 16 to 18 residues, having an activity of suppressing PLP1 expression, and the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing. At least eight consecutive nucleobase sequences complementary to any of the equal length portions of positions 10101 to 10130 or 14055 to 14091 from the 5'end of the above (hereinafter referred to as "PLP1 complementary nucleobase sequence"). Anything may be used as long as it contains (referred to as). The PLP1 complementary nucleobase sequence is preferably 8 to 25 consecutive nucleobase sequences, more preferably 12 to 20 consecutive nucleobase sequences, and even more preferably 16,17. , 18, 19 or 20 consecutive nucleobase sequences.
 PLP1相補的核酸塩基配列としてより具体的には、配列表の配列番号1の核酸塩基配列の5’末端から10036~10051位、10037~10052位、10038~10053位、10039~10054位、10040~10055位、10064~10079位、10065~10080位、10066~10081位、10067~10082位、10068~10083位、10069~10084位、10070~10085位、10071~10086位、10072~10087位、10073~10088位、10074~10089位、10101~10116位、10102~10117位、10103~10118位、10104~10119位、10105~10120位、10106~10121位、10107~10122位、10108~10123位、10109~10124位、10110~10125位、10111~10126位、10112~10127位、10113~10128位、10114~10129位、10115~10130位、10202~10217位、10203~10218位、10204~10219位、10205~10220位、10206~10221位、10207~10222位、10208~10223位、10209~10224位、10210~10225位、10211~10226位、10212~10227位、10213~10228位、10214~10229位、10215~10230位、14055~14070位、14056~14071位、14057~14072位、14062~14077位、14063~14078位、14074~14089位、14075~14090位、14076~14091位のいずれかに相補的な核酸塩基配列であってもよい。 More specifically, as the PLP1 complementary nucleobase sequence, from the 5'end of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing, positions 10036 to 10051, positions 10037 to 10025, positions 10028 to 10053, positions 10039 to 10045 to 10040 to 10055, 10064 to 10094, 10065 to 10080, 10066 to 10081, 10067 to 10082, 10068 to 10083, 10069 to 10084, 10070 to 10085, 10071 to 10086, 10072 to 10087, 10073 to 10087. 10088th, 10074-10089th, 10101-10116th, 10102-10117th, 10103-10118th, 10104-10119th, 10105-10120th, 10106-10121th, 10107-10122th, 10108-10123th, 10109- 10124th, 10110-10125th, 10111-10126th, 10112-10127th, 10113-10128th, 10114-10129th, 10115-10130th, 10202-10217th, 10203-10218th, 10204-10219th, 10205- 10220, 10206 to 10221, 10207 to 10222, 10208 to 10223, 10209 to 10224, 10210 to 10225, 10211 to 10226, 10212 to 10227, 10213 to 10228, 10214 to 10229, 10215 to Nucleic acid complementary to any of positions 10230, 14055 to 14070, 14056 to 14071, 14057 to 14072, 14062 to 14077, 14063 to 14078, 14074 to 14089, 14075 to 14090, 14076 to 14091. It may be a base sequence.
 一態様において、本発明化合物は、PLP1発現を抑制する活性を有する、12~30残基、好ましくは16~18残基からなる修飾オリゴヌクレオチドであり、かつ配列表の配列番号1の核酸塩基配列の5’末端から4439~4470位、4569~4616位、9061~9164位、9964~10055位、10056~10286位、11926~12015位、12817~12874位、14007~14095位、14112~14152位、14839~14920位または15088~15114位のいずれかの等長部分に相補的な少なくとも8個の連続する核酸塩基配列を含むものであればいずれのものでもよい。また、上記PLP1相補的核酸塩基配列は、8~25個の連続する核酸塩基配列であることが好ましく、12~20個の連続する核酸塩基配列であることがより好ましく、さらに好ましくは16、17、18、19又は20個の連続する核酸塩基配列である。 In one embodiment, the compound of the present invention is a modified oligonucleotide consisting of 12 to 30 residues, preferably 16 to 18 residues, having an activity of suppressing PLP1 expression, and the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing. From the 5'end, 4439-4470, 4569-4616, 9061-9164, 9964-10055, 10056-10286, 11926-12015, 12817-12874, 14007-14895, 14112-14152, Any one containing at least eight consecutive nucleobase sequences complementary to any of the equilength portions of positions 14839 to 14920 or 15088 to 15114 may be used. The PLP1 complementary nucleobase sequence is preferably 8 to 25 consecutive nucleobase sequences, more preferably 12 to 20 consecutive nucleobase sequences, and even more preferably 16,17. , 18, 19 or 20 consecutive nucleobase sequences.
 PLP1相補的核酸塩基配列としてより具体的には、配列表の配列番号1の核酸塩基配列の5’末端から4450~4467位、4572~4589位、9072~9089位、9119~9136位、10035~10052位、10037~10054位、10072~10089位、10088~10105位、10101~10118位、10102~10119位、10103~10120位、10104~10121位、10105~10122位、10108~10125位、10109~10126位、10112~10129位、10113~10130位、11959~11976位、11989~12006位、12830~12847位、14020~14037位、14025~14042位、14055~14072位、14056~14073位、14060~14077位、14065~14082位、14075~14092位、14130~14147位、14847~14864位、14852~14869位、14857~14874位、14866~14883位、または15091~15108位のいずれかに相補的な核酸塩基配列であってもよい。 More specifically, as the PLP1 complementary nucleobase sequence, positions 4450 to 4467, 4572 to 4589, 9072 to 9089, 9119 to 9136, and 10035 to the 5'end of the nucleobase sequence of SEQ ID NO: 1 in the sequence listing. 10027, 10037 to 10049, 10072 to 10089, 10088 to 10105, 10101 to 10118, 10102 to 10119, 10103 to 10120, 10104 to 10121, 10105 to 10122, 10108 to 10125, 10109 to 10126th, 10112-10129th, 10113-10130th, 11959-11976th, 11989-12006th, 12830-12847th, 14020-14037th, 14025-14042th, 14055-14072th, 14056-14073th, 14060- Complementary to any of 14077, 14065 to 14082, 14075 to 14092, 14130 to 14147, 14847 to 14864, 14852 to 14869, 14857 to 14874, 14866 to 14883, or 15091 to 15108. It may be a nucleic acid base sequence.
 ここで、本発明の修飾オリゴヌクレオチドは、上記PLP1相補的核酸塩基配列以外にその全長が12~30残基となる範囲で、またその全長の核酸塩基配列が配列表の配列番号1の核酸塩基配列の等長部分に少なくとも85%相補性を有するものであれば、その5’末端側及び/又は3’末端側に付加配列を有してもよい。さらに、付加配列は、本発明の修飾オリゴヌクレオチドがPLP1発現を抑制する活性を有するものであれば、いかなるものでよい。 Here, the modified oligonucleotide of the present invention has a total length of 12 to 30 residues in addition to the PLP1 complementary nucleic acid base sequence, and the full length nucleic acid base sequence is the nucleic acid base of SEQ ID NO: 1 in the sequence listing. It may have an additional sequence on its 5'end and / or 3'end, as long as it has at least 85% complementarity to the equal length portion of the sequence. Further, the addition sequence may be any as long as the modified oligonucleotide of the present invention has an activity of suppressing PLP1 expression.
 前記修飾オリゴヌクレオチドの全長の核酸塩基配列は配列表の配列番号1の等長部分に少なくとも85%の相補性を有するものであるが、その相補性は好ましくは90%、より好ましくは95%、さらに好ましくは100%であるものである。ここで、等長部分とは、本発明の修飾オリゴヌクレオチドの核酸塩基配列と、PLP1 pre-mRNA又はmRNAの核酸塩基配列とで例えばBLAST等のソフトウェアを用いてアラインした際に、相同性を有する部分として検出される部分を意味する。つまり、本発明のオリゴヌクレオチドの核酸塩基配列は、PLP1 pre-mRNA又はmRNAの核酸塩基配列の等長部分に対して完全相補的であることが望ましいが、1つ又は複数のミスマッチ核酸塩基を有していてもよく、85%以上、90%以上、好ましくは95%以上の相補性を有するものが用いられる。 The full-length nucleobase sequence of the modified oligonucleotide has at least 85% complementarity to the equilength portion of SEQ ID NO: 1 in the sequence listing, with the complementarity preferably 90%, more preferably 95%. More preferably, it is 100%. Here, the equal-length portion has homology when the nucleic acid base sequence of the modified oligonucleotide of the present invention and the nucleic acid base sequence of PLP1 pre-mRNA or mRNA are aligned using software such as BLAST. It means a part detected as a part. That is, it is desirable that the nucleobase sequence of the oligonucleotide of the present invention is completely complementary to the equal length portion of the PLP1 pre-mRNA or the nucleobase sequence of the mRNA, but it has one or more mismatched nucleobases. It may be used, and those having a complementarity of 85% or more, 90% or more, preferably 95% or more are used.
 上記ミスマッチ核酸塩基は、連続していてもよく、PLP1相補的核酸塩基配列が挟まれていてもよい。PLP1 pre-mRNA又はmRNAとの本発明のアンチセンスオリゴヌクレオチドの相補性パーセントは、当技術分野で既知のBLASTプログラム(basic local alignment searchtools)及びPowerBLASTプログラム(Altschul et al.,J.Mol.Biol.,1990,215,403 410;Zhang and Madden,Genome Res.,1997,7,649 656)を使用して、慣例的に決定することができる。相同性パーセント、配列同一性又は相補性は、例えば、ギャッププログラム(Wisconsin Sequence Analysis Package,Version 8 for Unix,Genetics Computer Group,University Research Park,Madison Wis.)によって、Smith and Waterman(Adv.Appl.Math.,1981,2,482 489)のアルゴリズムを使用するデフォルト設定を使用して決定することができる。例えば、修飾オリゴヌクレオチドの20個の核酸塩基のうちの18個が、PLP1 pre-mRNAの等長部分に相補的でありハイブリダイズする時、修飾オリゴヌクレオチドは、90パーセントの相補性を有する。 The mismatched nucleobase may be continuous or may be sandwiched between PLP1 complementary nucleobase sequences. The percentage of complementarity of the antisense oligonucleotide of the present invention with PLP1 pre-mRNA or mRNA is described in BLAST programs (basic local alignment sequences) and PowerBLAST programs (Altschul et al., J. Mol. Biol) known in the art. , 1990, 215, 403 410; Zhang and Madden, Genome Res., 1997, 7, 649, 656). Percent of homology, sequence identity or complementarity can be determined, for example, by the Gap Program (WisconsinSequence Analysis Package, Version 8 for Unix, Genetics Computer Group, Universals Computer Group, University ResearchAp. It can be determined using the default settings that use the algorithms of., 1981, 2, 482, 489). For example, when 18 of the 20 nucleobases of a modified oligonucleotide are complementary to and hybridize to the equivalescent portion of PLP1 pre-mRNA, the modified oligonucleotide has 90% complementarity.
 本発明の修飾オリゴヌクレオチドの具体的な核酸塩基配列の一例としては、
TACCGTTGCGCTCAGG(配列番号1の10104~10119位の相補配列)(配列表の配列番号2)
CCTGTTACCGTTGCGC(配列番号1の10109~10124位の相補配列)(配列表の配列番号3)
GGCCCCCTGTTACCGT(配列番号1の10114~10129位の相補配列)(配列表の配列番号4)
TCGGGATGTCCTAGCC(配列番号1の10202~10217位の相補配列)(配列表の配列番号5)
GTCGGGATGTCCTAGC(配列番号1の10203~10218位の相補配列)(配列表の配列番号6)
ATGAGTTTAAGGACGG(配列番号1の14056~14071位の相補配列)(配列表の配列番号7)
CATGAGTTTAAGGACG(配列番号1の14057~14072位の相補配列)(配列表の配列番号8)
AACTTGGTGCCTCGGC(配列番号1の14074~14089位の相補配列)(配列表の配列番号9)、または
GAACTTGGTGCCTCGG(配列番号1の14075~14090位の相補配列)(配列表の配列番号10)
に記載される核酸塩基配列が挙げられる。
As an example of a specific nucleic acid base sequence of the modified oligonucleotide of the present invention,
TACCGTTGCGCTCAGG (Complementary sequence at positions 10104 to 10119 of SEQ ID NO: 1) (SEQ ID NO: 2 in the sequence listing)
CCTGTTACCGTTGCGC (Complementary sequence at positions 10109 to 10124 of SEQ ID NO: 1) (SEQ ID NO: 3 in the sequence listing)
GGCCCCCTGTTACCGT (Complementary sequence at positions 10114 to 10129 of SEQ ID NO: 1) (SEQ ID NO: 4 in the sequence listing)
TCGGGATGTCCTAGCC (Complementary sequence at positions 10202 to 10217 of SEQ ID NO: 1) (SEQ ID NO: 5 in the sequence listing)
GTCGGGATGTCCTAGC (Complementary sequence at positions 10203 to 10218 of SEQ ID NO: 1) (SEQ ID NO: 6 in the sequence listing)
ATGAGTTTAAGGACGG (complementary sequence at positions 14056 to 14071 of SEQ ID NO: 1) (SEQ ID NO: 7 in the sequence listing)
CATGAGTTTAAGGACG (complementary sequence at positions 14057 to 14072 of SEQ ID NO: 1) (SEQ ID NO: 8 in the sequence listing)
AACTTGGTGCCTCGGC (complementary sequence at positions 14074 to 14089 of SEQ ID NO: 1) (SEQ ID NO: 9 in the sequence listing), or
GAACTTGGTGCCTCGG (Complementary sequence at positions 14075 to 14090 of SEQ ID NO: 1) (SEQ ID NO: 10 in the sequence listing)
The nucleic acid base sequence described in is mentioned.
 本発明の修飾オリゴヌクレオチドの具体的な核酸塩基配列の一例としては、
配列番号1の10037~10052位の相補配列、
配列番号1の10038~10053位の相補配列、
配列番号1の10039~10054位の相補配列、
配列番号1の10040~10055位の相補配列、
配列番号1の10065~10080位の相補配列、
配列番号1の10068~10083位の相補配列、
配列番号1の10072~10087位の相補配列、
配列番号1の10102~10117位の相補配列、
配列番号1の10103~10118位の相補配列、
配列番号1の10106~10121位の相補配列、
配列番号1の10110~10125位の相補配列、
配列番号1の10115~10130位の相補配列、
配列番号1の10206~10221位の相補配列、
配列番号1の10207~10222位の相補配列、
配列番号1の10209~10224位の相補配列、
配列番号1の10211~10226位の相補配列、
配列番号1の10212~10227位の相補配列、
配列番号1の10213~10228位の相補配列、
配列番号1の10214~10229位の相補配列、
配列番号1の14055~14070位の相補配列、
配列番号1の14062~14077位の相補配列、
配列番号1の14063~14078位の相補配列、または
配列番号1の14076~14091位の相補配列、
に記載される核酸塩基配列が挙げられる。
As an example of a specific nucleic acid base sequence of the modified oligonucleotide of the present invention,
Complementary sequence of positions 10037 to 10025 of SEQ ID NO: 1,
Complementary sequence at positions 10028 to 10053 of SEQ ID NO: 1,
Complementary sequence at positions 10039 to 10045 of SEQ ID NO: 1,
Complementary sequence at positions 10040 to 10055 of SEQ ID NO: 1,
Complementary sequence at positions 10065 to 10080 of SEQ ID NO: 1,
Complementary sequence at positions 10068 to 10083 of SEQ ID NO: 1,
Complementary sequence at positions 10072 to 10087 of SEQ ID NO: 1,
Complementary sequence at positions 10102 to 10117 of SEQ ID NO: 1,
Complementary sequence at positions 10103 to 10118 of SEQ ID NO: 1,
Complementary sequence at positions 10106 to 10121 of SEQ ID NO: 1,
Complementary sequence at positions 10110 to 10125 of SEQ ID NO: 1,
Complementary sequence at positions 10115 to 10130 of SEQ ID NO: 1,
Complementary sequence at positions 10206 to 10221 of SEQ ID NO: 1,
Complementary sequence at positions 10207 to 10222 of SEQ ID NO: 1,
Complementary sequence at positions 10209 to 10224 of SEQ ID NO: 1,
Complementary sequence at positions 10211 to 10226 of SEQ ID NO: 1,
Complementary sequence at positions 10212 to 10227 of SEQ ID NO: 1,
Complementary sequence at positions 10213 to 10228 of SEQ ID NO: 1,
Complementary sequence at positions 10214 to 10229 of SEQ ID NO: 1,
Complementary sequence at positions 14055 to 14070 of SEQ ID NO: 1,
Complementary sequence at positions 14062 to 14077 of SEQ ID NO: 1,
Complementary sequence at positions 14063 to 14078 of SEQ ID NO: 1, or complementary sequence at positions 14076 to 14091 of SEQ ID NO: 1,
The nucleic acid base sequence described in is mentioned.
 本発明の修飾オリゴヌクレオチドの具体的な核酸塩基配列の一例としては、
配列番号1の4450~4467位の相補配列、
配列番号1の14020~14037位の相補配列、
配列番号1の14025~14042位の相補配列、
配列番号1の14055~14072位の相補配列、または
配列番号1の14060~14077位の相補配列、
に記載される核酸塩基配列が挙げられる。
As an example of a specific nucleic acid base sequence of the modified oligonucleotide of the present invention,
Complementary sequence at positions 4450 to 4467 of SEQ ID NO: 1,
Complementary sequence at positions 14020 to 14037 of SEQ ID NO: 1,
Complementary sequence at positions 14025 to 14042 of SEQ ID NO: 1,
Complementary sequence at positions 14055 to 14072 of SEQ ID NO: 1, or complementary sequence at positions 14060 to 14077 of SEQ ID NO: 1,
The nucleic acid base sequence described in is mentioned.
 本発明修飾オリゴヌクレオチドは、2本鎖修飾オリゴヌクレオチドであってもよいが、1本鎖修飾オリゴヌクレオチドが好ましく用いられる。 The modified oligonucleotide of the present invention may be a double-stranded modified oligonucleotide, but a single-stranded modified oligonucleotide is preferably used.
 (修飾糖)
 本発明修飾オリゴヌクレオチドは、それを構成する少なくとも1つのヌクレオシドが修飾糖を含むものが好ましく用いられる。本発明において修飾糖とは、糖部分が修飾されたものをいい、当該修飾糖を1つ以上含む修飾オリゴヌクレオチドは、ヌクレアーゼ安定性の増強、結合親和性の増大等の有利な特徴を有する。修飾糖のうち少なくとも一つは、二環式糖、2’-MOEで修飾された糖、及び2’-OMeで修飾された糖からなる群から選択されることが好ましい。二環式糖としては、例えば、以下に示すように、LNA、ENA、cEt、GuNA、ALNA[Ms]、ALNA[mU]、ALNA[ipU]、ALNA[Oxz]、又はALNA[Trz]の糖部分があげられ、ALNA[Ms]の糖部分が好ましく用いられる。
(Modified sugar)
As the modified oligonucleotide of the present invention, one in which at least one nucleoside constituting the oligonucleotide contains a modified sugar is preferably used. In the present invention, the modified sugar means a modified sugar moiety, and a modified oligonucleotide containing one or more of the modified sugars has advantageous features such as enhanced nuclease stability and increased binding affinity. At least one of the modified sugars is preferably selected from the group consisting of bicyclic sugars, 2'-MOE modified sugars, and 2'-OMe modified sugars. Bicyclic sugars include, for example, LNA, ENA, cEt, GuNA, ALNA [Ms], ALNA [mU], ALNA [ipU], ALNA [Oxz], or ALNA [Trz] sugars, as shown below. The portion is raised, and the sugar moiety of ALNA [Ms] is preferably used.
 置換糖部分の例としては、これらに限定されないが、5’-ビニル、5’-メチル(R又はS)、4’-S、2’-F、2’-OCH(2’-OMe)、2’-OCHCH、2’-OCHCHF及び2’-O(CHOCH(2’-MOE)置換基を含むヌクレオシドが挙げられる。2’位の置換基は、アリル、アミノ、アジド、チオ、O-アリル、O-C~C10アルキル、OCF、OCHF、O(CHSCH、O(CH-O-N(R)(R)、O-CH-C(=O)-N(R)(R)及びO-CH-C(=O)-N(R)-(CH-N(R)(R)(式中、各R、R及びRは独立に、H又は置換もしくは無置換のC~C10アルキルである)から選択することができる。 Examples of substituted sugar moieties are, but are not limited to, 5'-vinyl, 5'-methyl (R or S), 4'-S, 2'-F, 2'-OCH 3 (2'-OMe). , 2'-OCH 2 CH 3 , 2'-OCH 2 CH 2 F and 2'-O (CH 2 ) 2 OCH 3 (2'-MOE) nucleosides containing substituents. Substituents at the 2'position are allyl, amino, azide, thio, O-allyl , OC 1 to C 10 alkyl, OCF 3 , OCH 2 F, O (CH 2 ) 2 SCH 3 , O (CH 2 ). 2- ON (R m ) (R n ), O-CH 2- C (= O) -N (R m ) (R n ) and O-CH 2- C (= O) -N (R l) )-(CH 2 ) 2- N (R m ) (R n ) (In the formula, each R l , R m and R n are independently H or substituted or unsubstituted C 1 to C 10 alkyl). You can choose from.
 二環式糖を有するヌクレオシドの例としては、これらに限定されないが、4’と2’のリボシル環原子の間の架橋を含むヌクレオシドが挙げられる。ある種の実施態様では、本明細書で提供されるオリゴヌクレオチドは、架橋が以下の式の1つを含む、1つ又は複数の二環式糖を有するヌクレオシドを含む:4’-(CH)-O-2’(LNA);4’-(CH)-S-2’;4’-(CH-O-2’(ENA);4’-CH(CH)-O-2’(cEt)及び4’-CH(CHOCH)-O-2’(及びそれらの類似物。米国特許7,399,845号を参照されたい);4’-C(CH)(CH)-O-2’(及びそれらの類似物。WO2009/006478号を参照されたい);4’-CH-N(OCH)-2’(及びそれらの類似物。WO2008/150729号を参照されたい);4’-CH-O-N(CH)-2’(及びそれらの類似物。US2004-0171570号を参照されたい);4’-CH-N(R)-O-2’(式中、Rは、H、C1~C12アルキル又は保護基である)(米国特許7,427,672号を参照されたい);4’-CH-C(H)(CH)-2’(及びそれらの類似物。Chattopadhyaya et al.,J.Org.Chem.,2009,74,118-134を参照されたい);並びに4’-CH-C(=CH)-2’(及びそれらの類似物。WO2008/154401号を参照されたい)。 Examples of nucleosides with bicyclic sugars include, but are not limited to, nucleosides that include crosslinks between the 4'and 2'ribosyl ring atoms. In certain embodiments, the oligonucleotides provided herein comprise a nucleoside having one or more bicyclic sugars whose cross-linking comprises one of the following formulas: 4'-(CH 2). ) -O-2'(LNA);4'-(CH 2 ) -S-2';4'-(CH 2 ) 2- O-2'(ENA);4'-CH (CH 3 ) -O -2'(cEt) and 4'-CH (CH 2 OCH 3 ) -O-2' (and their analogs, see US Pat. No. 7,399,845); 4'-C (CH 3). ) (CH 3) -O-2 '( and see like No. .WO2009 / 006478 thereof); 4'-CH 2 -N ( OCH 3) -2' ( and analogs thereof .WO2008 / See 150729); 4'-CH 2 -ON (CH 3 ) -2'(and their analogs, see US2004-0171570); 4'-CH 2- N (R). ) -O-2 '(wherein, R is H, C1 ~ C12 alkyl or a protecting group) (see U.S. Pat. No. 7,427,672); 4'-CH 2 -C (H) (CH 3 ) -2'(and their analogs; see Chattopadhyaya et al., J. Org. Chem., 2009, 74, 118-134); and 4'-CH 2- C (= CH). 2 ) -2'(and their analogs, see WO 2008/154401).
 さらなる二環式糖を有するヌクレオシドが、発表文献に報告されている(例えば:Srivastava et al.,J.Am.Chem.Soc.,2007,129(26)8362-8379;Frieden et al.,Nucleic Acids Research,2003,21,6365-6372;Elayadi et al.,Curr.Opinion Invens.Drugs,2001,2,558-561;Braasch et al.,Chem.Biol.,2001,8,1-7;Orum et al.,Curr.Opinion Mol.Ther.,2001,3,239-243;Wahlestedt et al.,Proc.Natl.Acad.Sci.U.S.A.,2000,97,5633-5638;Singh et al.,Chem.Commun.,1998,4,455-456;Koshkin et al.,Tetrahedron,1998,54,3607-3630;Kumar et al.,Bioorg.Med.Chem.Lett.,1998,8,2219-2222;Singh et al.,;米国特許7,399,845号;6,770,748号;6,525,191号;6,268,490号;米国US2008-0039618号;US2007-0287831号;US2004-0171570号;US2009-0012281号;WO2010/036698;WO 2009/067647号;WO2009/067647号;WO2007/134181号;WO2005/021570号;WO2004/106356号;WO94/14226号;WO 2009/006478号;WO2008/154401号;及びWO2008/150729号を参照されたい)。前述の二環式糖を有するヌクレオシドのそれぞれは、例えばα-L-リボフラノース及びβ-D-リボフラノースを含む1つ又は複数の立体化学的糖配置を有して、調製することができる。 Nucleosides with additional bicyclic sugars have been reported in the published literature (eg: Srivastava et al., J. Am. Chem. Soc., 2007, 129 (26) 8362-8379; Frieden et al., Nucleic). Acids Research, 2003, 21, 6365-6372; Eladi et al., Curr. Opinion Events. Drugs, 2001, 2, 558-561; Braach et al., Chem. Biol., 2001, 8, 1-7; Orum et al., Curr. Opinion Mol. Ther., 2001, 3, 239-243; Walestedt et al., Proc. Natl. Acad. Sci. USA, 2000, 97, 5633-5638; Singh et. al., Chem.Commun., 1998, 4,455-456; Koshkin et al., Tetrahedron, 1998, 54, 3607-3630; Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219. -2222; Singh et al. ,; US Pat. No. 7,399,845; 6,770,748; 6,525,191; 6,268,490; US US2008-0039618; US2007-0287831; US2004-0171570; US2009-01281; WO2010 / 036698; WO2009 / 067647; WO2009 / 067647; WO2007 / 134181; WO2005 / 021570; WO2004 / 106356; WO94 / 14226; WO2009 / 006478 See WO2008 / 154401; and WO2008 / 150729). Each of the aforementioned bicyclic sugar-bearing nucleosides can be prepared with one or more stereochemical sugar configurations, including, for example, α-L-ribofuranose and β-D-ribofuranose.
 二環式糖を有するヌクレオシドのGuNAはグアニジン架橋を有する人工ヌクレオシドとして報告されている(WO2014/046212号、WO2017/047816号を参照されたい)。二環式ヌクレオシドのALNA[Ms]、ALNA[mU]、ALNA[ipU]、ALNA[Trz]及びALNA[Oxz]は架橋型人工核酸アミノLNA(ALNA)として報告されている(WO2020/100826号を参照されたい)。 GuNA of nucleosides with bicyclic sugars has been reported as artificial nucleosides with guanidine crosslinks (see WO2014 / 046212, WO2017 / 047816). The bicyclic nucleosides ALNA [Ms], ALNA [mU], ALNA [ipU], ALNA [Trz] and ALNA [Oxz] have been reported as crosslinked artificial nucleic acid amino LNA (ALNA) (WO2020 / 100826). Please refer to).
 ある種の実施態様では、二環式糖を有するヌクレオシドは、ペントフラノシル糖部分の4’と2’の炭素原子の間に架橋を含み、これらには限定されないが、-[C(R)(R)]-、-C(R)=C(R)-、-C(R)=N-、-C(=NR)-、-C(=O)-、-C(=S)-、-N(R)-、-O-、-Si(R-及び-S(=O)-から独立に選択される1つ又は1つから4つの連結基を含む架橋が含まれ、式中、Xは0、1又は2であり;nは1、2、3又は4であり;各R及びRは、独立に、H、保護基、ヒドロキシル、C~C12アルキル、置換C~C12アルキル、C~C12アルケニル、置換C~C12アルケニル、C~C12アルキニル、置換C~C12アルキニル、芳香環基、置換芳香環基、複素環基、置換複素環基、C~C脂環基、置換C~C脂環基、ハロゲン、OJ、NJ、SJ、N、COOJ、アシル(C(=O)-H)、置換アシル、CN、スルホニル(S(=O)-J)又はスルホキシル(S(=O)-J)であり、
 各J及びJは、独立に、H、C~C12アルキル、置換C~C12アルキル、C~C12アルケニル、置換C~C12アルケニル、C~C12アルキニル、置換C~C12アルキニル、芳香環基、置換芳香環基、アシル(C(=O)-H)、置換アシル、複素環基、置換複素環基、C~C12アミノアルキル、置換C~C12アミノアルキル又は保護基である。
In certain embodiments, nucleosides with bicyclic sugars include, but are not limited to, bridges between the 4'and 2'carbon atoms of the pentoflanosyl sugar moiety, but are not limited to-[C ( Ra). ) (R b )] n- , -C (R a ) = C (R b )-, -C (R a ) = N-, -C (= NR a )-, -C (= O)-, One or one to four independently selected from -C (= S)-, -N (R a )-, -O-, -Si (R a ) 2- and -S (= O) x- A bridge containing two linking groups is included, in which X is 0, 1 or 2; n is 1, 2, 3 or 4; each Ra and R b are independently H, a protective group. , Hydroxyl, C 1 to C 12 alkyl, substituted C 1 to C 12 alkyl, C 2 to C 12 alkenyl, substituted C 2 to C 12 alkenyl, C 2 to C 12 alkynyl, substituted C 2 to C 12 alkynyl, aromatic ring. group, a substituted aromatic group, a heterocyclic group, substituted heterocyclic group, C 5 ~ C 7 alicyclic, substituted C 5 ~ C 7 alicyclic, halogen, OJ 1, NJ 1 J 2 , SJ 1, N 3 , COOJ 1 , acyl (C (= O) -H), substituted acyl, CN, sulfonyl (S (= O) 2- J 1 ) or sulfoxyl (S (= O) -J 1 ).
Each J 1 and J 2 are independently H, C 1 to C 12 alkyl, substituted C 1 to C 12 alkyl, C 2 to C 12 alkenyl, substituted C 2 to C 12 alkenyl, C 2 to C 12 alkynyl, respectively. Substituted C 2 to C 12 alkynyl, aromatic ring group, substituted aromatic ring group, acyl (C (= O) -H), substituted acyl, heterocyclic group, substituted heterocyclic group, C 1 to C 12 aminoalkyl, substituted C 1 to C 12 aminoalkyl or protective group.
 ある種の実施態様では、二環式糖部分の架橋は、-[C(R)(R)]-、-[C(R)(R)]-O-、-C(R)-N(R)-O-又はC(R)-O-N(R)-である。ある種の実施態様では、架橋は、4’-CH-2’、4’-(CH-2’、4’-(CH-2’、4’-CH-O-2’(この場合の二環式糖を有するヌクレオシドをLNAともいう)、4’-(CH-O-2’(この場合の二環式糖を有するヌクレオシドをENAともいう)、4’-CH(CH)-O-2’ (この場合の二環式糖を有するヌクレオシドをcEtともいう)、4’-CH-O-N(R)-2’及び4’-CH-N(R)-O-2’-であり、式中、各Rは独立に、H、保護基又はC~C12アルキルである。 In certain embodiments, the cross-linking of the bicyclic sugar moiety is-[C (R a ) (R b )] n -,-[C (R a ) (R b )] n- O-, -C. (R a R b ) -N (R) -O- or C (R a R b ) -ON (R)-. In certain embodiments, the crosslinks are 4'-CH 2 -2', 4'-(CH 2 ) 2 -2', 4'-(CH 2 ) 3 -2', 4'-CH 2- O. -2'(The nucleoside having a bicyclic sugar in this case is also referred to as LNA), 4'-(CH 2 ) 2- O-2'(The nucleoside having a bicyclic sugar in this case is also referred to as ENA), 4'-CH (CH 3 ) -O-2'(in this case, the nucleoside having a bicyclic sugar is also referred to as cEt), 4'-CH 2 -ON (R) -2'and 4'-CH. 2 -N (R) -O-2'- wherein the average each R is independently, H, a protecting group or C 1 ~ C 12 alkyl.
 ある種の実施態様では、二環式糖部分の架橋は、4’-CH-O-2’-(LNA)又はCH-N(R)-であり、式中、各Rは独立に-SO-CH(ALNA[Ms])、-CO-NH-CH(ALNA[mU])、1,5-ジメチル-1,2,4-トリアゾール-3-イル(ALNA[Trz])、-CO-NH-CH(CH(ALNA[ipU])、5-メチル-1,2,4-オキサジアゾール-3-イル(ALNA[Oxz])である(WO2020/100826号)。 In certain embodiments, the cross-linking of the bicyclic sugar moiety is 4'-CH 2- O-2'-(LNA) or CH 2- N (R)-, where each R is independent. -SO 2- CH 3 (ALNA [Ms]), -CO-NH-CH 3 (ALNA [mU]), 1,5-dimethyl-1,2,4-triazole-3-yl (ALNA [Trz]) , -CO-NH-CH (CH 3 ) 2 (ALNA [ipU]), 5-Methyl-1,2,4-oxadiazole-3-yl (ALNA [Oxz]) (WO2020 / 100926). ..
 ある種の実施態様では、二環式糖を有するヌクレオシドは、異性体立体配置によってさらに定義される。例えば、4’-(CH)-O-2’架橋を含むヌクレオシドは、α-L-立体配置で存在してもよいし、β-D-立体配置で存在してもよい。 In certain embodiments, nucleosides with bicyclic sugars are further defined by isomer configuration. For example, a nucleoside containing a 4'-(CH 2 ) -O-2'crosslink may be present in an α-L-configuration or a β-D-configuration.
 ある種の実施態様では、二環式糖を有するヌクレオシドは、4’-2’架橋を有するものを含み、そうした架橋としては、これらに限定されないが、α-L-4’-(CH)-O-2’、β-D-4’-CH-O-2’、4’-(CH-O-2’、4’-CH-O-N(R)-2’、4’-CH-N(R)-O-2’、4’-CH(CH)-O-2’、4’-CH-S-2’、4’-CH-CH(CH)-2’及び4’-(CH-2’(式中、Rは、H、保護基、C~C12アルキル、又はC~C12アルキルで置換されてもよいウレアもしくはグアニジンである)が挙げられる。 In certain embodiments, nucleosides with bicyclic sugars include, but are not limited to, α-L-4'-(CH 2 ). -O-2', β-D-4'-CH 2- O-2', 4'-(CH 2 ) 2- O-2', 4'-CH 2 -ON (R) -2' 4, 4'-CH 2- N (R) -O-2', 4'-CH (CH 3 ) -O-2', 4'-CH 2- S-2', 4'-CH 2 -CH ( CH 3) -2 'and 4' - (CH 2) 3 -2 '( wherein, R, H, a protecting group, C 1 ~ C 12 alkyl, or C 1 in ~ C 12 alkyl which may be substituted Urea or guanidine).
 ある種の実施態様では、二環式糖を有するヌクレオシドは以下の式を有する:
Figure JPOXMLDOC01-appb-C000001
 式中、
 Bxは複素環塩基部分であり;
 T及びTはそれぞれ独立に、水素原子、水酸基の保護基、置換されてもよいリン酸基、リン部分又は支持体への共有結合等であり;
 Zは、C~Cアルキル、C~Cアルケニル、C~Cアルキニル、置換C~Cアルキル、置換C~Cアルケニル、置換C~Cアルキニル、アシル、置換アシル、置換アミド、チオール又は置換チオールである。
In certain embodiments, nucleosides with bicyclic sugars have the following formula:
Figure JPOXMLDOC01-appb-C000001
During the ceremony
Bx is the heterocyclic base portion;
The T a and T b are each independently a hydrogen atom, a hydroxyl protecting group, optionally phosphate groups be substituted, a covalent bond etc. to phosphorus moiety or support;
Z a is C 1 to C 6 alkyl, C 2 to C 6 alkenyl, C 2 to C 6 alkynyl, substituted C 1 to C 6 alkyl, substituted C 2 to C 6 alkenyl, substituted C 2 to C 6 alkynyl, acyl. , Substituted acyl, substituted amide, thiol or substituted thiol.
 ある種の実施態様では、置換基のそれぞれは独立に、ハロゲン、オキソ、ヒドロキシル、OJ、NJ、SJ、N、OC(=X)J及びNJC(=X)NJ(式中、各J、J及びJは独立に、H、C~Cアルキル又は置換C~Cアルキルであり、XはO又はNJである)から独立に選択される置換基で一置換又は多置換される。 In certain embodiments, each of the substituents is independently halogen, oxo, hydroxyl, OJ c , NJ c J d , SJ c , N 3 , OC (= X) J c and NJ e C (= X). From NJ c J d (in the formula, each J c , J d and J e are independently H, C 1 to C 6 alkyl or substituted C 1 to C 6 alkyl, and X is O or NJ c ). It is mono- or poly-substituted with independently selected substituents.
 ある種の実施態様では、二環式糖を有するヌクレオシドは以下の式を有する:
Figure JPOXMLDOC01-appb-C000002
 式中、
 Bxは複素環塩基部分であり;
 T及びTはそれぞれ独立に、水素原子、水酸基の保護基、置換されてもよいリン酸基、リン部分又は支持体への共有結合等であり;
 Zは、C~Cアルキル、C~Cアルケニル、C~Cアルキニル、置換C~Cアルキル、置換C~Cアルケニル、置換C~Cアルキニル又は置換アシル(C(=O)-)である。
In certain embodiments, nucleosides with bicyclic sugars have the following formula:
Figure JPOXMLDOC01-appb-C000002
During the ceremony
Bx is the heterocyclic base portion;
The T a and T b are each independently a hydrogen atom, a hydroxyl protecting group, optionally phosphate groups be substituted, a covalent bond etc. to phosphorus moiety or support;
Z b is C 1 to C 6 alkyl, C 2 to C 6 alkenyl, C 2 to C 6 alkynyl, substituted C 1 to C 6 alkyl, substituted C 2 to C 6 alkenyl, substituted C 2 to C 6 alkynyl or substituted. It is an acyl (C (= O)-).
 ある種の実施態様では、二環式糖を有するヌクレオシドは以下の式を有する:
Figure JPOXMLDOC01-appb-C000003
 式中、
 Bxは複素環塩基部分であり;
 T及びTはそれぞれ独立に、水素原子、水酸基の保護基、置換されてもよいリン酸基、リン部分又は支持体への共有結合等であり;
 Rは、C~Cアルキル、置換C~Cアルキル、C~Cアルケニル、置換C~Cアルケニル、C~Cアルキニル又は置換C~Cアルキニルであり;
 各q、q、q及びqは独立に、H、ハロゲン、C~Cアルキル、置換C~Cアルキル、C~Cアルケニル、置換C~Cアルケニル、C~Cアルキニル又は置換C~Cアルキニル、C~Cアルコキシル、置換C~Cアルコキシル、アシル、置換アシル、C~Cアミノアルキル又は置換C~Cアミノアルキルである。
In certain embodiments, nucleosides with bicyclic sugars have the following formula:
Figure JPOXMLDOC01-appb-C000003
During the ceremony
Bx is the heterocyclic base portion;
The T a and T b are each independently a hydrogen atom, a hydroxyl protecting group, optionally phosphate groups be substituted, a covalent bond etc. to phosphorus moiety or support;
R d is C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 2 to C 6 alkenyl, substituted C 2 to C 6 alkynyl, C 2 to C 6 alkynyl or substituted C 2 to C 6 alkynyl. ;
Each q a , q b , q c and q d are independently H, halogen, C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 2 to C 6 alkenyl, substituted C 2 to C 6 alkenyl, C 2 to C 6 alkynyl or substituted C 2 to C 6 alkynyl, C 1 to C 6 alkoxyl, substituted C 1 to C 6 alkoxyl, acyl, substituted acyl, C 1 to C 6 aminoalkyl or substituted C 1 to C 6 amino It is alkyl.
 ある種の実施態様では、二環式糖を有するヌクレオシドは以下の式を有する:
Figure JPOXMLDOC01-appb-C000004
 式中、
 Bxは複素環塩基部分であり;
 T及びTはそれぞれ独立に、水素原子、水酸基の保護基、置換されてもよいリン酸基、リン部分又は支持体への共有結合等であり;
 q、q、q及びqはそれぞれ独立に、水素、ハロゲン、C~C12アルキル、置換C~C12アルキル、C~C12アルケニル、置換C~C12アルケニル、C~C12アルキニル、置換C~C12アルキニル、C~C12アルコキシ、置換C~C12アルコキシ、OJ、SJ、SOJ、SO、NJ、N、CN、C(=O)OJj、C(=O)NJ、C(=O)J、O-C(=O)NJ、N(H)C(=NH)NJ、N(H)C(=O)-NJもしくはN(H)C(=S)NJであり;
 又は、q及びqは共に=C(q)(q)であり;
 q及びqはそれぞれ独立に、H、ハロゲン、C~C12アルキルもしくは置換C~C12アルキルである。
In certain embodiments, nucleosides with bicyclic sugars have the following formula:
Figure JPOXMLDOC01-appb-C000004
During the ceremony
Bx is the heterocyclic base portion;
The T a and T b are each independently a hydrogen atom, a hydroxyl protecting group, optionally phosphate groups be substituted, a covalent bond etc. to phosphorus moiety or support;
q a , q b , q e and q f are independently hydrogen, halogen, C 1 to C 12 alkyl, substituted C 1 to C 12 alkyl, C 2 to C 12 alkoxy, substituted C 2 to C 12 alkoxy, respectively. C 2 to C 12 alkynyl, substituted C 2 to C 12 alkynyl, C 1 to C 12 alkoxy, substituted C 1 to C 12 alkoxy, OJ j , SJ j , SOJ j , SO 2 J j , NJ j J k , N 3 , CN, C (= O) OJj, C (= O) NJ j J k , C (= O) J j , OC (= O) NJ j J k , N (H) C (= NH) NJ j J k , N (H) C (= O) -NJ j J k or N (H) C (= S) NJ j J k ;
Alternatively, q e and q f are both = C (q g ) (q h );
q g and q h are independently H, halogen, C 1 to C 12 alkyl or substituted C 1 to C 12 alkyl, respectively.
 4’-CH-O-2’架橋を有する、アデニン、シトシン、グアニン、5-メチル-シトシン、チミン及びウラシル二環式ヌクレオシド(LNAともいう)の合成及び調製は、それらのオリゴマー化及び核酸認識特性と共に記載されている(Koshkin etal.,Tetrahedron,1998,54,3607-3630)。二環式糖を有するヌクレオシドの合成は、WO98/39352及びWO99/14226にも記載されている。 The synthesis and preparation of adenine, cytosine, guanine, 5-methyl-cytosine, thymine and uracil bicyclic nucleosides (also referred to as LNAs) with 4'-CH 2-O-2'bridges are their oligomerizations and nucleic acids. Described with recognition characteristics (Koshkin etal., Tetrahedron, 1998, 54, 3607-3630). The synthesis of nucleosides with bicyclic sugars is also described in WO98 / 39352 and WO99 / 14226.
 4’-CH-O-2’(この場合の二環式ヌクレオシドをLNAともいう)及び4’-CH-S-2’などの4’-2’架橋基を有する様々な二環式ヌクレオシドの類似物も、調製されている(Kumar et al.,Bioorg.Med.Chem.Lett.,1998,8,2219-2222)。核酸ポリメラーゼの基質として使用するための、二環式ヌクレオシドを含むオリゴデオキシリボヌクレオチド二本鎖の調製も記載されている(Wengel et al.,WO99/14226)。さらに、2’-アミノ-LNA(この場合の二環式ヌクレオシドをALNAともいう)、すなわち立体構造的に制限された高親和性オリゴヌクレオチド類似物の合成が、当技術分野で記載されている(Singh et al.,J.Org.Chem.,1998,63,10035-10039)。さらに、2’-アミノ-及び2’-メチルアミノ-LNAが調製されており、相補的なRNA鎖及びDNA鎖との二本鎖の熱安定性が以前に報告されている。 Various bicyclics with 4'-2'crosslinking groups such as 4'-CH 2- O-2'(the bicyclic nucleoside in this case is also referred to as LNA) and 4'-CH 2-S-2'. Nucleoside analogs have also been prepared (Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222). Preparation of a bicyclic nucleoside-containing oligodeoxyribonucleotide double strand for use as a substrate for nucleic acid polymerases has also been described (Wengel et al., WO 99/14226). Further described in the art are the synthesis of 2'-amino-LNA (bicyclic nucleosides in this case also referred to as ALNA), ie, conformationally restricted high affinity oligonucleotide analogs (in the art). Singh et al., J. Org. Chem., 1998, 63, 1003-10039). In addition, 2'-amino- and 2'-methylamino-LNA have been prepared and double-stranded thermal stability with complementary RNA and DNA strands has been previously reported.
 ある種の実施態様では、二環式糖を有するヌクレオシドは以下の式を有する:
Figure JPOXMLDOC01-appb-C000005
 式中、
 Bxは複素環塩基部分であり;
 T及びTはそれぞれ独立に、水素原子、水酸基の保護基、置換されてもよいリン酸基、リン部分又は支持体への共有結合等であり;
 各q、q、q及びqは独立に、H、ハロゲン、C~C12アルキル、置換C~C12アルキル、C~C12アルケニル、置換C~C12アルケニル、C~C12アルキニル、置換C~C12アルキニル、C~C12アルコキシル、置換C~C12アルコキシル、OJ、SJ、SOJ、SO、NJ、N、CN、C(=O)OJ、C(=O)NJ、C(=O)J、O-C(=O)NJ、N(H)C(=NH)NJ、N(H)C(=O)NJ又はN(H)C(=S)NJであり;
 q及びq又はq及びqは共に=C(q)(q)であり、式中、q及びqはそれぞれ独立に、H、ハロゲン、C~C12アルキル又は置換C~C12アルキルである。
In certain embodiments, nucleosides with bicyclic sugars have the following formula:
Figure JPOXMLDOC01-appb-C000005
During the ceremony
Bx is the heterocyclic base portion;
The T a and T b are each independently a hydrogen atom, a hydroxyl protecting group, optionally phosphate groups be substituted, a covalent bond etc. to phosphorus moiety or support;
Each q i , q j , q k and q l are independently H, halogen, C 1 to C 12 alkyl, substituted C 1 to C 12 alkyl, C 2 to C 12 alkoxy, substituted C 2 to C 12 alkoxy, respectively. C 2 to C 12 alkynyl, substituted C 2 to C 12 alkynyl, C 1 to C 12 alkoxyl, substituted C 1 to C 12 alkoxyl, OJ j , SJ j , SOJ j , SO 2 J j , NJ j J k , N 3 , CN, C (= O) OJ j , C (= O) NJ j J k , C (= O) J j , OC (= O) NJ j J J k , N (H) C (= NH) ) NJ j J k , N (H) C (= O) NJ j J k or N (H) C (= S) NJ j J k ;
q i and q j or q l and q k are both = C (q g ) (q h ), and in the equation, q g and q h are independently H, halogen, C 1 to C 12 alkyl or Substituted C 1 to C 12 alkyl.
 4’-(CH)3-2’架橋及びアルケニル類似物架橋4’-CH=CH-CH-2’を有する1つの炭素環式二環式ヌクレオシドが記載されている(Frier et al.,Nucleic Acids Research,1997,25(22),4429-4443及びAlbaek et al.,J.Org.Chem.,2006,71,7731-7740)。炭素環式二環式ヌクレオシドの合成及び調製も、そのオリゴマー化及び生化学的な研究と共に記載されている(Srivastava et al.,J.Am.Chem.Soc.2007,129(26),8362-8379)。 4 '- (CH 2) 3-2 ' bridge and alkenyl analogs crosslinked 4'-CH = CH-CH 2 1 single carbocyclic bicyclic nucleosides having 2 'have been described (Frier et al. , Nucleic Acids Research, 1997, 25 (22), 4429-4443 and Albaek et al., J. Org. Chem., 2006, 71, 7731-7740). The synthesis and preparation of carbocyclic bicyclic nucleosides has also been described along with their oligomerization and biochemical studies (Srivastava et al., J. Am. Chem. Soc. 2007, 129 (26), 8362-. 8379).
 ある種の実施態様では、二環式糖を有するヌクレオシドとしては、これらに限定されないが、以下に示すような化合物が挙げられる。 In certain embodiments, nucleosides having bicyclic sugars include, but are not limited to, compounds as shown below.
Figure JPOXMLDOC01-appb-C000006

 式中、Bxは塩基部分であり、Rは独立に、保護基、C~Cアルキル又はC~Cアルコキシである。
Figure JPOXMLDOC01-appb-C000006

Wherein, Bx is the base moiety, R represents independently a protecting group, C 1 ~ C 6 alkyl or C 1 ~ C 6 alkoxy.
 ある種の実施態様(LNA)では、二環式糖を有するヌクレオシドは以下の一般式:   
Figure JPOXMLDOC01-appb-C000007

[式中、
 Bは、核酸塩基であり;
 X及びYは、それぞれ独立に、水素原子、水酸基の保護基、置換されてもよいリン酸基、リン部分又は支持体への共有結合等]で表されるヌクレオシドを挙げることができる(WO98/39352を参照)。典型的な具体例は、下記式:
Figure JPOXMLDOC01-appb-C000008
で示されるヌクレオチドを挙げることができる。
In certain embodiments (LNA), nucleosides having bicyclic sugars have the following general formula:
Figure JPOXMLDOC01-appb-C000007

[During the ceremony,
B is a nucleobase;
Each of X and Y can independently include a nucleoside represented by a hydrogen atom, a protecting group for a hydroxyl group, a phosphate group which may be substituted, a covalent bond to a phosphorus moiety or a support, etc.] (WO98 / See 39352). A typical specific example is the following formula:
Figure JPOXMLDOC01-appb-C000008
The nucleotides indicated by can be mentioned.
 ある種の実施態様(GuNA)では、二環式を含むヌクレオシドは下記一般式:
Figure JPOXMLDOC01-appb-C000009
[式中、Bは核酸塩基であり、R、R、R、Rは各々独立して水素原子、又は1つ以上の置換基で置換されてもよいC1-6アルキル基であり、R、Rはそれぞれ独立に、水素原子、水酸基の保護基、置換されてもよいリン酸基、リン部分又は支持体への共有結合等であり、そしてR、R10、R11は各々独立して水素原子、1つ以上の置換基で置換されてもよいC1-6アルキル基、又はアミノ基の保護基である。]
で表されるヌクレオシドである(例えば、WO2014/046212号、WO2017/047816号を参照)。
In certain embodiments (GuNA), nucleosides, including bicyclics, have the following general formula:
Figure JPOXMLDOC01-appb-C000009
[In the formula, B is a nucleic acid base, and R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or a C 1-6 alkyl group which may be substituted with one or more substituents. Yes, R 7 and R 8 are independently hydrogen atoms, hydroxyl group protective groups, optionally substituted phosphate groups, covalent bonds to phosphorus moieties or supports, etc., and R 9 , R 10 , R 11 is a C 1-6 alkyl group or amino group protective group, each of which may be independently substituted with a hydrogen atom or one or more substituents. ]
It is a nucleoside represented by (see, for example, WO2014 / 046212, WO2017 / 047816).
 ある種の実施態様(ALNA[mU])では、二環式糖を含むヌクレオシドは下記一般式(I):
Figure JPOXMLDOC01-appb-C000010
[式中、
 Bは、核酸塩基であり;
 R、R、R及びRは各々独立して、水素原子、又は1つ以上の置換基で置換されていてもよいC1-6アルキル基であり;
 R及びRは各々独立して、水素原子、水酸基の保護基、置換されてもよいリン酸基、リン部分又は支持体への共有結合等であり;
 mは、1又は2であり;
 Xは、下記式(II-1):
Figure JPOXMLDOC01-appb-C000011
で示される基であり;
 式(II-1)中に記載の記号:
Figure JPOXMLDOC01-appb-C000012
は、2’-アミノ基との結合点を示し;
 R及びRの一方が水素原子であり、他方が1つ以上の置換基で置換されてもよいメチル基である。]
で表されるヌクレオシドである(例えば、WO2020/100826号を参照)。典型的な具体例は、R及びRの一方が水素原子であり、他方が無置換のメチル基である、ヌクレオシドである。
In certain embodiments (ALNA [mU]), nucleosides comprising bicyclic sugars are represented by the following general formula (I):
Figure JPOXMLDOC01-appb-C000010
[During the ceremony,
B is a nucleobase;
R 1 , R 2 , R 3 and R 4 are C 1-6 alkyl groups, each independently of which may be substituted with a hydrogen atom or one or more substituents;
R 5 and R 6 are each independently a hydrogen atom, a protecting group for a hydroxyl group, a phosphate group which may be substituted, a covalent bond to a phosphorus moiety or a support, and the like;
m is 1 or 2;
X is the following formula (II-1):
Figure JPOXMLDOC01-appb-C000011
It is a group indicated by;
Symbols described in formula (II-1):
Figure JPOXMLDOC01-appb-C000012
Indicates the binding point with the 2'-amino group;
One of R 7 and R 8 is a hydrogen atom and the other is a methyl group which may be substituted with one or more substituents. ]
It is a nucleoside represented by (see, for example, WO2020 / 100826). A typical embodiment is a nucleoside in which one of R 7 and R 8 is a hydrogen atom and the other is an unsubstituted methyl group.
 ある種の実施態様(ALNA[ipU])では、二環式糖を含むヌクレオシドは上記のALNA[mU]において定義する一般式(I)を有するヌクレオシドであって、該式中、
 Xが、下記式(II-1):
Figure JPOXMLDOC01-appb-C000013
で示される基であり;
 R及びRの一方が水素原子であり、他方が1つ以上の置換基で置換されてもよいイソプロピル基である(例えば、WO2020/100826号を参照)。典型的な具体例は、R及びRの一方が水素原子であり、他方が無置換のイソプロピル基である、ヌクレオシドである。
In certain embodiments (ALNA [ipU]), a nucleoside comprising a bicyclic sugar is a nucleoside having the general formula (I) as defined in ALNA [mU] above, wherein the nucleoside comprises the above formula.
X is the following formula (II-1):
Figure JPOXMLDOC01-appb-C000013
It is a group indicated by;
One of R 7 and R 8 is a hydrogen atom and the other is an isopropyl group which may be substituted with one or more substituents (see, eg, WO2020 / 100826). A typical embodiment is a nucleoside in which one of R 7 and R 8 is a hydrogen atom and the other is an unsubstituted isopropyl group.
ある種の実施態様(ALNA[Trz])では、二環式を含むヌクレオシドは上記一般式(I)を有するヌクレオシドであって、該式中、Xが、下記式(II-2):
Figure JPOXMLDOC01-appb-C000014
で示される基であり;
 Aが、1つ以上の置換基で置換されていてもよいトリアゾリル基である(例えば、特願2018-212424を参照)。ALNA[Trz]の典型的な具体例は、Aが、1又は複数のメチル基を有してもよいトリアゾリル基であり、より具体的には、1,5-ジメチル-1,2,4-トリアゾール-3-イル基である、ヌクレオシドである。
In certain embodiments (ALNA [Trz]), the nucleoside comprising the bicyclic formula is a nucleoside having the above general formula (I), wherein X is the following formula (II-2) :.
Figure JPOXMLDOC01-appb-C000014
It is a group indicated by;
A is a triazolyl group which may be substituted with one or more substituents (see, eg, Japanese Patent Application No. 2018-212424). A typical embodiment of ALNA [Trz] is a triazolyl group in which A may have one or more methyl groups, more specifically 1,5-dimethyl-1,2,4-. It is a nucleoside, which is a triazole-3-yl group.
 ある種の実施態様(ALNA[Oxz])では、上記のALNA[mU]において定義する一般式(I)を有するヌクレオシドであって、該式中、
 Xが、下記式(II-2):
Figure JPOXMLDOC01-appb-C000015
で示される基であり;
 Aが、1つ以上の置換基で置換されていてもよいオキサジアゾリル基である(例えば、特願2018-212424を参照)。典型的な具体例は、Aが1又は複数のメチル基を有してもよいオキサジアゾリル基であり、より具体的には、5-メチル-1,2,4-オキサジアゾール-3-イル基である、ヌクレオシド又はヌクレオチドである。
In certain embodiments (ALNA [Oxz]), a nucleoside having the general formula (I) as defined in ALNA [mU] above, wherein the nucleoside has the same formula.
X is the following formula (II-2):
Figure JPOXMLDOC01-appb-C000015
It is a group indicated by;
A is an oxadiazolyl group that may be substituted with one or more substituents (see, eg, Japanese Patent Application No. 2018-212424). A typical embodiment is an oxadiazolyl group in which A may have one or more methyl groups, more specifically a 5-methyl-1,2,4-oxadiazole-3-yl group. Is a nucleoside or nucleotide.
 ある種の実施態様(ALNA[Ms])では、二環式を含むヌクレオシドは上記一般式(I)を有するヌクレオシドであって、該式中、Xが、下記一般式(II-3):
Figure JPOXMLDOC01-appb-C000016
で示される基であり;
 Mは、1つ以上の置換基で置換されていてもよいメチル基で置換された、スルホニル基である(例えば、WO2020/100826号を参照)。ALNA[Ms]の典型的な具体例は、Mが無置換のメチル基で置換されたスルホニル基である、ヌクレオシドである。
In certain embodiments (ALNA [Ms]), the nucleoside comprising the bicyclic formula is a nucleoside having the above general formula (I), wherein X is the following general formula (II-3) :.
Figure JPOXMLDOC01-appb-C000016
It is a group indicated by;
M is a sulfonyl group substituted with a methyl group optionally substituted with one or more substituents (see, eg, WO2020 / 100826). A typical embodiment of ALNA [Ms] is a nucleoside, which is a sulfonyl group in which M is substituted with an unsubstituted methyl group.
 ある種の実施態様では、ヌクレオシドは、糖代用物とのリボシル環の置き換えによって修飾される。そうした修飾としては、これらに限定されないが、代用環系(DNA類似物と言われることもある)、例えば、モルホリノ環、シクロヘキセニル環、シクロヘキシル環又はテトラヒドロピラニル環、例えば以下の式のうちの1つを有するものとのリボシル環の置き換えが挙げられる:
Figure JPOXMLDOC01-appb-C000017
In certain embodiments, the nucleoside is modified by replacing the ribosyl ring with a sugar substitute. Such modifications include, but are not limited to, substitute ring systems (sometimes referred to as DNA analogs), such as morpholino rings, cyclohexenyl rings, cyclohexyl rings or tetrahydropyranyl rings, such as: The replacement of the ribosyl ring with one having one is mentioned:
Figure JPOXMLDOC01-appb-C000017
 ある種の実施態様では、以下の式を有する糖代用物が選択される:
Figure JPOXMLDOC01-appb-C000018
 式中、
 Bxは複素環塩基部分であり;
 T及びTはそれぞれ独立に、テトラヒドロピランヌクレオシド類似物をオリゴマー化合物に連結するヌクレオシド間連結基、又はT及びTの一方は、テトラヒドロピランヌクレオシド類似物をオリゴマー化合物もしくはオリゴヌクレオチドに連結するヌクレオシド間連結基であり、T及びTの他方は、H、ヒドロキシル保護基、連結共役基又は5’もしくは3’-末端基であり;
 q、q、q、q、q、q及びqはそれぞれ独立に、H、C~Cアルキル、置換C~Cアルキル、C~Cアルケニル、置換C~Cアルケニル、C~Cアルキニル又は置換C~Cアルキニルであり;
 R及びRの一方は水素であり、他方はハロゲン、置換又は無置換のアルコキシ、NJ、SJ、N、OC(=X)J、OC(=X)NJ、NJC(=X)NJ及びCN(式中、XはO、S又はNJであり、各J、J及びJは独立に、H又はC~Cアルキルである)から選択される。
In certain embodiments, sugar substitutes having the following formula are selected:
Figure JPOXMLDOC01-appb-C000018
During the ceremony
Bx is the heterocyclic base portion;
T 3 and T 4 independently link the tetrahydropyran nucleoside analog to the oligomer compound, or one of T 3 and T 4 links the tetrahydropyran nucleoside analog to the oligomer compound or oligonucleotide. A nucleoside interlinking group, the other of T 3 and T 4 being an H, hydroxyl protecting group, linking conjugate group or 5'or 3'-terminal group;
q 1 , q 2 , q 3 , q 4 , q 5 , q 6 and q 7 are independently H, C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 2 to C 6 alkenyl, substituted, respectively. C 2 ~ C 6 alkenyl, C 2 ~ C 6 alkynyl, or substituted C 2 ~ C 6 alkynyl;
One of R 1 and R 2 is hydrogen, the other is halogen, substituted or unsubstituted alkoxy, NJ 1 J 2 , SJ 1 , N 3 , OC (= X) J 1 , OC (= X) NJ 1 J. 2 , NJ 3 C (= X) NJ 1 J 2 and CN (in the formula, X is O, S or NJ 1 , and each J 1 , J 2 and J 3 are independently H or C 1 to C 6 It is selected from (is alkyl).
 ある種の実施態様では、q、q、q、q、q、q及びqはそれぞれHである。ある種の実施態様では、q、q、q、q、q、q及びqの少なくとも1つはH以外である。ある種の実施態様では、q、q、q、q、q、q及びqの少なくとも1つはメチルである。ある種の実施態様では、R及びRの一方がFであるTHPヌクレオシドが提供される。ある種の実施態様では、Rがフルオロであり、且つRがHであり;Rがメトキシであり、且つRがHであり、及びRがメトキシエトキシであり、且つRがHである。 In certain embodiments, q 1 , q 2 , q 3 , q 4 , q 5 , q 6 and q 7 are H, respectively. In certain embodiments, at least one of q 1 , q 2 , q 3 , q 4 , q 5 , q 6 and q 7 is other than H. In certain embodiments, at least one of q 1 , q 2 , q 3 , q 4 , q 5 , q 6 and q 7 is methyl. In certain embodiments, a THP nucleoside in which one of R 1 and R 2 is F is provided. In certain embodiments, R 1 is fluoro and R 2 is H; R 1 is methoxy and R 2 is H, and R 1 is methoxyethoxy and R 2 is. It is H.
 そうした糖代用物としては、これらに限定されないが、当技術分野で、ヘキシトール核酸(HNA)、アルトリトール核酸(ANA)及びマンニトール核酸(MNA)と言われるものが挙げられる(Leumann,C.J.,Bioorg.& Med.Chem.,2002,10,841-854を参照されたい)。 Such sugar substitutes include, but are not limited to, those referred to in the art as hexitol nucleic acid (HNA), altritor nucleic acid (ANA) and mannitol nucleic acid (MNA) (Leumann, C.J. , Bioorg. & Med. Chem., 2002, 10, 841-854).
 ある種の実施態様では、糖代用物は、5つを超える原子及び1つを超えるヘテロ原子を有する環を含む。例えば、モルホリノ糖部分を含むヌクレオシド及びオリゴマー化合物でのその使用が報告されている(例えば、Braasch et al.,Biochemistry,2002,41,4503-4510;並びに米国特許5,698,685;5,166,315;5,185,444;及び5,034,506を参照されたい)。 In certain embodiments, the sugar substitute comprises a ring having more than 5 atoms and more than 1 heteroatom. For example, its use in nucleosides and oligomeric compounds containing morpholino sugar moieties has been reported (eg, Braach et al., Biochemistry, 2002, 41, 4503-4510; and US Pat. No. 5,698,685; 5,166. , 315; 5,185,444; and 5,034,506).
 本明細書で使用する場合、用語「モルホリノ」は以下の構造を有する糖代用物を意味する:
Figure JPOXMLDOC01-appb-C000019
As used herein, the term "morpholino" means a sugar substitute having the following structure:
Figure JPOXMLDOC01-appb-C000019
 ある種の実施態様では、例えば、上記のモルホリノ構造から様々な置換基を付加する又は変えることによって、モルホリノを修飾することができる。そうした糖代用物は、本明細書で「修飾モルホリノ」と言われる。 In certain embodiments, the morpholino can be modified, for example, by adding or modifying various substituents from the morpholino structure described above. Such sugar substitutes are referred to herein as "modified morpholino".
 ある種の実施態様では、オリゴヌクレオチドは、天然に存在するヌクレオシドのペントフラノシル残基の代わりに6員シクロヘキセニルを有するヌクレオシドである、1つ又は複数の修飾シクロヘキセニルヌクレオシドを含む。修飾シクロヘキセニルヌクレオシドとしては、これらに限定されないが、当技術分野で記載されたものが挙げられる(例えば、共有に係る、2010年4月10日に公開されたWO2010/036696、Robeyns et al.,J.Am.Chem.Soc.,2008,130(6),1979-1984;Horvath et al.,Tetrahedron Letters,2007,48,3621-3623;Nauwelaerts et al.,J.Am.Chem.Soc.,2007,129(30),9340-9348;Gu etal.,Nucleosides,Nucleotides & Nucleic Acids,2005,24(5-7),993-998;Nauwelaerts et al.,Nucleic Acids Research,2005,33(8),2452-2463;Robeyns et al.,Acta Crystallographica,Section F:Structural Biology and Crystallization Communications,2005,F61(6),585-586;Gu et al.,Tetrahedron,2004,60(9),2111-2123;Gu et al.,Oligonucleotides,2003,13(6),479-489;Wang et al.,J.Org.Chem.,2003,68,4499-4505;Verbeure et al.,Nucleic AcidsResearch,2001,29(24),4941-4947;Wang etal.,J.Org.Chem.,2001,66,8478-82;Wang et al.,Nucleosides,Nucleotides & Nucleic Acids,2001,20(4-7),785-788;Wang et al.,J.Am.Chem.,2000,122,8595-8602;WO06/047842号;及びWO01/049687号を参照されたい;それぞれのテキストは参照によりその全体が本明細書に組み込まれる)。 In certain embodiments, the oligonucleotide comprises one or more modified cyclohexenyl nucleosides, which are nucleosides having a 6-membered cyclohexenyl in place of the pentoflanosyl residue of the naturally occurring nucleoside. Modified cyclohexenyl nucleosides include, but are not limited to, those described in the art (eg, WO2010 / 036696, published April 10, 2010, Robeyns et al., Concerning sharing. J. Am. Chem. Soc., 2008, 130 (6), 1979-1984; Harbor et al., Tetrahedron Letters, 2007, 48, 3621-3623; Nucleoside et al., J. Am. Chem. Soc. 2007, 129 (30), 9340-9348; Guetal., Nucleosides, Nucleosides & Nucleic Acids, 2005, 24 (5-7), 993-998; , 2452-2463; Robeyns et al., Acta Crystallogica, Section F: Structural Biology and Crystallation Communications, 2005, F61 (6), 585-586; Guet2, Gu et al., Oligonucleosides, 2003, 13 (6), 479-489; Wang et al., J. Org. Chem., 2003, 68, 4499-4505; Verbeure et al., Nucleic Acids Research, 2001, 29 (24), 4941-4497; Wang etal., J. Org. Chem., 2001, 66, 8478-82; Wang et al., Nucleosides, Nucleosides & Nucleic Acids, 2001, 20 (4-7), 785- 788; Wang et al., J. Am. Chem., 2000, 122, 8595-8602; WO 06/047842; and WO 01/049687; each text is by reference in its entirety herein. Will be incorporated).
ある種の修飾シクロヘキセニルヌクレオシドは以下の式を有する:
Figure JPOXMLDOC01-appb-C000020
 式中、
 Bxは複素環塩基部分であり;
 T及びTはそれぞれ独立に、シクロヘキセニルヌクレオシド類似物をオリゴヌクレオチド化合物に連結するヌクレオシド間連結基であり、又はT及びTの一方は、テトラヒドロピランヌクレオシド類似物をオリゴヌクレオチド化合物に連結するヌクレオシド間連結基であり、T及びTの他方は、H、ヒドロキシル保護基、連結共役基もしくは5’-もしくは3’-末端基であり;
 q、q、q、q、q、q、q、q及びqはそれぞれ独立に、H、C~Cアルキル、置換C~Cアルキル、C~Cアルケニル、置換C~Cアルケニル、C~Cアルキニル、置換C~Cアルキニル又は他の糖置換基である。
Certain modified cyclohexenyl nucleosides have the following formula:
Figure JPOXMLDOC01-appb-C000020
During the ceremony
Bx is the heterocyclic base portion;
T 3 and T 4 are each independently nucleoside interlinking groups that link the cyclohexenyl nucleoside analog to the oligonucleotide compound, or one of T 3 and T 4 ligates the tetrahydropyran nucleoside analog to the oligonucleotide compound. The other of T 3 and T 4 is an H, hydroxyl protecting group, linking conjugate group or 5'-or 3'-terminal group;
q 1 , q 2 , q 3 , q 4 , q 5 , q 6 , q 7 , q 8 and q 9 are independently H, C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 2 respectively. ~ C 6 alkenyl, substituted C 2 to C 6 alkynyl, C 2 to C 6 alkynyl, substituted C 2 to C 6 alkynyl or other sugar substituents.
 オリゴヌクレオチドに組み込むためのヌクレオシドを修飾するのに使用することができる、多くの他の二環式及び三環式の糖代用環系が当技術分野で既知である(例えば、総説:Leumann,Christian J.,Bioorg.& Med.Chem.,2002,10,841-854を参照されたい)。そうした環系は、活性を増強するために様々なさらなる置換を受けることができる。 Many other bicyclic and tricyclic sugar-substituting ring systems that can be used to modify nucleosides for incorporation into oligonucleotides are known in the art (eg, Review: Leumann, Christian). See J., Bioorg. & Med. Chem., 2002, 10, 841-854). Such ring systems can undergo various further substitutions to enhance their activity.
 修飾糖の調製方法は当業者に周知である。そうした修飾糖の調製を教示するいくつかの代表的なU.S.特許は、これらに限定されないが、U.S.:4,981,957;5,118,800;5,319,080;5,359,044;5,393,878;5,446,137;5,466,786;5,514,785;5,519,134;5,567,811;5,576,427;5,591,722;5,597,909;5,610,300;5,627,053;5,639,873;5,646,265;5,670,633;5,700,920;5,792,847及び6,600,032並びにWO2005/121371号が挙げられ、これらのそれぞれは、参照によりその全体が本明細書に組み込まれる。 The method for preparing the modified sugar is well known to those skilled in the art. Some representative U.S. teaches the preparation of such modified sugars. S. Patents are, but are not limited to, U.S.A. S. : 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5 , 519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646 , 265; 5,670,633; 5,700,920; 5,792,847 and 6,600,032 and WO2005 / 121371, each of which is incorporated herein by reference in its entirety. Is done.
 修飾糖部分を有するヌクレオチドでは、核酸塩基部分(天然、修飾又はそれらの組み合わせ)は、適切な核酸標的とのハイブリダイゼーションの間維持される。 For nucleotides with a modified sugar moiety, the nucleobase moiety (natural, modified or a combination thereof) is maintained during hybridization with a suitable nucleic acid target.
 好ましい修飾糖はALNA[Ms]、ALNA[mU]、ALNA[ipU]、ALNA[Oxz]、又はALNA[Trz]の糖部分であり、この中ではALNA[Ms]の糖部分がより好ましい。すなわち、ある種の実施態様では、本発明の修飾オリゴヌクレオチドは、PLP1発現を抑制する活性を有する、12~25残基、好ましくは、16,17、18、19又は20塩基からなる修飾オリゴヌクレオチドであり、前記修飾オリゴヌクレオチドの核酸塩基配列が配列表の配列番号1の核酸塩基配列の等長部分に少なくとも85%、少なくとも90%、又は少なくとも95%の相補性を有し、当該オリゴヌクレオチドを構成するヌクレオシドのうち少なくとも1つがALNA[Ms]、ALNA[mU]、ALNA[ipU]、ALNA[Oxz]、又はALNA[Trz]の糖部分から選択される修飾糖を有する、修飾オリゴヌクレオチドである。 Preferred modified sugars are the sugar moieties of ALNA [Ms], ALNA [mU], ALNA [ipU], ALNA [Oxz], or ALNA [Trz], of which the sugar moiety of ALNA [Ms] is more preferred. That is, in certain embodiments, the modified oligonucleotide of the present invention is a modified oligonucleotide consisting of 12 to 25 residues, preferably 16, 17, 18, 19 or 20 bases, which has an activity of suppressing PLP1 expression. The nucleic acid base sequence of the modified oligonucleotide has at least 85%, at least 90%, or at least 95% complementarity to the equal length portion of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing, and the oligonucleotide is used. At least one of the constituent nucleic acids is a modified oligonucleotide having a modified sugar selected from the sugar moiety of ALNA [Ms], ALNA [mU], ALNA [ipU], ALNA [Oxz], or ALNA [Trz]. ..
 好ましい他の修飾糖は2’-MOEで修飾された糖である。すなわち、ある種の実施態様では、本発明の修飾オリゴヌクレオチドは、PLP1発現を抑制する活性を有する、12~25残基、好ましくは、16,17、18、19又は20塩基からなる修飾オリゴヌクレオチドであり、前記修飾オリゴヌクレオチドの核酸塩基配列が配列表の配列番号1の核酸塩基配列の等長部分に少なくとも85%、少なくとも90%、又は少なくとも95%の相補性を有し、当該オリゴヌクレオチドを構成するヌクレオシドのうち少なくとも1つが2’-MOEで修飾された糖を有する、修飾オリゴヌクレオチドである。 Another preferred modified sugar is a 2'-MOE modified sugar. That is, in certain embodiments, the modified oligonucleotide of the present invention is a modified oligonucleotide consisting of 12 to 25 residues, preferably 16, 17, 18, 19 or 20 bases, which has an activity of suppressing PLP1 expression. The nucleic acid base sequence of the modified oligonucleotide has at least 85%, at least 90%, or at least 95% complementarity to the equal length portion of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing, and the oligonucleotide is used. At least one of the constituent nucleic acid is a modified oligonucleotide having a sugar modified with 2'-MOE.
 (修飾核酸塩基)
 核酸塩基(又は塩基)の修飾又は置換は、天然に存在する又は合成の非修飾核酸塩基と構造的に識別可能であり、こうした非修飾核酸塩基とさらに機能的に互換性がある。天然及び修飾核酸塩基の両方とも、水素結合に関与することができる。そうした核酸塩基修飾は、ヌクレアーゼ安定性、結合親和性又はいくつかの他の有益な生物学的特性をオリゴヌクレオチド化合物に与えることができる。本発明修飾オリゴヌクレオチドは、それを構成する少なくとも1つのヌクレオシドが修飾核酸塩基を含むものが好ましく用いられる。修飾核酸塩基としては、例えば、5-メチルシトシン(5-me-C)があげられる。5-メチルシトシンは、5位に結合したメチル基で修飾されたシトシンを意味する。5-メチルシトシン置換を含めたある種の核酸塩基置換は、オリゴヌクレオチドの結合親和性を増大させるのに特に有用である。例えば、5-メチルシトシン置換は、核酸の二本鎖安定性を0.6~1.2℃増大させることが示されている(Sanghvi,Y.S.,Crooke,S.T.and Lebleu,B.,eds.,Antisense Research and Applications,CRC Press,Boca Raton,1993,pp.276-278)。
(Modified nucleobase)
Modifications or substitutions of nucleobases (or bases) are structurally distinguishable from naturally occurring or synthetic unmodified nucleobases and are more functionally compatible with such unmodified nucleobases. Both natural and modified nucleobases can be involved in hydrogen bonding. Such nucleobase modifications can impart nuclease stability, binding affinity or some other beneficial biological property to the oligonucleotide compound. As the modified oligonucleotide of the present invention, one in which at least one nucleoside constituting the oligonucleotide contains a modified nucleobase is preferably used. Examples of the modified nucleobase include 5-methylcytosine (5-me-C). 5-Methylcytosine means cytosine modified with a methyl group attached to the 5-position. Certain nucleobase substitutions, including 5-methylcytosine substitutions, are particularly useful for increasing the binding affinity of oligonucleotides. For example, 5-methylcytosine substitution has been shown to increase double-stranded stability of nucleic acids by 0.6-1.2 ° C (Sanghvi, YS, CRC, ST and Lebleu, B., eds., Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278).
 さらなる修飾核酸塩基としては、5-ヒドロキシメチルシトシン、キサンチン、ヒポキサンチン、2-アミノアデニン、アデニン及びグアニンの6-メチル及び他のアルキル誘導体、アデニン及びグアニンの2-プロピル及び他のアルキル誘導体、2-チオウラシル、2-チオチミン及び2-チオシトシン、5-ハロウラシル及びシトシン、5-プロピニル(-C≡C-CH)ウラシル及びシトシン並びにピリミジン塩基の他のアルキニル誘導体、6-アゾウラシル、シトシン及びチミン、5-ウラシル(シュードウラシル)、4-チオウラシル、8-ハロ、8-アミノ、8-チオール、8-チオアルキル、8-ヒドロキシル及び他の8-置換アデニン及びグアニン、5-ハロ、特に5-ブロモ、5-トリフルオロメチル及び他の5-置換ウラシル及びシトシン、7-メチルグアニン及び7-メチルアデニン、2-F-アデニン、2-アミノ-アデニン、8-アザグアニン及び8-アザアデニン、7-デアザグアニン及び7-デアザアデニン、3-デアザグアニン及び3-デアザアデニンが挙げられる。 Further modified nucleic acid bases include 5-hydroxymethylcytosine, xanthin, hypoxanthin, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2 -Thiouracil, 2-thiothymine and 2-thiocitosine, 5-halouracil and cytosine, 5-propynyl (-C≡C-CH 3 ) uracil and citocin and other alkynyl derivatives of pyrimidine base, 6-azouracil, cytosine and chimin, 5 -Uracil (Pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halos, especially 5-bromo, 5 -Trifluoromethyl and other 5-substituted uracils and citocins, 7-methylguanine and 7-methyladenine, 2-F-adenine, 2-amino-adenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7- Examples include deazaadenine, 3-deazaguanine and 3-deazaadenine.
 複素環塩基部分は、プリン又はピリミジン塩基が他の複素環、例えば、7-デアザ-アデニン、7-デアザグアノシン、2-アミノピリジン及び2-ピリドンで置き換えられているものを含むこともできる。修飾オリゴヌクレオチドの結合親和性を増大させるのに特に有用な核酸塩基としては、5-置換ピリミジン、6-アザピリミジン及びN-2、N-6及びO-6置換プリン(2-アミノプロピルアデニン、5-プロピニルウラシル及び5-プロピニルシトシンを含める)が挙げられる。 The heterocyclic base moiety can also include those in which the purine or pyrimidine base is replaced with another heterocycle, for example, 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone. Nucleobases particularly useful for increasing the binding affinity of modified oligonucleotides include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines (2-aminopropyladenine, Includes 5-propynyluracil and 5-propynylcytosine).
(修飾ヌクレオシド間結合)
 RNA及びDNAの天然に存在するヌクレオシド間結合は、3’-5’ホスホジエステル結合である。1つ又は複数の修飾された、すなわち天然に存在しない、ヌクレオシド間結合を有するオリゴヌクレオチドは、例えば、細胞取り込みの増強、標的核酸に対する親和性の増強及びヌクレアーゼの存在下での安定性の増大などの特性が理由で、天然に存在するヌクレオシド間結合を有するオリゴヌクレオチドよりも好ましいことが多い。
(Binding between modified nucleosides)
The naturally occurring nucleoside bond between RNA and DNA is a 3'-5'phosphodiester bond. One or more modified, i.e., non-naturally occurring, oligonucleotides with nucleoside linkages include, for example, enhanced cell uptake, enhanced affinity for target nucleic acids and increased stability in the presence of nucleases. Often preferred over naturally occurring oligonucleotides with internucleoside linkages because of their properties.
 修飾ヌクレオシド間結合を有するオリゴヌクレオチドは、リン原子を保持するヌクレオシド間結合及びリン原子を有さないヌクレオシド間結合を含む。代表的なリン含有ヌクレオシド間結合としては、これらに限定されないが、ホスホジエステル、ホスホトリエステル、メチルホスホネート、ホスホルアミデート及びホスホロチオエートの1つ以上が挙げられる。リン含有及び非リン含有結合の調製方法は周知である。 Oligonucleotides with modified nucleoside bonds include nucleoside bonds that retain a phosphorus atom and nucleoside bonds that do not have a phosphorus atom. Representative phosphorus-containing nucleoside bonds include, but are not limited to, one or more of phosphodiesters, phosphotriesters, methylphosphonates, phosphoramidates and phosphorothioates. Methods for preparing phosphorus-containing and non-phosphorus-containing bonds are well known.
 本発明修飾オリゴヌクレオチドのヌクレオシド間結合は、修飾オリゴヌクレオチドがPLP1発現を抑制する活性を有するものであればいかなるものでもよいが、少なくとも1つのヌクレオシド間結合がホスホロチオエートヌクレオシド間結合を含むものが好ましく用いられ、例えば、全てヌクレオシド間結合がホスホロチオエートヌクレオシド間結合であってもよい。 The nucleoside linkage of the modified oligonucleotide of the present invention may be any as long as the modified oligonucleotide has an activity of suppressing PLP1 expression, but one in which at least one nucleoside linkage contains a phosphorothioate nucleoside linkage is preferably used. For example, all nucleoside linkages may be phosphorothioate nucleoside linkages.
(修飾オリゴヌクレオチドモチーフ)
 ある種の実施態様では、本発明の修飾オリゴヌクレオチドは、ヌクレアーゼによる分解に対する抵抗性の増大、細胞取り込みの増大、標的核酸に対する結合親和性の増大及び/又はPLP1発現抑制活性の増大を獲得するために、ギャップマーモチーフを有することができる。
(Modified oligonucleotide motif)
In certain embodiments, the modified oligonucleotides of the invention obtain increased resistance to degradation by nucleases, increased cell uptake, increased binding affinity for target nucleic acids and / or increased PLP1 expression inhibitory activity. Can have a gapmer motif.
 「ギャップマー」は、RNase Hによる切断を支援する複数のヌクレオシドを有する内部領域が、1つ又は複数のヌクレオシドを有する外部領域間に位置する、修飾オリゴヌクレオチドを意味する。内部領域は、「ギャップセグメント」と言うことができ、外部領域は「ウイングセグメント」と言うことができる。ギャップセグメントより5’側に存在するウイングセグメントを「5’ウイングセグメント」と言うことができ、ギャップセグメントより3’側に存在するウイングセグメントを「3’ウイングセグメント」と言うことができる。ギャップマーでは、ギャップへ接近している各々のウィングのヌクレオシド(5’-ウィングの最も3’側のヌクレオシド及び3’-ウィングの最も5’側のヌクレオシド)の糖部分は、隣接するギャップヌクレオシドの糖部分とは異なる。例えば、5’-ウィングの最も3’側のヌクレオシド及び3’-ウィングの最も5’側のヌクレオシドの糖部分は、修飾糖であり、隣接するギャップヌクレオシドの糖部分は、天然のDNAの糖部分である。 "Gapmer" means a modified oligonucleotide in which an internal region with multiple nucleosides that assists cleavage by RNase H is located between external regions with one or more nucleosides. The inner region can be referred to as a "gap segment" and the outer region can be referred to as a "wing segment". A wing segment existing on the 5'side of the gap segment can be called a "5'wing segment", and a wing segment existing on the 3'side of the gap segment can be called a "3'wing segment". In Gapmar, the sugar portion of each wing's nucleoside approaching the gap (the 5'-the most 3'side nucleoside of the wing and the 3'-the most 5'side of the wing) is the sugar portion of the adjacent gap nucleoside. It is different from the sugar part. For example, the sugar moiety of the nucleoside on the most 3'side of the 5'-wing and the nucleoside on the most 5'side of the 3'-wing are modified sugars, and the sugar moiety of the adjacent gap nucleoside is the sugar moiety of natural DNA. Is.
 ある種の実施態様では、本発明修飾オリゴヌクレオチドは、1)ギャップセグメント、2)5’ウイングセグメント及び3)3’ウイングセグメント、を含み、前記ギャップセグメントが、前記5’ウイングセグメントと前記3’ウイングセグメントとの間に位置付けられ、前記5’ウイングセグメント及び3’ウイングセグメントのヌクレオシドが修飾糖を有するヌクレオシドを含む、修飾オリゴヌクレオチドである。ギャップセグメントのヌクレオシドは、天然のDNAの糖を有するもののみでもよいし、1又はそれ以上の修飾糖を有するヌクレオシドでもよい。修飾糖としては、二環式糖、2’-MOEで修飾された糖、及び2’-OMeで修飾された糖からなる群から選択されることが好ましく、二環式糖としては、例えば、LNA、ENA、cEt、GuNA、ALNA[Ms]、ALNA[mU]、ALNA[ipU]、ALNA[Oxz]及びALNA[Trz]の少なくとも1つの糖部分があげられる。 In certain embodiments, the modified oligonucleotide of the invention comprises 1) a gap segment, 2) a 5'wing segment and 3) a 3'wing segment, wherein the gap segment comprises the 5'wing segment and the 3'. It is a modified oligonucleotide that is positioned between the wing segment and contains a nucleoside in which the nucleosides of the 5'wing segment and the 3'wing segment have a modified sugar. The nucleoside in the gap segment may be only one having a sugar of natural DNA, or may be a nucleoside having one or more modified sugars. The modified sugar is preferably selected from the group consisting of bicyclic sugars, sugars modified with 2'-MOE, and sugars modified with 2'-OMe, and the bicyclic sugars include, for example, At least one sugar moiety of LNA, ENA, cEt, GuNA, ALNA [Ms], ALNA [mU], ALNA [ipU], ALNA [Oxz] and ALNA [Trz] can be mentioned.
 ギャップセグメント、5’ウイングセグメント及び3’ウイングセグメントに含まれるヌクレオシドの数は、PLP1発現阻害抑制を有すればいかなるものでもよい。
 ギャップマーとしては、5’ウイングセグメント-ギャップセグメント-3’ウイングセグメントの順で、3-10-3または5-8-5の長さのものが好ましく、両ウイングセグメントにALNA[Ms]または2’-MOEを含むものが好ましい。
The number of nucleosides contained in the gap segment, the 5'wing segment and the 3'wing segment may be any number as long as it suppresses the inhibition of PLP1 expression.
As the gap mar, the length is preferably 3-10-3 or 5-8-5 in the order of 5'wing segment-gap segment-3'wing segment, and ALNA [Ms] or 2 for both wing segments. '-Preferably those containing MOE.
 ある種の実施態様では、ヌクレアーゼ安定性などの特性を増強するため、修飾オリゴヌクレオチドの一方又は両方の末端に、キャップ構造が含まれる。好適なキャップ構造には、4’,5’-メチレンヌクレオチド、1-(β-D-エリトロフラノシル)ヌクレオチド、4’-チオヌクレオチド、炭素環式ヌクレオチド、1,5-アンヒドロヘキシトールヌクレオチド、L-ヌクレオチド、α-ヌクレオチド、修飾塩基ヌクレオチド、ホスホロジチオアート結合、スレオ-ペントフラノシルヌクレオチド、非環式3’,4’-セコヌクレオチド、非環式3,4-ジヒドロキシブチルヌクレオチド、非環式3,5-ジヒドロキシペンチルヌクレオチド、3’-3’-逆位ヌクレオチド部分、3’-3’-逆位脱塩基部分、3’-2’-逆位ヌクレオチド部分、3’-2’-逆位脱塩基部分、1,4-ブタンジオールホスフェート、3’-ホスホルアミデート、ヘキシルホスフェート、アミノヘキシルホスフェート、3’-ホスフェート、3’-ホスホロチオエート、ホスホロジチオアート、架橋メチルホスホネート部分及び非架橋メチルホスホネート部分、5’-アミノ-アルキルホスフェート、1,3-ジアミノ-2-プロピルホスフェート、3-アミノプロピルホスフェート、6-アミノヘキシルホスフェート、1,2-アミノドデシルホスフェート、ヒドロキシプロピルホスフェート、5’-5’-逆位ヌクレオチド部分、5’-5’-逆位脱塩基部分、5’-ホスホルアミデート、5’-ホスホロチオエート、5’-アミノ、架橋及び/又は非架橋5’-ホスホルアミデート、ホスホロチオエート、並びに5’-メルカプト部分がある。 In certain embodiments, cap structures are included at the ends of one or both of the modified oligonucleotides to enhance properties such as nuclease stability. Suitable cap structures include 4', 5'-methylene nucleotides, 1- (β-D-erythrofuranosyl) nucleotides, 4'-thionucleotides, carbocyclic nucleotides, 1,5-anhydrohexitol. Nucleotides, L-nucleotides, α-nucleotides, modified base nucleotides, phosphorodithioate bonds, threo-pentoflanosyl nucleotides, acyclic 3', 4'-seconucleotides, acyclic 3,4-dihydroxybutyl nucleotides, Acyclic 3,5-dihydroxypentylnucleotide, 3'-3'-inverted nucleotide moiety, 3'-3'-inverted debasement moiety, 3'-2'-inverted nucleotide moiety, 3'-2' -Inverted debasement, 1,4-butanediol phosphate, 3'-phosphoruamidate, hexyl phosphate, aminohexyl phosphate, 3'-phosphate, 3'-phospholothioate, phosphorodithioate, crosslinked methylphosphonate moiety and Non-bridged methylphosphonate moiety, 5'-amino-alkyl phosphate, 1,3-diamino-2-propyl phosphate, 3-aminopropyl phosphate, 6-aminohexyl phosphate, 1,2-aminododecyl phosphate, hydroxypropyl phosphate, 5 '-5'-Inverted nucleotide moiety, 5'-5'-Inverted debasement moiety, 5'-phosphoruamidate, 5'-phosphorothioate, 5'-amino, crosslinked and / or non-crosslinked 5'-phospho There are lumidates, phosphorothioates, and 5'-mercapto moieties.
(本発明化合物の評価方法)
 本発明化合物の評価方法としては、本発明化合物がPLP1の細胞内における発現レベルの抑制を検証できる方法であればいかなるものでもよいが、具体的には、例えば、以下に示すin vitro及びin vivo PLP1発現測定方法が用いられる。
(Evaluation Method for Compound of the Present Invention)
The method for evaluating the compound of the present invention may be any method as long as the compound of the present invention can verify the suppression of the intracellular expression level of PLP1, but specifically, for example, in vitro and in vivo shown below. A method for measuring PLP1 expression is used.
 本発明化合物の細胞内におけるPLP1発現の抑制を評価するための、in vitro PLP1発現測定方法は、PLP1が発現している細胞(以下、「PLP1発現細胞」と称することがある)であればいずれのものも用いることができるが、例えば、A375細胞(ヒト悪性黒色腫細胞、例えば、ATCC CRL-1619)があげられる。 The in vitro PLP1 expression measuring method for evaluating the suppression of PLP1 expression in cells of the present invention can be any cell expressing PLP1 (hereinafter, may be referred to as "PLP1-expressing cell"). Can also be used, and examples thereof include A375 cells (human malignant melanoma cells, for example, ATCC CRL-1619).
 本発明化合物をPLP1発現細胞に接触させる方法も特に制限はないが、一般的に核酸を細胞内へ導入するために用いられる方法が挙げられる。具体的には、例えば、リポフェクション法やエレクトロポレーション法、Gymnosis法等である。リポフェクション法では、本発明化合物は、例えば、終濃度3、10、30又は100nMで処理することができる。 The method of contacting the compound of the present invention with PLP1-expressing cells is also not particularly limited, but a method generally used for introducing nucleic acid into cells can be mentioned. Specifically, for example, a lipofection method, an electroporation method, a Gymnosis method, or the like. In the lipofection method, the compound of the present invention can be treated, for example, at a final concentration of 3, 10, 30 or 100 nM.
 PLP1の細胞内におけるmRNAレベルは、当技術分野で既知の様々な方法でアッセイすることができる。具体的には、例えば、ノーザンブロット解析、競合的ポリメラーゼ連鎖反応(PCR)又は定量的リアルタイムPCR等が挙げられる。 Intracellular mRNA levels of PLP1 can be assayed by a variety of methods known in the art. Specific examples include Northern blot analysis, competitive polymerase chain reaction (PCR), quantitative real-time PCR, and the like.
 PLP1の細胞内におけるタンパク質レベルは、当技術分野で既知の様々な方法でアッセイすることができる。具体的には、例えば、免疫沈降法、ウェスタンブロット解析(免疫ブロット法)、酵素結合免疫吸着測定法(ELISA)、定量的タンパク質アッセイ、タンパク質活性アッセイ(例えば、カスパーゼ活性アッセイ)、免疫組織化学法、免疫細胞化学法又は蛍光活性化セルソーティング(FACS)等があげられる。 Intracellular protein levels of PLP1 can be assayed by a variety of methods known in the art. Specifically, for example, immunoprecipitation, Western blotting (immun blot), enzyme-linked immunosorbent assay (ELISA), quantitative protein assay, protein activity assay (eg, caspase activity assay), immunohistochemistry. , Immunocytochemistry or fluorescence activated cell sorting (FACS) and the like.
 本発明化合物の細胞内におけるPLP1発現の抑制を評価するための、in vivo PLP1発現測定方法は、例えば、PLP1を発現する動物に対して、本発明化合物を投与し、当該細胞において上述のPLP1発現レベルの解析を行う方法が挙げられる。 The in vivo PLP1 expression measuring method for evaluating the suppression of PLP1 expression in cells of the present invention is, for example, to administer the compound of the present invention to an animal expressing PLP1 and to express the above-mentioned PLP1 in the cells. There is a method of performing level analysis.
 本発明化合物は、市販されているDNA・RNA合成用アミダイト(LNAも含む)を使用してホスホロアミダイト法により合成することができる。人工核酸ALNA[Ms]、ALNA[mU]、ALNA[ipU]、ALNA[Oxz]及びALNA[Trz]は、WO2020/100826号に記載された方法によりオリゴマーを合成することができる。 The compound of the present invention can be synthesized by the phosphoramidite method using a commercially available amidite for DNA / RNA synthesis (including LNA). The artificial nucleic acids ALNA [Ms], ALNA [mU], ALNA [ipU], ALNA [Oxz] and ALNA [Trz] can synthesize oligomers by the method described in WO2020 / 100826.
(本発明化合物によるPLP1関連疾患の治療)
 本発明化合物はPLP1発現を抑制することにより、PLP1関連疾患を治療することができる。PLP1関連疾患としては、PLP1遺伝子の異常により引き起こされる疾患であれば特に制限はないが、先天性大脳白質形成不全症が例示される。
(Treatment of PLP1-related diseases with the compound of the present invention)
The compound of the present invention can treat PLP1-related diseases by suppressing PLP1-expression. The PLP1-related disease is not particularly limited as long as it is a disease caused by an abnormality in the PLP1 gene, and examples thereof include congenital cerebral white matter dysplasia.
 PLP1遺伝子の異常により引き起こされる先天性大脳白質形成不全症としては、ペリツェウス・メルツバッハー病が例示され、ペリツェウス・メルツバッハー病は先天型ペリツェウス・メルツバッハー病および古典型ペリツェウス・メルツバッハー病を含む。 Examples of congenital cerebral white matter dysplasia caused by an abnormality in the PLP1 gene include Pelizaeus-Merzbacher's disease, and Pelizaeus-Merzbacher's disease includes congenital Pelizaeus-Merzbacher's disease and classical Pelizaeus-Merzbacher's disease.
 したがって、本発明は、PLP1関連疾患の治療、予防又は進行遅延化に使用するための修飾オリゴヌクレオチド;PLP1関連疾患の治療、予防又は進行遅延化に使用するための医薬組成物;PLP1関連疾患を治療、予防又は進行遅延化するための修飾オリゴヌクレオチドの使用;PLP1関連疾患の治療、予防又は進行遅延化用医薬の製造における修飾オリゴヌクレオチドの使用;PLP1関連疾患の治療、予防又は進行遅延化用医薬の製造に使用するための修飾オリゴヌクレオチド;有効量の修飾オリゴヌクレオチドを、その必要のある対象に投与することを含む、PLP1関連疾患の治療、予防又は進行遅延化方法;を提供する。 Accordingly, the present invention comprises modified oligonucleotides for use in the treatment, prevention or delay of progression of PLP1-related diseases; pharmaceutical compositions for use in the treatment, prevention or delay of progression of PLP1-related diseases; Use of modified oligonucleotides to treat, prevent or delay progression; use of modified oligonucleotides in the manufacture of drugs for the treatment, prevention or delay of progression of PLP1-related diseases; for treatment, prevention or delay of progression of PLP1-related diseases Provided are modified oligonucleotides for use in the manufacture of a pharmaceutical; a method for treating, preventing or delaying progression of a PLP1-related disease, comprising administering an effective amount of the modified oligonucleotide to a subject in need thereof.
(2)修飾オリゴヌクレオチドを含む医薬組成物
 本発明化合物、又はその医薬的に許容可能な塩、及び薬学的に許容可能な担体を含む本発明化合物は、医薬組成物として用いることができる。医薬組成物の調製のために、修飾オリゴヌクレオチドを1つ以上の医薬的に許容可能な活性又は不活性な物質と混合することができる。医薬組成物の製剤化のための組成物及び方法は、投与経路、疾患の程度又は投与される用量を含めたいくつかの判断基準によって選択することができる。
 例えば、非経口投与のための組成物としては、例えば、注射剤が用いられる。かかる注射剤は、自体公知の方法に従って、例えば、上記修飾オリゴヌクレオチドを通常注射剤に用いられる無菌の水性もしくは油性液に溶解、懸濁又は乳化することによって調製する。注射用の水性液としては、例えば、リン酸緩衝食塩水、生理食塩水、人工的脳脊髄液、ブドウ糖やその他の補助薬を含む等張液などが用いられ、適当な溶解補助剤、例えば、アルコール(例、エタノール)、ポリアルコール(例、プロピレングリコール、ポリエチレングリコール)、非イオン界面活性剤〔例、ポリソルべート80、HCO-50(polyoxyethylene(50mo1)adduct of hydrogenated castor oil)〕などと併用してもよい。また、緩衝剤、pH調整剤、等張化剤、無痛化剤、保存剤、安定化剤などを含むことができる。かかる組成物は公知の方法によって製造される。
(2) Pharmaceutical composition containing a modified oligonucleotide The compound of the present invention, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier thereof can be used as a pharmaceutical composition. For the preparation of pharmaceutical compositions, modified oligonucleotides can be mixed with one or more pharmaceutically acceptable active or inert substances. The composition and method for formulating the pharmaceutical composition can be selected according to several criteria including the route of administration, the degree of disease or the dose to be administered.
For example, as a composition for parenteral administration, for example, an injection is used. Such injections are prepared according to methods known per se, for example, by dissolving, suspending or emulsifying the modified oligonucleotide in a sterile aqueous or oily solution usually used for injections. As the aqueous solution for injection, for example, a phosphate buffered saline solution, a physiological saline solution, an artificial cerebrospinal fluid, an isotonic solution containing glucose and other adjuvants, and the like are used, and suitable solubilizing agents such as, for example, are used. Alcohol (eg, ethanol), polyalcohol (eg, propylene glycol, polyethylene glycol), nonionic surfactants [eg, polysolvate 80, HCO-50 (polyoxyethylene (50mo1) adduct of hydrogenated castor oil)], etc. May be used together. Further, a buffering agent, a pH adjusting agent, an tonicity agent, a soothing agent, a preservative, a stabilizer and the like can be included. Such compositions are produced by known methods.
 非経口投与としては、例えば、皮下投与、静脈内投与、筋肉内投与、動脈内投与、腹腔内投与、頭蓋内投与、髄腔内投与、脳室内投与があげられるが、それらに限定されない。投与は、持続的又は長期的でもよいし、短期的又は断続的でもよい。 Parenteral administration includes, but is not limited to, subcutaneous administration, intravenous administration, intramuscular administration, intraarterial administration, intraperitoneal administration, intracranial administration, intrathecal administration, and intracerebroventricular administration. Administration may be continuous or long-term, short-term or intermittent.
 経口投与のための組成物としては、固体又は液体の剤形、具体的には錠剤(糖衣錠、フイルムコーティング錠を含む)、丸剤、顆粒剤、散剤、カプセル剤(ソフトカプセル剤を含む)、シロツプ剤、乳剤、懸濁剤などがあげられる。かかる組成物は公知の方法によって製造され、製剤分野において通常用いられる担体、希釈剤もしくは賦形剤を含有するものである。錠剤用の担体、賦形剤としては、例えば、乳糖、でんぶん、蔗糖、ステアリン酸マグネシウムなどが用いられ、希釈剤としては、例えば、生理食塩水が用いられる。 Compositions for oral administration include solid or liquid dosage forms, specifically tablets (including sugar-coated tablets and film-coated tablets), pills, granules, powders, capsules (including soft capsules), and syrups. Agents, emulsions, suspending agents and the like. Such compositions are produced by known methods and contain carriers, diluents or excipients commonly used in the pharmaceutical field. As the carrier and excipient for tablets, for example, lactose, starch, sucrose, magnesium stearate and the like are used, and as the diluent, for example, physiological saline is used.
 また、本発明の医薬組成物には、核酸導入用試薬を含むことができる。該核酸導入用試薬としては、リポソーム、リポフェクチン、リポフェクタミン、DOGS(トランスフェクタム)、DOPE、DOTAP、DDAB、DHDEAB、HDEAB、ポリブレン、あるいはポリ(エチレンイミン)(PEI)等の陽イオン性脂質等を用いることができる。 Further, the pharmaceutical composition of the present invention can contain a reagent for introducing nucleic acid. Examples of the nucleic acid introduction reagent include liposomes, lipofectin, lipofectamine, DOGS (transferase), DOPE, DOTAP, DDAB, DHDEAB, HDEAB, polybrene, and cationic lipids such as poly (ethyleneimine) (PEI). Can be used.
 また、本発明の医薬組成物に含まれる修飾オリゴヌクレオチドは、1つ又は複数の場所で、脂肪酸、コレステロール、糖質、リン脂質、抗体等の生体内分子に対して親和性を有するタンパク質、ビオチン、フェナジン、ビタミン、ペプチド、葉酸塩、フェナントリジン、アントラキノン、アクリジン、フルオレセイン、ローダミン、クマリン及び色素のコンジュゲート基とコンジュゲートしたものが好ましく用いられる。上記コンジュゲートした修飾オリゴヌクレオチドは公知の方法によって製造され、その活性、組織分布、細胞分布又は細胞取り込みを増強するものを選択することができる。 In addition, the modified oligonucleotide contained in the pharmaceutical composition of the present invention is biotin, a protein having affinity for in vivo molecules such as fatty acids, cholesterol, sugars, phospholipids, and antibodies at one or a plurality of places. , Phenazine, vitamins, peptides, folates, phenanthridines, anthraquinones, acridines, fluorescein, rhodamine, coumarins and dyes conjugated with conjugate groups are preferably used. The conjugated modified oligonucleotide is produced by a known method, and one that enhances its activity, tissue distribution, cell distribution or cell uptake can be selected.
 上記コンジュゲート基は修飾オリゴヌクレオチドに直接結合しているものか、あるいはコンジュゲート基は、アミノ、ヒドロキシル、カルボン酸、チオール、不飽和部分(例えば、二重又は三重結合)、8-アミノ-3,6-ジオキサオクタン酸(ADO)、スクシニミジル4-(N-マレイミドメチル)シクロヘキサン-1-カルボキシレート(SMCC)、6-アミノヘキサン酸(AHEX又はAHA)、アジド、置換C1~C10アルキル、置換若しくは非置換C2~C10アルケニル、及び置換若しくは非置換C2~C10アルキニルから選択される連結部分により修飾オリゴヌクレオチドに結合している。ここで、置換基は、アミノ、アルコキシ、カルボキシ、アジド、ベンジル、フェニル、ニトロ、チオール、チオアルコキシ、ハロゲン、アルキル、アリール、アルケニル及びアルキニルから選択される。 The conjugate group is directly attached to the modified oligonucleotide, or the conjugate group is amino, hydroxyl, carboxylic acid, thiol, unsaturated moiety (eg, double or triple bond), 8-amino-3. , 6-Dioxaoctanoic acid (ADO), succinimidyl 4- (N-maleimidemethyl) cyclohexane-1-carboxylate (SMCC), 6-aminohexanoic acid (AHEX or AHA), azide, substituted C1-C10 alkyl, substituted Alternatively, it is bound to the modified oligonucleotide by a linking moiety selected from the unsubstituted C2-C10 alkenyl and the substituted or unsubstituted C2-C10 alkynyl. Here, the substituent is selected from amino, alkoxy, carboxy, azide, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl and alkynyl.
 本発明の医薬組成物の投与形態としては、経口投与、静脈内投与又は動脈内投与などの全身投与であってもよいし、頭蓋内投与、髄腔内投与又は脳室内投与などの局所投与であってもよい。本発明の医薬組成物の投与量は、使用目的、疾患の重篤度、患者の年齢、体重、性別等により適宜変更し得るが、通常、修飾オリゴヌクレオチド量として、0.1ng~100mg/kg/日、好ましくは、1ng~10mg/kg/日の範囲から選ぶことができる。 The administration form of the pharmaceutical composition of the present invention may be systemic administration such as oral administration, intravenous administration or intraarterial administration, or local administration such as intracranial administration, intrathecal administration or intracerebral administration. There may be. The dose of the pharmaceutical composition of the present invention may be appropriately changed depending on the purpose of use, the severity of the disease, the age, weight, sex, etc. of the patient, but usually, the amount of the modified oligonucleotide is 0.1 ng to 100 mg / kg. / Day, preferably in the range of 1 ng to 10 mg / kg / day.
 非限定開示及び参照による組み込み
 本明細書に記載のある種の化合物、組成物及び方法は、ある種の実施態様に従って特異的に記載されているが、以下の実施例は、本明細書に記載の化合物を例示する役割を果たすにすぎず、これを限定することを意図しない。本出願に記載される参考文献のそれぞれは、参照によりその全体が本明細書に組み込まれる。
Non-Limited Disclosure and Incorporation by Reference Certain compounds, compositions and methods described herein are specifically described according to certain embodiments, while the following examples are described herein. It serves only as an example of the compounds of, and is not intended to limit it. Each of the references described in this application is incorporated herein by reference in its entirety.
実施例1
In vitro評価用修飾オリゴヌクレオチド化合物の合成及び精製 
 表1記載の塩基配列を有する修飾オリゴヌクレオチド化合物(配列番号11~63)を、オリゴヌクレオチド類縁体の一般的なオリゴ核酸の固相合成法およびALNA[Ms]アミダイト(WO2020/100826号に記載された方法により合成)を用いて、株式会社ニッポンジーン社により合成および精製された。
Example 1
Synthesis and purification of modified oligonucleotide compounds for in vitro evaluation
Modified oligonucleotide compounds having the nucleotide sequences shown in Table 1 (SEQ ID NOs: 11 to 63) are described in a general solid phase synthesis method for oligonucleotide analogs and ALNA [Ms] amidite (WO2020 / 100926). Synthesized and purified by Nippon Gene Co., Ltd. using the above method).
 合成した修飾オリゴヌクレオチド化合物(16残基の修飾オリゴヌクレオチド)の標的位置を表1に示す。
化合物の表記は、各ヌクレオチドが3文字で表される。但し3’末端のヌクレオチドはヌクレオシド間結合がないため2文字で表される。
1)第1文字は大文字で表され、下記核酸塩基を示す:
 A=アデニン、T=チミン、G=グアニン、C=シトシン、M=5-メチルシトシン、
2)第2文字は下記各糖部分を示す:
 m=ALNA[Ms]、d=2’-デオキシリボース、
3)第3文字は下記ヌクレオシド間結合を示す:
s=ホスホロチオエート。
標的位置は標的開始位置~標的終了位置で示し、標的開始位置は、修飾オリゴヌクレオチドのPLP1 pre-mRNA5’標的部位(修飾オリゴヌクレオチドの3’末端に対応する配列表の配列番号1の位置)を示し、標的終了位置は、修飾オリゴヌクレオチドのPLP1 pre-mRNA3’標的部位(修飾オリゴヌクレオチドの5’末端に対応する配列表の配列番号1の位置)を示す。
Table 1 shows the target positions of the synthesized modified oligonucleotide compound (16-residue modified oligonucleotide).
In the notation of the compound, each nucleotide is represented by three letters. However, the nucleotide at the 3'end is represented by two letters because there is no nucleoside bond.
1) The first letter is capitalized to indicate the following nucleobases:
A = adenine, T = thymine, G = guanine, C = cytosine, M = 5-methylcytosine,
2) The second letter indicates each sugar part below:
m = ALNA [Ms], d = 2'-deoxyribose,
3) The third letter indicates the following nucleoside bond:
s = phosphorothioate.
The target position is indicated by the target start position to the target end position, and the target start position is the PLP1 pre-mRNA5'target site of the modified oligonucleotide (the position of SEQ ID NO: 1 in the sequence table corresponding to the 3'end of the modified oligonucleotide). The target termination position shown indicates the PLP1 pre-mRNA3'target site of the modified oligonucleotide (position of SEQ ID NO: 1 in the sequence listing corresponding to the 5'end of the modified oligonucleotide).
実施例2
In vitro PLP1 ノックダウン活性試験
 合成した修飾オリゴヌクレオチドとLipofectamine RNAi Reagentを混合したトランスフェクション試薬上に、A375細胞を4×10 cells/wellとなるように播種し、COインキュベーターで24時間程度培養した。その後、SuperPrep II Lysis & RT Kit for qPCR(TOYOBO)を用いて、RNAの調製と逆転写反応を行い、cDNAを合成した。合成したcDNAを用いて定量的リアルタイムPCRにより、mRNA発現量を測定した。定量的リアルタイムPCRにはPLP1遺伝子(Hs.PT.58.39005119、INTEGRATED DNA TECHNOLOGIES)とHPRT1遺伝子(Hs.PT.58v.45621572、INTEGRATED DNA TECHNOLOGIES)のプローブを用い、ΔΔCt法により、HPRT1 mRNA発現量で補正したPLP1 mRNAの相対発現量を算出した。修飾オリゴヌクレオチドを添加した際のPLP1 mRNA発現量の減少率から修飾オリゴヌクレオチドの抑制率を百分率で算出し、抑制率50%を挟む2点の濃度からIC50値を算出した。結果を表1に示した。その結果、本発明の修飾オリゴヌクレオチドは優れたPLP1発現抑制効果を有することがわかった。
Example 2
An In vitro PLP1 knockdown activity test synthesized modified oligonucleotide and transfection reagent on a mixture of Lipofectamine RNAi Reagent, were seeded such that the 4 × 10 3 cells / well of A375 cells, about 24 hours culture in a CO 2 incubator did. Then, using SuperPrep II Lysis & RT Kit for qPCR (TOYOBO), RNA was prepared and a reverse transcription reaction was performed to synthesize cDNA. The mRNA expression level was measured by quantitative real-time PCR using the synthesized cDNA. For quantitative real-time PCR, the probe of PLP1 gene (Hs.PT.58.390511, INTERGRATED DNA TECHNOLOGIES) and HPRT1 gene (Hs.PT.58v.45621572, INTERGRATED DNA TECHNOLOGIES) was used, and the amount of HPRT1 mRNA expressed by the ΔΔCt method. The relative expression level of PLP1 mRNA corrected in 1 was calculated. Modification inhibition rate oligonucleotides the added during the PLP1 mRNA expression level of a modified oligonucleotide from the reduction rate was calculated in percentage, IC 50 values were calculated from the concentration of 2 points sandwiching the 50% inhibition rate. The results are shown in Table 1. As a result, it was found that the modified oligonucleotide of the present invention has an excellent effect of suppressing PLP1 expression.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
実施例3
In vitro評価用修飾オリゴヌクレオチド化合物の合成及び精製 
 表2記載の塩基配列を有する修飾オリゴヌクレオチド化合物(配列番号64~96)を、オリゴヌクレオチド類縁体の一般的なオリゴ核酸の固相合成法を用いて、株式会社ニッポンジーンにより合成および精製された。
Example 3
Synthesis and purification of modified oligonucleotide compounds for in vitro evaluation
Modified oligonucleotide compounds (SEQ ID NOs: 64-96) having the nucleotide sequences shown in Table 2 were synthesized and purified by Nippon Gene Co., Ltd. using a general solid-phase synthesis method for oligonucleotide analogs.
 合成した修飾オリゴヌクレオチド化合物(18残基の修飾オリゴヌクレオチド)の標的位置を表2に示す。
化合物の表記は、各ヌクレオチドが3文字で表される。但し3’末端のヌクレオチドはヌクレオシド間結合がないため2文字で表される。
1)第1文字は大文字で表され、下記核酸塩基を示す:
 A=アデニン、T=チミン、G=グアニン、C=シトシン、M=5-メチルシトシン、
2)第2文字は下記各糖部分を示す:
 e=2’-MOE、d=2’-デオキシリボース、
3)第3文字は下記ヌクレオシド間結合を示す:
s=ホスホロチオエート。
標的位置は標的開始位置~標的終了位置で示し、標的開始位置は、修飾オリゴヌクレオチドのPLP1 pre-mRNA5’標的部位(修飾オリゴヌクレオチドの3’末端に対応する配列表の配列番号1の位置)を示し、標的終了位置は、修飾オリゴヌクレオチドのPLP1 pre-mRNA3’標的部位(修飾オリゴヌクレオチドの5’末端に対応する配列表の配列番号1の位置)を示す。
Table 2 shows the target positions of the synthesized modified oligonucleotide compound (18-residue modified oligonucleotide).
In the notation of the compound, each nucleotide is represented by three letters. However, the nucleotide at the 3'end is represented by two letters because there is no nucleoside bond.
1) The first letter is capitalized to indicate the following nucleobases:
A = adenine, T = thymine, G = guanine, C = cytosine, M = 5-methylcytosine,
2) The second letter indicates each sugar part below:
e = 2'-MOE, d = 2'-deoxyribose,
3) The third letter indicates the following nucleoside bond:
s = phosphorothioate.
The target position is indicated by the target start position to the target end position, and the target start position is the PLP1 pre-mRNA5'target site of the modified oligonucleotide (the position of SEQ ID NO: 1 in the sequence table corresponding to the 3'end of the modified oligonucleotide). The target termination position shown indicates the PLP1 pre-mRNA3'target site of the modified oligonucleotide (position of SEQ ID NO: 1 in the sequence listing corresponding to the 5'end of the modified oligonucleotide).
実施例4
In vitro PLP1 ノックダウン活性試験
 合成した修飾オリゴヌクレオチドとLipofectamine RNAi Reagentを混合したトランスフェクション試薬上に、A375細胞を4×10 cells/wellとなるように播種し、COインキュベーターで24時間程度培養した。その後、SuperPrep II Lysis & RT Kit for qPCR(TOYOBO)を用いて、RNAの調製と逆転写反応を行い、cDNAを合成した。合成したcDNAを用いて定量的リアルタイムPCRにより、mRNA発現量を測定した。定量的リアルタイムPCRにはPLP1遺伝子(Hs.PT.58.39005119、INTEGRATED DNA TECHNOLOGIES)とHPRT1遺伝子(Hs.PT.58v.45621572、INTEGRATED DNA TECHNOLOGIES)のプローブを用い、ΔΔCt法により、HPRT1 mRNA発現量で補正したPLP1 mRNAの相対発現量を算出した。修飾オリゴヌクレオチドを添加した際のPLP1 mRNA発現量の減少率から修飾オリゴヌクレオチドの抑制率を百分率で算出し、抑制率50%を挟む2点の濃度からIC50値を算出した。結果を表2に示した。その結果、本発明の修飾オリゴヌクレオチドは優れたPLP1発現抑制効果を有することがわかった。
Example 4
An In vitro PLP1 knockdown activity test synthesized modified oligonucleotide and transfection reagent on a mixture of Lipofectamine RNAi Reagent, were seeded such that the 4 × 10 3 cells / well of A375 cells, about 24 hours culture in a CO 2 incubator did. Then, using SuperPrep II Lysis & RT Kit for qPCR (TOYOBO), RNA was prepared and a reverse transcription reaction was performed to synthesize cDNA. The mRNA expression level was measured by quantitative real-time PCR using the synthesized cDNA. For quantitative real-time PCR, the probe of PLP1 gene (Hs.PT.58.390511, INTERGRATED DNA TECHNOLOGIES) and HPRT1 gene (Hs.PT.58v.45621572, INTERGRATED DNA TECHNOLOGIES) was used, and the amount of HPRT1 mRNA expressed by the ΔΔCt method. The relative expression level of PLP1 mRNA corrected in 1 was calculated. Modification inhibition rate oligonucleotides the added during the PLP1 mRNA expression level of a modified oligonucleotide from the reduction rate was calculated in percentage, IC 50 values were calculated from the concentration of 2 points sandwiching the 50% inhibition rate. The results are shown in Table 2. As a result, it was found that the modified oligonucleotide of the present invention has an excellent effect of suppressing PLP1 expression.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022

Claims (23)

  1. 12~30残基からなる修飾オリゴヌクレオチドであり、かつ配列表の配列番号1の核酸塩基配列の5’末端から9964~10286位、140007~14152位、4439~4470位、4569~4616位、9061~9164位、11926~12015位、12817~12874位、14839~14920位または15088~15114位のいずれかの等長部分に相補的な少なくとも8個の連続する核酸塩基配列を含み、前記修飾オリゴヌクレオチドの全長の核酸塩基配列が配列表の配列番号1の核酸塩基配列の等長部分に少なくとも85%相補性を有する、Proteolipid protein 1(PLP1)の発現を抑制する修飾オリゴヌクレオチド。 It is a modified oligonucleotide consisting of 12 to 30 residues, and is 9964 to 10286, 140007 to 14152, 4439 to 4470, 4569 to 4616, 9061 from the 5'end of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing. The modified oligonucleotide comprises at least eight contiguous nucleic acid sequences complementary to any of the equilength moieties of positions -9164 to 11926 to 12015, 12817 to 12874, 14839 to 14920, or 15088 to 15114. A modified oligonucleotide that suppresses the expression of Proteolipid protein 1 (PLP1), wherein the full-length nucleobase sequence has at least 85% complementarity to the equal length portion of the nucleobase sequence of SEQ ID NO: 1 in the sequence listing.
  2. 12~30残基からなる修飾オリゴヌクレオチドであり、かつ配列表の配列番号1の核酸塩基配列の5’末端から10014~10152位、10180~10252位または14033~14113位のいずれかの等長部分に相補的な少なくとも8個の連続する核酸塩基配列を含み、前記修飾オリゴヌクレオチドの全長の核酸塩基配列が配列表の配列番号1の核酸塩基配列の等長部分に少なくとも85%相補性を有する、Proteolipid protein 1(PLP1)の発現を抑制する修飾オリゴヌクレオチド。 A modified oligonucleotide consisting of 12 to 30 residues, and an equal length portion of either 10014 to 10152 positions, 10180 to 10252 positions, or 14033 to 14113 positions from the 5'end of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing. The full-length nucleobase sequence of the modified oligonucleotide contains at least 85% complementarity to the equal length portion of the nucleobase sequence of SEQ ID NO: 1 in the sequence listing, comprising at least eight contiguous nucleic acid sequences complementary to. A modified oligonucleotide that suppresses the expression of Proteolipid protein 1 (PLP1).
  3. 12~30残基からなる修飾オリゴヌクレオチドであり、かつ配列表の配列番号1の核酸塩基配列の5’末端から10036~10055位、10064~10089位、10101~10130位、10202~10230位または14055~14091位のいずれかの等長部分に相補的な少なくとも8個の連続する核酸塩基配列を含み、前記修飾オリゴヌクレオチドの全長の核酸塩基配列が配列表の配列番号1の核酸塩基配列の等長部分に少なくとも85%相補性を有する、PLP1の発現を抑制する修飾オリゴヌクレオチド。 It is a modified oligonucleotide consisting of 12 to 30 residues, and is located at positions 10036 to 10089 from the 5'end of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing, positions 10064 to 10089, positions 10101 to 10130, 10202 to 10230, or 14055. The full-length nucleobase sequence of the modified oligonucleotide contains at least eight consecutive nucleobase sequences complementary to any of the equal-length moieties at positions ~ 14891, and the nucleobase sequence of SEQ ID NO: 1 in the sequence listing is the same length. A modified oligonucleotide that suppresses the expression of PLP1 with at least 85% complementarity to the moiety.
  4. 12~30残基からなる修飾オリゴヌクレオチドであり、かつ配列表の配列番号1の核酸塩基配列の5’末端から10101~10130位、10202~10230位または14055~14091位のいずれかの等長部分に相補的な少なくとも8個の連続する核酸塩基配列を含み、前記修飾オリゴヌクレオチドの全長の核酸塩基配列が配列表の配列番号1の核酸塩基配列の等長部分に少なくとも85%相補性を有する、PLP1の発現を抑制する修飾オリゴヌクレオチド。 It is a modified oligonucleotide consisting of 12 to 30 residues, and is an equal length portion of either the 10101 to 10130 position, the 1022 to 10230 position, or the 14055 to 14091 position from the 5'end of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing. The full-length nucleobase sequence of the modified oligonucleotide contains at least 85% complementarity to the equal length portion of the nucleobase sequence of SEQ ID NO: 1 in the sequence listing, comprising at least eight contiguous nucleic acid sequences complementary to. A modified oligonucleotide that suppresses the expression of PLP1.
  5. 配列表の配列番号1の核酸塩基配列の5’末端から10036~10051位、10037~10052位、10038~10053位、10039~10054位、10040~10055位、10064~10079位、10065~10080位、10066~10081位、10067~10082位、10068~10083位、10069~10084位、10070~10085位、10071~10086位、10072~10087位、10073~10088位、10074~10089位、10101~10116位、10102~10117位、10103~10118位、10104~10119位、10105~10120位、10106~10121位、10107~10122位、10108~10123位、10109~10124位、10110~10125位、10111~10126位、10112~10127位、10113~10128位、10114~10129位、10115~10130位、10202~10217位、10203~10218位、10204~10219位、10205~10220位、10206~10221位、10207~10222位、10208~10223位、10209~10224位、10210~10225位、10211~10226位、10212~10227位、10213~10228位、10214~10229位、10215~10230位、14055~14070位、14056~14071位、14057~14072位、14062~14077位、14063~14078位、14074~14089位、14075~14090位、または14076~14091位のいずれかに相補的な核酸塩基配列から成る、PLP1の発現を抑制する修飾オリゴヌクレオチド。 From the 5'end of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing, positions 10036 to 10051, 10037 to 10025, 10038 to 10053, 10039 to 10045, 10040 to 10055, 10064 to 10024, 10065 to 10080, 10066-10081, 10067-10082, 10062-10083, 10069-10084, 10070-10085, 10071-10086, 10072-10087, 10073-10088, 10064-10089, 10101-10116, 10102-10117, 10103-10118, 10104-10119, 10105-10120, 10106-10121, 10107-10122, 10108-10123, 10109-10124, 10110-10125, 10111-10126, 10112-10127, 10113-10128, 10114-10129, 10115-10130, 10202-10217, 10203-10218, 10204-10219, 10205-10220, 10206-10221, 10207-10222, 10208 to 10223, 10209 to 10224, 10210 to 10225, 10211 to 10226, 10212 to 10227, 10213 to 10228, 10214 to 10229, 10215 to 10230, 14055 to 14070, 14056 to 14071, Modifications that suppress the expression of PLP1 consisting of a nucleobase sequence complementary to any of positions 14057 to 14072, 14062 to 14077, 14063 to 14078, 14074 to 14089, 14075 to 14090, or 14076 to 14091. Oligonucleotide.
  6. 12~30残基からなる修飾オリゴヌクレオチドであり、かつ配列表の配列番号1の核酸塩基配列の5’末端から4439~4470位、4569~4616位、9061~9164位、9964~10055位、10056~10286位、11926~12015位、12817~12874位、14007~14095位、14112~14152位、14839~14920位または15088~15114位のいずれかの等長部分に相補的な少なくとも8個の連続する核酸塩基配列を含み、前記修飾オリゴヌクレオチドの全長の核酸塩基配列が配列表の配列番号1の核酸塩基配列の等長部分に少なくとも85%相補性を有する、Proteolipid protein 1(PLP1)の発現を抑制する修飾オリゴヌクレオチド。 It is a modified oligonucleotide consisting of 12 to 30 residues, and is located at positions 4439 to 4470, 4569 to 4616, 961 to 9164, 9964 to 10055, and 10056 from the 5'end of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing. At least eight contiguous moieties complementary to any of the equal lengths of positions -10286, 11926 to 12015, 12817 to 12874, 14007 to 14095, 14112 to 14152, 14839 to 14920, or 15088 to 15114. Suppresses the expression of Proteolipid protein 1 (PLP1), which contains a nucleobase sequence and whose full-length nucleobase sequence of the modified oligonucleotide has at least 85% complementarity to the equal length portion of the nucleobase sequence of SEQ ID NO: 1 in the sequence listing. Modified oligonucleotide.
  7. 配列表の配列番号1の核酸塩基配列の5’末端から4450~4467位、4572~4589位、9072~9089位、9119~9136位、10035~10052位、10037~10054位、10072~10089位、10088~10105位、10101~10118位、10102~10119位、10103~10120位、10104~10121位、10105~10122位、10108~10125位、10109~10126位、10112~10129位、10113~10130位、11959~11976位、11989~12006位、12830~12847位、14020~14037位、14025~14042位、14055~14072位、14056~14073位、14060~14077位、14065~14082位、14075~14092位、14130~14147位、14847~14864位、14852~14869位、14857~14874位、14866~14883位、または15091~15108位のいずれかに相補的な核酸塩基配列から成る、PLP1の発現を抑制する修飾オリゴヌクレオチド。 From the 5'end of the nucleic acid base sequence of SEQ ID NO: 1 in the sequence listing, positions 4450 to 4467, 4571 to 4589, 9072 to 9089, 9119 to 9136, 10035 to 10025, 10037 to 10049, 10072 to 10089, 10088-10105, 10101-10118, 10102-10119, 10103-10120, 10104-10121, 10105-10122, 10108-10125, 10109-10126, 10112-10129, 10113-10130, 11959 to 11976, 11989 to 12006, 12830 to 12847, 14020 to 14037, 14025 to 14042, 14055 to 14072, 14056 to 14073, 14060 to 14077, 14065 to 14082, 14075 to 14092, Modifications that suppress the expression of PLP1 consisting of a nucleobase sequence complementary to any of positions 14130 to 14147, 14847 to 14864, 14852 to 14869, 14857 to 14874, 14866 to 14883, or 15091 to 15108. Oligonucleotide.
  8. 一本鎖である、請求項1~7のいずれか1項に記載の修飾オリゴヌクレオチド。 The modified oligonucleotide according to any one of claims 1 to 7, which is a single strand.
  9. 修飾オリゴヌクレオチドを構成する少なくとも1つのヌクレオシドが修飾糖を含む、請求項1~8のいずれか1項に記載の修飾オリゴヌクレオチド。 The modified oligonucleotide according to any one of claims 1 to 8, wherein at least one nucleoside constituting the modified oligonucleotide contains a modified sugar.
  10. 修飾糖が二環式糖、2’-O-メトキシエチルで修飾された糖、および2’-O-メチルで修飾された糖からなる群から選択される、請求項9に記載の修飾オリゴヌクレオチド。 The modified oligonucleotide according to claim 9, wherein the modified sugar is selected from the group consisting of a bicyclic sugar, a sugar modified with 2'-O-methoxyethyl, and a sugar modified with 2'-O-methyl. ..
  11. 二環式糖が、LNA、ENA、cEt、GuNA、ALNA[Ms]、ALNA[mU]、ALNA[ipU]、ALNA[Oxz]、またはALNA[Trz]の糖部分から選択される、請求項10に記載の修飾オリゴヌクレオチド。 10. The bicyclic sugar is selected from the sugar moieties of LNA, ENA, cEt, GuNA, ALNA [Ms], ALNA [mU], ALNA [ipU], ALNA [Oxz], or ALNA [Trz]. The modified oligonucleotide according to.
  12. 前記修飾オリゴヌクレオチドを構成する少なくとも1つのヌクレオシドが修飾核酸塩基を含む、請求項1~11のいずれか1項に記載の修飾オリゴヌクレオチド。 The modified oligonucleotide according to any one of claims 1 to 11, wherein at least one nucleoside constituting the modified oligonucleotide contains a modified nucleobase.
  13. 修飾核酸塩基が、5-メチルシトシンである、請求項12に記載の修飾オリゴヌクレオチド。 The modified oligonucleotide according to claim 12, wherein the modified nucleobase is 5-methylcytosine.
  14. 前記修飾オリゴヌクレオチドを構成する少なくとも1つのヌクレオシド間結合が修飾ヌクレオシド間結合である、請求項1~13のいずれか1項に記載の修飾オリゴヌクレオチド。 The modified oligonucleotide according to any one of claims 1 to 13, wherein at least one nucleoside-linked bond constituting the modified oligonucleotide is a modified nucleoside-modified bond.
  15. 修飾ヌクレオシド間結合がホスホロチオエートヌクレオシド間結合である、請求項14に記載の修飾オリゴヌクレオチド。 The modified oligonucleotide according to claim 14, wherein the modified nucleoside linkage is a phosphorothioate nucleoside linkage.
  16. 前記修飾オリゴヌクレオチドが、
    1)ギャップセグメントと、
    2)5’ウイングセグメントと、
    3)3’ウイングセグメント、を含み、
     前記ギャップセグメントが、前記5’ウイングセグメントと前記3’ウイングセグメントとの間に位置付けられ、
     前記5’ウイングセグメントと3’ウイングセグメントを構成するヌクレオシドが修飾糖を含むものである、請求項1~15のいずれか1項に記載の修飾オリゴヌクレオチド。
    The modified oligonucleotide is
    1) Gap segment and
    2) 5'wing segment and
    3) Including 3'wing segment,
    The gap segment is positioned between the 5'wing segment and the 3'wing segment.
    The modified oligonucleotide according to any one of claims 1 to 15, wherein the nucleoside constituting the 5'wing segment and the 3'wing segment contains a modified sugar.
  17. 請求項1~16のいずれか1項に記載の修飾オリゴヌクレオチドまたはその医薬的に許容可能な塩、および薬学的に許容可能な担体を含む医薬組成物。 A pharmaceutical composition comprising the modified oligonucleotide according to any one of claims 1 to 16 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
  18. PLP1関連疾患の治療、予防、またはその進行の遅延化のための、請求項17に記載の医薬組成物。 17. The pharmaceutical composition of claim 17, for treating, preventing, or delaying the progression of PLP1-related diseases.
  19. 前記PLP1関連疾患がペリツェウス・メルツバッハー病である、請求項18に記載の医薬組成物。 The pharmaceutical composition according to claim 18, wherein the PLP1-related disease is Pelizaeus-Merzbacher's disease.
  20. 前記ペリツェウス・メルツバッハー病が先天型ペリツェウス・メルツバッハー病または古典型ペリツェウス・メルツバッハー病である、請求項19に記載の医薬組成物。 The pharmaceutical composition according to claim 19, wherein the Pelizaeus-Merzbacher disease is congenital Pelizaeus-Merzbacher disease or classical Pelizaeus-Merzbacher disease.
  21. 請求項1~16のいずれか1項に記載の修飾オリゴヌクレオチドの治療的有効量をそれを必要とする被験者に投与することを特徴とする、被験者におけるPLP1関連疾患の治療、予防またはその進行の遅延化のための方法。 The treatment, prevention or progression of a PLP1-related disease in a subject, characterized in that a therapeutically effective amount of the modified oligonucleotide according to any one of claims 1 to 16 is administered to the subject in need thereof. A method for delaying.
  22. PLP1関連疾患の治療、予防またはその進行の遅延化のための医薬の製造における、請求項1~16のいずれか1項に記載の修飾オリゴヌクレオチドの使用。 Use of the modified oligonucleotide according to any one of claims 1 to 16 in the manufacture of a pharmaceutical for the treatment, prevention or delay of its progression of PLP1-related diseases.
  23. PLP1関連疾患の治療、予防またはその進行の遅延化のための、請求項1~16のいずれか1項に記載の修飾オリゴヌクレオチド。 The modified oligonucleotide according to any one of claims 1 to 16, for treating, preventing or delaying the progression of PLP1-related diseases.
PCT/JP2021/023883 2020-06-24 2021-06-24 Compound, method, and pharmaceutical composition for regulating plp1 expression WO2021261538A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-109034 2020-06-24
JP2020109034A JP2023130528A (en) 2020-06-24 2020-06-24 Compound, method and pharmaceutical composition for modulating plp1 expression

Publications (1)

Publication Number Publication Date
WO2021261538A1 true WO2021261538A1 (en) 2021-12-30

Family

ID=79281251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023883 WO2021261538A1 (en) 2020-06-24 2021-06-24 Compound, method, and pharmaceutical composition for regulating plp1 expression

Country Status (2)

Country Link
JP (1) JP2023130528A (en)
WO (1) WO2021261538A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016530882A (en) * 2013-08-09 2016-10-06 アイオーニス ファーマシューティカルズ, インコーポレーテッドIonis Pharmaceuticals,Inc. Compounds and methods for modulating the expression of myotonic dystrophy protein kinase (DMPK)
WO2017047816A1 (en) * 2015-09-18 2017-03-23 田辺三菱製薬株式会社 Crosslinked nucleic acid guna, method for producing same, and intermediate compound
JP2018511307A (en) * 2015-04-03 2018-04-26 アイオーニス ファーマシューティカルズ, インコーポレーテッドIonis Pharmaceuticals,Inc. Compounds and methods for modulating TMPRSS6 expression
WO2019156115A1 (en) * 2018-02-07 2019-08-15 国立研究開発法人国立精神・神経医療研究センター Oligodendrocyte-specific promoter, mirna specific to plp1 gene, vector including said promoter and/or mirna, and pharmaceutical composition including said vector
JP2020500537A (en) * 2016-12-08 2020-01-16 ケース ウェスタン リザーブ ユニバーシティCase Western Reserve University Methods and compositions for enhancing functional myelin production
WO2020100826A1 (en) * 2018-11-12 2020-05-22 田辺三菱製薬株式会社 Crosslinked artificial nucleic acid alna

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016530882A (en) * 2013-08-09 2016-10-06 アイオーニス ファーマシューティカルズ, インコーポレーテッドIonis Pharmaceuticals,Inc. Compounds and methods for modulating the expression of myotonic dystrophy protein kinase (DMPK)
JP2018511307A (en) * 2015-04-03 2018-04-26 アイオーニス ファーマシューティカルズ, インコーポレーテッドIonis Pharmaceuticals,Inc. Compounds and methods for modulating TMPRSS6 expression
WO2017047816A1 (en) * 2015-09-18 2017-03-23 田辺三菱製薬株式会社 Crosslinked nucleic acid guna, method for producing same, and intermediate compound
JP2020500537A (en) * 2016-12-08 2020-01-16 ケース ウェスタン リザーブ ユニバーシティCase Western Reserve University Methods and compositions for enhancing functional myelin production
WO2019156115A1 (en) * 2018-02-07 2019-08-15 国立研究開発法人国立精神・神経医療研究センター Oligodendrocyte-specific promoter, mirna specific to plp1 gene, vector including said promoter and/or mirna, and pharmaceutical composition including said vector
WO2020100826A1 (en) * 2018-11-12 2020-05-22 田辺三菱製薬株式会社 Crosslinked artificial nucleic acid alna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELITT MATTHEW S., BARBAR LILIANNE, SHICK H. ELIZABETH, POWERS BERIT E., MAENO-HIKICHI YUKA, MADHAVAN MAYUR, ALLAN KEVIN C., NAWASH: "Therapeutic suppression of proteolipid protein rescues Pelizaeus-Merzbacher Disease in mice", BIORXIV, 31 December 2018 (2018-12-31), pages 1 - 54, XP055893692, DOI: 10.1101/508192 *

Also Published As

Publication number Publication date
JP2023130528A (en) 2023-09-21

Similar Documents

Publication Publication Date Title
JP7059242B2 (en) Compounds and Methods for Regulating the Expression of Myotonic Dystrophy Protein Kinase (DMPK)
JP6924242B2 (en) Composition for regulating C9ORF72 expression
CN105637090B (en) Compositions for modulating expression of C9ORF72
EP3126499B1 (en) Compositions for modulating sod-1 expression
CN104968783B (en) Compositions for modulating expression of C9ORF72
JP2020183379A (en) Modulation of dystrophia myotonica-protein kinase (dmpk) expression
RU2702838C2 (en) Compositions for modulation of ataxin 2 expression
CN113329739B (en) Antisense oligonucleotides targeted to SCN2A for the treatment of SCN1A encephalopathy
TW201819397A (en) Compounds and methods for reducing ATXN3 expression
JP7110485B2 (en) Modulators of PNPLA3 expression
RU2700244C2 (en) Modulators of growth hormone receptor
CN112423767A (en) Compounds and methods for reducing expression of ATXN2
TW202003541A (en) Compounds and methods for reducing ATXN3 expression
JP7022143B2 (en) Modulator of PCSK9 expression
JP2022520986A (en) Compounds and Methods for Reducing ATXN3 Expression
WO2020203880A1 (en) Compound, method and pharmaceutical composition for dux4 expression adjustment
TW202102675A (en) Compounds and methods for reducing kcnt1 expression
TW202111123A (en) Compounds and methods for reducing fus expression
JP2022055361A (en) Pharmaceutical compositions for modulating dux4 expression
WO2021261538A1 (en) Compound, method, and pharmaceutical composition for regulating plp1 expression
WO2021230286A1 (en) Compound, method and pharmaceutical composition for regulating expression of ataxin 3
JP2024091781A (en) Antisense oligonucleotides targeting SCN2A for the treatment of SCN1A encephalopathy - Patent Application 20070123333
WO2023122671A2 (en) Compounds and methods for reducing glycogen synthase 1
TW202016305A (en) Modulators of apol1 expression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP